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A very special EPW sextic and two IHS fourfolds
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We show that the Hilbert scheme of two points on the Vinberg K3 surface has a
two-to-one map onto a very symmetric EPW sextic Y in P5 . The fourfold Y is
singular along 60 planes, 20 of which form a complete family of incident planes.
This solves a problem of Morin and O’Grady and establishes that 20 is the maximal
cardinality of such a family of planes. Next, we show that this Hilbert scheme is
birationally isomorphic to the Kummer-type IHS fourfold X0 constructed by Donten-
Bury and Wiśniewski [On 81 symplectic resolutions of a 4–dimensional quotient
by a group of order 32, preprint (2014)]. We find that X0 is also related to the
Debarre–Varley abelian fourfold.

14D06, 14J35, 14J70, 14K12, 14M07; 14J50, 14J28

1 Introduction

By an irreducible holomorphic symplectic (IHS) fourfold we mean a compact, 4–
dimensional, simply connected Kähler manifold with trivial canonical bundle which
admits a unique (up to a constant) closed nondegenerate holomorphic 2–form and is
not a product of two manifolds; see Beauville [2]. There are only two known families
of such fourfolds: the 21–dimensional family of deformations of the Hilbert scheme
of two points on a K3 surface (we say that elements of this family are of K3Œ2�–type)
having b2 D 23 and the 5–dimensional family of deformations of the Hilbert scheme
of three points summing to zero on an abelian surface with b2 D 7.

A well-known family of projective IHS fourfolds of K3Œ2�–type is the family of double
EPW sextics found by O’Grady in [22]. Recall that an EPW sextic is a special sextic
hypersurface in P5 constructed by Eisenbud, Popescu and Walter in [12]. It arises
from a choice of a subspace A�

V3C6 , Lagrangian with respect to the symplectic
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form � (unique up to choice of volume form on
V6C6 ) on

V3C6 given by the wedge
product. More precisely the EPW sextic associated to A is

YA D
˚
Œv� 2 P .C6/ j dim.A\ .v^

V2C6//� 1
	
:

Such EPW sextics appear as quotients of polarized IHS fourfolds of K3Œ2�–type by an
antisymplectic involution.

In this paper, we investigate birational models of a very special IHS fourfold of
K3–type. The fourfold is obtained as a Hilbert scheme of two points on a special K3
surface studied by Vinberg. We find out, in particular, that on one hand the fourfold is
birational to a double EPW sextic (see Proposition 1.1) and on the other it is birational
to the Kummer-type IHS fourfold constructed by Donten-Bury and Wiśniewski in [11]
as a desingularization of a quotient of an abelian fourfold by a group action (see
Theorem 1.3).

To introduce our fourfold, let us denote by S the K3 surface which is the desingular-
ization of the double covering of the Del Pezzo surface of degree 5, denoted by S5 ,
branched over the union of its ten lines. This surface was studied by Vinberg in [27] as
one of two “most algebraic K3 surfaces”. The starting point of our investigation is the
following proposition.

Proposition 1.1 There exists a series of flops from S Œ2� to a fourfold S Œ2� and a
generically two-to-one morphism S Œ2� ! Y to an EPW sextic Y � P5 which is
singular along 60 planes.

This EPW sextic Y is a very symmetric and natural sextic related to many classical
objects in algebraic geometry. First, it is invariant with respect to the action of the
symmetric group †6 acting on P5 by permutation of the coordinates. We prove
in Section 5 that there are 16 hyperplanes in P5 which are tangent to Y along Segre
cubics (see Dolgachev [9] for the discussion about such cubics) such that the 15 planes
contained in each such cubic are singular planes on Y . Moreover, Y admits 16 sin-
gular points of multiplicity 4 whose tangent cone is the cone over the Igusa quartic.
Furthermore, Y � P5 is projectively self-dual. Finally, the EPW sextic Y gives rise to
a maximal configuration of 20 incident planes in P5 , thus solving a classical problem
proposed by Morin and reformulated by O’Grady.

The problem of O’Grady addresses the question of finding complete families of incident
planes in P5 , ie configuration of planes in P5 intersecting each other and such that
no planes outside of this set intersect all of the planes in the set. In 1930 Ugo Morin
classified in [20] all complete irreducible families of incident planes in P5 . In the same
paper he acknowledged that the classification of complete finite sets of incident planes
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presents essential difficulties. The latter problem was readdressed by Dolgachev and
Markushevich who announced in [10] having found, using the geometry of the Fano
model of an Enriques surface, a description of some families of ten incident planes.
Moreover, they found an explicit description of a complete family of 13 incident planes.
Then O’Grady in [22] proved, using the results of Ferretti, that for 10� k � 16 there
exists a .20�k/–dimensional moduli space of complete families of incident planes of
cardinality k . Moreover, he proved that the maximal cardinality of a finite complete
family of planes is between 10 and 20. Then O’Grady asked: what is the maximal
cardinality of a finite family of incident planes in P5?

Finding families of incident planes is in fact strictly related to EPW sextics. Indeed
from O’Grady [24, Claim 3.2], the set of points in G.3;C6/ corresponding to any
complete family F of incident planes spans a space P .AF / � P .

V3C6/ with AF
Lagrangian with respect to �. In particular, a finite complete family F of incident
planes gives rise to an EPW sextic YAF . The configuration of planes is then contained
in the singular locus of the EPW sextic. It follows that the construction of a finite
complete family of incident planes amounts to finding a special EPW sextic. In our case,
it turns out that a suitable subset of 20 of the 60 singular planes of the EPW sextic Y
is a complete family of incident planes of cardinality 20. Note that the configuration of
these 20 planes is probably rigid. We hence infer the following answer to O’Grady’s
problem:

Theorem 1.2 There exists a complete family of 20 incident planes in P5 . So 20 is
the maximal possible cardinality of a finite complete family of incident planes in P5 .

The outline of the first part of the paper is as follows. In Section 2.1 we construct a
rational map S Œ2�! P5 and find its image. The flops of Proposition 1.1 are described
in Section 3; see Proposition 3.3. Then, the detailed proof of Theorem 1.2 is given
in Section 2.3. In Section 5 further geometric properties of the EPW sextic are studied.

The second aim of the paper is to establish a relation between S Œ2� and the Kummer-type
IHS fourfold constructed by Donten-Bury and Wiśniewski in [11] as a desingularization
of an abelian fourfold by a group action. We shall see that these manifolds are in fact
related through the sextic Y .

Let us recall the construction from [11]. Bellamy and Schedler in [3] showed that a
certain action of the group G WDQ8�Z2

D8 , of order 32, on C4 admits a symplectic
resolution. This action can be given by matrices with coefficients in ZŒi �. Thus we get
an action of G on E4 , where E is the elliptic curve E WDC=.ZC iZ/ with complex
multiplication by ZŒi �. Donten-Bury and Wiśniewski [11, Section 6] showed that
there is an inclusion G � Aut.E4/ such that the quotient E4=G admits a symplectic
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resolution X0 (not uniquely defined) which is an IHS fourfold with second Betti
number given by b2.X0/D 23. One of the goals of our paper is to show that X0 is
of K3Œ2�–type. We shall see that it is in fact birational to the Hilbert scheme of two
points on a K3 surface.

To relate E4=G to S Œ2� and Y , we find a morphism E4! P5 which factors over the
group .G; i/�Aut.E4/ generated by G and diagonal scalar multiplication by i . This
morphism is proven to be the quotient map E4!E4=.G; i/ and E4=.G; i/ is shown
to be a sextic hypersurface Y 0 in P5 . After finding special geometrical properties of Y 0

(singular planes, tangent hyperplanes, etc), we are finally able in Section 6 to show
that actually Y D Y 0 . We then conclude that both S Œ2� and E4=G admit a two-to-one
morphism to the same sextic Y and have the same ramification locus. We also obtain:

Theorem 1.3 There exists a birational contraction S Œ2�!E4=G . In particular X0 is
deformation equivalent to the Hilbert scheme of two points on a K3 surface.

We describe explicitly, in Remark 6.17, the exceptional locus of the contraction
S Œ2�!E4=G over the quotient singularity of type C4=G which was studied in [3];
see also [11].

To obtain the map from E4 to P5 , we show first in Section 4 that there is a unique
G–invariant principal polarization H on E4 . This is not the product polarization,
but .E4;H/ is a principally polarized abelian fourfold with the maximal number
of ten vanishing theta nulls found in Varley [26] and Debarre [6]. The singular locus of
any theta divisor of .E4;H/ consists of exactly ten ODPs. We study in Section 4.3
the automorphism group of .E4;H/ and we deduce that the configuration of the
16 G–fixed points in E4 and the singular points on the 16 G–invariant theta divisors
is a .16; 6/ (actually a complementary .16; 10/) configuration. The map E4! Y is
given by a subsystem of j2Dj where D is a G–invariant theta divisor (see Remark 5.6).

It is well known that the K3 surface S is a desingularization of a quotient of E2 by a
diagonal action of Z4 generated by .i;�i/, so it is maybe not so surprising that E4=G
and S Œ2� are closely related (see also van Geemen and Top [13] for another description
of S ). In fact, there is a lattice theoretical argument proving this (see Proposition 6.14).
However, the groups involved in the quotient maps .E2/2! S Œ2� and in E4!E4=G

are different and we do not know of a more direct method to obtain Theorem 1.3. In
any case, the sextic Y is clearly of independent interest.
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†n nth permutation group
S5 � P5 degree-5 Del Pezzo surface via anticanonical embedding
P2r blow-up of P2 at r general points; for example, S5 Š P24
˛W †5! Aut.S5/ action of †5 on S5; second wedge of standard representation
S 0 D…\Q � P6 intersection of the cone … over S5 with vertex P and a special

quadric Q
�W P6 � S 0! S5 � P5 projection from the vertex of …
C DQ\S5 � S5 ramification of �; union of ten .�1/–curves on S5
�W S ! S 0 resolution of 15 A1 singularities, where S is a Vinberg K3 surface
�W S ! S5 composition � ı�
e1; : : : ; e15 .�2/–curves on S which are contracted by �
l1; : : : ; l10 .�2/–curves on S in strict transform of branching of �
S Œ2� D Hilb2.S/ Hilbert scheme of subschemes of S of length 2

�W DivS! DivSŒ2� �.C/ consists of cycles having nonempty intersection with C � S
�Œ2�W S Œ2�Ü S 0Œ2� push-forward map
�Œ2�W S 0Œ2�Ü Y � P5 maps a pair of points on S 0 to the intersection of their span with P5

gW S Œ2�Ü P5 composition �Œ2� ı�Œ2�

Y � P5 image of g; hypersurface of degree 6; EPW sextic
ˇW †5! Aut.P5/ action compatible with ˛ and g
xgW S Œ2�! Y � P5 small modification of g which is a regular morphism
Fij � S

Œ2� Fij D ffp; qg 2 S
Œ2� W p 2 ei ; q 2 ej g Š P1 �P1

Eij � S
Œ2� Eij D ffp; qg 2 S

Œ2� W p 2 ei ; q 2 lj g Š P22
Lij � S Œ2� strict transform of L0ij D ffp; qg 2 S

Œ2� W p 2 li ; q 2 lj g � S
Œ2�

xgW S Œ2� c
�!Z

f
�!Y Stein factorization

Table 1: Notation

project 2013/10/E/ST1/00688, Jarosław A Wiśniewski by project 2012/07/B/ST1/03343.
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2 The Hilbert scheme of two points
on the Vinberg K3 surface

In this section we study the birational geometry of S Œ2� WD Hilb2.S/, where S is the
(unique) K3 surface with transcendental lattice TS isomorphic to the rank two lattice
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�
Z2; q D 2.x2Cy2/

�
, studied by Vinberg in [27]; see also [13]. Moreover, we exhibit

an explicit (rational) two-to-one map gW S Œ2�Ü P5 whose image is an EPW sextic Y
and we find the equation defining Y .

2.1 The K3 surface S

The surface S is the desingularization of the double cover of P2 branched along the
union of six lines. An equation for the branch curve is

(2-1) xyz.x�y/.x� z/.y � z/D 0:

The six lines defined by (2-1) meet three at a time in the points

p1 WD .1 W 0 W 0/; p2 WD .0 W 1 W 0/; p3 WD .0 W 0 W 1/; p4 WD .1 W 1 W 1/;

and two at a time in the points

.0 W 1 W 1/; .1 W 0 W 1/; .1 W 1 W 0/:

Blowing up the four triple points p1; : : : ; p4 in P2 we obtain a Del Pezzo surface S5 .
The strict transform of the six lines, together with the four exceptional divisors of the
birational map S5!P2 , are the ten .�1/–curves on S5 . The reduced divisor B in the
Del Pezzo surface S5 , whose irreducible components are the ten .�1/–curves has only
ordinary double points, has arithmetic genus 6 and lies in j�2KS5

j. Hence, B is even
in the Picard group of S5 , so it is the branch locus of a degree-two map �W S 0! S5 .

The linear system j�2KS5
j embeds S5 as an intersection of five quadrics q0i D 0,

for i D 1; : : : ; 5, in P5 . There is a further quadric q00 D 0 in P5 which cuts out the
divisor B on S5 . The K3 surface S thus has a (nodal) model S 0 as the intersection
of the cone … over S5 with vertex P D .0 W � � � W 0 W 1/ 2 P6 (so … is defined by the
five quadrics q0i D 0 in P6 ) and the quadric Q defined by y26 D q

0
0 (see the proof of

Proposition 2.1 below); that is, we have a contraction map

�W S ! S 0 WD…\Q .� P6/:

The degree-two map �W S 0! S5 is simply the projection from P to the hyperplane
y6 D 0.

The divisor B in S5 has 4 � 3C 3D 15 ordinary double points, and after blowing up
these points, we get a surface S 05 on which the strict transforms of the six lines and four
exceptional curves of the first blow-up are disjoint. The K3 surface S is the double
cover of S 05 branched over these ten curves; the inverse images of the 15 rational
curves over double points of B are rational curves in S . The map �W S ! S 0 is the
contraction of these 15 rational curves. The intersection diagram of the 25 curves
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Figure 1

on S above is the Petersen graph in Figure 1. In this diagram, the dots � correspond
to the ten curves from T and the edges to the 15 exceptional curves of �W S ! S 0 .

Let C be the pull-back of B to S along the composition S!S 0!S5 . Then C 2D 10
and the linear system given by this curve is the contraction map �D�C W S!S 0�P6 .

2.2 The map gW S Œ2� Ü P 5

Let S Œ2� be the Hilbert scheme of two points on S . We define a rational map g (see
[21, Section 4.3]) that on an open part of S Œ2� is a composition of rational maps:

gW S Œ2�
�Œ2�

Ü .S 0/Œ2�
�Œ2�

ÜY � P5:

Here the map �Œ2� is the map naturally induced by � on the Hilbert scheme. By .S 0/Œ2�

we denote the Hilbert scheme of two points in the smooth part of S 0 . The rational
map �Œ2� is induced by mapping fp; qg 2 .S 0/2 to the hyperplane of those quadrics in
the ideal of S 0 � P5 which contain the line spanned by p and q . The base locus of
the map g will be studied in Section 3. We shall see in Proposition 3.3 that the map g
is given by a complete linear system.

To describe the image Y of g , we need the following symmetric functions in six
variables Z0; : : : ; Z5 :

P6 WDZ
6
0 CZ

6
1 CZ

6
2 CZ

6
3 CZ

6
4 CZ

6
5 ;

P42 WDZ
4
0Z

2
1 CZ

4
0Z

2
2 C � � �CZ

2
4Z

4
5 ;

P222 WDZ
2
0Z

2
1Z

2
2 CZ

2
0Z

2
1Z

2
3 C � � �CZ

2
3Z

2
4Z

2
5 ;

P111111 WDZ0Z1Z2Z3Z4Z5:

The polynomials P42 and P222 have 30 and 20 terms, respectively.
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Proposition 2.1 The image Y of S Œ2� under gW S Œ2�Ü P5 is the sextic F6 D 0

where, with the notation above,

F6 D P6�P42C 2P222� 16P111111:

Proof The anticanonical map from S5 to P5 is given by the linear system of cubics
in P2 which pass through the points p1; : : : ; p4 . A basis for these cubics is given by

y0 D x
2
0x1� x0x1x2; y1 D x

2
0x2� x0x1x2; y2 D x0x

2
1 � x0x1x2;

y3 D x0x
2
2 � x0x1x2; y4 D x

2
1x2� x0x1x2; y5 D x1x

2
2 � x0x1x2:

The image of S5 in P5 is defined by the following five quadratic forms:

q01 D y0y3Cy1y2�y2y5�y3y4;

q02 D y0y4Cy1y2�y1y5�y3y4;

q03 D y0y5Cy1y2�y1y5�y2y5�y3y4;

q04 D y1y4�y1y5�y3y4;

q05 D y2y3�y2y5�y3y4:

Moreover, the quadratic form

q00 WD y1y2�y3y4

cuts out the union of the ten lines on S5 . Thus the image S 0 of the K3 surface S in P6

under the map � is defined by the five quadrics which cut out the image of S5 and
the quadric with equation y26 D q

0
0 , where now y0; : : : ; y5; y6 are the homogeneous

coordinates on P6 . We define q06 WD q
0
0 � y

2
6 . In order to get the very symmetric

polynomial F6 we need the following change of basis on the space of these quadrics:0BBBBBBB@

q1
q2

:::

q6

1CCCCCCCA
D

0BBBBBBB@

1 1 0 0 �2 �1

�1 1 0 0 2 �1

1 �1 0 2 0 �1

�1 �1 2 0 0 �1

1 1 �2 0 0 �1

1 1 0 �2 0 �1

1CCCCCCCA

0BBBBBBB@

q01
q02

:::

q06

1CCCCCCCA
:

The map gW S Œ2�Ü P5 maps fp; qg 2 S Œ2� to the hyperplane of quadrics in the ideal
of �.S/ which contains the line spanned by �.p/ and �.q/. If �.p/D .y0 W � � � W y6/
and �.q/D .z0 W � � � W z6/ then we can write

qi .�yC�z/D �
2qi .y/C�

2qi .z/C 2��Qi .y; z/;
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where Qi is the symmetric bilinear form given by the polarization of qi . The map g
is thus induced by the rational map

zgW S �S ! P5 given by .p; q/ 7! . � � � WQi .�.p/; �.q// W � � � /1�i�6:

It is now easy to verify that the polynomial F6 vanishes on the image of g : one
only needs to check that F6. : : : ;Qi .y; z/; : : : / D 0 on S � S where y; z 2 �.S/,
so one substitutes the cubic polynomials in x0; x1; x2 for y0; : : : ; y5 , and similarly
for z0; : : : ; z5 , but now with polynomials in u0; u1; u2 (coordinates for another copy
of P2 ) and one uses that y26 D y1y2�y3y4 and z26 D z1z2� z3z4 .

For later use we notice that a general line contained in the cone … over S5 (defined
by q01 D � � � D q05 D 0) and passing through its vertex P cuts S 0 in two points
�.p/ and �.q/. Using the change of basis, we find that .p; q/ maps to the point
.�1 W � � � W �1/D .1 W � � � W 1/ in Y .

Remark 2.2 Note that the equation of the image of g can be found in a theoretical
way using the results from Section 3 and from Section 6.

2.3 The sextic Y is a special EPW sextic

We will show that the degree-six fourfold Y � P5 , which is the image of S Œ2� , is
an EPW sextic; see [23]. The singular locus of a general EPW sextic is a surface
of degree 40. The sextic Y is (very) special in the sense that its singular locus has
degree 60; in fact it is the union of 60 planes. The double cover of an EPW sextic along
the singular locus is an IHS fourfold. Forty of the 60 singular planes in Y are in the
branch locus of the map gW S Œ2�! Y . The other “extra” 20 planes must then be a set
of incident planes. To identify the planes in the branch locus, we use that the symmetric
group †5 acts on the Del Pezzo surface S5 and that this action lifts to the action of
a group z†5 on the K3 surface S . This group then also acts on S Œ2� and we show
that g is an equivariant map, where z†5 acts through a subgroup ˇ†5 , isomorphic
to †5 , of †6 on Y . Knowing the 20 incident planes then allows us to find explicitly a
Lagrangian subspace A�

V3C6 such that Y D YA in the EPW construction.

The first part of the following lemma is well known.

Lemma 2.3 The symmetric group †5 acts as group of automorphisms on S5 , the
permutations of the points p1; : : : ; p4 induce the elements in †4�†5 and the Cremona
transformation on p1 , p2 , p3 induces the transposition .45/.

These automorphisms of S5 � P5 , where the embedding is given by the cubics from
the proof of Proposition 2.1, are induced by projective transformations which map
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y WD .y0 W y1 W � � � W y5/ to

˛34.y/ WD .y0�y1Cy4 W �y1Cy3�y5 W y2�y4Cy5 W �y5 W �y3�y4Cy5 W �y3/;

and the maps ˛12 , ˛23 and ˛45 permute the coordinates yi as

˛12W .02/.14/.35/; ˛23W .01/.23/.45/; ˛45W .05/.14/.23/:

The map gW S Œ2�! P5 is equivariant for the action of †5 , where the action of � 2†5
on P5 is given by the permutation ˇ� of the projective coordinates Z0; : : : ; Z5 :

ˇ12W .03/.14/.25/; ˇ23W .01/.24/.35/; ˇ34W .05/.14/.23/; ˇ45W .01/.25/.34/:

Proof These are straightforward verifications. The permutation of the points p3 and p4
is given by .x W y W z/ 7! .x� z W y � z W �z/ and now one computes the action on the
six cubics from the proof of Proposition 2.1. The Cremona transformation is induced
by .x W y W z/ 7! .x�1 W y�1 W z�1/. This is substituted in the cubics and next one
multiplies them by .xyz/2 .

Interchanging for example x and y , the equation of the branch curve (2-1) changes
sign, and the same happens for any other transposition in †5 . Thus to lift the action
to S 0�P6 one must map y6 7! iy6 (with i2D�1). Finally, one considers the induced
action on the quadratic forms q1; : : : ; q6 in the variables y0; : : : ; y6 . These qi are the
coordinate functions Zi�1 .

To describe the singular locus of Y and the action of †6 on the irreducible compo-
nents, we introduce the following notation. Let ffi; j g; fk; lg; fm; ngg be a partition
of f0; : : : ; 5g, so fi; j; k; l; m; ngD f0; : : : ; 5g. Notice that there are 15 such partitions.
Then, with three choices of sign, we define planes in P5 by

Vi˙j;k˙l;m˙n W Zi ˙Zj DZk˙Zl DZm˙Zn D 0 .� P5/:

Notice that besides being symmetric in the variables Z0; : : : ; Z5 , the polynomial F6
which defines Y is also invariant under the change of sign of an even number of
variables.

Proposition 2.4 The singular locus of Y is the union of 60 planes. There are two
†6–orbits, of lengths 15 and 45, respectively, of these planes, and they are the orbits of

V0�1;2�3;4�5 and V0C1;2C3;4�5;

respectively. Let ˇ†5 � †6 be the subgroup, isomorphic to †5 , generated by the
permutations ˇ12 , ˇ23 , ˇ34 and ˇ45 from Lemma 2.3. Then ˇ†5 has four orbits on
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the set of 60 singular planes of Y . They are the orbits of

V0�1;2�3;4�5; V0�1;2�4;3�5; V0C1;2C3;4�5 and V0C1;2C4;3�5;

and these orbits have lengths 5, 10, 15 and 30, respectively.

Proof A Magma [5] computation gives the irreducible components of the singular
locus of Y and the rest are straightforward verifications (done with Magma as well).

A plane V � P5 is the projectivization of a linear subspace zV �C6 of dimension 3
and it is determined by the line

V3 zV � V3C6 (equivalently, by the point in the
Grassmannian Gr.3; 6/� P .

V3C6/). The 20–dimensional vector space
V3C6 has a

natural symplectic form given by .!; �/ WD!^� .2
V6C6DC/, where we fix a basis

of
V6C6 . Two planes V;W � P5 are incident if and only if .

V3 zV /^ .V3 zW /D 0.
A set of planes is called a set of incident planes if any plane of this set has a nonempty
intersection with each of the other planes in the set. In particular, a set of incident
planes determines an isotropic subspace in

V3C6 . The following result, together with
Corollary 2.7 solves the problem of O’Grady from [24].

Proposition 2.5 (proof of Theorem 1.2) The union of the two ˇ†5–orbits of the
planes V0�1;2�3;4�5 and V0C1;2C3;4�5 consists of the 20 planes V0˙1;2˙3;4˙5 ,
V0˙2;1˙4;3˙5 , V0˙3;1˙5;2˙4 , V0˙4;1˙3;2˙5 and V0˙5;1˙2;3˙4 , all with an odd
number of � signs. This is a set of 20 incident planes. The span of

V3
V0˙1;2˙3;4˙5 ,V3

V0˙2;1˙4;3˙5 ,
V3
V0˙3;1˙5;2˙4 ,

V3
V0˙4;1˙3;2˙5 and

V3
V0˙5;1˙2;3˙4 (all

with an odd number of � signs) in
V3C6 is a Lagrangian subspace A of

V3C6.

Proof This is again a (Magma) computation. The set of 20 planes is easy to find. For
example, V WD V0C1;2C4;3�5 is in this set. It has a basis e0 � e1 , e2 � e4 , e3C e5 ,
where e0; : : : ; e5 denotes the standard basis of C6 . Thus the line

V3 zV0C1;2C4;3�5 is
spanned by the vector

�e0 ^ e2 ^ e3C e1 ^ e2 ^ e3� e0 ^ e3 ^ e4C e1 ^ e3 ^ e4

� e0 ^ e2 ^ e5C e1 ^ e2 ^ e5C e0 ^ e4 ^ e5� e1 ^ e4 ^ e5:

Now one verifies that these planes are indeed incident and span a 10–dimensional,
hence Lagrangian, subspace A.

A general Lagrangian subspace A�
V3C6 determines a sextic hypersurface YA � P5 ,

the EPW sextic defined by A, as follows. Let v 2P5 and let zv 2C6 be a representative.
Then

Fv WD f! 2
V3C6

W zv^! D 0g
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is a Lagrangian subspace of
V3C6 . Define

YAŒk� WD fv 2 P5 W dim.Fv \A/� kg:

Then the EPW sextic YA is defined as YAD YAŒ1�. The sextic YA is singular along the
surface YAŒ2� of degree 40 and along the planes W � P5 such that

V3 zW 2 A [24,
Proposition 3.3].

Proposition 2.6 Let A �
V3C6 be the Lagrangian subspace from Proposition 2.5.

Then the EPW sextic YA is the sextic Y from Proposition 2.1. Its singular locus consists
of the surface YAŒ2�, which is the union of the 40 planes in the two ˇ†5–orbits of
lengths 10 and 30, and the 20 incident planes from Proposition 2.5.

Proof Let !1; : : : ; !10 be a basis of A and let �1; : : : ; �15 be a basis of
V4C6 . For

each basis vector ei of C6 one computes the matrix Mi of the linear map A!
V4C6

defined by ! 7! ei ^ ! . Then v D .v0 W � � � W v5/ 2 YA exactly when the matrix
Mv WD v0M0C � � �C v5M5 has rank at most 9, and hence all 10� 10 minors of Mv

must be zero. Since YA is either a sextic or is identically zero, it suffices to factor a
minor to find a sextic polynomial defining YA .

A convenient basis for the Lagrangian subspace A consists of the elements (up to sign)
in the ˇ†5–orbit of e0^e1^e2Ce3^e4^e5 . We used the standard basis ei^ej^ek^el
for

V4C6 . The submatrix obtained from the ten basis elements e0 ^ ei ^ ej ^ ek ,
with i; j; k 2 f1; : : : ; 5g and i < j < k , has nonzero determinant and one finds the
polynomial F6 as an irreducible factor. We already found the singular locus of Y and
all planes corresponding to points in PA, and hence YAŒ2� is the union of the planes
as in the proposition.

Corollary 2.7 The set of 20 incident planes in Proposition 2.5 is a complete set of
incident planes.

Proof Any plane incident to all the 20 incident planes in Proposition 2.5 corresponds
to a point of intersection of P .A/\Gr.3; 6/. Since Y is an EPW sextic, such a plane
is in the singular locus of Y [24, Proposition 3.3]. But none of the remaining 40 planes
in the singular locus of Y corresponds to a point of A, so the set of 20 planes is
complete.

Remark 2.8 (compare with Remark 6.8) We find, for the Lagrangian space A from
Proposition 2.5, that YAŒ3� D YAŒ4�. Moreover, YAŒ4� consists of 16 points and for
each v 2 YAŒ4� the corresponding linear space P .Fv \A/ cuts G.3; 6/� P .

V3C6/

in five points. One of these points is .1 W � � � W 1/ 2 YAŒ4� (see the end of the proof
of Proposition 2.1). This is the point where five planes of type Vi�j;k�l;n�m (with
three � signs) meet.

Geometry & Topology, Volume 21 (2017)



A very special EPW sextic and two IHS fourfolds 1191

Remark 2.9 Given one of five partitions ffi; j g; fk; lg; fn;mgg, used to describe 20
incident planes in Proposition 2.5, and choosing one of the three pairs in this partition,
one produces a point of incidence of another 5–tuple of planes. For example, for a
partition ff0; 2g; f1; 4g; f3; 5gg we choose the second pair f1; 4g and take the point
.1 W �1 W 1 W 1 W �1 W 1/ (minus sign with first and fourth coordinates). Then this
point is contained in the five planes V0C1;2�3;4C5 , V0�3;1C5;2C4 , V0C4;1C3;2�5 ,
V0�5;1C2;3C4 and V0�2;1�4;3�5 . This way we get 16D 1C5 �3 points in YAŒ4�, each
of the points contained in a 5–tuple of planes coming from the five different partitions
from Proposition 2.5.

Similarly one finds 30 points where planes associated to the same partition meet pairwise.
For example, for a partition ff0; 2g; f1; 4g; f3; 5gg, we choose the second pair. Then
V0�2;1�4;3�5 meets V0C2;1�4;3C5 at .0 W 1 W 0 W 0 W 1 W 0/ while V0�2;1C4;3C5 meets
V0C2;1C4;3�5 at .0 W 1 W 0 W 0 W �1 W 0/. This shows that the planes from Proposition 2.5
meet pairwise indeed.

Thus the set of 20 planes is divided into 5 subsets of 4 planes in a natural way: a subset
corresponds to a partition ffi; j g; fk; lg; fn;mgg and there are four choices of signs
such that the number of � signs is odd. Each subset of four planes contains 16 points
in YAŒ4�, on each plane there are four of these points. Any two planes corresponding
to different partitions meet in one of the 16 points.

Remark 2.10 Note we can reconstruct the K3 surface S 0 � P6 starting from A; see
[23, Section 4.2]. Indeed, if we let v2YAŒ4�, then the dual space P .Fv\A/��P .Fv/�

is a 5–dimensional linear space contained in P9 . The projective space P .Fv/� naturally
contains a Grassmannian G.2; 5/ that cuts P .Fv \A/� along a smooth Del Pezzo
surface S5 of degree 5. From [23, (4.1.5)] we know that there is a nondegenerate
quadratic form on P .Fv \A/� � P .

V3C6/� (induced by A�
V3C6 ). We find that

the corresponding quadric cuts S5 � P5 along ten lines. The K3 surface S 0 is the
double cover of S5 branched along these lines. Note that S 0 � P6 is a nongeneric K3
surface of degree 10.

3 The resolution of the map S Œ2� Ü Y

Let S Œ2� be the Hilbert scheme of two points on S . In this section we analyze the
rational map gW S Œ2�ÜY defined in Section 2.2. In Section 3.1 we present a sequence
of flops that resolves the indeterminacy of this map; in Proposition 3.3 we obtain a
morphism xgW S Œ2�!Y such that S Œ2� and S Œ2� differ by Mukai flops. In Section 3.2 we
describe the ramification locus of xg ; we need it to obtain the explicit desingularization
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in Theorem 1.3. A consequence of our construction is the description (see Remark 6.17)
of a symplectic resolution of the singular point C4=G discussed in [3], ie the fiber
of xg over points from YAŒ4�.

3.1 Flops

In order to resolve the map g we need to perform birational transformations such that
the divisor g�.OP5.1// becomes nef. Let us first describe this divisor.

Let �W H 2.S;Z/ ! H 2.S Œ2�;Z/ be the natural morphism of cohomology groups.
For (the class of) a curve C � S , its image �.C/ is the class of the divisor with
support ffp; qg Wp 2C; q 2Sg 2S Œ2� . We denote by �Œ2�S the diagonal divisor on S Œ2� .
The isomorphism of H 2.S Œ2�;Z/, with the lattice S given in (6-1), will be fixed
so that �.H 2.S;Z//DƒK3 and �Œ2�S D 2�:

Proposition 3.1 We have g�.OP5.1//DOS Œ2�.�.C /��
Œ2�
S /.

Proof See [23, Section 4].

Let us describe a sequence of Mukai flops that resolves the map g . Recall that
in Section 2.2 we defined the map g such that on an open part of S Œ2� it can be
described as the composition

gW S Œ2�
�Œ2�

Ü .S 0/Œ2�
�Œ2�

ÜY � P5

of rational maps. By .S 0/Œ2� we understand the Hilbert scheme of two points in the
smooth part of S 0 . We shall see that there are two sources of indeterminacy for the
map g : the first is the presence of lines on S 0 and the second are the nodes of S 0 . In
order to understand more precisely the map g we need to understand the geometry
of S 0 � P6.y0; : : : ; y6/.

We take a Del Pezzo surface S5 of degree 5 contained in the hyperplane W DP5�P6

defined by y6 D 0. Let … be the cone over S5 in P6 with vertex P D .0 W � � � W 0 W 1/
and let Q be the quadric with equation y26 D q

0.y0; : : : ; y5/ as in Section 2.1. Then Q
intersects S5 along the union of the ten exceptional lines on S5 , we have S 0 D…\Q
and S 0 is singular exactly at the 15 points of intersection of these lines. The projection
P6! P5 with center P induces a two-to-one morphism �W S 0! S5 ramified along
the sum of the ten lines on S5 �W . Since the projection by � of a line in S 0 is a line
in S5 , we infer that there are exactly ten lines on S 0 � P6 . Denote the set of strict
transforms of those lines on S by T D fl1; : : : ; l10g and the 15 exceptional curves
on S by e1; : : : ; e15 .

From the definition of the map g in the proof of Proposition 2.1 it follows that g is
well defined on S Œ2� except possibly in z 2 S Œ2� with z D fp; qg such that:
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Figure 2

(1) Both p 2 li and q 2 li , ie z 2 l Œ2�i ; we have 10 such planes.

(2) Both p 2 ei and q 2 ei , ie z 2 eŒ2�i ; we have 15 such planes.

(3) p 2 ei and q 2 lj , where ei and lj intersect. We find a surface denoted by Eij
that parametrizes the closure of this set of reduced subschemes z D fp; qg. We
obtain 30 surfaces (because there are three exceptional curves cutting a given
line) in S Œ2� , each isomorphic to P1 �P1 blown-up in one point,

(4) p 2 ei and q 2 ej with ei and ej mapping to two distinct points in one of the
lines from T . We obtain 30 surfaces Fij Dffp; qg 2 S Œ2� Wp 2 ei ; q 2 ej g, each
of which is isomorphic to P1 �P1 .

Let K � S Œ2� be the union of the 85 surfaces of types (1), (2), (3) and (4) described
above. Note that the indeterminacy locus of g is contained in K . We now perform
a sequence of flops to obtain a fourfold on which the transform of the map g is a
morphism. Let us analyze the flops locally on S Œ2� around the surface l Œ2�1 .

A node of the trivalent Petersen graph corresponding to the .�2/–curve l1 meets three
other .�2/–curves e1 , e2 and e3 (see Figure 1). This gives an initial configuration of
ten surfaces in S Œ2� ,

l
Œ2�
1 ; e

Œ2�
1 ; e

Œ2�
2 ; e

Œ2�
3 ; F12; F23; F13; E01; E02 and E03;

which can be described as in Figure 2.

In the diagram we use the following notation to describe the types of the surfaces:
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� D P2 , � D P1 � P1 and � D P22 is P2 blown-up in two different points. In
subsequent diagrams we will also use HD P21 and BD P23 to denote the blow-up
of P2 at one and three (noncollinear) points, respectively.

Solid line edges of the diagram are intersections of surfaces along curves; dotted line
edges denote intersections in points. The solid lines edges will be labeled by the classes
of curves in Hilb2.S/.

Given a curve C on S we have a divisor �.C/ in Hilb2.S/ consisting of schemes
whose support has nonempty intersection with C . The “diagonal” divisor �Œ2�S in S Œ2�

is the exceptional divisor of the resolution of singularities S Œ2�! .S �S/=Z2 , where
the Z2–action interchanges the factors. Outside the divisor �Œ2�S the divisor �.C/ is
isomorphic to the complement of C �C in C �S . By ŒC � we will denote the class of
the curve C � fsg where s … C .

In what follows c0 D Œl1� and ci D Œei �, for i D 1; 2; 3, and d is the class of a fiber in
the blow-up of the diagonal, that is, in �Œ2�S . We have the following intersection rules:

� �.C/ � c0 D 1 and �.C/ � ci D �.C/ � d D 0 for i > 0;

� �
Œ2�
S � ci D 0 for i � 0 and �

Œ2�
S � d D�2:

To spare notation in diagrams we set

hD
X
i�0

ci � d and a0 D d � c0;

and for j > 0 we set

bj D d � cj ; fj D d � c0� cj ;

gj D h� cj D
X
i�0

ci � d � cj ; vj D
X
i�0

ci � c0� cj :

Then for j > 0 we have

��.C/ �fj D �.C/ �gj D �.C/ � hD 1;

�
Œ2�
S �fj D�

Œ2�
S � bj D�2;

�
Œ2�
S �gj D�

Œ2�
S � hD 1;

�.C / � bj D �.C/ � vj D�
Œ2�
S � vj D 0:

We start the process of flopping. Note that the lines contained in eŒ2�i and l Œ2�j have
negative intersection with �.C/��Œ2�S . Note also that among the surfaces from K only
the surfaces eŒ2�i and l Œ2�j are planes so we have to start the flopping procedure with them.
Flopping the eŒ2�i , for i D 1; 2; 3, each isomorphic to P2 , outside the hexagon we get
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Figure 3

the picture on the left-hand side of Figure 3 and then flopping l Œ2�1 , the P2 in the center,
we get the picture on the right-hand side. We suppress labeling the surfaces and label
only the classes of curves in the surfaces, notably those which are in the intersections
of them.

The left-hand side of Figure 4 presents the result of flopping the three copies of P2 at
the perimeter of the hexagon. Note that the copies of P2 outside the hexagon are blown
up twice because they are on the link of two such hexagons. The resulting copies of P22
have a common point with the central surface. They have three .�1/–curves whose
classes are in fi , f 0j and bj �fj �f 0j where f 0j is the class of the curve coming from
the configuration of the adjacent node of the Petersen graph. The point of intersection
of this surface with the central P23 lies on the curve whose class is fj . The right-hand
side of Figure 4 is obtained by the subsequent flopping of the other three copies of P2

at the perimeter. In this step the surfaces outside the hexagon are not affected.

Now we flop at the central surface (see Figure 5).

In Figure 5, Z denotes P22 blown-up at two points at two nonmeeting .�1/–curves,
which then become .�2/–curves whose classes are in vj D fj ChD

P
i ci � c0� cj ,

and v0j , respectively. This surface has also five .�1/–curves with classes bj �fj �f 0j ,
h and bj �fj � h as well as h0 and b0j �f

0
j � h

0 .

Lemma 3.2 The divisor �.C/ � �Œ2�S is nef on this configuration of surfaces. It
is O.1/ on the central P2 , it is trivial on copies of P1�P1 (� in Figure 5) and defines
a ruling on the remaining six surfaces. Thus some multiple of �.C/��Œ2�S defines
the contraction of the configuration of these surfaces to a configuration of lines on the
image of the plane l Œ2�0 .
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� � �

� �

B

� �

�

�

f1
f2

f3

f1 f2

f3

g3

g2 g1

:::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::

::::
::::
::::
::::
::::
:::
::
::
::
::
:::
::::
::::
::::
::::
::::
:

� � �

� �

�

� �

�

�

f1
f2

f3

�g3 �g3

�g2

�g2

�g1

�g1

h h

h

::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::

::::
::::
::::
::::
::::
:::
::
::
::
::
:::
::::
::::
::::
::::
::::
:

Figure 4

Z
H Z

� �

�

H H

�

Z

v1
v2

v3

c3 c3

c2

c2

c1

c1

�h

�h
�h

Figure 5

Proof We check that .�.C /��Œ2�S / � .�h/D 1 while the intersection of �.C/��Œ2�S
with each of cj , vj , fj C h, bj �fj � h and bj �fj �f 0j is zero.

Summary We constructed above a sequence of Mukai flops of copies of P2 deter-
mined by the following classes of 1–cycles: (1) bj , (2) ai , (3) fij , (4) gij , (5) hi .
Here i is among indices parametrizing vertices and j is among indices parametrizing
edges of the Petersen graph. After flopping those classes �.C/��Œ2�S becomes nef (on
the configuration of the strict transforms of the surfaces in question). The fourfold S Œ2�

is obtained from S Œ2� by performing this sequence of Mukai flops in the five families
of surfaces and xgW S Œ2�! Y is the map obtained from gW S Œ2�Ü Y . We infer the
following:
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Proposition 3.3 The strict transform of the complete linear system j�.C/ ��Œ2�S j
on S Œ2� is big and nef and defines a morphism xgW S Œ2� ! Y � P5 that resolves
the indeterminacy of the map g . In particular g is defined by the complete linear
system j�.C/��Œ2�S j and the set K is the indeterminacy locus of g .

Proof From Proposition 3.1 the map g is defined by a 5–dimensional linear subsystem
of j�.C/��Œ2�S j.

We are flopping S Œ2� step by step as described in Figures 2–5. Also, we saw how
the classes of curves change after our flops. At each step we are doing Mukai flops
of a set of disjoint copies of P2 corresponding to a curve class that has negative
intersection with the strict transform of �.C/��Œ2�S . By Lemma 3.2 we deduce that
the proper transform H of �.C/��Œ2�S on S Œ2� is big and nef.

The Beauville degree satisfies q.H/Dq.�.C /��Œ2�/Dq.�.C //�q.2�/D10�8D2.
So, in particular, �.O

S Œ2�.H//D 6, and thus h0.O
S Œ2�.H//D 6. It follows that the

map xgW S Œ2�! P5 defined by jH j is a morphism. Since S Œ2� and S Œ2� are isomorphic
in codimension 1 the morphism xgW S Œ2�!Y �P5 gives the resolution of g . It follows
also that the map gW S Œ2�Ü P5 is given by the complete linear system j�.C/��Œ2�S j
on S Œ2� .

The set K is in the base locus because it is covered by curves with negative intersection
with �.C/��Œ2�S . Outside K there are no base points since the map �Œ2� , so g , is
well defined there.

3.2 The structure of the map S Œ2�! Y

Let S Œ2� be the Hilbert scheme of two points on S .

In this subsection we describe technical results needed in the proof of Theorem 1.3.
Our aim is to give a description of the ramification locus of the map xg . Our plan is
to first describe the ramification of the map g and then to look how this ramification
locus transforms by flops, described in Section 3.1, transforming g to xg .

We consider the Stein factorization

xgW S Œ2� c
�!Z

f
�!Y � P5:

Let us first identify 20 divisors B1; : : : ; B20 on S Œ2� which are contracted by c to
singular surfaces on Z . Then we identify the ramification locus of f as the image by c
of 40 surfaces that are the strict transforms of some surfaces from S Œ2� isomorphic
to P1 �P1 .
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Lemma 3.4 The covering involution of f W Z! Y is induced by the map �W S! S5 ,
ie if �.x1/D �.x2/ and �.y1/D �.y2/, such that x1 ¤ x2 and y1 ¤ y2 , are generic
points on S , then we have f .c..x1; y1///D f .c..x2; y2///.

Proof It suffices to study the involution induced by �Œ2�W .S 0/Œ2� ! Y . The linear
system of quadrics containing S 0 is generated by the 5–dimensional system of quadrics
containing the cone … and the quadric Q . For a pair fp; qg 2 .S 0/Œ2� consider another
pair .p0; q0/ 2 .S 0/Œ2� such that p0 (resp. q0 ) is the second point of intersection of the
line Pp (resp. Pq ) with Q , since the quadrics containing … have the property: when
they vanish on the line pq then they vanish on the line p0q0 . Moreover, Q vanishes at
the points p , q , p0 and q0 , and so the proof is finished.

We can now describe the ramification locus of the map xg . Let Lij 'P1�P1 with i¤j
be the strict transform on S Œ2� of the surface L0ij D ffp; qg 2 S

Œ2� W p 2 li ; q 2 lj g

(where li for i D 1; : : : ; 10 are the strict transforms of the lines from S 0 on S ). Note
that L0ij is isomorphic to P1 �P1 and that there are 45 such surfaces.

Corollary 3.5 The branch locus of the map xg consists of 40 surfaces on S Œ2� . Each
such surface is an element of one of the following sets:

� the set of 30 surfaces Lij 'P1�P1 from S Œ2� for i¤j such that the lines �.li /
and �.lj / do not intersect,

� the set of ten planes l Œ2�i � S Œ2� which are the strict transforms of the ten
planes l Œ2�i � S

Œ2� .

Proof The surfaces L0ij are invariant with respect to �Œ2� , so it is enough to show
that they are not contracted by xg . First observe that Lij is isomorphic to P2 blown-up
at two points. Indeed, consider the P3 which is the span of two disjoint lines �.li /
and �.lj / on S5 . It cuts S5 along three lines �.li /, �.lj / and �.lk/ such that �.lk/
cuts �.li / in one point �.Ai / and �.lj / in one point �.Aj /. We can deduce that the
restriction of the map S Œ2�Ü S Œ2� to Lij is the blow-up of the point .Ai ; Aj / 2 Lij
(corresponding to the intersection with the line eiej ).

By Lemma 3.2 the strict transform of the system j�.C/ � �Œ2�S j restricted to the
plane l Œ2�i is the system OP2.1/. Since l Œ2�i maps through c to a plane we infer that
l Œ2�i is in the ramification locus.

Remark 3.6 The 15 surfaces Lij that correspond to two intersecting lines are mapped
to points by xg . Indeed, in the case when �.li / and �.lj / intersect, a quadric contain-
ing S 0 either cuts the plane spanned by �.li / and �.lj / along these two lines or it
contains this plane.
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Let us identify the exceptional divisors on S Œ2� that are mapped to surfaces on Z
by c . The exceptional divisors Bi will be the strict transforms on S Œ2� of divisors
B 0i � S

Œ2� defined in the following way. Fifteen of them are easy to describe. Let
B 0i D ffp; qg 2 S

Œ2� W p 2 eig, where ei is one of the 15 curves contracted by the
map S ! S 0 . Then these divisors are already contracted by �Œ2�W S Œ2�! .S 0/Œ2� .

Let us find the remaining five divisors B 016; : : : ; B
0
20 . There are five pencils of conics

on S5 � P5 (if S5! P2 is the blow-up in four points the pencils correspond to lines
passing through these points and the conics through the four points). These pencils
induce five elliptic pencils �1; : : : ; �5 on S . We define the divisors B 015Ci by

B 015Ci D ffp; qg 2 S
Œ2�
W there exists K 2 �i such that p 2K; q 2Kg:

Each of the divisors B 015Ci has a fibration B 015Ci ! P1 with fibers of type KŒ2� .

Denote by B1; : : : ; B20 the strict transforms of B 01; : : : ; B
0
20 on S Œ2� . We know from

Proposition 2.6 that Y is singular along 60 planes. We shall see that the 20 of them
described in Proposition 2.5 are the images of B1; : : : ; B20 . Note that in Proposition 4.8
we prove that the images of B1; : : : ; B20 on Z are singular K3 surfaces with normal-
ization being the Vinberg K3 surface.

Proposition 3.7 The divisors Bi for iD1; : : : ; 20 are contracted through c to surfaces
in Z such that the images of the Bi on Z intersect each other. A general fiber of c in
the divisors B1; : : : ; B15 is a curve of type ci , with i > 0, as defined in Section 3.1.
Moreover, there are no other divisors on S Œ2� that are contracted to surfaces by g .

Proof Let u be the strict transform on S of a conic in S5 � P5 . It is enough to
prove that the surface uŒ2� � S Œ2� maps to a line in Z . First, the curve u is contained
in P3u (spanned by P and the plane spanned by the conic in S5 ). The curve u is
the intersection of two quadrics: Q and the cone with vertex P . When u is chosen
generically, the quadric Q\P3u is smooth and thus is isomorphic to P1 �P1 . Each
line on Q cuts S 0 in two points such that the two rulings on Q define two curves
on S Œ2� . By the description of the map �Œ2� we see that both these curves are contracted
by g to the same point on Y .

Finally, we find explicitly points in the intersections of each pair Bi , Bj of the divisors
for 0� i < j � 15.

In order to prove that there are no more contracted divisors, it is enough to observe
that each such divisor maps to a plane in the singular locus of Y � P5 . On the other
hand, we know that Y is an EPW sextic and from [24] the contracted divisors Bi
for i D 1; : : : ; 20 are mapped to a maximal set of incident planes. There are no more
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contracted divisors since the image of such a divisor would be a plane which intersects
all the 20 planes above.

4 A Kummer-type IHS and the Debarre–Varley ppav

The IHS fourfold X0 constructed by Donten-Bury and Wiśniewski in [11] is a quotient
of a principally polarized abelian fourfold (ppav) which we study in detail in this
section. In Theorem 1.3 we show that X0 is birationally equivalent to S Œ2� .

4.1 Polarization

The variety X0 is constructed as a desingularization of a quotient of the form E4=G

where E DC=.ZC iZ/ is the elliptic curve with complex multiplication by ZŒi � and
G ŠQ8 �Z2

D8 is a subgroup of Aut.E4/.

Recall that the action of G on E4 is given by the matrices Tj for j D 0; : : : ; 4,
listed in Section 4.3 below; see [11, Section 6.B]. They satisfy the relations T 2j D I ,
TjTk D�TkTj , and thus .TjTk/2 D�I for j ¤ k .

The abelian fourfold E4 also has as automorphisms

i W E4!E4 given by .x; y; z; t/ 7! .ix; iy; iz; i t/ and .�1/ WD i2:

Let us find a polarization H 2 NS.E4/ on the abelian fourfold E4 DC4=ƒ which is
invariant with respect to G , where ƒD ZŒi �4. By [4, Section 2.2] this is equivalent to
finding a G–invariant Hermitian 4� 4 matrix H with coefficients in ZŒi �.

Proposition 4.1 Any G–invariant Hermitian matrix with coefficients in ZŒi � has the
following shape, where a 2 Z:

Ha WD a

0BB@
2 0 1 1C i

0 2 1C i �i

1 1� i 2 0

1� i i 0 2

1CCA :
Proof The G–invariant Hermitian matrices satisfy equations Tj �H � T tj D H , for
each 0 � j � 4, where T tj is the transpose of the complex conjugate of Tj . Notice
that these are linear equations in the coefficients of H .

We then find that H WD H1 is positive definite and since detH D 1, it defines a
principal polarization on E4 .
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It turns out that the principally polarized abelian variety .E4;H/ was known before;
see [6; 26]. In fact, Debarre in [6] proved that there exists a unique indecomposable
ppav .A10; L/ of dimension 4 that is not a hyperelliptic Jacobian and admits the
maximal number of ten vanishing theta-constants (points of order two on a symmetric
theta divisor which are singular with even multiplicity).

Proposition 4.2 The abelian fourfold .E4;H/ is isomorphic as a ppav to the Debarre–
Varley ppav .A10; ‚/. In particular, the singular locus of the corresponding theta divisor
consists of ten ordinary double points and if theta divisor is chosen to be symmetric,
these ODPs are two-torsion points of E4 .

Proof The real part of H defines a Z–valued quadratic form on Z8 D ZŒi �4 and
one finds that it is a positive definite even unimodular quadratic form. Hence, in a
suitable basis, it must be the quadratic form associated to the root system E8 . Now the
proposition follows from the construction in [6, Section 5].

4.2 Invariant line bundles

We will show that there are exactly 16 G–invariant line bundles on E4 whose first
Chern class is the alternating form E D ImH . First we consider the fixed points of
the action of G on E4 .

Lemma 4.3 The subgroup .E4/G of points of E4 which are fixed by G is isomorphic
to .Z2/4 . The 16 fixed points are .a1; a2; a3; a4/ where aj is either 0 or .1C i/=2.
Moreover, these points are also the fixed points of the automorphism i of E4 .

Proof As .TiTj /2D�I if i ¤ j , a fixed point of G is a point x 2E4 with �xD x ,
that is, 2x D 0. Now one checks that of the 28 D 256 two-torsion points in E4 only
the 16 points given in the lemma are fixed by G . Similarly, the fixed points for i must
be two-torsion points and one finds the same 16 points.

The line bundles on an abelian variety Cd=ƒ with a given first Chern class E and
a Z–valued alternating form on ƒ, are parametrized by semicharacters, ie by maps
˛W ƒ!C1 with C1 D fz 2C W jzj D 1g, the circle group, satisfying

˛.xCy/D ˛.x/˛.y/e.x; y/

where e.x; y/ WD exp.�iE.x; y//; see [4, Section 2.2]. Notice that a semicharacter is
completely determined by its values on a Z–basis of ƒ.

The line bundle L˛ defined by ˛ is G–invariant if and only if for each g 2G we have
˛.g.x//D ˛.x/, and it is symmetric, so .�1/�L˛ ŠL˛ , if and only if ˛.ƒ/� f˙1g.
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The semicharacter of a symmetric line bundle factors over ƒ=2ƒ and this group is
naturally isomorphic to the group of two-torsion points on the abelian variety.

Proposition 4.4 There are exactly 16 G–invariant line bundles on E4 whose first
Chern class is the alternating form ImH . These 16 line bundles are symmetric and
are also invariant under the automorphism i of E4 . The corresponding semicharacters
˛W EŒ2�4! f˙1g are exactly those for which ˛.x/D 1 for all x 2 .E4/G .

Proof Since �I 2G , any G–invariant line bundle is symmetric. Hence its semichar-
acter takes values in f˙1g. To find such semicharacters with ˛.Tj .x// D ˛.x/ for
all x 2ƒ and each 0� j � 4, we use the Z–basis of ƒDZŒi �4 given by eight vectors
.1; 0; 0; 0/; .i; 0; 0; 0/; : : : ; .0; 0; 0; i/. By computations one finds that the G–invariant
semicharacters are those that have the values .a1; a1; a2; a2; a3; a3; a4; a4/, with
ai 2 f˙1g, on these basis vectors. In particular, there are 16 of these and they satisfy
˛.ix/D ˛.x/.

Then it is easy to check that for x1 D .1C i; 0; 0; 0/; : : : ; x4 D .0; 0; 0; 1C i/ one
has e.xi ; xj / D C1, for 1 � i; j � 4, hence the Weil pairing is trivial on .E4/G .
One also easily verifies that these 16 G–invariant semicharacters satisfy ˛.xi /D 1,
for i D 1; : : : ; 4, and hence ˛.x/D 1 for all x 2 .E4/G . Conversely, a semicharacter
with values in f˙1g which is trivial on .E4/G is completely determined by its values
on the four vectors .1; 0; 0; 0/; : : : ; .0; 0; 0; 1/. Thus there are exactly 16 such semichar-
acters and, using the results above, we conclude that these are the semicharacters of
the G–invariant line bundles with first Chern class ImH .

Since .E4;H/ is a principally polarized abelian variety and H is G–invariant, the
isomorphism �H W E

4 ! Pic0.E4/ induced by H is a bijection between the fixed
points of G in E4 and the G–invariant line bundles with trivial first Chern class.
Tensoring a G–invariant line bundle L having c1.L/ D ImH with a G–invariant
line bundle in Pic0.E4/, one obtains again a G–invariant line bundle with first Chern
class ImH . Conversely, if M is G–invariant and c1.M/ D ImH , then L˝M�1

has trivial first Chern class and is G–invariant.

A G–invariant line bundle L with first Chern class ImH defines a principal polariza-
tion, and hence dimH 0.E4; L/D 1. We denote by D the corresponding theta divisor,
that is, the unique effective divisor D in E4 such that LDO.D/. We refer to these
16 theta divisors as the G–invariant theta divisors; each has a singular locus consisting
of ten ODPs by Debarre’s results in [6]. Moreover, if D is a G–invariant theta divisor
and p 2 .E4/G , then DCp D t�pD also is a G–invariant theta divisor.
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4.3 The automorphism group

To find the configuration of the G–invariant points and divisors, we will use the action
of the automorphism group GDV of the ppav .E4;H/.

In [6, Section 5] one finds that after choosing (any) J 2 W.E8/ with J 2 D �1,
one obtains an isomorphism between the root lattice of E8 and the lattice ƒ defin-
ing ADV such that J corresponds to the multiplication by i . The automorphism group
GDV WD Aut.E4;H/ is the subgroup of the Weyl group W.E8/ of elements which
commute with J . The group GDV has order 46080D 26 �.6Š/. It has a normal subgroup
zG WDG �Z2

Z=4Z of order 26 , which is the group .G; i/ generated by G and i . The
quotient group GDV= zG is isomorphic to the symmetric group S6 . The isomorphism
between the root lattice of E8 and ƒDZŒi �4 �C4 defines a 4–dimensional complex
representation of GDV . The invariant theory of this group was studied by Maschke [19].
The representation of GDV on the alternating forms on C4 permutes, up to scalar factors,
a certain basis of six alternating forms. This provides the surjective homomorphism
GDV! S6 :

0! zG D .G; i/!GDV! S6! 0:

The unitary group of the hermitian form H DH1 from Proposition 4.1 is

U.H/ WD fM 2 GL.4;ZŒi �/ WMHM t
DH g:

By definition, it is the subgroup of Aut.E4/, fixing 0 2 E4 , which preserves the
polarization defined by H . In particular, U.H/ŠGDV and ]U.H/D 46080.

The group G , which is a subgroup of U.H/, is generated by the five matrices given
by Tj WDN

j
5 T0N

�j
5 with j D 0; 1; : : : ; 4, where

T0 WD

0BB@
1 0 0 0

0 �1 0 0

0 �1C i 1 0

1� i 0 0 �1

1CCA and N5 WD

0BB@
1 �1 0 �i

�i 0 i i

�i �1 1C i 0

1 �1C i 0 �1� i

1CCA :
In particular, N5 normalizes G and we verified that N5 2 U.H/. The following
matrices are also in U.H/:

N01 WD

0BB@
1C i 0 �1� i �i

0 i C 1 �i 0

0 1 �1� i 0

1 �1C i 0 �1� i

1CCA and N45 WD

0BB@
0 1 0 i

0 1C i �i 0

0 1 0 0

�1 0 1 1C i

1CCA :
One has N01T0N�101 D T1 and conjugation by N01 fixes T2 and T3 and maps T4
to �T4 . The matrices N5 and N01 generate a subgroup NG of order 7680D 64 � 120
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of U.H/ which contains the subgroup G as well as multiplication by i , and the
quotient NG=.G; i/ is isomorphic to the symmetric group S5 .

The matrices N5 , N01 and N45 generate the group U.H/:

U.H/D hN5; N01; N45i:

One has N45TjN�145 D �iTjT4 for j D 0; 1; 2; 3 and N45T4N�145 D T4 . The iso-
morphism of U.H/=.G; i/ with the symmetric group S6 can be seen from the action
of U.H/ on the alternating forms on C4 . Let

E5WD

0BB@
0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

1CCA and E4WDN45E5N
t
45D

0BB@
0 1� i �i 1C i

�1C i 0 0 i

i 0 0 1C i

�1� i �i �1� i 0

1CCA:
Then we have gE5gt D E5 for all g 2 G and the U.H/–orbit of E5 consists of
6D ]U.H/=].G; i/ matrices, up to sign, one of which is E4 . One has TjE4T tj D�E4
unless j D 4 in which case one finds T4E4T t4 DE4 .

The group U.H/ permutes the 16 .G; i/–invariant divisors and there are at least two
orbits, since such a divisor may or may not contain 02E4 . Each of the ten G–invariant
divisors which contain 0 2E4 has a node in 0 and thus has a tangent cone which is
given by a quadratic form on T0E4DC4 . These ten quadratic forms are fixed, up to a
scalar multiple, by G and they are permuted, up to a scalar multiple, by U.H/. We
define two symmetric matrices

q012 WD

0BB@
2 0 1 1� i

0 2i 1C i �1

1 1C i 2 0

1� i �1 0 �2i

1CCA and q013 WD

0BB@
0 0 1 0

0 2i 1C i �1

1 1C i 2 0

0 �1 0 0

1CCA :
One has Tj q012T tj D �j q012 with �j D C1 for j D 0; 1; 2 and �1 for j D 3; 4.
Thus q012 is a common eigenvector for the group G of the space of 4� 4 symmet-
ric matrices on C4 . The other nine eigenvectors can be obtained as N j

5 q012.N
j
5 /
t

and N j
5 q013.N

j
5 /
t where j D0; 1; : : : ; 4. These two N5–orbits form one U.H/–orbit,

since N01N5q012.N01N5/t DN 2
5 q013.N

2
5 /
t .

Thus the corresponding quadrics are the ten tangent cones to the G–invariant divisors
passing through 0 2E4 .
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The subgroup U.H/012 of U.H/ which fixes q012 up to a scalar multiple has index 10
in U.H/. We checked that it can be generated by three elements:

U.H/012 D hN01; N45; Nf i where Nf WD

0BB@
i 0 0 0

1� i i 0 �2

�i 0 i �1C i

1C i 0 0 �i

1CCA :
Proposition 4.5 Let D WD D012 be the G–invariant divisor with 0 2 D and with
tangent cone defined by q012 . Then the ten ODPs on D are the points in .E4/G which
are not in the following list of six points in .E4/G :

p1 WD Œ1; 0; 0; 0�; p3 WD Œ0; 0; 1; 0�; p1Cp3;

p2 WD Œ0; 1; 0; 0�; p4 WD Œ0; 0; 0; 1�; p2Cp4;

where Œa1; a2; a3; a4�D 1
2
.1C i/.a1; a2; a3; a4/ in E4 D .C=ZŒi �/4 .

Proof The ten ODPs of D are two-torsion points of E4 , and 0 is one of them. Thus
nine of them are nonzero and the automorphism i of E4 , which maps D into itself,
permutes these nine ODPs. As i2D�1, which is the identity on the two-torsion points,
at least one ODP is an i–fixed point and hence, by Lemma 4.3, it is also a fixed point
of G . We checked that U.H/012 has three orbits on the fixed points of G in E4 : they
are 0, the six points listed above and the remaining nine points of .E4/G . If the orbit
of six consists of ODPs, then there remain 10� 1� 6D 3 ODPs to be identified, but
again one of these three must be an i–fixed point and then using the U.H/–action
we get eight more ODPs, which contradicts that D has only ten ODPs. Thus the ten
nodes all lie in .E4/G and there are two U.H/–orbits, one of length 1 and one of
length 9.

The divisors 2.D C p/ in E4 , with p 2 E4Œ2�, are all linearly equivalent by the
theorem of the square and the linear system j2Dj has dimension 24 � 1 D 15. We
will prove in Proposition 5.4 that the span of the 16 divisors 2.DCp/ where p runs
over .E4/G is 5–dimensional. Here we give an estimate for the span that will be used
to deduce this fact.

Proposition 4.6 The 16 divisors 2.DCp/, where p runs over .E4/G , span a sub-
space of dimension at least 5 in j2Dj.

Proof We give a list of six points q1; : : : ; q6 and six points r1; : : : ; r6 , all in .E4/G ,
such that r1 2DC qi for i � 2 but r1 …DC q1 , and similarly such that ri 2DC qj
if i < j but ri … D C qi , which proves the proposition. Here D D D012 and
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the six points in .E4/G which are not in D \ .E4/G are listed in Proposition 4.5.
Notice that ri 2DC qi if and only if ri � qi 2D . We take, with the notation from
Proposition 4.5, the points qi to be

0; p3; p1Cp2Cp4; p1; p2Cp3; p1Cp2Cp3Cp4;

whereas the points ri are

p4; p2Cp3Cp4; p1Cp2; p1Cp2Cp4; p1Cp2Cp3; p1Cp3Cp4:

This concludes the proof.

What emerges from these results is a configuration of 16 points, those of .E4/G ,
and the 16 G–invariant theta divisors, which are the DCp with p 2 .E4/G . Each
divisor contains exactly ten of the points. A principally polarized abelian surface A
also defines a .16; 6/–configuration (see [4, Section 10.2]), consisting of the points
of AŒ2�Š .Z2/4 and the six points (with multiplicity one) on each of the 16 symmetric
theta divisors which can be written as ‚ACp for p 2 AŒ2� for a(ny) symmetric theta
divisor ‚A on A. In case AD E1 �E2 is a product of two elliptic curves with the
product polarization, one can take ‚A DE1 � f0gC f0g �E2 . This divisor contains
the six points .q1; 0/ and .0; q2/ with multiplicity one, where qi 2 Ei Œ2��f0g (and
it contains 0 D .0; 0/, but with multiplicity two). So if we use the basis of .E4/G

from Proposition 4.5, (with second and third coordinates permuted) we see that there
is an isomorphism .EŒ2�4/G Š AŒ2� such that the first set of three points not on D is
mapped to E1Œ2��f0g and the second set is mapped to E2Œ2��f0g. Using translations
we then find that the configuration defined by the G–invariant theta divisors of E4 in
the group .E4/G is also a .16; 6/–configuration.

Corollary 4.7 The intersection of two distinct G–invariant divisors contains exactly
six points from .E4/G , and thus there are exactly two points in .E4/G not contained
in their union.

Proof This is a well-known property of the .16; 6/–configuration and can also
be checked by making an incidence table (as in [15, page 787, Figure 21]) of the
G–invariant divisors and the points in .E4/G .

4.4 The fixed points of G

We consider the fixed points of the action of the groups G and .G; i/ on E4 . As a
consequence we will describe the singular locus of E4=G and E4=.G; i/. Recall from
[11, Section 6.B] that the action of G on E4 has the following sets of points where
the isotropy group is not trivial:
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� 16 fixed points with isotropy G ,

� 240 points with isotropy Z2˚Z2 ,

� 40 surfaces with isotropy Z2 .

The 16C 240 D 256 D 28 isolated points with nontrivial stabilizer are exactly the
two-torsion points in E4 . Let us now describe the fixed surfaces more precisely. The
five generators Ti of G and also the TiC5 WD �Ti for i D 0; : : : ; 4 are symplectic
reflections, ie they have exactly two eigenvalues different from 1. When acting on E4 ,
each of these ten symplectic reflections Ti fixes four disjoint surfaces isomorphic
to E �E . Denote them by Ki1; : : : ; K

i
4 for i D 0; : : : ; 9.

Since Ti and �Ti are conjugate in G , after reordering Ki1; : : : ; K
i
4 we may assume

that Kij and KiC5j have the same image in E4=G for j D 0; : : : ; 4. Let us fix
one such pair of surfaces K and K 0 fixed by symplectic reflections T;�T 2 G ,
respectively. The action of G restricted to K is the action of N.T /=hT i ' Q8 ,
described in [11, Section 6.A]. The quotient Z WDE2=Q8 has three A1 singularities
and four D4 singularities and was studied in [11].

This means that on K there are three orbits of four points each and four points that are
fixed by the action of Q8 (so also of .G; i/).

Proposition 4.8 The singular locus of E4=G is made up of 20 singular surfaces
L1; : : : ; L20 . Each of these surfaces is a K3 surface isomorphic to Z DE2=Q8 .

Proof A singular point of E4=G is the image of a point of E4 with nontrivial isotropy.
We observe that the union of the surfaces Kij contains all such points. As we saw
before, the 40 fixed surfaces Kij are mapped through �W E4!E4=G to 20 surfaces.
It can be checked in local coordinates that the image �.K/D �.K 0/D L 2E4=G is
normal. It is easy to see that the map K! L 2E4=G factors through Z . Looking at
the orbits of G we conclude that the map Z! L is a bijection.

Remark 4.9 We shall see in Section 6 that the surfaces L1; : : : ; L20 are mapped
through the quotient map E4=G ! E4=.G; i/ to planes contained in the singular
locus. In fact, after proving that E4=.G; i/D Y �P5 we will see that the above planes
will be the 20 incident planes considered in Proposition 2.5.

Since L1; : : : ; L20 are images of Kij for i D 0; : : : ; 5 and j D 1; : : : ; 4, we obtain a
division of this set into 5 subsets of 4 planes. It follows from the description above
that the configuration of their intersection points is as described in Remark 2.9. In
particular, each subset contains 16 points with isotropy group G , and any two planes
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from different subsets meet in one of the 16 points. Note also that the remaining three
surfaces fixed by �T cut K in three orbits of four elements for the action of Q8 . We
observe that a Q8–orbit of four points on K is a part of a G–orbit with eight points
on E4 and, more precisely, given a four element orbit on K there is a four element
orbit on K 0 forming together an eight element orbit of G .

The group .G; i/ has 30 symplectic reflections, since the 20 elements ˙iTjTk
(for 0� j < k � 4) also are reflections. Each of these reflections has four fixed
surfaces on E4 . We denote by F the set of the 30 � 4D 120 fixed surfaces in E4 of
the 30 symplectic involutions in .G; i/.

Lemma 4.10 The fourfold E4=.G; i/ is singular along 60 surfaces. We denote by S
the set of these surfaces. The surfaces from S are the images of the 120 surfaces in F .

Proof We know that E4=.G; i/ is singular along the image of points with nongeneric
isotropy; these are the surfaces from F . (Note that all points whose isotropy group
contains an element, which is not a symplectic reflection, is already a 2–torsion point.)
A symplectic involution T 2 .G; i/ is conjugate to �T , and hence the four surfaces fixed
by T and the four surfaces fixed by �T map to the same four surfaces in E4=.G; i/.
It follows that E4=.G; i/ is singular along the 60 surfaces which are the images of the
surfaces from F .

Lemma 4.11 The ramification locus of the map E4=G ! E4=.G; i/ consists of
40 surfaces. They are contained in the set S of 60 singular surfaces in E4=.G; i/
and are characterized by the fact that they are not the images of the singular surfaces
from E4=G .

Proof We saw in Proposition 4.8 that the images of 40 surfaces from F map to
the singular locus of E4=G . Since we can write these 40 surfaces explicitly, it is
easy to check that the actions of G and .G; i/ are different on them. It follows that
the 20 singular surfaces of E4=G cannot be in the branch locus of E4=G!E4=.G; i/.
The remaining 40 singular surfaces of E4=G are actually fixed by an involution
from .G; i/.

Lemma 4.12 Each surface from S contains four points, which are the images of the
points from .E4/G on E4=.G; i/. Each of the divisors DCp � E4 for p 2 .E4/G

contains 15 sets of four points such that each such set of four points is contained in two
of the fixed surfaces from F .

Proof From the proof of Proposition 4.5 we know which points from .E4/G are
contained in DCp . Now it is a straightforward verification with Magma.
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5 The morphism E 4=G ! Y 0 � P 5

We find a line bundle on E4=G which gives a two-to-one morphism to a sextic
hypersurface Y 0 � P5 . Then, in Section 6 we will show that Y 0 D Y and give the
proof of Theorem 1.3.

5.1 The linear system j�j on E4=G

Let D �E4 be the G–invariant theta divisor as in Proposition 4.5 and LDOE4.D/.
In this section we show that the image of the G–invariant theta divisor D is not a Cartier
divisor in E4=G , but twice the image of D defines a Cartier divisor � on E4=G .
As �1 2 G , diagonal multiplication by i on E4 induces an involution on E4=G .
The group Aut.E4;H/ D U.H/ induces an action of the symmetric group on †6
on j�j and this allows us to show that � gives a morphism of degree 2 that induces
an isomorphism of E4=.G; i/ with a sextic Y 0 � P5 ; see Proposition 5.11.

By the Riemann–Roch theorem for abelian varieties, h0.2D/D 16, and by the theorem
of the square, 2.DCp/ 2 j2Dj for all p 2 .E4/G since 2p D 0.

Consider the morphism � given by the global sections of the invertible sheaf L2 .
Since L2 is not a product polarization and is symmetric of type .2; 2; 2; 2/, we infer
that � is a two-to-one morphism equal to the quotient morphism E4!E4=.�1/ and
that E4=.�1/� PH 0.L2/D P15 .

Lemma 5.1 Assume that G � GL.n;ZŒi �/ is any finite group containing �I . Then
the quotient En=G has trivial fundamental group.

Proof The method which we use to compute the fundamental group of this quotient
is well known and often applied in mathematical physics articles, which usually men-
tion [7] as the main reference for this topic. It boils down to checking which elements
of a certain extension of the action of G to the action of ƒnE ÌG on Cn , where ƒE
is a lattice such that C=ƒE 'E , have fixed points. In particular, if there is an A 2G
such that I �A has maximal rank, eg AD�I , then there are so many elements with
fixed points that the fundamental group must be trivial.

Corollary 5.2 The symplectic desingularization X0 of E4=G is simply connected:
�1.X0/D 0.

Proof By Lemma 5.1, �1.E4=G/ is trivial, and by [18, Theorem 7.8(a)] the resolution
does not change the fundamental group.
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In this section, � is the quotient map �W E4!E4=G . Recall that, by [11, Corollary 6.4],
the symplectic resolution X0 of E4=G has b2.X0/D 23.

Proposition 5.3 The Picard group of E4=G has rank one and has no torsion. The
divisor �.D/ (with the reduced structure) is Weil but not Cartier whereas �D 2�.D/
is Cartier, ample and generates the Picard group of E4=G . Moreover, �4 D 12

and h0.�/D 6.

Proof Since �1.X0/ D 0, then also H 1.X0;OX0
/ D 0 and, from the exponential

sequence, Pic.X0/�H 2.X0;Z/. Then from the universal coefficient theorem we get
an exact sequence

0! Ext.H1.X0;Z/;Z/!H 2.X0;Z/! Hom.H2.X0;Z/;Z/! 0:

The triviality of �1.X0/ D 0 implies that the first term of this sequence is 0. Thus
Pic.X0/� Hom.H2.X0;Z/;Z/, which is torsion-free.

It follows from [11, Proposition 6.2] that the symplectic resolution X0 ! E4=G

contracts at least 20 independent divisors on X0 . On the other hand, since b2.X0/D 23
and h2;0.X0/D1, the Picard rank of X0 is at most 21. Thus the Picard group of E4=G
has rank at most 1.

We claim that E4=G is 2–factorial. It is enough to prove this locally. Since E4=G
has only quotient singularities we see that the only nonfactorial singularities it admits
are isomorphic to the quotient singularity of C4=G . In [11, Lemma 2.10] it was shown
that Cl.C4=G/D Ab.G/D .Z2/4 , and hence the claim follows.

It follows that 2�.D/ is a Cartier divisor, necessarily ample from the Nakai–Moishezon
criterion. The pull-back of � on E4 is a divisor from the system j2Dj, so we can
compute the self-intersection of .2�.D//4 . Consider the pull-back � of � by the
map X0! E4=G . Since � is ample we infer that � is big and nef. Observe that
the proof of [17, Proposition 2.1] can be adapted for big and nef divisors. It follows
that �4D 12k2 for some k 2Z. As .2D/4D 24.4Š/D 25 �12 and ]GD 25 it follows
that �4 D 12. By [11, Proposition 6.2], b2.X0/ D 23, and thus we can repeat the
arguments from [17, Proposition 2.1] to show that h0.�/D h0.�/D 6.

Since the self-intersection of a big and nef divisor should be a multiple of 12, we infer
that � is the generator of the Picard group. In order to see that �.D/ is not Cartier,
it is enough to observe that otherwise the pull-back of �.D/ on the IHS fourfold X0
would be a big and nef divisor with self-intersection 12

16
.

To understand the map from E4=G to P5 provided by the linear system j�j, where �
is the ample generator of the Picard group of E4=G , we study the pull-back of j�j
to E4 .
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Proposition 5.4 The linear system j�j on E4=G is generated by the 16 divisors
2�.DCp/ for p 2 .E4/G .

Proof As in the proof of Proposition 5.3, these divisors 2�.DCp/ are Cartier and
are invariant with respect to G . Hence they have self-intersection .2D/4=]G D 12.
Since we know that the Picard group of E4=G is Z�, with �4 D 12, we conclude
that the divisors 2�.DCp/ with p 2 .E4/G are in the linear system j�j.

Notice that h2�.DCp/ Wp 2 .E4/Gi � j�j ŠP5 and that the pull-back map �� maps
h2�.DCp/ W p 2 .E4/Gi linearly into the subsystem h2.DCp/ W p 2 .E4/Gi � j2Dj
on E4 . Proposition 4.6 asserts that this subsystem of j2Dj has dimension at least 5,
hence also dimh2�.DCp/ Wp 2 .E4/GiD 5D dimj�j, which concludes the proof.

Denote by f W E4=G! P5 the map given by j�j.

Proposition 5.5 The linear system j�j on E4=G is base-point-free and the morphism
f W E4=G!P5 defined by j�j factors through the quotient map hW E4=G!E4=.G; i/.

Proof Using Proposition 5.4, we have to show that the subsystem

h2.�.DCp// W p 2 .E4/Gi

is base-point-free on E4=G . Since the divisors DCp for p 2 .E4/G are G–invariant,
it is enough to prove that the linear subsystem

h2.DCp/ W p 2 .E4/Gi � j2Dj

is base-point-free on E4 .

We identify H 0.2D/ WDH 0
�
E4;OE4.2D/

�
with the vector space of rational func-

tions on E4 with poles of order at most two along D . As i.D/ D D , we have an
endomorphism i� of H 0.2D/D ff 2C.E4/ W .f /C 2D > 0g:

i�W H 0.2D/!H 0.2D/ given by f 7! f ı i:

As i2D�1 and all functions f in H 0.2D/ are even (so f .�x/D f .x/ in particular),
the map i� is an involution. Let H 0.2D/DH 0

C
˚H 0

� be the eigenspace decomposition
into the even and the odd part.

Since D is effective, we have the constant function 1 2 H 0
C

. Let p 2 .E4/G such
that p ¤ 0. Then 2.D C p/ 2 j2Dj, so there is a rational function fp 2 H 0.2D/

such that .fp/D 2.DCp/� 2D . As i.DCp/DDCp , we have i�fp D˙fp for
some choice of sign. From Corollary 4.7 we infer that there is a q 2 .E4/G which
is not on D and also not on Dp . Then fp has no pole and is not zero in q , so
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fp.q/ 2 C � f0g. As i.q/ D q , it follows that .i�fp/.q/ D fp.i.q// D fp.q/, and
hence i�fp D fp . Therefore fp 2H 0

C
, for all p 2 .E4/G , and the map defined by j�j

factors through E4=.G; i/.

Next, we show that H 0
C

is spanned by these fp . For each p 2 .E4/G there is
a G–invariant divisor D C q such that p … D C q . This implies that the fibers
O.2D/p WDO.2D/=mpO.2D/ are generated by global sections in H 0

C
and one finds

that the lift i� of i to O.2D/ we consider acts as C1 on the fibers over the fixed
points .E4/i D .E4/G of i . The Atiyah–Bott Lefschetz formula [1, Theorem 4.12]
states

4X
jD0

Tr
�
i�jH j .E4;O.2D//

�
D

X
p2.E4/i

Tr
�
i�p W O.2D/p!O.2D/p

�
det.I � .di/p/

:

Since H j .O.2D// D 0 for j > 0 and since, for all p , we have Tr.i�p / D C1 and
det.I � .di/p/ D .1� i/4 D �4, we find that dimH 0

C
� dimH 0

� D �4, and hence
dimH 0

C
D 6 and dimH 0

� D 10. Thus

P .H 0
C/D h2.DCp/ W p 2 .E

4/Gi:

By Wirtinger duality, the map � defined by j2Dj can be identified with the map

�0W E4 3 x 7�! .DC x/C .D� x/ 2 P
�
H 0.E4;OE4.2D//

�
:

In particular, x 2 E4 is a base point of the map defined by P .H 0
C/ exactly when

.D C x/C .D � x/ is the divisor of a global section fx with fx 2 H 0
� . But then

i�fx D�fx so i�.DC x/C i�.D� x/D .DC x/C .D� x/ and thus x D˙i.x/,
so x D i.x/ or x D i3.x/, and hence x 2 .E4/i D .E4/G . But we already found
that fx 2 H 0

C for such a fixed point. We conclude there are no base points for the
system PH 0

C
and thus j�j also is base-point-free.

Remark 5.6 We have the commutative diagram

E4
�
//

j2Dj

��

E4=G
h
//

j�j

��

E4=.G; i/

m

��

P15
�
// P5

D
// P5

where � is the linear projection from the i�–eigenspace PH 0
� .

The action of U.H/ on E4 , which fixes the polarization and which commutes with the
automorphism i of E4 , induces an action of U.H/ on the projective space PH 0

C
Šj�j.

As the subgroup .G; i/ of U.H/ acts trivially on this space, we get an induced action
of the symmetric group †6 D U.H/=.G; i/ on P5 .
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5.2 The tangent cone

First we study the image of the tangent space to E4 at the neutral element 0 2 E4

under the quotient map h ı �W E4!E4=.G; i/DWZ0 . Since h ı � is a quotient map
and the image point p 2Z0 of 0 is singular on Z0 , the image of T0E4 via the induced
quotient is the tangent cone CpZ0 to Z0 at p .

Proposition 5.7 The tangent cone to the image of 0 to Z0DE4=.G; i/ is isomorphic
to the cone over the Igusa quartic I4 in P4 . It is defined by the two equations

y1C � � �Cy6 D 0 and Igy WD .y
2
1 C � � �Cy

2
6/
2
� 4.y41 C � � �Cy

4
6/D 0

in C6 .

The images of the tangent cones in 0 of the ten .G; i/–invariant divisors with first
Chern class H and passing through 0 are the ten hyperplane sections defined by

yaCybCyc D yd CyeCyf D 0 where fa; b; c; d; e; f g D f1; 2; : : : ; 6g:

The group U.H/ acts on CpZ0 through its quotient U.H/=.G; i/Š†6 as the standard
representation, ie it simply permutes the six variables y1; : : : ; y6 .

Proof Note that the tangent cone to Z0 D E4=.G; i/ is the spectrum of the ring of
.G; i/–invariants on T0E4 . Choosing a suitable basis of T0E4ŠC4 , the action of G
on T0E is given by the simpler matrices from [11, Section 2.C]. The ring of invariants
is generated by the following five polynomials in four variables:

p0 WD t
4
0 C t

4
1 C t

4
2 C t

4
3 ; p1 WD 2.t

2
0 t
2
1 C t

2
2 t
2
3 /; p2 WD 2.t

2
0 t
2
2 C t

2
1 t
2
3 /;

p3 WD 2.t
2
0 t
2
3 C t

2
1 t
2
2 /; p4 WD 4t0t1t2t3:

So CŒt0; : : : ; t3�.G;i/ŠCŒp0; : : : ; p4�. Introducing the polynomial ring in five variables
CŒP0; : : : ; P4�, we have that the homomorphism CŒP0; : : : ; P4�!CŒt0; : : : ; t3�.G;i/

which sends Pi 7!pi is surjective, and its kernel is generated by the quartic polynomial

IgP WD P
2
1 P

2
2 CP

2
1 P

2
3 CP

2
2 P

2
3 C .�P

2
0 CP

2
1 CP

2
2 CP

2
3 �P

2
4 /P

2
4 �2P0P1P2P3:

Hence CpZ0 Š Spec.CŒP0; : : : ; P4�=.Ig4//; more concretely, CpZ0 is isomorphic to
the image of C4 in C5 by the map defined by the five pi .

The zero locus of the quartic polynomial IgP in P4 is known as the Igusa quartic I4 .
The group U.H/=.G; i/Š†6 acts on I4 . To make this action visible, we define the
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following six linear combinations of the pi :

y1 WD p0C 3p4; y2 WD p0� 3p4;

y3 WD
1
2
.�p0C 3p1C 3p2C 3p3/; y4 WD

1
2
.�p0C 3p1� 3p2� 3p3/;

y5 WD
1
2
.�p0� 3p1C 3p2� 3p3/; y6 WD

1
2
.�p0� 3p1� 3p2C 3p3/:

One easily verifies that
y1C � � �Cy6 D 0:

Let
Igy WD .y

2
1 C � � �Cy

2
6/
2
� 4.y41 C � � �Cy

4
6/:

Then, after replacing pj by Pj in the definition of the yi , the polynomial Igy becomes
the polynomial IgP up to a scalar multiple. Thus †6 acts on I4 by permuting the
coordinates yj (and explicit computations show that this is indeed the action induced
by U.H/).

There are ten .G; i/–invariant divisors which contain 0, and 0 is a node on these
divisors. The tangent cone to such a divisor is then a .G; i/–invariant quadratic
hypersurface in T0E4 . There are exactly ten such hypersurfaces and they are permuted
by the action of U.H/; explicit equations can be found in [11, (3.13)]. It is easy to
check that the image of such a quadric in C5 is the intersection of I4 with one of the
following hyperplanes:

yaCybCyc D yd CyeCyf D 0 where fa; b; c; d; e; f g D f1; 2 : : : ; 6g:

As
P
yi D 0, the equation yaCybCyc D 0 implies the equation yd CyeCyf D 0.

For example, y0 C y1 C y2 D 0 has preimage defined by p0 C p1 C p2 C p3 D 0
and this is .t20 C t

2
1 C t

2
2 C t

2
3 /
2 , which is (up to a scalar multiple and replacing tj

by xj ) the quadratic form �14 in [11, (3.13)]. The fact that we find the squares of the
quadratic forms corresponds to the fact that these ten hyperplanes are tangent to the
Igusa quartic.

Recall that Y 0 is the image of the map f W E4=G! P5 defined by the system j�j.

Corollary 5.8 The tangent cone to Y 0 at the image of 0 is a cone over the Igusa
quartic I4 .

Proof If D C p is a .G; i/–invariant divisor passing through 0 on E4 , then we
have 2.D C p/ 2 j2Dj by the theorem of the square and this divisor lies in the
pull-back by the quotient map of the 5–dimensional linear system defining the map
f W E4=G!P5 . It is easy to check that the squares of the ten quadratic forms defining
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the tangent cones to these divisors span the space spanned by the generators p0; : : : ; p4
of the .G; i/–invariants on T0E4 . Hence the tangent cone to Z0 DE4=.G; i/ in the
image of 0 is embedded in P5 by the map mW E=.G; i/! P5 induced by f (see
Proposition 5.5), ie the tangent cone to Y 0 is a cone over the Igusa quartic I4 .

We infer also that the considered action of †6 on P5 that preserves Y 0 is given by the
permutation of coordinates:

Corollary 5.9 The action of the group †6 D U.H/=.G; i/ on P5 D P .j�j/ induced
by the action of U.H/ on E4 (see Remark 5.6) is the action by permutation of
coordinates.

Proof We use the fact that CpZ0 spans C5 , that C5 is dense in P5 and the description
from Proposition 5.7 of the action of †6 on CpZ0 .

Remark 5.10 One can use the action of †6 to provide the following approach to
the proof that Y 0 D Y that is a possible alternative to the proof we give in Section 6.
From the explicit description of the generators of U.H/ and of the 16 G–fixed points
in E4 , one finds that .E4/G consists of two U.H/–orbits, one is f0g and the other has
15 elements. For q 2 .E4/G such that q¤ 0, the line spanned by pD f .0/ and f .q/
in P5 intersects C5 � P5 in a linear subspace of dimension one. The 15 lines in C5

we obtain in this way form one †6–orbit. This suffices to identify these lines, and with
some additional effort, we can then find the images of the remaining 15 points in .E4/G .
Using the fact that these map to singular points on Y , with quartic tangent cones, and
the description of the images of the .G; i/–invariant divisors from Proposition 5.7, we
would then show that Y 0 D Y with Y as in Proposition 2.1. It is interesting to look
at the above action on the Igusa quartic from the point of view of [25, page 254].

Let us now pass to the proof of our main result in this section:

Proposition 5.11 The image Y 0 of the morphism f W E4=G! P5 is a sextic hyper-
surface Y 0 � P5 . Moreover, the morphism f is the quotient map of the involution
induced by i acting on E4=G , and hence Y 0 ŠE4=.G; i/.

Proof We saw that � is ample, �4 D 12 and j�j is a base-point-free linear system.
First, it follows that dimf .E4=G/� P5 D 4 and the degree of this image divides 12.
By Proposition 4.4 the morphism f W E4=G! P5 factors through the quotient by the
involution i . We infer a factorization of the map f :

f W E4=G h
�!E4=.G; i/ m

�!Y 0 � P5:
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Our aim is first to show that the image Y 0 of m is a sextic, and next that m is an
isomorphism.

Since the tangent cone CpY 0 is the image of CpZ0 by the embedding induced by m it
has degree four, by Proposition 5.7. It follows that the degree of Y 0 � P5 is higher
than four (clearly Y 0¤CpY 0 ). Since �4D 12 and f has degree at least two, we infer
that Y 0 is a sextic hypersurface in P5 .

It follows from the adjunction formula for the birational morphism m that the sextic
Y 0 � P5 is normal. Indeed, we have !E4=.G;i/ D m�.!Y 0/ � C , where C is the
conductor divisor supported on the nonnormal locus of Y 0 . Since Y 0 is a sextic, !Y 0 is
trivial, and thus C is the zero divisor and Y 0 is normal. This implies also that m is
an isomorphism because � is ample and base-point-free, so f cannot contract any
curve.

Remark 5.12 The double cover E4=G ! E4=.G; i/ is determined by the sheaf
f�OE4=G DOE4=.G;i/˚G such that E4=G D SpecE4=.G;i/.G˚OE4=.G;i//. It can
be shown that G is a symmetric sheaf such that G.3/ is globally generated and fits in
the exact sequence

0!�3P5.3/!W ˝OP5 ! G.3/! 0:

This gives another proof (without using Section 2.3) that Y 0 � P5 is an EPW sextic;
see [12]. Note that the sheaf G can be seen as a kind of Casnati–Catanese sheaf, however
it has a complicated local structure around the 16 most singular points of E4=.G; i/.

We now obtain some further information on the geometry of Y 0 which will be used in
the next section to prove that Y 0 D Y .

Corollary 5.13 The sextic Y 0 � P5 is singular along 60 planes.

Proof It follows from Lemma 4.10 that the fourfold E4=.G; i/ is singular along 60
surfaces.

Note that all the 60 singular surfaces of E4=.G; i/ are isomorphic to each other (since
the group generated by .E4/G (acting by translations) and U.H/ acts transitively
on the corresponding 120 surfaces in E4 ). On the other hand it is known that a
surface section of Y 0 � P5 admits no more than 65 nodes (recall that E4=.G; i/ has
transversal A1 singularities along generic points on the singular surfaces). It follows
that all the singular surfaces of Y 0 � P5 are planes.
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Recall that there exists a unique, up to projective isomorphism, normal cubic hypersur-
face in P4 with ten isolated singularities (that have to be ordinary double points). It is
called the Segre cubic. See [8] for many beautiful classical facts about this threefold.
The Segre cubic in P5.x0; : : : ; x5/ can be defined by the following equations:

(5-1) x0C � � �C x5 D 0; x30 C � � �C x
3
5 D 0:

The action of the permutation group †6 that permutes the variables on P5 preserves
the above cubic. It is singular at the points in the orbit of the point .1; 1; 1;�1;�1;�1/
under the action of †6 . This cubic contains also 15 planes in the †6–orbit of the plane
defined by the equations x0Cx1D 0, x2Cx3D 0 and x4Cx5D 0. There are exactly
15 hyperplanes cutting the cubic along the sum of three planes; these hyperplanes are
defined by the equations xi C xj D 0 for 0� i < j � 5.

Corollary 5.14 The sextic Y 0 � P5 is tangent to 16 hyperplanes along Segre cubics
such that the singular points of each cubic are the points from the set f .�..E4/G//DR.
The sextic Y 0 � P5 is singular along the 15 planes contained in each of these cubics.
Moreover, the intersection of Y 0 � P5 with two of the hyperplanes defined by the
divisors D C p for p 2 .E4/G � 0 is a union of three planes. Each singular plane
in Y 0 � P5 is contained in four tangent hyperplanes.

Proof We shall show that each divisor DCp for p 2 .E4/G maps to a cubic that is
singular at ten isolated points. It is known that only the Segre cubic has this property.

It is enough to give a proof of our statements for D . From Proposition 5.3 we infer that
the image of the divisor D in E4=.G; i/� P5 is contained in a hyperplane K � P5

that is tangent to the sextic.

The 120 fixed surfaces from F map to 60 singular surfaces in E4=.G; i/, and hence
they are the singular planes on Y 0�P5 . Since D contains exactly ten of the 16 points
in .E4/G , its image K \Y contains ten of the 16 points from R. Each fixed surface
contains four fixed points from the set R and we claim that the images of these points
on Y 0 � P5 are noncollinear (so a singular plane on Y 0 is spanned by the four points
of R contained in it).

In fact, suppose that the images of the four points of R in a plane are collinear. Choosing
points p and q from these four points, we can find another fixed surface from the
set F containing only these two of the four points. The corresponding planes cut along
a line spanned by the images of p and q . Now this line has to contain the remaining
two points. This is a contradiction with our choice of the other fixed surface, so the
claim follows.
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It follows that the 30 surfaces considered in Lemma 4.12, containing four points from
the ten contained in R0 DK \R, map to 15 planes, each spanned by the images of
those points; hence these 30 surfaces are contained in K .

As D is .G; i/–invariant, we see that the reflections generating this group act on D
in such a way that they fix 30 surfaces. It follows that the image of D can only be
singular at isolated points, ie at the images of singular points of D . Since through
each point in .E4/G there are two fixed surfaces from F contained in D intersecting
only at this point, these surfaces map to two planes in K intersecting only at a point
from R0 , so this point must be singular on the cubic threefold. We deduce that the
cubic is (only) singular at the ten points in R0 and hence it must be the Segre cubic.

It is known that there are exactly 15 planes contained in the Segre cubic. On the
other hand, by Lemma 4.12, the 30 surfaces from F that are contained in D map
to 15 planes contained in the cubic; hence the planes in the cubic are the images of
these surfaces.

The intersection of two .G; i/–invariant divisors maps to the intersection of two tangent
hyperplanes to Y 0 � P5 . In particular, it maps to the intersection of a Segre cubic
threefold with a hyperplane, and hence it consists of at most three planes. Thus two
.G; i/–invariant divisors cut each other along at most six surfaces from F . On the
other hand, given two such divisors, we easily find, using Proposition 4.5, three sets of
four points contained in a given surface from F , each one contained in both of these
divisors. We show similarly that any fixed surface is contained in four .G; i/–invariant
divisors.

Remark 5.15 From the incidence of the 120 fixed surfaces from F we deduce that
each plane in the singular locus of Y 0 � P5 cuts 12 of the remaining planes from this
locus along six lines (such that three planes pass through one line).

6 The proof that Y D Y 0

We proved in Corollary 5.9 that the image Y 0 D f .E4=G/ � P5 is invariant under
the action of †6 by the permutation of coordinates. Moreover, from Corollary 5.14
it is tangent to 16 hyperplanes. In this section we show that such a †6–invariant
sextic Y 0�P5 can be easily reconstructed from the †6–invariant set of 16 hyperplanes
tangent to it. This allows us to show that Y D Y 0 . Then, in Section 6.2, we prove
Theorem 1.3.
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6.1 The equation of the sextic

We start by classifying sets of 16 hyperplanes which are invariant under the action of †6 ,
which acts by permutations of the coordinates on P5 . Let t 2 C and 0 � i; j; k � 5
be distinct indices. We consider (families of) hyperplanes

� H defined by x0C � � �C x5 D 0,

� H t
i defined by xi C t .x0C � � �C x5/D 0,

� H t
i;j defined by xi C xj C t .x0C � � �C x5/D 0,

� Hi;j;k defined by xi C xj C xk � 1
2
.x0C � � �C x5/D 0.

Lemma 6.1 There are exactly two one-parameter families of †6–invariant sets of
16 hyperplanes with the following property: every such set determines 60 planes, such
that each plane is contained in four of these hyperplanes (this is one of the properties
of Y 0 from Corollary 5.14). They are

Ht1 D fH g[ fH
t
i;j W 0� i; j � 5g

and
Ht2 D fHi;j;k W 0� i; j; k � 5g[ fH

t
i W 0� i � 5g:

Proof Consider the action of †6 on a hyperplane with equation a0x0C� � �Ca5x5D0.
If its orbit has � 16 elements, then the coefficients fa0; : : : ; a5g can take only two
different values. That is, it must be one of H , H t

i , H t
i;j , Hi;j;k for some i; j; k and t .

The lengths of †6–orbits of hyperplanes of these types are, respectively, 1, 6, 15
and 10. Thus, to obtain an invariant set of cardinality 16, we have two possibilities: to
take the union of the orbits of 1 and 15 elements or of the orbits of 6 and 10 elements.

In both cases it is easy to check that for any t 2C there are the required sets of 60 planes.
They are intersections of the following sets of four hyperplanes (the indices for each
set are different):

(1a) H t
i1;i2

, H t
i2;i3

, H t
i3;i4

, H t
i4;i1

(there are 45 planes of this type),

(1b) H , H t
i1;jj

, H t
i2;j2

, H t
i3;j3

(there are 15 such planes);

(2a) Hi;j1;j2
, Hi;j2;j3

, Hi;j3;j4
, Hi;j4;j0

(there are 15 such planes),

(2b) Hi;j;k1
, Hi;j;k2

, H t
k1

, H t
k2

(there are 45 such planes).

We want to find all polynomials f 2CŒx0; : : : ; x5� such that the corresponding sextic
hypersurface Yf satisfies the following:
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� Yf is invariant with respect to the †6–action by permutations of coordinates.

� The 16 hyperplanes from the configuration Ht1 or Ht2 , for some t 2 C , are
tangent to Yf along cubics.

� If the intersection of four of these 16 hyperplanes is a plane, then this plane is
contained in the singular locus of Yf .

The fact that Yf is †6–invariant means that f is symmetric or antisymmetric under
the action of †6 . In any case, f is invariant with respect to the alternating group.
But the invariants of the alternating group are generated by those of the symmetric
group and the polynomial

Q
i<j .xi � xj /, which has degree 15. Hence f must be a

symmetric polynomial and thus f is a linear combination of the symmetric polynomials
Pj1:::jk

D
P
i1;:::;ik

x
j1

i1
� � � x

jk

ik
such that i1; : : : ; ik 2 f0; : : : ; 5g are pairwise different

and j1 � � � � � jk with j1C� � �Cjk D 6. Thus f is an element of an 11–dimensional
vector space of polynomials. Now we shall determine all possible sets of coefficients in

f .x0; : : : ; x5/D
X

j1C���CjkD6

aj1:::jk
Pj1:::jk

.x0; : : : ; x5/:

The following lemma, which is easy to verify, shows that in all but some exceptional
cases it suffices to consider the case t D�1

2
.

Lemma 6.2 We define linear maps on C6 which commute with the †6–action by

N t
1 WD �.t C 1/M6C .6t C 2/ Id6 and N t

2 WD �.t C 1/M6C .6t C 1/ Id6;

where M6 is the 6� 6 matrix with all entries equal to 1 and Id6 is the 6� 6 identity
matrix.

Then N t
i induces an isomorphism on P5 that maps Hti to H�1i for i D 1; 2, except

when i D 1, t D�1
3

or i D 2, t D�1
6

.

We consider the restrictions on the coefficients aj1:::jk
coming from the assumption

that f and all its partial derivatives vanish along one plane of type (1a) and one of
type (1b) or, respectively, one of type (2a) and one of type (2b). From the symmetry
of f it follows that Yf is then also singular along all 60 planes. To find all sequences
.aj1:::jk

/ satisfying these conditions, one just has to compute the kernel of the matrix
whose entries are Pj1:::jk

and its partial derivatives restricted to the two chosen planes.
We obtain a unique solution, up to a scalar multiple. Notice that in the second case we
did find the polynomial defining Y from Proposition 2.1:
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Proposition 6.3 For the first case, there is a unique sextic

Y _ D YF _
6
W F _6 D P6�P42C 2P222C 16P111111

which satisfies the conditions for the 16 hyperplanes Ht1 with t D�1
2

.

For the second case, there is a unique sextic

Y D YF6
W F6 D P6�P42C 2P222� 16P111111

which satisfies the conditions for the 16 hyperplanes Ht2 with t D�1
2

.

Corollary 6.4 The hypersurfaces Y _ � P5 and Y � P5 are isomorphic.

Proof The only thing to observe is that F6.�x0; x1; : : : ; x5/D F _6 .x0; x1; : : : ; x5/,
so changing the sign of an odd number of variables interchanges the two cases.

Corollary 6.5 The EPW sextic hypersurfaces Y �P5 (the image of S Œ2� ) and Y 0�P5

(the image of E4=G ) are isomorphic.

Proof By Proposition 2.1 it is enough to prove that Y 0 � P5 is defined by the poly-
nomial F6 or F _6 . It follows from Corollary 5.14 that the equation defining Y 0 � P5

satisfies the conditions satisfied by F6 and F _6 . We conclude by Proposition 6.3.

Remark 6.6 For t D�1
3

the corresponding sextic is the square of a cubic which is
singular in ten lines. For t D�1

6
the corresponding sextic is singular along 60 planes

intersecting in one point. This gives us isotrivial degenerations of our EPW sextic Y .

It turns out that Y _ and Y are related in one more way.

Proposition 6.7 The sextics Y _ and Y in P5 are projectively dual to each other.

Proof Substituting the gradient . : : : ; @F6=@xi ; : : : / of the equation defining Y in the
polynomial F _6 defining Y _ , one finds, using eg Macaulay2 [14], the product of F6
with another polynomial. Hence the dual of Y is Y _ . In particular, the 16 hyperplanes
are mapped to the 16 points with singularity C4=.G; i/, and the Segre cubics in these
hyperplanes are contracted to points. (Notice that the Segre cubic and the Igusa quartic
are projectively dual threefolds in P4 .)
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Remark 6.8 The images of the 16 points in .E4/G in Y 0 Š Y are the points in the
orbit of the point p0 WD .1 W 1 W � � � W 1/ under the action of the group which changes
an even number of signs (this action is induced by the action of .E4/G on E4 by
translation) and the group †6 (which is induced by the action of U.H/ on E4 ). In
fact, these points are the singular points on the Segre cubics that are tangent hyperplane
sections of Y . The point p0 was also identified with the image of a surface in S Œ2� in
the proof of Proposition 2.1; see also Remark 6.17. In particular these 16 points in Y
are the set YAŒ4� where Y D YA ; see Remark 2.8.

To describe the incident planes, we need the following combinatorial description of the
60 singular planes of Y 0 :

Remark 6.9 A partition ffi1; j1g; fi2; j2g; fi3; j3gg of f0; : : : ; 5g, defining a plane of
type (1b), determines in a natural way three sequences .i1; i2; j1; j2/, .i1; i3; j1; j3/,
.i2; i3; j2; j3/, which correspond to planes of type (1a). Note that the orders of pairs
and indices in pairs do not matter, ie if we change them, we still get a sequence
determining the same plane. This way we obtain a natural subdivision of the set of 60
planes into subsets of cardinality 4: each consists of a plane of type (1b) given by a
partition of f0; : : : ; 5g and three planes of type (1a) described by sequences determined
by this partition. We show below that the set of 20 incident planes consists of 5 such
subsets; see Remark 2.9 and Section 4.4.

The following is a nice exercise:

Lemma 6.10 The pairs of planes intersecting in a point are as follows:

� Two planes of type (1b) intersect in a point if and only if the corresponding
partitions do not have any common component.

� Two planes of type (1a) intersect in a point if and only if the corresponding
sequences come from the same partition (as described in Remark 6.9) or from
two partitions with empty intersection.

� A plane of type (1a) intersects a plane of type (1b) in a point if and only if the
sequence representing the first plane comes from a partition which represents the
second one or which has empty intersection with this partition.

Proposition 6.11 There are exactly six possible choices of the set of 20 incident
planes in the sextic Y _t . They are all obtained from the one in Proposition 2.5 by
the †6–action. The stabilizer of such a configuration is isomorphic to †5 .
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Proof Assume first that there are at least 16 planes of type (1a) in such a set. Then
their corresponding sequences must come from at least six different partitions. But by
Lemma 6.10 some two of these partitions must have a common element, so we would
have two planes which intersect along a line or do not intersect at all. If they intersect
along a line, then by [24, Proposition 2.2] this configuration is contained in an infinite
family of incident planes. Hence we may restrict to the case where they intersect in a
point.

Hence we may assume that there are five planes of type (1b) in the chosen set. By
Lemma 6.10 the corresponding partitions do not have a common component; thus their
union consists of all possible pairs of indices. Hence there is no other plane of type (1b).
Again by Lemma 6.10, the only possible planes of type (1a) which can appear in the
set are those represented by sequences which come from partitions corresponding to
the chosen planes of type (1b). There are 15 of them, so the configuration can be
completed in a unique way.

Remark 6.12 It is worth noticing that six possible choices of the set of 20 incident
planes in Y correspond to six possible choices of a 32-element subgroup isomorphic
to G inside .G; i/.

We are ready for the proof of our theorem.

6.2 Proof of Theorem 1.3

Let S Œ2�!Z!Y be the Stein factorization of the two-to-one morphism xg constructed
above. From Proposition 5.11 and Corollary 6.5 we have a finite two-to-one morphism
E4=G ! Y . Our aim is to show that Z is isomorphic to E4=G by proving that
the two double covers Z! Y  E4=G are the same. First we shall show that the
ramification loci of the morphisms are the same.

The sextic Y is singular along 60 planes. In Lemma 4.11 we already identified 40
of them that are in the ramification locus of E4=G ! Y . We already showed in
Corollary 3.5 that the ramification locus Z ! Y also consists of 40 planes. From
Proposition 3.7 the remaining 20 singular planes of Y are the images of the singular
surfaces on Z that are incident. It follows that the images of the above singular surfaces
from Z are incident planes on Y �P5 . From Proposition 6.11 we infer that the choices
of the 20 incident planes differ by a projective transformation fixing Y � P5 . Thus
the ramification loci of the maps Z! Y  E4=G are the same.

Finally, consider the coverings Z ! Y and E4=G ! Y . The two maps have the
same ramification locus; moreover, outside the singular locus of Y both maps are
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étale covers. Since S Œ2� is simply connected we infer that the fundamental group
satisfies �1.Y � Sing.Y // D Z2 . From the uniqueness of integral closures this is
enough to conclude that Z is isomorphic to E4=G (they are both universal covers in
codimension 1).

Remark 6.13 In the proof of Theorem 1.3 (in Proposition 5.3) we use the results
from [11] about the existence of a symplectic desingularization X0!E4=G . It is an
interesting problem to compare the manifolds X0 and S Œ2� .

6.3 Final remarks

It follows from Proposition 5.11 that X0 is of K3Œ2�–type as a double cover of an EPW
sextic. Knowing this we have a direct, lattice theoretical proof that X0 is birationally
isomorphic to S Œ2� . This result is weaker than Theorem 1.3, but the proof is much
shorter!

Recall that the second integral cohomology group of a K3Œ2�–type IHS fourfold, with
the Beauville–Bogolomov form, is isomorphic to the lattice � that is an orthogonal
direct sum

(6-1) � WDƒK3˚Z� where ƒK3 ŠE8.�1/
2
˚U 3 and �2 D�2:

The following result was shown to us by G Mongardi.

Proposition 6.14 The IHS fourfolds X0 , the desingularization of E4=G , and S Œ2�

are birationally isomorphic.

Proof From the construction of X0 we know that the 23–dimensional vector space
H 2.X;Q/ has a 21–dimensional subspace spanned by the class of the divisor �
and 20 exceptional divisors which map to the singular surfaces in E4=G . Each
class in this subspace is invariant under the action of i� , where i 2 Aut.X0/ is the
covering involution for the map X0! Y . As the holomorphic 2–form on X0 does
not descend to Y , we see that i� D�1 on a complementary 2–dimensional subspace.
Thus H 2.X0;Z/ contains, with finite index, the direct sum of the i�–invariant and
antiinvariant sublattices, which are the Picard group of X0 and the transcendental
lattice T , respectively. The lattice H 2.X0;Z/ Š � is not unimodular, but we can
embed it in an even unimodular lattice as follows. Let z� ��˝Z Q˚Q�, with �2D 2,
be the lattice generated by � and e1 WD .�C �/=2. Let e2 WD e1� � 2 z� . Then e1; e2
generate a hyperbolic plane U (so e21 D e

2
2 D 0 and e1e2 D 1) and z� DƒK3˚U .

Since the discriminant group of � is Z2 and i� acts trivially on it, it extends to an
isometry j of z� with j.�/D �. Then the sublattice of j –antiinvariants in z� has rank
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two and is isometric to T . As j is an involution, the discriminant of T is a power of
two, and as the rank of T is two it is either 1, 2 or 4. Since T is positive definite and
even, we must then have that T has discriminant 4 and that T Š

�
Z2; qD 2.x2Cy2/

�
.

On the other hand, the K3 surface S has the same transcendental lattice. (This can
also be seen with a similar argument: in Pic.S/ we have the pull-back of the classes,
of a general line in P2 , of the strict transforms of the four exceptional divisors of the
triple points and of the 15 exceptional divisors in the second blow-up; these 20 classes
are all invariant under the covering involution on S and hence, again, TS is an even
lattice of rank two with discriminant 1, 2 or 4.) Thus the transcendental lattice T2
of S Œ2� is also isomorphic to T .

Notice that � D �? in z� and that the sublattice zT of z� spanned by T and � is iso-
morphic to

�
Z3; 2.x2C y2C z2/

�
. A well-known result of Nikulin implies that the

embedding of zT in the even unimodular lattice z� is unique up to isometry. In particular,
we may assume it lies in three copies of U , the first two in ƒK3 , the last spanned by e1
and e2 . From this one deduces that there is an isometry between the lattices H 2.X0;Z/
and H 2.S Œ2�;Z/ which restricts to an isometry on the transcendental lattices. Hence by
the Torelli theorem for IHS it follows that X0 and S Œ2� are birationally isomorphic.

Remark 6.15 We expect that Z52 Ë†5 is the group of automorphisms of S Œ2� DX0 .
Indeed, the group of linear automorphisms of the EPW sextic Y � P5 is †6 ÌZ42
(the permutations of coordinates and the change of an even number of signs). The
linear automorphisms that preserve the 20 ramification planes of X0! Y form the
group Z42Ë†5 (see Proposition 6.11) and they lift to symplectic automorphisms of X0 .
Moreover, the covering involution X0! Y is antisymplectic. Note that Z42 Ë†5 is
one of the maximal groups of symplectic automorphisms of IHS fourfolds of K3–type
found in [16, Theorem 5.1]. Note also that the automorphism group of S , and hence
of S Œ2� , is infinite.

Remark 6.16 It is natural to consider the map .S 0/Œ2�Ü S
Œ2�
5 induced by the double

cover �W S 0! S5 (see Lemma 3.4). We can deduce that we have the diagram

.S 0/Œ2�

�Œ2�

��

z
// S

Œ2�
5

�

��

P5 � Y
z0

// P4

of rational maps such that the bottom map is the central projection with center a
singular point on Y of type C4=.G; i/. By Proposition 5.7 the center of projection is
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of multiplicity 4 on Y . It follows that the maps z0W Y !P4 and z are generically two-
to-one. Moreover, the image by � of a generic point fp; qg 2 S Œ2�5 is the hyperplane of
quadrics containing S5�P5 and vanishing along the line hp; qi�P5 . It is easy to see
that the double cover z0 is ramified along ten hyperplanes which are the images of the
divisor �.li /� S Œ2� . It can be shown that these ten hyperplanes form the configuration
of the ten hyperplanes tangent to the Igusa quartic along quadrics (see Proposition 5.7).
It follows that the EPW sextic Y can be constructed as a partial resolution of the double
cover of P4 ramified along the configuration of these ten hyperplanes.

Remark 6.17 Let us describe how from our picture we obtain a description of a
symplectic resolution of the singularity C4=G considered in [3]. We will use the
notation from Section 3. We constructed a resolution of singularities

xgW S Œ2�!E4=.G; i/:

The idea now is to look locally at this map around the singular point C4=.G; i/.
Looking at the Stein factorization S Œ2� ! E4=G ! Y of xg we see that we need
to describe exceptional sets on S Œ2� that map to one of the 16 singular points of
type C4=G on E4=G .

We shall use the geometric definition of the map g . Recall that the nodal K3 surface
S 0 � … � P6 is contained in the cone … with vertex P . A general line in this
cone passing through P cuts S 0 in two points. On the other hand … is contained
in a 4–dimensional system Q of quadrics. Denote the set of points in .S 0/Œ2� that
correspond to lines cutting S 0 in two points and contained in … by A� .S 0/Œ2� . From
the definition of the map �Œ2� , the set A � .S 0/Œ2� maps to the point .1 W � � � W 1/ 2 Y
corresponding to Q (see the end of the proof of Proposition 2.1).

Note for each line �.l1/�S 0 determined by l1�S we have a plane Pl1 in P5 spanned
by P and �.l1/. The rational curve l1 cuts three exceptional curves e1 , e2 and e3 in
points. All the lines on the plane Pl1 are tangent to S 0 and they determine a surface El1
in S Œ2� . The surfaces eŒ2�1 , eŒ2�2 and eŒ2�3 intersect El1 in points and they also intersect
two of the indeterminacy loci E13 , E12 and E11 of type (3) along lines. Moreover, El1
is isomorphic to F4 . It follows that the strict transform of El1 on S

Œ2�
is isomorphic

to P2 .

The surfaces l Œ2�1 and El1 intersect on S Œ2� along a conic curve c . The proper transform
of this conic curve c before the last flop is a line contained in the proper transform of l Œ2�1
(the Cremona transformation of l Œ2�1 with center at three points on c transforms c to a
line). Before the last flop the proper transform of the surface El1 will be F1 (ie F4
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transformed by three elementary transformations). After the last flop the proper trans-
form of the above line will be contracted such that the proper transform of El1 will be
a plane.

Finally, consider also the del Pezzo surface A of degree 5 contained in S Œ2� , corre-
sponding to the rays of the cone …. The strict transform on S Œ2� it is still a del Pezzo
surface of degree 5. These 11 surfaces form the exceptional set of the resolution of the
singular point C4=G ; see [11].

Remark 6.18 Some results of the present paper can be neatly illustrated with the
combinatorics related to the Petersen graph.

First, let us recall that the graph describes the incidence of .�1/–curves on P24
with 10 vertices standing for the curves and edges for their intersection. Using this
notation we can encode five conic pencils on S5 D P24 : each pencil contains three
reducible fibers which can be represented by three edges in this graph (two lines plus
their point of intersection). Three double edges in Figure 6 stand for such a pencil.
Thus the 15 edges of the graph are divided into five classes; every edge in each class
shares no common adjacent edge with another edge in the same class. The five conic
pencils on S5 give five distinguished elliptic pencils on the Vinberg K3 surface S ;
see Section 2.1.

It is well known — see the first part of Lemma 2.3 — that S5 � P5 admits an action
of the permutation group †5 which yields an action of †5 on the set of .�1/–curves
on S5 . In fact, we can identify the .�1/–curves with transpositions and the action
of †5 is then by conjugation. This is depicted in Figure 6 by assigning to each vertex
of the Petersen graph a pair from the set fa; : : : ; eg.

There are exactly two nonconjugate embeddings †5 ,!†6 : apart from the standard
one (coming from the embedding f0; : : : ; 4g ,! f0; : : : ; 5g), there is an embedding ˇ
described in the second part of Lemma 2.3. The embedding ˇ assigns to a pair in
a 5–element set (a transposition in †5 ) a partition of a 6–element set into 3 pairs.

We label the edges of the Petersen graph by pairs in f0; : : : ; 5g so that the three
edges stemming from a given vertex give the respective partition (see Figure 6);
for example: .ab/ 7! .03/.14/.25/, .bc/ 7! .01/.24/.35/, .cd/ 7! .05/.14/.23/,
.d e/ 7! .01/.25/.34/. Compare this with Lemma 2.3. This way, out of 15 partitions
of the set f0; : : : ; 5g, ten can be associated to vertices of the Petersen graph. As a
result, the remaining five partitions come from the five triples of edges which are
associated to conic pencils on S5 or distinguished elliptic pencils on S . In Figure 6,
they are the following: .01/.23/.45/, .02/.14/.35/, .03/.15/.24/, .04/.13/.25/,
.05/.12/.34/. These are exactly the partitions which occur in Proposition 2.5; there
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ab

ac

bc

be

ae

cd

bd

de

ad

ce

.03/.14/ .25/

.34/

.02/

.15/

.35/

.04/

.12/

.24/

.13/

.05/ .01/

.45/

.23/

Figure 6

they define the 20 incident planes: each partition defines 3C 1 planes, which depend
on the number of ˙ signs. Similarly, the divisors Bi in Proposition 3.7 can be divided
into five classes related to five distinguished elliptic fibrations of S , each of the classes
containing 3C 1 divisors.
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