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Sutured Floer homology and invariants of
Legendrian and transverse knots

JOHN B ETNYRE
DAVID SHEA VELA-VICK
RUMEN ZAREV

Using contact-geometric techniques and sutured Floer homology, we present an
alternate formulation of the minus and plus versions of knot Floer homology. We
further show how natural constructions in the realm of contact geometry give rise
to much of the formal structure relating the various versions of Heegaard Floer
homology. In addition, to a Legendrian or transverse knot K C (Y, £) we associate
distinguished classes EH(K) € HFK™ (Y, K) and EH(K) € HFK™ (Y, K), which
are each invariant under Legendrian or transverse isotopies of K. The distinguished
class EH is shown to agree with the Legendrian/transverse invariant defined by
Lisca, Ozsvath, Stipsicz and Szabd despite a strikingly dissimilar definition. While
our definitions and constructions only involve sutured Floer homology and contact
geometry, the identification of our invariants with known invariants uses bordered
sutured Floer homology to make explicit computations of maps between sutured
Floer homology groups.

57M27; 57R58, 57R17

1 Introduction

Juhész [22] defined the sutured Heegaard Floer homology SFH(Y, I') of a balanced
sutured manifold (Y, I') and immediately observed that if Y(K) = Y\v(K) was the
complement of an open tubular neighborhood of a knot K in the manifold Y and I},
was the union of two meridional curves, then SFH(Y (K), I'y) was isomorphic to the
knot Floer homology of K, H/F\K(Y, K). A primary aim in this paper is to show how to
recover more of the knot Floer homology package from the sutured theory. More specif-
ically, we will show that given a knot KX C Y we can define its Heegaard Floer-theoretic
invariants purely in terms of sutured Floer homology, contact geometry and certain direct
and inverse limits. These invariants share many properties of the knot Floer homology
package and in the second part of the paper, using bordered sutured homology, we show
how to identify these limit invariants with the plus and minus knot Floer homologies.

The original motivation for the present study is found in the work of Stipsicz and Vértesi
who first established a connection between the Legendrian knot invariant defined by
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Honda, Kazez and Mati¢ [19] and the Legendrian/transverse invariant defined by Lisca,
Ozsviéth, Stipsicz and Szabé [25], hereafter referred to as the LOSS invariant. Their
work naturally gives rise to an alternate and more geometric characterization of the
LOSS hat invariant. We show here that the correspondence first established by Stipsicz
and Vértesi fits into a much broader picture encompassing the more general LOSS
minus invariant.

Accomplishing the broad goals described in the paragraphs above requires precise
computations of the Honda—Kazez—Mati¢ gluing maps for sutured Floer homology in
a multitude of nontrivial situations. To date, only elementary computations, typically
relying on formal properties of the HKM gluing maps, have been performed. Such
precision is achieved through tools and techniques originating in bordered Floer ho-
mology (see Lipshitz, Ozsvath and Thurston [23]) and, specifically, bordered sutured
Floer homology, as developed by the third author [40; 41].

We note that contact geometry plays a key role in our results, adding to a steady stream
of evidence that there exist deep connections linking contact geometry and Heegaard
Floer theory. On one hand, Heegaard Floer invariants have proven powerful tools for
studying contact-geometric phenomena. They were instrumental in Lisca and Stipsicz’s
classification of Seifert-fibered spaces admitting tight contact structures, and have
featured prominently in the study of transversally nonsimple knot and link types. In the
other direction, contact structures have conspicuously appeared in solutions to several
problems in Heegaard Floer theory. In addition to appearing in Honda, Kazez and
Mati¢’s definition of a Heegaard Floer gluing map, Juhasz uses them in an essential way
in his construction of cobordism maps for sutured Floer homology. The proof of our
results hint at what might be behind this connection: when considering relatively simple
manifolds, the rigidity of the algebraic structure in bordered sutured Floer homology,
coupled with known properties of contact structures and their induced gluing maps can
sometimes uniquely determine a given situation.

In the remainder of the introduction, we provide a more thorough discussion of the
geometric and algebraic objects under consideration and statements of the main the-
orems to be proved in subsequent sections. Here, as in the rest of the paper, we will
focus our attention on the direct limit invariants and only sketch the ideas behind the
inverse limit invariants, since their definition and the proofs of their properties parallel
those of the direct limit invariants quite closely.

1.1 Limit invariants

Let K be a knot in a closed 3—manifold Y. We denote the knot complement by
Y(K) = Y\v(K). We consider a sequence of pairs of longitudinal sutures I} on
0Y(K) that “converge” the union of two meridional curves I}, on dY(K). More

Geometry & Topology, Volume 21 (2017)



Sutured Floer homology and invariants of Legendrian and transverse knots 1471

precisely, the curves that make up I differ from those that make up I by subtracting
a meridian. We can think of (Y (K), I;) as a subset of (Y (K), I34+1) such that B; =
(Y(K), T; 1)\ (Y(K),T}) is T? x[0,1]. On T? x [0, 1] there are (up to fixing the
characteristic foliations on the boundary) two contact structures &4 and £_ for which
the boundary is convex and the dividing curves agree with the sutures.

Honda, Kazez and Mati¢ [18] defined a gluing map for sutured Floer homology. Loosely
speaking, if (M, T) is a sutured manifold which sits as a submanifold of (M’,T”),
then a contact structure £ on the complement M’ — M which is compatible with T’
and T' induces a map

¢g: SFH(—M,—T') — SFH(-M', —T").
Thus, using the contact structure £— on 72 x [0, 1], we have the induced gluing map

¢—: SFH(-Y(K),—I}) — SFH(=Y (K), —T;11)
for each i.

Taking the directed limit of the above sequence of groups and maps yields our primary
object of study, the sutured limit homology of K

SFH(-Y. K) = lim SFH(-Y (K), —I}).
Now, considering the contact structure £+ on B;, we obtain maps
Y41 SFH(=Y (K), ~T) = SFH(=Y (K), ~T;11).

Using simple facts concerning contact structures on thickened tori we will show that
they induce a well-defined map

W: SFH(-Y, K) — SFH(-Y, K).

Thus, the group SFH(-Y, K) can be given the structure of an F[U]-module, where
U acts by V.

We further show that the F[U]-module SFH(—Y, K) is endowed with two natural
absolute gradings, which are reminiscent of the usual absolute Alexander and Maslov
gradings in knot Floer homology.

In Section 7, we prove the following theorem characterizing SFH(-Y, K):

Theorem 1.1 Let K C Y be a smoothly embedded null-homologous knot. There
exists an isomorphism of bigraded F[U]-modules

I_: SFH(~Y, K) — HFK™ (-Y, K).

Remark 1.2 Marco Golla [14; 15] has obtained results similar to Theorems 1.1 and 1.5
for Legendrian knots in the standard contact 3—sphere via an alternate characterization
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of the maps induced on sutured Floer homology by bypass attachments. This charac-
terization involves holomorphic triangle counts originally developed by Rasmussen.
Golla is further able to show, in the S* setting, that the HKM invariant of a Legendrian
knot K is determined by the pair of LOSS invariants {{(K), L(—K)} of K and its
orientation reverse —K . Examples discussed in Section 13 show this is not true in
general contact manifolds.

Each (Y(K), I;) can be viewed as a subset of (Y (K), I}y) in such a way that
(Y(K), L)\(Y (K). IT)

is T2 x [0, 1]. As above, there are two possible tight contact structures £4 and £_ on
T2 x [0, 1] with convex boundary realizing I' U T} as dividing sets. Choosing &_, the
HKM gluing map gives

¢&y: SFH(=Y (K), —T}) — SFH(=Y(K), —T},).

Juhdsz [21] gave a canonical identification of SFH(—Y (K), —I},) with I-Tﬁ((—Y, K).
Using this identification we obtain the map

¢sv: SFH(—Y(K), —TI}) — HFK(-Y, K);

we use the subscript SV as these maps were originally defined by Stipsicz and
Vértesi [35].

We can again appeal to facts about decompositions of contact structures on thickened
tori to show the maps ¢sy induce a map

®sy: SFH(—Y, K) — HFK(-Y, K).

With respect to the isomorphism given in Theorem 1.1, we have the following charac-
terization of ®gy:

Theorem 1.3 Let K C Y be a null-homologous knot type, I—: SFH(-Y, K) —
HFK™(—Y, K) the isomorphism given by Theorem 1.1 and ps: HFK™ (=Y, K) —
H/ﬁ((—Y, K) the map induced on homology by setting the formal variable U equal to
zero at the chain level. The following diagram commutes:

I _
SFH(-Y, K) HFK™ (=Y, K)
q&\ %

HFK (-Y, K)
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There is an additional natural geometric operation one can perform on the sequence
(Y(K), I;). Specifically, one can consider the effect of attaching a meridional contact
2-handle to the boundary of each (Y (K), T;). As a sutured manifold, this space is
equal to Y (1) in the language of Juhdsz [21] and its sutured Floer homology can be
naturally identified with ﬁf(—Y). By considering the HKM gluing maps associated
to this sequence of contact 2—handle attachments, for each i, we obtain a sequence of
maps ¢n: SFH(—-Y(K), —1}) — ﬁ?(—Y) that induce a map

@,y SFH(-Y, K) — HE(=Y).

With respect to the isomorphism given in Theorem 1.1, we have the following charac-
terization of ®,p:

Theorem 1.4 Let K C Y be a null-homologous knot type, 1—: SFH(-Y, K) —
HFK™ (—Y, K) the isomorphism given by Theorem 1.1 and m,: HFK™ (-Y, K) —
ﬁ?(—Y) the map induced on homology by setting the formal variable U equal to the
identity at the chain level. The following diagram commutes:

I _
SFH(-Y, K) HFK™(-Y, K)
% Tk
HE(-Y)

1.2 Legendrian and transverse invariants

In 2007, Honda, Kazez and Mati¢ defined an invariant of Legendrian knots taking
values in sutured Floer homology [19]. Given a Legendrian knot K C (Y, £), the
Honda—Kazez—Mati¢ invariant— henceforth referred to as the HKM invariant —is
obtained via the following construction: First, remove an open standard neighborhood
of K from (Y, £) and denote the resulting space by (Y (K), g ). The HKM invariant
is then equal to the contact invariant

EH(K) = EH(Y(K),£x) € SFH(—Y(K), —Tg),

where the set of sutures ['x is equal to the natural dividing set obtained on the torus
boundary 9Y (K).

Later, in 2008, Lisca, Ozsvath, Stipsicz and Szabé defined an alternate invariant of
both Legendrian and transverse knots taking values in knot Floer homology. Given
a null-homologous Legendrian knot K C (Y, &), the Lisca—Ozsvath—Stipsicz—Szab6
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invariant — henceforth referred to as the LOSS invariant—is obtained via an open
book decomposition adapted to the knot K. Ultimately, their construction yields two
invariants

L(K) € HFK™(-Y,K) and ZL(K)e HFK(-Y, K),

which take values in either the minus or hat version of knot Floer homology.

The LOSS invariants possess several features which distinguish them from the HKM
invariants. First, they take values in knot Floer homology and come in two flavors,
“minus” and “hat”. More strikingly, unlike the HKM invariants, the LOSS invariants
are unchanged by negative Legendrian stabilization. This implies that £ and £ define
transverse invariants through a process known as Legendrian approximation.

A connection between the HKM and LOSS invariants was discovered by Stipsicz and
Vértesi [35]. Given a null-homologous Legendrian knot K C (Y, &), Stipsicz and
Vértesi identify a natural contact geometric construction which ultimately yields a map

¢sv: SFH(—Y(K), —T'x) — HFK(-Y, K),
for which the image of EH(K) is 2([().

The map ¢sy is precisely the one discussed in the previous subsection. More specifically,
the Stipsicz—Vértesi map is obtained by attaching a contact 72 x I layer to the boundary
of (Y(K), £k) to obtain a space which we denote by (¥ (K), £x). The contact structure
on T2 x 1 is chosen in a way which is compatible with negative Legendrian stabilization
and which results in a pair of meridional dividing curves along the boundary of the
resulting space. Applying the HKM gluing map gives an identification between EH(L)
and the contact invariant EH(Y (K), E k) € SFH(-=Y(K), —T},). Since the new dividing
set on 0Y(K) consists precisely of two meridional curves, the sutured Floer homology
group SFH(-Y(K), —I},) is isomorphic to H/F\K(—Y, K). An explicit computation
using open book decompositions then provides the desired identification between
EH(Y(K), £x) and £(K).

This alternate view of the LOSS hat invariant — as the contact invariant of a space
associated to a given Legendrian or transverse knot—is quite useful in practice. It
frequently allows one to interpolate between geometric properties of Legendrian and
transverse knots and algebraic properties of the LOSS hat invariant. For instance,
this perspective was instrumental in the first and second author’s result that Giroux
torsion layers are necessarily intersected by the binding of any open book supporting
the ambient contact structure; see Etnyre and Vela-Vick [9]. The above discussion
motivates one to consider a refinement of the Stipsicz—Vértesi construction which
retains more geometric information associated to a given Legendrian or transverse knot.
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If K C (Y, £) is a Legendrian knot, we denote by K; the i negative stabilization of K.
Let (Y(K), &) denote the complement of an open standard neighborhood of K;. Note
that the boundary of (Y (K),&;) is convex, and, with the appropriate choice of initial
longitude, we can identify the dividing set with I} from the previous subsection. Work
of Etnyre and Honda [7] shows that the complement (Y (K), & 4+1) is obtained from
(Y(K), &) by attaching a negatively signed basic slice (72 x I, £_) to the boundary
of (Y(K), ;). Thus, the collection

{EH(K;) € SFH(-Y (K),—T})}
of HKM invariants satisfies ¢_ (EH(K;)) = EH(K;+1) and hence yields an element
EH(K) € SFH(-Y, K),

which defines an invariant of the Legendrian knot K. By construction, the invariant
EH(K) remains unchanged under negative stabilizations of the Legendrian knot K.
Therefore, through the process of Legendrian approximations, we see that EH defines
an invariant of transverse knots. In what follows, we shall refer to these as the LIMIT
invariants of Legendrian and transverse knots.

With respect to the isomorphism /_ promised by Theorem 1.1, we have the following
alternate characterization of the LIMIT invariant EH:

Theorem 1.5 Let K C (Y, &) be a null-homologous Legendrian knot. The isomor-
phism
I_: SFH(-Y, K) - HFK™ (-7, K)

given by Theorem 1.1 identifies the Legendrian invariants EH(K) and £(K).

Knowing that “LIMIT = LOSS” allows one to combine the intrinsic advantages of
either invariant when attempting to solve a given problem. In a similar spirit, the second
author, in joint work with Baldwin and Vértesi [3], showed that the Legendrian and
transverse invariants defined by Lisca, Ozsvath, Stipsicz and Szabé [25] agree with
the combinatorial (GRID) invariants of Legendrian and transverse knots defined by
Ozsvith, Szabé and Thurston [28]. Thus, one can view Theorem 1.5 as the final chapter
in a story relating the various Legendrian and transverse invariants defined within the
sphere of Heegaard Floer theory.

1.3 Sutured inverse limit invariants

The sutured limit invariants are defined by taking a sequence of tori in a knot com-
plement with sutures that limit to meridional sutures through negatively sloped lon-
gitudinal sutures. One can alternatively consider the sequence of sutured manifolds
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(=Y (K), —Fl.+), each containing (—Y(K), —I},) and having longitudinal sutures of
slope 7. Removing basic slice layers one at a time, this sequence of spaces again has
limit (=Y (K), —I},). In turn, one can define an inverse limit invariant

SFH(-Y, K).

The details of the construction are very similar to those above and presented in
Section 3.6. Arguments analogous to the ones we use in proving the theorems above
will prove the following relations with Heegaard Floer knot invariants.

Theorem 1.6 Let K C Y be a smoothly embedded null-homologous knot. There
exists an isomorphism of bigraded IF[U]-modules

I+: SFH(-Y, L) - HFK (Y, L).

Theorem 1.7 Let K C Y be a Legendrian representative of a null-homologous knot
type, 1 P SFH(-Y, K) — HFK™ (=Y, K) the isomorphism given by Theorem 1.6 and
Ly: HFK( Y, K) — HFK' (Y, K) the map induced on homology by the inclusion
of complexes. Then there is a natural geometrically defined map ®q4sv such that the
following diagram commutes:

SFH(-Y, K) HFK* (-7, K)
(DN /
HFK (-Y, K)

Also, in Section 3.6 we define a class EH(K) in SFH(-Y, K) for a Legendrian or
transverse knot K in a contact manifold (Y, £). While a corresponding invariant in
knot Floer homology has not previously been studied we can prove the following result:

Theorem 1.8 Let K C (Y, &) be a Legendrian knot. Under the map
®ysv: HFK (—Y, K) — SFH(-Y, K)

given in Theorem 1.7, the Legendrian invariant ﬁ(K ) is sent to EH(K).

1.4 Vanishing slopes

The construction of the limit invariants and examples computed in Section 13 motivate
the definition of an invariant of Legendrian or transverse knots we dub the “vanishing
slope”.
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To be more precise, let K be an oriented null-homologous Legendrian knot and
(Y(K), k) the complement of an open standard neighborhood of K. We define an
extension of (Y(K),&k) to be a contact manifold (Y(K), &%) which is obtained from
(Y(K), &k ) by attaching a (tight) sequence of basic slices to dY (K). One similarly
defines a positive or negative extension to be one in which all of the attached basic
slices are positive or negative, respectively.

Recall that if K* is obtained from K via positive or negative stabilization, then
(Y(K), g +) is obtained from (Y (K), k) by attaching a positive or negative basic
slice to dY (K), respectively. In particular, (Y (K), &g+ ) is either a positive or negative
extension of (Y (K),£&g) depending on the sign of the stabilization. Similarly, the
contact 3—manifold (Y (K),&x), obtained via the Stipsicz—Vértesi attachment, is a
negative extension of (Y (K), ék).

Let (Y(K).&)) be an extension of (Y (K),£g). We define the extension slope of
(Y(K),&y) tobe s(Y(K),Eg) = (—n.r), where n € Zx¢ is the amount of Giroux
m—torsion in (Y(K), £ )\(Y(K).&k) and r € Q U {oo} is the usual dividing slope of
the dividing curves in the boundary of (Y (K),£) ). Roughly, the extension slope is
just the usual dividing slope, enhanced to track the number of times the dividing curves
of convex tori contained within the extension rotate beyond the meridional slope as
they approach the boundary of (Y(K),&}). To pin down the ordering of extension
slopes we recall that slopes are measured with respect the longitude given by a Seifert

surface (and meridian). So the extension slope of (Y (K), £k ) (that is, no extension is
added) is (0, tb(K)). We will say the extension slopes (0, r) are increasing as r moves
counterclockwise around Q U {co} (thought of as labels on the Farey tessellation). And
every time the r—factor “increases” past tb(K) we decrement the (—n )-factor.

Definition 1.9 Let K C (Y, &) be a null-homologous Legendrian knot with a given
Seifert framing and nonvanishing HKM invariant. We define the vanishing slope
Van(K) to be

sup{s(Ig, ) | (Y (K),§k) extends (Y(K).ék). EH(Y(K). &) # 0},

where all extensions must be by tight contact structures. We similarly define the positive
and negative vanishing slopes Van™ (K) to be

sup{s(Fg;() | (Y(K), &) positively extends (Y (K), éx), EH(Y (K), £x) # 0}

and

sup{s(Fg}() | (Y(K), k) negatively extends (Y (K), £x), EH(Y (K), &), # 0},
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respectively. We note that since 2w —Giroux torsion implies that the EH invariant
vanishes (see Ghiggini, Honda and Horn-Morris [11]), all the vanishing invariants are
bounded above by (—2, th(K))

The above definitions can be extended to the transverse category as well via the process
of Legendrian approximation. In this case, however, one must restrict the set(s) of
allowable extensions to sequences of basic slice attachments, the first of which is the
Stipsicz—Vértesi attachment. Otherwise, the corresponding definitions are identical.

We immediately obtain the following observation concerning the relationship of the
negative vanishing slope to other invariants considered in this paper.

Proposition 1.10 Let K C (Y, &) be a null-homologous Legendrian knot with given
Seifert framing.

(1) If EH(K) # 0, then Van™ (K) > (0, tb(K)).

(2) If any of the invariants £L(K) = EH(K), Z‘:(K) or EH(K) are nonvanishing,
then Var™ (K) > (0, 00). |

See Section 13 for some explicit computations of the vanishing slope.

1.5 Noncompact 3-manifolds

The work presented here is part of a broader program to develop Heegaard Floer-
theoretic invariants for noncompact 3—manifolds with cylindrical ends and a generalized
“suture” on the boundary at infinity. These invariants are built in a fashion similar
to SFH(-Y, K) above, by taking directed limits over collections of maps induced
by natural contact-geometric constructions. In the special case of manifolds with
T2 x [0, oo)—ends, a generalized suture is equivalent to a choice of “slope at infinity”,
as defined by Tripp [37].

When these techniques are applied to a null-homologous knot complement Y (K) =
Y\v(K), and the slope at infinity is chosen to be meridional to K, the resulting group
SFH(—Y, K) is isomorphic to the minus variant of knot Floer homology HFK™ (-7, K).

Such generalizations are the subject of future papers.

1.6 Supplementary results and questions

To prove the theorems discussed above, we must establish a number of supplementary
results which may be of independent interest. Most notably, we discuss a general
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framework which one can apply to effectively and explicitly compute the HKM gluing
maps. Additionally, as a corollary of our discussion regarding maps induced by bypass
attachments, we obtain an independent proof of Honda’s bypass exact triangle [16];
see Section 6.

In Section 13, we provide an example of a Legendrian knot K; for which EH(K{) # 0
despite the fact that EH(K ) = £(K1) = 0. We further demonstrate the existence
of a Legendrian knot K, for which L (K3) # 0 while EH(K) = 0. The examples
K1 and K, are a nonloose Legendrian unknot and trefoil in an overtwisted contact
structure on S3, respectively. This suggests attention be paid to the following question:

Question 1 What is the difference in information content between the various Legen-
drian and transverse invariants defined in the context of Heegaard Floer theory?

Golla [14] has a beautiful answer to this question for Legendrian knots in the standard
contact 3—sphere. Specifically, he shows that, in terms of information content, the
HKM invariant of a Legendrian knot K is equivalent to the pair of LOSS invariants
{L(K), L(—K)}. That is, EH(K) determines the pair {£(K), £L(—K)} and vice versa.
As mentioned above our examples in Section 13 indicate this is not true in arbitrary
contact manifolds.

In a different direction, Lisca and Stipsicz [26] recently showed how to construct a
new invariant of Legendrian and transverse knots using contact surgery techniques.
Although their construction is substantially different from that presented in this paper, it
is similar in the sense that their invariants take values in an (inverse) limit of Heegaard
Floer homology groups. Thus, we ask the following question:

Question 2 What, if any, is the relationship between the inverse limit invariants defined
by Lisca and Stipsicz and the directed and inverse limit invariants defined here?

Organization Part I of the paper gives the definition and properties of the limit
sutured homologies and discusses their properties. Specifically, Section 2 provides
background on contact geometry and knot and sutured Floer homology. In Section 3,
we provide a rigorous definition of the sutured limit homologies and the associated
Legendrian/transverse invariant. Part II uses bordered sutured Floer homology to
identify the invariants from Part I with their corresponding knot Floer homologies. We
begin that part with a review of bordered sutured Floer homology in Section 4 and
discuss the algebras associated to parametrized sutured surfaces used in our proofs in
Section 5. In Section 6 we use bordered sutured Floer homology to compute the effects
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on sutured Floer homology of attaching a bypass to a convex surface and provide a
rigorous proof of Honda’s “bypass exact triangle” in sutured Floer homology. The
following two sections identify our limit invariants with the corresponding knot Floer
homologies and the limit Legendrian invariants with the LOSS invariants, respectively.
Then, in Sections 9 and 10, we prove various maps between the limit invariants and
knot Floer homology can be identified with corresponding maps purely in knot Floer
homology. In Section 11, we sketch proofs of the various results concerning sutured
inverse limit homology. Having completed our identification of limit invariants with knot
Floer homology, in Section 12 we show how to identify natural gradings on sutured limit
homology with the classical absolute Alexander and Z/2 Maslov gradings. Finally, in
Section 13, examples are presented of Legendrian knots exhibiting interesting behavior
from the perspective of the Legendrian and transverse invariants defined herein.
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Part I The sutured limit homology package

In this part of the paper, using only sutured Floer homology and contact geometry,
we define the sutured limit SFH(Y, K) and sutured inverse limit SFH(Y, K) homolo-
gies of a null-homologous knot in a 3—manifold. Together with the sutured Floer
homology SFH(Y (K),I},) of the knot complement with meridional sutures, these
groups are shown to share many of the properties of the knot Floer homology packaged
HFK* (Y, K) and I-fﬁ((Y, K). We also show that, given a Legendrian knot K in a
contact manifold (Y, &), there is an invariant EH(K) € SFH(-Y, K) that shares many
properties of the LOSS invariant £(L) € HFK™ (-7, L).
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Remark 1.11 It will be clear from our discussion that any homology theory for sutured
manifolds that possesses an appropriate “gluing” theorem and contact invariant will
lead to limit invariants for knots. See, for example, Baldwin and Sivek’s work defining
contact gluing maps in the (sutured) monopole and instanton setting [1; 2].

2 Background

In this section, we review the basic definitions and results used in the first part of
the paper to define the sutured limit and inverse limit homologies. We begin by
reviewing standard notions in contact geometry, convex surfaces, and Legendrian and
transverse knot theory. In the following subsections we recall basic definitions and
results from knot Floer homology, sutured Floer homology and invariants of Legendrian
and transverse knots.

2.1 Contact geometry

Recall that a contact structure on an oriented 3—manifold Y is a 2—plane field &
satisfying an appropriate nonintegrability condition. In what follows, we assume that
our contact structures are always cooriented by a global 1—-form «, called a contact
form. In this case, the nonintegrability condition is equivalent to the statement that
o Ada is a volume form defining the given orientation on Y . We refer the reader to
[6; 7; 17] for details concerning contact structures, Legendrian and transverse knots,
and convex surfaces, but recall below the basic facts we will need.

2.1.1 Convex surfaces and bypass attachments Recall that a surface X in a contact
manifold (Y, &) has an induced singular foliation 77X N &, called the characteristic
foliation X, and the characteristic foliation determines & in a neighborhood of X. The
surface ¥ is said to be convex if there exists a vector field v on Y which is transverse
to X and whose flow preserves the contact structure &. Given such a surface and vector
field, the dividing set I' C X is the collection of points {p € X : vy € &p}.

Dividing sets are so-called because they divide a convex surface ¥ into a union of
two (possibly disconnected) regions. Orienting % so that the vector field is positively
transverse to X, the regions are called positive or negative according to whether the
transverse vector field v along X intersects the contact planes positively or negatively.

Convex surfaces have proven tremendously useful in the study of contact structures on
3—manifolds for the following key reasons:

(1) If X is closed or compact with Legendrian boundary (and the twisting of & along
Y is nonpositive), then, after possibly applying a C®—isotopy in a neighborhood
of the boundary, ¥ is C*°—close to a convex surface.
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(2) Giroux flexibility Given a convex surface ¥ with dividing set ', if F isa
singular foliation on X that is divided by I" (see [17] for the precise definition
of “divided by” but in practice it means that F is the characteristic foliation on
Y in some contact structure and I" is isotopic to a dividing set for the foliation),
then we may C°—-isotope X so that its characteristic foliation is F.

(3) Since the characteristic foliation of a surface determines the contact structure in
a neighborhood of X, the contact structure £ on Y near X is almost determined
by the dividing set T".

An important example of the use of Giroux flexibility is for convex tori. Suppose 7 is
a convex torus in (Y, &) with dividing set I consisting of two parallel curves that split
T into two annuli 74 and 7. According to Giroux flexibility we can C°—isotope T
so that its characteristic foliation consists of a two circles worth of singularities, one
the core of 71 and the other the core of 7_. These are called Legendrian divides. The
rest of the foliation is nonsingular and gives a ruling of 7" by curves of any preselected
slope other than the slope of the dividing curves. These nonsingular leaves are called
the ruling curves. A torus with such a characteristic foliation will be called a standard
convex torus.

Let o be an arc contained in a convex surface ¥ and suppose that « intersects the
dividing set of X transversally in three points p;, p, and p3, where p; and p3 are
the endpoints of «. A bypass along « is a convex disk D with Legendrian boundary
such that

() DNE =a,
) tb(dD) = —1,
(3) AD=aUB,

(4) anp={p1.p3} are corners of D and elliptic singularities of Dg.

When a bypass is attached to a convex surface X, the dividing set on ¥ changes in the
following predictable way:

Theorem 2.1 (Honda [17]) Suppose that ¥ is an oriented convex surface in (Y, §).
The surface X locally splits Y into two pieces. Suppose that D is a bypass along «
in X lying on the positive side of X. If ¥ x [0, 1] is a small one-sided neighborhood
of ¥ U D such that ¥ = X x {0}, then the dividing curves on X x {1} are the same as
the dividing curves on X except in a neighborhood of «, where they change according
to Figure 1. The change in the dividing curves if ¥ is pushed across a bypass on the
negative side of X is also shown in the figure.
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P/,D

~
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Figure 1: Effect of a bypass attachment along « from the positive side of the
surface (top right) and negative side of the surface (bottom right)

2.1.2 Legendrian and transverse knots When studying 3—dimensional contact
manifolds (Y, &), it is profitable to focus attention on 1-dimensional subspaces which
either lie within or transversely intersect the contact planes. If a knot K C Y satisfied
Tp,K C&p forall p e K, we say that K is Legendrian. Similarly, if K C Y satisfies
T,K Mé&, forall p e K, we say that K is transverse. Since our contact structures are
always oriented, we further require that each of the intersections between a transverse
knot K and the contact structure & be positive. Legendrian or transverse knots are said
to be isotopic if they are isotopic through Legendrian or transverse knots respectively.

Recall that a Legendrian knot always has a framing coming from the contact structure
called the contact framing. If L has a preferred framing F then we can associate an
integer, tw(L, F), to the contact framing. If L is null-homologous and its preferred
framing is the Seifert framing the we call the twisting tw(L, F) the Thurston—Bennequin
invariant and denote it by tb(L). In addition, when L is null-homologous and oriented
we can define the rotation number r(L) to be minus the Euler number of & restricted
to a Seifert surface, relative to an oriented vector field in £ along L. (This number
depends on the class [X] € H,(Y, L), and is only well defined modulo n, where 7 is
the generator of the image of the Euler class of & in Z.)

It is well known—see [7] —that any two Legendrian knots have contactomorphic
neighborhoods. Thus, studying a model situation one can see that, given a Legendrian
knot L, there is a neighborhood of L with convex boundary having two dividing

Geometry € Topology, Volume 21 (2017)



1484 John B Etnyre, David Shea Vela-Vick and Rumen Zarev

curves of slope tb(L). If the boundary of this neighborhood is in standard form with
any ruling slope then we say this is a standard neighborhood of L. We also recall
that any solid torus N in a contact manifold (Y, £) with convex boundary having two
dividing curves of slope n and standard form on the boundary and for which &|p is
tight is a standard neighborhood of a unique Legendrian knot L in N C M up to
isotopy. Thus, studying Legendrian knots in a given knot type in (Y, £) is equivalent
to studying such solid tori that represent the given knot type.

Given an oriented Legendrian knot K, one can produce new Legendrian knots S (K)
and S_(K) in the same knot type by applying operations called positive and negative
stabilization, respectively. These operations, performed in a standard neighborhood of a
point on L are depicted in Figure 2. We will discuss the relation between stabilization
and standard neighborhoods of Legendrian knots in the next subsection.

o
PN

Figure 2: Positive and negative Legendrian stabilizations

Given a Legendrian knot K, one can produce a canonical transverse knot nearby to K,
called the transverse pushoff of K. If 7 is a transverse knot, we say that K7 is a
Legendrian approximation of 7" if the transverse pushoff of K7 is 7. For a given
transverse knot, there are typically infinitely many distinct Legendrian approximations
of T'. However, each of these infinitely many distinct Legendrian approximations
are related to one another by sequences of negative stabilizations. Thus, these two
constructions are inverses to one another, up to the ambiguity involved in choosing a
Legendrian approximation of a given transverse knot (see [5; 7]).

2.1.3 Contact structures on thickened tori Before discussing contact structures on
T? x [0, 1] we first discuss curves on T2. Choosing a product structure on T2 we
may identify (unoriented) essential curves on 7% with the rational numbers union
infinity so that S! x {pt} is the co—curve and {pt} x S is the O—curve. It will be
useful to compactify R to S! and think of the added point as being both co and —oco.
Having done this the essential curves on 7' are represented by the rational points
union infinity on S!. Recall that two curves form an integral basis for H'!(T'2;Z)
if and only if they can be isotoped to intersect exactly once. In terms of the rational
numbers pg/qo and p;/q; associated to the curves, they will form an integral basis if
and only if pogy —¢q1po = £1.
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Figure 3: The Farey tessellation oriented for use with our convention of slopes

We can encode these ideas in the Farey tessellation; see Figure 3. Let D be the unit
disk in the complex plane. Label the complex number i by 0 and —i by +oo and
connect them with a geodesic in D (where we give D the standard hyperbolic metric).
Label 1 by 1 and connect it to the points labeled 0 and 00 by geodesics. We will
now inductively label the points on dD with positive real part. Given an interval on
dD with positive real part and endpoints two adjacent points that have been labeled
by po/qo and p1/q1, label its midpoint by (po + p1)/(qo + ¢g1) and connect it to the
endpoints of the interval by geodesics. (Here we think of 0 as % and oo as %.) We
can similarly label points on dD with negative real part (except here we must think of
0 as % and oo as —% ). This procedure will assign all the rational numbers to points
on dD and they will appear in order, that is if @ > b then a will be in the region that
is clockwise of b and counterclockwise of co. Moreover, the edges will not intersect
and two points will be connected by an edge if and only if they correspond to curves
that form an integral basis for H;(T?;Z).

Turning to contact structures, let I} be two parallel curves on 7% with slope s; for
i =0, 1. Given a contact structure £ on 7% x [0, 1] with convex boundary having
dividing curves T; on T2 x {i} for i =0, 1, we say £ is minimally twisting if any
other convex torus 7' in T2 x [0, 1] that is isotopic to the boundary has dividing slope
clockwise of s and counterclockwise of s;. (Note that a minimally twisting contact
structure is necessarily tight.) Recall that the classification of contact structures on
thickened tori implies that given any slope that lies clockwise of sy and counterclock-
wise of s; is the dividing slope for some convex torus, thus the minimally twisting
condition says that the only convex tori are the ones that must be there.
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A basic slice is a tight, minimally twisting tight contact structure on 72 x [0, 1] for
which each boundary component is convex with I} being the dividing set on 72 x {i },
I; consisting of two curves of slope p;/¢q; and pogi — p1go = £1.

According to [12; 17] there are precisely two basic slices for any given dividing curves
(once the characteristic foliations on the boundary are arranged to be the same), called
positive and negative. We denote them by S;E) a0/ They are distinguished by
their relative Euler class, but are the same up to contactomorphism. Moreover there
is a diffeomorphism taking any basic slice to another. The following theorem relates

basic slices to bypass attachments:

Theorem 2.2 (Honda[17]) Let (T%x[0, 1],gf1’0) and (T*x[0,1],€7, ) be positive
and negative basic slices, respectively, with dividing slopes —1 and 0. The contact
structures éfl,o and 5:1,0 are obtained from an invariant neighborhood of T2 x {1}
by attaching a bypass layer (on the back) along the curves vy and y—, respectively,
shown in Figure 4.

Y+
e e e Rl py
+ — + —

Figure 4: The bypass attachments for the positive and negative basic slice

We now recall part of the classification of minimally twisting contact structures on
T2 x[0, 1] that we will need below (for details see [17]).

(1) Given a minimally twisting contact structure on 7' x [0, 1] with standard convex
boundary having dividing slope s; on T2 x i for i = 0, 1, there corresponds a
minimal path in the Farey tessellation that goes from sy clockwise to s; and
signs on each edge in the path.

(2) Given the contact structure above, any slope s in the interval clockwise of s¢
and counterclockwise of 51 can be realized as the dividing slope on some convex
torus.

(3) Given a minimal path in the Farey tessellation between two numbers s¢ and s;
and any assignment of signs to the edges in the path, there is a unique minimally
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twisting contact structure realizing that path. (Different assignments of signs can
correspond to the same contact structure; see [17].)

(4) Given a nonminimal path in the Farey tessellation between two numbers s¢
and s; and an assignment of signs to the edges, it will correspond to a tight
(and minimally twisting) contact structure if and only if it can be shortened to a
minimal path, otherwise it corresponds to an overtwisted contact structure. A
path can be shortened if there are two edges in the path which can be replaced
by a third edge and the edges have the same sign; then, in the shortening, the
third edge is assigned the sign of the two edges it replaces.

We briefly note that each edge in the Farey tessellation corresponds to a basic slice. So
the above results basically say that a contact structure on 7% x [0, 1] can be factored
into basic slices and when you “glue” two basic slices together you get a minimally
twisting contact structure unless the basic slices have different signs and correspond to
a path that can be shortened.

We now establish some important notation used in the following section to define our
limit invariants. Using the product structure above on 7% we write B; *+ for the basic
slice (T2x[0, 1] £% .. and AF for (T*x[0,1],€% ) ). Let (sz[o 1.6, be
denoted by A and finally, for i > j, let C; i denote the contact manifold 72 x [O 1]
correspondmg to the minimal path in the Farey tessellation from —i to —; with all
signs being +. We note that according to the classification results discussed above we
have the following facts:

Proposition 2.3 We have these relations between contact structures on T2 x [0, 1]. In
each case, the two boundary components having the same slope are glued together.
(1) The contact manifold Al.jE U Cl.j:0 is contactomorphic to A(ﬂf.
(2) Fori >k > j, the contact manifold Cl.j;c U Ckij is contactomorphic to Cl.ij.

(3) The contact manifold Bl.jE U Bl.ji_l is contactomorphic to the contact structure

BjF U sz—EH (This does not directly follow from the classification results above

but is essentially the ambiguity mentioned in item (3) above; see [17].)
(4) The contact manifold Al.“—L u C:E) is overtwisted.
(5) The contact manifold Al.i u BijE is contactomorphic to Al.lL_1
(6) The contact manifold Al.i U Bf is tight and minimally twisting.

Remark 2.4 Turning the first observation around, there is a sequence of tori 7; for
i =0,1,... in A such that 7; is a standard convex torus (isotopic to the boundary
of A ) with dividing slope —i such that 7; cuts 4 into two pieces, namely A4;
and Cl.,_o. Moreover, for j > i the torus 7} is contained in the A;" component of the
complement of 7;.
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We have analogous results for A . Specifically, in A there is a sequence of tori T; for
i=0,1,... such that 7} is a standard convex torus (1sotoplc to the boundary of A )
with dividing slope 7 such that T; cuts A into two pieces, namely A and Cj _
Moleover for j > i the torus Tj is contalned in the Al_ component of the complerrfent
of T;.

From the perspective of Legendrian and transverse knot theory we have the following
result:

Theorem 2.5 (Etnyre and Honda [7]) Let L C (Y, &) be a Legendrian knot and
identify the boundary of its complement with T2 so that the meridional curve has slope
oo and the longitude given by the contact framing has slope 0. Now let N be a standard
neighborhood of L, with L and L_ its positive and negative stabilizations inside N
and Ny standard neighborhoods of L4 inside N . The contact manifold Jm is
contactomorphic to BljE (and Cojf1 ). In particular the (closure of the) complement
of the standard neighborhoods of L and L_ are obtained from the (closure of the)
complement of the standard neighborhood of L by a positive and negative basic slice
attachment respectively.

2.1.4 Open book decompositions In recent years, the primary tool used to study
contact structures on 3—manifolds has been Giroux’s correspondence [13]. An open
book decomposition of a 3—manifold Y is a pair (B, ) consisting of an oriented,
fibered link B C Y, together with a fibration of the complement 7: (Y — B) — S! by
surfaces whose oriented boundary is B. An open book (B, ) is said to be compatible
with a contact structure & if B is positively transverse to the contact planes and
there exists a contact form « for £ so that da restricts to an area form on the fibers
Sg =n"1(9).

In was shown by Thurston and Winkelnkemper [36] that, given an open book, (B, 7),
one can always produce a compatible contact structure. Giroux [13] showed that two
contact structures which are compatible with the same open book are, in fact, isotopic.
He further showed that two open books which are compatible with the same contact
structure are related by a sequence of “positive stabilizations”, that is, plumbing with
positive Hopf bands. In other words, Giroux proved the following result:

Theorem 2.6 (Giroux [13]) There exists a one-to-one correspondence between the
set of isotopy classes of contact structures supported by a 3—manifold Y and the set of
open book decompositions of Y up to positive stabilization.

One can alternatively specify an open book decomposition (B, ) of a 3—manifold
Y by specifying a pair (S, ¢) consisting of a fiber surface S and a monodromy map
¢: S — S corresponding to the fibration 7: (Y — B) — S (note that ¢|yg = Id).
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The data (S, ¢) is called an abstract open book, and determines an open book (B, )
on the 3—manifold obtained via the appropriate mapping cylinder construction, but
only up to diffeomorphism.

2.2 Knot Floer homology

The Heegaard Floer package possesses a specialization to knots and links known
commonly as knot Floer homology. This specialization was defined independently by
Ozsvith and Szab6 [29] and by Rasmussen [33]. In what follows, we review some basic
definitions. The interested reader is encouraged to read the original papers [29; 33] for
a more complete and elementary treatment. We work with coefficients in F = Z /2
throughout the remainder of the paper.

If K CY isaknot, a doubly pointed Heegaard diagram for K consists of an ordered
tuple H = (X, &, 8,2, w). We require that the Heegaard diagram (X, «t, B) specifies
the 3—manifold Y and that the knot K is obtained as follows. Choose oriented,
embedded arcs y, in X\a and yg in X\B connecting the basepoint z to w and
w to z, respectively. Now, form pushoffs y, and yg by pushing the interior of
these arcs into the & and B handlebodies, respectively. The knot is then the union
K =y, U yg of the two curves.

To such a doubly pointed diagram H, Ozsvath and Szabé associate a chain complex
CFK*(H), which is freely generated as an F[U, U ~!]-module by the intersections
of the tori Ty = &y X--- X ag and Tg = B x--- x B¢ inside the symmetric product
Sym#(X). Given a pair of intersections x, y € To N Tg, a Whitney disk ¢ € m>(x, y)
connecting them and a generic path of almost complex structures on Sym# (X), we
denote the moduli space of pseudoholomorphic representatives of ¢ by M(¢). It has
expected dimension given by the Maslov index w(¢) and possesses a natural R—action
given by translation. We denote the quotient of M(¢) under the R—action by /Q(qﬁ).
If p € ¥\(ax U pB), then we denote by n,(¢) the intersection number of ¢ with the
subvariety V, = {p} x Sym&~ ().

We define the differential

0%°: CFK*°(H) — CFK*°(H)
on generators via

R = Y ) #ME)- Uy,
y€TNTg pem2(x,y)
u(@)=1

For a knot K in a 3—manifold Y with b; = 0, the complex (CFK*°(#), °°) comes
equipped with two natural gradings. The Maslov (homological) grading, which is an
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absolute Q—grading, is specified up to an overall shift by the formula

M(x) = M(y) = ju(¢) —2nw(9)

for x, y € T N Tg and any ¢ € m>(x, y), and the requirement that multiplication
by U drop the Maslov grading by two. The Alexander grading is again an absolute
Q-—grading, specified up to an overall shift by the formula

A(x) = A(y) = nz(¢) —nw(9).
and the requirement that multiplication by U drop the Alexander grading by one.

From these formulae, we see that the differential 0°° decreases the Maslov grading by
one and is Z-filtered with respect to the Alexander grading; 4(0°°(x)) < A(x) for
any x € Ty NTg. There is an additional Z—filtration on (CFK*(#), 0°>°) obtained
by recording the U —exponent multiplying a given generator x € Ty N Tg.

By positivity of intersection, n4,(¢p) is always nonnegative, so the Z[U]-module
CFK™ (#) C CFK*(#) freely generated by the intersections of the tori Ty and Tg
inside the symmetric product Sym# (X) is a subcomplex of CFK*° (). We denote the
restriction of 9 to CFK™ (#) by 0~. We additionally denote by (CFK™ (%), %)
the quotient complex.

Theorem 2.7 (Ozsvéth and Szabd [29], Rasmussen [33]) Let K be a null-homologous
knot in a 3—manifold Y with by = 0, and H a doubly pointed Heegaard diagram
for the pair (Y, K). Then the Q—graded, Z & Z —filtered chain homotopy types of
the complexes (CFK® (%), 0°°), (CFK™ (%), ™) and (CFK™ (%), 1) are invariants
of (¥, K).

One typically works with the associated graded objects with respect to the Alexander
filtration. On the level of complexes, this is equivalent to adding the condition #n,(¢) =0
to the definitions of the differentials on CFK®, CFK~ and CFK™ . It is convenient to
denote these differentials by d%°, 95 and 8} , respectively. The homologies of these
complexes give various types of knot Floer homology. It is customary to write them as

HFK*(Y, K), HFK (Y,K) and HFK*"(Y,K).

Setting the formal variable U equal to zero in (CFK™(H), d7), we obtain the Q-
graded, Z—filtered complex (CFK (H), 8) Taking the homology of the associated
graded object with respect to this filtration yields the hat version of knot Floer homology

HFK (Y, K).
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The projection p: (CFK™(H),07) — (C/ﬁ((’}-[) 5) obtained by setting U = 0 gives
rise to a natural map on homology
p«: HFK™ (Y, K) — HFK (Y, K).
In a similar spirit, setting the formal variable U equal to the identity gives a projection
m: (CFK™(H), d%) — (CF(Y), 9), inducing a map
7e: HFK™ (Y, K) — HF(Y)

from the minus version of knot Floer homology to the hat version of the Heegaard
Floer theory for the ambient 3—manifold.

We can also identify (C/F\K(”H), 5) as the kernel of the U map on (CFK* (%), 7).
Thus the inclusion induces a natural map on homology

1x: HFK(Y, K) — HFK T (Y, K).

2.3 The Lisca—Ozsvath-Stipsicz—Szabé invariant

There is an invariant of Legendrian knots which takes values in knot Floer homology.
Let L C (Y, &) be a Legendrian knot in the knot type K. Lisca, Ozsvith, Stipsicz and
Szabé [25] defined invariants

L(L)eHFK (-Y,L) and L(L)e€ HFK(-Y,L).

Their invariants are constructed in a manner reminiscent of Honda, Kazez and Matic¢’s
construction of the usual contact invariant in Heegaard Floer homology. Since it will
be useful in what follows, we recall the construction from [25].

Given a Legendrian knot L C (Y, &), we choose an open book decomposition (B, )
of (Y, &) which contains the knot L on a page S of (B, ). We can assume without
loss of generality that this page is given by S = §j/,, and that L is nontrivial in the
homology of §'.

Now choose a basis {ay, ..., ar} for S sothat L is intersected only by the arc ag, and
does so transversally in a single point. Next, apply small isotopies to the a; to obtain
a collection of arcs {by,...,br}. We require that the endpoints of b; be obtained

from those of those of @; by shifting along the orientation of 9.5, and that each b;
intersects «¢; in a single transverse point x; = a; N b; (see Figure 5).

A doubly pointed Heegaard diagram for the pair (—Y, L) can now be constructed as
follows. The diagram itself is specified by

(Z,B.0) = (S1/2U =S80, (bi Ug(by)), (a; Uay)),

Geometry € Topology, Volume 21 (2017)



1492 John B Etnyre, David Shea Vela-Vick and Rumen Zarev

-\ P
: [

Figure 5: Construction of the LOSS invariant

where ¢: S — S is the monodromy map of the fibration (B, =) and the arcs ¢ (b;) and
the second a; above sit on the page —So. The basepoint z is placed on the page S5,
away from the thin strips of isotopy between the a; and b;. The second basepoint w is
placed inside the thin strip between ag and bg, as shown in Figure 5. The two possible
choices for the placement of w correspond to the two possible choices of orientation
for the Legendrian knot L.

Definition 2.8 Let L C (Y,&) be a Legendrian knot and let (X, 8,a,z, w) be a
Heegaard diagram adapted to L constructed as above. The invariants £(L) and £(L)
are defined to be

L(L) :=[(xo, ..., x;)] € HFK(-Y, L),
L(L) :=[(xo,...,xx)] € HFK(-Y, L).

It was shown in [25] that £(L) and L (L) enjoy a number of useful properties, some
of which are the following:

(1) Under the map HFK™ (Y, L) — H/F\K(—Y, L) induced by setting U = 0 at
the chain level, £(L) is sent to L(L).

(2) Under the map HFK (—Y, L) — HF(—Y) induced by setting U = 1 at the
chain level, £(L) is sent to EH(Y, &), the contact invariant of the ambient space.

(3) If the complement of L is overtwisted (see [25]) or has positive Giroux torsion
(see [38]), then both £(L) and £(L) vanish.

(4) If (7, &) has nonvanishing contact invariant, then £ (L) is nonvanishing for every
Legendrian L C (Y, §).

In addition, we have the following interesting property:

Theorem 2.9 (Lisca, Ozsvath, Stipsicz and Szabé [25]) The invariants £ and L
behave as follows under stabilization: If L is a Legendrian knot and L_ is its negative
stabilization, then

L(L_)=L(L) and L(L_)=ZL(L).
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Similarly, if L4 is the positive stabilization of a Legendrian knot L, then

L(Ly)=U-L(L) and ZL(Ly)=0.

It immediately follows from Theorem 2.9 that £ and £ define transverse invariants as
well. If K is a transverse knot and L is a Legendrian approximation of K, define

T(K):=L(L) and T(K):=L(L).

2.4 Sutured Floer homology

Recall that a sutured manifold (Y, I'), with annular sutures, is a manifold Y together
with a collection of oriented simple closed curves I on dY such that each component of
dY contains at least one curve in I' and 0Y'\I" consists of two surfaces dY and dY_
such that T" is the oriented boundary of 0¥ and —I" is the oriented boundary of dY_.
We say that (Y, I') is balanced if dY4 and dY_ have the same Euler characteristic.
If each component S of dY satisfies x(S+) = x(S—) then (Y, ") is called strongly
balanced. (For manifolds with connected boundary this is of course the same as
being balanced.)

Juhész [21] showed how to associate to a balanced sutured manifold (Y, I') the sutured
Heegaard Floer homology groups SFH(Y,I'). We will see a generalization of this
in Section 4 below, so we will not give the details of the construction of SFH(Y, I")
here, but merely recall facts relevant to the definition of our limit sutured homology
and its properties. In addition we note that, as in ordinary Heegaard Floer theory, the
chain groups are generated by the intersection of tori coming from the curves used in a
Heegaard diagram for (Y, I"). The first two results we need relate the sutured Floer
theory to previous flavors of Heegaard Floer homology.

Theorem 2.10 (Juhdsz [21]) Let Y be a closed 3—manifold and denote by Y (1) the
sutured manifold obtained from Y by deleting an open ball and placing a single suture
on the resulting 2—sphere boundary. Then there exists an isomorphism

SFH(Y (1)) — HF(Y).
Theorem 2.11 [21] Let K be a knot in a closed 3—manifold Y and denote by Y (K)

the complement of an open tubular neighborhood of K in Y . Let I, be two disjoint,
oppositely oriented meridional sutures on dY (K). Then there is an isomorphism

SFH(Y(K),T,) — HFK (Y, K).
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2.5 Relative Spin(C structures and gradings

Here, we discuss how to put a grading on the sutured Floer homology groups using rela-
tive Spin(C structures [22] and, in the case where the sutured manifold comes from a null-
homologous knot complement (with meridional sutures), we can see that this grading
and Theorem 2.11 can be used to recover the Alexander grading on knot Floer homology.

2.5.1 Relative Spin<C structures Given a manifold Y with boundary, choose a
nonzero vector field vy in 7Y along dY . We can define the relative Spin(C structures
on Y to be is the set of homology classes of nonzero vector field on Y that restrict to
vo on dY . We say two nonzero vector fields are homologous if they are homotopic in
the complement of a 3-ball in the interior of Y . Notice that if v6 is another nonzero
vector field along dY that is homotopic to vg through nonzero vector fields then we
can use the homotopy to identify the relative Spin(C structures defined by vy and those
defined by v6 and, if we restrict attention to a contractible set of choices for vg, then
these identifications are canonical.

Consider a sutured manifold (Y, I"). In [22] relative Spin<c structures were defined
by choosing a vector field vq that points out of Y along dYy and into Y along dY_
(and is tangent to 0Y along I' and pointing into dY4 ). The set of relative Spin(C
structures on (Y, I') defined using such a vg is denoted by Spin(C (Y,T) and is well
defined independent of vy since the possible choices for vy form a contractible set.

There is the standard map from the generators of the sutured homology chain groups
to Spin(C structures
s5: Ty N'Tg — Spin€ (¥, 1),

defined by using the intersections corresponding to points in Ty NTg to pair the critical
points of a Morse function corresponding to the chosen Heegaard diagram used to
compute the sutured Floer homology. The sutured Floer homology groups can be
decomposed by Spin(C structure:

SFH(Y.T)= €5 SFH(Y.T.s).
5€Spin(C Y,IN
Given a vector field v representing an element s € Spin<c (Y,T) let vt denote the
orthogonal complement of v (using some fixed auxiliary metric). In this case v(J)- is
necessarily a trivial plane field along dY [22], so there is a nonzero section which we
denote fy. We can then define the Euler class c; (s, %) € H*(Y,0Y;Z) of s relative
to 7o as the obstruction to extending #y to a nonzero section of vt

Notice that the plane field U(J)‘ is transverse to I". More generally, we can homotope vg
so that the plane field vé- intersected with 7°0Y induces any characteristic foliation
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for a convex surface divided by I'". (Note we are not bringing contact geometry into
the picture yet, just indicating the flexibility we have in choosing vy and noting this
will be a convenient choice later.)

When (Y, I') is a sutured manifold with torus boundary and I" consists of two parallel
curves then we can always choose a vy so that v(J)- induces a standard foliation on the
boundary (that is, it agrees with the standard characteristic foliation on a torus described
in Section 2.1.3). Given this situation we can take a section #y of v(J)- that is tangent to
the ruling curves to define ¢ (&, #p). One may easily check (cf [17, Lemma 4.6]) that
the class c; (§,%9) € H*(Y,dY;Z) is independent of the ruling slope on 9Y .

2.5.2 Convex surfaces and relative Spin(C structures We now extend our discus-
sion of relative Spin<C structure from above so that they are better suited for contact
geometry. In a sutured manifold (Y, "), notice that the set of vector fields v that
are positively transverse to dY, negatively transverse to dY_, and positively tangent
to I' in T0Y, is contractible. So we could use any such vq to define relative Spin(C
structures of (Y, I") instead of the ones used above. Moreover, a homotopy supported
near I' will take one of these vector fields to one of those from Section 2.5.1 and vice
versa. Thus when defining relative Spin(C structures on (Y, I') we are free to use either
type of vector field along dY .

Notice that the plane field v(J)- is transverse to I'. More generally, we can homotope v
so that the plane field v(J)- intersected with 70Y induces any characteristic foliation
for a convex surface divided by I'". (Note we are not bringing contact geometry into
the picture yet, just indicating the flexibility we have in choosing vg.)

When (Y, I') is a sutured manifold with torus boundary and I" consists of two parallel
curves then we can always choose a v so that v(J)- induces a standard foliation on the
boundary (that is, it agrees with the standard characteristic foliation on a torus described
in Section 2.1.3). Given this situation we can take a section f¢ of v(J)- that is tangent to
the ruling curves to define ¢ (&, fp). One may easily check (cf [17, Lemma 4.6]) that
the class c; (§,%9) € H*(Y,dY;Z) is independent of the ruling slope on 9Y .

We discuss a particular case of the relative Euler classes that will be useful in our
construction. Recall from Section 2.1.3 the basic slice Aii has dividing slope oo
on the back torus and slope —i on the front torus. Once may easily compute (or
consult [17, Section 4.7.1]) that the relative Euler class ¢ (&, ¢y) is the Poincaré dual
of F[(—i + 1) + A]. Similarly the relative Euler class for /Tl:t is the Poincaré dual of
£[@ —Dp+ Al

More generally, one can compute that the relative Euler class of the contact structure
on C jil. (see Section 2.1.3 to recall this notation) is the Poincaré dual of £( — j)u.
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2.5.3 Knot complements and the Alexander grading We now consider the case of
knot complements. Suppose that K C Y is a null-homologous knot and let F' be a
Seifert surface for K. To the pair (¥, K), we associate the compact sutured manifold
(Y(K),T},) as discussed above, where Y (K) is the complement of an open tubular
neighborhood of K and T, consists of a pair of oppositely oriented meridional sutures
on Y (K).

The set of relative Spin(C structures on (Y (K), I},) is naturally an affine space over
H?(Y(K), 0Y (K)).

Choosing an orientation on the knot K, we have the natural map
i*: H2(Y(K),dY(K);Z) - H2(Y; Z),

induced by Poincaré duality and the inclusion of Y (K) into Y . Given a relative Spin(C
structure on (Y (K), I'x), Ozsvath and Szab6 show in [30, Sections 2.2 and 2.4] how
to extend this relative Spin(C structure to a Spin<C structure on Y .! Thus, we obtain
the natural map

Gy.x: Spin® (Y (K),T},) — Spin€ (),

which is equivariant with respect to the actions of H?(Y(K), dY (K)) and H?(Y) on
Spin(C (Y(K),I},) and Spin(C (Y), respectively.

Let [F, 3F] be the homology class of a Seifert surface in H2(Y (K), 3Y (K); Z) for the
null-homologous (oriented) knot K C Y, and let 5 € Spin(C (Y(K), I'r) be a relative
Spin(C structure. To define the relative Spin(C structure we fix a standard singular
foliation on the torus dY (K) as discussed in the previous section and also fix a nonzero
section 7, along the boundary given by a vector field tangent to the ruling curves.
Interpreting the definition of Alexander grading from [29] in terms of sutured Floer
theory we define the Alexander grading of s with respect to [F, 0F] via the formula

(1) ArF oF)(s) = 3{c1 (s, 1), [F. OF)).

(In essence the kernel of Gy, g is Z and we can get a map from Spin<C (Y(K),Tx) to
Z by a choice of Seifert surface for K. Moreover, for the choices made here, c; (s, 74)
is an even cohomology class and so we can divide by 2 to obtain a map onto Z.)
Comparing the discussion of relative Spin(C structures on (Y (K), 'x) in [21] to the
relative Spin(C structures related to H/F\K(Y, K) in [30], it is clear that the isomorphism
in Theorem 2.11 preserves Alexander gradings.

10zsvith and Szab6’s construction in [30] takes a relative Spin(C structure on Y (K), normalized to
point out along the boundary, and obtains an absolute Spin(C structure on the zero-surgery Yo(K). As
discussed in Section 2.5.1, the boundary normalization convention is slightly different in the sutured
context, but the resulting formulas for the Alexander grading yield the same value.
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2.6 Contact structures and sutured Floer homology

Given a balanced sutured manifold (Y, I') and any contact structure & on Y that has
convex boundary with dividing set I, Honda, Kazez and Mati¢ [19] defined a class

EH(£) € SFH(—Y, — I}, 5¢)

that is an invariant of &, where s¢ is the relative Spin(C structure on Y corresponding
to £. Actually this invariant is only defined up to sign when using Z—coefficients,
but in this paper we work exclusively over F = Z /2, and can thus ignore the sign
ambiguity.

A key component of our constructions will be the following gluing theorem for sutured
Floer homology of Honda, Kazez and Mati¢. The map in the theorem spiritually
amounts to “tensoring with the contact class”. Henceforth, we will refer to this map as
the HKM gluing map.

Theorem 2.12 (Honda, Kazez and Mati¢ [18]) Let (Y1,I7) and (Y5, %) be two
balanced sutured 3-manifolds. Suppose that Y1 C Y, and & is a contact structure
on Y,\int(Y7) with convex boundary divided by I'1 U I, so that each component of
Y, \int(Y7) contains a boundary component of Y, . Then there exists a “gluing” map

d)E: SFH(—YI s _Fl) — SFH(—Yz, —Fz)
The map in this theorem is only well defined up to sign when Z—coefficients are used,
but we can again ignore this ambiguity since we are working over .
Furthermore, the map above respects contact invariants.
Theorem 2.13 [18] Let (Y1,&1) and (Y,,&;) be compact contact 3—manifolds
with convex boundary, and suppose that (Y1,&1) C (Y,,&,). If each component

of Y,\int(Y7) contains a boundary component of Y, then the map ¢¢, ¢, from
Theorem 2.12 respects contact invariants. That is,

¢g,—¢, (BH(Y1,§1)) = EH(Y3, 62).

By associating Honda, Kazez and Matic’s contact invariant to the complement of an
open standard neighborhood of a Legendrian knot L, one obtains an invariant of L,

EH(L) € SFH(-Y (L), -Ty),

which lives in the sutured Floer homology groups of the complement Y (L), with
sutures given by the resulting dividing curves on dY (L).
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Since EH(L) is, by definition, the contact invariant of the complement (Y (L), £r),
it follows from the theorem above that EH(L) vanishes if the complement of L
possesses a compact submanifold (N, &|y) with EH(N, &|x) = 0. For example,
convex neighborhoods of both overtwisted disks [19] and Giroux torsion layers [11]
have vanishing contact invariant. Therefore, the invariant EH(L) vanishes if the
complement of L is either overtwisted or has positive Giroux torsion.

2.7 Relationships between sutured Legendrian invariants

It is natural to seek connections and commonalities between the invariant defined by
Honda, Kazez and Mati¢ and those defined by Lisca, Ozsvath, Stipsicz and Szabé.
The first substantive progress along these lines was accomplished by Stipsicz and
Vértesi [35]. There, they proved:

Theorem 2.14 [35] Let L C (Y, &) be a Legendrian knot. Then there exists a map
¢sv: SFH(=Y(L), —I1) - HFK (-, L)
which sends the invariant EH(L) to 2(L).

Stipsicz and Vértesi use the Honda, Kazez and Mati¢ gluing map from Theorem 2.12 to
construct their map as follows. First, they attach a basic slice to the boundary of Y (L)
so that the dividing set on the resulting manifold consists of two meridional sutures.
A picture of this basic slice attachment is depicted on the left-hand side of Figure 6.
Recall from Section 2.1.1 that there are two possible signs, positive and negative, one
can choose for this basic slice. Stipsicz and Vértesi choose to attach a negative basic
slice to ensure that the contact 3—manifold obtained via their construction does not
change if we modify L by negative stabilization.

Definition 2.15 Let L C (Y, &) be a Legendrian knot and (Y (L), &7 ) the complement
of an open standard neighborhood of L. We call the basic slice attachment discussed
in the above paragraph a Stipsicz—Vértesi attachment, and denote the resulting contact
3—manifold by (Y (L), &1)

It follows immediately from this definition that the space (Y (L),&r) depends only
on the Legendrian L up to negative stabilization. Recall from the discussion in
Section 2.1.1 that if L™ is the negative stabilization of L, then the complement of
(Y(L7),&1~) is obtained from (Y (L),&r) by attaching a negatively signed basic
slice A_,,, where n is the Thurston-Bennequin invariant of L. By factoring the basic
slice attachment yielding (Y (L), £z ), as shown on the right-hand side of Figure 6, we
see it as a composition of two attachments, the first yielding (Y (L™), 7~) and the

second (Y(L™),&1-) = (Y(L),&L).
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Figure 6: The Stipsicz—Vértesi attachment and a factorization

0

Since the dividing set on (Y(L),£r) consists of two meridional sutures, it follows
from [21] that
SFH(-Y (L), —FgL) ~ HFK(-Y, L).

By analyzing a Heegaard diagram adapted to both EH(L) and L (L), Stipsicz and
Vértesi are able to conclude that EH(Y (L), &) = L(L).

From this construction, one obtains a simple proof of Theorem 2.9 for L.If LT is
the positive stabilization of L, then (Y(L™),&, +) is obtained from (Y(L),£r) by
attaching a positive basic slice to the boundary of Y (L). The composition of this
positive basic slice with the Stipsicz—Vértesi basic slice attachment is then overtwisted,
forcing EH(Y (L ™), §L+) to vanish. Since, as discussed above, negative stabilizations
of L factor through the Stipsicz—Vértesi attachment, Theorem 2.9 follows.

We also notice that EH(Y (L), &1) = L (L) sits in the Spin(C component of sutured
Floer homology SFH(-Y (L), —T}, 5&), so to see its Alexander grading we need to
evaluate c; (SEL ,tu) on the Seifert surface F for L. Choosing ruling curves on all tori
involved that are parallel to 0F, we see that (c; (s, 7). [F, 0F]) can be evaluated in two
steps. (Throughout this computation, notice that the orientation reversal (=Y (L), —I},)
effectively reverses the orientation on L and introduces a sign when considering the
Poincaré duals of the relative Euler classes discussed in Section 2.5.2.) When the Euler
class of & is evaluated on the component of F contained in Y (L), it is well known
to contribute minus the rotation number, —r (L); see [7]. In Section 2.5.2 above we
saw that the contact structure on AZ, will evaluate to n + 1 on the annulus F N AZ,,
where n = tb(L) is the Thurston—-Bennequin invariant of L. Thus, the Alexander
grading of EH(Y (L), E_L) = ﬁ(L) is

2) Her(s,ty), [F, 0F]) = 2(tb(L) —r (L) + 1).
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3 Limits and invariants of knots

In Sections 3.1 and 3.2 we present definitions of the sutured limit invariant, SFH, and
its F[U]-module structure. In Section 3.3 an “Alexander grading” is given to SFH. We
then discuss some of the properties of this invariant in Section 3.4. In Section 3.5 we
define the limit invariant EH of Legendrian and transverse knots and discuss its proper-
ties. The definition of the inverse limit invariant SFH is quite similar to the definition
of SFH. In Section 3.6 we quickly define the inverse limit invariant SFH, discuss its
properties and define the corresponding Legendrian and transverse invariant EH.

3.1 The sutured limit homology groups of a knot

Given a knot K in a closed 3—manifold Y denote the complement of an open tubular
neighborhood of K by Y (K). Choosing a framing on K is equivalent to choosing
a longitude A on dY(K). We now fix a choice of longitude A and let I be a union
of two disjoint, oppositely oriented copies of A on dY(K). Then (Y(K),Ip) is a
balanced sutured manifold.

Using notation from the end of Section 2.1.3 we define the meridional completion of
Y (K) to be
(Y(K), I :=[(Y(K), To) U Ag]/~,

where T2 x {1} is identified to dY (K) so that S! x {pt} is mapped to a meridian of K
and the dividing curves on 7% x {1} are mapped to the sutures I; on Y (K). (Note
that this can be done since the dividing curves and sutures are “longitudinal”.) The
manifold (Y (K), I},) is naturally a sutured manifold with sutures I}, coming from
the dividing curves on 8Aa, that is, I, consists of two meridional curves. As noted
in Section 2.1.3 there are convex tori 7; in Ay C (Y(K), I},) whose dividing curves
are parallel to A —ip and such that 7 is closer to the boundary of (Y (K),I},) than
T; if j > i. Thus, we have a sequence of sutured manifolds (Y (K), [;) given as
the closure of the component of the complement of 7; in (Y (K), I'y) not containing
0(Y(K), I,), with sutures coming from the dividing curves of 7; .2 Refer to Figure 7
for a schematic picture of the sutured manifolds defined here and their inclusions.

Note that for any j > i we have the inclusion (Y (K),I;) C (Y(K),I) and that
(Y (K),Tj)\(Y(K), I}) is endowed with a contact structure. More specifically,

(Y (K), T)\(Y(K).I})

2Strictly speaking, we have a sequence of distinct manifolds {¥;(K)}, each contained in the next.
However, since the Y;(K) are all pairwise diffeomorphic, we drop the subscript to avoid obscuring future
discussions.
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is the contact manifold C i Using the HKM gluing maps in sutured Floer homology
discussed in Theorem 2.12 we obtain maps

¢ij: SFH(=Y(K), —I}) — SFH(-Y (K), —T})

ifi <j.
Clo G
——
Io To I
*_/
ge S~y —ru —

Ay

Figure 7: The sutured manifolds used in the construction of the limit invariant

Proposition 3.1 Let K be a knot in Y . With the notation above the collection

({SFH(=Y (K). =T})}. {¢ij})

of sutured Floer homology groups and maps together form a directed system.

Proof From Proposition 2.3 we know the contact structure on

(Y(K), TH\(Y(K), T})
is the same as the one on

(Y(K), T\ (K), I;) U (Y (K), )\(Y(K). I})
for any j > k > i. The proposition follows by the naturality of the gluing map in
sutured Floer homology under composition. a

This leads us to the following definition:

Definition 3.2 Let K C (Y,&) be a Legendrian knot and consider the associated
directed system ({SFH(-Y(K),—I;)},{¢ij}) given by Proposition 3.1. The sutured
limit homology of (=Y, K) is defined by taking the directed limit

SFH(-Y, K) = li_r)nSFH(—Y(K), —I;).
®ij
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Denoting ¢; ;+1 by ¢— for each i, and noting that the maps
SFH(-Y(K), —FO) — SFH(-Y (K), —Fl) — SFH(-Y (K), —Fz)

form a cofinal sequence in our directed system, we can compute the sutured limit
homology using just the ¢— maps.

The only choice made in the definition of the sutured limit homology was that of a
framing on K. We note that the sutured limit homology is independent of that choice
and so is only an invariant of the knot K in Y.

Theorem 3.3 The sutured limit invariant SFH(—Y, K) depends only on the knot type
of K in Y and not the choice of framing used in the definition.

Proof Let A, and A, be two longitudes for a knot K in Y. Let Y?¢(K) and Y?¢(K)
be the meridional completions of Y (K) with respect to the two different longitudes. We
note that both these completions are canonically diffeomorphic to Y (K) with meridional
sutures. Moreover we can assume that there is some nonpositive number # such that
Aa = Ap +nyu. Given this we see that (Y2 i (K), T _H) is canonically (up to isotopy)
diffeomorphic to (Y;*(K), I). These dlffeomorphlsms induce isomorphisms of the
sutured Floer homology groups SFH(-Y, +1(K) o +l) and SFH(-Y/(K),—-I'?).
These isomorphisms commute with the maps ¢;; and thus induce an isomorphism of
the resulting direct limits. a

3.2 The U —action on the sutured limit homology

Recall, using the notation from the previous section, that

Y(K). i D\(Y(K). I3)

is the basic slice B;, ;. And the contact structure on B, | gave rise to the gluing map

¢-: SFH(=Y(K), —I}) = SFH(=Y (K), —Ti11).

The region (Y (K), I;+1)\(Y(K), I}) can also be given the contact structure B;:_l
That contact structure will induce a gluing map

¥+: SFH(=Y(K). —I}) — SFH(=Y(K), = +1).

The maps ¢_ and v together fit into a diagram, shown in Figure 8, whose commuta-
tivity is the content of Proposition 3.4.

Proposition 3.4 The diagram shown in Figure 8 is commutative.
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SFH(—Y (K), —Tp) 2= SFH(~Y(K).~T}) = SFH(—Y(K),-Ty) = --.

l Y+ l Y+ l Y+
SFH(=Y(K), —T}) 2= SFH(=Y(K), -T%) = SFH(=Y(K), —T3) = --.

Figure 8: Commutative diagram for the maps defining W

Proof On the thickened torus (Y (K), [;42)\(Y(K), I}) one can consider the contact
structures B;fH UB, ,and B | U B;;z. The former induces the map ¥4 o ¢— and

the latter induces the map ¢_ o 4. Proposition 2.3(3) says that Bl.JfH UB;,, and
B U Biqu—z are the same contact structure so the naturality of the gluing maps in

sutured Floer homology implies that ¥y o¢p_ =¢p_o . m|

It follows from Proposition 3.4 that the collection of maps {y+} together induce a
well-defined map on sutured limit homology

W: SFH(-Y, K) — SFH(-Y, K).
As an immediate consequence, we obtain the following theorem:
Theorem 3.5 Let K be a smoothly embedded knot in a 3—manifold Y . The sutured

limit homology SFH(—Y, K) of the pair (Y, K) can be given the structure of an F[U]-
module, where U acts on elements of SFH(—Y, K) via the map WV :

U -[x] = ¥([x)). O

3.3 An Alexander grading

In this section, we show how to endow the sutured limit homology groups with an
absolute Alexander grading which will later be shown to agree with the usual Alexan-
der grading on knot Floer homology. We note that in the previous subsections all
definitions could be made whether or not K in ¥ was null-homologous. To define the
Alexander grading it is important that K is null-homologous and that in the definition
of SFH(-Y, K) we take our initial longitude A to be the one coming from a Seifert
surface for K.

Let K be a null-homologous knot in a 3—manifold Y and F a Seifert surface for K.
If H=(X,a,p) is a sutured Heegaard diagram for the space (Y (K), I[;), we define
the Alexander grading of a generator x € G(#) via the formula

Arr,ar) (%) = 3{c1(8(x)), 1), [F, 9F]),

where 7, is any nonzero section as discussed in Section 2.5.2.
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Recall that the maps ¢;;: SFH(—Y (K), —I}) — SFH(=Y (K), —I'j) used to define the
sutured limit invariants are defined via the contact manifold C . From the discussion
at the end of Section 2.5.2, we see that the map ¢;; is Alexander—homogeneous of
degree 1 5(J —1). We similarly see that the maps ¥4, which are induced by positive

basic slice attachment, are Alexander homogeneous of degree —%.

To obtain a well-defined Alexander grading on the sutured limit homology groups
SFH(-Y, K), we introduce shift operators into the directed system. Here and through-
out the paper, if A is a graded module, we denote by A[n] the module A with grading
shifted down by n. Specifically, we consider the sequence

SFH(-Y (K), —To)[— ]_> .2~ SFH(-Y(K), — INIE (1—1)]

It follows from the discussion in Section 2.5.2 above that each of the maps in the collec-
tions {¢—} and {4} are Alexander-homogeneous of degrees 0 and —1, respectively.
Thus, upon taking the direct limit, we obtain a well-defined Alexander grading on
sutured limit homology for which multiplication U decreases grading by a factor of 1.
The initial grading shift [—%] ensures that the Alexander grading we have just defined
on sutured limit homology matches the usual one on knot Floer homology.

3.4 Natural maps

We now turn our attention to natural maps on sutured limit homology induced by the
Stipsicz—Vértesi basic slice attachment and meridional 2—handle attachment, respec-
tively. Proofs of Theorems 1.3 and 1.4, which characterize the maps ®gy and 5y, in
terms of the identification between SFH(—Y, K) and HFK™ (=Y, K) will be given in
Sections 9 and 10, respectively.

We begin by focusing on the map induced by the Stipsicz—Vértesi basic slice attach-
ment — henceforth referred to as the “SV attachment”. Recall that given (Y (K), [})
we can attach the basic slice 4; to obtain the manifold (Y (K), F,L) As noted in
Section 2.4 we know that SFH( Y(K),—TI}) is isomorphic to HFK( Y, K). Thus
the gluing map coming from the contact structure on A4;" induces the Stipsicz—Veértesi
map

¢sv: SFH(—Y(K), —I}) — HFK(-Y, K).

Proposition 3.6 The collection of gluing maps formed by applying the SV attachment
to (Y(K), I}) for each i > 0 together fit into the commutative diagram depicted in
Figure 9 and all maps in the diagram respect the Alexander grading.

Proof This is again a simple consequence of the classification of contact structures
given in Proposition 2.3 and the naturality of the HKM gluing maps. O
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SFH(=Y(K), ~Ty) —2=> SFH(—Y(K),~T}) -2=> SFH(-Y(K),~T5) -2~ ...
l Psv Psv bsv
HFK (-Y, K)

Figure 9: Commutative diagram for the maps defining ®gy

Therefore, the collection {¢sy: SFH(-Y(K),—TI;) — H/ﬁ((—Y, K)} induces a map
on the sutured limit homology.

Proposition 3.7 Let K be a null-homologous knot in a 3—manifold Y . There exists a
well-defined, Alexander grading-preserving map ®sy: SFH(-Y, K) — I-TF\K(—Y, K)
which is induced by the SV attachment, and whose constituent maps are depicted in
Figure 9. a

There is one additional geometrically meaningful construction one can perform to
the space (Y (K), [;) — meridional contact 2—handle attachment. We obtain the topo-
logical manifold Y ?"(K) from Y (K) by attaching a topological 2—handle along a
meridional curve in Y (K) that intersects I; minimally (twice). The boundary of
Y2(K) consists of the annulus A that was part of the boundary of Y (K) and two
disks coming from the 2—handle. The suture I'?" on Y 2"(K) consists of 4 N T}
(which is two arcs) and an arc in each disk coming from the 2—handle that connects
the endpoints of A N T}. Notice that 9Y2*(K) is a sphere and T'2" is a simple closed
curve. In other words, (Y2"(K), T'?") = Y(1). Thus, as discussed in Section 2.4, there
exists a natural identification

SFH(-Y?"(K), -I'*") — HF(-Y).

There is a unique tight contact structure (up to a choice of compatible characteristic
foliation on the boundary) on the 2—handle such that the boundary is convex with
corners and the sutures are the induced dividing curves. We use this contact structure
to obtain the gluing map

¢an: SFH(—Y (K), —T}) — HF(=Y).

It follows that the collection of gluing maps formed by attaching meridional contact 2—
handles to (Y (K), I;) for each i > 0 together fit into the diagram depicted in Figure 10,
whose commutativity is the subject of Proposition 3.8.

Proposition 3.8 There exists a well-defined map ®;,: SFH(-Y, L) — ﬁ(—Y)
which is induced by meridional contact 2—handle attachment, and whose constituent
maps are depicted in Figure 10.
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SFH(—Y(K). ~Ty) —=> SFH(~Y(K).~T}) —= SFH(~Y(K),~T3) —=> ...

l b2n $2n don
HF(-Y)

Figure 10: Commutative diagram for the maps defining @,y

Proof Let M be the contact manifold obtained from the vertically invariant contact
structure on T2 x [0, 1] with dividing curves of slope —i by attaching a contact 2—
handle to 72 x {0}. Similarly, let M’ be the contact manifold obtained from the basic
slice B;” by attaching a contact 2-handle to T 2 x {0}. One may easily check that
both of these contact structures are contactomorphic to the complement of an open
standard contact ball inside the tight contact structure on the solid torus with convex
boundary having dividing slope i. Thus, the naturality of the HKM gluing maps yields
the claimed result. |

3.5 Legendrian and transverse invariants: definition and properties

We now turn our attention to defining an invariant EH of Legendrian and transverse
knots which takes values in the sutured limit homology groups SFH(—Y, K). Although
its definition is qualitatively different, we will see Section 8 that the invariant EH is
identified with the Legendrian/transverse invariants defined by Lisca, Ozsvath, Stipsicz
and Szabd in [25] under the isomorphism given in Theorem 1.1.

3.5.1 Definition of the Legendrian/transverse invariant Let K C (Y, §) be a Leg-
endrian knot. In Section 3.1, we defined the sutured limit homology group SFH(—Y, K)
by forming the directed limit of the sequence of groups and maps

SFH(-Y (K), —Ty) 2= SFH(-Y (K), -T}) 2= SFH(-Y (K), -I3) 2> ... .

We also showed that the resulting F[U]-module SFH(—Y, K) depends only on the
topological type of the Legendrian knot K.

Notice that if we choose the framing on K used in the definition of SFH to be the
contact framing, then the sutured manifold (Y (K), Iy) is precisely the sutured manifold
one obtains by removing a standard neighborhood of K from Y. Moreover (Y (K), I3)
is precisely the sutured manifold obtained by removing a standard neighborhood
of S’ (K), the i-times negatively stabilized K, from Y. Thus there is a natural
contact structure £ ; on (Y (K),I;) coming from the complement of a standard
neighborhood of S’ (K). Therefore, associated to the Legendrian knot K, we have a
collection of contact invariants {EH(Si (K)) e SFH(-Y(K), —I‘i)}.
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Theorem 2.5 says that the contact manifold (Y(K), &k ;) with the basic slice B,
attached to it is contact isotopic to (Y (K), &k ;+1). Thus the collection {EH(S L(K))}
satisfies ¢; (EH(S’ (K))) = EH(S'T1(K)) for each i > 0.

Definition 3.9 Let K C (Y, ) be a Legendrian knot and S% (K) its i™ negative stabi-
lization. We define the LIMIT invariant of K to be the element EH(K) € SFH(-Y, K)
given as the residue class of the collection {EH(S™(K))} of HKM invariants associated
to those S’ (K) inside SFH(-Y, K).

From the discussion at the end of Section 2.7, we have that the Alexander grading of
EH(K) in SFH(-Y, K) is J(tb(K) —r(K) + 1).

From Definition 3.9, we see that the class EH defines a Legendrian invariant. Further-
more, since the invariant EH is obtained as a residue class over all possible negative
stabilizations of a given Legendrian knot, we have the following:

Theorem 3.10 Let K be a Legendrian knot and let K_ denote its negative Legendrian
stabilization; then EH(K_) = EH(K).

It follows immediately from Theorem 3.10 that EH gives rise to a transverse invariant
through Legendrian approximation.

Definition 3.11 Let K C (Y, &) be a transverse knot and L a Legendrian approxi-
mation of K. We define EH(K) = EH(Lk).

We see from Definition 3.11 that if K C (Y, ) is transverse and null-homologous,
then the Alexander grading of EH(K) is %(sl(K )+ 1), where sl(K) is the self-linking
number of the transverse knot [6].

3.5.2 Properties of the Legendrian/transverse invariant We now take a moment
to discuss some useful and important properties of the Legendrian/transverse invariant
EH defined above. These properties should be compared with their analogues for the
invariant £ defined by Lisca, Ozsvath, Stipsicz and Szabd in light of the equivalence
promised by Theorem 1.5.

Recall that Theorem 3.10 states that EH remains unchanged under negative Legendrian
stabilization. The following theorem describes the corresponding behavior of EH under
positive Legendrian stabilization.

Theorem 3.12 Let K be a Legendrian knot and let K denote its positive Legendrian
stabilization; then
EH(K+) = U -EH(K).
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Proof Denote the i negative stabilizations of K and K4 by K; and K, ;, respec-
tively. Then, for each i > 0, the contact manifold (Y(K+), £k, ;) is obtained from
(Y(K), &k, ) by attaching a positively signed basic slice to its boundary. The gluing
maps induced by these basic slice attachments are precisely the ¥+ maps defining
U —multiplication on SFH(-Y, K), as discussed in Section 3.2.

Since the HKM gluing maps respect contact invariants, we have that, for each i > 0,

EH(K 4,;) = ¥+ (EH(K;)).

Thus,
EH(K4) = W(EH(K)) = U -EH(K),
completing the proof of Theorem 3.12. |

The next three theorems illustrate some natural relations connecting EH to previously
defined invariants of Legendrian and transverse knots. We begin with a theorem
concerning the relationship between the LIMIT invariant and the HKM invariant,
whose truth follows immediately from the definitions of the sutured limit homology
SFH and the LIMIT invariant EH.

Theorem 3.13 Let K C (Y,&) be a Legendrian knot and (Y (K), k) the contact
manifold obtained by removing a open standard tubular neighborhood of K from (Y, §).
Under the natural map

t: SFH(-Y(K),—I'x) — SFH(-Y, K)
induced by inclusion, the invariant EH(K) is sent to EH(K). a

The next theorem describes the result of applying the Stipsicz—Vértesi map to the
invariant EH.

Theorem 3.14 Let K C (Y, &) be a null-homologous Legendrian knot. Under the
Stipsicz—Vértesi map ®sy: SFH(-Y, K) — HFK (=Y, K), the class EH(K) is identi-
fied with the LOSS invariant £(K).
Proof The main theorem of [35] states that under the map

¢sv: SFH(—Y(K), —Tx) — HFK(-Y, K)

the HKM invariant EH(K) is identified with ZJ(K ). Combining this result with the
definition of EH(K) and the commutativity of the diagram shown in Figure 9 defining
the map ®gsv, we have that q’sv@(K)) = L(K). O
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The theorem below illustrates how the LIMIT invariant of a Legendrian or transverse
knot relates to the classical contact invariant of the ambient space.

Theorem 3.15 Let K C (Y, &) be a Legendrian knot. Under the map
®p: SFH(-Y, K) — HE(-Y)

induced by 2-handle attachment, the class EH(K) is identified with the contact invari-
ant EH(Y, &) of the ambient space.

The proof of this theorem is similar to that of Theorem 3.14, so we omit it. The
key observation is that since the HKM gluing maps respect contact invariants, the
constituent maps defining ®,,, each identify the elements EH(K;) with EH(Y, §).
Otherwise, the proof is identical.

3.6 The sutured inverse limit homology of a knot

As usual, given a knot K in a closed 3—manifold Y, we let Y (K) denote the comple-
ment of an open tubular neighborhood of K. Choosing a framing on K is equivalent
to choosing a longitude A on dY(K). Let I}, be the union of two disjoint copies of
the meridian of K on 0Y(K), and consider the sutured manifold (Y (K),I},).

Using notation from the end of Section 2.1.3 we define a longitudinal completion of
Y(K) to be
(Y(K).I) =[(Y(K), I U A/~

where T2 x {0} is identified to Y (K) so that {pt} x S! is mapped to the chosen
longitude A of K and the dividing curves on 7 x {0} are mapped to the sutures I},
on 0Y (K). The manifold (Y (K), I}) is naturally a sutured manifold with sutures I
coming from the dividing curves on dY (K). That is, I} consists of two longitudinal
curves.

For notational ease in the following discussion, we will henceforth denote the longitu-
dinal suture set I} by I5.

As noted in Section 2.1.3 there are convex toriNT,- in /To_ C (Y(K), Iy) whose dividing
curves are parallel to A +ix and such that 7; is closer to the (convex) boundary of
(Y(K), Iy) than T] if j >i. Since the dividing sets on each of these tori have positive
slope, we denote them by I‘l.+ (we let F0+ = Ip by convention). Thus we have a
sequence of sutured manifolds (Y(K), l"l.+) given as the closure of the component of
the complement of 7; in (Y (K), Iy) not containing the boundary of (Y (K), [}), with
sutures coming from the dividing curves of Ti. (As in Section 3.1, strictly speaking,
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we have a sequence of distinct manifolds {Y;(K)}, each contained in its predecessor.
However, as before, since each of the Y;(K) are pairwise diffeomorphic, we drop the
subscript to avoid obscuring the discussion.) Refer to Figure 11 for a schematic picture
of the sutured manifolds defined here and their inclusions.

C—_i,—(i+1)
N

+
1—‘i+1 i

T, T,

~— ~
glue Tita

~

Figure 11: The sutured manifolds used in the construction of the inverse limit invariant

. . . . + _|,_
Note that for any j > i we have the inclusion (Y (K), Fj ) C (Y(K),I;"), and that

(Y (K). O\ (K). ;")

is the contact manifold C—; _ Iz Using the HKM gluing maps in sutured Floer homology
discussed in Theorem 2.12, we have maps

¢;;: SFH(=Y (K),—T;") - SFH(-Y(K),—T}")
if i < j. Just as in Proposition 3.1 we have the following result:
Proposition 3.16 Let K be a knot in Y . With the notation above, the collection
({SFH(=Y(K),=T;")}. {¢};})
of sutured Floer homology groups and maps together form an inverse system. a
This leads us to the following definition:

Definition 3.17 Let K C Y be a knot and consider the associated directed system
({SFH(-Y;(K), -1}, {¢};}) given by Proposition 3.16. The sutured inverse limit
homology of (=Y, K) is defined by taking the inverse limit

SFH(—Y, K) = lim SFH(-Y(K), -I;").
ji

One may easily show, as in the proof of Theorem 3.3, that this invariant is independent
of the choice of longitude.
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Theorem 3.18 The sutured limit invariant SFH(—Y, K) depends only on the knot
type of K in Y and not the choice of framing used in the definition. |

Analogously to the sutured limit homology, we can define a U —action. To this end we

set ¢/ = @] +1,; and obtain the cofinal sequence

SFH(—Y(K), —Tp) <= SFH(~Y (K), —I'}") &= SFH(- Y (K), ~ ;1) &= ... |
from which SFH(—Y, K) can be computed.
SFH

Each ¢’ is defined using the contact structure on the basic slice B~;. We can similarly
define

' SFH(—Y(K), T} ) — SFH(-Y (K), -I}"),
using the basic slice Bfi.

The same arguments used in the proof of Proposition 3.4 show that the maps ¢’ and
¥, together fit into the commutative diagram shown below:

oL oL e
SFH(—Y(K),—Ty) <— SFH(-Y(K),-I}") <— SFH(-Y(K),-I}") < ---

‘& ‘w\
a Lo ol Lol
SFH(-Y(K), —Iy) <— SFH(-Y(K),—I}") <— SFH(-Y(K),-L,") ~— ---
Thus the collection of maps {y, } together induce a well-defined map on sutured
inverse limit homology
V’: SFH(-Y, K) — SFH(-Y, K).
As an immediate consequence, we obtain the following theorem:
Theorem 3.19 Let K be a smoothly embedded knot in a 3—manifold Y . The sutured

inverse limit homology SFH(—Y, K) of the pair (Y, K) can be given the structure of
an F[U]-module, where U acts on elements of SFH(—Y, K) via the map V' :

U -[x]:= ¥'([x]). m]

When the knot K C Y is null-homologous the sutured inverse limit homology groups
SFH(—Y, K) can be endowed with a well-defined Alexander grading using the method
discussed in Section 3.3.
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3.6.1 Anaturalmap Recallthat (Y (K),I},) isasutured submanifold of (Y (K),I}),
and that the basic slices A;" give a contact structure on each

(Y(K), [TO\(Y(K), T).
Thus, the HKM gluing map from Theorem 2.12 gives maps
¢asv: SFH(=Y (K), ~T},) — SFH(-Y(K),~I;")

and, since SFH(—Y (K), —T},) is isomorphic to Pfﬁ((—Y, L), we have the commuta-
tive diagram in Figure 12.

/7 4

SFH(-Y (K), —TI}) > SFH(-Y(K),-TI}") S SFH(-Y(K),-T;") =

T Pasv /d’dS'V Gasv

HFK (-Y, K)
Figure 12: Commutative diagram for the maps defining ®45v

It follows that the maps {¢gsv: H/F\K(—Y , K) - SFH(-Y (K), —Fl."')} together induce
a map to the sutured inverse limit homology.

Proposition 3.20 Let K be a smoothly embedded knot in a 3—manifold Y . There
exists a well-defined map Pqsy: I—fﬁ((—Y, K) — SFH(-Y, K) which is induced by
the constituent maps depicted in Figure 12. When K is null-homologous, SFH(—Y, K)
is graded and ®q4gvy is grading-preserving. O

3.6.2 A Legendrian/transverse invariant in sutured inverse limit homology Let
K C (Y,&) be a Legendrian knot. Let v(K) be a standard neighborhood of K and
notice that the sutured manifold (Y (K), I,) used to define SFH(—Y, K) is obtained
from Y \v(K) by attaching a negative bypass as in Stipsicz and Vértesi’s construction
from Section 2.7. As noted there, we have a contact structure EK on the sutured
manifold (Y (K), I’y) and hence we have a contact structure gK,i on each (Y (K), l"l.+)
by extending £k by the contact structure on A4; . From this we obtain a contact
invariant
EH(éx,i) € SFH(-Y(K),-I;")

for each i and, as when defining the direct limit Legendrian invariant, each element in
the collection {EH(ék ;)} is taken to another element in the collection by the qﬁj’.i maps
used in the definition of SFH(—Y, K). Thus, we can define a inverse limit invariant
as well.
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Definition 3.21 Let K C (Y, &) be a Legendrian knot. We define the inverse LIMIT
invariant of K to be the element EH(K) € SFH(—Y, K) given as the residue class of
the collection {EH(E, k.i)} of HKM invariants associated to K inside SFH(-Y, K).

From Definition 3.21, we see that the class EH defines a Legendrian invariant. Notice
that the bypass attached to Y\v(K) to obtaln the complement of the negatively stabi-
lized K embeds in the Stipsicz—Vértesi bypass, but the bypass attached to Y\v(K) to
obtain the complement of the positively stabilized K when glued to the Stipsicz—Vértesi
bypass yields an overtwisted contact structure. From this one easily concludes the
following result:

Theorem 3.22 Let K be a Legendrian knot and let K_ and Ky denote its nega-
tive and positive Legendrian stabilization, respectively; then EH(K-) = EH(K) and
EH(K4) = 0.

It follows immediately from this theorem that EH defines a transverse invariant through
Legendrian approximation.

Definition 3.23 Let K C (Y, &) be a transverse knot and L g a Legendrian approxi-
mation of K. We define EH(K) := EH(L).

Lastly we observe the following result:

Theorem 3.24 Let K C (Y,&) be a null-homologous Legendrian knot. Under the map
@dsv HFK( Y, K) — SFH(-Y, K), defined in Proposition 3.20, the LOSS invariant
L(K ) is mapped to the class EH(K).

Part II Identifying the sutured limit homology package with
the knot Floer homology package

This part of the paper is devoted to proving our main theorems connecting the sutured
limit invariants defined in Part I with the more standard knot Floer homology package.

4 Bordered sutured Floer homology

We begin by reviewing some of the basic constructions and definitions from bordered
sutured Floer homology. For a more thorough and elementary treatment, we refer the
interested reader to the book [23] on bordered Floer homology by Lipshitz, Ozsvéth
and Thurston, and to the third author’s paper [39] extending this theory to the sutured
category.
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4.1 Sutured manifolds and surfaces

We recall the definition of a sutured 3—manifold, originally due to Gabai [10].

Definition 4.1 A sutured manifold is a pair (Y, I"), where Y is an oriented 3—manifold
with boundary and T is a collection of oriented, disjoint, simple closed curves on dY
called sutures. We further require that Y contains no closed components, all boundary
components of ¥ have sutures and that the suture set I divides dY into two regions
R4 and R_ satisfying y(R4+) = x(R-).

Remark 4.2 The definition presented above is actually that of a balanced annular
sutured manifold [21]. Since the sutured 3—manifolds encountered in Heegaard Floer
theory are annular and generally satisfy the balancing condition, it is customary to omit
the words “balanced” and “annular” when referring to such a space.

Paralleling the above, in [39], the third author introduced the following 2—dimensional
analogue of a sutured manifold.

Definition 4.3 A sutured surface is a pair F = (F, A), where F is an oriented
2—-manifold and A is a collection of oriented, disjoint points on dF called sutures.
We further require that F' contains no closed components and that the suture set A
intersects each component of dF nontrivially, dividing it into two (not necessarily
connected) components S and S_ satisfying S+ = £A.

Definition 4.4 Let F = (F, A) be a sutured surface. A dividing set for F is a finite
collection T" of disjoint, embedded, oriented arcs and simple closed curves in F for
which o' = —A, as oriented submanifolds. We further require that the dividing set I"
separates F' into two regions Ry and R_ with dRL = (") U Sy.

For examples of a sutured surface and a dividing set on a sutured surface, see Figure 13.

Figure 13: A sutured surface (left) and a sutured surface equipped with a
dividing set (right)
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A

S+ S_
% =
¥ S
A s,
+

Figure 14: An arc diagram and its associated parametrized sutured surface

4.2 Arc diagrams and bordered sutured manifolds

Definition 4.5 An arc diagram of rank k is a triple Z = (Z,a, M) consisting of a
finite collection Z of oriented arcs, a set of 2k disjoint points a = {a1,...,a,} C Z
and a two-to-one matching M: a — {1,..., k} such that the 1-manifold obtained by
performing 0—surgery along each O—sphere M ~1(i) in Z has no closed components.

Given an arc diagram Z, one can associate a graph G(Z) obtained from Z by attaching
I —cells to points in @ according to the matching M . In addition, one can associate a
sutured surface F(2) = (F(Z), A(Z)) to it in the following way. Starting with the
product Z x [0, 1], attach (oriented) 2—dimensional 1-handles along the O—spheres in
M~(i)x {0} for i = 1,..., k. The suture set is given by A(F)=—(3Z x {1}), and
the positive and negative regions are the portions of the boundary dF(Z) containing
Z x {1} and Z x {0}, respectively; see Figure 14. We also notice that there is an
obvious embedding of G(Z) in F(Z) such that Z goes to Z X { %} and the 1—cells
map to (extensions) of the cores of the 1-handles. When discussing the subset of arcs
Z inside F(Z), we will always mean Z x { %}

Let F = (F, A) be a sutured surface and let 7(Z) be the sutured surface associated
to an arc diagram Z. If there exists a proper diffeomorphism ¢: F(Z) — F, then we
say that Z parametrizes F = (F, A).

Definition 4.6 A bordered sutured manifold Y = (Y,T', Z) is a (not necessarily
balanced) sutured manifold (Y, I'), together with an embedding of the sutured surface
F(Z2) into dY that sends Z, in an orientation-preserving way, into I".

An example of a bordered sutured manifold is depicted in Figure 15.

Remark 4.7 So far, the discussion has been focused exclusively on the bordered
sutured category. In “classical” bordered Floer homology, the concept of an arc
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Figure 15: A bordered sutured manifold with sutured surface F parametrized
by the arc diagram Z

diagram is replaced by that of a pointed matched circle— roughly, an arc diagram with
a single arc, whose tip and tail are identified via a marked point. When working with
bordered Heegaard diagrams, and when computing their corresponding invariants, this
marked point plays the role of a usual basepoint in Heegaard Floer theory, as the sutures
do in the discussion to follow. So, a “classical” bordered manifold can be thought of as
a bordered sutured manifold with suture a circle bounding a disk.

4.3 The strands algebra

We now recall the definition of the strands algebra and bordered algebra from [39].
These will both be differential graded algebras, but we omit the discussion of gradings
in what follows and refer the interested reader to [39].

Definition 4.8 The strands algebra A(n, k) is a free F —module with generators p =
(S,T,¢), where S and T are both k—element subsets of {1,...,n},and ¢: S —> T
is a nondecreasing bijection. We denote by Inv(u) the set of inversions of the map ¢,
that is, pairs i < j in S such that ¢ (i) > ¢(j). We also denote the cardinality of
Inv(p) by inv(p) = inv(¢). Multiplication in A(n, k) is then given by

(S, V,o¢) if T=U and inv(¢) +inv(y¥) = inv(y o ¢),
0 else.

(S.T.¢)-(U.V, W)={

The differential is obtained by summing over all possible ways of “resolving” inversions
(see below).

The strands algebra is so-called because it has an obvious interpretation in terms
of moving strands from the points of S to those of 7'. From this perspective, the
differential corresponds precisely to resolving topological crossings between two strands.
There is an additional interpretation of the strands algebra in terms of Reeb chords
along Z — see below and [39] —and we use the terms “strand” and “Reeb chord”
interchangeably according to context.
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In the bordered sutured setting, we require a slight generalization of the strands algebra.
The extended strands algebra of the tuple (nq,...,n;;k) is

Ay, ...onpky= @ Ay k) @+ ® Alng. k).
ki+-+ki=k
We can view A(nq,...,n;; k) as a subalgebra of A(ny+---+ny, k) by thinking of the
components A(n;, k;) as actingon {(ny +---+n;—1)+1,...,(ny+---+n;—1)+n;}
instead of {1,...,n;}.

Let (Z,a) be a finite collection of oriented arcs and a subset of 2k points as in
Section 4.2 above. Denote by Z; the i th oriented arc in Z and let @; = Z; Na be the
subset of a contained in Z;. The strands algebra associated to the pair (£, a) is

2k
A(Z.a) =P Alarl..... |a]:1).

i=1

Let Z=(Z,a, M) be arank k arc diagram and A’'(Z , a) the strands algebra associ-
ated to (Z,a). To each i —element subset S C {1, ..., 2k}, there exists an idempotent
I(S)=(S,S,ids) e A (Z,a). If sC{l,...,k} is an i —element subset, then a section
of s is a subset S C M ~!(s) such that M|g: S — s is a bijection. For each subset
s C{1,...,k} there is an idempotent

L= Y IO,
S a section of s

obtained by summing over all idempotents associated to sections over .

Definition 4.9 The ground ring Z(Z) associated to the arc diagram Z = (Z,a, M)
is the rank 2K subalgebra of A'(Z,a) spanned by the collection of idempotents
{Is|s C{l,..., k}}.

If we let Z(Z, i) be the subalgebra of Z(Z) generated by {Is | s C{l,...,k}, |s|=1i},
then there exists a natural decomposition

k
7(2) =P 1(2.1).
i=0

It is frequently convenient to focus on the subset of triples (S, T, ¢), where S, T C
{1,...,2k} and ¢p: S — T is a strictly increasing bijection. In such a situation, we say
that a subset U C {1,...,2k} completes the pair (S,T) if UN(SUT) = @. Given

Geometry € Topology, Volume 21 (2017)



1518 John B Etnyre, David Shea Vela-Vick and Rumen Zarev

(S,T,¢) as above, we let

ai(S,T,¢) = Z (SUU, TUU, ¢y) € A(Z,a),
U completes (S,T)
|[UUS|=i

where ¢U|S = d) and ¢U|U = IdU.

Definition 4.10 The bordered algebra associated to the arc diagram Z = (Z,a, M)
is the algebra
AZ2)=1(2)- A (Z.,a)- Z(2) C A (Z . a).

It is generated over F by Z(Z) and elements of the form 7 -a;(S,7,¢)-1.

The bordered algebra A(Z) is a module over the idempotent subalgebra Z(Z) and
decomposes as a direct sum

k
A2) =P AEz.i).
i=0

where the constituents A(Z,i) =Z(Z2,i)- A(Z)-Z(Z,i) are modules over Z(Z,i).

One can alternatively describe the strands algebra A(Z) in terms of Reeb chords as
follows: If Z = (Z,a, M) is an arc diagram, then, up to isotopy, there exists a unique
(compatibly oriented) contact structure on the collection of arcs Z . If we endow Z
with this contact structure, then the elements of @ C Z are Legendrian. In this case,
there exists a family of positively oriented Reeb chords whose beginning and endpoints
liein a. If p = {p1,..., pun} is a collection of Reeb chords in (Z,a), then we let
P~ =1{pys ... Py} and pt = {,ofr, ..., p;} denote the beginning and endpoints of
the elements of p, respectively.

The idea is to use Reeb chords as geometric manifestations of the strictly increasing
pairing functions discussed above. For this to be possible, we must introduce an
appropriate compatibility condition.

Definition 4.11 Let Z = (Z,a, M) be an arc diagram. A collection of Reeb chords
P=1p1,...,pn}in (£, a), where |a| =2k, is said to be i —compatible if none of the p;
are constant, the points M (p7), ..., M(p, ) and, independently, M (p;r), M)
are all distinct, and #(M (p")U M (p 1)) <k — (i —n).

Thinking of a collection of Reeb chords as a strictly increasing pairing function, the

final condition above guarantees the existence of at least one (i —n)—element subset
s C{1,...,k} which is disjoint from M (p~)U M(p™) and which “completes” p.
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That is, if p is an i —compatible collection of Reeb chords and s is an i —completion,
then
a(p,s) = Z (p~US.pTUS. ¢s)

S a section of s

defines an element of A(Z,i), where ¢s(p;) = ,ol.Jr and ¢g is the identity on S.
Defining
ai(p) = >, a(p,s),

s an i —completion of p

we see that A(Z,7) is generated over Z(Z) by the collection of elements {a;(p)},
where p is an 7 —compatible collection of Reeb chords. For a given collection of Reeb
chords p we can combine these elements into a sum a(p) = >_a;(p).

4.4 A, ,—modules and type-D structures

We now review basic definitions surrounding A.,—modules and type-D structures.
Type-D structures were introduced by Lipshitz, Ozsvéath and Thurston in [23] (see
also [39]). Although everything that follows can be extended to Z—coefficients, we
work exclusively over F = Z/2 since this is all that is needed to define the bordered
invariants, and to avoid sign complications.

Recall an A, —algebra over F is a pair A = (A4, {i1;}) where A is graded [F-module
and the p; are a sequence of multiplication maps

pi: A% — A2 —i]
fori =1,2... satisfying, for each n, the compatibility conditions

n—j+1
YY) wi@® - ®a @ ui(@® - ®ajj_1) Qa4 @ Qdy) =0
i+j=n+1 I=1

and the unital condition that there is an element 1 € 4 for which p;(a, 1) =u,r(1,a)=a
for all @ € A and pu; vanishes on i —tuples containing 1 for i # 2. Recall that A[n]
denotes the module 4 with grading shifted down by n and that A®’ denotes the tensor
product over IF of i copies of A. If u; =0 for i > 2 then A4 is simply a differential
graded algebra (with differential 1 and multiplication ;).

Definition 4.12 Let A be a unital (graded) Ao—algebra over F, with multiplication
maps [;, and Z the subalgebra of idempotents with orthogonal basis {/;} satisfying
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> I; = 1€ A. A (right unital) As,—module over A is a graded module M over the
base ring 7

MA=@M'11',

1

together with a family of homogeneous maps
(3) mis M @ A®' > M[2—i], i>1,
which together satisfy the Ao structure conditions

n—1n—j

0=>"> mi(x®a1 ® - @uj(@i® - ®ait;) @ Qdy_1)
j=1i=1

n
) M1 (Mi(x ® a1 ® - ® A1) ® - ® dy—i).
i=1
and unital conditions

my(x®1)=x,
mi(x®...®1®...):()’ 132
We say that the Ao,—module M 4 is bounded if m; = 0 for all sufficiently large i .

It is frequently convenient to represent a structure equation like (3) graphically. For the
case of an Asc—module, this is depicted in Figure 16.

M A®i M A@i

M M

Figure 16: The structure equation for an A, module M
Remark 4.13 If Z is an arc diagram, then the associated strands algebra A(Z) is
actually a DG—algebra— meaning that p; = 0 for all 7 > 2. Thus, the first summand

in the structure equation for an 4.,—module over such an A(Z) involves only terms
containing (1 and iy.
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Definition 4.14 Let A be a unital DG-algebra over F, with idempotent subalgebra Z
as above. A (left) type-D structure over A is a graded module N over the base ring 7

‘N=E1-N.
i

together with a homogeneous map
8 N - (A® N)[1],
satisfying the compatibility relation

Iterating, we obtain a collection of maps indexed by k € {0, 1,...}

§p: N — (A®% @ N)[K],

where [y for k =0,

8§, =
g {(IdA®5k_1)08 for k > 1.

The structure equation for a type-D module is shown in Figure 17. We say a type-D
structure AN is bounded if §; = 0 for all sufficiently large k.

M
$
0=
N
A M

Figure 17: The structure equation for a type-D structure on M

Given two type-D structures (N, §) and (N',§’) over A, an F -module homomorphism
Y: N - A® N’ is a D—structure homomorphism if it satisfies

(2 ®ldy)o(ldg ®Y) o8+ (2 ®Idn) o (Idg ® Sn) oY + (1 ®Idyr) o = 0.

Given two D—structure homomorphisms ¢: N - A® N’ and ¥: N' - AQ N”,
their composition is the D —structure homomorphism ¥ o ¢ from N to N” defined by

(12 ®Idyr) o (Idg ® V) 0 .
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We say that two type-D structure homomorphisms ¢: N - AQN' and ¥: N > AQN’
are homotopic if there is a D—structure homotopy between them, that is, an IF—module
homomorphism 4: N — A ® N'[—1] satisfying

(r @TIdy)o(Idg ®h) oS+ (U RIdy) o (Idy ® Sy ) oh+ (1 @Iy ) o h = — .

Given an Aso—module M4 and a type-D structure N, at least one of which is
bounded, we can form their box tensor product M4 RN = (M ®7 N, %), with
differential given by the formula

P @y) =D (mpy1 ®IAN)(x ® 5 (»)).
k=0

The boundedness assumption ensures that the above sum is finite.
M N

0% =

[m

M N

Figure 18: The structure equation for 9%
The following definition from [23] shows how to induce maps on box tensor products.

Definition 4.15 Let ¢: N — N’ be a map of D-modules and Idy, the identity. The
box tensor product of Idps and ¢ is a map

Idyy R¢p: MRAIN - M XN’
given by

oo

ldy Rp(x @ p) = D (mpy1 ®Idy) o (x @ e (1)),
k=0

where the maps ¢: N — A®K @ N are defined inductively by

or = Z (Idgei+n ® 5;) o(ld i ® ¢)od;.
i+j=k—1

Graphically, the map Idas X ¢ can be represented as in Figure 19.
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M

N
()
VA

M N’

m

Figure 19: The map Idys X ¢

We will also make use of Ao,—bimodules. As the A,,—algebras we will be concerned
with are differential graded algebras, we will define our bimodules over such algebras.
See [24] for the more general definition.

Definition 4.16 Let .4 and B be two differential graded algebras with underlying
F—modules A and B, differentials denoted by 04 and dz and multiplication maps
denoted by p 4 and up, respectively. A type-DA structure over .4 and B, denoted
by “Mp, is a graded vector space M over [ together with a collection of graded maps

me: M @ B2*D 5 4@ M[2—k]
satisfying
k
D (pa®ldyy) o (1da ® my_pi1) o (mp ®Idpau-mn) + (0.4 ®1das) o my
p=1 k—2
+ Z my o (Idys ® Idger ® 5 ® ldgew—p-2))
p=0 k—3
+ Y my o (1dy ® ldpep ® s ® 1dgan—r-3) =0
p=0

for all k£ > 0 and the unital condition that m,(x ® 1) = 1 ® x and my, is zero when
any entry is 1 for k # 2.

Given such a type-DA structure, we can define maps
mi: M@ BO*=D 5 4% @ M[1 4 i —k]
by setting m(l) = Idyy, m2 =0 for k>1, m,lc = my. and then inductively defining

k—1

mj =Y (Idgei-n ®mj41) o (mi_!; ®1dpe).
j=0
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Notice that, in the case that A or B is the trivial algebra, we get an A.,—module
over B or a type-D structure over A (by ignoring the m}c for k > 1), respectively.
There are notions of maps between type-DA modules and homotopies between such
maps analogous to those for type-D modules discussed above. For details see [24].

Now, given two type-DA structures “M and BNy with maps {m;'c} and {n{ }, respec-
tively, we define their box tensor product “Mpz R BN¢ to be the type-DA structure
A(M ® N)¢ with operations

(m IZn)fC = Z(m; ®Idy) o (Idps ®ni_l).
jz=1

If both A and C are trivial then one notes that this definition agrees with the box tensor
product defined above.

4.5 The bordered invariants

Let Z=(Z,a, M) be an arc diagram.

Definition 4.17 A bordered sutured Heegaard diagram is a quadruple H = (X, &, 8, 2)
comprised of the following:

e X acompact surface with no closed components.

o o =a‘Ua? acollection of pairwise disjoint, properly embedded circles o
and arcs a? in X.

e f acollection of pairwise disjoint, properly embedded circles in X.

¢ An embedding of the associated graph G(Z) — X such that Z is sent to dX in
an orientation-preserving way and the 1—cells of G(Z) are identified with the
arcs a?.

We further require that each component of ¥\ (¢ U a?) and each component of ¥\
intersects 0¥\ Z .

From a bordered sutured Heegaard diagram H = (X, a, 8, Z) we can construct a
bordered sutured 3—-manifold (Y, I', Z) as follows: The manifold Y is simply X x[0, 1]
with 2-handles attached to X x {1} along the circles in 8 and attached to X x {0}
along the circles in «¢. The sutures I' are 9% x {%} Finally we construct the
embedding of F(Z) into Y by first embedding G(Z). To this end, we embed Z as
Z x {%} CoX x {%} and to each « € a? we attach the 1—cell (da x [0, %]) Ua x {0}.
Now a small neighborhood of G(Z) in dY gives an embedding of F(Z) into dY .
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Given a bordered sutured Heegaard diagram H = (X, &, 8, Z), a generator for bordered
sutured Floer homology is a collection of intersections x = (x,...,Xxg) in &N B such
that exactly one point comes from each «a—circle, exactly one point comes from each
B—circle, and at most one point comes from each o—arc. We denote this generating set
by G(H).

Let H be a bordered sutured Heegaard diagram and x € G(#) a generator. The set of
«—arcs containing points of the generator x is denoted by o(x) and is called the set of
occupied arcs. Similarly, we denote by o(x) = a%\o(x) the complement of the set of
occupied arcs.

To a bordered sutured Heegaard diagram H = (X, &, 8, £) one associates two basic al-
gebraic objects The first is a right A ,—module over the bordered strands algebra A(Z),
denoted by BSA (H) Daz)- The second is a left type-D structure over .A( Z), and is
denoted by A2 BSD (#). More specifically, the Aoo—module BSA (H) is X (H),
where X (#) is the [F —vector space generated by G(#) and given a right Z(Z)-module

structure by the action
x if s =o0(x),

x-I(s) =
) {0 else.

In a similar spirit, the type-D structure BSD (M) is defined to be A(—Z2) ®7(—z) X (H),

where the left action of Z(—Z2) on X (#) is given by

x if s =o0(x),

I(s)-x =
) {O else.

The Aoo—module and type-D structures on B/S\A(H) and B/S\D(H), respectively, are
obtained by counting holomorphic curves in X x [0, 1] xR with appropriate asymptotic
behavior — we refer the reader to [23; 39] for details, but make a few remarks in the
next subsection that are relevant to our computations below.

The third author showed in [39] that B/S\A(H) and B/ST)(H) are both invariants of the
underlying bordered sutured manifold specified by H up to homotopy equivalence.
In addition, the third author established a pairing theorem which describes how these
invariants behave if one glues together two bordered sutured 3—manifolds along a
common parametrized sutured surface Z.

Theorem 4.18 Let (Yy,1, £) and (Y, I3, —Z) be bordered sutured 3—manifolds
and (Y,I') = (Y1 Uz Y,, I7 UT3) the sutured 3—manifold obtained by gluing them
together along Z. Then there exists a graded homotopy equivalence

SFC(Y,T) ~ BSA(Y;,T}) R BSD(Y;, Ty) ~ BSA(Y}, I}) & 4(z) BSD(Y2, T),

where ® denotes the derived (Ao ) tensor product.
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Moving to bimodules, let H = (X,«,8,—Z; U Z,) be a bordered sutured Hee-
gaard diagram where the parametrized surface has two disjoint components, one
parametrized by —F(Z;) and the other by F(Z,). We define the type-DA structure
A(Zl)m(H)A(Zz) to be A(Z21) ®z1(z,) X(H), where the left Z7(—Z)— and right
Z(Z,)-module structures on X (H) are defined by
I(s1)-x - I(s3) = {x if 51 =0(x) and s, = 0(x),
0 else.

The operators {my} are defined by counting holomorphic curves in X x [0, 1] xR with
appropriate asymptotic behavior.

In [39] a generalization of Theorem 4.18 was also established.

Theorem 4.19 Let (Y;,I1,—21 U 2,) and (Y,,12,—2, U Z3) be two bordered
sutured manifolds. We can be glued them together along F(Z,) to obtain a sutured
cobordism from F(Z;) to F(Z,) and a graded homotopy equivalence of bimodules

BSDA (Y; Uz(z,) Y2) ~ BSDA(Y;) K BSDA (Y5) ~ BSDA (Y;) & BSDA(Y>).

4.6 Nice Heegaard diagrams

Sarkar and Wang [34] showed how to compute the differential in Heegaard Floer
homology combinatorially if the Heegaard diagram was “nice”. As discussed in [39],
the same is true in the bordered sutured category.

A bordered sutured Heegaard diagram H = (X, «, 8, Z) is nice if every region of
3\ (a U B) either contains part of dX\ Z or is a disk with at most four vertices. For
such diagrams we can define the type-D structure § on B/SHD(H) as follows. For each
generator x of B/S\D(”H) the differential §(x) is computed as follows:

(1) Suppose y is another generator that differs from x at only one constituent
intersection point coming from of « N B and S is a convex bigon embedded in X
with boundary consisting of one arc from « and one arc from f, no points of x N y
in the interior of the bigon, traversing d.S near one of the double points of x in the
direction induced from the orientation of .S one encounters the arc from f and then
the one from &, and traversing the boundary near one of the double points of y one
encounters the arcs in the opposite order. Then S contributes I(0(x)) ® y to 5(x).

(2) Suppose y is another generator that differs from x at exactly two constituent
intersection points and S is a convex rectangle embedded in ¥ with boundary consisting
of two arcs from o and two arcs from B, no points of x N y in the interior of the
rectangle, traversing 9.5 near one of the double points of x in the direction induced
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from the orientation of S one encounters the arc from f and then the one from &, and
traversing the boundary near one of the double points of y one encounters the arcs in
the opposite order. Then S contributes /(0(x)) ® y to §(x).

(3) Suppose y is another generator that differs from x at only one constituent
intersection point and .S is a convex rectangle embedded in ¥ with boundary consisting
of two arcs from o, one arc from B and one Reeb chord —p € Z, no points of x N y
in the interior of the rectangle, traversing d.S near one of the double points of x in the
direction induced from the orientation of S one encounters the arc from 8 and then
the one from &, and traversing the boundary near one of the double points of y one
encounters the arcs in the opposite order. Then S contributes /(o(x))a(p)I(o(y))® y
to §(x).

Not all of our diagrams are nice but when computing type-D structures all the regions
we compute will be (possibly immersed) bigons and rectangles, or embedded annuli.
They will count towards ¢ in an entirely analogous way to the situation for nice diagrams
(see for example, the computations in [23, Appendix A]). When computing type-DA
structures we make similar counts but in that case we will also need to consider (possibly
immersed) annuli with varying numbers of corners on each boundary components.
(Again see the computations in [23, Appendix A] for the fact that these are counted
analogously.)

4.7 Spin(C structures in bordered sutured Floer homology

Let Y be a 3—manifold (possibly with boundary), and X C Y a subspace of Y. Fix a
nonzero vector field vy on the subspace X . As discussed in Section 2.5.3 for the case
of knot complements (where X = 9Y = T'?), the space of relative Spin(c —structures
Spin(C (Y, X, vg), or simply Spin(C (Y, X), consists of nonvanishing vector fields v on Y
such that v|y = vg, considered up to homology in Y\ X'. The set Spin(C (Y, X, vp) is
an affine space over H, (Y, X') whenever it is nonempty.

In the bordered setting, there are two flavors of (relative) Spin(C —structure, which depend
on a chosen boundary normalization convention. To understand the two conventions,
let H be a bordered sutured Heegaard diagram given by a boundary-compatible Morse
function f, and let x € G(H) be a generator of the associated bordered sutured Floer
complex. Consider the gradient vector field V /', which vanishes only at the critical
points of f. Each intersection of x lies on a unique gradient trajectory connecting
an index-1 and index-2 critical point of f. As these intersections have opposite
parity, we can alter the vector field Vf to be nonvanishing in a neighborhood of
each of these trajectories. The few remaining critical points of f are all contained
in F = F(Z) CdY. It is straightforward to modify Vf in a neighborhood of each
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remaining critical point to be nonzero. Up to diffeomorphism, this modification is
equivalent to removing small balls around each of the remaining critical points. The
resulting nonzero vector field is denoted by v(x).

Consider the vector fields vo = v(x)[sy\F = Vf|gy\F and v,x) = v(x)|sy. The
vector field v,(y) depends on the collection of occupied a—arcs o(x), while vy does
not depend on any information coming from the generator x . For different choices of
boundary-compatible Morse function and metric, the vector fields vy and v,(x) may
vary within a contractible set. Thus, we consider the following two sets of relative
Spin(C —structures: Spin(C (Y,9dY\F) and Spin(C (Y,0dY,0), where o C {1,...,k} lists
the collection of occupied « —arcs.

Let H = H1 UH, be a decomposition of a (bordered) sutured Heegaard diagram into
a pair of bordered sutured Heegaard diagrams, glued along their common boundary. If
x € G(H) is a generator of the (bordered) sutured Floer complex associated to H, then
X =Xx; ®Xx,, where x; € G(H;) and x, € G(H,). By fixing the natural vector field
associated to s(x) =s5(x; ®x,) along the gluing surface, we further obtain a decomposi-
tion of s(x) into the pair of relative Spin(C —structures: s(x1) € Spin(c (Yy,0Y1,0(x1))
and s(x,) € Spin‘C (Y, dY>,0(x3)). Moreover, we have a splitting of Chern classes

c1(x1 ®x2) =c1(x1) @ cr(x2).

4.8 Bordered invariants and knot Floer homology

Given a null-homologous knot K C Y, one can form the bordered manifold by removing
a tubular neighborhood of K and parametrizing the resulting torus boundary using the
meridian and (Seifert-framed) longitude to K. The resulting space is a bordered 3—
manifold which is canonically associated to the knot K. From this space we compute
Ao and type-D modules denoted by C/EA(K) Ar and AT(ﬁ:T)(K), each over the
torus algebra (see Section 5).

Lipshitz, Ozsvath and Thurston [23] observed that the knot Floer homology groups
HFK™ (Y, K) and Pfﬁ((Y, K) can be recovered from either of the bordered invariants
@(K ) or (ﬁJT)(K ). Concretely, this can be obtained by considering the doubly
pointed, bordered Heegaard diagram . = (H, z, w) for the solid torus shown in
Figure 20.

The doubly pointed diagram #,. in Figure 20 specifies a solid torus S! x D? together
with its core curve y = S xpt. The arcs oy and a5 specify the longitude and meridian
of y, respectively. Identifying these curves of this solid torus with their pairs on the
complement Y \v(K) amounts to performing infinity-surgery and further identifies the
core curve ¥ of S! x D? with the knot K.
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-/ * N

Figure 20: Diagram (, z, w) yielding HFK™

To . one associates three distinct type-D modules, which compute the knot Floer
homology groups HFK™ (Y, K), HFK* (Y, K) and HFK(Y K), respectively, when
paired with CFA (K). We denote the first by K~ := AT CFD™ (H,). This module is
generated over [F[U] by the single intersection pomt x. It is understood that holomor-
phic disks passing over the second basepoint w in ., with multiplicity », contribute
a factor of U" to the differential. Thus, the type-D module K~ is specified by the
relation
SU x)=pa3 ® (U™ x),

or, graphically,

P23 PBU.x P23 UZ P23 U3 .x P23

We denote the second type-D module associated to H, by KT := ATCFD™ (H,).
As an F[U]-module, it is equal to F[U~!]. Again, we have that holomorphic disks
passing over the second basepoint w in (#, z, w), with multiplicity #, contribute a
factor of U" to the differential. The type-D structure on K™ is specified graphically

as
P23 - P23 =2y P23 (P

Finally, there is a third type-D structure associated to (#, z, w), which we denote by
K := A7 CFD(H,). The module K is again generated by the single intersection x,
but now over the field IF. The differential on K is trivial:

§(x)=0.
4.9 Gluing maps

In [40], the third author defined a gluing map for sutured 3—manifolds. Specifically, he
showed the following:

Theorem 4.20 [40] Let (Y1,17) and (Y3, 1%) be balanced sutured 3-manifolds
which can be glued along some surface F. Then there exists a well-defined map
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Wp: SFH(Y;,T}) ® SFH(Y,, T) — SFH(Y; U Y,, T UTY),

which is symmetric, associative and equals the identity for topologically trivial gluings.

These maps are well-defined, even when the two manifolds are bordered sutured,
provided the surface along which the gluing is performed is part of the sutured boundary.
The third author has further shown [41] that the gluing map given by Theorem 4.20 are
equivalent to the contact gluing map defined by Honda, Kazez and Mati¢ [18].

The main advantage of the bordered sutured interpretation of the Honda—Kazez—Matié
(HKM) gluing map is that it is defined purely algebraically. The utility of this algebraic
perspective will become apparent quickly. Indeed, the algebraic framework surrounding
bordered sutured Floer homology, combined with some standard nonvanishing results
for the HKM gluing maps will propel many of the computations that follow.

Remark 4.21 The results in this paper rely only on a weak version of the third author’s
equivalence of gluing maps. Specifically, we require simply that the HKM gluing maps
can be localized in the bordered sutured sense (for a precise statement, see Theorem 6.1
below). In particular, none of the results in this paper reference the third author’s “join
map” or make use of the strong version of his theorem equating it with the HKM gluing
map. We expect a complete proof of the strong version of the equivalence based on the

third author’s original techniques to appear soon.

5 Parametrized surfaces and associated algebras

We now give explicit descriptions of the strands algebras to be encountered in subsequent
sections. There are three such surfaces and they are depicted in Figures 21 and 22.

ay ag
as as
ajs 2
2
ap
ap

Figure 21: The sutured disk Fp = (D?, Ap) and corresponding arc diagram
Wp (left) and sutured annulus F4 = (A4, A4) and corresponding arc diagram
Wy (right)
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The parametrized sutured disk We begin with the sutured surface Fp = (D?, Ap),
depicted on the left in Figure 21. This surface is topologically a disk, with suture
set Ap consisting of six marked points along its boundary. Figure 21 also depicts a
parametrization of Fp and the corresponding arc diagram Wp .

From Figure 21, we see that there is a single Reeb chord p in Wp connecting a,
to a3 . In turn, the algebra A(Wp) has trivial differential and decomposes as a direct
sum of three subalgebras: A(Wp,0), A(Wp, 1) and AWp, 2).

The summands A(Wp,0) = (Iz) and A(Wp,2) = (I1,) are both trivial, while the
A(Wp, 1)—summand is given by
AWp, 1) = (11,12, p'),
where p' = a({p}, @) and the idempotent compatibilities are given by
L'l =p.

The parametrized sutured annulus Next, we turn to the sutured surface Fy =
(A, A4), depicted on the right in Figure 21. Topologically, this is an annulus with
suture set A 4 consisting of a pair of marked points on each boundary component. As
before, Figure 21 also depicts a parametrization of F4 together with the corresponding
arc diagram Wy .

In Wy, there are three Reeb chords — p; connecting a, to a3, p, connecting aj
to a4 and p1, connecting a, to a4. It follows that the algebra A(W,4) decomposes
as a sum of three subalgebras: A(Wy4,0), AWy, 1) and AWy, 2).

As before, the summand AWy, 0) = (I) is trivial.
The AWy, 1)—summand is described by

AWa, 1) = (11, I, pi. Py P12)
where o] = a({p1},9), p) = a({p2}, D) and p}, = a({p12},@). The idempotent
compatibilities and nontrivial products in A(Wy, 1) are given by
Loy =p). Lpyly =05 I I =ply. P10y = Pl
Finally, we have that
AW4.2) = (112, P15, P5 - ),

where p7, =a({p12}.12}) and p5-p] =a({p1. p2}, @). The idempotent compatibilities
are given by

I2p a1 = pYs. Tiaph-p{ 12 = pjy - pf,
and there are no nontrivial products. There is a single nontrivial differential in AWy, 2)
given by dp/, = pJ - pf.
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Figure 22: The sutured torus Fr = (T, Ar) and corresponding arc diagram Wr

The parametrized sutured torus Finally, we consider the surface Fr = (T, A1),
depicted in Figure 22. As a sutured surface, this is a punctured torus with a suture set
A consisting of a pair of marked point along its boundary. An explicit parametrization
of Fr by Wr is also shown in Figure 22.

In Wr, there are several Reeb chords — p; from a; to a;, p; from a; to as, p3 from
as to a4, p1p from a; to az, py3 from a, to a4 and finally pq,3 from a; to a4.

The algebra A(W7) associated to this punctured torus is equivalent to the “torus
algebra” from [23]. As above, A(W7r) decomposes as a sum of three subalgebras:
AOWr,0), AW, 1) and AWV, 2).

In this case, only the AWy, 0)—summand is trivial: A(Wr,0) = (I5).
We have that A(Wr, 1) is given by

AOWVr, 1) = (11, 12, p. P5. 05 P2+ Pr3+ P1a3)-

where /0/1 = a({pl}’®)7 10,2 = a({pZ}’g)’ /0,3 = a({p3}v®)’ 10/12 = a({pIZ}vg)’
phy = a({pa3}, @) and pl,, = a({p123}, ). The idempotent compatibilities and
nontrivial products in A7, 1) are given by
Loy Iy =py.  Liphly = p), Ly = pf,
12,0/1212 = /0,12’ 11/0/2311 = ,0/23» 1210,12311 = ,0/123,
ror ror o rr ’o
P1P2 = P12s P2P3 = P23, P1P23 = P123>  P12P3 = P123-
Since it is not strictly needed in the discussion to follow, we leave it as an interesting
exercise for the reader to compute the summand A(OVr, 2). As a hint, this subalgebra
contains both nontrivial products and nontrivial differentials.

6 Bypass attachment maps

In this section, we begin discussing a general method for computing the HKM map
induced on sutured Floer homology by bypass attachment. The key result from [41],
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which propels this computation in this section, states that the HKM gluing maps extends
to the bordered sutured category. Specifically, the third author proves the following
extension of Theorem 2.12:

Theorem 6.1 Let YV = (Y1,11,2) and Y, = (Y5, 15, Z) be two bordered sutured
3—manifolds such that Y1 C Y,, Y,\int(Y7) is balanced sutured, and let £ be a contact
structure on Y, \int(Y7) with convex boundary divided by I'y U I';. Then there exists a
map of type-D structures induced by the contact structure £,

¢s: BSD (V1) — BSD(-»),

which is natural with respect to gluings of bordered sutured 3 —manifolds along subsets
of the boundary which are parametrized sutured surfaces.

The discussion to follow focuses on a small tubular neighborhood of a bypass attachment
arc. Within this neighborhood, there exists a natural sequence of three suture sets, each
obtained from the last by a bypass attachment. Together, this sequence is known as a
“bypass exact triangle”. It is so-called because it represents an exact triangle in Honda’s
contact category (see [16; 20]). The sequence of attachments and resulting dividing
sets are depicted in Figure 23.

Theorem 6.2 (Honda [16]) Denote the sutured manifolds in the above mentioned
sequence by (Y, T'4), (Y,I'p) and (Y, I'c), respectively. The trio of HKM gluing maps
induced by the collection of bypass attachments moving between these three manifolds
together form an exact triangle in sutured Floer homology:

SFH(-Y, —T)

" e

SFH(—Y, —T¢) <€ SFH(—Y,—Tp)

In Section 6.1 we will reduce this theorem to a computation about simple bordered
sutured manifolds and in the following section we will make the relevant computations
giving a bordered sutured Floer proof of this theorem.

6.1 The bordered analogue

We translate the above discussion into the language of bordered sutured Floer homology
by decomposing the sutured manifold (—Y, —I'y4), as depicted in Figure 24, into a pair
of bordered sutured manifolds (—Y, I’,Wp) and (D?> x I,T4,—Wp).
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Iy

-

Tc I'p
Figure 23: Honda’s bypass exact triangle

Mirroring the discussion above, we consider the trio of bordered sutured manifolds
Dy =(D*x1,T),~Wp), Dp=(D*x1,Ty,—Wp) and D¢ = (D*x1,T},—Wp)
depicted in Figure 25. The sutured manifolds (—Y, —I'y4), (=Y, —I'g) and (Y, —I¢)
are obtained from Y = (—Y, "', Wp) by gluing on D4, Dp or D¢, respectively.

Below we compute the trio of HKM gluing maps ¢/, ¢z and ¢, induced by the bypass
attachments in Figure 23 on the type-D structures AWD)BSD (Dy), AWp) B/S\D(D B)
and A(WD)B@T)(DC). We will then see that B/ST)(DA) is the mapping cone of ¢/
with ¢/, and ¢ being the projection and inclusion maps, respectively. It then follows
from Theorem 6.1 that the gluing maps ¢4, ¢p and ¢c are equivalent to Hy (I X @),
Hy(I X ¢%p) and H«(I X ¢.), under the identifications

SFH(~Y,~T4) 2 H,(BSA(Y) K BSD(Dy)).
SFH(~Y, —T) = H,(BSA(Y) K BSD(Dp)),
SFH(-Y, —T¢) =~ Hy(BSA(Y) R BSD(D¢)).

(=D*xI,T,—F)

(_Y’ F/5 Fl)

Figure 24: Decomposing (—Y, ['4)
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Figure 25: The bordered bypass exact triangle

Properties of the derived tensor product then imply that
SFC(~Y,T4) =~ BSA()) K BSD(D,)

is the mapping cone of I X ¢p, with T X ¢4 and [ X ¢ being the projection and
inclusion maps, respectively. Theorem 6.2 then follows upon taking homology.

6.2 Bordered bypass attachment maps

Our computation of the maps ¢/,, ¢ and ¢ proceeds as follows.

We begin by computing the type-D structures B/S\D(DA), B/éT)(DB) and B/S\D(DC).
From the form of these modules, it follows that there exist unique nontrivial maps which
connect these type-D structures in sequence and these maps form a mapping cone as
discussed above. The fact that the maps ¢/,, ¢’z and ¢, are nontrivial follows from
Theorem 6.1 and the fact that there exist contact manifolds with convex boundaries
which are related by a single bypass attachment and whose sutured contact invariants
are nonzero.

Computation of modules We now compute the three type-D structures B/ST)(D 4),
BSD(Dpg) and BSD (D¢ ). Figure 26 depicts the parametrized bordered sutured mani-
folds D4, Dg and D¢ .

As we will now verify, the corresponding bordered sutured Heegaard diagrams H4,
‘Hp and Hc are shown in Figure 27.

We will check that # 4 does indeed give a Heegaard diagram for D4 and leave it to the
reader to make the analogous arguments for the other two diagrams. We first notice that
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Figure 26: The parametrized bordered sutured manifolds D4 (left), Dp (center)
and D¢ (right)

Hqg=(2,a, B, Z), where Z is the arc diagram for Fp from Section 5 and consists
of the vertical black lines and the red arcs. Now recall from Section 4.5 how to build a
bordered sutured manifold form a bordered sutured Heegaard diagram. The manifold
Y is obtained from the Heegaard surface ¥ by attaching 2-handles to ¥ x [0, 1] along
each of the «—and B —circles. Thus Y is a solid torus (that is an annulus times interval)
with one 2—handle attached along a longitude. So Y is clearly a 3—ball.

Now on the left in Figure 28 we see the boundary of X x [0, 1] with the embedding
of the graph of the arc diagram Wp for Fp, the curve 8 and the dividing curves I
shown. After surgery on B we see dY on the left of Figure 28 together with the
embedding of Fp = F(Wp). This is clearly isotopic to the bordered sutured manifold
D4 in Figure 26.

P P P
1 +O
1
D ) w
1 ¥ |

\S]
=
]

|V

[§]

2
: 1O

Figure 27: The bordered sutured Heegaard diagrams #H4 (left), #p (center)
and Hc (right) associated to D4, Dp and Dc, respectively. Each Heegaard
surface is an annulus obtained by identifying the two round black circles in
the diagrams. The blue circles give B and the red arcs form «.
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=

< S

Figure 28: Left: (X x[0, 1]) with 8 the innermost circle (blue), the sutures T’
the union of the other two circles (green and black arcs) and G(Z) the union
of diagonal arcs (red) and heavier arcs (black). Right: dY with F(Z) shaded.

To the diagram # 4, depicted in Figure 27, we associate the type-D structure My :=
AOWD)BSD (D4). As a module, M is generated by two elements, x and y, whose
idempotent compatibilities are given by

I x=x, LL-y=y.

The diagram # 4 is nice in the sense of Section 4.6, so we can use the algorithm there
to compute the boundary map §. From Figure 27,3 we see that there is a single domain
contributing to the boundary map §. It corresponds to a source S which is a rectangle
from y to x with one edge mapping to —p. Thus, the only nontrivial term in the
structure map § is given by

§(»)=p ®x.

Next, to the diagram H g, depicted in Figure 27, we associate the type-D structure
Mp :=AWD)BSD (Dp). As amodule, Mp is generated by a single element z whose
idempotent compatibility is given by

I, z=1z.

The boundary map in this case is trivial since all regions in H g are adjacent to sutured
portions of the boundary.

Finally, to the diagram ¢ in Figure 27, we associate the type-D structure M¢ :=
A(WD)B/ST)(DC). As above, M is generated by a single element w, whose idempo-
tent compatibility is given by

Ii-w=w,

3 As an aid to the reader, regions adjacent to a sutured boundary components in bordered sutured
Heegaard diagrams have been lightly shaded orange. This signals that any domain which contributes
nontrivially to the corresponding differential in Floer homology must have multiplicity zero in that region.
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with trivial boundary map owing to the fact that all regions in H¢ are adjacent to
portions of the boundary which are sutured.

Nontrivial maps Having computed the type-D structures M4, Mp and M, the
task of computing the HKM gluing maps ¢’;, ¢ and ¢ is essentially a triviality. The
reason is that any map of type-D structures must respect idempotent compatibilities.
Combining this with the previously observed nontriviality requirement, one quickly
checks that the desired maps are determined as follows.

The only nontrivial, idempotent compatible map from M4 to AWp) ® Mp is
¢y: Ma— AWp)®Mp,  ¢4(»)=1L®z, ¢4(x)=0.

Similarly, the only nontrivial, idempotent compatible map from Mp to AWp) ® M¢
is

4) ¢p: Mp —> AWp) Q@ Mc, ¢p(z)=p Qw.
Finally, the only nontrivial, idempotent compatible map from M¢ to AWp) ® M4 is
¢/CZ Mc —> AWp) ® My, qb/c(w):Il@x.

Observe that the type-D structure M is the mapping cone of the type-D morphism ¢y,
and that the maps ¢1/4 and ¢’C are the projection and inclusion maps, respectively.

7 Limit invariants and knot Floer homology

In this section, we prove a version of Theorem 1.1, which states that there exists an
isomorphism relating the sutured limit homology of a null-homologous knot with the
minus version of knot Floer homology. Specifically, we establish an isomorphism of
F[U]-modules, deferring the identification of absolute Alexander and Z/2-Maslov
gradings until Section 12.

Proving Theorem 1.1 requires a precise understanding of how the gluing maps induced
by positive and negative Legendrian stabilization act on the sutured Floer homology
of a Legendrian knot complement. Computation of these gluing maps, at the level
necessary to prove Theorem 1.1, has not historically been possible. These gluing maps
are defined in terms of inclusions of complexes, which themselves are generally explic-
itly computable in only elementary situations. Our strategy employs bordered Floer
homology, which provides a sufficiently robust background structure that circumventing
the general computability problem is possible in the present situation.
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We have broken this section into three main parts. The first discusses the overall geo-
metric setup, remarking on an appropriate method of decomposing a knot complement
which leads to simplified gluing map computations. Next, we compute the various
modules and bimodules which will be encountered in later computations. Finally, we
conclude the section with a proof of the ungraded version of Theorem 1.1.

7.1 The geometric setup

Let Y be a 3-manifold and K C Y a null-homologous knot with chosen Seifert
surface F'. Consider the sutured manifold (—Y (K),—I}) = (=Y (K), —Ip), where
Y (K) denotes the complement of an open tubular neighborhood of K and I) consists
of two oppositely oriented Seifert-framed sutures on the boundary of Y (K).

We decompose (—Y (K), —I}) into a pair of bordered sutured manifolds
(=Y (K),~To) = (=Y(K),T", Fr) U To,

consisting of the knot complement (—Y (K), I/, Fr) together with a thickened, punc-
tured torus 7o, as depicted in Figure 29.

S— /

===y

/ bordered sutured

Figure 29: Decomposing (—Y(K), —I'x) into the union (=Y (K), I/, Fr)U
(T x I,Tg,—Fr). (The light (blue) shaded regions are the parametrized
surfaces Fr as seen on the “front” of Y (K) and the “back” of T x I.)

Decomposing (—Y (K), —I'gx) in this way, we can restrict our attention to computing
the gluing maps induced on bordered sutured Floer homology by attaching positive or
negative bypasses to the simpler space 7o = (T x I, T}, —Fr), depicted in Figure 30.
We denote the space resulting from n such bypass attachments by 7, (see Figure 30).
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Figure 30: The bordered sutured manifold 7o = (7, —T}), —Wr) (left) and
Tn = (T,—T,,—Wr) (right). The annular strip 4 is shaded in gray.

As described in Section 2.1.3, the bypass attachments corresponding to positive or
negative basic slice layers can be constrained to lie in the annular strip A, which is
shaded gray in Figure 30. The collection of sutures 1,4 on the resulting space 7,41
are obtained from those on 7, by applying a single negative Dehn twist along a core
curve of the annulus 4 (note the orientation reversal).

This observation suggests that we consider the further decomposition of 7, into a union
Tn=TUC,UAy

of three bordered sutured manifolds, as depicted in Figure 31. Like the 75, the space
T is diffeomorphic to a thickened punctured torus. The spaces C, and Aq are each
diffeomorphic to thickened annuli 4 x I (see Sections 7.2.3 and 7.2.4 for descriptions
of the spaces A, and Cp,).

Figure 31: A decomposition of 7, into the union 7 UC, U Ag
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The decomposition 7, = 7 UC, U Aj allows us to systematically compute the HKM
gluing maps induced by positive or negative bypass attachments. Lemmas 7.2, 7.3
and 7.4 compute precisely these maps for bypasses attached (positively or negatively) to
the spaces Ag, A, and 7,, respectively. With minimal additional effort, these results
establish Theorem 1.1, identifying our sutured limit homology with the minus version
of knot Floer homology.

7.2 Computations of bordered sutured modules and bimodules

In this section, we compute the various modules and bimodules which will be used
below in the proof of Theorem 1.1.

7.2.1 Torus modules We begin by computing the type-D modules B/ST)(TO) and
BSD(7,) associated to the spaces depicted in Figure 30. Admissible bordered sutured
Heegaard diagrams for these spaces are presented in Figure 32.

To the diagram on the left in Figure 32, we associate the type-D module K¢ :=
AWT)BSD(Ty), defined over the strand algebra A(Wr7) from Section 5. The module
K is generated by a single element @, whose idempotent compatibility is given by

I,-a=a.
The boundary operator on K is trivial since all of the regions in the bordered sutured
Heegaard diagram are adjacent to portions of the boundary which are sutured.

Similarly, to the diagram on the right in Figure 32, representing the bordered sutured
manifold 7, we associate the type-D module K, := A(WT)B/ST)(E). For an inte-
ger n> 1, the module K, is generated by the collection of intersections {a, by, ..., by}.
The idempotent compatibilities of these generators are given by

I,-a=a, I;-b;=20;.

,
ITQ
2

Figure 32: Bordered sutured Heegaard diagrams for the spaces Ty and 7,
for n > 1. (As usual the black circles are identified.)
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From the diagram shown in Figure 32, we compute the following nontrivial terms in
the boundary operator on Kj:

8(b1) = py ®a,
§(bi) = py3 ®bi—y, i=2,...,n.

To see this, observe that, for each i > 1, there is a single domain contributing to 6(b;).
In the case i = 1, it corresponds to a domain that is described in the algorithm for
computing § for nice diagrams in Section 4.6. For i > 2, there are many nontrivial
(index- 1) domains emanating from b;, but only one which (potentially) contributes
nontrivially to the boundary operator — the domain connecting b; to b;_;. The domain
is a 6—gon with two edges going to Reeb chords —p, and —p3, in that order. The
contribution to § is analogous to the algorithm described in Section 4.6 except that
the two Reeb chords are multiplied together to yield p;3 when determining their
contribution to §.

Remark 7.1 In the discussion to follow, we will not generally provide justification
for our boundary operator computations. Instead, we leave them as straightforward
exercises for the reader, each of which follows from a line of reasoning similar to that
above.

7.2.2 Torus bimodule We now compute the type-DA bimodule associated to the
space depicted in Figure 33, which we denote by 7 := (7 x [0, 1], [, =Wr UWy).
An admissible bordered sutured Heegaard diagram for 7 is also shown on the right of
Figure 33.

To this bordered sutured Heegaard diagram, we associate the type-DA bimodule N :=
AT BSDA (T) 404 -

We content ourselves with computing the middle summand of B/SEA(T) (namely,
B/S\DA(T, 1) := AOWVr. 1) ®z0n;) X(H)) since that is all we need in our proof of
Theorem 1.1. Indeed, the modules (A, or type-D) to be paired with N have all other
summands vanishing, owing to the fact that they arise from bordered sutured manifolds
with a single bordered boundary component.

From Figure 33, we see that B/SEA(T, 1) is generated by elements x and y, whose
idempotent compatibilities are given by

Iz-x-lzzx, 11y11=y

(Other collections of intersection points will not lie in B/SEA(T, 1).)
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Figure 33: A bordered sutured manifold 7 whose parametrized sutured
surface boundary consists of two components, Fr and F4 (left), and an
admissible bordered sutured Heegaard diagram for 7 (right). (As usual the
black circles are identified by reflections along horizontal lines.)

There are three domains which each contribute a term to m, —two correspond to
8—gons with 2 edges mapping to Reeb chords and one which is an annulus with
one boundary component having 4 edges — one mapping to a Reeb chord —and the
other having 6 edges with 2 mapping to Reeb chords. The nontrivial operations in
B@(T, 1) are given by

my(y, ) = ph @x, ma(x, 7)) =p3 @y, ma(y.7m1,) =Py ® y.

7.2.3 Annular modules We now focus on the collection of spaces
A() = (A X [0, 1], Fo, —WA),
An = (A X [0’ 1]’ F}’h _WA)’

depicted in Figure 34. Admissible bordered sutured Heegaard diagrams for the .4, are
given in Figure 35.

To the diagram on the left-hand side of Figure 35, we associate the type-D module
My := AV BSD(Ag). The module M, is generated by a single element a, whose
idempotent compatibility is given by

I, -a=a.
The corresponding boundary operator § is trivial since all of the regions in the corre-

sponding bordered sutured Heegaard diagram are adjacent to portions of the boundary
which are sutured.
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Figure 34: Thickened bordered sutured annuli representing the “twist region”

Similarly, to the collection of diagrams depicted on the right-hand side of Figure 35
we associate the type-D modules M, := A(WA)B@T)(An). For an integer n > 1,
the module M, is generated by the collection of intersections {a, by, ..., b,}. The
idempotent compatibilities of these generators are given by

Iry-a=a, 1I;-b;=20;.

From the diagram shown in Figure 35, we see that the nontrivial terms in the boundary
map on § are given by

§(by) = p| ®a, §(bi) =pl, ®bi—y, i=2,...n.

The justification for this calculation is identical to that for the torus modules K in
Section 7.2.1.

o o

1 —6" E} 1 Zl b,
—O
)

Figure 35: Bordered sutured Heegaard diagrams for the thickened bordered
sutured annuli 4¢ and A, . (As usual the black circles are identified.)
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Figure 36: Doubly bordered annulus and its bordered diagram. (As usual the
black circles are identified by reflections along horizontal lines.)

7.2.4 Annular bimodules Here, we compute the type-DA bimodules associated to
the collection of spaces C, := (A x [0, 1], I};, = W4 U Wy) depicted in Figure 36.
Admissible bordered sutured Heegaard diagrams for the C, are given in Figure 36, to
which we associate the type-DA bimodule C, := A0V4) @(Cn) AW, -

As was the case above for the bimodule N, we content ourselves with computing the
middle summand B/SEA(CH, 1), since that is all we use in our proof of Theorem 1.1.
The bimodule B/SEA(CH, 1) is generated by the intersections, {a, by, ..., by, c}, whose
idempotent compatibilities are given by

Iz-a-lzza, Il-bi-lzzbi, Il-C'IIIC.

(Note that for each intersection point in {a, by, ..., by, ¢} there is a unique second inter-
section between the ae— and f — curves that will produce an element of BSDA(Cy, 1),
so we denote the generators of BSDA (C,, 1) by the points {a, by,...,by,c}.)

From Figure 36, we see that the nontrivial operations in B/SE%(AH, 1) are given by

mi(by) =p1®a, my(bi) =p12 ®bi_1,

my(c, ) = p12 @by, ma(c,m2) = p12Qc,

My y2(a, o, 12, ..., W12, 1) = P2 ® by,

Myy2(bi, o, w12, .. w2, 1) = 11 @ bjgk,s

My y2(bp_k, 72, 712, ..., w12) = [1 ®c,
Myt2(a, wp, m12,...,T12) = P2 ®c,

where k > 1.
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The above computation is straightforward but somewhat involved, and entirely analo-

gous to the computations made in [23, Appendix A].

7.2.5 Bypass attachment annuli We conclude by computing the type-DA bimod-
ules associated to the two spaces By := (4 x [0,1],T/,-W,4 U Wp) and B, :
(A x[0,1],T", = W4 UWp) depicted in Figure 37. These spaces will be used to study
the attachment of bypasses by gluing them to the bordered sutured manifolds D4, Dp

or D¢ from Section 6.1.

giiat

i

Figure 37: Bordered sutured manifolds for the two possible bypass at-
tachments to an annulus, By := (4 x[0,1],T/,-W4 U Wp) and B, :=

(A X [07 1]5 F//s _WA U WD)

O (

d(\/

-0

d(r\/

|
i

Figure 38: Heegaard diagrams for the possible bypass attachments to an
annulus B; and B,. (As usual the black circles are identified by reflections

along horizontal lines.)
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To the bordered sutured Heegaard diagrams shown on the left- and right -hand sides
of Figure 38, we as associate the type-DA bimodules By := = AOV4) BSDA (B1) awp) and
32 =AOW4) BSDA (B2) a(wp) » respectively. As before, we compute only the summand
BSDA (B;, 1), since that is all we need in our proof of Theorem 1.1.

The bimodule BSDA (B1, 1) is generated by the intersections, {d, e, f}, whose idem-
potent compatibilities are given by

Il-d'llzd, [2-6-[12(3, sz[zzf

There are two nontrivial domains; one contributes a term to 77 and another to m,.
The nontrivial operations in BSDA (81, 1) are given by

mid)=py®e. my(fin')=L®e.

The bimodule m(l?z, 1) is again generated by the intersections, {d, e, f}, with
idempotent compatibilities

Il-d-Ilzd, ]2-6’-[126, sz[zzf

There are again two domains which contribute terms to either n2; or m,. The nontrivial
operations in BSDA (B;, 1) are given by

mi(d) =g\ ®e. my(fin') = ph®d.

7.3 Computation of gluing maps

Having finished computing the various modules and bimodules which are needed to
prove Theorem 1.1, we now determine the various maps on Floer homology induced
by either positive or negative bypass attachment.

After reversing orientation, the lemma below describes the effect on bordered Floer
homology of attaching either a positive or negative bypass to the bordered sutured
annulus Ay .

Lemma 7.2 The map on bordered sutured Floer homology induced by attaching a
positive bypass to the thickened annulus A of slope zero is given by

Wp: My— M, a—I,®a.

Similarly, the map on bordered sutured Floer homology induced by attaching a negative
bypass to the thickened annulus Aq of slope zero is given by

Yn: Mo — My, aw pyQby.
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Proof The proof of Lemma 7.2 centers around the following key diagram:

1dp, Rép
T
B X Mp ¥, B X Mc
I |
My M,
| S~—0 ]
B, X Mp Y B, K M¢
~_

Id32 Xop

The type-D module in the upper left-hand corner of this diagram corresponds to gluing
the bordered sutured 3—manifolds B; and Dp depicted in Figures 37 and 26 together
along their bordered boundaries. The resulting bordered sutured 3—manifold is the
thickened annulus 4y of slope zero depicted in Figure 34.

Similarly, the type-D module in the lower left-hand corner of this diagram corresponds
to gluing the bordered sutured 3—manifolds B, and Dp depicted in Figures 37 and 26
together along their bordered boundaries. The resulting bordered sutured 3—manifold
is, again, the thickened annulus A of slope zero depicted in Figure 34.

The same is true for the modules on the right-hand side of the diagram. The type-D
module in the upper right-hand corner of this diagram correspond to gluing the bordered
sutured 3—manifolds B; and D¢ depicted in Figures 37 and 26 together along their
bordered boundaries, while the module in the lower right corresponds to gluing the
spaces B, and D¢ in Figures 37 and 26. The resulting bordered sutured 3—manifolds
are both equal to the thickened annulus A; of slope one depicted in Figure 35.

Observe that there exist canonical identifications between the type-D modules B; X Mp
and B, X Mp with M, given by

5) fR®z=a=f'"®:.

Similarly, by idempotent considerations and by (5), we see that there are canonical
identifications of the type-D modules B; X M¢ and B, X M with M given by

(6) dw=b=dw, eRQuw=a=¢ Qu.

We now turn to computing the associated gluing maps ¥, and v, induced by positive
and negative bypass attachment respectively. These maps are each defined by

IdB1 &(ﬁBZ Bl gMB%Bl &Mc,
IdBZ&(ﬁBZ Bz&MB%Bngc,
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under the identifications given by (5) and (6), respectively. To see that the first map
corresponds to positive stabilization and the second to negative stabilization, simply
compare the associated bordered sutured manifolds shown in Figure 37 with Figure 4,
and recall that in the former setting, orientations are reversed.

Applying Definition 4.15 to compute the map Idg, K ¢p,
ldg, Bp(f ®2) =my(f.7)@w=D1® (e Qw).

Similarly, applying Definition 4.15, to the map Idg, X ¢p, we obtain

Idp, R¢p(f' ®@z) =my(f',7") ®@w = p) ® (d' ® w).
Therefore, under the identifications given in (5) and (6), we have that

Vp(@) =L ®a and Yy(a) = p) by,

completing the proof of Lemma 7.2. |
Lemma 7.3 The map on bordered sutured Floer homology induced by attaching a
positive bypass to the thickened annulus A,, of slope m is given by

Vo,m: Mm —> My41, bim11®bi, a~I,®a.

Similarly, the map on bordered sutured Floer homology induced by attaching a negative
bypass to the thickened annulus A, of slope m is given by

lﬂn’mi Mm—>Mm+1, b,’l—>[1®bi+1, ab—>,0/2®b1.
Proof The proof of Lemma 7.3 is very similar to that of Lemma 7.2. In this case, the
proof centers around the following key diagram:

Wp,m::Ide ng

T

My = Coy ® M, Con @ My = Myyy

\_/

Yn.m:=Idc,,, R,
There exists a canonical identification between C,, X M, and M, given by
a®a=a and b; ®a = b;.

Similarly, there exists a canonical identification between C,,, X M| and M, is given
by
a®a=a, biQa=>b;, i=1,...,n, c®by =byi1.
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As in the proof of Lemma 7.2, Lemma 7.3 now follows by applying Definition 4.15 to
compute the maps Id¢,, X ¥, and Idc,, X ¢,. |

Lemma 7.4 The map on bordered sutured Floer homology induced by attaching a
positive bypass to the thickened punctured torus T,, of slope m is given by
np,m: Km_>Km+1’ bil—)[]@bi, a|—>12®a.

Similarly, the map on bordered sutured Floer homology induced by attaching a negative
bypass to the thickened punctured torus T, of slope m is given by

Nn,m: Km—>Km+1, bil—>11®bi+1, Cll—)p/3®b1

Proof As before, the proof of Lemma 7.4 centers around the following key diagram:

Np.m:=Id N By,

T

Km=NX My NRMyt1 = Km+1

\/

NMom+1:=IdN Ry 5

We leave the remainder of the proof as an exercise to the reader, noting that the argument
is similar to those establishing Lemmas 7.2 and 7.3 above. |

7.3.1 Proof of Theorem 1.1 Having set up the necessary algebraic machinery, we
now complete the proof of Theorem 1.1.

As shown in Section 7.2.1, the type-D module K, associated to the thickened, punc-
tured, bordered sutured torus 7, of slope # is given by

P23 P23 P23 P2
bn bp—i . by

a.

(Recall this diagram shows the generators of the type-D structures as vertices and the
edges denote the map §.)

According to Lemma 7.4, positive and negative bypass attachments induce maps

Npm: Km = K41, bim11®bi, awI,®a,
and
M,m: Km = K1, bir> I ®biy1, ar py®by,

respectively.
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The groups K; and maps 7, ; and 7, ; can, therefore, be organized neatly into the
diagram given in Figure 39. The columns of this diagram depict the type-D modules K.
The southeastern pointing arrows depict the maps 0y, m: Ky — Kyt 1, while the eastern
pointing arrows depict the maps npm: Km — Kpy1.

a —2 5 b, > by .. - .
a > by > by_» > e
a - > by_s > ..

Figure 39: Direct limit diagram

As discussed in Section 3, the invariant SFH(—Y, K) is obtained by taking a directed
limit of sutured Floer homology groups over HKM gluing maps arising from iterated
negative basic slice attachments. In the bordered setting, this means that we are taking
the directed limit of the collection of modules {K;,} and maps {1, »} connecting them.
Doing so, the resulting module is given by

80 P23 51 P23 52 P23 83 P23
From Figure 39, we see that the two flavors of n—maps commute in the sense that
Mn,i+1° Np,i = Mp,i+1° Mn,i: Ki = Kjyz,

corresponding geometrically to the fact that the associated bypass attachments can
be made along disjoint annuli. As discussed in Section 3.5 for the limit invariant
SFH(-Y, K), this commutativity property implies that the collection of maps {1, }
together yield a well-defined U —action on the module K :=lim K, which sends each
8; to 51’—}-1 .
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It follows that the type-D module K is isomorphic under the identification given below
to the type-D module K™ yielding the minus version of knot Floer homology that was
discussed in Section 4.8:

U U- U- U
P23 S L P23 T pa3 .
K = 50 51 82 83
K=x—22 sy -2y 2y

Finally, on the level of sutured Floer homology, we have
SFH(-Y, K) := lim SFH(-Y(K), —I})

= lim Hy(BSA(=Y(K).T". Fr) R BSD(T,))
> H, (lim(BSA(=Y (K), ", Fr) R BSD(T,))))
= H.(BSA(-Y(K).T". Fr) B lim BSD(T,))
=~ H«(BSA(-Y(K).T". Fr) R K)
~ H,(BSA(-Y(K),I", Fr) R K™)
~ HFK™ (-7, K).

In the above, the third equality follows from work of Bokstedt and Neeman [4],
who showed that the homology functor and direct limits commute in the homotopy
category of complexes. The fourth equality follows from a standard fact asserting the
commutativity of direct limits and (Ao ) tensor products.

This completes the proof of Theorem 1.1. O

8 Equivalence of Legendrian invariants

In this section, we prove Theorem 1.5, which states that the LIMIT invariant QI} defined
in Section 3.5 agrees with the LOSS invariant £ under the identification given by
Theorem 1.1. This result, together with the main theorems of [35] and [3], completes
a body of work which clarifies relationships between the various Legendrian and
transverse invariants defined in the context of Heegaard Floer theory.

Let K C (Y,&) be a given null-homologous Legendrian knot inside the contact 3—
manifold (Y, §). Recall that the LIMIT invariant EH(K) is defined to be the residue
class of the collection of HKM invariants {EH(S? (K))} inside the sutured limit
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homology group SFH(—Y, K). To relate the LIMIT and LOSS invariants, we begin by
constructing a bordered sutured diagram which can be simultaneously completed to
compute either the HKM invariant EH(K) or the LOSS invariant £(K).

S =S

Figure 40: The doubly pointed Heegaard diagram defining the LOSS invariant
(left) and the sutured Heegaard diagram constructed by Stipsicz and Vértesi
computing the HKM invariant (right)

With this in mind, recall that the LOSS invariant is defined using an open book and
collection of basis arcs as depicted on the left-hand side in Figure 40 (see Section 2.3).
In this figure, we see the Legendrian knot K sitting on the page S/, of the open book
(S, ¢) for the ambient contact 3—manifold (Y, £). Observe that K is pierced by the
single basis element aq transversally in a single point. Following the process discussed
in Section 2.3, we obtain the doubly pointed Heegaard diagram denoted by H for the
pair (=Y, K). The collection of intersections x := {xo,...,X,} on the page Sj/,
defines a generator of CFK™ (—Y, K), and the LOSS invariant is defined as

L(K) := [x] € HFK™ (=Y, K).

Stipsicz and Vértesi [35] showed how to slightly modify the open book decomposition
(S,¢) for (Y,£&) to produce a partial open book decomposition (S, P, ¢p) for the
space (Y (K), £g) obtained by removing an open standard neighborhood of K. The
result of their procedure is depicted on the right-hand side of Figure 40. If P denotes the
result of removing an open tubular neighborhood of K from S and we set ¢p = ¢|p,
then the modified partial open book is equal to (S, P, ¢p). Given a basis {ag,...,an}
for S adapted to K, we obtain a new basis {ay,...,a,} for P by dropping the arc
which previously intersected K.

We denote by #’ the sutured Heegaard diagram obtained from the partial open book
(S, P,¢p) and basis arcs {aq,...,a,}. Again, the collection of intersections x’ :=
{X1,...,Xn} on the subsurface P defines a cycle in SFC(#'), and the HKM invariant
is equal to

EH(K) := [x'] € SFH(-Y(K), —Tk).
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To deduce a relationship between the LIMIT and LOSS invariants, we begin by modi-
fying the Heegaard diagrams ' and #H as shown in Figure 41 to obtain new diagrams
denoted by H’ and H, respectively.

Remark 8.1 Figure 41 depicts a pair of Heegaard diagrams one can use to compute the
LOSS and HKM Legendrian knot invariants. These invariants each live in the homology
of an appropriate manifold with reversed orientation. This ambient orientation reversal
is typically effectuated on the level of Heegaard diagrams by reversing the roles of the
a—and S—curves. That is, exchanging the Heegaard diagram (X, e, B) for (X, 8, @).
This same orientation reversal can be accomplished by exchanging all c—curves for -
curves and vice versa, while retaining the usual diagrammatic ordering (X, ¢, #). This
second convention conforms more naturally with preexisting conventions in bordered
Floer theory — that all decompositions occur along o—curves — and is what we adopt
in the discussion to follow.

y' O A) 1
O%{o

Figure 41: Modified Heegaard diagrams for the HKM diagram (left) and
LOSS diagram (right). (As usual the black circles are identified.)

I
<

On the HKM side, the Heegaard diagram H' is obtained from by performing a pair
of stabilizations. To see this we show how to destabilize 7 to get H'. First destabilize
the Heegaard diagram by erasing the two black circles, the blue circle and the red circle
that runs over the removed handle corresponding to the black circles. Now for the
second destabilization remove the remaining blue circle and then surger along the red
circle. One may easily check the resulting Heegaard diagram is isotopic to the one on
the right of Figure 40.

There is a canonical isomorphism on homology induced by the chain map SFC(H') —
SFC(H') which acts on generators by sending y € SFC(#') to (a,b, y) € SEC(H').
Correspondingly, in this new diagram, the generator representing the HKM invariant is
given by the collection of intersections (a, b, x1, ..., Xz).

On the LOSS side, the Heegaard diagram H is obtained from H by performing a single
stabilization. Again, there is a canonical isomorphism on homology induced by the
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chain map CFK™ (#) — CFK™ (#) which acts on generators by sending y € CFK™ (#)
to (1, y). In this case, the new generator representing the LOSS invariant is given by
the collection of intersections (y, Xg, ..., Xz).

Observe that the Heegaard diagrams 7' and H differ only in the C—shaped region
bounded by the orange curves 3’ and y shown in Figure 41. We denote the common
bordered Heegaard diagram lying outside the curves y’ and y by Hg .

The decomposition of H' along Y’ is the diagrammatic equivalent to the bordered
sutured decomposition

(=Y (K),-Tx) = (=Y (K).I". Fr) UTo

used to establish Theorem 1.1 and discussed in detail in Section 7.1. It corresponds
to the removal of a T x I neighborhood of d(—Y(K)) from the sutured manifold
(=Y(K).-Tk).

:
)
O
2 O

Figure 42: Bordered Heegaard diagrams for the HKM and LOSS pieces of .
(As usual the black circles are identified.)

The bordered sutured Heegaard diagram for the portion of H' contained within y'
is depicted on the left-hand side of Figure 42. It is identical to the bordered sutured
diagram shown in Figure 32 for the space 7.

Similarly, decomposing the diagram H along the orange curve y corresponds to excis-
ing a tubular neighborhood v(K) of the knot K from the 3—manifold Y . In this case,
however, the portion of H contained within the curve y forms a doubly pointed bordered
Heegaard diagram for the core curve “ K™ of the solid torus neighborhood v(K) (see
Figure 42).

As noted above, the Heegaard diagrams 7' and H which compute the HKM and
LOSS invariants have been specially constructed to agree outside the curves y’ and y,
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respectively. This construction allows us to track the image of the HKM invariant
under the gluing maps induced by negative stabilization, and, ultimately, the image of
EH(K) under the isomorphism given by Theorem 1.1 identifying SFH(—Y, K) with
HFK™ (-7, K).

In Section 7.3, we performed a detailed computation of the HKM gluing maps induced
by stabilization on the type-D modules K,. Proving Theorem 1.5 requires that we
also understand at least part of the parallel story on the type-A side. Lemma 8.2 below
computes the portion of the type-4 module B/S\A(’H K) A(0wy) Deeded to establish
Theorem 1.5.

Lemma 8.2 In the type-A module B/S7X(’H K) A(wy) We have the operations

mZ((b’xlv---vxn)JU) = (XO’x17~~~7xn)v
m3((b,x1,...,Xp), w3, 7m2) =0.
Proof In order to contribute a term to m,((b, X1, ..., Xn), 73) a necessary condition

is that the corresponding domain must have multiplicity zero in the regions bordering
the Reeb chords 7y and m,, and multiplicity one in the region bordering the Reeb
chord 3.

This fact has two important consequences. First, it forces the region D southwest of
the intersection b and northwest of the intersection xq in Figure 41 to have multi-
plicity one, and that all other regions of bordering ¥’ have multiplicity zero. This, in
turn implies that the intersection points x, ..., X, are all fixed under the operation

le((b,xl,. .. ,Xn),JT3).

It follows that
mz((b"xlﬂ . "xn)’n3) = (XO’xlv- .. 9~xn)a

with the sole nontrivial term corresponding to a source S which is topologically a
rectangle with one edge mapping to 3.

Similarly, for a domain D to contribute nontrivially to m3((b, x1,...,X,), w3, 73), it
must be the case that D has multiplicity one in the regions bordering the Reeb chords
mr3 and m,, and multiplicity zero in the region bordering the Reeb chord 7; and in the
region bordering the suture.

From this observation, we can read off the multiplicities of the regions surrounding the
intersection point . Beginning with the northeast region and moving clockwise, these
multiplicities are 0, 0, 1 and 1, respectively. It follows from this multiplicity calculation
that the intersection b is fixed under the operation m3((b, xq,...,X,), 73, 72).
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Denote by A, B, C and D the multiplicities of the regions surrounding the intersection
point xq, beginning with the northeast region and listed in clockwise order. Since the
intersection point x¢ and b lie on a common fS—curve, and since b must be fixed by
m3((b, x1,...,Xy), 3, 72), the multiplicities of the regions surrounding x, satisfy
the relation

A+C=B+D,

with each of A4, B, C and D nonnegative by positivity of intersection. From the
paragraph above, however, we know that A =0, C =0 and D = 1. Thus, B = —1,
contradicting positivity of intersection.

From the above, we conclude that no such (positive) domain exists, and that
m3((b,x1,...,xn),n3,n2)=0. O
We are now ready to proceed with the proof of Theorem 1.5.
Proof of Theorem 1.5 As discussed above, the HKM Legendrian invariant EH(K)
is represented by the generator
(b.X1.....xn) ®a € BSA(Hg) R K.

Under the map Id X 5, o induced by the first negative stabilization, we have by Lem-
mas 7.4 and 8.2 that

[dX n,0((b, x1,....Xn) ®a)
=my((b,x1,....,xn),73) b1 +m3(b,x1,...,Xn), 73, 72) Qa
= (xo,xl,...,xn)®b1.

Continuing, we have that, for each integer 7 > 1,

Id X 1, ((x0, X1, ..., Xn) ®b;)

l
= Mok (X0 X1+ Xn) T4 3. 23) ® biegy
k=0 +moyit1((Xo, X1, .., Xn), I1, 723, ..., 23, M2) ®a
=ma((x0, X1,...,Xn), [1) ® biy1
= (X0, X1+ -+, Xn) ®Dbjt1.

Thus, under the isomorphism given by Theorem 1.1, the LIMIT invariant EH(K) is
identified with the class [(xg, ..., X;) ® y]. Since this is, by construction, the LOSS
invariant, Theorem 1.5 follows. m
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9 The Stipsicz—Vértesi attachment map and
sutured limit homology

In this section, we prove Theorem 1.3 — that the map induced on sutured limit homology
by the SV attachment is equivalent under the identification given by Theorem 1.1 to
the map

HFK ™ (-Y, K) — HFK(-Y, K)

induced on knot Floer homology by setting the formal variable U equal to zero at the
chain level. Our proof of Theorem 1.3 is similar to that of Theorem 1.1 in the sense
that local computations of the HKM gluing maps can be utilized to deduce the desired
global result.

Let K C (Y, &) be a null-homologous Legendrian knot. Recall that the SV attachment
is given by gluing an appropriately signed basic slice to the complement (Y (K), &g ).
As in the case of positive or negative Legendrian stabilization, the SV attachment can
be effectuated by a bypass attachment, as shown in Figure 43.

> ~~

\/\/(

AN
AN

J

s vy

Figure 43: The bypass attachment arc that realizes the Stipsicz—Vértesi basic
slice attachment. The arc and dividing curves before the attachment are shown
on the left-hand side and the result on the level of dividing curves is shown
on the right-hand side.

\\v
AN
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Reversing orientation, the left-hand side of Figure 43 depicts the sutured boundary of
the complement (—Y (K), —I'x). The attaching curve for the SV bypass attachment is
shown in dark gray and is lies within a vertical annulus (meridional when measured with
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respect to the knot K'). To ensure compatibility with negative Legendrian stabilization,
the endpoints of the SV bypass attachment are chosen to lie on the dividing curve
shown.

The contact 3—manifold which results from the SV bypass attachment is shown
on the right-hand side of Figure 43. As a sutured manifold, this space is equal to
(=Y (K),—T}). It is obtained from Y by removing an open tubular neighborhood of
the knot K and placing two parallel meridional sutures along its torus boundary.

Since the SV bypass attachment can be performed within a vertical annulus, we may
apply the techniques used in Section 7 to establish Theorem 1.3. First, we decompose
the sutured 3—manifolds (—Y(K),—1I}) as

(=Y(K),—T)) = (=Y(K), T/, Fr)UT UC, U Ao,

where T, C,, and A are discussed in Sections 7.2.2, 7.2.4 and 7.2.3, respectively. Next,
Lemmas 9.1, 9.2 and 9.3 compute the HKM gluing maps on bordered sutured Floer
homology induced by the SV attachment performed on the spaces Ag, A, =C, U Ag
and 7, = T U A,, respectively. Finally, in Lemma 9.3 below we deduce the HKM
gluing map induced on the limit module K, which is then seen to agree with the map
given by setting the formal variable U equal to zero under the identification between
K and the module K which gives rise to HFK™ (=Y, K).

We now recall from Section 4.8 the definitions of the type-D modules K~ and K
associated to the doubly pointed solid torus, which computes the minus and hat variants
of knot Floer homology. The module K™ is given by

X%U.xﬂ)Uz.xﬂ)U:;.xﬂ)”"

where each of the U - x live in the idempotent 7;. The module K is generated by the
single element x, which lives in idempotent /; and satisfies §(x) = 0.

At the level of type-D modules, the natural map HFK™ (Y, K) — H/F\K(Y, K) given
by setting U equal to zero at the chain level is given by

K_—>12, X = X, Ui~x|—>0, i>1.

Equivalently, in the language of sutured limit homology, under the isomorphism identi-
fying the type-D modules K and K™, this map is given by

§—>I?, So—>x, 8;i+—0, i>1.

Following the strategy discussed several paragraphs above, we now study the map on
bordered sutured Floer homology induced by attaching an SV bypass to the space Ay.
Restricted to this space, the SV bypass attachment is depicted on the left-hand side
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of Figure 44. The arc of attachment is shown in gray. The bordered sutured manifold
which results from this attachment is denoted by A and depicted in the middle of
Figure 44. A corresponding bordered sutured Heegaard diagram for the space Ay is
shown on the right-hand side of Figure 44.

[ | h

[a—

—( \N

N
°®

\ °

Figure 44: The SV bypass attachment viewed on Ay (left), the space As
which results from attaching an SV bypass to 4, (center), and a bordered
sutured Heegaard diagram for the space A, (right). (As usual the black
circles are identified.)

Using the conventions already set forth in Section 7.2, we associate to the diagram
shown on the right-hand side of Figure 44 the type-D module My, :=A0VA)BSD (Ay),
which is defined over the strand algebra A(W/,4). The module M, is generated by the
single element w, whose idempotent compatibility is given by

I -w=w.

The corresponding boundary map § is trivial since all of the regions in the associated
bordered sutured Heegaard diagram are adjacent to portions of the boundary which are
sutured.

As discussed in Section 7.2, the type-D module M, associated to the space Ay is
generated by a single element a, whose idempotent compatibility is given by I, -a =a.
Lemma 9.1 The map on bordered sutured Floer homology induced by the Stipsicz—
Vértesi attachment to the thickened annulus Ay of slope zero is given by

Psv: My — Moo, ar> phQw.

Proof Observe that the HKM map induced on type-D modules by the SV bypass
attachment must be nontrivial. This follows, for instance, from the fact that there exist
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Legendrian knots whose LOSS hat invariants are nontrivial — the Legendrian unknot
with maximal Thurston-Bennequin invariant is such a knot.

It is now elementary to check that the unique nontrivial map My — My, of type-D

modules is precisely the map ¢sy given in the statement of Lemma 9.1. |

Next, we compute the HKM gluing map induced by attaching an SV bypass to the
spaces Ay, =Cpm U Ap.

Lemma 9.2 The map on bordered sutured Floer homology induced by the Stipsicz—
Vértesi attachment to the thickened annulus A,, of slope m is given by
osv: My, — Moo, b1 Qw, bj+—0 fori <m, ar0.

Proof This follows by a computation which is similar to those given in the proofs of
Lemmas 7.3 and 7.4. In this case, the proof centers around the key diagram

Ideg(PSV

As before, the canonical identification between C,, X M and M, is given by
aQa=a, biQRa=b;.
The identification between C,;; K M, and M, is given by
cRW=w.
Lemma 9.2 now follows immediately from these identifications and Definition 4.15

applied to the map I¢,, X ¢sv. a

We now compute the HKM gluing map induced by attaching an SV bypass to the
spaces Tm =T U Ay,

Lemma 9.3 The map on bordered sutured Floer homology induced by the Stipsicz—
Vértesi attachment to the thickened punctured torus T, of slope m is given by
¢sv:Km—>12, bu—>11®x, bi—0, ar0.

Proof This follows from a computation similar to that given in the proof of Lemma 9.2.
In this case, the computation centers around the key diagram

IdyX ~
Km=N®MmN—¢SV>N&MOO=K.

We leave the remaining details as an elementary exercise to the reader. |
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We are now in position to prove Theorem 1.3.

Proof of Theorem 1.3 From Lemma 9.3, we see that the HKM gluing map induced
on the limit module K by attaching an SV bypass is given by

®SV:£—>I/(\, So—> 11 ®x, 6+—0, i>1.

As discussed earlier in this section, under the identification between @(—Y, K)
and HFK™ (-7, K) given by Theorem 1.1, this is precisely the analogue at the level
of type-D modules of the natural map HFK™ (-7, K) — H/ﬁ((—Y, K) induced by
setting the formal variable U equal to zero at the chain level. |

10 Two-handle attachments and the proof of Theorem 1.4

We now prove Theorem 1.4. Recall that this theorem states that the HKM gluing map
®on: SFH(-Y. K) - HF(-Y),
which is induced by meridional 2-handle attachment, is equivalent to the map
HFK™(-Y, K) — HE(-Y),
which is given by setting the formal variable U equal to the identity at the chain level.

Our proof of Theorem 1.4 is substantially similar to that of Theorem 1.3 given in
Section 9. As before, we begin by decomposing the sutured 3—manifolds (—Y (K), —1I})
as

(=Y(K).—T) = (=Y(K).T". Fr) UT U Cn U Ao,

where 7, C, and A are discussed in Sections 7.2.2, 7.2.4 and 7.2.3, respectively.
Lemmas 10.1, 10.2 and 10.3 compute the HKM gluing maps induced by performing
meridional contact 2-handle attachments on the spaces Ay, A, = C, U Ay and
Tn =T UA,, respectively. From Lemma 10.3, we are then able to compute the gluing
map induced on the limit module K, which we show agrees with the map given by
setting the formal variable U equal to the identity under the identification between K
and the module K which gives rise to HFK™ (-7, K).

The result of attaching a meridional contact 2—handle to the space (Y (K), 'x) and
rounding edges is depicted in Figure 45. The new space has a single convex boundary
component, which is a 2—sphere containing a dividing curve. This space is equal to
Y (1) as a sutured manifold (see [21]).

Let 751 be 7o with a 2—handle attached along a meridian (that is, along the gray annulus
in Figure 30). This is a bordered sutured solid torus and is shown on the left-hand side
of Figure 46. We obtain the space Y (1) from the bordered sutured (Y (K), T, Fr)
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)

R

]
-

[N\ _ [ X\ _/
\L_\A/ \

—

Figure 45: The contact 2-handle attachment. The manifold Y (K) is out-
side the torus in the figure. The 2—handle attached along a meridian is the
D? x [0, 1] shown inside the torus. On the right-hand side the dividing curves
are shown after corners have been rounded.

by attaching 75;. The Heegaard diagram for 7g; is shown in Figure 46 and it is
equivalent to that depicted in Figure 20, but with second basepoint w removed and the
first basepoint z incorporated into the boundary.

To the diagram in Figure 46, we associate the type-D module Kgj := AWT)BSD (Tsn)
defined over the strand algebra AWV ). The module Ky is generated by the single
element x, whose idempotent compatibility is given by

I -x =x.
The corresponding boundary map is given by

8(x) = py; ®x.

P
X,
+o

QO

"mmmp=

Figure 46: The bordered sutured manifold 7g; (left) and its Heegaard dia-
gram (right). (As usual the black circles are identified.)
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To prove Theorem 1.4, we must understand the bordered sutured analogues of both
the contact 2—-handle and the corresponding gluing map induced on (bordered) sutured
Floer homology. The left-hand side of Figure 47 depicts the bordered analogue D,y =
(D?, Ty, —Wy) of a contact 2—handle. In the bordered world, the act of “attaching” a
2—-handle is, locally, given by exchanging the annular bordered sutured manifold .4y
for Dzh .

oS

Figure 47: A 2-handle written as a bordered sutured manifold (left) and its
Heegaard diagram (right). (As usual the black circles are identified.)

To the diagram in Figure 47, we associate the type D module Ky, := A4 BSD (Dan).
The module K>y, is generated by the single intersection ¢, with idempotent compatibility
given by

Ii-qg=q.
The corresponding boundary map is given by the equation

8(q) =pj,®q

As in the case of bypass attachment above, we can apply the third author’s equivalence
of gluing maps result from [41] to compute the map induced by 2—handle attachment on
bordered sutured Floer homology. In this instance, the bordered analogue of attaching
such a handle is locally given by exchanging the space Ag for Dyy. The third author’s
result, coupled with known nonvanishing results for invariants of contact structures,
implies that the HKM gluing map must be given by some nonzero map ¢,y,, connecting
the type-D modules associated to Ay and D5y, respectively. As there is a unique such
nontrivial map, we have established the following lemma:

Lemma 10.1 The map on bordered sutured Floer homology induced by meridional
2 —handle attachment to the thickened annulus A is given by

¢an: Mo — Ko, a>ph®yq. |

Recall that the map @, is induced by the collection of gluing maps {¢,,} which come
from attaching a contact 2—handle to a meridional curve on the convex boundary of
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(Y (K),&k,), as depicted in Figure 47. The collection of constituent gluing maps defin-
ing @,y are computed in precisely the same manner as those defining ®gy in Section 9.

Observe that, topologically, attaching a contact 2—handle to any of the spaces A,
results in a copy of D,y,. Similarly, as described above, attaching a meridional contact
2-handle to any of the spaces 7, results in the space Tg;. Lemmas 10.2 and 10.3
below compute the corresponding gluing maps and are the analogues of Lemmas 9.2
and 9.3 from Section 9, respectively. Because the computations are so similar, we leave
them as exercises to the interested reader.

Lemma 10.2 The map on bordered sutured Floer homology induced by attaching a
contact 2—handle to the thickened annulus A, of slope n is given by

¢hon: My — Koy, bp—>11®q, ar pyQyq. O

Lemma 10.3 The map on bordered sutured Floer homology induced by attaching a
contact 2—handle to the thickened punctured torus 7T, of slope n is given by

don: K — Kan, b =11 ®x, aw pyx. O

Proof of Theorem 1.3 From Lemma 10.3, it follows that the map induced by contact
2-handle attachment on the limit type-D module K is given by

Qo K — Kan, 8> 11 ®x.
It follows immediately that, under the identification
K— K, 5i|—>Ui-x,

between K and K, the type-D module computing HFK™, the map ®;;, agrees with
that induced by setting the formal variable U equal to the identity at the chain level. O

11 Inverse limit invariants and knot Floer homology

In this section, we briefly discuss methods for establishing the results detailed in
Section 3.6 concerning the sutured inverse limit invariants. Generally speaking, proofs
of these theorems are simple translates of the corresponding results in the direct limit
setting, and we therefore leave them as straightforward exercise for the interested reader.

11.1 Identifying invariants

Here we present an outline of the proof of Theorem 1.6. Recall that this theorem states
that there exists an isomorphism of [F[U]-modules

I,: SFH(-Y, K) — HFK' (Y, K).
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To obtain this result, we adopt the same general strategy used to prove Theorem 1.1 in
Section 7.

Let {(Y(K), Fl.+)} be the collection of sutured manifolds which are obtained as subsets
of the longitudinal completion (Y (K), I}) = (Y(K), I[}), as described in Section 3.6.
Recall that for j > i we have an inclusion (Y (K), F+) C (Y(K), F+) and that each
of the differences (Y (K), F+)\(Y(K)
basic slice.

; +1) can naturally be given the structure of a

Consistently choosing the “negative” sign for each of the above basic slices gives rise
to the cofinal sequence

SFH(-Y (K), —F+) 25 SFH(-Y(K), —F+) G5 SFH(-Y(K), —F+)
whose inverse limit we define to be the sutured inverse limit homology SFH(-Y, K).

As was the case for sutured limit homology, one obtains a natural U —action on
SFH(—Y, K) via positive basic slice attachment.

We begin by decomposing the spaces (—Y (K),—I,;"), as in Section 7.1, to obtain
(_Y(K)’ _Fn+) = (_Y(K)a F/’ ]:T) U 7;1+’

where (=Y (K),I’, Fr) is the knot complement and 7;+ is the bordered sutured
manifold obtained from 7y (see Section 7.1) by applying i positive Dehn twists along
the core curve of a meridional annulus A.

Using the same techniques employed in Section 7.2, we compute type-D modules
K= A(WT)B@T)(E"”). The K are generated by {a, by, ..., by}, with idempotent
compatibilities

I,ca=a, I -b;=0b;,

and differential described graphically as

by <PB p, PP P23,

Analogues of Lemmas 7.2, 7.3 and 7.4, adapted to this context, again give rise to the
key diagram depicted in Figure 48.

Figure 48 depicts the bordered sutured analogues of the HKM gluing maps induced
by positive and negative basic slice attachment. Specifically, the eastern pointing
arrows depict the type-D maps induced by negative basic slice attachment, while the
northeastern pointing arrows depict the type-D maps induced by positive basic slice
attachment.
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Figure 48: Inverse limit diagram

Taking the inverse limit over the horizontal maps which correspond to negative basic
slice attachments, we obtain the type-D module K := lim KT, described graphically

as
80 P23 51 P23 82 P23 83 P23

We further see that the U —action on the type-D module K is given by left-translation,
sending §; to §;—q for i > 0 and &g to 0.

It immediately follows that the type-D module K is isomorphic under the identification
below to the type-D module KT from Section 4.8 which gives rise to the plus variant
of knot Floer homology:

U U- U- U
s N T 3 N e pa3 N e N
=80 51 52 83
[ P23 I P23 I P23 I
Kt =x Ul x~—U?2x~—— U3 . x~—

Finally, on the level of sutured Floer homology, we have
SFH(—Y, K) := lim SFH(-Y(K),—I;")
= lim Hy (BSA(-Y(K).T", Fr) ®BSD(T;"))
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=~ H,(BSA(-Y(K), I, Fr) R 1im BSD(T;"))
~ H,(BSA(-Y(K),T', Fr) R K+)
~ HFK (-7, K),

as in the proof of Theorem 1.1 in Section 7.3.

This finishes our sketch of the proof of Theorem 1.6.

11.2 Identifying the natural map

Here we provide a sketch of the proof of Theorem 1.7, which, under the isomorphism
I from Theorem 1.6, identifies the induced map

®ysv: HFK (Y, K) — SFH(-Y, K)
with the natural map on knot Floer homology

tx: HFK(-Y, K) — HFK 1 (-Y, K)
induced by the inclusion of complexes.

Recall that the map P4sy is induced by the HKM gluing maps associated to the
collection of basic slice attachments {4; }, performed along the boundary of the
meridional completion (Y (K), I},).

The proof of Theorem 1.7 is similar to that of Theorem 1.3. The basic idea is to
decompose the relevant spaces in the usual way as unions of bordered sutured manifolds,
thus localizing the associated computation to a neighborhood of the original boundary.
Specifically, we have

(—=Y(K),-Ty) = (=Y (K),T", Fr) UTy,
(-Y(K),-I") = (-Y(K)I", Fr)UT}.

Having decomposed the sutured manifolds as above, the goal shifts to computing the
maps of type-D structures
pasv: K — K

induced by negative basic slice or, equivalently, negative bypass attachment. The key
lemma in proving Theorem 1.7 is the following:

Lemma 11.1 The map on bordered sutured Floer homology induced by the above
described negative basic slice attachment A;" , performed along the boundary of the
meridional completion, is given by

pasv: K = K\, x> I, ®by.
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We leave it as an exercise for the interested reader to verify Lemma 11.1, with the
following hint. First, focus on the (nontrivial) map ¢gsv: K — K+ , whose target is
the type-D module associated to the longitudinal completion. This map is unique, and
given by ¢gsv(x) = p2 ® a. From here, the Lemma follows by iteratively tensoring
with the bimodule from [23] corresponding to a negative Dehn twist along the meridian
to obtain the maps ¢asy: K — K above.

It follows from Lemma 11.1 that, upon taking the inverse limit, the induced map ®qsv
is given by.
desvlk—>£, x =11 ® 6.

Under the identification of SFH(—Y, K) and HFK ™ (-Y, K) given by Theorem 1.6,
we see that ®ggy is precisely the analogue at the level of type-D modules of the natural
map t4: HFK (=Y, K) — HFK ™ (=Y, K) induced by inclusion of complexes.

This finishes our sketch of the proof of Theorem 1.7.

12 Gradings

In this section, we show how to extend the proof of Theorem 1.1, presented in Section 7,
to include an identification of gradings. To avoid unnecessary complications, we will
assume in what follows that our ambient 3—manifold Y is an integral homology sphere,
though the results generalize to any 3—manifold and null-homologous knot.

12.1 Alexander grading

Let K be a null-homologous knot in the 3—manifold Y, and let # = (2, o, 8,2z, w)
be a doubly pointed Heegaard diagram for the pair (Y, K). Recall from the discussion
in Section 2.5.3 that if [F, dF] is a homology class of Seifert surface for the knot K,
then one defines the Alexander grading of a generator x € G(H) of CFK™ (H) via the
formula

Arrar)(x) = 3{e1(s(x), 1), [F, F]),

which is then extended to all of CFK™ (Y, K) via linearity and the relation

A(r,ar)(U - x) = Aip,oF)(x) — 1.

In Section 3.3, we extend the above Alexander grading to the sutured setting. Namely,
let H; be a sutured Heegaard diagram for the sutured manifold (—Y (K), —I3}), obtained
from the complement Y (K) by and placing a pair of oppositely oriented sutures which
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run once longitudinally and i times meridionally on the resulting boundary. Then, to a
generator x € G(H;) one assigns the Alexander grading

App,aF)(x) = He1(s(x). ). [F. OF]),
and extends linearly to all of SFC(#;).

It was further observed in Section 3.3 that, based on the relative first Chern class
computations in Section 2.5.2, the gluing maps ¢— and ¥4 are homogeneous of

Alexander degree plus and minus %, respectively. In particular, the collections of maps

¢—: SFH(=Y (K),~I})[5(i = 1)] = SFH(=Y(K). ~T;4D)[5(G + D) = D],
Y4: SFH(=Y(K), ~T})[5( — 1)] = SFH(=Y(K). T4 )[5(G + D) = D],

were all seen to be Alexander-homogeneous of degree 0 and —1, respectively. Taking
the direct limit over the collection {¢_}, the sutured limit homology inherited a natural
Alexander grading from the above formulae.

Our identification of these two Alexander gradings proceeds in two steps. In the first,
we show that the two gradings must agree up to an overall shift independent of Y
and K. This is the content of Proposition 12.1. From here, it suffices to identify
a single class [x] € SFH(—Y, K) whose Alexander grading is preserved under the
isomorphism given in Theorem 1.1. This is accomplished in Proposition 12.2 using
Legendrian/transverse invariants.

Proposition 12.1 Let K be a null-homologous knot in an integral homology 3—
sphere Y. Under the isomorphism given in Theorem 1.1, the Alexander gradings
defined on SFH(—Y, K) and HFK™ (=Y, K) agree up to an overall shift.

Proof Let (—Y(K),—I;) be as above, and consider the bordered sutured decomposi-
tion
(=Y(K),-I) = (=Y(K),I", Fr) UT;

from Section 7.1, where the parametrization on the common boundary Fr is given by
the pair of «—arcs consisting of a meridian and a 0—framed longitude.

To the bordered sutured manifold (=Y (K), T, Fr), we associate the As,—module
C/EA(—Y, K). The complexes CFK™ (—Y, K) and SFC(—Y (K), —I}) can be obtained
(up to homotopy) from C/EA(—Y, K) by forming the box tensor products with the
modules CFD™ (H,) (from Section 4.8) and K; (from Section 7.2.1), respectively. In
this setting, generators of CFK™ (—Y, K) are all of the form y ® x, while generators
of SFC(—Y(K), —T;) are either of the form y ® b; or y’ ® a, where y and y’ live
in idempotents /; and I, respectively.
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by by by

by by by

Figure 49: An alternative view of the bordered sutured Heegaard diagram
depicted in Figure 32

The Alexander grading computation can similarly be decomposed in either setting.
Namely,
Arr,aF)(m @n) = 3(c1(s(m ®n)), [F, dF))
1

= 3(c1(s(m)) ® c1(s(n)), [F, OF)
= 3{e1(s(m)), [F, 0F]) + 3{c1 (s(n)), [4, 84]),
where A = dF x I is an annular extension of the Seifert surface F through 72 x I

We recall that the Alexander grading on CFK™ (—Y, K) is characterized by the above
formula, together with the fact that multiplication by U drops the grading by 1. Thus,
the task of identifying the Alexander gradings, up to an overall shift, is equivalent to
showing that, for generators b; and b; of K;,

{e1(s(0)). [4, 04]) = (c1 (s(bp)). [4. 04]) = 2- (j = D),

since these elements represent the elements U/ - x and U I'. X in the limit.

To see this, consider Figure 49. Here, we see an alternate view of the bordered
sutured Heegaard diagram originally depicted in Figure 32. From this diagram, it
immediately follows that, for generators bj, b; € K; intersecting the longitudinal o—
arc, €(bj,b;) = (j —)[n] and, in turn, that their associated Spin(C —structures differ
by (j —I)PD([u]). Therefore,

(e1(oby)). [4. 0A41) ~{e1 s(b). [4. 3A4]) = {e1 s(7) — (b)) [4. 4]
= (2-PD([u]). [4. 04])
=2-(j=1. .
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We now turn to the task of showing that the Alexander gradings defined on SFH(—Y, K)
and on HFK™ (-7, K) agree on-the-nose, not just up to an overall shift. As observed
above, and in light of Proposition 12.1, it suffices to demonstrate this equality for a
single nontrivial element. In fact, it suffices to prove this equality for some knot K in
some 3—manifold Y. This is because, as shown in the proof of Proposition 12.1, any
shift in Alexander grading can be computed strictly within the context of the type-D
modules K; and (ﬁ:T)_(HC).

Proposition 12.2 There exists a knot K contained in the 3—sphere S* and nontrivial
elements g € SFH(-Y, K) and h € HFK™ (Y, K) which are identified under the
isomorphism ®: SFH(-Y, K) — HFK™ (-Y, K) and such that A(g) = A(h).

Proof Let K be a given knot type in S>. Consider the standard tight contact structure
£ on S3, and let L be a Legendrian representative of the knot type K. It was
shown in Section 2.7 that the Alexander grading of EH(L) € SFH(—Y (K), —Tiy(r))
is precisely equal to the negative rotation number:

AEH(L)) = —3r(L).

Recall that the Thurston—Bennequin number is, by definition, the difference between
the contact framing on L and the Seifert framing. This, in turn, is precisely equal to
the slope of the sutures on the Legendrian knot complement. Thus, in the sequence

SFH(=Y (K). ~T_)[ 1 (tb — 1)] = SFH(=Y (K). =T_g ) [ (b — 1) = )] —

we see immediately that A(EH(L)) = E(tb(L) —r(L) + 1), agreeing with the corre-
sponding value for the Alexander grading of the LOSS invariant £(L).

To finish the proof, it suffices to check that either EH(L) or £(L) is nonzero. This
follows 1mmed1ately from the fact that the invariants EH(L) is identified with contact
invariant ¢(S?, &q) under the map ®,y: SFH(-Y, K) — HF( Y), and the latter
contact invariant is nontrivial. a

12.2 Maslov grading

We now turn our attention to understanding the homological or “Maslov” grading in su-
tured limit homology. Specifically, we aim to show that the F[U]-module SFH(-Y, K)
inherits an absolute Z/2—-grading which can be canonically identified with the usual
absolute 7 /2-grading in knot Floer homology.

With this goal in mind, we begin by recalling the following useful fact, which charac-
terizes the behavior of the absolute 7 /2—grading on sutured Floer homology under the
gluing maps defined by Honda, Kazez and Mati¢.

Geometry & Topology, Volume 21 (2017)



Sutured Floer homology and invariants of Legendrian and transverse knots 1573

Theorem 12.3 (Honda, Kazez and Mati¢ [18], Gripp and Huang [32]) Let (Y1, I})
and (Y,,I3) be balanced sutured 3-manifolds such that Y; C Y,, and let & be a
contact structure on Y, \int(Y;) with sutured contact invariant EH(E). Then the Honda—
Kazez—Mati¢ gluing map, on the chain level, is homogeneous of degree gr(EH(§)),
that is,

ge: SFC(—Yy, —T}) — SFC(— Y5, —T)[gr(EH(E))),

and descends to a degree gr(EH(§)) map on the homology level.

Although the above result is not explicitly stated in [18], the result is implicit in the
proof of the main result of that paper (stated here as Theorem 2.12) — that well-defined,
natural contact gluing maps exist in the sutured category. Its truth can be derived from
results of Gripp and Huang [32] characterizing the absolute gradings in Heegaard Floer
theory in terms of homotopy classes of vector fields.

To better understand the context of the above result, consider the following variant of
Honda, Kazez and Mati¢’s construction. Start with two balanced sutured manifolds
(Y1, T7) and (Y, I3), each of which can be equipped with contact structures inducing
the specified suture sets on their boundary. Now suppose that 3J; are sutured subsurfaces
(with dividing sets) of the boundaries 0Y;, which are compatible in the sense that
Y =~ ¥ = —%,. Then, it is possible to glue together the two sutured manifolds along
the X; to form a new balanced suture manifold

(Y,I) = (Y1,I1) Us (Y2, Ip).
In this setting, Honda, Kazez, and Mati¢’s gluing theorem states that there exists a map
¢x: SFC(-Y;, —I7) ® SFC(—Y;, —I3) — SFC(-Y, -TI")

which is obtained as an inclusion of complexes, and which is homogeneous of degree
zero. Furthermore, if the sutured manifold (Y,, —1I%) is equipped with the compatible
contact structure &;, then the usual gluing map is given by

?e,(+) = ¢z (- ® EH(£2)),
viewed as a map from SFC(—Y7, —I%) to SFC(-Y,-I").

With the above result in mind, we turn to the problem at hand — determining an absolute
7 /2—grading on the sutured limit homology groups. We begin with the following
useful observation.

Proposition 12.4 The absolute 7 /2—grading of the contact invariant associated to
either a positive or negative basic slice is zero.

Geometry € Topology, Volume 21 (2017)



1574 John B Etnyre, David Shea Vela-Vick and Rumen Zarev

Proof Recall from Section 2.1.3 that if By = (T? x I,£4) is either a positive or
negative basic slice, then it contains a convex torus 7" which decomposes B4 into two
basic slices of the same (original) sign.

This decomposition allows us to compute the absolute grading of EH(T? x I, £) by
applying Theorem 12.3. Specifically, we have

gr(EH(B+)) = gr(EH(B+ Ur Bx))
= gr(EH(Bx)) + gr(EH(Bx))
=0 (mod 2). a

It follows from Proposition 12.4, together with the above result of Honda, Kazez and
Mati¢, that the maps ¢; which give rise to sutured limit homology are necessarily all
Maslov-homogeneous of degree 0. In turn, we see that the sutured limit homology
group SFH(—Y, K) inherits an absolute Z/2~-grading, which we refer to as the Maslov
grading.

Theorem 12.5 Under the isomorphism ®: SFH(—Y, K) — HFK™ (Y, K), given by
Theorem 1.1, the absolute 7 /2—grading on SFH(—Y, K) is identified with the absolute
7,/2—grading on HFK™ (Y, K).

Proof Recall that Theorem 1.3 states that, under the isomorphism /_: SFH(-Y, K) —
HFK™ (-7, K), the Stipsicz—Vértesi map ®gy is identified with the canonical map on
knot Floer homology which is induced by setting the formal variable U equal to zero
at the chain level. That is to say, the following diagram commutes:

I _
SFH(-Y, K) HFK~(-Y, K)
HFK (-Y, K)

Moreover, the maps /_, ®gy and ps are all defined on the chain level and on the
chain level fit into the analogous commutative diagram. Recall that CFK™ (Y, K) is
generated by elements that map nontrivially to CFK (=Y, K) and their images under U .
Since the effect of U on grading is well understood we need to see that for elements
that map nontrivially to C/F\K(— Y, K) their grading in CFK™ (—Y, K) and in the chain
group computing SFH(-Y, K) are the same.

Focusing first on the knot Floer homology side of this story, recall that the “U =0
map” CFK™ (Y, K) — CFK(-Y, K) preserves the absolute Z/2—grading.
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In a similar spirit, recall that the Stipsicz—Vértesi map is induced on SFH(-Y, K)
via a collection of basic slice attachments to the set of sutured knot complements
{(=Y(K), —TI3)}. Topologically, each Stipsicz—Vértesi attachment yields the sutured
manifold (=Y (K), —I},). The sutured Floer homology of this space is isomorphic to
}fﬁ((—Y, K), via an isomorphism that preserves absolute grading. These facts, in
conjunction with Proposition 12.4, show that the map ®gy is necessarily homogeneous
of degree zero, finishing the proof of Theorem 12.5. |

13 Examples

In this section, we present some examples which highlight distinctions between the
various Legendrian and transverse invariants defined and discussed in this paper.

Recall that there are essentially three flavors of Legendrian or transverse invariants
under consideration in this paper: HKM, LOSS and LIMIT. Both the HKM and LIMIT
invariants are defined geometrically and correspond to contact invariants naturally
associated to a given Legendrian or transverse knot. The LOSS invariants, on the other
hand, are defined via compatible open book decompositions, thus obscuring obvious
connections between the invariants and the ambient geometry.

Before delving into the examples, recall that we have correspondences identifying some
of the Legendrian and transverse invariants discussed above. Specifically, Theorem 1.5
asserts that the LOSS minus invariant is identified with the “direct” LIMIT invariant
under the isomorphism given by Theorem 1.1. Stipsicz and Vértesi also provided a
geometric interpretation of the LOSS hat invariant as the contact invariant of a contact
manifold (with convex boundary) canonically associated to a Legendrian or transverse
knot (see Section 2.7).

There is a fourth set of invariants of Legendrian and transverse knots in the standard
contact 3—sphere (S3, £q), which is defined combinatorially by Ozsvéth, Szabé and
Thurston via grid diagrams, and which are referred to as the GRID invariants [31]. It
was shown by the second author, in joint work with Baldwin and Vértesi [3], that these
invariants agree with the LOSS invariants where the two are simultaneously defined.

13.1 Comparing the HKM and LOSS invariants

Here, we compare the HKM and LOSS invariants by providing an example of a
Legendrian knot whose HKM invariant is nonzero, but whose LOSS invariants vanish.

The example is a nonloose Legendrian unknot Ugr in an overtwisted contact structure
£ on S*. The Legendrian knot Upr is shown in Figure 50 as an essential embedded
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curve on the open book decomposition (4, D)) for S 3. The pages of the open
book decomposition (4, D,/) are annuli, and the monodromy map is given by a single
negative Dehn twist along a core curve y . Figure 50 depicts the associated multipointed
Heegaard diagram associated to the Legendrian knot U, used to compute the LOSS
invariants.

24

U

S1/2 . —So

Figure 50: A nonloose Legendrian unknot Upr with nonvanishing HKM
invariant and vanishing LOSS invariant in an overtwisted contact 3—sphere

We see immediately that the Legendrian Ugr is indeed an unknot. To see that its corre-
sponding LOSS invariants vanish, observe that they are represented in HFK™(—S3, U)
and H/F\K(—S3 ,U) by the intersection point x in Figure 50. We immediately see that
db = x in either case. Thus, the class [x] vanishes in homology.

On the other hand, we can see that the HKM invariant of Ugr is nonvanishing as
follows: Stipsicz and Vértesi showed that the HKM invariant can be computed from
the open book decomposition (4, D)) by removing an open tubular neighborhood
of the curve Ugr, and deleting the o— and fS—curves it intersects. The result is a
sutured Heegaard diagram consisting of a topological annulus and empty sets of o—
and B—curves. The contact invariant is represented by the empty set of intersections,
which is nonzero in homology. If the reader prefers, this same nonvanishing result
can be shown by positively stabilizing the open book decomposition (4, D)) along a
boundary-parallel arc to ensure the existence of a nontrivial set of intersections after
removing a neighborhood of Ugr. (Yet another way to see this invariant is nonzero is
to note the knot is a nonloose knot and so its complement is tight. Any tight contact
structure on a solid torus has nonzero contact invariant.)

To show Golla’s characterization of EH(K) in the tight contact structure on S3 dis-
cussed in Section 1.6 does not hold in general, we note that there is a loose unknot
U’ in the same contact structure as Ugr that has the same classical invariants as Ugr.
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We just argued that EH(Ugr) is nonzero but it is clear that EH(U) is zero. Moreover,
from the above arguments one may easily conclude that £L(Ugr) = L(—Upr) =0 =
LU =L=U").

13.2 Comparing the LOSS invariants

Relationships and differences between the LOSS minus and hat invariants are well-
documented, and we refer the interested reader to the original paper [25] by Lisca,
Ozsvith, Stipsicz and Szabé for more information.

Here, we simply remark that examples of Legendrian or transverse knots for which the
minus version of the LOSS invariant is nonvanishing while the hat invariant vanishes
are easy to generate. Indeed, recall that the minus version of the LOSS invariant is
identified with the contact invariant of the ambient manifold under the natural map

ns: HFK™ (=Y, K) — HF(-Y),

induced by setting the variable U equal to the identity at the chain level. Thus, if
(Y, &) is any contact 3—manifold with nonvanishing contact invariant c(Y, £) # 0, then
for any null-homologous Legendrian (resp. transverse) knot K C (Y, £), we have that
L(K) # 0 (resp. T(K) #0).

On the other hand, if K’ C (Y, £) is any positively stabilized Legendrian (resp. trans-
verse) knot, then £(K') =0 (resp. T(K') = 0).

Since the standard contact 3—sphere (S3, £gq) satisfies the condition that ¢(S?, £q)
does not vanish, we see that the desired examples exist in abundance. In fact, using
the isomorphism given in [3] relating the LOSS and GRID invariants, one can produce
a multitude of nondestabilizable examples satisfying the same vanishing properties —
the Etnyre—Honda (2, 3)—cable of the (2, 3)—torus knot Tgy [8] is such an example
by a result of Ng, Ozsvath and Thurston [27].

13.3 Comparing the LOSS and LIMIT invariants

We now turn to the task of comparing the LOSS and LIMIT invariants. In light of
Theorem 1.5, and the discussion in Section 13.2 above, we focus on understanding
differences in information content between the hat version of the LOSS invariant and
the “inverse” version of the LIMIT invariant.

Recall from Section 3.6.2 that if K is a null-homologous Legendrian or transverse knot
in a contact 3—manifold (Y, &), then there exists a Legendrian (resp. transverse) invari-
ant EH(K) taking values in the sutured inverse limit homology group SFH(-Y, K).
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According to Theorem 1.6, the latter group is isomorphic to the plus version of knot

Floer homology
I.: SFH(-Y, K) — HFK " (-7, K).

By Theorem 1.8, the inverse limit invariant EH(K) can be identified with the image of
the hat version of the LOSS invariant under the natural map

tx: HFK (—Y, K) — HFK " (-, K),
induced by inclusion.

With the above in mind, consider the following example from [25] of a nonloose
Legendrian (2, 3)—torus knot 7{; 3y in the overtwisted contact structure £ on S 3 with
Hopf invariant d3(§) = —1. The knot is depicted in Figure 51.

+1
+1
T(2,3)

Figure 51: A nonloose Legendrian right-handed trefoil 7T\, 3y in the over-
twisted contact structure £ on S? with Hopf invariant d3(§) = —

Lisca, Ozsvath, St1p51cz and Szabé [25] sh show that L(T(z 3)) # 0, and identify the
specific class in HFK( S3 T(2,3)) = HFK(S T(>,—3)) representing L(T(z 3)) —
the unique nonzero class in Alexander grading zero.

Figure 52 depicts the knot Floer chain complex (CFK* (7|, _3)), 9°°) associated to the
left-handed trefoil knot 7(; _3). In the drawing, the vertical ;j—axis records Alexander
grading, while the horizontal 7 —axis keeps track of the (negatlve) U —power. In this
context, we view CFK™(T(, _3)), CFK+(T(2 —3)) and CFK(T(2 _3)) as the sub-,
quotient and subquotient complexes C(i < 0), C(i > 0) and C(i = 0), respectively.

After forming the associated graded objects with respect to the Alexander filtration,
we see 1mmed1ately from Flgure 52, that the image of L(T (2,—3)) under the map
Ly HFK(T(Z —3)) — HFK™ (T(2,-3)), induced by inclusion, vanishes. It follows,
therefore, from Theorem 1.8 that EH(7(, 3)) = 0.
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CFK®(T—3) |’ t
®

Figure 52: The knot Floer complex associated to the left-handed trefoil 7, _3)

To see that the invariant EH is not always zero, consider the maximum Thurston—
Bennequin invariant unknot in the standard contact 3—sphere U C (S3,&qq). To
compute the inverse limit invariant, we begin by performing a Stipsicz—Vértesi basic
slice attachment to the boundary the complement of an standard (open) tubular neigh-
borhood of U. The result is a tight contact structure on a solid torus (S! x D?,§),
inducing two longitudinal dividing curves along the boundary. It follows from the
classification of tight contact structures on solid tori [17] that any negative basic slice
attachment that does not achieve the meridional slope on S! x D? induces a tight
contact structure on the solid torus which embeds into a Stein-fillable contact structure
on a lens-space. In particular, the contact invariants of these spaces are all nonzero,
which implies that the inverse limit invariant EH(U) is nonvanishing.

13.4 Vanishing slope computations

We note that one may easily compute the vanishing slopes, discussed in Section 1.4,
for the knots considered in this section to be:

Van™ (Uot) = (0,0), Van™ (Tgn) = (0, —00),
Van™ (T, 3)) = (0, —00), Van™ (U) = (0,0).

References

[1] JA Baldwin, S Sivek, A contact invariant in sutured monopole homology, preprint
(2014) arXiv

[2] JA Baldwin, S Sivek, Instanton Floer homology and contact structures, Selecta Math.
22 (2016) 939-978 MR

Geometry € Topology, Volume 21 (2017)


http://msp.org/idx/arx/1403.1930
http://dx.doi.org/10.1007/s00029-015-0206-x
http://msp.org/idx/mr/3477339

1580

(3]

[4]

(7]

(8]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

John B Etnyre, David Shea Vela-Vick and Rumen Zarev

J A Baldwin, D S Vela-Vick, V Vértesi, On the equivalence of Legendrian and trans-
verse invariants in knot Floer homology, Geom. Topol. 17 (2013) 925-974 MR

M Bokstedt, A Neeman, Homotopy limits in triangulated categories, Compositio Math.
86 (1993) 209-234 MR

J Epstein, D Fuchs, M Meyer, Chekanov—Eliashberg invariants and transverse ap-
proximations of Legendrian knots, Pacific J. Math. 201 (2001) 89-106 MR

J B Etnyre, Legendrian and transversal knots, from “Handbook of knot theory” (W
Menasco, M Thistlethwaite, editors), Elsevier, Amsterdam (2005) 105-185 MR

J B Etnyre, K Honda, Knots and contact geometry, I: Torus knots and the figure eight
knot, J. Symplectic Geom. 1 (2001) 63—-120 MR

J B Etnyre, K Honda, Cabling and transverse simplicity, Ann. of Math. 162 (2005)
1305-1333 MR

JB Etnyre, DS Vela-Vick, Torsion and open book decompositions, Int. Math. Res.
Not. 2010 (2010) 4385-4398 MR

D Gabai, Foliations and the topology of 3—manifolds, J. Differential Geom. 18 (1983)
445-503 MR

P Ghiggini, K Honda, J V Horn-Morris, The vanishing of the contact invariant in the
presence of torsion, preprint (2008) arXiv

E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de
surfaces, Invent. Math. 141 (2000) 615-689 MR

E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures,
from “Proceedings of the International Congress of Mathematicians, II” (T Li, editor),
Higher Ed. Press, Beijing (2002) 405-414 MR

M Golla, Comparing invariants of Legendrian knots, Quantum Topol. 6 (2015) 365-402
MR

M Golla, Ozsvdth—Szabo invariants of contact surgeries, Geom. Topol. 19 (2015)
171-235 MR

K Honda, Contact structure, Heegaard Floer homology and triangulated categories,
in preparation

K Honda, On the classification of tight contact structures, I, Geom. Topol. 4 (2000)
309-368 MR

K Honda, W H Kazez, G Mati¢, Contact structures, sutured Floer homology and
TQFT, preprint (2008) arXiv

K Honda, W H Kazez, G Mati¢, The contact invariant in sutured Floer homology,
Invent. Math. 176 (2009) 637-676 MR

K Honda, Y Tian, Contact categories of disks, preprint (2016) arXiv

Geometry & Topology, Volume 21 (2017)


http://dx.doi.org/10.2140/gt.2013.17.925
http://dx.doi.org/10.2140/gt.2013.17.925
http://msp.org/idx/mr/3070518
http://www.numdam.org/item?id=CM_1993__86_2_209_0
http://msp.org/idx/mr/1214458
http://dx.doi.org/10.2140/pjm.2001.201.89
http://dx.doi.org/10.2140/pjm.2001.201.89
http://msp.org/idx/mr/1867893
http://dx.doi.org/10.1016/B978-044451452-3/50004-6
http://msp.org/idx/mr/2179261
http://projecteuclid.org/euclid.jsg/1092316299
http://projecteuclid.org/euclid.jsg/1092316299
http://msp.org/idx/mr/1959579
http://dx.doi.org/10.4007/annals.2005.162.1305
http://msp.org/idx/mr/2179731
http://dx.doi.org/10.1093/imrn/rnq054
http://msp.org/idx/mr/2737776
http://projecteuclid.org/euclid.jdg/1214437784
http://msp.org/idx/mr/723813
http://msp.org/idx/arx/0706.1602v2
http://dx.doi.org/10.1007/s002220000082
http://dx.doi.org/10.1007/s002220000082
http://msp.org/idx/mr/1779622
http://www.mathunion.org/ICM/ICM2002.2/
http://msp.org/idx/mr/1957051
http://dx.doi.org/10.4171/QT/66
http://msp.org/idx/mr/3392959
http://dx.doi.org/10.2140/gt.2015.19.171
http://msp.org/idx/mr/3318750
http://dx.doi.org/10.2140/gt.2000.4.309
http://msp.org/idx/mr/1786111
http://msp.org/idx/arx/0807.2431
http://dx.doi.org/10.1007/s00222-008-0173-3
http://msp.org/idx/mr/2501299
http://msp.org/idx/arx/1608.08325

Sutured Floer homology and invariants of Legendrian and transverse knots 1581

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

A Juhasz, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006)
1429-1457 MR

A Juhasz, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299—
350 MR

R Lipshitz, P Ozsvath, D Thurston, Bordered Heegaard Floer homology: invariance
and pairing, preprint (2008) arXiv

R Lipshitz, PS Ozsvath, DP Thurston, Bimodules in bordered Heegaard Floer
homology, Geom. Topol. 19 (2015) 525-724 MR

P Lisca, P Ozsvath, A I Stipsicz, Z Szabé, Heegaard Floer invariants of Legendrian
knots in contact three-manifolds, J. Eur. Math. Soc. 11 (2009) 1307-1363 MR

P Lisca, A1 Stipsicz, Contact surgery and transverse invariants, J. Topol. 4 (2011)
817-834 MR

L Ng, P Ozsvath, D Thurston, Transverse knots distinguished by knot Floer homology,
J. Symplectic Geom. 6 (2008) 461-490 MR

P Ozsvath, A 1 Stipsicz, Contact surgeries and the transverse invariant in knot Floer
homology, J. Inst. Math. Jussieu 9 (2010) 601-632 MR

P Ozsvath, Z Szabo, Holomorphic disks and knot invariants, Adv. Math. 186 (2004)
58-116 MR

PS Ozsvath, Z Szab6, Knot Floer homology and rational surgeries, Algebr. Geom.
Topol. 11 (2011) 1-68 MR

P Ozsvath, Z Szabd, D Thurston, Legendrian knots, transverse knots and combinato-
rial Floer homology, Geom. Topol. 12 (2008) 941-980 MR

V G B Ramos, Y Huang, An absolute grading on Heegaard Floer homology by homo-
topy classes of oriented 2—plane fields, preprint (2011) arXiv

J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University
(2003) MR Available at http://search.proquest.com/docview/305332635

S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies,
Ann. of Math. 171 (2010) 1213-1236 MR

A1 Stipsicz, V Vértesi, On invariants for Legendrian knots, Pacific J. Math. 239 (2009)
157-177 MR

W P Thurston, HE Winkelnkemper, On the existence of contact forms, Proc. Amer.
Math. Soc. 52 (1975) 345-347 MR

JJ Tripp, Contact structures on open 3—manifolds, J. Symplectic Geom. 4 (2006)
93-116 MR

D S Vela-Vick, On the transverse invariant for bindings of open books, J. Differential
Geom. 88 (2011) 533-552 MR

Geometry € Topology, Volume 21 (2017)


http://dx.doi.org/10.2140/agt.2006.6.1429
http://msp.org/idx/mr/2253454
http://dx.doi.org/10.2140/gt.2008.12.299
http://msp.org/idx/mr/2390347
http://msp.org/idx/arx/0810.0687
http://dx.doi.org/10.2140/gt.2015.19.525
http://dx.doi.org/10.2140/gt.2015.19.525
http://msp.org/idx/mr/3336273
http://dx.doi.org/10.4171/JEMS/183
http://dx.doi.org/10.4171/JEMS/183
http://msp.org/idx/mr/2557137
http://dx.doi.org/10.1112/jtopol/jtr022
http://msp.org/idx/mr/2860344
http://projecteuclid.org/euclid.jsg/1232029299
http://msp.org/idx/mr/2471100
http://dx.doi.org/10.1017/S1474748010000095
http://dx.doi.org/10.1017/S1474748010000095
http://msp.org/idx/mr/2650809
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://msp.org/idx/mr/2065507
http://dx.doi.org/10.2140/agt.2011.11.1
http://msp.org/idx/mr/2764036
http://dx.doi.org/10.2140/gt.2008.12.941
http://dx.doi.org/10.2140/gt.2008.12.941
http://msp.org/idx/mr/2403802
http://msp.org/idx/arx/1112.0290
http://msp.org/idx/mr/2704683
http://search.proquest.com/docview/305332635
http://dx.doi.org/10.4007/annals.2010.171.1213
http://msp.org/idx/mr/2630063
http://dx.doi.org/10.2140/pjm.2009.239.157
http://msp.org/idx/mr/2449016
http://dx.doi.org/10.2307/2040160
http://msp.org/idx/mr/0375366
http://projecteuclid.org/euclid.jsg/1154549060
http://msp.org/idx/mr/2240214
http://projecteuclid.org/euclid.jdg/1321366359
http://msp.org/idx/mr/2844442

1582 John B Etnyre, David Shea Vela-Vick and Rumen Zarev

[39] R Zarev, Bordered Floer homology for sutured manifolds, preprint (2009) arXiv
[40] R Zarev, Joining and gluing sutured Floer homology, preprint (2010) arXiv
[41] R Zarev, Equivalence of gluing maps for sth, in preparation

School of Mathematics, Georgia Institute of Technology
686 Cherry Street, Atlanta, GA 30332-0160, United States

Department of Mathematics, Louisiana State University
Baton Rouge, LA 70803, United States

Department of Mathematics, University of California, Berkeley
970 Evans Hall, Berkeley, CA 94720-3840, United States

etnyre@math.gatech.edu, shea@math.lsu.edu, rumen.zarev@gmail.com
http://people.math.gatech.edu/~etnyre/, https://www.math.lsu.edu/ shea

Proposed: Yasha Eliashberg Received: 4 September 2014
Seconded: Andras L. Stipsicz, Peter S. Ozsvath Revised: 25 April 2016

:'msp

Geometry € Topology Publications, an imprint of mathematical sciences publishers


http://msp.org/idx/arx/0908.1106
http://msp.org/idx/arx/1010.3496
mailto:etnyre@math.gatech.edu
mailto:shea@math.lsu.edu
mailto:rumen.zarev@gmail.com
http://people.math.gatech.edu/~etnyre/
https://www.math.lsu.edu/\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\global \mathchardef \accent@spacefactor \spacefactor }\accent 126 \egroup \spacefactor \accent@spacefactor shea
http://msp.org
http://msp.org

	1. Introduction
	1.1. Limit invariants
	1.2. Legendrian and transverse invariants
	1.3. Sutured inverse limit invariants
	1.4. Vanishing slopes
	1.5. Noncompact 3–manifolds
	1.6. Supplementary results and questions

	Part I. The sutured limit homology package
	2. Background
	2.1. Contact geometry
	2.1.1. Convex surfaces and bypass attachments
	2.1.2. Legendrian and transverse knots
	2.1.3. Contact structures on thickened tori
	2.1.4. Open book decompositions

	2.2. Knot Floer homology
	2.3. The Lisca–Ozsváth–Stipsicz–Szabó invariant
	2.4. Sutured Floer homology
	2.5. Relative Spin^C structures and gradings
	2.5.1. Relative Spin^C structures
	2.5.2. Convex surfaces and relative Spin^C structures
	2.5.3. Knot complements and the Alexander grading

	2.6. Contact structures and sutured Floer homology
	2.7. Relationships between sutured Legendrian invariants

	3. Limits and invariants of knots
	3.1. The sutured limit homology groups of a knot
	3.2. The U–action on the sutured limit homology
	3.3. An Alexander grading
	3.4. Natural maps
	3.5. Legendrian and transverse invariants: definition and properties
	3.5.1. Definition of the Legendrian/transverse invariant
	3.5.2. Properties of the Legendrian/transverse invariant

	3.6. The sutured inverse limit homology of a knot
	3.6.1. A natural map
	3.6.2. A Legendrian/transverse invariant in sutured inverse limit homology



	Part II. Identifying the sutured limit homology package with the knot Floer homology package
	4. Bordered sutured Floer homology
	4.1. Sutured manifolds and surfaces
	4.2. Arc diagrams and bordered sutured manifolds
	4.3. The strands algebra
	4.4. A_infinity–modules and type-D structures
	4.5. The bordered invariants
	4.6. Nice Heegaard diagrams
	4.7. Spin^C structures in bordered sutured Floer homology
	4.8. Bordered invariants and knot Floer homology
	4.9. Gluing maps

	5. Parametrized surfaces and associated algebras
	6. Bypass attachment maps
	6.1. The bordered analogue
	6.2. Bordered bypass attachment maps

	7. Limit invariants and knot Floer homology
	7.1. The geometric setup
	7.2. Computations of bordered sutured modules and bimodules
	7.2.1. Torus modules
	7.2.2. Torus bimodule
	7.2.3. Annular modules
	7.2.4. Annular bimodules
	7.2.5. Bypass attachment annuli

	7.3. Computation of gluing maps
	7.3.1. Proof of Theorem 1.1


	8. Equivalence of Legendrian invariants
	9. The Stipsicz–Vértesi attachment map and sutured limit homology
	10. Two-handle attachments and the proof of Theorem 1.4
	11. Inverse limit invariants and knot Floer homology
	11.1. Identifying invariants
	11.2. Identifying the natural map

	12. Gradings
	12.1. Alexander grading
	12.2. Maslov grading

	13. Examples
	13.1. Comparing the HKM and LOSS invariants
	13.2. Comparing the LOSS invariants
	13.3. Comparing the LOSS and LIMIT invariants
	13.4. Vanishing slope computations

	References


