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On the topological contents of �–invariants

ULRICH BUNKE

We discuss a universal bordism invariant obtained from the Atiyah–Patodi–Singer �–
invariant from the analytic and homotopy-theoretic point of view. Classical invariants
like the Adams e–invariant, �–invariants and String–bordism invariants are derived
as special cases. The main results are a secondary index theorem about the coincidence
of the analytic and topological constructions and intrinsic expressions for the bordism
invariants.
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1 Introduction

The purpose of this work is to understand which topological information is encoded
in the �–invariant, a spectral-geometric invariant introduced by Atiyah, Patodi and
Singer [7] in the context of index theory for boundary value problems for Dirac
operators. We are in particular interested in bordism invariants derived from the �–
invariant. By now we know many examples; see eg Atiyah, Patodi and Singer [9],
Bahri and Gilkey [12; 13], Bunke and Naumann [24], Deninger and Singhof [29], Jones
and Westbury [42] and Crowley and Goette [27]. In the present paper we consider the
universal structure behind these examples. We define a bordism invariant, which we
call the universal �–invariant. We use Section 5 in order to review some of the known
�–invariant-based bordism invariants. We put the emphasis on the demonstration of how
they can be interpreted as special cases of our universal construction. Our construction
also subsumes (by constructions similar to the one in Section 5.5) some, but not all,
of the Kreck–Stolz-type or Eells–Kuiper-type invariants — see Kreck and Stolz [45]
and Donnelly [30] — or the generalised Rochlin invariants of Miller and Lee [50]. The
universal �–invariant does not seem to incorporate the invariant introduced by Kervaire
and Milnor [44] in order to distinguish exotic spheres.

In the present paper we introduce and compare two versions of the universal �–invariant.
The analytic version �an given in Definition 3.6 is the bordism invariant which is derived
from the appearance of the reduced �–invariant in the local index theorem for the
Atiyah–Patodi–Singer boundary value problem by cancelling out the dependence on
geometric data. The ideas for this construction are more or less standard and have been
used previously in many special situations.
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The topological counterpart �top introduced in Definition 2.3 is constructed by a simple
homotopy-theoretic consideration using the interplay of Q=Z–bordism and K–theory.

While it is not so complicated to see that �an is a bordism invariant, to understand
its homotopy-theoretic meaning is slightly deeper. The bridge between analysis and
topology is provided by our first main result, Theorem 3.7, stating that

�an
D �top:

Its proof uses standard methods in index theory like the analytic picture of K–homology
(see Baum and Douglas [15] and Kasparov [43]) the Atiyah–Patodi–Singer index
theorem [7] and some ideas from Z=lZ–index theory (see Freed and Melrose [33]).

Bordism classes can be represented geometrically by manifolds with additional struc-
tures, called cycles (see Section 3.2 for details). It is then an interesting question how one
can calculate the universal �–invariant or its specialisations in terms of the cycle. The
definition of both the topological and the analytical version of the universal �–invariant
involves the choice of a zero bordism of some multiple of the cycle. In applications it is
often complicated to find such a zero bordism. It is a striking advantage of the analytic
picture that it can be reorganised to an expression which only involves structures on the
cycle itself. In special cases this has previously been exploited by Seade [56], Deninger
and Singhof [29] (the case of the Adams e–invariant; see Section 5.1) and Bunke and
Naumann [24] (to calculate String–bordism invariants; see Section 5.4).

We consider the intrinsic formula for �an given in Theorem 4.19 as one of the main
original contributions of the present paper. This formula is based on a new object, which
we call a geometrisation. If a map f W M ! BG classifies a principal G–bundle P ,
then a geometrisation of f is essentially given by a connection on P . In general, the
notion of a geometrisation partially generalises the notion of a connection on the (in
general nonexistent) principal bundle classified by the map f W M !B for an arbitrary
space B . The details are slightly more complicated since we will take structures on
the normal bundle into account.

Remark 1.1 In this paper we generally decided to work with complex K–theory.
We think that there is a real version of the whole theory which can be obtained by
replacing complex K–theory by real KO–theory and BSpinc by BSpin, and taking
the real structures on the spinor bundles into account properly on the analytic side. The
real version of the universal �–invariant would be slightly stronger than its complex
counterpart, which loses some two-torsion classes. In order to recover the Adams
e–invariant or the string bordism invariant (Bunke and Naumann [24]) completely as
special cases of the universal �–invariant, we would need the real version.
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Let us now describe the contents of the paper. In Section 2 we introduce the topological
version �top of the universal �–invariant and study its properties. Most interesting is
probably the relation with the Adams spectral sequence (Theorem 2.7), which asserts
that the universal �–invariant detects the first nontrivial subquotient of the bordism
theory with respect to the K–theory-based Adams filtration.

The idea to use Q=Z–versions of homology theories to detect elements in the Adams
spectral sequence is not new and goes back to Adams’ construction of the e–invariant,
which will be reviewed in Section 5.1. It is at the root of the chromatic approach to
stable homotopy theory; see Miller, Ravenel and Wilson [51]. Our discussion of the
topological version of the universal �–invariant can be viewed as a simple version of
Laures [46; 47] and Behrens and Laures [16], where the main focus of these references
is on the second (and higher) steps of the Adams filtration.

In Section 3 we introduce the analytic version �an of the universal �–invariant and
prove the secondary index theorem (Theorem 3.7), stating that �an D �top . Before we
can define �an we have to recall in Sections 3.2 and 3.3 some preliminary technical
details concerning the relation of structures on the stable normal bundle as they come
out of the Pontrjagin–Thom construction, and structures on the tangent bundle which
will be used to do geometry and analysis.

Section 4 is devoted to geometrisations (Definition 4.5) and the intrinsic formula for �an

(Theorem 4.19).

Lastly, in Section 5 we discuss in detail various specialisations of the universal �–
invariant. It contains mainly a review of known constructions and results with slight
improvements or generalisations at some points (eg Corollary 5.12). In Propositions 5.13
and 5.14 we show how the usual geometric structures of Spin– and String–geometry
(see Waldorf [60] for the latter) give rise to geometrisations which lead to the known
intrinsic formulas for the corresponding bordism invariants. It has been the initial
motivation for this work to understand the general principles behind the String–bordism
invariants introduced by Bunke and Naumann [24]. It should be easy to adapt the
arguments used here for the StringDMOh8i–bordism case to bordism theories MOhni
associated to higher connected covers BOhni of BO.

Acknowledgement I thank Bernd Ammann, Sebastian Goette, Diarmuid Crowley
and Niko Naumann for stimulating discussions. I am in particular grateful to M Völkl
for suggesting various improvements.

The pictures have been typeset using the frobeniusgraphcalc.sty package written
by Clara Löh.
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2 The topological construction

2.1 Motivation

In this section we use complex K–theory in order to detect torsion elements in the
homotopy groups ��.E/ of a spectrum E . We introduce the topological version �top

of the universal �–invariant as a secondary version of the homomorphism

�W ��.E/! ��.K ^E/

induced by the map of spectra

(1) �W E ' S ^E
unit^id
�����!K ^E;

where “unit” is the unit of the ring spectrum K . The idea is to first lift the torsion
element to the Q=Z–version EQ=Z of E , then apply a similar map for E replaced
by EQ=Z, and finally to detect the result via its evaluations against K0.E/. This
construction is a generalisation of the construction of the Adams e–invariant in the
case of the sphere spectrum E D S .

In Section 2.2 we will give the construction of the invariant. In Section 2.3 we analyse
its target in some detail. Finally, in Section 2.4 we understand completely in terms of
the Adams spectral sequence which piece of ��.E/tors the universal �–invariant can
detect.

2.2 The definition of �top

For an abelian group A we let MA denote the Moore spectrum, which is characterised
by its integral homology

�n.HZ^ MA/Š
�
A if nD 0;
0 if n 6D 0:

More generally, for a spectrum E we have short exact sequences [20, (2.1)]

(2) 0! �n.E/˝A! �n.E ^ MA/! �n�1.E/�A! 0

for all n2Z. To simplify the notation we abbreviate EA WDE^MA. The equivalences
MZ' S and MQ'HQ induce equivalences EZ'E and EQ'E ^HQ.

The starting point for the construction of the topological version �top of the universal
�–invariant is the fibre sequence

(3) MZ! MQ! MQ=Z!†MZ
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of Moore spectra. Smashing this sequence with the map �W E!K ^E (see (1)) we
get the diagram

(4)

†�1EQ
u

))��

�
// †�1K ^EQ

��

yx†�1EQ=Z
�
//

��

zx†�1K ^EQ=Z

��
xE

��

�
// K ^E

��
0EQ // K ^EQ

where we use the symbol � also to denote other maps defined like (1) for different
spectra in place of E .

Remark 2.1 If E is a spectrum and X is a space or spectrum, then for n 2 Z we
consider the cohomology En.X/ as a topological group, where a basis of neighbour-
hoods of zero is given by the kernels of restrictions along maps Y ! X from finite
CW–complexes or finite cell spectra Y . The topology on En.X/ is called the profinite
topology. This should not be confused with the notion of a profinite group in algebra.

We have an evaluation pairing (ie just a bilinear map)

(5) h�;�iW �n.†
�1K ^EQ=Z/˝K0.E/! �nC1.KQ=Z/

which sends x˝� to the composition

†nC1S
x
!K ^E ^ MQ=Z

idK^�^idMQ=Z
�����������!K ^K ^ MQ=Z

�^idMQ=Z
�������!K ^ MQ=Z;

where � is the multiplication of the ring spectrum K . For a fixed class x the pairing
is continuous in the second argument. In order to see this we use the fact that we can
represent any spectrum E as a filtered colimit of finite spectra E ' colim˛E˛ . Since
the smash product commutes with colimits we get an equivalence

K ^E ^ MQ=Z' colim˛K ^E˛ ^ MQ=Z:

Since †nC1S is a finite spectrum, the map x has a factorisation over some stage of
the colimit

†nC1S !K ^E˛ ^ MQ=Z!K ^E ^ MQ=Z:

Now let .�i /i2I be a net in K0.E/ converging to zero in the profinite topology. Then
�i jE˛ D 0 for sufficiently large i . This immediately implies that hx; �i i D 0 for
sufficiently large i 2 I .

Geometry & Topology, Volume 21 (2017)
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In the following the group �nC1.KQ=Z/ has the discrete topology. The adjoint of the
pairing is a homomorphism

�n.†
�1K ^EQ=Z/! Homcont.K0.E/; �nC1.KQ=Z//;

where Homcont.�;�/ stands for continuous homomorphisms. We let

(6) U � Homcont.K0.E/; �nC1.KQ=Z//

denote the subgroup given by the pairings with the elements in the image

image.uW �n.†�1EQ/! �n.†
�1K ^EQ=Z//

of the map u which can be read off from (4).

Definition 2.2 For every n 2 Z we define the abelian group

(7) Qn.E/ WD
Homcont.K0.E/; �nC1.KQ=Z//

U
:

The following definition uses a diagram chase of elements as indicated in (4).

Definition 2.3 The homotopy theoretic version of the universal �–invariant is the
homomorphism

�top
W �n.E/tors!Qn.E/

defined by the following prescription: If x 2 �n.E/tors , then we choose a lift yx in
�n.†

�1EQ=Z/. We let �top.x/ 2Qn.E/ be the class represented by the homomor-
phism given by the pairing against �.yx/.

We must show that �top is well-defined. Indeed, the choice of yx is unique up to
elements which come from �n.†

�1EQ/, but this ambiguity is taken care of by taking
the quotient by U in the definition (7) of Qn.E/.

The following lemma immediately follows from the definitions:

Lemma 2.4 A map of spectra E! F naturally induces a commutative diagram:

�n.E/tors

��

�top
// Qn.E/

��

�n.F /tors
�top

// Qn.F /
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2.3 Simplification of Qn.E/

Because of its definition as a quotient it is difficult to define maps out of Qn.E/. In
this subsection we analyse the structure of this group and explain how one can detect
its elements. We consider the ring spectrum

HP Q WDHQŒb; b�1�;

where deg.b/D�2. Additively it has a decomposition

(8) HP Q'
_
i2Z

†2iHQ

and for each i 2 Z we consider the projection p2i W HP Q! †2iHQ to the corre-
sponding component. We set pn WD 0 for odd n. The Chern character is an equivalence
of ring spectra

chW KQ
'
�!HP Q:

The composition of the Chern character ch with the projection pnC1 gives a map of
spectra whose kernel in degree zero homotopy will be denoted by

(9) Vn WD ker.pnC1 ı chW K0.E/!Q/:

Lemma 2.5 (1) The restriction to Vn �K0.E/ induces a well-defined map

(10) Qn.E/! Homcont.Vn; �nC1.KQ=Z//:

(2) This restriction map is an isomorphism if we assume that E is lower bounded
and dimHQnC1.E/ is finite.

Proof First we show that the restriction is well-defined. We must show that if � 2 Vn
then the pairing of � with u.y/2�nC1.K^EQ=Z/ vanishes for every y2�nC1.EQ/.
This follows from the equality

(11) hu.y/; �i D q
�˝

ch.�.y//; pnC1.ch.�//
˛�
;

where
qW �nC1.HP Q/ ch�1

��!�nC1.KQ/! �nC1.KQ=Z/

and � is as in (4). Note that ch.�.y// sits in the b–degree zero component of HP Q.

We now show (2). We use the general fact that if f W A! Vn is a homomorphism of
an abelian group into a Q–vector space such that its image is finitely generated as an
abelian group, then there exists a splitting AŠ ker.f /˚A0 . Indeed, in this case the
image is free and hence projective.
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Note that there exists an integer N (only depending on n and the lower bound of E )
such that pnC1.ch.K0.E/// is contained in the image of 1

N
HZnC1.E/!HQnC1.E/

and is therefore finitely generated as an abelian group since we assume that HQnC1.E/

is finite-dimensional. We conclude that

K0.E/Š Vn˚V
c
n ;

where V cn Š image.pnC1 ı ch/ is a free abelian group. This immediately implies that
(10) is surjective.

Any homomorphism � 2Homcont.K0.E/; �nC1.KQ=Z// can uniquely be decomposed
as a sum of its restrictions to Vn and V cn . We claim that U Š Hom.V cn ; �nC1.KQ=Z//,
where U is as in (6). The claim implies that (10) is injective.

We can assume that n is odd. The claim follows from the surjectivity of the composition

�n.†
�1EQ/Š Homcont.HQnC1.E/;Q/

Š Homcont.V cn ; �nC1.KQ//� Homcont.V cn ; �nC1.KQ=Z//;

where we use the Chern character for the second equivalence and the fact that V cn
is free in order to conclude the surjectivity of the last map. Note that in the present
situation, continuity of homomorphisms is automatic by our finiteness assumption.

The definition of �top is based on first lifting the torsion element in the homotopy group
of E to a Q=Z–homotopy class which is then paired with elements of K–theory. The
pairing with torsion K–theory elements can be expressed in a dual way as a pairing
of the original homotopy class with Q=Z–lifts of the K–theory elements. We now
explain the details.

Assume that � 2K0.E/ satisfies ch.�/D 0. Then � 2 Vn and we get an evaluation

ev� W Qn.E/! �nC1.KQ=Z/:

In view of the exact sequence

KQ=Z�1.E/ @
�!K0.E/ ch

�!HP Q0.E/;

we can choose y�2KQ=Z�1.E/ such that @y�D� . If we want to calculate ev�.�top.x//

then instead of lifting the class x to a Q=Z class we can instead evaluate the class
�.x/ 2 �n.K ^E/ against the lift y� . The following assertion follows easily from the
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definition of �top and commutativity of the diagram:

†�1E ^ MQ=Z
�^idMQ=Z

//

@

��

†�1KQ=Z

E
y�

// †�1KQ=Z

Lemma 2.6 For x 2 �n.E/tors and y� 2KQ=Z�1.E/ we have

ev�.�top.x//D hy�; �.x/i;

where � WD @y� .

In the present paper the spectrum E will often be a Thom spectrum MB associated to
a map of spaces B! BSpinc . The spectrum MB is K–oriented by

(12) ˇW MB!MSpinc ABS
��!K;

where ABS is the Atiyah–Bott–Shapiro orientation. In this case can use the Thom
isomorphisms

ThomK W K0.B/ Š�!K0.MB/; ThomHQW HQnC1.MB/ Š�!HQnC1.B/;

in order to express Qn.MB/ in terms of B . We have an isomorphism

(13) Qn.MB/Š
Homcont.K0.B/; �nC1.KQ=Z//

U 0
;

where U 0 is obtained by precomposing the elements in U (see (6)) with ThomK . We
let Td2HP Q0.BSpinc/ be the universal Todd class and use the same symbol in order
to denote the pull-back of this class to B . Then using (11), the isomorphism

�nC1.MB Q/ŠHQnC1.MB/
ThomHQ
Š HQnC1.B/

and the Riemann–Roch theorem we can describe U 0 as the space of homomorphisms
given by

(14) K0.B/! �nC1.KQ=Z/; � 7! q
�˝
y; pnC1.Td�1[ ch.�//

˛�
for all y 2HQnC1.B/. The class Td is the Todd class of the stable universal Spinc –
bundle over BSpinc . It plays the role of the universal normal bundle. The Riemann–
Roch formula contains the Todd class of the tangent bundle which is complementary
to the normal bundle. This explains the appearance of the inverse of the Todd class in
the formula above.
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2.4 Relation with the Adams spectral sequence and K –localisation

In this subsection we will see that the topological �–invariant essentially detects the first
line in the K–based Adams spectral sequence .E�;�r .E/; dr/ for E . We refer to [2; 54]
for details on the Adams spectral sequence. Note that in the literature on the Adams
spectral sequence it is frequently assumed that it is based on a connective spectrum.
This assumption is important for the discussion of convergence. In our situation we
consider the Adams spectral sequence based on the nonconnective spectrum K . This
causes no problems since we are not interested in convergence questions.

We define the spectrum K by the cofibre sequence

†�1K fib
�!S unit

��!K!K

and form the Adams tower:

(15)

†�2E ^K ^K

idE^idK^fib
��

†�1E ^K

idE^fib
��

�
// †�1E ^K ^K

ii

E
�

// E ^K

ii

The horizontal maps are induced by the unit of K as in (1) while the dotted arrows are
degree-one maps which turn the triangles into fibre sequences. In the left column we
have moved all shifts to the left. This tower gives rise to an Adams spectral sequence

.E�;�r .E/; dr/r�1

and a filtration .Fs��.E//s�0 of the homotopy groups of E , where Fs��.E/���.E/
is defined as the image of ��.†�sE ^K^s/. We have a natural injective map

sW Gr1��.E/!E
1;�C1
2 .E/:

Theorem 2.7 (1) We have F1��.E/� ��.E/tors .

(2) We have F2��.E/� ker.�top/. Hence �top induces a map (denoted by the same
symbol)

�top
W Gr1��.E/!Q�.E/:

(3) There exists a map

�W E
1;�C1
2 .E/!Q�.E/
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such that
�top
D � ı sW Gr1�n.E/!Qn.E/:

(4) If ��.E ^K/ is torsion-free, then

��.E/tors D F1��.E/:

If n is odd, then the restriction

�j
E
1;nC1
2 .E/tors

W E
1;nC1
2 .E/tors!Qn.E/

of � to the torsion subgroup is injective. Consequently, the map

�top
W Gr1�n.E/!Qn.E/

induced by �top is injective.

Proof We have a map

f W K!KQ'
Y
p2Z

†2pHQ
p0
�!HQ;

which we use to build the map between the K–based and the HQ–based Adams
towers:

†�2E ^K ^K

��

†�1E ^K //

��

))

†�1EQ=Z

��

((

†�1E ^K ^K //

__

†�1EQ=Z^K

E

))

E

))
E ^K

^^

idE^f
// EQ

\\

:

It connects a piece of the Adams tower of E with the basic diagram used in the
definition of �top .

Assertions (1) and (2) follow immediately from diagram chases. We now show (3).
The map

E
1;�C1
1 .E/D ��.†

�1E ^K ^K/! ��.†
�1EQ=Z^K/!Q�.E/

Geometry & Topology, Volume 21 (2017)
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annihilates the image of ��.E ^K/, ie the image of the boundary map of the spectral
sequence, and therefore factors through a map

�W E
1;�C1
2 .E/!Qn.E/:

Assertion (3) again follows by a diagram chase.

We now show (4). By the additional assumption that ��.E ^K/ is torsion-free, the
map ��.E/! ��.E ^K/ annihilates ��.E/tors . In view of (1) we conclude the first
assertion, that ��.E/torsDF1��.E/. As in [24, Section 5.3] our additional assumption
furthermore implies that we get a short exact sequence

(16) 0!E
0;nC1
2 .E/˝Q=Z

j
�!E

0;nC1
2 .EQ=Z/ ı

�!E
1;nC1
2 .E/tors! 0:

Remark 2.8 For the convenience of the reader we recall the construction of (16). We
start with the observation [4] that �0.K ^K/ is a free Z–module and

��.K ^K/Š ��.K/˝Z �0.K ^K/

is a free ��.K/–module. For any spectrum F we thus get an isomorphism of abelian
groups

��.F ^K ^K/Š ��.F ^K/˝Z �0.K ^K/:

If ��.F ^K/ is torsion-free, then so is ��.F ^K ^K/. We now observe that the
product of the ring spectrum K provides a split of the fibre sequence

� � � ! F ^K! F ^K ^K! F ^K ^K! � � � :

Consequently, ��.F ^K ^K/ is a direct summand of a torsion-free abelian group
��.F ^K ^K/ and hence torsion-free, too. We apply this argument to the spectra
F WDE ^K ^K^p appearing in the Adams tower. Starting from our assumption that
��.E ^K/ is torsion-free we conclude inductively that their homotopy groups are
torsion-free. These homotopy groups assemble the first page E�;�1 .E/, which therefore
consists of torsion-free groups.

We now consider the K–based Adams spectral sequence .E�;�r .EQ=Z/; dr/. The
Adams tower is obtained from (15) by smashing with MQ=Z. The sequence (2) provides
short exact sequences

0!E
s;t
1 .E/˝Q=Z!E

s;t
1 .EQ=Z/!E

s;t�1
1 .E/�Q=Z! 0

for all s; t 2 Z. Since E�;�1 .E/ consists of torsion-free groups we get isomorphisms

(17) E
s;t
1 .E/˝Q=ZŠEs;t1 .EQ=Z/:

Geometry & Topology, Volume 21 (2017)
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We now note that the first differential d1W E
s;t
1 !E

sC1;t
1 is induced by the morphism

†�sE ^K ^K^s!†�s�1E ^K ^K^.sC1/

of spectra, which exists before smashing with MQ=Z and taking homotopy groups.
Therefore the isomorphism (17) is compatible with the differentials of E�;�1 .E/ and
E
�;�
1 .EQ=Z/. We conclude that the complex .E�;�1 .EQ=Z/; d1/ is obtained from

the complex of free abelian groups .E�;�1 .E/; d1/ by tensoring with Q=Z. Hence we
can apply the universal coefficient theorem, which gives short exact sequences

0!E
s;t
2 .E/˝Q=Z!E

s;t
2 .EQ=Z/!E

sC1;t
2 .E/�Q=Z! 0

for all s; t 2 Z. The desired sequence (16) is the special case s D 0 and t D nC 1.
G

By Pontrjagin duality, for odd n we have isomorphisms

(18) �nC1.EQ=Z^K/Š Homcont.KnC1.E/;Q=Z/

Š Homcont.K0.E/; �nC1.KQ=Z//:

Remark 2.9 For completeness of the presentation we give the argument. The evalua-
tion pairing (5) provides for every spectrum F a morphism

(19) ��.FQ=Z^K/! Homcont.K�.F /;Q=Z/:

We claim that this is an isomorphism. The left-hand side preserves finite sums of
spectra and sends fibre sequences to long exact sequences. Since Q=Z is an injective
abelian group the functor on the right-hand side has the same properties as long as the
groups involved have the discrete topology. Since (19) is clearly an isomorphism for
F D S (the sphere spectrum) it is an isomorphism for all finite spectra.

We now notice that the left-hand side preserves filtered colimits. If .F˛/ is a filtered
system of finite spectra and F WDcolim˛F˛ , then by definition of the profinite topology
on K�.F / and since Q=Z is considered as a discrete abelian group we have

Homcont.K�.F /;Q=Z/Š colim˛Hom.K�.F˛/;Q=Z/:

So the right-hand side of (19) is compatible with filtered colimits of finite spectra, too.
Consequently (19) is an isomorphism for all spectra F . G

We can now finish the argument for the second part of (4). Let 
 2E1;nC12 .E/tors and
assume that �.
/D 0. Since ı in (16) is surjective, we can write 
 D ı.ˇ/ for some
ˇ 2 E

0;nC1
2 .EQ=Z/. We have �.
/D 0 if and only if there exists y 2 �nC1.EQ/

which induces the same pairing with K0.E/ as a.ˇ/, where aW E0;nC12 .EQ=Z/!
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�nC1.EQ=Z ^K/ is the inclusion of the kernel of the first differential. From the
injectivity of (18) we conclude that

a.ˇ/D a
�
j.q.�.y///

�
;

where �.y/ 2E0;nC12 .EQ/ and

qW E
0;nC1
2 .EQ/ŠE0;nC12 .E/˝Q!E

0;nC1
2 .E/˝Q=Z:

Since a is injective this implies 
 D ı
�
j.q.�.y///

�
D 0.

We let E!EK denote the Bousfield localisation of the spectrum E at the complex
K–theory spectrum. The following lemma shows that the universal �–variant factorises
over the K–localisation.

Lemma 2.10 We have a commuting diagram:

�n.E/tors
�top

//

��

Qn.E/

Š

��

�n.EK/tors
�top

// Qn.EK/

Proof Since E ! EK induces an isomorphism in K–theory we conclude that the
right vertical map is an equivalence. The rest is Lemma 2.4.

Remark 2.11 The principal ideas behind Theorem 2.7 are not new and go back to
Adams [1]. Our approach here can be considered as a simple version of [46, Proposition
3.3.2; 47], where these references focus on the second and higher lines of the spectral
sequence and filtration steps of the homotopy groups.

3 The spectral geometric construction

3.1 Motivation

In this section we define an analytic invariant �an of torsion elements in the B –bordism
theory. The analytic invariant will be derived from geometric and spectral geometric
quantities associated to geometric cycles for bordism classes. The relation between
the geometric and homotopy-theoretic picture of the bordism group is given by Thom–
Pontrjagin construction; see [55, Chapter IV.7]. In Section 3.2 we give the details of the
geometric picture of the B –bordism theory. Section 3.3 is devoted to some technical
details on the transfer of Spinc –structures from the normal bundle to the tangent bundle.
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A reader with some experience with the Thom–Pontrjagin construction and Spinc –
structures may immediately proceed to the construction of �an in Section 3.4. The
final Section 3.5 of this part contains the proof of the theorem about the equality of the
analytic and topological universal �–invariants.

3.2 Geometric cycles for B–bordism theory

We assume that we have chosen representatives of the homotopy types of the classifying
spaces of the classical Lie groups, like O.k/, Spinc.k/, etc, and representatives of the
homotopy classes of the usual maps connecting them, like BSpinc.k/! BO.k/ or
�k W BO.k/! BO.kC1/. We further choose universal euclidean bundles �k on BO.k/
and isomorphisms

(20) ��k�kC1 Š �k˚RBO.k/

for all k 2N , where for a vector space V we let VM denote the trivial bundle on the
space M with fibre V .

We consider a map of spaces B!BSpinc and the corresponding Thom spectrum MB.

Remark 3.1 For the convenience of the reader we briefly recall its construction. Up
to homotopy equivalence we can assume that we have the following situation. We have
a sequence of cofibrations between topological spaces

� � � ! BSpinc.k� 1/! BSpinc.k/! BSpinc.kC 1/! � � � :

The homotopy type of the classifying space of Spinc is then represented by the topo-
logical space

BSpinc WD colimkBSpinc.k/:

We can furthermore assume that we have a sequence of cofibrations

� � � ! B.k� 1/! B.k/! B.kC 1/! � � �

and a homeomorphism
B Š colimkB.k/;

and that the map B! BSpinc is induced by a sequence of commuting diagrams:

B.k/
�k

//

��

BSpinc.k/

��

B.kC 1/
�kC1

// BSpinc.kC 1/
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For every k we let �Spinc

k
denote the pull-back of the universal bundle �k along

BSpinc.k/! BO.k/. Then we form the Thom space

Th.��k�
Spinc

k
/ WDD.��k�

Spinc

k
/=S.��k�

Spinc

k
/;

where D and S stand for the disc and sphere bundles. The identifications (20) induce
maps

†Th.��k�
Spinc

k
/Š Th

�
.��kC1�

Spinc

kC1
/jBk

�
! Th.��k�

Spinc

k
/:

We now apply the suspension spectrum functor †1�k WD †�k†1 from pointed
topological spaces to spectra in order to get the morphism of spectra

†1�kTh.��k�
Spinc

k
/!†1�k�1Th.��kC1�

Spinc

kC1
/:

The Thom spectrum is now defined as the (homotopy) colimit

MB WD colimk2N†
1�kTh.��k�

Spinc

k
/: G

For n 2 N the homotopy group �n.MB/ is called the nth B–bordism group. The
Pontrjagin–Thom construction provides an equivalent description of this group by
cycles and relations. Cycles for elements in �n.MB/ are pairs .M; f / consisting of a
closed n–dimensional riemannian manifold M and a stable normal B–structure on
the map f W M ! B . The additional data of a stable normal B structure is not written
explicitly and fixes the relation between the map f and the tangent bundle of M . In
the following we explain the details. Since M is compact there exists a factorisation

BO.k/

��

M

yf
66

f
// B // BO

up to homotopy for a suitable integer k . We require that yf ��k is a complement of the
tangent bundle of M , ie that there exists an isomorphism

(21) TM˚ yf ��k ŠRnCkM :

Definition 3.2 A normal B –structure on f consists of the choice of yf and the
isomorphism (21).

There is an obvious notion of a stabilisation of a normal B –structure, which allows
us to increase k . A stable normal B–structure is an equivalence class of normal
B –structures under the relation generated by stabilisation.
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The bordism group �n.MB/ is the set of equivalence classes of cycles, where the
equivalence relation is given by bordism, and the group structure is induced by the
disjoint sum. A zero bordism of .M; f / is given by a pair .W; F / of similar data, where
W is a compact nC1–dimensional riemannian manifold with boundary @W ŠM and
product structure and F W W ! B carries a stable normal B –structure which extends
the one on f . In detail this means the following: First of all the map yF extends yf .
The stable normal B –structure on W is represented by an isomorphism

(22) TW˚ yF ��k ŠRnC1CkW :

The outgoing normal field of TWj@W provides an orthogonal decomposition

(23) TWjM Š TM˚RM :

It is here where we use the additional datum of the riemannian metrics in order to
rigidify the choice of the unit normal vector field. We require that the isomorphism

TM˚RM ˚ yf
��k

(23)
Š TWjM ˚ yf ��k

(22)jM
Š RnC1CkM

represents the stable normal B –structure on f .

3.3 Normal and tangential Spinc –structures

Because of the factorisation B ! BSpinc ! BO, a normal B–structure induces a
normal Spinc –structure. As we will do geometry on the tangent bundle we must transfer
normal Spinc –structures to tangential Spinc –structures. The homotopy-theoretic pic-
ture of this transition is explained in [24, Section 8] in the example of String–structures.
In the following we describe its geometric counterpart.

Let V !M be an m–dimensional real vector bundle. Then a Spinc –structure on V is
a pair .P; �/, where P !M is a Spinc.m/–principal bundle and � is an isomorphism
of real vector bundles

�W P �Spinc.m/Rm Š V:

With this definition a Spinc –structure induces an euclidean metric and an orientation
on V so that the oriented orthonormal frame bundle is SO.V / WD P �Spinc.m/ SO.m/.

The collection of all Spinc –structures on the vector bundle V naturally forms a groupoid
Spinc.V /. The objects of the groupoid Spinc.V / are the Spinc –structures .P; �/, and
the morphisms .P; �/! .P 0; �0/ are isomorphisms of Spinc.m/–principal bundles
P ! P 0 which are compatible with the isomorphisms � and �0 . This in particular
implies that automorphisms of .P; �/ are given by the central action of C1.M;U.1//
on P .
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If we associate to any open subset A�M the groupoid Spinc.V jA/, then we obtain
a sheaf of groupoids Spinc.V /, which actually is a U.1/–banded gerbe. We refer to
[21; 52; 36] for an introduction to gerbes. Isomorphism classes of U.1/–banded gerbes
G are classified by their Dixmier–Douady classes DD.G/ 2H 3.M IZ/. In particular,
the Dixmier–Douday class of the Spinc –gerbe Spinc.V / is the class

DD.Spinc.V //DW3.V /D ˇ.w2.V // 2H 3.M IZ/;

where w2.V / 2H 2.M IZ=2Z/ is the second Stiefel–Whitney class and

ˇW H 2.M IZ=2Z/!H 3.M IZ/

is the Bockstein operator [48, Theorem D2]. The groupoid Spinc.V / is nonempty if
and only if W3.V /D 0, ie the class W3.V / is the obstruction against the existence of
a Spinc –structure on V . In the following we will simplify the notation and write P
for the Spinc –structure .P; �/.

Let BU.1/.M/ denote the Picard groupoid (see [28]) of U.1/–principal bundles on M .
Given an U.1/–principal bundle E 2BU.1/.M/ and a Spinc –structure P 2Spinc.V /,
we can define a new Spinc –structure E ˝P 2 Spinc.V /. A formula for this tensor
product is given by (26) specialised to the case nD 0; see below. This construction
defines a bifunctor

(24) BU.1/.M/�Spinc.V /! Spinc.V /:

If Spinc.V / is not empty, then the set of isomorphism classes of Spinc –structures on
V is a torsor over the group of isomorphism classes in BU.1/.M/. Since the latter is
canonically isomorphic to H 2.M IZ/ we get a simply transitive action of H 2.M IZ/
on Spinc.V /=iso. Furthermore, we get natural isomorphisms

C1.M;U.1//Š AutBU.1/.M/.E/Š AutSpinc.V /.E˝P /Š AutSpinc.V /.P /:

The sum of two vector bundles with Spinc –structures has a naturally induced Spinc –
structure. This is formalised as the natural bifunctor

(25) Spinc.V /�Spinc.U /! Spinc.V ˚U/:

On the level of objects this bifunctor is given by

.P;Q/ 7! P ˝Q;

where the Spinc.nCm/–principal bundle

(26) P ˝Q WD .P �M Q/�.Spinc.n/�Spinc.m// Spinc.nCm/
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is obtained from the Spinc.n/�Spinc.m/–principal bundle P �M Q by extension of
structure groups along the upper horizontal map in the diagram:

Spinc.n/�Spinc.m/

��

// Spinc.nCm/

��

SO.n/�SO.m/ // SO.nCm/

Here nD dim.V / and mD dim.U /, and the compatibility with the lower part of this
diagram is used to define the structure map �P˝Q from �P and �Q . The bifunctor
comes equipped with natural associativity constraints. We omit the details of the latter
two aspects.

We set Spinc.0/ WDU.1/ and let 0M denote the zero-dimensional vector bundle on M .
Then we get an identification Spinc.0M /ŠBU.1/.M/, and for nD0 the bifunctor (25)
specialises to (24). As a consequence of associativity the bifunctor (25) is compatible
with the action (24) of BU.1/.M/ in the sense that for E 2 BU.1/.M/ have natural
isomorphisms

(27) .E˝P /˝QŠE˝ .P ˝Q/Š P ˝ .E˝Q/:

The trivialised vector bundle RnM has a preferred trivial Spinc –structure Q.n/ WD
M �Spinc.n/. We can use this to produce a canonical equivalence of groupoids

Spinc.V /Š Spinc.V ˚RnM /; P 7! P ˝Q.n/:

On the level of Spinc –structures we speak of stabilisations.

Let us now consider a pair .M; f / of a compact n–dimensional riemannian manifold
and a map f W M ! B which admits a refinement to a stable normal B –structure.
Then we can assume that f has a factorisation up to homotopy over BSpinc.k/ as in
the diagram:

(28)

�
Spinc

k
//

��

�SO
k

//

��

�k

��

BSpinc.k/ //

��

BSO.k/

��

// BO.k/

��

M

zf
66

f

// B // BSpinc // BSO // BO

The map zf classifies a Spinc.k/–principal bundle zf �Qk ! M , where Qk !

BSpinc.k/ is the universal Spinc.k/–bundle. Note that zf �Qk 2 Spinc. zf ��Spinc
k

/.
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We let yf W M ! BO.k/ be induced by zf , so that yf ��k Š zf ��
Spinc

k
. With these

identifications the trivialisation (21) induces a bifunctor (25)

Spinc.TM/�Spinc. zf ��Spinc

k
/! Spinc.RnCkM /:

Since BU.1/.M/ acts simply transitively on isomorphisms classes, we conclude using
(27) that there is a unique isomorphism class of Spinc –structures P 2 Spinc.TM/ such
that

(29) P ˝ zf �Qk ŠQ.nC k/:

One can further check that this isomorphism class only depends on the normal B –
structure represented by f and not on its representative. This is the tangential Spinc –
structure determined by the normal Spinc –structure.

For constructions which involve gluing or in the notion of a Spinc –map we need a
rigidified notion of a tangential Spinc –structure.

Definition 3.3 Assume that we have fixed a normal B –structure in terms of the
factorisation zf and the isomorphism (21). Then we define a tangential Spinc –structure
as a pair of a Spinc –structure P 2Spinc.TM/ together with a choice of an isomorphism
in (29).

There are many tangential Spinc –structures associated to a normal Spinc –structure,
but the main point is that two of them are isomorphic by a canonical isomorphism.

Let hW M ! W be a smooth map and assume that we are given oriented euclidean
vector bundles VM !M and VW !W together with an isomorphism

(30) VM ˚RkM Š h
�VW ˚RlM :

Assume further that we are given Spinc –structures PM and PW in Spinc.VM / and
Spinc.VW /. If the Spinc –structures PM and h�PW are stably isomorphic, then we
can define the following notion:

Definition 3.4 A refinement of h to a Spinc –map is a choice of an isomorphism

(31) h�PW ˝Q.l/Š PM ˝Q.k/

in Spinc.VM ˚RkM / (this uses (30)). The equivalence class of a Spinc –map under
stabilisation will be called a stable Spinc –map.
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Being a Spinc –map is an additional datum, not just a property of the map. Observe
that we can compose stable Spinc –maps in a natural way.

We now assume that .W; F / is a zero bordism of .M; f /. We choose a representative
of the normal B –structure on W involving the factorisation zF W W ! BSpinc.k/ as
in (28). On M we take the induced factorisation zf WD zF jM . Then we have a natural
decomposition of oriented euclidean vector bundles

(32) TWjM Š TM˚RM ;

where we trivialise the normal bundle by the outgoing unit normal vector field. Assume
now that we have chosen tangential Spinc –structures P.TM/ and P.TW/ on M

and W , respectively (see Definition 3.3). In this situation we get a natural refinement
of the inclusion M ! W to a Spinc –map. This refinement is distinguished by the
condition that the diagram in Spinc.RnC1CkM /

(33)

P.TM/˝Q.1/˝ zf �Qk
Š

//

Š

��

P.TW/jM ˝ zf �Qk

Š

��

Q.nC 1C k/ Q.nC 1C k/

commutes. Here the upper corners are interpreted in Spinc.RnC1CkM / using the normal
B –structures on M or W , respectively. The vertical morphisms are given by the
tangential Spinc –structures; see (29). Finally, the upper horizontal isomorphism uses
(32) and fixes the refinement of the inclusion M !W to a Spinc –map.

3.4 The definition of �an

We consider a cycle .M; f / for a class x D ŒM; f � 2 �n.MB/ and assume in addition
that x is torsion. Then there exists a nonzero integer l 2N such that lx D 0. We can
thus find a zero bordism .W; F / of the disjoint union of l copies of .M; f /, which
we denote by l.M; f /.

We will define �an.x/2Qn.B/ in terms of a collection of indices of associated Z=lZ–
index problems [33]. In order to formulate these index problems and to express the
indices in terms of geometric and spectral invariants we must choose appropriate
geometric structures.

We choose a tangential Spinc –structure .P; �/2Spinc.TM/ related to the stable normal
Spinc –structure on f . A connection zrTM on P induces via � a connection on TM .
We say that zrTM is a Spinc –extension of the Levi-Civita connection on M if it induces
the Levi-Civita connection rTM;LC on TM .
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Figure 1: A picture of M and the zero bordism W of 4M

The group Spinc.n/ has a distinguished unitary representation called the spinor rep-
resentation �n . For even n its dimension is 2n=2 , and it has a decomposition �n Š
�n;C˚�n;�. It is related to the odd-dimensional case by �n;CjSpinc.n�1/ Š�

n�1 .

The bundle S.TM/ WD P �Spinc.n/�
n!M is called the spinor bundle of M . Given a

Spinc –extension zrTM of the Levi-Civita connection on M , the spinor bundle carries the
structure of a Dirac bundle. We thus obtain the Spinc –Dirac operator =DM which acts
on sections of S.TM/. Standard references for these constructions are [17, Chapter 3;
48, Appendix D].

If we are given a class � 2 K0.B/, then we can choose a Z=2Z–graded vector
bundle V !M whose K–theory class satisfies ŒV �D f �� 2K0.M/. We choose a
hermitian metric hV and a metric connection rV which preserve the grading. The
triple V WD .V; hV ;rV / will then be called a geometric vector bundle. We let =DM˝V
be the Dirac operator twisted by V . It acts on sections of S.TM/˝V .

We now assume that n D dim.M/ is odd. The �–invariant [7] of the twisted Dirac
operator

�. =DM ˝V / 2R

is defined as the value at z D 0 of the meromorphic continuation of the �–function
function

�. =DM ˝V /.z/ WD Trs
�
j =DM ˝V j

�zsign. =DM ˝V /
�
;
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where Trs is the supertrace with respect to the grading of V . Note that the trace exists
if Re.z/ > n, and that the meromorphic continuation of the �–function is regular at
z D 0 by the results of [7]. The �–invariant depends on the geometry of M and V in
a possibly discontinuous way, with jumps when eigenvalues of =DM ˝V cross zero.
In order to get a quantity which depends continuously on the geometry, one usually
considers the reduced �–invariant, for which we will use the symbol � :

(34) �. =DM ˝V / WD
�
1
2
.�. =DM ˝V /C dim ker. =DM ˝V //

�
2R=Z:

In an appropriate model of �n.MB Q=Z/ the zero bordism .W; F / of l.M; f / geo-
metrically represents the lift of x to a class

yx D ŒW; F � 2 �nC1.MB Q=Z/;

using the notation of the diagram (4). We refer to Lemma 3.8 for more details. We
choose a Spinc –connection zrTW extending the Levi-Civita connection on TW which
extends the connection on the boundary of W induced by zrTM .

We can choose a compact subspace Bc � B which contains the image of F . Given
� 2 K0.B/ we choose a Z=2Z–graded complex vector bundle Vc ! Bc such that
ŒVc�D �jBc in K0.Bc/. If we now take V WD f �Vc , then we have ŒV �D f �� . The
bundle U WD F �Vc extends the bundle induced by V on @W to W . As above we
choose a metric hV and a metric connection rV . This induces corresponding geometric
structures on U j@W . We then choose a hermitian metric hU and a metric connection
rU on U which extend the already-given data on the boundary. In this way we get a
geometric bundle U WD .U; hU ;rU /.

We can now form the Atiyah–Patodi–Singer boundary value problem for =DW ˝U .
The analytic details of that boundary value problem are not important for our present
purpose, so we refer to [7] for a precise description. We only have to know that it
produces a Fredholm operator . =DW ˝U /APS which has a well-defined index

index.. =DW ˝U /APS/ 2 Z;

and that the following index formula, proved in [7], holds true:

(35) index.. =DW ˝U /APS/D

Z
W

pnC1.Td.zrTW/^ ch.rU //� l�. =DM ˝V /:

In this formula the closed form Td.zrTW/2�0.W /Œb; b�1� is the Chern–Weil represen-
tative determined by the universal class Td2HP Q0.BSpinc/ and the connection zrTM.
Similarly, the form ch.rU / 2�0.W /Œb; b�1� is the Chern–Weil representative deter-
mined by the class ch 2HP Q0.BU/ and the connection rU. Note that we use powers
of b in order to shift the higher form-degree components to total degree zero. The
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projection pnC1 projects on the b–degree 1
2
.nC 1/ part, hence produces a form of

degree nC 1.

We consider the element

(36) e WD

�
index. =DW ˝U /APS

l

�
2Q=Z:

Equivalently, by the index theorem (35) and (34) we can write

(37) e D

�
1

l

Z
W

pnC1.Td.zrTW/^ ch.rU //
�
� �. =DM ˝V /

if we interpret this equality in R=Z. The quantity e can be interpreted as a Z=lZ–
index in the sense of [33]. In the following proposition we state how the number e
depends on the data.

Proposition 3.5 (1) The value of e does not depend on the choices of the geometric
structures on M and W .

(2) The value of e only depends on the K–theory class � . This dependence is
additive and determines an element ze 2 Homcont.K0.B/;Q=Z/.

(3) The class Œze� 2 Qn.MB/ of this homomorphism (using the presentation (13))
does not depend on l or the choice of the zero bordism of .W; F /.

(4) The element Œze�2Qn.MB/ described in (3) only depends on the bordism class x .
This dependence is additive, so we obtain a well-defined homomorphism

�an
W �n.MB/tors!Qn.MB/:

Proof On the one hand, we have e 2 1
l
Z=Z�R=Z. On the other hand, we know that

the right-hand side of (37) depends continuously on the geometric data. This shows
that e does not depend on the geometric structures at all since two choices of geometric
structures can be connected by a family. This proves (1).

The element e depends additively on the bundle Vc . It therefore only depends on
the class �jBc WD ŒVc� 2 K

0.Bc/. The construction thus induces a homomorphism
ze 2 Hom.K0.B/;Q=Z/. Since it factors over the restriction along the map Bc ,! B

and Bc is compact, this homomorphism is continuous. We use the identification

Q=ZŠ �0.KQ=Z/
b�.nC1/=2
�����!�nC1.KQ=Z/

in order to interpret ze as an element of Homcont.K0.B/; �nC1.KQ=Z//. This shows (2).

Assume that we have a second zero bordism .W 0; F 0/ of l 0.M; f / yielding a homo-
morphism ze0 2 Homcont.K0.B/;Q=Z/. Then by gluing along boundary components we
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Figure 2: Pictures of W , W 0 and 1
2
zW with l D 4 and l 0 D 2

can form the closed riemannian nC1–dimensional B –manifold zW WD l 0W [l l 0M lW 0,
which comes with a map zF W zW ! B . The latter has a natural refinement to a stable
normal B –structure which restricts to the given stable normal B –structures on W
and W 0 .

Note that the tangential Spinc –structures .P; �/ and .P 0; �0/ come with isomorphisms
of the type (29). Compatibility with these fixes the morphism which we have to use to
glue P with P 0 . In this way we get a tangential Spinc –structure on zW . The triple
. zW ; zF / is thus a cycle for a class

y WD Œ zW ; zF � 2 �nC1.MB/:
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Then for � 2K0.B/ we get from the right-hand side of (37) that

ze.�/� ze0.�/D

�
1

l l 0

˝
Td.T zW /[ zF �ch.�/; Œ zW �

�̨
:

Since zF �Td�1 D Td.T zW / this is exactly the formula (14) for the evaluation of
�
�
1
l l 0
y
�
2 �nC1.K ^ MB Q/ against ThomK.�/ 2 K0.MB/. Therefore, the class

Œze� 2Qn.MX/ is independent of the choice of l and the zero bordism .W; F /. This
finishes the verification of (3).

We observe that the map which associates to .M; f / the class Œze�2Qn.MB/ is additive
under disjoint unions. Moreover, if .M; f / itself is zero bordant, ie we can find .W; F /
as above with l D 1, then Œze� D 0. It follows that the construction above uniquely
descends to a homomorphism

(38) �an
W �n.MB/tors!Qn.MB/:

Let us collect the essentials of this construction in the following definition:

Definition 3.6 We define �an WD0 for even n. For odd n we define the homomorphism

�an
W �n.MB/tors!Qn.MB/

by the following prescription: If x 2 �n.MB/tors is represented by .M; f /, then we
choose a zero bordism .W; F / of l.M; f / for a suitable nonzero l 2N . We choose a
Spinc –geometry for W such that the restrictions to the l copies of M in the boundary
of W are again pairwise isomorphic.

We choose a compact subspace Bc �B which contains the image of F . If � 2K0.B/,
then we choose a bundle Vc! Bc such that ŒVc�D �jBc . We take U WD F �Vc and
choose a geometry U D .U; hU ;rU / such that the restrictions to the l copies of M
in the boundary are pairwise isomorphic. Then �an.x/ 2Qn.MB/ is represented by
the homomorphism

(39) K0.B/!Q=ZŠ �nC1.KQ=Z/; � 7!
h
1

l
index.. =DW ˝U /APS/

i
:

3.5 The secondary index theorem

In Definitions 2.3 and 3.6 we have described homomorphisms

�top
W �n.MB/tors!Qn.MB/; �an

W �n.MB/tors!Qn.MB/:

Both constructions follow a common idea. Given a torsion element x 2�n.MB/tors , in a
first step we choose a lift yx 2 �n.MB Q=Z/ or, respectively, a geometric representative
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of such a lift. The homotopy theoretic invariant �top.x/ is represented by the homo-
morphism K0.MB/!Q=Z induced by this lift via the homotopy-theoretic pairing
between K–homology and cohomology. The analytic variant �an.x/ is represented by
a homomorphism, which this time is obtained from a suitable family of Atiyah–Patodi–
Singer index problems on the geometric representative of the lift yx . Because of these
coincidences it is very natural to expect that the following theorem holds true:

Theorem 3.7 �an D �top:

Proof An obvious option is to apply the Z=lZ–index theorem [33] directly to �an

in order to express it in homotopy-theoretic terms. In this paper we decided to take a
different path. It is interesting since it explains in greater detail the sense in which the
homotopy-theoretic construction of �top and the geometric or analytic constructions
involved in �an correspond to each other. Our bridge between analysis and topology
will be the identification of homotopy-theoretic K–homology with the analytic pic-
ture [15] and the ordinary Atiyah–Singer index theorem for elliptic operators [11] and,
respectively, its local form described in [17, Chapter IV].

Some ideas of our proof of Theorem 3.7, in particular the usage of Moore spaces, are
taken from [33] and the proof of the R=Z–index theorem [9, Theorem 5.3].

We start with a description of Moore spaces for cyclic groups Z=lZ for l 2 Z. Let
S1! S1 be the l –fold covering of the pointed circle. Its mapping cylinder Zl and
mapping cone Cl fit into the cofibre sequence of pointed spaces

(40) S1!Zl ! Cl
@
�!†S1! � � � :

Note that the shifted suspension spectrum †1�1Cl is then a model for the Moore
spectrum MZ=lZ discussed in Section 2.2. Further note that the inclusion of the
cylinder basis S1 ! Zl is a homotopy equivalence. Hence we have equivalences
†1�1Zl ' †

1�1S1 ' MZ. Applying the functor †1�1 to the sequence (40) and
using these identifications we get the fibre sequence

(41) MZ l
�! MZ! MZ=lZ @

�!†MZ

of Moore spectra. We use the Moore spectra MZ=lZ and the sequence (41) as approxi-
mations for MQ=Z and (3) by spectra with finite skeleta in the sense that

MQ=Z' hocolimlMZ=lZ:

The connecting maps for the system of Moore spectra .MZ=lZ/l2N are fixed by their
compatibility with the inclusions

(42) Z=lZ!Q=Z; Œn� 7!
h
n

l

i
:

Geometry & Topology, Volume 21 (2017)



1312 Ulrich Bunke

Smashing the sequence (41) with MB and taking homotopy groups, we get a long exact
sequence of abelian groups

(43) � � � ! �nC1.MBZ=lZ/ @
�!�n.MB/ l

�!�n.MB/! �n.MBZ=lZ/! � � � :

The spectrum MB^X is related to Thom spectra (see Remark 3.1) by a fibre sequence

MB!M.B �X/ �
�!MB^X !†MB;

where we use the structure map B �X pr
�! B ! BO in order to define the Thom

spectrum M.B�X/ and the map MB!M.B�X/ is induced by the base point of X .
We further have an equivalence of spectra

(44) †MBZ=lZŠMB^Cl :

We use the notation .F;G/ in order to write maps from M to B � Cl . In the fol-
lowing we construct a cycle . zW ; . zF ; zG// (see Section 3.2 for notation) for a class in
�nC2.M.B �Cl// such that

�Œ zW ; . zF ; zG/�D yx 2 �nC1.MBZ=lZ/

under the identification (44), where zF W zW !B is the underlying map of a B –structure
and zGW zW ! Cl . We will obtain . zW ; . zF ; zG// from the zero bordism .W; F / found
in Section 3.4.

The details are as follows. We consider a two-sphere S2
l

with l holes.

Figure 3: A picture of S1 �W
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Figure 4: A picture of S24 �M

More precisely we let S2
l
� S2 be the compact submanifold with boundary @S2

l
ŠFl

iD1 S
1 obtained by deleting the interiors of l disjoint discs from S2 . We equip S2

l

with a riemannian metric with product structure such that all boundary components are
isometric to the standard S1 . The identification of the boundary with the l copies of
S1 is fixed such that it preserves the natural orientations. We now have an identification

@.S1 �W /Š l.S1 �M/Š @.S2l �M/:

We let

(45) zW WD .S1 �W /[l.S1�M/ .S
2
l �M/

be the manifold obtained by gluing along the boundary.

We define zF W zW ! B so that it restricts to

S1 �W
prW
��!W F

�!B; S2l �M
prM
��!M

f
�!B:

Figure 5: A picture of zW
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We must refine the map zF to a normal B –structure. We start with the usual normal
framing

TS2˚RS2 ŠR3
S2

of S2 . If we take k D 1 and let f and yf in (21) be the constant maps, then we can
interpret this isomorphism as a normal B –structure, too. By restriction we obtain a
normal B –structure on S2

l
. Furthermore, the construction explained at the end of

Section 3.2 provides normal B –structures

TS1˚R2
S1
ŠR3

S1

on the l copies of S1 in the boundary of S2
l

which are isomorphic to each other. We
are given a normal B –structure

TW˚ yF ��k ŠRnC1CkW :

We therefore get an induced normal B –structure on the product S1 �W refining
zF jS1�W :

T .S1 �W /˚ yF 0;��kC2 Š TS1˚TW˚R2
S1�W

˚ . yF � ı prW /
��k ŠRnCkC4

S1�W
;

where yF 0 is the two-fold stabilisation of yF ı prW . In a similar manner, using the
induced normal B structures on the copies of M in the boundary of W we get a
normal B –structure

T .S2l �M/˚ yf ��kC1 ŠRnCkC4
S2
l
�M

on the product S2
l
�M which refines zF jS2

l
�M . These isomorphisms coincide over the

locus of gluing l.S1 �M/. Hence we get a refinement of zF to a normal B –structure.

We now consider the map

(46) S1 �W
pr
S1��!S1 i

�!Cl ;

where i W S1!Cl is the identification of S1 with the basis of the mapping cone. Note
that the map

lG
jD1

i W @S2l Š

lG
jD1

S1! Cl

can be extended to a map

(47) gW S2l ! Cl :

We can and will restrict the choice of g so that it is smooth on the preimage of
a neighbourhood U of the cone basis @Cl � Cl and regular values of g in the
interior U n @Cl have exactly one preimage. The restriction of the map (46) to
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@.S1 �W /Š l.S1 �M/ thus has an extension across the other part S2
l
�M of zW ,

given by
S2l �M

pr
S2
l

��!S2l
g
�!Cl :

Altogether we obtain the map zGW zW ! Cl . The cycle . zW ; . zF ; zG// represents a class
in �nC2.M.B �Cl// and we consider its image

yx WD �Œ zW ; . zF ; zG/� 2 �nC2.MB^Cl/
(44)
Š �nC1.MBZ=lZ/:

Let @W �nC1.MBZ=lZ/! �n.MB/ be the boundary as in (43).

Lemma 3.8 @yx D x:

Proof The boundary operator @ in the lemma is induced by the map denoted by the
same symbol in (40),

@W Cl
p
�!†S1 Š S2;

where p is the projection which contracts the cone basis to a point. Therefore,
@yx 2 �nC2.MB ^ S2/ is represented by . zW ; . zF ; p ı zG//. We must show that it
corresponds to x under the suspension isomorphism

�n.MB/Š �nC2.MB^S2/:

To this end we invert the suspension isomorphism in the geometric picture. This
inverse is of course given by taking the inverse image of a regular point in S2 of the
corresponding component p ı zG of the structure map. If we take the inverse image
of a point in the neighbourhood U n @Cl mentioned above, we exactly recover the
representative .M; f / of x .

The construction of �top involves the K–homology of a based space Y defined
homotopy-theoretically as ��.K^Y /. It is equivalent to the analytic picture introduced
in [15]. The analytic K–homology is subsumed in the more general bivariant KK –
theory (see [43] and the textbook [18]), which allows us to treat K–homology and
cohomology on equal footing. Of particular importance for our purpose is that the
product in KK –theory provides a description of the \–product between K–homology
and K–theory which easily compares with the operation of twisting Dirac operators.

The unit of K–theory induces the map (compare with (1))

(48) �W �nC2.MB^Cl/! �nC2.K ^MB^Cl/:

We use the Thom isomorphism for MB in K–homology

(49) ThomK W �nC2.K ^MB^Cl/
�
�!�nC2.K ^BC ^Cl/:
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Finally we use KK –theory in order to represent this K–homology of a pointed space
analytically. For the moment we assume that X and B are compact. This is no real
restriction since we are calculating with a finite number of cycles at a time and their
structure maps can only hit compact parts of the spaces B and X . For a compact
based space Y we let C.Y / denote the C �–algebra of continuous C–valued functions
which vanish on the base point. Then, by the equivalence between homotopy-theoretic
and analytic K–homology [15], we have an isomorphism

(50) �nC2.K ^BC ^Cl/Š KKnC2.C.BC ^Cl/;C/:

The Spinc –extension of the Levi-Civita connection on W together with the standard
Spinc –geometry of S1 induce a corresponding product Spinc –extension of the Levi-
Civita connection on S1�W . The Spinc –geometry on S1 also induces such a geometry
on the boundary @S2

l
Š lS1 , which we extend to S2

l
, again with a product structure. We

get a corresponding product Spinc –extension of the Levi-Civita connection on S2
l
�M .

These geometric structures glue nicely and give a Spinc –extension of the Levi-Civita
connection on zW . We let =D zW denote the corresponding Dirac operator. It acts on the
complex spinor bundle S.T zW /. The Hilbert space L2. zW ;S. zW // of square integrable
sections of this bundle carries an action � of the C �–algebra C. zWC/ of continuous
functions on zW by multiplication. The triple

. =D zW / WD .L
2. zW ;S. zW //; =D zW ; �/

is an unbounded Kasparov module for the pair of C �–algebras .C. zWC/;C/ and
represents a class

Œ =D zW � 2 KKnC2.C. zWC/;C/:

The map . zF ; zG/ induces a homomorphism of C �–algebras

. zF ; zG/�W C.BC ^Cl/! C. zWC/;

which in turn induces the push-forward in analytic K–homology in the statement of
the following lemma:

Lemma 3.9 The image of the class yx 2 �nC2.MB^Cl/ under the composition of the
unit (48), Thom isomorphism (49) and the identification (50) is given by

. zF ; zG/�Œ =D zW � 2 KKnC2.C.BC ^Cl/;C/:

Proof The image of yx under the unit and Thom isomorphism is given

ThomK.�.yx//D .ˇ^ idBC^Cl /..�^ idCl /.yx// 2 �nC2.K ^BC ^Cl/;
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where �W MB!MB^BC is the Thom diagonal and ˇW MB!K is the K–orientation
of MB given by (12). We have

.�^ idCl /.yx/D �Œ zW ; . zF ; . zF ; zG//� 2 �nC2.MB^BC ^Cl/:

Formally we can view this as the push-forward of the B –bordism fundamental class
of zW along the map . zF ; zG/. Its image under the K–orientation .ˇ ^ idBC^Cl / is
then the push-forward of the K–theory fundamental class of zW associated to the
Spinc –structure along this map. In the analytic picture of K–homology the K–theory
fundamental class of zW is represented by the Spinc –Dirac operator. Hence it is equal
to Œ =D zW �. We thus get

.ˇ^ idBC^Cl /.�Œ zW ; . zF ; . zF ; zG//�/D . zF ; zG/�Œ =D zW �:

We let � 2K0.B/. The pairing on the left-hand side in the following calculation in
�nC2.K ^Cl/ Š Z=lZ is reminiscent to the evaluation occurring in the definition
of �top :

hThomK.�/; �.yx/i D h�; ThomK.�.yx//i

D h�; . zF ; zG/�Œ =D zW �i by Lemma 3.9

D zG�.Œ =D zW �\
zF ��/:

We choose a geometric bundle zV whose underlying K–theory class is equal to zF �� .
The restriction of the map zF to the part S1 �W � zW factors over the projection to
W and F W W ! B . Hence we can assume that the restriction of zV to S1 �W � zW
is isomorphic to the pull-back of the bundle U on W if we allow some stabilisation of
zV and U .

In the KK –picture, the \–product

Œ =D zW �\
zF �� 2 KKnC2.C. zWC/;C/

is realised by the unbounded Kasparov module .L2. zW ;S. zW /˝ zV /; =D zW ˝ zV ; �/
associated to the twisted Dirac operator =D zW ˝

zV , where � again denotes the action
of C. zWC/ on L2. zW ;S. zW /˝ zV / by multiplication. Hence we have

Œ =D zW ˝
zV �D Œ =D zW �\

zF ��:

We conclude that �top.x/ 2Qn.MB/ is represented by the map

(51)
K0.B/! KKnC2.C.Cl/;C/Š �nC1.KZ=lZ/� �nC1.KQ=Z/;

� 7! zG�Œ =D zW ˝
zV �;

where the last inclusion is induced by (42).
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Next we want to calculate the element in Z=lZ given by zG�.Œ =D zW ˝ zV �/. Since the
usual index theorem [11] calculates integral indices, we have to construct and calculate
an integral representative of this Z=lZ–valued index. The inclusion of the cone base
i W S1! Cl induces a surjective map

ZŠ �nC2.K ^S
1/! �nC2.K ^Cl/Š Z=lZ:

We try to construct a lift of zG�.Œ =D zW ˝ zV �/ to �nC2.K ^S1/ by providing a factori-
sation 
 as in the diagram:

S1

i

��

zW




??

zG
// Cl

For our given representative such a factorisation does not exist in general. The idea is
to modify the representative without changing its Z=lZ–valued index so that this lift
exists for the modified cycle.

Note that M is a closed odd-dimensional manifold. The Dirac operator =DM ˝V is
selfadjoint. We can find a selfadjoint smoothing operator Q on L2.M; S.M/˝ V /

such that =DM ˝V CQ is invertible. In [23] such a perturbation was called a taming.
As described in this reference, a taming can be lifted to the product S2

l
�M and also

to a collar neighbourhood l.S1 � .��; 0��M/Š Z � S1 �W of @.S1 �W /. This
lift is a selfadjoint operator Q on L2.Z [l.S1�M/ S

2
l
�M;S. zW /˝ zV / which is an

integral operator along M and local in the remaining directions. Let �W zW ! Œ0; 1�

be a cut-off function which is supported on Z [l.S1�M/ S
2
l
�M , is equal to one in a

neighbourhood of the subset S2
l
�M , and only depends on the normal variable near

@.S1 �W /. We define the extension zQ WD �Q� of Q to all of zW . Note that zQ
commutes with the image of zG�.C.Cl//. Adding zQ to =DW ˝ zV gives a relatively
compact perturbation. Therefore we have

zG�Œ =D zW ˝
zV �D zG�Œ =D zW ˝

zV C zQ�

in KKnC2.C.Cl/;C/. On the part S2
l
�M � zW , the perturbed operator =DW ˝ zV C zQ

is invertible along the fibres of the projection to S2
l

.

On S1 � .0;1/, we fix a warped product riemannian metric of the form g WD

dt2Cf .t/gTS1, where f jŒ0;1�� 1 and f .t/D t for t 2 .2;1/. The precise form is not
important, but we need that limt!1f .t/D1 . We further choose a Spinc –extension
of this geometry. We define the manifold

zzW WD S1 �W [l.S1�M/ l.S
1
� Œ0;1/�M/:
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Its Spinc –geometry is given as the product of the geometries of W and S1 on the
left-hand side, and by the product of the geometries on lM and S1 � .0;1/ on the
right-hand side. In a similar manner we define the geometric bundle zzV on zzW by a
cylindrical extension of zV jS1�W . We define an operator zzQ similarly to zQ by lifting
Q to the cylinder S1 � Œ0;1/�M and cutting off in the interior of S1 �W . Finally
we let zzGW zzW ! Cl be given by G on S1 �W and the radially constant extension of
. zG/j@.S1�W / to the cylinder l.Œ0;1/�S1 �M/.

To every complete riemannian manifold .N; g/ we associate the commutative C �–
algebra Cg.N / defined as the closure in the sup–norm of the algebra C1g .N / of
all bounded smooth functions f on N such that jdf j 2 C0.N /. Note that if N is
compact, then Cg.N /D C.N/.

The operator =D zzW ˝
zzV C zzQ is invertible along the fibre M of the projection from

the cylindrical end of zzW to S1 � Œ0;1/. Therefore it is invertible at infinity in
the sense of [22, Assumption 1]. The arguments given [22, Section 1] show that�
L2. zzW ;S.T zzW / ˝ zzV /; =D zzW ˝

zzV C zzQ; zz�
�

is an unbounded Kasparov module over
Cg.
zzW /. We write Œ =D zzW ˝gC

zzQ� 2 KKnC2.Cg. zzW /;C/ for its class. Because of the
choice of the warped product metric we have the homomorphism of C �–algebras
zzG�W C.Cl/! Cg.

zzW /, so that the class zzG�Œ =D zzW ˝
zzV C zzQ� 2 KKnC2.C.Cl/;C/ is

well-defined.

The operators =DW ˝ zV C zQ and =D zzW ˝gC
zzQ coincide on S1�W and are invertible

along the fibres M outside of this submanifold of zW and zzW .

We let N1 be the double of lS1 � Œ0;1/�M which carries an obvious geometric
bundle V1 , taming Q1 , and admits a map G1W N1! Cl . The associated K–theory
class ŒN1� WD Œ =DN1˝V1CQ1�2KKnC2.Cg.N1/;C/ vanishes since =DN1˝V1CQ1
is invertible. Similarly we define N2 , a map G2W N2 ! Cl and a trivial class
Œ =DN ˝V2CQ2� 2 KKnC2.Cg.N2/;C/ by attaching the (reflected) warped product
lS1 � Œ0;1/�M to S2

l
�M .

In this situation, which is schematically pictured below, we can apply a relative index
theorem (the proof of [22, Theorem 1.14] extends since all constructions there are
compatible with the action of the C �–algebra C.Cl/) in order to get the second equality
in KKnC2.C.Cl/;C/:

zG�Œ =D zW ˝
zV �D zG�Œ =D zW ˝

zV �CG1;�ŒN1�

D zzG�Œ =D zzW ˝gC
zzQ�CG2;�ŒN2�D

zzG�Œ =D zzW ˝gC
zzQ�:

Note the factorisation zzGW zzW
pr
S1��!S1 i

!Cl , where the last map is the embedding of
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+

+

Figure 6: A picture of the relative index theorem. The operator is invertible
on the parts which are not blue. The index of the operator associated to the
upper picture is the index of its left part zW . The index is preserved under
cut-and paste as indicated. The index of the operator associated to the lower
picture is again the index of the left part zzW .

the cone basis. Therefore

(52) prS1�Œ =D zzW ˝gC
zzQ� 2 KKnC2.C.S1/;C/Š �nC2.K ^S1/Š Z

represents the desired integral lift. We reduce the calculation of this integer to a
calculation of a Fredholm index by suspending once more. Let L be a geometric line
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bundle on S1 �S1 such that c1.L/ 2H 2.S1 �S1IZ/ is a generator and the sign is
fixed with

(53) index. =DS1�S1 ˝L/D 1:

We define zzzW WD S1 � zzW with the product Spinc –geometry. Then the desired integer
(52) is the index of the Fredholm operator

=D zzzW
˝ pr zzW

zzV ˝ pr�
S1�S1

LC
zzzQ;

where zzzQ is the taming induced by zzQ. In order to see this note that the identification
KK1.C.S1/;C/

Š
�!Z is given by the iterated Kasparov product

x 7! ŒL�˝C.S1�S1/ .Œ =DS1 �˝C x/ 2 KK2.C;C/Š Z;

where Œ =DS1 � 2 KK1.C.S1/;C/ is the class of the standard Spinc –Dirac operator on
S1 and ŒL� 2 KK0.C; C.S1 �S1// is the class represented by the line bundle L. We
now have

prS1�S1�Œ =D zzzW
˝ pr zzW

zzV C
zzzQ�D Œ =DS1 �˝C prS1�Œ =D zzW ˝

zzV C zzQ�

in KK2.C.S1 �S1/;C/ and therefore, using the relation of twisting Dirac operators
and Kasparov products,

Œ =D zzzW
˝ pr zzW

zzV ˝ pr�
S1�S1

LC
zzzQ�D ŒL�˝C.S1�S1/ prS1�S1�Œ =D zzzW

˝ pr zzW
zzV C

zzzQ�

in KK2.C;C/.

We deform the warped product metric on the end of zzzW to a product metric. This
produces a continuous family of Fredholm operators, and therefore does not change the
index. After this deformation, we see that zzzW Š S1 � S1 � yW geometrically, where
yW WDW [@W l.Œ0;1/�M/ carries the cylindrical extension of the geometry of W .

Similarly we let yU be the geometric bundle on yW obtained by the cylindrical extension
of U . Then the resulting operator represents the product

Œ =D yW ˝
yU C yQ�˝C Œ =DS1�S1 ˝L�;

where yQ is the taming yW uniquely determined by the property that its lift is the tam-
ing zzzQ. Because of (53) the integer (52) is equal to index. =D yW ˝

yU C yQ/.

We now calculate this index. The index theory for these kinds of perturbations of Dirac
operators has been developed in [23]. In the language of this reference the operator Q
defines a taming .M ˝V /t of the geometric manifold M ˝V and a boundary taming
.W ˝U /bt of the geometric manifold W ˝U . The following equality holds true by
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definition of the right-hand side: index. =D yW ˝
yU C yQ/D index..W ˝U /bt/. The

index theorem [23, Theorem 4.18] gives

index..W ˝U /bt/D

Z
W

pnC1.Td.zrTW/^ ch.rU //� l�..M ˝V /t/:

In R=Z we have Œ�..M ˝U /t/�D �.DM ˝V /. Hence, by comparison with (35), we
get the equality in Q=Zh

1

l
index..W ˝U /bt/

i
D

h
1

l
index.. =DW ˝U /APS/

i
:

In view of the construction of �an , in particular of (39), we see that the map (51) also
represents �an.x/. This finishes the proof of Theorem 3.7.

4 An intrinsic formula

4.1 Motivation

In a typical situation for the theory of the present paper, one is given a geometric
representative .M; f / for a torsion class xD ŒM; f � 2 �n.MB/ and wants to calculate
the universal �–invariants �top.x/ D �an.x/ 2 Qn.MB/. The expressions for the
universal �–invariant that we have at our disposal at the moment share the disadvantage
that one has to find a lift yx 2 �nC1.MB Q=Z/ or a geometric zero bordism .W; F / of
l copies of .M; f / explicitly. It is at this point where differential and spectral geometry
helps. In the present section we develop a generalisation of Chern–Weil theory which
is designed to finally obtain formulas for the universal �–invariant which are intrinsic
in the cycle .M; f /.

The main new object is the notion of a geometrisation of .M; f; zr/, which is defined
in Definition 4.5. It involves differential K–theory, which is reviewed in Section 4.2.
In Section 4.3 we show the existence of geometrisations and study their functorial
properties. In Section 4.4 we introduce a special class of geometrisations, which we
call good. In contrast to general geometrisations they have the property that they
extend over zero bordisms. The main result is the intrinsic formula for the universal
�–invariant formulated in Theorem 4.19.

4.2 Review of differential K –theory

The definition of a geometrisation utilises differential K–theory. We refer to [32; 38; 25]
for constructions and further information. In the following we review the basic structures
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which, by [26], uniquely characterise differential K–theory. Differential K–theory is
a five-tuple �

yK; I;R; a;
R �

of the following objects: The first entry is a contravariant functor

yKW smooth manifolds! Z=2Z–graded commutative rings:

The remaining entries are natural transformations between functors. The domains and
ranges of the first three are given by

(54) I W yK!K; RW yK!�Pcl; aW �P=im.d/Œ1�! yK:

Here the evaluation of �P at M is the graded vector space �P.M/ WD�.M/Œb; b�1�

of two-periodic smooth real differential forms on M , which carries a differential d .
By �Pcl.M/��P.M/ we mean its subspace of closed forms. The transformations
R and I preserve the ring structures while a is just additive. These transformations
are compatible in the sense that for every manifold M the following differential
cohomology diagram commutes:

�P ��1.M/=im.d/
a

''

d
// �P �cl .M/

Rham

%%

HPR��1.M/

66

((

yK�.M/

R

::

I

$$

HPR�.M/

KR=Z��1.M/

77

Bockstein
// K�.MC/

ch
99

Here we define the spectrum HPR representing periodic real cohomology similarly
as HP Q in (8). Furthermore, for ˛ 2�P �.M/=im.d/ and x 2 yK�.M/ we have the
identity

(55) a.˛/[ x D a.˛^R.x//:

The flat part of differential K–theory is defined as the kernel of the curvature transfor-
mation R . It is canonically isomorphic to R=Z–K–theory (with a shift):

(56) yK�flat.M/ WD ker.RW yK�.M/!�P �cl .M//ŠKR=Z��1.M/:

The sequence

(57) K��1.M/ ch
�!�P ��1.M/=im.d/ a

�! yK�.M/ I
�!K�.M/! 0
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is exact. The integration is a natural (in M ) transformationZ
W yK�.S1 �M/! yK��1.M/;

whose existence and compatibility with the other structures fixes the odd part of the
differential extension uniquely up to unique isomorphism, as discussed in [26]. Since
we do not need the integration in the present paper we will not write out the long list
of these compatibilities explicitly.

Differential K–theory is not homotopy-invariant. The deviation from homotopy-
invariance is quantified by the homotopy formula. If yx 2 yK�.Œ0; 1��M/, then it states
that

(58) i�1 yx� i
�
0 yx D a

�Z
Œ0;1��M=M

R.yx/

�
:

Let V D .V; hV ;rV / be a geometric bundle on manifold M , where hV is a hermitian
metric which is preserved by the connection rV . Then we have a natural class

(59) ŒV � 2 yK0.M/:

This class is in fact tautological in the model [25] in view of [25, Section 2.1.4]. It
satisfies

(60) I.ŒV �/D ŒV � 2K0.M/; R.ŒV �/D ch.rV / 2�P 0cl.M/;

where
ch.rV / WD Tr

�
exp

�
�
bRr

2�i

��
is the normalised Chern character form.

Remark 4.1 If we replace HPR and �P by HPC and �P ˝ C , then we get a
complex version yKC of differential K–theory with similar properties. A complex
vector bundle with connection V D .V;rV / on a manifold M , where rV is not
necessarily hermitian, gives a class ŒV � 2 yK0C.M/ such that analogues of the equalities
(60) still hold true. For the flat part we get the equivalence

yK0C;flat.M/ŠKC=Z�1.M/:

4.3 Geometrisations

Let M be a compact manifold equipped with a map f W M ! B . At the moment
we do not require any connection of f with the tangent bundle. Later, the manifold
M will be either a part of a cycle for a B –bordism class or an approximation of the
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space B . In order to cover both cases at the same time we use the following set-up.
We can assume that f has a factorisation over zf W M ! BSpinc.k/ as in (28) which
classifies a Spinc.k/–bundle zf �Qk 2 Spinc. zf ��Spinc

k
/ on M . The role of the tangent

bundle is taken by the choice of a complementary Spinc –bundle. In detail, we choose
an l –dimensional oriented euclidean vector bundle �!M for some l � 0 together
with an orientation-preserving isomorphism of euclidean vector bundles

(61) �˚ zf ��
Spinc

k
ŠRlCkM :

Then we choose a Spinc –structure P 2 Spinc.�/ together with an isomorphism

(62) P ˝ zf �k Qk ŠQ.l C k/;

where we use the isomorphism (61) in order view the left- and right-hand sides in the
same groupoid Spinc.RlCkM / (see Section 3.3 for details).

We choose a connection zr on P and get an induced Todd form Td.zr/ 2�P 0cl.M/

which represents the class f �Td�1 2 HP Q0.M/. We must take the inverse here
since P is the complement of zf �

k
Qk by (62).

We now consider a continuous homomorphism

GW K0.B/! yK0.M/;

where the domain has the topology described in Remark 2.1 and the target is discrete.

Definition 4.2 A cohomological character for G is a continuous homomorphism

cG W HP Q0.B/!�P 0cl.M/

such that the following diagram commutes:

K0.B/
G
//

Td�1[ch. � /
��

yK0.M/

Td.zr/^R. � /
��

HP Q0.B/
cG
// �P 0cl.M/

Lemma 4.3 Given G there exists a cohomological character cG . If B is compact, then
it is unique.

Proof Since G is continuous there exists a map r W A!B from a finite CW–complex
A such that G factors over the quotient K0.B/=ker.r�

K0
/. For a space X with a map

to B we write

(63) HP Q0.X/0 WD im
�
Td�1[ ch. � /W K0.X/˝Q! HP Q0.X/

�
;
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where we use Td also as a symbol for the pull-back of the Todd class via X ! B!

BSpinc. We get the diagram:

K0.B/ //

G

**

Td�1[ch. � /
��

K0.B/=ker.r�
K0
/

G
//

�

��

yK0.M/

Td.zr/^R. � /
��

HP Q0.B/0

��

p0
// HP Q0.B/0=.ker.r�HP Q0

/\HP Q0.B/0/

��

�P 0cl.M/

HP Q0.B/

cG

??

p
// HP Q0.B/=ker.r�HP Q0

/

pr
aa

The map � induces an isomorphism after tensoring with Q. In order to see this we
consider the diagram

0 // K0.B/˝Q=ker.r�
K0˝Q

/

�˝Q
��

// K0.A/˝Q

Š .r�
HP Q0

Td�1^ch. � //˝Q

��

0 // HP Q0.B/0=.ker.r�HP Q0
/\HP Q0.B/0/ // HP Q0.A/

with exact horizontal lines. We immediately see that �˝Q is injective. On the other
hand, by definition (63) the image of .Td�1[ ch. � //˝QW K0.B/˝Q!HP Q0.B/

is dense in HP Q0.B/0 . Note that the quotient HP Q0.B/=ker.r�HP Q0
/ carries the

discrete topology. Therefore the composition

K0.B/˝Q
.Td�1[ch. � //˝Q
������������!HP Q0.B/0!HP Q0.B/0=.ker.r�HP Q0/\HP Q0.B/0/

is surjective. This implies that �˝Q is surjective, too.

After choosing some linear projection

prW HP Q0.B/=ker.r�HP Q0/! HP Q0.B/0=.ker.r�HP Q0/\HP Q0.B/0/

we can define a cohomological character by

cG.x/ WD Td.zr/^ ..R ıG/˝Q/ ı .�˝Q/�1
�
pr.p.x//

�
; x 2 HP Q0.B/:

Since it factorises over p it is continuous.

If B is compact, then HP Q0.B/0DHP Q0.B/ and this implies uniqueness of cG .
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Example 4.4 (Völkl) If B is not compact, then a cohomological character is not
necessarily unique. Consider B WD K.Z; 4/ and assume that M is compact. By [5,
Theorem II] the reduced K–theory group zK0.B/ is nonzero, but consists of phantom
classes and therefore has the indiscrete topology. Consequently, a continuous map
GW zK0.B/!K0.M/ must be trivial. Furthermore, we have HP Q.B/0 D b0Q. Let
G WD0. In this case any continuous homomorphisms HP Q0.B/!�P 0cl.M/ vanishing
on b0Q can serve as a cohomological character cG . Note that HP Q0.B/ Š QŒŒq��
with q WD b2u for the canonical class u 2H 4.K.Z; 4/;Q/, so there are many such
homomorphisms.

We say that the cohomological character cG preserves degree if it preserves the decom-
positions

HP Q0.B/Š
Y
k2Z

bkH 2k.BIQ/; �P 0cl.M/Š
Y
k2Z

bk�2kcl .M/:

Definition 4.5 A geometrisation of .M; f; zr/ is a continuous homomorphism

GW K0.B/! yK0.M/

such that the diagram

(64)

yK0.M/

I
��

K0.B/

G
::

f �
// K0.M/

commutes, and which admits a degree-preserving cohomological character.

Example 4.6 The notion of a geometrisation generalises the notion of a connection.
This is demonstrated in Proposition 5.13 for the case B DBSpin. Here we will discuss
another example, where we put B WD BSpinc �B� for some compact Lie group �
and B! BSpinc is the projection. We write maps to BSpinc �B� as pairs .f; g/.

Let us assume that we already have a geometrisation G0 of .M; f; zr/ with a degree-
preserving cohomological character cG0 . Its existence is guaranteed by Proposition 4.8.
The map gW M!B� classifies a � –principal bundle R!M . We choose a connection
rR on R .

Lemma 4.7 There exists a natural geometrisation G of .M; .f; g/; zr/ associated to
this data.
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Proof The completion theorem [10] gives an isomorphism K0.B�/ Š R.�/^I� of
topological groups, where I� � R.�/ is the dimension-ideal of the integral repre-
sentation ring. We consider a representation � W � ! U.m� / which represents an
element Œ�� 2 K0.B�/. The associated complex vector bundle V� WD R ��;� Cm�

on M then represents the element ŒV� �D f �Œ�� 2K0.M/. This bundle comes with
a hermitian metric hV� and a metric connection rV� induced by rR . We therefore
get a geometric bundle V� WD .V� ;rV� ;rV� /. It represents the class ŒV� � 2 yK0.M/

such that ŒV� �D I.ŒV� �/ in K0.M/; see (59). Let � 2K0.BSpinc/. Then we get the
element � � Œ�� 2K0.BSpinc �B�/DK0.B/. We define

G.� � Œ��/ WD G0.�/[ ŒV� �:

By linear extension this construction defines the map G on a dense subgroup of K0.B/.

We now show that the map G extends by continuity to all of K0.B/ and defines
a geometrisation of .M; .f; g/; zr/. Indeed, the map R.�/ ! yK0.M/ induced by
� 7! ŒV� � is multiplicative and annihilates I 2nC1� , where n WD dim.M/. Therefore,
since G0 is continuous, the map G is continuous as well. We now use the fact that
HP Q0.B�/ is topologically generated by the classes ch.Œ��/ for � 2 R.�/. We let
c� W HP Q0.B�/! �P 0cl.M/ be the unique continuous map such that ch.rV� / D
c�.ch.Œ��//. Note that c� preserves degree. Since the cohomological character cG0
preserves degree, we can take cG WD cG0^c� of G as a degree-preserving cohomological
character for G .

The geometrisation G allows us to recover the Chern character form of rV� by

ch.rV� /D Td.zr/�1 ^R.G.1˝ Œ��//:

It also allows us to partially recover transgressions, as we will explain in the following.
If rR 0 is a second connection on R and G0 is the associated geometrisation, then

G0.1˝ Œ��/�G.1˝ Œ��/D a.Td.zr/^ zch.rV� 0;rV� //:

Here zch.rV� 0;rV� / 2�P�1.M/ denotes the transgression form which satisfies

d zch.rV� 0;rV� /D ch.rV� 0/� ch.rV� /;

and a is as in (54). This concludes Example 4.6. G

The following Proposition 4.8 asserts that geometrisations exist. Its proof uses the
functoriality of geometrisations in the space B . Consider a map � over BSpinc , ie a
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homotopy commutative diagram:

B 0
�

//

##

B

{{

BSpinc

Given a geometrisation G of .M; � ıf; zr/ we get a geometrisation

(65) ��G WD G ı��

of .M; f; zr/.

Note that our standing assumption is that M is compact.

Proposition 4.8 Given .M; f; zr/ there exists a geometrisation.

Proof Since M is compact, the map f factors over a compact subspace of B . In
view of the functoriality of the geometrisation (65) we can assume that B is compact.
Then K0.B/ is a finitely generated abelian group. We choose a decomposition

K0.B/Š Ators˚Afree

into a torsion and a free part. We write

Ators WD
M
y2I

yZ=ord.y/Z

for some set of generators I �Ators . For all y 2 I , using the exactness at the right end
of (57), we choose zy0 2 yK0.M/ such that I.zy0/D f �y . Then ord.y/zy0 D a.!y/
for some !y 2�P�1.M/=im.d/, again by (57). We define

zy WD zy0� a
�

1

ord.y/
!y

�
:

Then ord.y/zy D 0 and we can define GjAtors W Ators! yK0.M/ so that G.y/D zy for
all y 2 I . Since Td�1^ ch vanishes on Ators and GjAtors maps to flat classes it is clear
that the cohomological character of this part of G preserves degree.

We now come to the free part. We choose a basis J �Afree and classes zz0.z/2 yK0.M/

such that I.zz0.z//D f �z for all z 2 J . We further choose a basis J 0�Afree˝Q such
that fTd�1 ^ ch.z0/gz02J 0 is a homogeneous basis with respect to the decomposition

HP Q0.B/Š
M
m2Z

bmH 2m.BIQ/:
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We define the even integers nz0 WD deg.Td�1 ^ ch.z0// for all z0 2 J 0 . Then there
exists an invertible rational .J; J 0/–indexed matrix A such that z D

P
z02J 0 Azz0z

0

for all z 2 J . We now can choose forms ˛z0 2�P�1.M/=im.d/ for all z0 2 J 0 such
that X

z2J

A�1z0zTd.zr/^R.zz0.z//� d˛z0 2 bnz0=2�
nz0
cl .M/��P 0cl.M/

for all z0 2 J 0 . We define
GjAfree W Afree! yK0.M/

by linear extension, with

G.z/D zz0.z/� a
�

Td.zr/�1 ^
X
z02J 0

Azz0˛z0

�
:

By construction its (uniquely determined) cohomological character preserves degree.

Geometrisations can be pulled back along stable Spinc –maps over B . In detail,
the construction goes as follows: Let .M 0; f 0/ be a compact manifold with a map
f 0W M 0! B . We consider a smooth map hW M 0!M such that f ı h is homotopic
to f 0 . We can then choose a stable isomorphism of complementary bundles

(66) �0˚RsM 0 Š h
��˚RtM 0 :

We refine h to a Spinc –map (Definition 3.4) by choosing an isomorphism

(67) P 0˝Q.s/Š h�P ˝Q.t/:

Assume now that we have connections zr on P and zr 0 on P 0 . They induce connections
on the stabilisations P ˝Q.t/ and P 0˝Q.s/. We thus can define the transgression

Td�Td.h� zr; zr 0/ 2�P�1.M 0/=im.d/;

where we use the isomorphism (67) in order to compare the stabilisation of h� zr with
that of zr 0 on the same bundle. The transgression satisfies

dTd�Td.h� zr; zr 0/D h�Td.zr/�Td.zr 0/:

Let G be a geometrisation of .M; f; zr/.

Lemma 4.9 If hW M 0!M is a Spinc –map between compact manifolds, then there
exists a construction of a pull-back G0 WD h�G of .M 0; f 0; zr 0/. This pull-back only
depends on the joint stable homotopy class of the isomorphisms (66) and (67) and is
functorial under compositions.
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Proof By our assumptions the equivalence class

(68) ˇ WD Td�Td.h� zr; zr 0/^Td.zr 0/�1 2�P�1.M 0/=im.d/

of forms is well-defined. It satisfies

(69) dˇ D h�Td.zr/^Td.zr 0/�1� 1:

We define the pull-back G0 WD h�G by

(70) G0.y/ WD h�G.y/C a.ˇ^ h�R.G.y///; y 2K0.B/;

where a and R belong to the structure maps of differential K–theory. We have, by
construction,

Td.zr 0/^R.G0.y//D h�
�
Td.zr/^R.G.y//

�
and hence can take cG0 WD h�cG as a cohomological character for G0 . Since the
cohomological character cG preserves degree, so does the cohomological character
of G0 .

We show that the pull-back is functorial. We consider a second triple .M 00; f 00; zr 00/
with a Spinc –map h0W M 00!M 0 and the associated transgression form ˇ0 . Then we
have, for the iterated pull-back,

G00.y/D h0�.h�.G.y///C h0�
�
a
�
ˇ^ h�R.G.y//

��
C a.ˇ0 ^ h0�R.G0.y///

D .h ı h0�/�.G.y//C a
�
h0�ˇ^ h0�

�
h�R.G.y//

�
Cˇ0 ^ h0�

�
h�R.G.y//

�
Cˇ0 ^ h0�dˇ^ h0�

�
h�R.G.y//

��
:

Let ž be the transgression form for the composition h ı h0 of Spinc –maps over X .
Then we must show that

ž� .h0�ˇCˇ0C h0�ˇ0 ^ dˇ/ 2 im.d/:

This follows from

d.h0�ˇCˇ0C h0�ˇ0 ^ dˇ/D h0�h�Td.zr/�1 ^Td.zr 00/� 1D d ž

and the fact that all these forms are defined by transgressions and the contractibility
of the space of connections. The assertion about homotopy-invariance easily follows
from the homotopy formula (58) for differential K–theory.

Note that the form ˇ is determined up to closed forms by (69). The refinement of the
map h to a Spinc –map is necessary in order to rigidify the choice of ˇ up to exact
forms by (68) by constructing it via transgression.
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Remark 4.10 The identity of M refines to a Spinc –map in a natural way by choosing
the identity in (67). The pull-back of geometrisations for the identity of M can be used
to transfer a geometrisation defined for one choice of the connection zr to a second
choice. This allows us to define a notion of geometrisation which is independent of the
choice of the connection. This could play a role if one wants to classify geometrisations.
We will not pursue that goal in the present paper.

4.4 Good geometrisations

Assume that .W; F / is a zero bordism of the n–dimensional cycle .M; f /. We fix
tangential Spinc –structures P.TW/2Spinc.TW/ and P.TM/2Spinc.TM/ associated
to the normal Spinc –structure on W and M ; see Definition 3.3. As explained in
Section 3.3, the diagram (33) fixes a natural isomorphism of Spinc –structures

(71) P.TM/˝Q.1/Š P.TW/jM ;

which turns the inclusion
i W M !W

into a Spinc –map.

We choose a Spinc –extension of the Levi-Civita connection zrTW on W with product
structure and a Spinc –extension of the Levi-Civita connection zrTM on M such that
the isomorphism (71) preserves the connections. In this situation the form (68) is trivial.
Assume now that we have a geometrisation of .W; F; zrTW/. Then we can define the
restriction G@W WD .GW /j@W as in Lemma 4.9. It is given by

(72) G@W .�/D GW .�/j@W ; � 2K0.B/:

In general we do not expect that a given geometrisation GM of .M; f; zrTM/ can
be obtained by restricting a geometrisation GW of .W; F; zrTW/. In this respect,
geometrisations are more rigid than connections.

Example 4.11 Here is a very simple example showing that geometrisations do not
always extend to zero bordisms. We consider the case B D � and let .S3; f / be a
cycle for �3.S/. Here S DMB is the sphere spectrum and ��.S/ is identified with
framed bordism groups. We choose a normal framing of S3 that extends over D4 ,
so that the framed bordism class ŒS3; f � is trivial. Furthermore we equip S3 with its
standard riemannian metric.

We know by Proposition 4.8 that .S3; f; zrTS3/ admits geometrisations. Let us choose
some geometrisation G0 . If it does not extend over the disc D4 , then we have found
the desired example. Otherwise assume that it extends.
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We have K0.B/ Š K0.�/ Š Z, so a geometrisation is fixed by the image of 1
in yK0.S3/. Let ! 2�3.S3/ be some form. Then we can define a new geometrisation
G! of .S3; f; zrTS3/ by

G!.1/ WD G0.1/C a.b2!/:

We claim that G! extends to D4 if and only if
R
S3 ! 2Z. For our present purpose the

“only if” part is relevant. We leave the other direction as an exercise. So let us assume
that G! extends, too. Let zG0 and zG! denote the extensions of G0 and G! to D4 . By
(57) and the defining relation (64) there exists a form z! 2�3.D4/ such that

zG!.1/� zG0.1/D a.b2 z!/:

Since the cohomological characters of the geometrisations preserve the b–degree and
Todd forms are invertible, we have the equality czG! .1/D czG0.1/. Consequently

b2d z! D czG! .1/� czG0.1/D 0:

It follows from the exact sequence (57) that there is a class u 2K�1.S3/ such that

b2 z!jS3 � b
2! D ch3.u/:

Using that z! is closed we getZ
S3
b2! D�

Z
S3
b2ch3.u/ 2 b2Z:

This concludes Example 4.11. G

In order to deal with the problem of nonextendability of geometrisations appropriately
we introduce the notion of a k–good geometrisation. If GM is k–good with k �
dim.M/C 1, then it will extend to zero bordisms.

For k 2 N we define the notion of k–good geometrisations constructively. We use
the symbol Mu in order to denote a smooth manifold (hence the letter M ) which
approximates the space B . It will carry a kind of universal geometrisation which will
be pulled back to various manifolds mapping to Mu . We attach the subscript u (for
universal) to the symbols for objects living over Mu .

We consider a map fuW Mu! B from a smooth compact manifold Mu , a lift zfu (as
in (28)) together with a choice of a complementary bundle �u , a connection zru on
Pu 2 Spinc.�u/ and a geometrisation Gu of .Mu; fu; zru/. If the map f W M ! B

has a factorisation up to homotopy through a smooth map hW M !Mu , then we can
refine h to a stable Spinc –map since, after stabilisation, there exists an isomorphism
between h��u and TM .
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Definition 4.12 The geometrisation GM is called k–good if GM D h�Gu for some
choices as above such that fu is k–connected. We say that GM is good if it is
dim.M/C1–good.

Remark 4.13 We consider a sequence .Mu;i ; fu;i ; zr
u;i / for i 2N of data as above

together with Spinc –maps hu;i W Mu;i!Mu;iC1 for all i 2N such that fu;iC1ıhu;i �
fu;i and fu;i is i –connected. A family of geometrisations Gu;i of .Mu;i ; fu;i ; zr

u;i /

for all i 2 N such that h�u;iGu;iC1 D Gu;i will be called a universal geometrisation.
Universal geometrisations are constructed and classified in the thesis of M Völkl [59].

Let us fix a universal geometrisation. A geometrisation of .M; f; zrTM/ will be called
very good (relative to the chosen universal geometrisation) if it is isomorphic to h�Gu;i
for some i 2N and Spinc –map hW M !Mu;i such that fu;i ıh� f . Note that such
a geometrisation is l –good for every l 2N .

Lemma 4.14 If B has the homotopy type of a CW–complex with finite skeleta, then
for every triple .M; f; zrTM/ and every k 2N there exists a k–good geometrisation.

Proof By the assumption, for every k 2N we can find a compact manifold Mu and a
map fuW Mu!B such that fuW Mu!B is k–connected. We choose complementary
data zfu , �u , Pu and zru as above. By Proposition 4.8 there exists a geometrisation
Gu of the triple .Mu; fu; zr

u/. Given .M; f / with dim.M/ � k � 1 there exists a
factorisation up to homotopy

(73)

Mu

fu
��

M
f
//

h
==

B

and a refinement of h to a Spinc –map. Then GM WD h�Gu is a k–good geometrisation.

Lemma 4.15 Let GM be a good geometrisation of .M; f; zrTM/. If .W; F;G/ is a
zero bordism of .M; f / with connection zrTW, then there exists a geometrisation GW
of .W; F; zrTW/ which restricts to GM .

Proof Since fuW Mu ! B is an nC1–equivalence and dim.W / D nC 1 we can
extend the factorisation (73) to a factorisation:

(74)

Mu

fu
��

W
F
//

H
==

B
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There exists a refinement of H to a stable Spinc –map such that H ıiDh in the sense of
Spinc –maps. Then we can define the pull-back GW WDH�Gu and get .GW /jM D GM
by the functoriality of the pull-back.

Remark 4.16 Lemma 4.14 does not imply the existence of very good geometrisations
(see Remark 4.13). Furthermore, observe the following potentially bad behaviour
with respect to disjoint unions: Let .Mi ; fi ; zr

TMi / for i D 0; 1 be two geomet-
ric cycles with k–good geometrisations Gi . Then we can form the disjoint union
.M; f; zrTM/ WD .M0; f0; zr

TM0/t .M1; f1; zr
TM1/, which carries a geometrisation G

naturally induced by Gi . It is not clear that this geometrisation is k–good. For this
it would good to know that the geometrisations Gi are pulled back from the same
geometrisation Gu by different maps. This is the motivation behind the notion of a
very good geometrisation. If the two geometrisations are very good (with respect to the
same universal geometrisation), then the geometrisation G above is again very good
(with respect to the universal geometrisation). In Remark 4.20 below we further explain
why very good geometrisations might be interesting.

4.5 An intrinsic formula for �an

The main goal of the present subsection is to give an intrinsic formula for �an.x/ which
only involves structures on the cycle .M; f / for x 2 �n.MB/tors .

The geometric and analytic terms in the formula (37) for �an.x/ separately have values
in R=Z; only their sum belongs to Q=Z. In order to deal with these terms separately it
is useful to use a real version QR

n .E/ of the group Qn.E/. We start with introducing
this group. We further show that there is no loss of information when passing to the
real version. We let (compare with (6))

(75) UR
� Homcont.K0.E/; �nC1.KR=Z//

be the subgroup given by evaluations against elements in �nC1.ER/ and define

(76) QR
n .E/ WD

Homcont.K0.E/; �nC1.KR=Z//

UR
:

The inclusion �nC1.KQ=Z/! �nC1.KR=Z/ induces a map

iRW Qn.E/!QR
n .E/:

Lemma 4.17 The map iRW Qn.E/!QR
n .E/ is injective.
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Proof Let � 2Qn.E/ be represented by y� 2 Homcont.K0.E/; �nC1.KQ=Z//. Since
� is continuous it factors over a finitely generated quotient of K0.E/. Hence there
exists N 2N such that N y� vanishes.

Assume now that iR.�/ D 0. Then there exists w 2 �nC1.ER/ such that y�.�/ D
Œhw; �i� 2 �nC1.KR=Z/ for all � 2 K0.E/. Since �nC1.ER/ Š �nC1.E/˝ R
(see (2)) there exists a finite subset I � �nC1.E/ and a map �W I ! R such that
wD

P
v2I �.v/v . We have y�.�/D

P
v2I Œ�.v/h�; vi�, where here h�; vi 2�nC1.K/.

For v 2 I we define yv 2 Homcont.K0.E/; �nC1.K// by yv.�/ WD h�; vi. The set
fyv j v 2 I g generates a free abelian subgroup A � Homcont.K0.E/; �nC1.K//. We
can choose a minimal subset J � I which generates a subgroup of A of full rank.
Then there exists a suitable map �W J ! R such that y�.�/D

P
v2J Œ�.v/yv.�/� for

all � 2K0.E/.

The image of K0.E/! Hom.A; �nC1.K// has full rank. Hence for every v 2 J there
exists �v 2 K0.E/ such that yv.�v/ 6D 0 and yv0.�v/D 0 for all v0 2 J with v0 6D v .
It follows that y�.�v/D Œ�.v/yv.�v/�. Since 0D N y�.�v/D ŒN�.v/yv.�v/� it follows
that �.v/ 2Q. We set wQ WD

P
v2J �.v/v 2 �nC1.E/˝QŠ �nC1.EQ/. Then we

have y�.�/D Œh�;wQi� for all � 2K0.E/. This shows that y� 2 U and � D 0.

Let x 2 �n.MB/tors be an l –torsion element and .M; f / be a cycle for x . We choose
a Spinc –extension zrTM of the Levi-Civita connection on M . We further assume that
we have a good geometrisation GM of .M; f; zrTM/ (see Definition 4.12) with a choice
of a degree-preserving cohomological character cG . If B has finite skeleta, then its
existence is guaranteed by Lemma 4.14.

For every � in K0.B/ we choose a Z=2Z–graded vector bundle V� ! M such
that ŒV� �D f �� in K0.M/. We furthermore choose a hermitian metric hV� and a
metric connection rV� so that we get the geometric bundle V� D .V� ; hV� ;rV� /. It
represents a differential K–theory class ŒV� � 2 yK0.M/ such that I.ŒV� �/D ŒV� �D
f �� D I.GM .�//. By the exactness of (57) we get a uniquely determined element


� 2�P
�1.M/=im.ch/

such that

(77) GM .�/� ŒV� �D a.
�/:

Definition 4.18 We will refer to 
� as the correction form associated to � .

Theorem 4.19 The element

iR.�
an.ŒM; f �// 2QR

n .MB/
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is represented by the homomorphism

(78) K0.MB/
ThomK
Š K0.B/!R=Z; � 7!

�
�

Z
M

Td.zrTM/^
�

�
��. =DM ˝V�/:

Proof The integral in formula (78) belongs to the group RŒb; b�1��n�1 , which will
be identified with R using the generator b�.nC1/=2 . First note that, despite the fact
that 
� is only defined up the image of chW K�1.M/! HP Q�1.M/, the class�Z

M

Td.zrTM/^ 
�

�
2R=Z

is well-defined. Indeed, we have hŒM �;Td.TM/[ ch. /i 2 Z for all  2K�1.M/

by the odd version of the Atiyah–Singer index theorem.

We now argue that the right-hand side of (78) indeed defines a homomorphism. To this
end we observe, using the variation formulas for the �–invariant and the homotopy
formula for the differential K–theory class ŒV� �, that�

�

Z
M

Td.zrTM/^ 
�

�
� �. =DM ˝V�/ 2R=Z

does not depend on the choice of the geometry of V� . Using the invariance of this
term under stabilisation of V� with geometric bundles of the form V ˚V op we see
that it only depends on the K–theory class � and is clearly additive.

In contrast to the notation in Section 3.4 we write U� instead of U in order to indicate
the dependence of � . We use (37) in order to express the right-hand side of (39) as�

1

l

Z
W

Td.zrTW/^ ch.rU� /
�
� �. =DM ˝V�/:

The whole idea is now to turn the integral over W into an integral over M . To this
end we assume by Lemma 4.15 that the good geometrisation GM has an extension GW
to W .

The geometric bundle U� extends the geometric bundle V� across W . We let

W� 2�P

�1.W /=im.ch/ be the correction form defined by

GW .�/� ŒU� �D a.
W� /:
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By (72) we conclude that .
W� /j@W coincides up to the image of ch with 
� on all
copies of M . We now use Stokes’ theorem in order to rewrite�
1

l

Z
W

Td.zrTW/^ch.rU� /
�
D

�
1

l

Z
W

Td.zrTW/^R.GW .�//�
1

l

Z
W

Td.zrTW/^d
W�

�
D

�
1

l

Z
W

Td.zrTW/^R.GW .�//
�
�

�Z
M

Td.zrTM/^
�

�
:

We want to show that the homomorphism

�W K0.B/!R=Z; � 7!

�
1

l

Z
W

Td.zrTW/^R.GW .�//
�
;

belongs to UR . The integrand of the integral over W can be expressed in terms of the
cohomological character cGW of GW . Therefore � has a factorisation as

K0.B/
Td�1[ch
������! HP Q0.B/

cGW
�!�P 0cl.W /

1
l

R
W

���!R
Œ � �R=Z
���!R=Z:

Since the cohomological character cGW preserves degree and 1
l

R
W factorises over the

degree nC1 part, the homomorphism � actually factorises over

K0.B/
pnC1.Td�1[ch/
�����������!HQnC1.B/

.cGW /jHQnC1.B/
������������!�nC1cl .W /

1
l

R
W

���!R
Œ � �R=Z
����!R=Z:

Since cGW is continuous, the composition

HQnC1.B/
.cGW /jHQnC1.B/
������������!�nC1cl .W /

1
l

R
W

���!R

is continuous and therefore given by the pairing against an element of HRnC1.B/.
We now use the R–version of (14) in order to conclude that � 2 UR . Therefore
iR.�

an.ŒM; f �// is also represented by the map (78).

Remark 4.20 Let us mention the following aspect of the intrinsic formula (78),
which is not completely understood at the moment. For the intrinsic formula to make
sense we do not need the zero bordism .W; F / of l –copies of .M; f /. Therefore,
formula (78) provides an element �intrinsic

G .M; f; zrTM/ 2QR
n .MB/. One can check that

�intrinsic
G .M; f; zrTM/D 0 if the data .M; f; zrTM;GM / extends to a zero bordism. Note

that in general two good geometrisations of .M; f; zrTM/ cannot be connected over the
cylinder, but this is possible if both are very good with respect to the same universal
geometrisation. More generally, if we work with a very good geometrisation associated
to a fixed universal geometrisation (see Remark 4.13), then the problem with disjoint
unions mentioned in Remark 4.16 disappears, too. Therefore, if we fix a universal
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geometrisation, then we would get a homomorphism

�intrinsic
G W �n.MB/!QR

n .MB/

which restricts to iR ı �top D iR ı �
an on �n.MB/tors . In general we do not know the

topological content of this extension of the universal �–invariant. It might be related
to the effect observed in Remark 5.22.

5 Examples

5.1 Adams’ e–invariant

We consider the example BD�. The associated Thom spectrum is the sphere spectrum
S 'MB. By Serre’s theorem [57] the homotopy groups �n.S/ are finite for n� 1 (we
refer to [54] for more details about their structure). Therefore the universal �–invariant
is defined on all of �n.S/.

We have an identification K0.S/Š Z. Furthermore, since �nC1.SQ/Š 0 for n� 0,
the group U defined in (6) is trivial. From now on let n 2N be odd. After identifying
�nC1.KQ=Z/ŠQ=Z we obtain the identification

Qn.S/Š Hom.Z;Q=Z/ŠQ=Z

given by evaluation against 1 2 Z. For every odd n 2N the universal �–invariant is
thus interpreted as a homomorphism

(79) �W �n.S/!Q=Z:

The universal �–invariant essentially coincides with Adams’ e–invariant [1]

eAdams
W �n.S/!Q=Z;

which was introduced in order to detect the image of the J –homomorphism

(80) J W KOnC1! �Sn :

We will see below that we have the relation

(81) �D eAdams
C WD

�
eAdams if n�1

2
is even;

2eAdams if n�1
2

is odd:

We consider the Adams filtration of ��.S/ associated to the K–theory based Adams
spectral sequence (see eg [2] or Section 2.4). It follows from Theorem 2.7(4) that the
universal �–invariant (79) induces an injection

�top
W Gr1�n.S/ ,!Q=Z
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(recall that n is assumed to be odd). The relation of the Adams e–invariant to spectral
geometry has first been observed in [9]. The spectral geometric calculation of the Adams
e–invariant interprets �n.S/ as a framed bordism group. It has the favourable property
that it provides an intrinsic formula for eAdams , a fact which has been successfully
exploited eg in [29; 56].

The goal of the following discussion is to derive, using Theorems 4.19 and 3.7, the
intrinsic formula (83) for �top and compare it with the formula [8, Theorem 4.14]
for eAdams

C . This is finally our argument for (81).

We let .M; f / be a cycle for �n.S/ as in Section 3.2, where the constant map
f W M !� is refined to a stable framing TM˚RkM ŠRnCkM of the tangent bundle. A
tangential Spinc –structure is now given by a trivialisation

(82) P.TM/˝Q.k/ŠQ.nC k/:

We will in fact assume that P.TM/ comes from a Spin–structure. In this case the
Levi-Civita connection induces a canonical Spinc –connection zrTM .

In order to apply Theorem 4.19 we must first choose a good geometrisation of
.M; f; zrTM/. We will use the notation of Section 4.4. We can choose the manifold
Mu to be a point. The datum .Mu; fu; zr/ (where fuW Mu ! � is constant and zr
is the trivial connection on the trivial bundle Pu ) has a unique geometrisation Gu .
Let hW M !Mu be the constant map. The Spinc –bundle h�Pu is trivial. Hence the
given trivialisation (82) refines h to a Spinc –map. Using this refinement we define the
geometrisation G WD h�Gu , which turns out to be l –good for every l 2N .

For 1 2K0.�/Š Z we have Gu.1/D 1 2 yK0.Mu/. We now use Lemma 4.9 in order
to calculate G.1/ 2 yK0.M/. By (70) we have

G.1/D 1C a
�

Td�Td.zr triv; zrTM/

Td.zrTM/

�
;

where r triv is the connection on P.TM/˝Q.k/ induced by the trivialisation (82). Let
V1 be the trivial one-dimensional geometric bundle on M . Then ŒV1�D 1 2 yK0.M/

and in view of (77) we must take the correction form


1 WD
Td�Td.zr triv; zrTM/

Td.zrTM/
:

We now specialise Theorem 4.19 to the present situation and obtain the intrinsic formula

(83) iR
�
�an.ŒM; f �/

�
.1/D

�
�

Z
M

Td�Td.zr triv; zrTM/

�
� �. =DM / 2R=Z:
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This formula directly compares with the formula for eAdams
C .ŒM; f �/ derived by spe-

cialising [8, Theorem 4.14].

5.2 �–invariants and the index theorem for flat bundles

We consider a closed odd-dimensional Spinc –manifold M . The geometry on M is
given by a riemannian metric and the Spinc –extension of the Levi-Civita connection.
If V D .V;rV ; hV / is a flat hermitian vector bundle of dimension k on M , then the
difference of reduced �–invariants

(84) �. =DM ;V / WD �. =DM ˝V /� k�. =DM /

is invariant under variations of the geometry of M . The �–invariant is thus a differential
topological invariant of the Spinc –manifold M with a flat hermitian bundle V .

The �–invariant is a classical example of a topological invariant derived from the
�–invariant which has been studied a lot. For example, it has been used successfully
to detect elements in Spinc –bordism groups of classifying spaces of finite cyclic
groups [12; 13]. We refer to these references for examples of explicit calculations of
�–invariants.

The precise homotopy-theoretic description of �–invariants is given by the index
theorem for flat bundles [9, Theorem 5.3]. The goal of the following discussion is
to explain the connection of the relation �an D �top shown in Theorem 3.7 with the
index theorem for flat bundles. Roughly speaking, this goes as follows. The index
theorem for flat bundles is about the pairing of the K–homology class represented by
the Spinc –Dirac operator with the torsion K–cohomology classes obtained from the
flat bundle, while our index theorem considers the pairing of a torsion K–homology
class with K–theory classes. Clearly the overlap is when both classes are torsion.

We first translate the data of the Spinc –manifold M of odd dimension n with a flat
hermitian bundle V into the bordism picture. Let U.k/ı denote the unitary group
equipped with the discrete topology. Its classifying space BU.k/ı is universal for flat
hermitian vector bundles of dimension k . We consider the bordism group based on the
Thom spectrum of

B WD BSpinc �BU.k/ı pr
�!BSpinc :

We let .M; f / be a cycle for �n.MSpinc/ and consider in addition a map gW M !
BU.k/ı which classifies a flat bundle V . In this way we get a class

ŒM; .f; g/� 2 �n.MB/:

We assume that this class is torsion in order to apply the universal �–invariant.
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We consider the K–theory class �k 2 K0.BU.k/ı/ of the universal Ck –bundle on
BU.k/ı and the projection

(85) qW BSpinc �BU.k/ı ! BU.k/ı :

Since ch.�k � k/ D 0, the evaluation against the difference q��k � k provides a
well-defined homomorphism

evq��k�k W Qn.MB/!Q=Z:

Lemma 5.1 We assume that ŒM; .f; g/� 2 �n.MB/ is a torsion class. Then we have

(86) evq��k�k
�
�an�ŒM; .f; g/���D �. =DM ;V /:

Proof We are going to use the notation introduced in Section 3.4. As an intermediate
step we choose, for a suitable nonvanishing integer l , a zero bordism .W; .F;G// of the
union of l copies of the cycle .M; .f; g// with Spinc –geometry. The geometric bundle
U is then the flat hermitian bundle classified by F , and we have, by Definition 3.6,

evq��k�k
�
�an�ŒM; .f; g/���D h 1

l
index. =DW ˝U /

i
�

h
k

l
index. =DW /

i
:

If we use (37) instead, then we express this evaluation in terms of an integral over local
data on W and the reduced �–invariants. Because ch.rU /D k , the local contributions
cancel out and we are left with

evq��k�k
�
�an�ŒM; .f; g/���D �. =DM ;V /:

We now calculate the topological version of the universal �–invariant explicitly. We
again assume that x D ŒM; .f; g/� 2 �n.MB/ is a torsion element and let zx in
�nC1.KQ=Z^MB/ be as in (4). By definition of �top we get the equality

(87) evq��k�k
�
�top�ŒM; .f; g/���D hThomK.q��k � k/; zxi:

The right-hand side of (86) is the analytic side of the index theorem for flat bundles
in [9, Theorem 5.3]. The topological side of the index theorem for flat bundles [9,
Theorem 5.3] is not given as the pairing of a KQ=Z–homology class with a K–theory
class, but rather by a pairing between a K–homology class and a KR=Z–cohomology
class. In the following we rewrite the right-hand side of (87) in this way.

There exists a class ƒk 2 KR=Z�1.BU.k/ı/ with @ƒk D �k � k , where @ is the
Bockstein operator @W KR=Z�1.BU.k/ı/ ! K0.BU.k/ı/, and which is uniquely
characterised by the following property: if hW N ! BU.k/ı is a map from a smooth
manifold N , then h�.ƒk/D ŒU ��k , where U is the unitary flat bundle classified by h.
In order to interpret this equality we employ the identification KR=Z�1.N /Š yK0flat.N /

given by (56).
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Recall that q denotes the projection (85). We use Lemma 2.6 for the first equality in
the chain

evq��k�k.�
top.x//D hThomKR=Z.q�ƒk/; �.x/i

D hq�ƒk; ThomK.�.x//i D hŒV �� k; ŒM �Ki;

where ŒM �K denotes the K–theory fundamental class of the Spinc –manifold M . The
right-hand side of this equality is the topological side of the index theorem for flat
bundles of [9, Theorem 5.3]. The following corollary now immediately follows from
the equality �top D �an .

Corollary 5.2 Let n 2N be odd and M be a closed n–dimensional Spinc –manifold
with a flat hermitian k–dimensional vector bundle V . We assume in addition that the
corresponding class ŒM; .f; g/� 2 �n

�
M.BSpinc �BU.k/ı/

�
is torsion. Then we have

the following equality in R=Z:

(88) �. =DM ;V /D hŒV �� k; ŒM �Ki:

In this way Theorem 4.19 implies a special case of [9, Theorem 5.3]. Let us remark
that, by [9, Theorem 5.3], the equality (88) holds true without the additional assumption
that ŒM; .f; g/� is a torsion class.

5.3 Algebraic K –theory

In this subsection we use the universal �–invariant in order detect algebraic K–theory
classes of C . We will observe that for odd n 2N the well-known homomorphism

"W K
alg
n .C/!Q=Z

(see (94)) can be obtained from an appropriate evaluation of the universal �–invariant.
Our main result is Theorem 5.5, which provides a formula for " in terms of geometric
cycles for K–theory classes. We will explain how the results of [53; 42] can be
interpreted as constructions with the universal �–invariant.

For n 2 N the algebraic K–theory groups Kalg
n .C/ of the field C are defined as

the homotopy groups of the connective algebraic K–theory spectrum Kalg.C/. This
spectrum is connected with classifying spaces through Quillen’s C construction (see
[3, Chapter 3] for a detailed description)

(89) pW BGL.Cı/! BGL.Cı/C

by the equivalence

(90) �1Kalg.C/' Z�BGL.Cı/C:
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There exists a class
ƒ0 2KR=Z�1.BGL.Cı/C/

which is uniquely characterised by the following property: if k 2 N and gk W N !
BGL.k;Cı/ is a map from a smooth manifold, then

�.p ı ik ıgk/
�ƒ0 D ŒV �� k� a

�
i Im. zch.rV;u;rV //

�
2KC=Z�1.N /;

where on the right-hand side we use the identification of KC=Z�1.N / with the flat
part of the complex version yK0C.N / of differential K–theory mentioned in Remark 4.1,
ik W BGL.k;Cı/! BGL.Cı/ is the canonical map, V D .V;rV / is the flat complex
vector bundle of dimension k classified by gk , rV;u is some choice of unitarisable
connection on V and �W KR=Z�1!KC=Z�1 is the canonical map. The difference
ŒV �� k is a flat class in yK0C.N /, but in general it is not real since rV is not unitary.
The additional correction term is added in order to obtain a real class, which could also
be written in the manifestly real form

(91) ŒV �� k� a
�
i Im. zch.rV;u;rV //

�
D ŒVu�� k� a

�
Re. zch.rV;u;rV //

�
;

where Vu WD .V;rV;u/. One checks, using the relation in yK0C.N /

ŒV;r�� ŒV;r 0�D a. zch.r;r 0//;

that the class (91) does not depend on the choice of rV;u .

We further define
‚0 WD @ƒ0 2K

0.BGL.Cı/C/;

where @W KR=Z�1!K0 is the Bockstein operator.

We will consider the Thom spectrum MB associated to the projection

B WD BSpinc �BGL.Cı/C! BSpinc :

Furthermore we let qW B! BGL.Cı/C be the projection. Let n 2N be odd. Since
ch.‚0/ D 0, by Lemma 2.5 the second map in the following definition of "0 is
well-defined:

"0W �n.MB/tors
�top
�!Qn.MB/

evq�‚0
����!Q=Z:

We consider a cycle .M; f / for �n.MSpinc/ and a flat complex vector bundle V on
M of dimension k . It is classified by a map gk W M ! BGL.k;Cı/, and we consider
the induced map

g0 WD p ı ik ıgk W M ! BGL.Cı/C:

Then .M; .f; g0// is a cycle for �n.MB/.
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Theorem 5.3 We assume that ŒM; .f; g0/�2�n.MB/tors . If V carries a flat hermitian
metric, then

(92) "0
�
ŒM; .f; g0/�

�
D �. =DM ;V /:

In general we have

(93) "0
�
ŒM; .f; g0/�

�
D hŒM �K ; g

�
0ƒ0i:

Proof We first prove the general case (93) by the chain of equalities

"0.ŒM; .f; g0/�/ WD evq�‚0
�
�top�ŒM; .f; g0/���

D
˝
ThomKR=Z.q�ƒ0/; �

�
ŒM; f; g0�

�˛
D hg�0ƒ0; ŒM �Ki:

In the second equality we use the R=Z–analogue of Lemma 2.6.

In the unitary case we observe that g�0ƒ0 D ŒV �� k . The equality (92) now follows
from (88) and the chain of equalities

"0
�
ŒM; .f; g0/�

� (93)
D hg�0ƒ0; ŒM �Ki D hŒV �� k; ŒM �Ki

(88)
D �. =DM ;V /:

Note that in the present paper we have shown (88) under the assumption that ŒM; .f; gu
k
/�

is a torsion class in �n
�
M.BSpincC �BU.k/ı/

�
, where gu

k
W M ! BU.k/ı classifies

the hermitian flat bundle V . Since this might not be the case in general, we have
to appeal to the proof of this formula (88) without such an assumption given in [9,
Theorem 5.3].

We have a canonical map of spectra

‚W Kalg.C/!K:

Assume again that n2N is odd. Since chı‚D dim is concentrated in degree zero, by
Lemma 2.5 the evaluation in the second map of the following definition is well-defined:

(94) "W K
alg
n .C/tors

�top
�!Qn.K

alg.C//
evq�‚
���!Q=Z:

We know from Suslin [58, Theorem 4.9] that the map " induces an isomorphism

(95) K
alg
n .C/tors Š

�
Q=Z if n is odd;
0 if n is even;

and that the kernel of " is a uniquely divisible group.

Our goal is to provide a formula for " using geometric cycles for algebraic K–theory
classes of C . Let .M; f / be a cycle for �n.S/, where f stands for the constant map
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M ! � refined by a stable normal framing. Furthermore, let V be a flat complex
vector bundle of dimension k classified by a map gk W M ! BGL.k;Cı/. Using the
equivalence (90) we define

g WD .f0g � id/ ıp ı ik ıgk W M !�1Kalg.C/:

In this way we get a class

ŒM; .f; g/� 2 �n.†
1
C�

1Kalg.C//;

where †1
C
W denotes the suspension spectrum of a space W . Employing the canonical

map
uW †1C�

1Kalg.C/!Kalg.C/;

we can form the class
u�ŒM; .f; g/� 2K

alg
n .C/:

Remark 5.4 Every element x 2Kalg
n .C/tors can be represented geometrically in this

way. More precisely there exists .M; .f; g// as above such that x D u�ŒM; .f; g/�
and ŒM; .f; g/� 2 �n.†1C�

1Kalg.C//tors . In order to see this, first represent x by
a map 
 W Sn ! �1Kalg.C/. Using the standard normal framing of Sn , this map
represents a torsion class ŒSn; .f; 
/� 2 �n.†1C�

1Kalg.C//tors . Since †1
C
.p/ is

an equivalence by the universal property of the C construction, there exists a class
z 2 �n.†

1
C
BGL.Cı//tors such that p�.z/D ŒSn; .f; 
/�. Finally, the class z can be

represented in the form z D ŒM; .f; ik ıgk/� for some k 2N . Using this data we get
u�ŒM; .f; g/�D x .

Theorem 5.5 We assume that ŒM; .f; g/� 2 �n.†1C�
1Kalg.C//tors . If V carries a

flat hermitian metric, then

(96) "
�
u�ŒM; .f; g/�

�
D �. =DM ;V /C ke

Adams
C .ŒM; f �/:

In general we have

(97) "
�
u�ŒM; .f; g/�

�
D hg�0ƒ0; ŒM �KiC ke

Adams
C .ŒM; f �/:

Proof We again start with the general case (97). We calculate

(98) "
�
u�ŒM; .f; g/�

�
D ev‚

�
�top�u�ŒM; .f; g/���

D evu�‚
�
�top�ŒM; .f; g/���

D evi�
k
u�‚

�
�top�ŒM; .f; g0/���

D ev‚0Ck
�
�top�ŒM; .f; g0/���:
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We can now use the unstable case (93) and (81) in order to deduce

"
�
u�
�
ŒM; .f; g/�

��
D hg�0ƒ0; ŒM �KiC ke

Adams
C .ŒM; f �/:

The unitary case (96) now follows from (97) and (92).

Remark 5.6 We now show how one can deduce a special case of [42, Theorem A]
from (97). In [42] an algebraic K–theory class is constructed from a homology sphere
M of dimension n and a representation ˛W �1.M/!GL.k;Cı/. One gets an induced
map

zgW M ˛
�!BGL.k;Cı/

ik
�!BGL.Cı/;

to which Quillen’s C construction is applied. The fundamental group of a homology
sphere is perfect, so the C construction MC of M is homotopy equivalent to a simply
connected homology sphere, hence to Sn . Thus we get a map

gCW Sn 'MC
zgC
�!BGL.Cı/C

which represents a class ŒgC�2Kalg
n .C/. The homology sphere M admits a stable nor-

mal framing (see eg [44] or [31, Lemma 1]) which refines the constant map f W M !�.
We further use the composition gW M !MC

zgC
�!BGL.Cı/C in order to define the

class ŒM; .f; g/� 2 �n.†1C�
1Kalg.C/C/ such that u�ŒM; .f; g/�D ŒgC�.

We consider the map of fibre sequences

†�1K //

��

†�1HPC

��

Krel.C/

��

// †�1KC=Z

��

Kalg.C/
‚

//

‚
��

K

ch
��

K
ch

// HPC

(the left column defines the relative K–theory spectrum Krel.C/). For odd n 2N the
dotted horizontal arrow induces a map

(99) eW K
alg
n .C/Š

�n.K
rel.C//

im
�
�n.†�1K/! �n.Krel.C//

� ! �n.†
�1KC=Z/ŠC=Z:
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Let V flat be the flat vector bundle determined by the representation ˛ . The statement
of [42, Theorem A] is the equality

(100) e.ŒgC�/D �C. =DM ;V
flat/

in C=Z. The subscript C on the right-hand side indicates a complex version of the
�–invariant defined for flat vector bundles without requiring a flat hermitian metric.
We have

Re.�C. =DM ;V
flat//D hg�ƒ0; ŒM �Ki:

Note that .C=Z/torsDQ=Z�R=Z�C=Z. If ŒgC� 2Kalg
n .C/ is a torsion class, then

using Lemma 2.6 we get the identification

e.ŒgC�/D ".ŒgC�/� keAdams
C .ŒM; f �/ 2R=Z;

by an argument which is similar to the calculation (98). Hence if ŒgC� is a torsion
class, then the real part of (100) is equivalent to (97).

Remark 5.7 Let us comment on the fact that Adams’ e–invariant appears on the
right-hand sides of (96) and (97). Note that Kalg.R/ is a ring spectrum with unit
�Kalg.R/W S !Kalg.R/. The unit induces a homomorphism ��.S/!K

alg
n .R/. Since

the image im.J / of the J –homomorphism (80) is a well-known summand of ��.S/,
it was an interesting question to determine its image under the unit �Kalg.R/ . Let us
consider the case

Z

.Bm=4m/Z
Š im.J /4m�1 � �4m�1.S/

for m 2 N . In [53] it has been shown that this piece maps injectively to algebraic
K–theory. This was deduced from the following two facts:

(1) im.J /4m�1 is detected by (the real version of) Adams’ e–invariant

eW �4m�1.S/!Q=Z:

(2) The e–invariant has a factorisation over the analogue

K
alg
n .R/. � /! �n.†

�1KOC=Z/

of the homomorphism (99).

The complex case of this factorisation is easily seen from Theorem 5.5. In fact the
elements in im.J /4m�1 can be represented by cycles of the form u�ŒS

4m�1; .f; g/�,
where f carries a normal framing obtained from the standard framing by twisting with
an element of �4m�1.O/, and g is obtained from the classifying map of the trivial
one-dimensional bundle V . Then we get, from (96) in Theorem 5.5,

"
�
u�ŒS

4m�1; .f; g/�
�
D eAdams

C .ŒS4m�1; f �/:
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5.4 String–bordism

In this subsection we describe the connection of the present paper with constructions
in [24]. In this reference we introduced an invariant ban of elements of the bordism
group �4m�1.MString/ using a formula which shares a lot of similarities with the
intrinsic formula (78) for �an . We will recall the definition of the complex version ban

C
during the proof of Theorem 5.9.

The spectrum of topological modular forms tmf has been constructed by Miller, Goerss
and Hopkins, and in an alternative way by Lurie; see the survey [49]. It is related to
K–theory and String–bordism by a factorisation of the Witten genus

(101) MString

�C
Witten

��

�Witten

!!
�AHR

// tmf

WC

<<

W
//// KOŒŒq�� // KŒŒq��

where �AHR is the String–orientation1 of tmf constructed by Ando, Hopkins and
Rezk [6]. One of the interesting features of the restriction of ban to the kernel of the
map to Spin–bordism is that it has a factorisation over �AHR . Since ban is calculable
in interesting cases it can be used to detect the tmf–class represented by a closed
String–manifold.

Our goal here is Theorem 5.9 which gives the precise relation between ban and the
universal �–invariant. In Corollary 5.12 we show one of the conjectures stated in [24],
asserting that the factorisation of ban over topological modular forms holds true on the
whole String–bordism group, ie we get rid of the restriction to the kernel to the Spin–
bordism. Formally our proof is complete in dimensions 8m� 1, while in dimensions
8m� 5 we lose some two-torsion since in the present paper we work with complex
K–theory instead of real K–theory. We strongly believe that the relevant part of the
theory has a real version which does prove the case in dimension 8m� 5 completely,
too.

In Theorem 5.14 we show how the riemannian geometry on a String–manifold together
with a geometric string structure give rise to a geometrisation, and we derive the
corresponding intrinsic formula for ban . We consider the proof of Theorem 5.14 as a
model for many other situations where a construction of a geometrisation is required.

1A good alternative name would be tmf–orientation of MString, but this name appears so in [6].
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We start with recalling the definition of String–bordism. The homotopy type of the
space BString is defined as a stage in the Whitehead tower of BO:

BString

p

��

BSpin

��

1
2
p1

// K.Z; 4/

BSO

��

w2
// K.Z=2Z; 2/

BO
w1

// K.Z=2Z; 1/

The space BString'BOh8i is just a low instance of a whole tower of higher connected
coverings BOhni of the classifying space BO. Starting with BString, these higher
spaces are no longer associated to classical families of compact Lie groups.

In Proposition 5.13 we demonstrate that a connection on a Spin–principal bundle gives
rise to a geometrisation. While the connection on the principal bundle allows us to
define connections on all associated vector bundles, the geometrisation partially keeps
this information in terms of the differential K–theory classes represented by these
vector bundles with connections. The geometrisation associated to a geometric String
structure in this sense replaces the theory of connections on the nonexisting principal
bundle with structure group String. We think that the methods used in the case of
BString' BOh8i can easily be adapted to the higher stages BOhni.

We let MString be the Thom spectrum associated to the map BString! BSpin can
�!

BSpinc . The String–bordism spectrum MString is rationally even (see [40; 41; 39]
for more calculations), so that for m 2N and nD 4m� 1 the group �n.MString/ is
torsion. Hence the universal �–invariant gives a map

�top
D �an

W �n.MString/!Qn.MString/:

We will show that we can obtain ban from the universal �–invariant by defining
an interesting homomorphism out of the universal target Qn.MString/. It involves
evaluations against a collection of elements Rk.�String/ 2K0.BString/ for all k � 0.
It is useful to organise this collection in a formal power series

R.�String/ WD
X
k�0

qkRk.�
String/ 2KŒŒq��0.BString/;
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which we will describe in the following. By KŒŒq�� we denote the multiplicative
cohomology theory (or the corresponding spectrum) which associates to a space Y the
ring

KŒŒq���.Y / WDK�.Y /ŒŒq��

of formal power series with coefficients in K�.Y /. The following constructions with
real vector bundles are standard in the theory of the Witten genus (106); compare eg with
[35; 24]. Given a real vector bundle V !Y we consider the element R.V /2KŒŒq��0.Y /
defined by

(102) R.V / WD

1X
kD0

Rk.V /q
k;

where Rk.V / is the K–theory class of the virtual bundle given by the coefficient in
front of qk in the expansion of

(103)
Y
k�1

.1� qk/dim.V /
O
k�1

Symqk .V ˝R C/;

where
Symp.V / WD

M
l�0

plSyml.V /:

The prefactor
Q
k�1.1�q

k/dim.V / normalises the power series R.V / so that R.RnY /D1
for all n 2N .2 Setting q D e2�iz , it can be expressed in terms of the Dedekind eta
function �.z/: Y

k�1

.1� qk/dim.V /
D q� dim.V /=24�.z/dim.V /:

The transformation V 7!R.V / is exponential, ie for two bundles V and W on Y it
satisfies

R.V ˚W /DR.V /[R.W /:

Moreover, it has values in the group of multiplicative units KŒŒq��0.Y /� , since the
power series (102) starts with 1. In view of the universal property of KO0 it therefore
extends to a natural transformation

RW KO0.Y /!KŒŒq��0.Y /�:

Such exponential transformations are an essential ingredient of the construction of
K–theoretic multiplicative genera, of which the following construction of the Witten

2The formula (103) corrects a mistake in [24, (18)], which has an erroneous factor 2 in the exponent
of the normalising factor. The author thanks the referee for pointing this out.
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genus is a special instance. The composition

BString! BO
x 7!.0;x/
������! Z�BO'�1KO

classifies the universal class �String 2 KO0.BString/. We fix nD 4m� 1 and let

(104) �
String
n WD n� �String

2 KO0.BString/:

If .M; f / is a cycle for �n.MString/, then we have

(105) ŒTM�C 1D f ��String
nC1

in KO0.M/. We have well-defined classes Rk.�
String
nC1 / 2 K

0.BString/ for all k � 0
and therefore R.�String

nC1 / 2KŒŒq��
0.BString/. With this notation, the Witten genus

�C
WittenW �nC1.MString/! �nC1.KŒŒq��/

satisfies

(106) �C
Witten.x/D

˝
ThomK.R.�String

nC1 //; �.x/
˛
:

We use the superscript C in order to indicate that we work with the image of the
KOŒŒq��–valued Witten genus in complex K–theory KŒŒq��.

We organise the evaluations of Qn.MString/ against the family of classes Rk.�
String
nC1 /

into a formal power series and define a homomorphism

(107) W W Hom.K0.BString/; �nC1.KQ=Z//!Q=ZŒŒq�� WD
Y
k�0

Q=Z qk

by
W.�/ WD

X
k�0

ev
Rk.�

String
nC1

/
.�/qk :

The homomorphism (107) does not yet factorise over Qn.MString/ since it does not
vanish on the subgroup U 0 appearing in (13). In order to get such a factorisation we must
replace the target Q=ZŒŒq�� of W by the quotient by a subgroup which contains W.U 0/.
This subgroup will be defined using modular forms.

Modular forms of weight 2m are holomorphic sections of the mth power of the
canonical bundle of the upper half plane which are invariant under SL.2;Z/, and
which satisfy a growth condition. For example, the Dedekind �–function gives rise to
a modular form �.z/24dz12 of weight 24. If f .z/dzm is such a modular form, then
the holomorphic function z 7! f .z/ is invariant under the transformation z 7! zC 1.
If we set q D e2�iz , then we have a Fourier expansion f .q/ D

P
k�0 q

kfk with
fk 2 C for all k 2 N . Note that negative q–powers are excluded by the growth
condition. By definition, the q–expansion of the modular form is the formal power
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series
P1
kD0 fkq

k . For every m 2 Z the space M2m of modular forms of weight
2m is finite-dimensional (and its dimension explicitly known). We refer to [35] for a
detailed introduction to modular forms.

We let MR
2m �M2m denote the space of modular forms for SL.2;Z/ of weight 2m

whose q–expansion have coefficients in the subring R �C . In particular, we let

MQ
2mŒŒq���QŒŒq��

be the finite-dimensional vector space of q–expansions of rational modular forms
MQ
2m of weight 2m. Its image in Q=ZŒŒq�� will be denoted by MQ

2mŒŒq��. We define

(108) T2m WD
Q=ZŒŒq��

MQ
2mŒŒq��

:

Up to the replacement of Q by R this is exactly the group defined in [24, Definition 1.1].

Lemma 5.8 The composition of (107) with the projection to the quotient (108) induces
a well-defined map

W W Q4m�1.MString/! T2m:

Proof We must show that under this composition the subgroup U defined in (6) is
mapped to MQ

2mŒŒq��. By (106) we have for y 2 �nC1.MString/ that˝
ThomK.R.�String

nC1 //; �.y/
˛
D �C

Witten.y/ 2 �nC1.KŒŒq��/Š ZŒŒq��:

We now use the fact that the Witten genus has values in MZ
2mŒŒq�� � ZŒŒq��. More

generally, for y 2 �nC1.MStringQ/ we get˝
ThomK.R.�String

nC1 //; �.y/
˛
2MQ

2mŒŒq��:

This shows that W .U 0/�MQ
2mŒŒq��.

In [24, Section 3.3] we have constructed homomorphisms

ban
W �4m�1.MString/! T2m; btop

W A4m�1! T2m;

where
A4m�1 WD ker.�4m�1.MString/! �4m�1.MSpin//:

Since in the present paper we work we complex K–theory as opposed to real K–theory
in [24, Section 3.3], we define

(109) b�C WD

�
b� if m even;
2b� if m odd;

for � 2 fan; top; tmfg;

where the tmf–versions will be introduced in (115) and (114) below.

Geometry & Topology, Volume 21 (2017)



1354 Ulrich Bunke

Theorem 5.9 We have the equalities

W ı �top
jA4m�1 D b

top
C and W ı �an

D ban
C :

Proof We extend the map MString!MSpin to a fibre sequence

†�1MSpin!A!MString!MSpin;

which defines the spectrum A. The smash product of the fibre sequence with the fibre
sequence (3) yields the following quadratic diagram:

†�2MSpinQ

��

// †�1AQ

��

// †�1MStringQ

��

// yw†�1MSpinQ

��

†�2MSpinQ=Z

��

// †�1AQ=Z

��

// yx†�1MStringQ=Z

��

// yy†�1MSpinQ=Z

��

†�1MSpin

��

// yzA

��

// xMString

��

// 0MSpin

��
� yw†�1MSpinQ // zzAQ // 0MStringQ // MSpinQ

We start with x 2A4m�1��4m�1.MString/. This element goes to zero if it is mapped
to the right or down. The class W .�top.x// is represented by the power series

(110)
X
k�0

˝
ThomK.Rk.�

String
4m //; �.yx/

˛
qk 2Q=ZŒŒq��:

Note that we can define classes �Spin and �Spin
n WDn��Spin 2KO0.BSpin/ analogously

to (104). Then we have equalities of the evaluations

(111)
˝
ThomK.Rk.�

String
4m //; �.yx/

˛
D
˝
ThomK.Rk.�

Spin
4m //; �.yy/

˛
D
�˝

ThomK.Rk.�
Spin
4m //; �. yw/

˛�
2Q=Z;

where the elements yy and yw are images and lifts as indicated in the above diagram,
and where we use the compatibility of the K–theory Thom isomorphisms for MString
and MSpin. In the construction of btop in [24, Section 4.1] we go the other way. We
first lift x to yz , which maps to zz , which is then again lifted to †�1MSpinQ. It is a
general fact of such a diagram chase in a product of fibre sequences that, modulo the
obvious ambiguities, this element in the lower left corner is the negative of yw from the
upper right corner. By the definition of btop in [24, Section 4.1] we see that btop

C .x/ is
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represented by X
k�0

�˝
ThomK.Rk.�

Spin
4m //; �. yw/

˛�
qk 2Q=ZŒŒq��:

Combining this with (110) and (111) we see that

W ı �top
jA4m�1 D b

top
C :

This proves the first assertion of Theorem 5.9.

We now show the second. Let x D ŒM; f � 2 �n.MString/ be an l –torsion element
represented by the cycle .M; f / and .W; F / be a zero bordism of the union of l
copies of .M; f /. The Spinc –structures come from Spin–structures, so the Levi-Civita
connections have canonical Spinc –extensions zrTM and zrTW . In view of (105) the
class f �R.�String

4m /2KŒŒq��0.M/ can be represented by a formal power series of Z=2Z–
graded bundles R.TM˚ 1/ associated to the tangent bundle. The riemannian metric
and the Levi-Civita connection turn TM into a geometric bundle. The construction of
R.TM˚1/ therefore produces a formal power series of geometric bundles R.TM˚1/.

The construction of ban involves the choice of a geometric String–structure ˛ on M .
This notion has been introduced in [60]. Since the complete definition of the notion of
a geometric string structure is quite complicated and involves concepts not relevant for
the present paper we refrain from repeating it here. We must know that geometric string
structures are geometric refinements of string structures on real vector bundles with
connection and Spin–structures. They behave as flexibly as connections. In particular,
geometric string structures can be glued using partitions of unity. Most importantly, a
geometric string structure produces a form H˛ 2�

3.M/ with the property that

(112) 2dH˛ D p1.r
TM;LC/:

This form is not arbitrary. It is a form-level reflection of the trivialisation (an additional
datum) of 1

2
.p1/ determined by the string structure.

In the following we use characteristic forms associated to certain power series

ẑ ; ˆ;‚ 2QŒŒq��Œb; b�1�ŒŒb2p1; b
4p2; : : : ��:

We refer to [24, Section 3.3] or (122) for an explicit definition. In the notation of the
latter we have

ˆ WDˆ
R.�

Spin
4m /
; ẑ WD ẑ

R.�
Spin
4m /
; ‚ WDˆ�p1 ẑ :

In the present paper we distribute the powers of b so that ˆ and ‚ have total degree
zero and ẑ has total degree �4. The notation ẑ .zrTM/ is as in (123). We start with
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the representative of ban
C .x/ given in [24, Definition 4.1] by

(113)
�
2

Z
M

H˛ ^ ẑ .zr
TM/

�
� �. =DM ˝R.TM˚ 1// 2R=ZŒŒq��;

where here and below we ignore the power b2m . We use the APS index formula (35)
in order to express the reduced �–invariant appearing in (113). Using the equality

ˆ.zrTW/D Td.zrTM/^ ch.rR.TM˚1//;

we get

(113)D
�
2

Z
M

H˛ ^ ẑ .zr
TM/�

1

l

Z
W

ˆ.zrTW/

�
C

h
1

l
index. =DW ˝R.TW//APS

i
:

We now use Stokes’ theorem and the relation (112) in order to calculate

2

Z
M

H˛ ^ ẑ .zr
TM/�

1

l

Z
W

ˆ.zrTW/D
1

l

Z
W

.p1.r
TW/^ ẑ .zrTW/�ˆ.zrTW//

D
1

l

Z
W

‚.zrTW/ 2MR
2mŒŒq��:

For the last inclusion we use the crucial fact that

p4m.‚/ 2MQ
2mŒŒq��Œb

2p1; b
4p2; : : : ��QŒŒq��ŒŒb2p1; b

4p2; : : : ��I

see [24, Section 3.3], where p4m on the left is not a Pontrjagin class but the projection
to the respective factor in (8). Thereforeh

1

l
index. =DW ˝R.TW//APS

i
2R=ZŒŒq��

is a representative of ban
C .x/ 2 T2m , too. But in view of Definition 3.6 and the con-

struction of W this is also a representative of W .�an.x// 2 T2m . This shows

W ı �an
D ban

C :

As a consequence of the equality �an D �top shown in Theorem 3.7 we get another
proof of [24, Theorem 2.2].

Corollary 5.10 ban
C jA4m�1

D b
top
C :

We now recall from [24, Section 4.3] the construction of the homomorphism

btmf
W �4m�1.tmf/! T2m;
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which is very similar to that of �top . Note that �4m�1.tmf/ is a torsion group (see
[37; 14] for more calculations of ��.tmf//. Therefore an element y 2 �4m�1.tmf/
can be lifted to an element yy 2 �4m.tmfQ=Z/. Then

(114) btmf.y/ WD ŒW.yy/� 2 T2m;

where ŒW.yy/� denotes the class in T2m of the element W.yy/ 2 �4m.KOŒŒq��Q=Z/Š
Q=ZŒŒq�� and W is as in (101). The complex version btmf

C of btmf is defined similarly
by

(115) btmf
C .y/ WD ŒWC.yy/� 2 T2m;

or alternatively by (109).

Proposition 5.11 We have the equality

btmf
C ı �AHR DW ı �

top
W �4m�1.MString/! T2m:

Proof If x 2 �4m�1.MString/ and yx 2 �4m.MStringQ=Z/ is a lift, then˝
ThomK.R.�String

4m //; �.yx/
˛
2Q=ZŒŒq��

represents W ı �top.x/. We have already seen in the proof of Lemma 5.8 that this
expression is equal to the Witten genus (extended to Q=Z–theory)˝

ThomK.R.�String
4m //; �.yx/

˛
D �C

Witten.yx/:

The Witten genus (see (101)) can now be decomposed as

�C
Witten.yx/DWC.�AHR.yx//:

We can take �AHR.yx/ 2 �4m.tmfQ=Z/ as the lift of �AHR.x/ 2 �4m.tmf/ such that
WC.�AHR.yx// represents btmf

C .�AHR.x//. Hence we can conclude that

btmf
C ı �AHR.x/DW ı �

top.x/:

Using Theorem 3.7, stating the equality �an D �top , and W ı �an D ban
C , given by

Theorem 5.9, we get:

Corollary 5.12 ban
C D b

tmf
C ı �AHR:

This proves the complex version of Conjecture 3 in [24, Section 1.5]. In fact, for even
m there is no difference between the real and complex case, but in the case of odd m
the complex version implies the real version up to two-torsion, which was known
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before. We believe that a real version of the present theory would prove the conjecture
completely.

The formula for ban given in [24, Section 3.3] and reproduced here as (113) is an intrinsic
formula which uses the notion of a geometric String–structure [60]. In the following
we show that a geometric String–structure gives rise to a good geometrisation GString

of .M; f; zrTM/ such that the intrinsic formula Theorem 4.19 specialises to the one
for ban . Since String–structures refine Spin–structures we start with the construction
of a geometrisation for a Spin–structure.

We consider a cycle .M; f / for �n.MSpin/. We are going to use a version of
Section 3.3 for Spin–structures. If V !M is a real euclidean oriented vector bun-
dle, then the Spin–gerbe Spin.V / of V associates to each open subset A �M the
groupoid Spin.V jA/ of Spin–structures on the restriction of V to A. This gerbe has
the band Z=2Z, and its isomorphism class is classified by the Dixmier–Douady class

DD.Spin.V //D w2.V / 2H 2.M IZ=2Z/;

the second Stiefel–Whitney class of V .

We choose a tangential Spin–structure on TM given by a Spin–structure P 2Spin.TM/
together with a trivialisation

(116) P ˝ zf �Q
Spin
k
ŠQ.nC k/;

where zf W M ! BSpin.k/ is some factorisation of f and QSpin
k
! BSpin.k/ is the

universal Spin–bundle. It naturally induces a tangential Spinc –structure by extension
of structure groups along Spin.l/! Spinc.l/ (see [48, Example D.5]).

The Levi-Civita connection gives rise to a connection rTM on P , which in turn has a
natural Spinc –extension zrTM . We furthermore choose a connection rk WD r zf

�Q
Spin
k

on zf �QSpin
k

and let zrk be its Spinc –extension.

Proposition 5.13 There exists a geometrisation GSpin of .M; f; zrTM/ which is l –good
for every l 2N .

Proof The connections zrTM and zrk together induce a Spinc –extension zrTM˝ zrk

of the connection rTM ˝ rk on P ˝ zf �Q
Spin
k

, which can be compared with a
trivial connection using the isomorphism (116). Therefore, the transgression form
Td�Td.zrTM˝ zrk;r triv/ 2�P�1.M/=im.d/ is defined and satisfies

dTd�Td.zrTM
˝ zr

k;r triv/D Td.zrTM/^Td.zrk/� 1:
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We define the form of total degree �1

(117) � WD Td.zrk/�1 ^Td�Td.zrTM
˝ zr

k;r triv/:

For any space or spectrum Y we let K�.Y / denote the completion of the topolog-
ical group K�.Y / equipped with the profinite topology (see [19, Definition 4.9]
or Remark 2.1). Recall that the process of completing may add additional limit
elements and then takes the quotient by the subgroup of elements which cannot be sep-
arated from zero. We have an equivalence BSpin' hocolimlBSpin.l/ and therefore
K�.BSpin/Š limlK�.BSpin.l//. The completion theorem [10] gives

K�.BSpin.k//DK�.BSpin.k//ŠR.Spin.k//^ISpin.k/
:

We therefore get the following description of the completion of the K–theory of BSpin:

K�.BSpin/Š limlK
�.BSpin.kC l//Š limlR.Spin.kC l//^ISpin.kCl/

:

We fix an integer l � 0 and form the l –fold stabilisation zf �QSpin
k
˝Q.l/ of zf �QSpin

k
.

This stabilisation is a Spin.kCl/–principal bundle with the connection rk˝rQ.l/ .
Given a representation � of Spin.k C l/ we define a geometric bundle V� as an
associated bundle to zf �QSpin

k
˝Q.l/. We define

Gl.�/ WD ŒV��� a.�^ ch.rV�// 2 yK0.M/:

We have chosen the form � in (117) so that the following equality holds true in
�P 0cl.M/:

(118) Td.zrTM/^R.G.�//D Td.zrk/�1 ^ ch.rV�/:

The map � 7!Gl.�/ extends to a map Gl W R.Spin.kCl//! yK0.M/ by linearity. This
extension annihilates the 2nC1st power I 2nC1Spin.kCl/ �R.Spin.kC l// of the dimension
ideal. In order to see this note that if � 2 IpSpin.kCl/ and 2p > n, then we have
ch.rV�/D 0. For those � we have Gl.�/D ŒV��, and this class is flat. If p > n, then
we have ŒV��D 0, so Gl.�/D a.!/ for some ! 2 HPR�1.M/. The product of a flat
class with a class of this form vanishes by (55). Hence Gl.�/D 0 if p > 2n. The map
Gl thus further extends by continuity to a map

GSpin.kCl/
W K0.BSpin.kC l//! yK0.M/:

One now checks that for l � 1 we have

Gl.�/DGl�1.�jSpin.kCl�1//:
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In this way the maps GSpin.kCl/ for the various l are compatible. We consider the
continuous map

GSpin
W K0.BSpin/!K0.BSpin.k// GSpin.k/

���! yK0.M/:

We now show that GSpin and GSpin.kCl/ are geometrisations. To this end we must show
that they admit degree-preserving cohomological characters. By their compatibility it
suffices to consider GSpin.k/ . It follows from (118) and Td.zrTM/D yA.rTM/ (since
zrTM is induced from a Spin–connection rTM ) that Td.zrTM/^R.G0.�// is the Chern–
Weil representative of the class yA�1[ ch.Œ��/ 2 HP Q0.BSpin.k// associated to the
connection rk , where Œ�� 2K0.BSpin.k// is the class represented by � . Note that

(119) H�.BSpin.k/IQ/ŠQŒp1; p2; : : : ; prk �

is the polynomial ring generated by the universal Pontrjagin classes. For the cohomo-
logical character

cGSpin.k/ W HP Q0.BSpin.k//!�P 0cl.M/

of GSpin.k/ we choose the map which sends the class b2ipi 2HP Q0.BSpin.k// to the
corresponding characteristic form b2ipi .r

k/ 2�P 0cl.M/. This map clearly preserves
degrees.

We now show that GSpin is l –good for every l 2N . By an inspection of the construction
of GSpin we observe that the connection of the map f W M !B with the stable normal
bundle of M has not been used. This map can be arbitrary if we replace TM by some
complement �!M of yf ��k as in Section 4.3 and choose some connection r� of
the associated complementary Spin–principal bundle P Spin 2 Spin.�/ in place of rTM .
We obtain the Spinc –bundle P with connection zr� which replaces zrTM by extension
of the structure group.

Let l 2N be such that l �nC1. We choose an l –connected approximation fuW Mu!

BSpin such that there is a factorisation of f over a closed embedding hW M !Mu .
As in Section 4.4 we obtain a natural refinement of h to a Spinc –map. Since h is a
closed embedding we can choose the connections zru on Pu and rk;u on zf �u Q

Spin
k

so that h� zru D zrTM stably and h�rk;u Drk . We now define GSpin
u as above. Then,

by construction, GSpin D h�GSpin
u since the correction forms (68) vanishes. Since l can

be taken arbitrarily large we see that GSpin is l –good for every l 2N .

Note that the geometrisations GSpin.kCl/ constructed in the proof of Proposition 5.13
are l –good for every l 2N , too.

Let pW BString ! BSpin be the natural map. We consider a cycle .M; f / for
�n.MString/. Then .M; p ıf / naturally becomes a cycle for �n.MSpin/.

Geometry & Topology, Volume 21 (2017)



On the topological contents of �–invariants 1361

Theorem 5.14 A choice of a geometric string structure ˛ on . zf �QSpin
k
;rk/ naturally

determines a geometrisation GString of .M; f; zrTM/ which is l –good for every l 2N .
For � 2K0.BSpin/ it is given by

GString.p��/D GSpin.�/� a.��/

with
�� WD Td.zrTM/�1 ^ 2H˛ ^ ẑ�.r

m/ 2�P�1.M/:

Here GSpin is as in Proposition 5.13, ẑ�.rm/ is defined in (123) and H˛ 2�3.M/ is
the three-form given by the geometric string structure.

Proof We fix an integer l � nC1. For a sufficiently large integer m 2N with m� 3
we can assume that the map f has a factorisation

M
fm
�!BString.m/ �m�!BString

such that �m is l –connected. We have a fibre sequence

K.Z; 3/! BString.m/ p
�!BSpin.m/!K.Z; 4/:

By [5] the reduced K–theory group zK�.K.Z; 3// is uniquely divisible and consists of
phantom classes, ie classes which vanish when pulled back to finite CW–complexes.
This suggests the following proposition, which is probably well known, but we could
not find a reference for it.

Proposition 5.15 For m� 3 the pull-back

(120) p�W K�.BSpin.m//!K�.BString.m//

along the projection pW BString.m/! BSpin.m/ represents K�.BString.m// as a
completion of K�.BSpin.m// with respect to the topology induced on K�.BSpin.m//
via p� by the profinite topology of K�.BString.m//.

The map (120) is continuous but is not expected to be a homeomorphism. The topology
induced via this map on K�.BSpin.m// is expected to be smaller than the original
locally finite topology, so that this group is no longer complete in this induced topology.

We defer the proof of Proposition 5.15 to Section 6. and continue with the construction of
a geometrisation GString which is l –good. We choose an lC1–connected approximation
fuW Mu! BString.m/, so we can factorise fmW M ! BString.m/ over the closed
embedding hW M !Mu . As in Section 4.4 we obtain a natural refinement of h to
a Spinc –map. Since h is a closed embedding we can choose the connections zru

on Pu and rm;u on f �u Q
Spin
m such that h� zru D zrTM stably and h�rm;u D rm .
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Geometric string structures behave as flexibly as connections and metrics [60]. We
can therefore assume that there is a geometric string structure ˛u on .f �u Q

Spin
m ;rm;u/

which restricts to the geometric string structure ˛ on M .

In the proof of Proposition 5.13 we have constructed a geometrisation

GSpin.m/
u W K0.BSpin.m//! yK0.Mu/:

of .Mu; p ıfu;r
m;u/. As a first approximation we define

GString.m/
u;0 W K0.BSpin.m//! yK0.Mu/

by

GString.m/
u;0 .�/ WD GSpin.m/

u .�/ for � 2K0.BSpin.m//:

In view of Proposition 5.15 the homomorphism GString.m/
u;0 is defined on a group

which defines K0.BString.m// by completion with respect to a certain topology. If
GString.m/
u;0 were continuous with respect to this topology it would descend to a continuous

homomorphism defined on K0.BString.m// and would admit a degree-preserving
cohomological character.

Note that via p� we can identify

HQ�.BString.m/IQ/ŠQŒŒp2; : : : ; prm ��

with the quotient ring of H�.BSpin.m/IQ/ given in (119) by setting p1 D 0. The
contribution of p1.zru/ to the curvature of GString.m/

u;0 obstructs the existence of a
degree-preserving cohomological character; see Remark 5.17 below. The idea is now to
kill this contribution by a correction term given by a geometric string structure ˛u on
. zf �u Q

Spin
m ;rm;u/. The geometric string structure provides the form H˛u 2�

3.Mu/

with the property that 2dH˛u D p1.r
m;u/; see (112).

For a formal power series

ƒ 2QŒb; b�1�ŒŒb2p1; b
4p2; : : : ��

we define a new formal power series

(121) zƒ WD
ƒ� ip1D0ƒ

p1
2QŒb; b�1�ŒŒb2p1; b

4p2; : : : ��:

In other words, the power series zƒ is p�11 times the sum of those monomials of ƒ
which contain p1 . Since the periodic rational cohomology of any space Y is complete,
ie we have HP Q�.Y /ŠHP Q�.Y /, the Chern character factorises over the completion
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of K–theory as chW K0.BSpin.m//! HP Q0.BSpin.m//. Let � 2K0.BSpin.m//.
Then we define

(122) ˆ� WD Td�1[ ch.�/ 2 HP Q0.BSpin.m//ŠQŒŒb2p1; b
4p2; : : : ; b

2rmprm ��

and obtain ẑ� as described above. We define the form

�u;� WD Td.zru/�1 ^ 2H˛u ^ ẑ�.r
m;u/ 2�P�1.Mu/;

where we use the abbreviation

(123) ẑ
�.r

m;u/ WD ẑ�.p1.r
m;u/; p2.r

m;u/; : : : /:

We can now define the map

GString.m/
u W K0.BSpin.m//! yK0.Mu/

by the prescription

GString.m/
u .�/ WD GString.m/

u;0 .�/� a.�u;�/:

We further define
GString.m/

WD h�GString.m/
u :

Unfortunately we cannot verify directly that GString.m/
u is continuous, but we have the

following lemma:

Lemma 5.16 The map

GString.m/
W K0.BSpin.m//! yK0.M/

extends by continuity to K0.BString.m//. The continuous extension (for which we
use the same symbol GString.m/ ) admits the degree-preserving cohomological character
given by b2ipi 7! b2ipi .r

m/ for all i 2 f2; : : : ; rmg and is therefore a geometrisation
of .M; f; zrTM/.

Proof BString.2m/ has finite skeleta, so the profinite topology on K�.BString.2m//
has a countable basis of neighbourhoods of zero, so we can check continuity of
homomorphisms using sequences converging to zero. Let us consider a sequence .�k/
in K0.BSpin.m// such that p��k! 0 in the profinite topology of K0.BString.m//
as k!1. We must show that there exists k0 2N such that for all k � k0 we have
GString.m/.�k/ D 0. Let t W N ! BString.m/ be a compact dim.Mu/C1–connected
approximation. We can choose k02N such that for all k�k0 we have t�p��kD0 and
t�p�.Td�1^ch.�k//D 0. Since the pull-back t�W H�.BString.m/IQ/!H�.N IQ/
is injective in degrees � dim.Mu/ we see that ˆ�k is a formal power series of terms
of homogeneity � dim.Mu/C1 (here we count the topological degree, ie disregard the
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degree of b ). Consequently, ip1D0ˆ�k is a formal power series of terms of homogeneity
� dim.Mu/C 1.

We now calculate, using (118) and (121), that for � 2K0.BSpin.m//

(124) Td.zru/^R.GString.m/
u .�//

D Td.zru/^R.GSpin.m/
u .�//�p1.zr

m;u/^ ẑ�.r
m;u/

Dˆ�.r
m;u/�p1.zr

m;u/^ ẑ�.r
m;u/

D .ip1D0ˆ�/.r
m;u/:

We conclude that Td.zru/^R.GString.m/
u .�k//D 0 for k� k0 since .ip1D0ˆ�/.r

m;u/

would be a form on Mu of a degree which exceeds the dimension. Hence for k�k0 the
class GString.m/

u .�k/ is flat and in the kernel of I W yK0.Mu/!K0.Mu/. We conclude
that

GString.m/
u .�k/ 2 HPR�1.Mu/=im.ch/:

An lC1–connected map induces an isomorphism in ordinary cohomology in degrees
at most l . Since BString.m/ is rationally even, the odd-dimensional real cohomology
of the lC1–connected approximation Mu is concentrated in degrees � l C 1. Since
dim.M/ � l the restriction h�W HPR�1.Mu/! HPR�1.M/ is trivial. This implies
that GString.m/.�k/D h

�GString.m/
u .�k/D 0 for all k � k0 .

The assertion about the cohomological character follows from the relation

Td.zrTM/^R.GString.m/.�//D .ip1D0ˆ�/.r
m/

derived from (124). This finishes the proof of Lemma 5.16.

Remark 5.17 We can now explain better why the contribution of the first Pontrjagin
form needs to be killed. We have

Td.zru/^R.GString.m/
u;0 .�//Dˆ�.r

m;u/:

The polynomial ˆ� contains monomials which contain p1 and therefore does not
belong to

HP Q0.BString.m//ŠQŒŒb4p2; : : : ; b
2rmprm ��:

Since a general connection rm;u has a nonvanishing first Pontrjagin form, the homo-
morphism

K0.BSpin.m//!�P 0cl.Mu/; � 7!ˆ�.r
m;u/;

has no factorisation over

K0.BSpin.m//!K0.BString.m//! HP Q0.BString.m//:
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If we replace ˆ� by ip1D0ˆ� , then ip1D0ˆ� 2 QŒŒb4p2; : : : ; b2rmprm �� and the
desired factorisation exists.

To show that this geometrisation GString.m/ is l –good we must show that GString.m/
u is

continuous itself. To this end we argue similarly by representing this geometrisation as
a pull-back from a dim.Mu/C1–connected approximation of BString.m/.

We now define the geometrisation GString of ŒM; f; zrTM� by

GString
WD �m;�GString.m/:

Since �m is l –connected, this geometrisation is l –good. If m0 2N satisfies m�m0 ,
then it follows from the compatibility of the family of geometrisations .GSpin.m0/

u /m0�m
that

GString.m0/.�/D GString.m/.�jBString.m//; � 2K0.BString.m0//:

Therefore GString does not depend on the choice of m. In particular, it is l –good for
all l . This finishes the proof of Theorem 5.14.

We now specialise Theorem 4.19 in order to derive an intrinsic formula for

ban.ŒM; f �/DW ı �an.ŒM; f �/ 2 T2m:

The connection rk on the Spin.k/–principal bundle zf �QSpin
k
!M turns the real

vector bundle zf ��String
k

into a geometric bundle Nk . It is a geometric representative
of the stable normal bundle of M , hence the notation. We have

R.ŒTM�C 1/DR.nC 1C k� Œ zf ��String
k

�/ 2KŒŒq��0.M/:

Therefore we get an interpretation of R.n C 1 C k � Nk/ as a virtual geometric
representative of R.ŒTM�C 1/ (which differs from R.TMC 1/ used in (113) since we
work with the geometry on the normal bundle). By construction we have

GString.�
String
nC1 /D ŒR.nC 1C k�Nk/�C a.�R.�Spin

nC1
/
/ 2 yK0.M/ŒŒq��:

In other words, the correction form for Œ�String
nC1 � 2KŒŒq��

0.BString/ is given by



R.�

String
nC1

/
D �

R.�
Spin
nC1

/
D Td.zrTM/�1 ^ 2H˛ ^ ẑR.�Spin

nC1
/
.rk/ 2�P�1.M/ŒŒq��:

By Theorem 4.19 the composition W ı �top.ŒM; f �/ 2 T2m is now represented by the
formal power series�

�

Z
M

2H˛ ^ ẑR.�Spin
nC1

/
.rk/

�
� �. =DM ˝R.nC 1C k�Nk// 2R=ZŒŒq��:

This is the version of (113) using the normal bundle geometry on the twisting bundles.
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5.5 The Crowley–Goette invariants

In this subsection we want to show how some of the Eells–Kuiper- or Kreck–Stolz-type
invariants from geometric topology can be understood from the point of view of the
universal �–invariant. Our approach can be described schematically as follows. In a
first step, called preconstruction, we translate the geometric topology data into elements
of a suitable bordism group MB. We then apply the universal �–invariant. Finally, the
desired invariant is obtained by a suitable evaluation against classes in K0.MB/.

In detail, we will consider the example of the Crowley–Goette invariant recently intro-
duced in [27] for S3–principal bundles on certain nD4m�1–dimensional manifolds.
We start with recalling the definitions from [27]. Since in the present paper we decided
to work with Spinc –bordism and complex Dirac operators, we will define the variant
tCM which coincides with the Crowley–Goette invariant for even m and is its double for
odd m. Let S3 be the group of unit quaternions and BS3 be its classifying space. The
set of homotopy classes ŒM;BS3� is in natural bijection with the set of isomorphism
classes of S3–principal bundles on M denoted in [27] by Bun.M/.

Let M be a closed n–dimensional Spin–manifold such that H 3.M IQ/ D 0 and
H 4.M IQ/D 0. Then the Crowley–Goette invariant is defined as a certain function

tM W Bun.M/!Q=Z:

In the following we recall the intrinsic formula [27, (1.9)] for tM . Note that

HP Q�.BS3/ŠQŒb; b�1�ŒŒb2c2��;

and by the completion theorem [10] we have the isomorphism

K0.BS3/ŠR.S3/^I
S3
:

We let � be the representation of S3 by left-multiplication on HŠC2 . This � gives
rise to a class Œ�� 2K0.BS3/ and a power series ch.Œ��/ 2QŒb; b�1�ŒŒb2c2��0 of total
degree zero. There exists a unique power series ẑ 2QŒb; b�1�ŒŒb2c2���4 of total degree
�4 such that 2� ch.Œ��/D c2 ẑ .

Let zg 2 Bun.M/ and R!M be a S3–bundle classified by zg . We choose a connection
rR on R . For every unitary representation .�; V�/ of S3 we let E� WDP �S3;�V� be
the vector bundle associated to R and �. It comes with a natural hermitian metric hE� .
The connection rR induces a connection rE� which preserves hE� . In this way we
get a geometric bundle E� WD .E�; hE� ;rE�/. By our assumptions on the rational
cohomology of M the Chern–Weil representative c2.rR/ of c2 is exact, and there
exists a unique element yc2.rR/ 2�3.M/=im.d/ such that d yc2.rR/D c2.rR/. We
define ẑ .rR/ 2�P�4cl .M/ by replacing c2 by c2.rR/ in the power series ẑ .
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We choose a riemannian metric on M which induces the Levi-Civita connection on TM .
Furthermore we choose the Spinc –structure induced by the Spin–structure. We then
get a natural Spinc –extension zrTM of the Levi-Civita connection. The complex version

tCM W Bun.M/!R=Z

of tM is now given by [27, (1.9)]:

(125) tCM .zg/ WD
�Z
M

Td.zrTM/^yc2.r
R/^ẑ .rR/

�
�2�. =DM /C�. =DM˝E�/2R=Z:

To be precise, the value of the integral belongs to RŒb; b�1��n�1 , which will be
identified with R using powers of the generator b .

In order to relate the Crowley–Goette invariant to the universal �–invariant we are
led to consider a bordism theory of Spinc –manifolds with S3–bundles with rationally
trivial second Chern class. This bordism theory is constructed homotopy-theoretically
as follows: We have a fibre sequence

K.Q; 3/!K.Q=Z; 3/ @
�!K.Z; 4/!K.Q; 4/

of Eilenberg–Mac Lane spaces. We define the space X by the following homotopy
pull-back:

(126)

X

q
��

// K.Q=Z; 3/

@
��

BS3
c2
// K.Z; 4/

Since c2 is a rational isomorphism and K.Q=Z; 3/ is rationally trivial, we see that the
space X is rationally contractible.

We consider the Thom spectrum MB associated to the projection

B WD BSpinc �X ! BSpinc :

We conclude that, for nD 4m� 1,

�n.MB/˝QŠ�n.MSpinc^XC/˝QŠ�n.MSpincQ^XC/Š�n.MSpincQ/Š 0:

It follows that
�n.MB/tors D �n.MB/;

so the universal �–invariant is defined on the whole Spinc –bordism group of X :

�top
D �an

W �n.MB/!Qn.MB/:
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The preconstruction for the Crowley–Goette invariant is a map

sM W Bun.M/! �n.MB/

given by the following lemma:

Lemma 5.18 A pair ..M; f /; zg/ of a cycle .M; f / for �n.MSpinc/ with H 3.M IQ/
and H 4.M IQ/ both trivial, and a map zg 2 Bun.M/ naturally gives rise to a class
sM .zg/ WD ŒM; .f; g/� 2 �n.MB/.

Proof The main point is to show that zgW M ! BS3 has a natural lift to gW M !X

in the diagram (126). The rationalisation of zg�c2 vanishes, so there exists a class
yc2 2 H

3.M IQ=Z/ such that @yc2 D zg�c2 . This lift is unique up to the image of a
rational class of degree 3, hence unique by our assumption. The map zg and the lift
yc2W M !K.Q=Z; 3/ together determine the lift gW M !X .

Our next task is to determine the element in K0.MB/ at which we want to evaluate.
To this end we calculate the K–theory K�.X/. We have a fibration

X
q
�!BS3

with fibre K.Q; 3/. Note that Q is a countable abelian group. Furthermore, the space
BS3 has a CW–structure with finite skeleta .BS3k/k�0 and lim1

k
K�.BS3k/D 0 by [10].

We can apply Proposition 6.1 and see that

(127) q�W K�.BS3/!K�.X/

represents K�.X/ as a completion of K�.BS3/ with respect to the topology induced
from the profinite topology on K�.X/ via q� . The domain of this map can be calculated
by using the completion theorem [10]. The element 2� � of the representation ring
R.S3/ generates the dimension ideal IS3 . If we let A WD 2� Œ�� 2K0.BS3/, then we
have

K�.BS3/Š ZŒŒA��:

Since X is rationally contractible we have

ch�.q�A/D q�ch.A/D 0:

Let pW BSpinc �X !X be the projection. By Lemma 2.5 the evaluation

evp�q�AW Qn.MB/!Q=Z

is well-defined. We define

"D evp�q�A ı �top
W �n.MB/!Q=Z:
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The following proposition clarifies the relation between tCM and the universal �–
invariant:

Proposition 5.19 If .M; f / is a cycle for �n.MSpinc/ which satisfies H 3.M IQ/D
H 4.M IQ/D 0, then we have the relation

tCM D " ı sM W Bun.M/!Q=Z:

Proof It is an instructive exercise in the use of geometrisations to derive an intrinsic
formula for the composition " ı sM which can be compared with the formula (125)
for tCM . In a first step we must approximate the space X by spaces with finite skeleta.
Note that we can write (compare with (42) for the connecting maps)

K.Q=Z; 3/ WD hocolimlK.Z=lZ; 3/:

If we define Xl by the pull-back

(128)

Xl

ql
��

// K.Z=lZ; 3/

@l
��

BS3
c2

// K.Z; 4/
l
// K.Z; 4/

then we get connecting maps Xl !Xl 0 if l jl 0 and

X ' hocolimlXl ; �n.MB/D coliml�n.MBl/;

where the Thom spectrum MBl is associated to the projection Bl WD BSpinc �Xl !
BSpinc . The main advantage of Xl is that it has finite skeleta.

We consider a cycle .M; f / for �n.MSpinc/ and an auxiliary map gW M !X . We
can assume that g has a factorisation

gW M
gl
�!Xl !X

for some l . We choose a Spinc –extension zrTM of the Levi-Civita connection. We are
going to construct an l –good geometrisation for .M; .f; gl/; zrTM/ using similar ideas
as in the String–bordism case Theorem 5.14. We first take m sufficiently large such
that the canonical map �mW BSpinc.m/! BSpinc is maxfl; nC1; 4g–connected. We
choose a compact max.l; nC1; 4/–connected approximation

.fu; gu/W Mu! BSpinc.m/�Xl

such that the map .f; gl/ factorises over a closed embedding hW M !Mu . It is here
where we use the property that Xl has finite skeleta which ensures that we can find
a compact approximation Mu . Note that for Mu we allow compact manifolds with
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boundary. We require a closed embedding since below we want to extend geometric
structures defined on M to Mu . Working with compatible geometric structures on M
and Mu avoids more complicated formulas involving correction terms ˇ as in (70).
This embedding condition can easily be satisfied since, if necessary, we can enlarge
Mu by forming a product with a high-dimensional disc and smoothing out the corners.

We choose the Spinc.m/–connection zru as in Section 4.4. The map h has a refinement
to a Spinc –map and we can assume that h� zru D zrTM stably.

The composition ql ıguW Mu! BS3 classifies an S3–principal bundle Ru!Mu on
which we choose a connection rRu . We can assume that RŠ h�Ru with connection
rR D h�rRu .

We let
zGuW K0.BSpinc.m/�BS3/! yK0.Mu/

denote the geometrisation of .Mu; .fu; ql ı g/; zr
u/ which was constructed by the

method of Lemma 4.7 from a geometrisation G0 WD GSpinc.m/ which is the analogue of
GSpin.m/ in the proof of Proposition 5.13.

We have a fibration

(129) BSpinc.m/�Xl
.id;ql /
���!BSpinc.m/�BS3

with fibre K.Z; 3/. We can again apply Proposition 6.1 and conclude that

(130) .id; ql/
�
W K�.BSpinc.m/�BS3/!K�.BSpinc.m/�Xl/

represents K�.BSpinc.m/ � Xl/ as a completion of K�.BSpinc.m/ � BS3/. We
define

Gu;0W K�.BSpinc.m/�BS3/! yK0.Mu/

by
Gu;0.�/ WD zGu.�/ 2 yK0.Mu/ for � 2K�.BSpinc.m/�BS3/:

Similarly as in the string bordism case (see the explanation after the statement of
Proposition 5.15 and Remark 5.17) the contribution of the exact form c2.r

Ru/ obstructs
the existence of a degree-preserving cohomological character for Gu;0 . We must kill the
contribution of c2.rRu/ to the curvature of Gu;0.�/. Note that q�

l
c22H

4.Xl IZ/ is l –
torsion. Hence we can choose a form ˛u 2�

3.Mu/=im.d/ such that d˛uD c2.rRu/.
By an easy application of Serre’s spectral sequence to the fibration (129) we see that

p�W H�.BSpinc.m/IQ/!H�.BSpinc.m/�Xl IQ/
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is an isomorphism. Since H�.BSpinc.m/IQ/ is concentrated in even degrees the
odd-dimensional cohomology of Mu is concentrated in degrees � nC 1. In particular
we see that ˛u is uniquely determined. Moreover, the restriction

(131) h�W HPR�1.Mu/! HPR�1.M/

is trivial.

We have

HP Q�.BSpinc.m/�BS3/ŠQŒb; b�1�ŒŒbc1; b
2p1; b

4p2 : : : ; b
2rmprm ; b

2c2��;

HP Q�.BSpinc.m/�Xl/ŠQŒb; b�1�ŒŒbc1; b
2p1; b

4p2 : : : ; b
2rmprm ��;

where c1 and the Pontrjagin classes come from BSpinc and c2 is pulled back from BS3 .
The pull-back .id; ql/� is the quotient map defined by setting c2 D 0. For � in
K0.BSpinc.m/�BS3/ we define the formal power series

ˆ� WD Td�1[ ch.�/ 2QŒb; b�1�ŒŒbc1; b
2p1; b

4p2 : : : ; b
2c2��

0

and set

ẑ
� WD

ˆ� � ic2D0ˆ�

c2
2QŒb; b�1�ŒŒbc1; b

2p1; b
4p2 : : : ; b

2c2��
�4:

For � 2K0.BSpinc.m/�BS3/ we now define

Gu.�/ WD Gu;0.�/� a.˛u ^Td.zru/�1 ^ ẑ�.ru;rRu//;

where ẑ�.ru;rRu/ 2�P�4.M/ is obtained from ẑ� by replacing the generators
c1 , pi and c2 by their corresponding Chern–Weil representatives c1.zru/, pi .zru/
and c2.rRu/. We calculate, similarly as in (124), that

(132) Td.zru/^R.Gu.�//D ic2D0ˆ�.r
u;rRu/:

We now define
GW K�.BSpinc �BS3/! yK0.M/

by
G.�/ WD .�m � idXl /�h

�Gu.�/:

We claim that G extends by continuity to a good geometrisation of .M; .f; gl/; zrTM/.
The argument is very similar to that of Lemma 5.16. We first show continuity. If .�k/
is a sequence in K0.BSpinc �BS3/ with .id; ql/��k! 0 as k!1 in the profinite
topology, then we can find a k0 2N such that

Gu.�k/ 2 HPR�1.Mu/=im.ch/

for all k� k0 . It follows from the vanishing of the map h� in (131) that h�Gu.�k/D 0.
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Because of (132), a degree-preserving cohomological character of G is given by

bc1 7! bc1.zr
TM/; b2ipi 7! b2ipi .zr

TM/:

It follows that G is a geometrisation. In order to see that it is l –good we show that
Gu itself is continuous using a similar argument based on a dim.Mu/C1–connected
approximation of BSpinc.m/�Xl .

We can now apply Theorem 4.19 in order to derive a formula for "
�
ŒM; .f; gl/�

�
2R=Z.

We can take yc2.rR/ WD h�˛u and have ẑA D Td�1 ẑ . We have, by construction,

G..id; ql/
�A/D Œ2�E��� a.yc2.r

R/^ ẑ .rR//;

hence the correction form (Definition 4.18) is given by


.id;ql /�A D�yc2 ^
ẑ .rR/ :

It follows from (78) that

ev.id;ql /�A
�
�an�ŒM; .f; gl/���

D

�Z
M

Td.zrTM/^ yc2.r
R/^ ẑ .rR/

�
� 2�. =DM /C �. =DM ˝E/:

This is exactly the formula (125) for tCM .zg/ 2 R=Z. Proposition 5.19 now follows
from Lemma 2.4, which gives the first equality in the chain

ev.id;ql /�A
�
�an�ŒM; .f; gl/���D ev.id;q/�A

�
�an�ŒM; .f; g/���D ".sM .zg//:

The paper [27] provides a lot of interesting explicit calculations. Our general point of
view is probably not of much help here. But it is useful to understand structural results
like the relation with the Adams e–invariant [27, Proposition 1.11]. This is what we
are going to explain now. We define the space Y by extending the diagram (126) by
another cartesian square

(133)

Y
H
//

r
��

X

q
��

// K.Q=Z; 3/

@
��

S4
h
// BS3

c2
// K.Z; 4/

where h generates �4.BS3/ with h�c2 2H 4.S4IZ/ the positive orientation class. We
use the Serre spectral sequence in order to calculate the rational cohomology of Y :

Hk.Y IQ/D

�
Q if k D 0; 7;
0 if k 62 f0; 7g:

Geometry & Topology, Volume 21 (2017)



On the topological contents of �–invariants 1373

This implies

(134) �4m�1.S ^YC/tors D �4m�1.S ^YC/

for m� 3.

From now on we assume that m � 2. By Lemma 2.4 we get the commutativity of
the squares (except the lower right, which will be explained below) of the following
diagram:

(135)

�4m�1.MSpinc ^XC/

"

**�top
// Q4m�1.MSpinc ^XC/

evp�q�A
// Q=Z

�4m�1.S ^YC/tors

.id^r/�
��

.�MSpinc^H/�

OO

�top
// Q4m�1.S ^YC/

.id;r/
��

.i�;H/

OO

ev
r�h�
C
A

// Q=Z

�4m�1.S ^S
4
C
/

w�
��

�top
// Q4m�1.S ^S

4
C
/

w�
��

ev
h�
C
A

// Q=Z

�4m�1.S ^S
4/

Š

��

�top
// Q4m�1.S ^S

4/

Š

��

evh�A
// Q=Z

�4m�5.S/

eAdams
C

55
�top

// Q4m�5.S/
ev1

// Q=Z

We need the condition m� 2 in order to have well-defined evaluations evh�
C
A , evh�A

and ev1 . The map w� is induced by the map wW S4
C
! S4 which is the identity

on S4 and maps the extra base point to the base point of S4 . In terms of the canonical
decomposition

K0.S4C/ŠK
0.S4/˚Z

we have w� D .idK0.S4/; dim/. This map induces

w�W Q4m�1.S ^S
4
C/!Q4m�1.S ^S

4/:

We use the symbol hCW S4C! BS3 for the map induced by h, which maps the extra
base point to a base point of BS3 . The lower left vertical map is the suspension
isomorphism. The lower middle vertical isomorphism is again induced by suspension
and the Bott isomorphism

K0.S4/ŠK�4.S0/ b
�2

�!K0.S0/:
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In order to see that the lower right square commutes note that this isomorphism maps
h�A to 1. This follows from

ch.2�A/D bc2CO.b3/

and the fact that c2 2H 4.S4IZ/ is the suspension of 1 2H 0.�IZ/. The composition
of the lower two arrows is the definition (79) of the complex version of the Adams
e–invariant.

We conclude that

(136) " ı .�MSpinc ^H/D e
Adams
C ıw� :

The same argument as for Lemma 5.18 gives:

Lemma 5.20 A pair ..M; f /; zg/ of a cycle for �4m�1.S/ such that H 3.M IQ/D 0
and H 4.M IQ/D 0 and a map zg 2 ŒM; S4� gives naturally rise to a class ŒM; .f; g/�
in �4m�1.S ^YC/.

If M satisfies the assumption of the lemma, then we have a preconstruction map

zsM W ŒM; S
4�! �4m�1.S ^YC/

and conclude from Proposition 5.19, (136) and (134) that, for m� 3 (or mD 2 with
ŒM; .f; g/� 2 �7.S ^YC/ a torsion class),

tCM D e
Adams
C ıw� ı zsM W ŒM; S

4�!Q=Z:

This is [27, Proposition 1.11] if one takes the following geometric description of the
composition w�ızsM .zg/ into account. First of all we have zsM .zg/D ŒM; .f; g/�, where
gW M ! Y is the lift of zgW M ! S4 . Then w�.ŒM; .f; g/�/D ŒM; .f; zg/�� ŒM; const�
is in �4m�1.S ^ S4/. The geometric representative of the 4–fold desuspension of
this class is the stably normally framed manifold obtained by taking the preimage
Y WD zg�1.s/ of a regular point s 2 S4 of zg .

Corollary 5.21 [27, Proposition 1.11]3 We assume that m� 2. Let .M; .f; zg// be
as in Lemma 5.20. If mD 2, then in addition we assume that ŒM; .f; g/� 2 �7.S ^YC/
is a torsion class. Then we have

tCM .h ı zg/D e
Adams
C .ŒY; f 0�/;

where Y is the preimage Y WD zg�1.s/ of a regular point s 2 S4 of zg with its induced
normal framing (and f 0 is the constant map).

3The e–invariant used in the present paper is the negative of the e–invariant in the conventions of [27,
Proposition 1.11]. This accounts for the different sign.
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Remark 5.22 In the following we consider the case mD 2 and discuss what happens
if we drop the assumption that ŒM; .f; g/� 2 �4m�1.S ^ YC/ is a torsion element.
We consider the Hopf fibration zgW S7 ! S4 . By Lemma 5.20 we get an element
ŒS7; .f; g/� 2 �7.S ^YC/. This element is not torsion.

If it were a torsion element, then by Corollary 5.21 we would have tC
S7
.h ı zg/ D

eAdams
C .ŒY; f 0�/, where .Y; f 0/ is a Hopf fibre with the induced framing. It has been

shown in [27, Example 3.5] that tC
S7
.h ı zg/D 0. On the other hand, since the Hopf

fibration generates the stable homotopy group �3.S/ Š Z=24Z which is detected
completely by eAdams we know that eAdams

C .ŒY; f 0�/ 2 Q=Z has order 12, and in
particular is nontrivial.

Now
evh�

C
A

�
�top�.id^ r/�ŒS7; .f; g/�

��
D eAdams

C .ŒY; f 0�/ 6D 0

is a nontrivial torsion class of order 12. On the other hand,

evp�q�A
�
�top�.�MSpinc ^H/�ŒS

7; .f; g/�
��
D tC

S7
.h ı zg/D 0:

We see that the upper half of the diagram (135) no longer commutes if we delete the
subscript . � /tors in the second line.

6 The K –theory of K.�; n/–bundles

The goal of this section is to give a proof of Proposition 5.15. It uses some theory
which we develop in greater generality for the purpose of applications in other places.
The main result is Proposition 6.1.

Let Z be a space with an increasing filtration

� � � �Zk �ZkC1 � � � � ; k 2N;

such that Z ' hocolimk2NZk . Then we consider the decreasing filtration

F kK�.Z/ WD ker.K�.Z/!K�.Zk�1//

of the K–theory group K�.Z/, and we write GrkF .K
�.Z// for its associated sub-

quotients. The filtration .F kK�.Z//k2N induces a topology on K�.Z/, and we write
FK�.Z/ for the Hausdorff completion of K�.Z/ with respect to this topology.

If Z0 is a second space with increasing filtration .Z0
k
/k2N and Z!Z0 is a filtration-

preserving map, then the pull-back K�.Z0/!K�.Z/ is filtration-preserving, continu-
ous and induces a continuous map FK�.Z0/! FK�.Z/.
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If the Zk for k 2N are finite CW–complexes, then the induced topology on K�.Z/
is the profinite topology. For a general filtration of Z the profinite topology is always
contained in the topology associated to the filtration and we have a continuous map
FK�.Z/!K�.Z/.

The filtration of Z induces a spectral sequence .Er ; dr/ with Es;t1 ŠK
tCs.Zs=Zs�1/.

If the filtration of Z is the skeletal filtration, then this is the Atiyah–Hirzebruch spectral
sequence, whose second page is given by Es;t2 ŠH

s.Z; ��t .K//.

If we fix .s; t/ 2N �Z, then for r � s the group Es;tr does not receive differentials.
Hence we can consider the sequence of inclusions of groups

Es;t1 WD
\
r�s

Es;tr � � � � �E
s;t
rC2 �E

s;t
rC1 �E

s;t
r :

For every k 2N there is a natural map

(137) �k W GrkFK
tCk.Z/!Ek;t1 :

We say that the spectral sequence converges strongly if (137) is an isomorphism for all
k 2N and t 2Z. This is the case, for example, if the spectral sequence degenerates at
a finite stage.

Proposition 6.1 Let X be a CW–complex with an increasing filtration .Xk/k2N by
finite subcomplexes Xk such that X D

S
k Xk . We further fix an integer n � 3 and

a countable abelian group � , and consider a fibration pW Y !X with fibre K.�; n/.
Let .Yk/k2N be the induced filtration of Y .

(1) The projection pW Y !X induces a continuous injective map

(138) K�.X/! FK�.Y /:

(2) If lim1
k
K�.Xk/D 0, then the image of the composition

(139) K�.X/! FK�.Y /!K�.Y /

is dense.

Remark 6.2 If � is a countable torsion group, then [5, Proposition 4.7] gives the
stronger statement that p�W K�.X/!K�.Y / is an isomorphism. In this case we can
even assume that n� 2, and drop the assumption that X has finite skeleta. G

Remark 6.3 In order to understand what is going on here we recall the much simpler
dual result concerning K–homology. It is known by [5] that the inclusion of the base
point induces an isomorphism K�.�/! K�.K.�; n// for n � 3. Hence the Serre
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spectral sequence for K–homology for the fibration pW Y ! X degenerates at the
second page and we can conclude that p�W K�.Y /!K�.X/ is an isomorphism. The
two difficulties in the case of cohomology are that the Serre spectral sequence only
calculates the graded components of a certain infinite filtration of the K–theory, and
that the K–theory of the fibres does not vanish but consists of phantom classes.

Proof of Proposition 5.15 assuming Proposition 6.1 Proposition 5.15 follows from
the combination of the two assertions of Proposition 6.1 if we take n WD 3, � WDZ and
pW BString.m/!BSpin.m/ (note that m� 3). The homotopy type BSpin.m/ admits
a cell structure with finite skeleta. Moreover, it has been shown in [10, Section 2] that
lim1

k
K�.BSpin.m/k/D 0.

In order to show Proposition 6.1 we first need some preparations about divisible groups.
Let A be some abelian group. Then we define its subgroup

Adiv WD fa 2 A j 8n 2N 9a0 2 A aD na0g

of divisible elements. We consider the exact sequence

0! Adiv! A! A! 0:

Since a divisible group is injective, this sequence is split. Hence we have a noncanonical
decomposition

AŠ Adiv˚A:

This implies that Adiv D 0. We now consider a short exact sequence of groups

0! A! B! C ! 0

together with a homomorphism B!X , where X is a finitely generated abelian group.

Lemma 6.4 If c 2Cdiv , then we can find a lift b 2B of c whose image in X vanishes.

Proof We consider the diagram

0

��

0

��

0

��

Adiv

��

// Bdiv //

��

Cdiv

��

A //

��

B //

��

C

��

A //

��

B //

��

C

��

0 0 0
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with vertical exact sequences. The snake lemma gives an isomorphism

Cdiv

im.Bdiv! Cdiv/
Š

ker.B! C/

im.A! B/
:

This shows that the group on the right-hand side is divisible. Since any map from a
divisible group to a finitely generated group is trivial, we have a factorisation B!X

of the map B!X . We thus get a homomorphism

ker.B! C/

im.A! B/
!
X

Y
;

where Y �X is the image of A!B!X . The quotient X=Y is still finitely generated,
and this implies that this map is trivial since its domain is divisible.

We now choose a preimage b0 2 B of c . Its image in xb0 2 B then vanishes when
mapped to C , so it represents a class in ker.B ! C/=im.A! B/. The image of
this class in X=Y vanishes, so there exists xa 2 A such that the image of xb0� xa in X
vanishes. We choose some lift a 2 A of xa . Then the image of b WD b0 � a in X
vanishes. Moreover, b is a lift of c , too.

Proposition 6.5 Assume that X is a finite CW–complex and pW Y !X is a fibration
with fibre K.�; n/ for n� 3 and � a countable abelian group. Then the map

(140) p�W K.X/!K�.Y /

is injective and has dense range.

Proof Let
∅DX�1 �X0 �X1 � � � � �Xdim.X/ DX

be the filtration of X given by the cellular structure. It induces a filtration

∅D Y�1 � Y0 � Y1 � � � � � Ydim.X/ D Y

by taking preimages. These filtrations induce spectral sequences E.id/ and E.p/
which both degenerate at the dim.X/th page and strongly converge. Here E.id/ is the
Atiyah–Hirzebruch spectral sequence for X , and E.p/ is the Serre spectral sequence
for the fibration p .

We consider the map of fibrations

Y //

p

��

X

id
��

X // X
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which induces a morphism of spectral sequences

p�W E.id/!E.p/:

Lemma 6.6 The image p�E.id/ is a direct summand of E.p/.

Proof The K–theory of the fibres of p form a local system of abelian groups
K�.K.�; n// on X with fibres isomorphic to K�.K.�; n//. We have

E
s;t
1 .p/Š C s

�
X;Kt�s.K.�; n//

�
;

where C s.X;A/ denotes the cellular cochains of X with coefficients in the local
system of abelian groups A. We have an exact sequence

0!E
s;t
1 .p/div!E

s;t
1 .p/!E

s;t
1 .p/! 0:

Since zK�.K.�; n// is uniquely divisible by [5, Theorem II], the composition

E
s;t
1 .id/ p

�

�!E
s;t
1 .p/!E

s;t
1 .p/

is an isomorphism. Moreover, since p� is a chain map and there are no nontrivial
maps from a divisible group to a finitely generated group, we have a decomposition of
chain complexes

E
�;�
1 .p/ŠE

�;�
1 .p/div˚p

�E
�;�
1 .id/:

We now use that E�;�1 .p/div is actually uniquely divisible. Furthermore, kernels and
images of homomorphisms between uniquely divisible groups, and also quotients of
uniquely divisible groups, are again uniquely divisible. We hence obtain a corresponding
decomposition of the higher pages and a decomposition of the whole spectral sequence
as

E.p/ŠE.p/div˚p
�E.id/:

Lemma 6.7 The map (140) is injective.

Proof Assume that � 2K�.X/ is such that p�.�/D 0. We are going to show that
� 2 F kK�.X/ for all k � �1. For k � dim.X/C 1 this then implies that � D 0.

We clearly have � 2F�1K�.X/DK�.X/. Assume by induction that � 2F kK�.X/.
Then � represents an element �k.�/ 2E

k;�
1 .id/. We observe that the image of �k.�/

in Ek;�1 .p/ and in particular its component in p�Ek;�1 .id/ vanishes. By Lemma 6.6
we have �k.�/D 0. This implies � 2 F kC1K�.X/.

Lemma 6.8 The range of the map (140) is dense.
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Proof We fix an element � 2K�.Y /. We must show that we can approximate this
element in the profinite topology of K�.Y / by elements in the image of p�W K�.X/!
K�.Y /. Let t W T ! Y be a map from a finite CW–complex. Then ker.t�/�K�.Y /
is some neighbourhood of zero. We must find an element  2K�.X/ such that

(141) � �p� 2 ker.t�/:

To this end we use the following lemma:

Lemma 6.9 If y� 2 F kK�.Y /, then there exists y 2 K�.X/ and � 2 ker.t�/ such
that y� �p� y � � 2 F kC1K�.Y /.

Assuming this lemma and using that � 2F�1K�.Y / we obtain the desired  2K�.X/
by a finite iteration. Thus Lemma 6.8 follows from Lemma 6.9.

Proof of Lemma 6.9 The element y� gives rise to an element u WD �k.y�/ 2E
k;�
1 .p/

which we can decompose as uD v˚p�w with v 2 Ek;�1 .p/div and w 2 Ek;�1 .id/.
We let y 2 F kK�.X/ be an element which represents w . We apply Lemma 6.4 to
the exact sequence

0! F kC1K�.Y /! F kK�.Y /!Ek;�1 .p/! 0

and the map t�W F kK�.Y / ! K�.T /. By Lemma 6.4, we can find an element
�2F kK�.Y /\ker.t�/ which represents v . Then we have y��p� y ��2F kC1K�.Y /,
as required.

Proposition 6.5 now follows from Lemmas 6.7 and 6.8.

Proof of Proposition 6.1 Let

∅D Y�1 � Y0 � Y1 � Y2 � � � �

be the filtration of Y induced by taking the preimages of the subcomplexes Xk along
pW Y ! X . By construction the map p preserves filtrations and hence (138) is
continuous.

We first show that (138) is injective. Note that the filtration .F kK�.X//k�0 induces
the profinite topology. Let � 2K�.X/ be such that p�� 2

T
k�0 F

kK�.Y /. It suffices
to show that this implies � 2F kK�.X/ for all k � 0, since then � represents the zero
element in K�.X/.

We clearly have � 2 F�1K�.X/. We now assume by induction that � 2 F kK�.X/.
We can apply Proposition 6.5 to the fibration pk W Yk!Xk . Since

p�k.�jXk /D .p
��/jYk D 0
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we conclude that �jXk D 0 and hence � 2 F kC1K�.X/.

We now show that the image of (139) is dense. Let � 2K�.Y /. We must approximate �
by elements in the image of (139). Let t W T ! Y be a map from a finite CW–complex.
Then ker.t�/ � K�.Y / is some neighbourhood of zero. We must find an element
 2K�.X/ such that

(142) � �p� 2 ker.t�/:

Since T is finite there exists a number k 2N for which there is a factorisation

t W T
tk
�!Yk

�k
�!Y:

It suffices to find an element  2K�.X/ such that

(143) ��k� � �
�
kp
� 2 ker.t�k /:

Then indeed � �p� 2 ker.t�/.

For every r 2 N we apply Proposition 6.5 to the fibration pkCr W YkCr ! XkCr in
order to see that p�

kCr
induces an isomorphism

K�.XkCr/

ker..pkCr ı tkCr/�/
�
�!

K�.YkCr/

ker.t�
kCr

/
:

We have a projective system of exact sequences indexed by r 2N ,

0! ker..pkCr ı tkCr/
�/!K�.XkCr/!

K�.YkCr/

ker.t�
kCr

/
! 0:

If we take the limit, identify

limrK�.XkCr/
limrker..pkCr ı tkCr/�/

Š
K�.X/

ker..p ı t /�/

and use the assumption that lim1rK
�.XkCr/D 0, then we get the exact sequence

0!
K�.X/

ker..p ı t /�/
! limr

K�.YkCr/

ker.t�
kCr

/
! lim1rker..pkCr ı tkCr/

�/! 0:

Note that the graded groups

limr
K�.YkCr/

ker.t�
kCr

/
Š

\
r2N

im.t�kCr/ and ker..pkCr ı tkCr/
�/

are of finite type, since they are subgroups of the groups of finite type K�.T / and
K�.XkCr/, respectively.
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Fact 6.10 [34] If .Gr/r2N is a projective system of countable abelian groups, then
either lim1rGr D 0 or lim1rGr is uncountable.

Since lim1rker..pkCr ı tkCr/�/ is a quotient of a countable group we conclude that
this group is actually trivial. The pull-back along the family of maps .p ı ikCr/r2N

induces an isomorphism

K�.X/

ker..p ı t /�/
�
�! limr

K�.YkCr/

ker.t�
kCr

/
:

The element � represents a class Œ��2 limrK�.YkCr/=ker.t�
kCr

/. Hence we can find
a class Œ � 2K�.X/=ker..p ı t /�/ which is mapped to Œ�� under the isomorphism
above. The elements � and  satisfy the relation (143). This finishes the proof of
Proposition 6.1.
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