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Hierarchically hyperbolic spaces
I: Curve complexes for cubical groups

JASON BEHRSTOCK

MARK F HAGEN

ALESSANDRO SISTO

In the context of CAT.0/ cubical groups, we develop an analogue of the theory of
curve complexes and subsurface projections. The role of the subsurfaces is played by
a collection of convex subcomplexes called a factor system, and the role of the curve
graph is played by the contact graph. There are a number of close parallels between
the contact graph and the curve graph, including hyperbolicity, acylindricity of the
action, the existence of hierarchy paths, and a Masur–Minsky-style distance formula.

We then define a hierarchically hyperbolic space; the class of such spaces includes a
wide class of cubical groups (including all virtually compact special groups) as well
as mapping class groups and Teichmüller space with any of the standard metrics. We
deduce a number of results about these spaces, all of which are new for cubical or
mapping class groups, and most of which are new for both. We show that the quasi-
Lipschitz image from a ball in a nilpotent Lie group into a hierarchically hyperbolic
space lies close to a product of hierarchy geodesics. We also prove a rank theorem for
hierarchically hyperbolic spaces; this generalizes results of Behrstock and Minsky, of
Eskin, Masur and Rafi, of Hamenstädt, and of Kleiner. We finally prove that each
hierarchically hyperbolic group admits an acylindrical action on a hyperbolic space.
This acylindricity result is new for cubical groups, in which case the hyperbolic space
admitting the action is the contact graph; in the case of the mapping class group, this
provides a new proof of a theorem of Bowditch.

20F36, 20F55, 20F65

1 Introduction

Cube complexes and groups that act on them are fundamental objects in geometric
group theory. Examples of cubical groups — groups acting geometrically on CAT.0/
cube complexes — are right-angled (and many other) Coxeter groups (see Davis [27]
and Niblo and Reeves [54]), right-angled Artin groups (see Charney and Davis [23]),
and, more generally, graph products of abelian groups (see Ruane and Witzel [60]).
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Other examples of cubical groups include: groups satisfying sufficiently strong small-
cancellation conditions (see Wise [70]); many 3–manifold groups, including all hyper-
bolic ones (see Bergeron and Wise [9], Kahn and Markovic [42] and Wise [72]) and
some graph manifold groups (see Hagen and Przytycki [34]); hyperbolic free-by-Z
groups (see Hagen and Wise [35]); etc. Despite the attention cubical groups have
attracted in recent years, their large-scale geometry has remained rather opaque, with a
few salient exceptions, notably the resolution of the rank rigidity conjecture by Caprace
and Sageev [21], characterizations of linear divergence, relative hyperbolicity, and
thickness in terms of combinatorial data (see Behrstock and Charney [4], Behrstock
and Hagen [5] and Hagen [32]), analysis of quasiflats in the 2–dimensional case (see
Bestvina, Kleiner and Sageev [14]) and top-dimensional quasiflats in general (see
Huang [39]).

Recently, there has been enormous progress in understanding the mapping class group
and related spaces. Highlights have included resolutions of the ending lamination
conjecture by Brock, Canary and Minsky [17], the rank conjecture by Behrstock and
Minsky [8], quasi-isometric rigidity (see Behrstock, Kleiner, Minsky and Mosher [7]),
finite asymptotic dimension (see Bestvina, Bromberg and Fujiwara [11]), and a number
of others. Proofs of each of these results have featured the curve complex in a central
position.

Motivated by the vital role the curve complex has played in unveiling the geometry
of the mapping class group, in this work we develop analogues of those tools in the
context of cubical groups. In particular, for cubical groups we develop versions of
the machinery of curve complex projections and hierarchies initiated by Masur and
Minsky [49; 50] as well as subsequent tools including the consistency and realization
theorems of Behrstock [3] and Behrstock, Kleiner, Minsky and Mosher [7]. We note
that right-angled Artin groups are a particularly interesting class of groups to which the
tools we develop can be applied. Finally, we define hierarchically hyperbolic spaces,
which provide a framework that encompasses mapping class groups, Teichmüller space,
and a large class of cubical groups including the class of compact special groups of
Haglund and Wise [37]. This allows us to prove new results in both the mapping class
group and cubical contexts.

1.1 Geometry of contact graphs

In Part I we develop a number of basic aspects of the geometry of contact graphs,
extending a study which was initiated by Hagen [33]. The contact graph CX of the
CAT.0/ cube complex X is the intersection graph of the hyperplane carriers; in other
words, there is a vertex for each hyperplane of X , and two vertices are adjacent if
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the corresponding hyperplanes are not separated by a third. Since the contact graph
is always hyperbolic (in fact, a quasi-tree) [33], it is a natural candidate for a “curve
complex” in the context of cubical groups. The main results of Part I are summarized
below. Recall that the WPD property, as defined by Bestvina and Fujiwara [13], is a
form of properness of an action “in the direction” of particular elements; see Section 5
for the precise definition. It has important applications to bounded cohomology (see eg
Bestvina, Bromberg and Fujiwara [10]), is closely related to the Bestvina–Bromberg–
Fujiwara construction [11], and provides an equivalent characterization of acylindrical
hyperbolicity (see Osin [55]) which is used in a number of applications.

Theorem A Let X be a CAT.0/ cube complex and CX its contact graph. Then:

(1) WPD property If X is uniformly locally finite and g 2 Aut.X / is rank-one
with the property that no positive power of g stabilizes a hyperplane, then g acts
as a loxodromic WPD element on CX .

(2) Hierarchy paths Let x;y 2 X be 0–cubes. Then there exist hyperplanes
H0; : : : ;Hk with x 2N .H0/, y 2N .Hk/ and combinatorial geodesics 
i!

N .Hi/ such that H0;H1; : : : ;Hk is a geodesic of CX and 
0
1 � � � 
k is a
geodesic joining x and y .

(3) Contractibility If the set of 1–cubes of X is countable and nonempty, then the
flag complex spanned by CX is contractible.

In the case of mapping class groups, analogues of Theorem A(1) and Theorem A(2)
were proved by Bestvina and Fujiwara [13] and by Masur and Minsky [50]. The curve
complex is not contractible, so Theorem A(3) provides a way in which the contact
graph is simpler than the curve complex.

Theorem A has applications to random walks. In particular, from parts of (1)–(2)
Theorem A and the main result of Mathieu and Sisto [51], when the nonelementary
group G < Aut.X / contains a rank-one element, random paths in G stay close to
geodesics with high probability. Further, this property has applications to various
parameters associated with the random walk, including rate of escape and entropy.

1.2 Factor systems

The mapping class group, MCG.S/, of a surface S is associated with the curve
complex of S , together with the collection of curve complexes of subsurfaces of S ; this
association underlies the hierarchy machinery of Masur and Minsky [50]. Analogously,
a CAT.0/ cube complex X contains a profusion of convex subcomplexes, each of
which is itself a CAT.0/ cube complex, and the judicious choice of a family of convex
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subcomplexes enables the creation of hierarchy machinery. The role of the collection of
subsurfaces is played by a factor system F in X , which is a particular uniformly locally
finite collection of convex subcomplexes. Table 1 summarizes the analogy between the
mapping class group and a CAT.0/ cube complex with a geometric group action and a
factor system. We emphasize that although the tools and the results we obtain have
parallels for mapping class groups the techniques that we employ are very different.

mapping class group MCG.S/ cube complex X with factor
system F and G–action

curve complex CS is hyperbolic [49] contact graph CX and factored contact graph
yCX are hyperbolic, indeed, are quasi-trees
(Theorem 2.8, Proposition 8.25)

MCG.S/ acts on CS acylindrically [15] G acts on CX , yCX acylindrically
(Corollary 14.5)

Nielsen–Thurston classification [67] loxodromic/reducible/generalized reducible
(Theorem 2.9)

9 quasi-geodesics in MCG.S/ 9 geodesics in X shadowing
shadowing geodesics in CS [50] geodesics in CX , yCX

(Proposition 3.1, Proposition 8.23)

subsurfaces subcomplexes in F (Definition 8.1)

projections to subsurfaces [50] projection to yCF for F 2 F (Section 8.3)

formula computing distance in MCG.S/ formula computing distance in X
in terms of curve complex distances [50] in terms of factored contact graph distances

(Theorem 9.1)

bounded geodesic image [50] bounded geodesic image (Proposition 8.20)

nested, disjoint, overlapping subsurfaces parallel into, orthogonal, transverse
elements of F

large link lemma [50] large link lemma (Proposition 9.4)

consistency and realization [3; 7] consistency and realization (Theorem 12.4)

Table 1

The collection of subcomplexes which constitute a factor system F in X includes X ,
as well as all combinatorial hyperplanes of X ; further, this collection is closed under
the following operation: if F;F 0 2 F and F has (combinatorial) projection onto F 0 of
diameter more than some specified threshold, then the projection of F onto F 0 lies in F.
This implies that sufficiently large hyperplanes of any codimension belong to any factor
system, and indeed each factor system F contains a minimal factor system consisting
of X , all combinatorial hyperplanes, and the closure of this family under the above
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projection. This minimal factor system is Aut.X /–invariant since each automorphism
preserves the set of hyperplanes.

The reader should have in mind the following example, which already shows that the
class of groups G acting geometrically on cube complexes with G–invariant factor
systems is very large. Let � be a finite simplicial graph and let zS� be the universal
cover of the Salvetti complex of the corresponding right-angled Artin group A� , so
that zS� is a CAT.0/ cube complex on which A� acts properly with a single orbit
of 0–cubes; see Charney and Davis [23]. Each induced subgraph ƒ of � yields a
monomorphism Aƒ! A� and an Aƒ–equivariant embedding zSƒ ,! zS� . The set
of all such subcomplexes of zS� , and all of their A�–translates, forms a factor system
for zS� , described in detail in Section 8.2. This, and the fact that the existence of a factor
system is inherited by convex subcomplexes (Lemma 8.5), enables the study of groups
that are virtually special in the sense of Haglund and Wise [37] using factor systems:

Proposition B Let X be a special cube complex with finitely many hyperplanes. Then
the universal cover X of X contains a factor system, and hence contains a factor system
that is invariant under the action of �1X .

In Corollary 8.8, for special cube complexes, we describe the factor system explicitly in
terms of the hyperplanes of X . Proposition B also enables one to study many cubical
groups which are far from being special: in Section 11, using Proposition 8.3 together
with Burger and Mozes [19] and Wise [71] we show there exist many non-virtually
special groups G which act geometrically on a CAT.0/ cube complex X with a factor
system. Moreover, we produce many examples which, unlike those of Burger and
Mozes and of Wise, do not admit equivariant embeddings into products of trees; these
will be used in Section 11.

Each F 2 F is a convex subcomplex, and is thus a CAT.0/ cube complex whose
hyperplanes have the form H \F , where H is a hyperplane of X . This gives a natural
injective graph homomorphism CF ! CX , whose image is an induced subgraph [33].
Just as the elements of the factor system stand in analogy to the subsurfaces, the
graphs CF , where F 2 F, essentially play the role of the curve complexes of the
subsurfaces. In order to obtain Theorem 9.1 — our analogue of the Masur–Minsky
distance formula — we must modify each CF slightly, by coning off each subgraph
which is the contact graph of some smaller element of F. It is the resulting factored
contact graphs yCF that actually play the role of curve complexes. In Section 8.5, we
show that factored contact graphs are all quasi-trees. Moreover, when F is the minimal
factor system described above, yCX and CX are quasi-isometric.

In Section 9, we prove the following analogue for cubical groups of the celebrated
Masur–Minsky distance formula [50, Theorem 6.12]. Their formula has become an
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essential tool in studying the geometry of the mapping class group. Later, we will take
the existence of such a formula as one of the characteristic features of a hierarchically
hyperbolic space.

Theorem C (distance formula) Let X be a CAT.0/ cube complex with a factor
system F. Let F contain exactly one representative of each parallelism class in F. Then
there exists s0 � 0 such that for all s � s0 , there are constants K � 1, C � 0 such that
for all x;y 2 X .0/ ,

dX .x;y/�K;C

X
F2F

ffdyCF .�F .x/; �F .y//ggs:

(Here, ffAggsDA if A� s and 0 otherwise. The notation �
K;C

means “up to bounded
multiplicative and additive error”.)

In Theorem C, we use the notion of parallelism: two convex subcomplexes F;F 0 of X
are parallel if, for all hyperplanes H , we have H \F ¤∅ if and only if H \F 0¤∅.
Equivalently, F;F 0 are parallel if and only if CF; CF 0 are the same subgraph of CX ; par-
allel subcomplexes are isomorphic. Just as the Masur–Minsky distance formula involves
summing over all curve complexes of subsurfaces, by identifying parallel elements of
the factor system, our sum is over all factored contact graphs without repetition.

Another important property of the curve complex CS is that the action of MCG.S/
on CS is acylindrical, by a result of Bowditch [15]. We obtain an analogous result for
actions on (factored) contact graphs arising from actions on cube complexes, and in
Section 14 we will show this holds in considerably greater generality. The statement in
the cubical case is:

Theorem D (acylindrical hyperbolicity from factor systems) Let the group G act
properly and cocompactly on the CAT.0/ cube complex X and suppose that X contains
a factor system. Then the induced action of G on the contact graph CX of X is
acylindrical.

Theorem D and the results of Maher and Tiozzo [46] combine to yield the following,
which is related to work of Nevo and Sageev [53] on Poisson boundaries of cube
complexes:

Corollary E (Poisson boundary) Let the group G act properly and cocompactly on
the CAT.0/ cube complex X and suppose that X contains a factor system. Let �
be a probability distribution on G with finite entropy whose support generates a
nonelementary group acting on CX and let � be the hitting measure on @CX . Then
.@CX ; �/ is isomorphic to the Poisson boundary of .G; �/.
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Theorem D also allows one to produce free subgroups of G freely generated by finite
collections of high powers of elements, each of which acts loxodromically on CX
(Corollary 14.6).

Using Theorem C, together with the tools in Bestvina, Bromberg and Fujiwara [11],
the fact that factored contact graphs are quasi-trees, and the machinery we develop in
Section 10, we prove:

Theorem F Let G act properly and cocompactly on the CAT.0/ cube complex X and
suppose that X contains a G–invariant factor system. If the action of G is hereditarily
flip-free, then G quasi-isometrically embeds in the product of finitely many quasi-trees.

Moreover, there exist such G;X such that, for all finite-index subgroups G0 � G ,
there is no G0–equivariant isometric embedding of X in the product of finitely many
simplicial trees.

Hereditary flip-freeness is a mild technical condition on the factor system F which
holds for most of the examples we have discussed. For the second assertion of the
theorem, we exploit the existence of cocompactly cubulated groups with no finite
quotients [19; 71]. These groups are lattices in products of trees stabilizing the factors;
this property gives rise to a factor system. The space for this example is assembled from
these pieces in such a way that the existence of a factor system persists, but there is no
longer a finite equivariant coloring of the hyperplanes with intersecting hyperplanes
colored differently. This lack of a coloring precludes the existence of an isometric
embedding in a product of finitely many trees.

1.3 Comparison to the theory of the extension graph of a
right-angled Artin group

In the special case where X D zS� is the universal cover of the Salvetti complex S� of
a right-angled Artin group A� , the machinery of factor systems and contact graphs
is not the first attempt to define an analogue of the curve complex and the attendant
techniques. Kim and Koberda [43] introduced the extension graph �e associated
to the finite simplicial graph � (and thus to A� ). This graph has a vertex for each
conjugate of each standard generator of A� (ie vertex of � ), with adjacency recording
commutation. In the same paper it is shown that, like C zS� , the extension graph is always
quasi-isometric to a tree, and in Kim and Koberda [44], the analogy between MCG.S/,
with its action on CS , and A� , with its action on �e , is extensively developed: it is
shown, for instance, that this action is acylindrical and obeys a loxodromic-elliptic
dichotomy. It is observed in [44] that, except in exceptional cases, there is a surjective
graph homomorphism C zS� ! �e , where zS� is the universal cover of the Salvetti
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complex of A� , which is also a quasi-isometry, so many such geometric results about
the action of A� on �e can be deduced from the results of the present paper about the
action of A� on C zS� . It should be strongly emphasized that the papers [44; 43] also
explore interesting and less purely geometric issues, particular to right-angled Artin
groups, that cannot be treated with factor system tools.

The authors of [44] also set up some version of hierarchy machinery, with the role of
subsurfaces being played by subgroups of A� of the form ALk.v/ , where v is a vertex
of � , and their conjugates. When � has girth at least 5, they obtain a distance formula
[44, Proposition 65], but, as they note, the formula they give has significant differences
with the Masur–Minsky distance formula for the mapping class group. For example, the
sum is taken over specified projections, which depend on the points whose distance is
being estimated, rather than over all projections. Another significant distinction is that
their distance formula does not measure distance in the right-angled Artin group A� ,
but rather it measures the syllable length in that space (although not a perfect analogy:
their metric is more similar to the Weil–Petersson metric on Teichmüller space than to
the word metric on the mapping class group). The extension graph seems unable to
capture distance in the right-angled Artin group via a hierarchical construction, since
the extension graph is bounded when A� D Z. In the present paper, the geometric
viewpoint afforded by factor systems, and in particular the existence of hierarchy paths
(Proposition 8.23) and a large link lemma (Proposition 8.20) allows us to overcome
these issues.

1.4 Hierarchically hyperbolic spaces

Our aim in the last part of the paper is to develop a unified framework to study
mapping class group and CAT.0/ cube complexes from a common perspective. To
this end, we axiomatize the machinery of factored contact graphs/curve complexes,
distance formula, etc, to obtain the definition of a hierarchically hyperbolic space,
which is formally stated in Definition 13.1. This notion includes the two classes of
groups just mentioned and allows one to prove new results for both of these classes
simultaneously. Hierarchically hyperbolic spaces come with a notion of complexity:
complexity 0 corresponds to bounded spaces, infinite-diameter ı–hyperbolic spaces
have complexity 1, and higher-complexity hierarchically hyperbolic spaces coarsely
contain direct products.

Roughly, a space X is hierarchically hyperbolic if X can be equipped with a set S of
uniformly Gromov-hyperbolic spaces, and projections X !W , with W 2S. These
projections are required to satisfy various properties reminiscent of those satisfied by
subsurface projections in the mapping class group case and projections to factored
contact graphs in the case of CAT.0/ cube complexes with factor systems. Hence
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a space X may be hierarchically hyperbolic in multiple ways, ie with respect to
projections to distinct families of hyperbolic spaces.

Remark (HHS is a QI-invariant property) It is easily seen from Definition 13.1 that,
if X is hierarchically hyperbolic by virtue of its projections to a set S of hyperbolic
spaces, and Y ! X is a quasi-isometry, then we can compose each projection with
the quasi-isometry and conclude that Y is hierarchically hyperbolic with respect to the
same set S.

The motivating examples of hierarchically hyperbolic spaces are as follows:

Theorem G (hierarchically hyperbolic spaces)

(1) A CAT.0/ cube complex with a factor system F is hierarchically hyperbolic
with respect to the set of factored contact graphs yCW , with W 2 F. (This is
summarized in Remark 13.2.)

(2) Let S be a connected, oriented hyperbolic surface of finite type. Then MCG.S/
is hierarchically hyperbolic with respect to the collection of curve complexes of
subsurfaces of S (Behrstock [3], Behrstock, Kleiner, Minsky and Mosher [7]
and Masur and Minsky [49; 50]).

(3) Teichmüller space T .S/ with the Weil–Petersson metric is hierarchically hyper-
bolic with respect to curve complexes of nonannular subsurfaces of S (Behrstock
[3], Behrstock, Kleiner, Minsky and Mosher [7], Brock [16] and Masur and
Minsky [49; 50]).

(4) T .S/ with the Teichmüller metric is hierarchically hyperbolic with respect
to curve complexes of nonannular subsurfaces and combinatorial horoballs
associated to annuli (Durham [29], Eskin, Masur and Rafi [30], Masur and
Minsky [49] and Rafi [59]).

In a forthcoming paper we will show that fundamental groups of nongeometric 3–
manifolds are also hierarchically hyperbolic, and that a metric space that is hyperbolic
relative to a collection of hierarchically hyperbolic subspaces is hierarchically hyper-
bolic; see Behrstock, Hagen and Sisto [6]. We note that it is already known that relatively
hyperbolic groups admit a distance formula; see Sisto [65]. Another interesting question
is whether a right-angled Artin group endowed with the syllable length metric is a
hierarchically hyperbolic space.

In Section 13, after defining hierarchically hyperbolic spaces, we study quasi-Lipschitz
maps from balls in Rn , and more general nilpotent Lie groups, into these spaces. The
next three results will all follow directly from our Theorem 13.11, which provides a
single unifying statement in terms of asymptotic cones. Our first result is a generalization
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of a result of Eskin, Masur and Rafi [30, Theorem A] which is about mapping class
groups and Teichmüller spaces.

Theorem H (quasi-boxes in hierarchically hyperbolic spaces) Let X be a hierarchi-
cally hyperbolic space. Then for every n 2 N and every K;C;R0; �0 the following
holds. There exists R1 so that for any ball B�Rn of radius at least R1 and f W B!X
a .K;C /–quasi-Lipschitz map, there is a ball B0 � B of radius R0 � R0 such that
f .B0/ lies inside the �0R0–neighborhood of a standard box.

In Theorem H, we do not require B;B0 to be centered at the same point in Rn .

Our proof uses methods different from those used in [30]. Our approach is much
shorter and does not rely on partitions of the set of subsurfaces (or an analogue thereof),
which plays an important role in their proof. In particular, we do not rely on the results
from [11]; this is one reason why our results can be applied in the case of CAT.0/
cube complexes where the techniques of [30] would fail. However, our approach and
theirs share some commonalities; for instance, we use Rademacher’s theorem (applied
to maps that arise at the level of asymptotic cones), while in [30], the authors use a
coarse differentiation result.

Using a generalization of Rademacher’s theorem due to Pansu, we consider the case of
quasi-Lipschitz maps from more general nilpotent Lie groups.

Theorem I (restriction on nilpotent groups in hierarchically hyperbolic spaces) Let X
be a hierarchically hyperbolic space. Then for every simply connected nilpotent Lie
group N with a left-invariant Riemannian metric and every K;C , there exists R with
the following property. For every .K;C /–quasi-Lipschitz map f W B! X from a ball
in N into X and for every n 2N we have diam.f .B \ nŒN ;N �//�R. In particular,
if a finitely generated nilpotent group admits a quasi-isometric embedding into X then
it is virtually abelian.

The final conclusion of Theorem I is known in the case where X is a CAT.0/ space;
see Pauls [58]. Although it does not appear to be in the literature, the conclusion
of Theorem I for MCG can be alternatively proved using results of Hume [40] and
Pauls [58].

The following theorem generalizes the rank theorems from Behrstock and Minsky [8],
Eskin, Masur and Rafi [30], Hamenstädt [38] and Kleiner [45]:

Theorem J (rank) Let X be a hierarchically hyperbolic space with respect to a set S.
If there exists a quasi-isometric embedding Rn! X then n is at most the maximal
cardinality of a set of pairwise-orthogonal elements of S and, in particular, at most the
complexity of X .

Geometry & Topology, Volume 21 (2017)



Hierarchically hyperbolic spaces, I 1741

When X is a CAT.0/ cube complex with a factor system and Aut.X / acts cocompactly,
then such a space naturally has two hierarchically hyperbolic structures. One of these
structures has hierarchy paths that are combinatorial geodesics and one with CAT.0/
geodesics; the first is obtained explicitly in Section 8.3 and the existence of the latter
follows from the first via a simple argument about projections of CAT.0/ geodesics
and convex hulls of `1 geodesics to factored contact graphs. By Theorem H and
cocompactness, the existence of a quasi-isometric embedding Rn! X then implies
that X contains both an `1–isometrically embedded copy of Rn with the standard
tiling and, in the CAT.0/ metric, an isometrically embedded flat of dimension n. We
thus recover the cubical version of a theorem of Kleiner; see [45, Theorem C]. We also
note that, in the special case of top-dimensional quasiflats in CAT.0/ cube complexes,
Huang has very recently proved a stronger statement [39, Theorem 1.1].

Finally, we relate hierarchically hyperbolic groups to acylindrically hyperbolic groups,
as studied by Osin [55]. Although natural, the definition of an automorphism of a
hierarchically hyperbolic space is technical, but includes, in the relevant cases, all
elements of MCG and all isometries of a cube complex with a factor system. The
“maximal element” S and yCS referred to below are X and its factored contact graph
when X is a CAT.0/ cube complex, while they are the surface S and its curve complex
when G is the mapping class group of S .

Theorem K Let X be hierarchically hyperbolic with respect to the set S of hyperbolic
spaces and let G �Aut.S/ act properly and cocompactly on X . Let S be the maximal
element of S and denote by yCS the corresponding hyperbolic space. Then G acts
acylindrically on yCS .

In the case of the MCG , which acts acylindrically on the curve complex, our argument
provides a new proof of a result of Bowditch [15]. We note that our proof is substantially
different and is also rather short (although it relies on some amount of machinery).

Throughout the section on hierarchically hyperbolic spaces, we make use of a notion
of “gate”, which, in addition to the uses in this paper, we believe will be very useful
for other applications as well. This notion simultaneously generalizes gates/projections
on (certain) convex subspaces in the cubical context and coarsely Lipschitz retrac-
tions of the marking complex on its natural subspaces associated with subsurfaces.
Nonetheless, the definition we give exploits a different point of view, which turns
out to be very convenient and allows us to give different (and more concise) proofs
than previously existing ones for a number of results about mapping class groups and
CAT.0/ cube complexes.
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2 Background

We assume that the reader is familiar with basic properties of CAT.0/ cube complexes,
hyperplanes, median graphs, etc, and refer the reader to, for example [2; 24; 25; 33; 32;
36; 72; 73] for background on these concepts as they are used in this paper. Nonetheless,
in Section 2.1 and Section 2.2, we will review cubical convexity and make explicit the
notions of gate, projection and parallelism, since they play a fundamental role, and
recall several useful facts about the contact graph. In Section 2.3, we briefly discuss
background on right-angled Artin groups. Since, in Section 13, we will use asymptotic
cones, we refer the reader to [28] for the relevant background.

2.1 Convex subcomplexes, combinatorial hyperplanes, gates
and parallelism

Throughout, X is a CAT.0/ cube complex and H is the set of hyperplanes. Unless
stated otherwise, we work in the 1–skeleton of X , and we denote by dX the graph
metric on X .1/ . The contact graph CX , defined in [33], is the graph whose vertex set
is H , with two vertices adjacent if the corresponding hyperplanes are not separated by
a third.

The subcomplex K�X is full if K contains each cube of X whose 1–skeleton appears
in K . A subcomplex K � X is isometrically embedded if K is full and K\

T
i Hi

is connected for all fHig � H . In this case, we say that H 2 H crosses K when
K\H ¤∅. The term “isometrically embedded” is justified by the well-known fact
(see eg [33]) that, if K�X is isometrically embedded in this sense, then K.1/ ,!X .1/

is an isometric embedding with respect to graph metrics. The isometrically embedded
subcomplex K � X is convex if any of the following equivalent conditions is met:
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(1) K coincides with the intersection of all combinatorial halfspaces (see below)
containing K .

(2) Let x;y; z 2X be 0–cubes with x;y 2K . Then the median of x;y; z lies in K .

(3) K.1/ contains every geodesic of X .1/ whose endpoints lie in K.1/ .

(4) Let c be an n–cube of X , with n � 2. Suppose that c has n codimension-1
faces that lie in K . Then c �K .

(5) The inclusion K! X is a local isometry.

(Recall that a combinatorial map �W K!X of cube complexes, with X non-positively-
curved, is a local isometry if � is locally injective and, for each x 2K.0/ , the map
induced by � on the link of x is injective and has image a full subcomplex of the link
of �.x/; see [37; 72; 73] for more on local isometries and local convexity.)

A convex subcomplex K � X is itself a CAT.0/ cube complex, whose hyperplanes
are the subspaces of the form H \K , where H 2H . A useful mantra, following from
the definition of convexity, is: “if K is convex, then any two hyperplanes that cross K

and cross each other must cross each other inside of K”. The convex hull of Y � X is
the intersection of all convex subcomplexes containing Y .

It follows immediately from the definition that if K�X is convex, then for all x 2X .0/

there exists a unique closest 0–cube gK .x/, called the gate of x in K . The gate is
characterized by the property that H 2H separates gK .x/ from x if and only if H

separates x from K .

As discussed in [33], it follows from the definition of convexity that the inclusion
K ,! X induces an injective graph homomorphism CK ! CX whose image is a
full subgraph: just send each H \K to H . This allows us to define a projection
gK W X !K . The map x 7! gK .x/ extends to a cubical map gK W X !K as follows.
Let c be a cube of X and let H1; : : : ;Hd be the collection of pairwise-crossing
hyperplanes crossing c . Suppose that these are labeled so that H1; : : : ;Hs cross K ,
for some 0 � s � d , and suppose that HsC1; : : : ;Hd do not cross K . Then the
0–cubes of c map by gK to the 0–cubes of a uniquely determined cube gK .c/ of K

in which the hyperplanes H1; : : : ;Hs intersect, and there is a cubical collapsing map
c Š Œ�1; 1�d ! Œ�1; 1�s Š gK .c/ extending the gate map on the 0–skeleton. This map
is easily seen to be compatible with the face relation for cubes, yielding the desired
cubical map gK W X !K , whose salient property is that for all x 2X , a hyperplane H

separates x from K if and only if H separates x from gK .x/. The next lemma
follows easily from the definitions and is used freely throughout this paper:
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Lemma 2.1 Let X be a CAT.0/ cube complex, let A� B � X be convex subcom-
plexes, and let x;y 2 X be 0–cubes. Then any hyperplane separating gA.x/; gA.y/

separates gB.x/; gB.y/ (and hence separates x;y ).

Definition 2.2 (parallel) Convex subcomplexes F;F 0 � X are parallel if for each
hyperplane H , we have H \F ¤∅ if and only if H \F 0 ¤∅. Parallelism is clearly
an equivalence relation.

Hyperplanes lead to important examples of parallel subcomplexes. For each hyperplane
H 2H , let N .H / denote its carrier, ie the union of all closed cubes intersecting H .
Then there is a cubical isometric embedding H � Œ�1; 1� Š N .H / ,! X , and we
denote by H˙ the images of H � f˙1g. These convex subcomplexes are combi-
natorial hyperplanes. Observe that HC and H� are parallel: a hyperplane crosses
H˙ if and only if it crosses H . (Very occasionally, it will be convenient to refer
to combinatorial halfspaces; a combinatorial halfspace associated to H 2 H is a
component of X �H � .�1; 1/. A component of the boundary of such a combinatorial
halfspace is one of HC or H� .)

Remark 2.3 (parallelism and dual cube complexes) The reader accustomed to think-
ing of cube complexes using Sageev’s construction of the cube complex dual to a space
with walls [62; 24] might appreciate the following characterization of parallelism: the
convex subcomplex F can be viewed as the dual to a wallspace whose underlying
set is X .0/ and whose walls are the hyperplanes in the vertex set of CF ; one must
check that in this case, the restriction quotient X ! F is split by a cubical isometric
embedding F!X . In general, the splitting need not be unique, depending on a choice
of basepoint, and the images of the various embeddings are exactly the representatives
of the parallelism class of F .

Observe that F;F 0 are parallel if and only if their contact graphs are the same subgraph
of CX . Parallel subcomplexes are isomorphic and in fact, the following stronger
statement holds, and we shall use it throughout the paper.

Lemma 2.4 Let F;F 0 � X be convex subcomplexes. The following are equivalent:
(1) F and F 0 are parallel;
(2) there is a cubical isometric embedding F � Œ0; a�! X whose restrictions to

F � f0g and F � fag factor as F � f0g Š F ,! X and F � fag Š F 0 ,! X ,
respectively, and Œ0; a� is a combinatorial geodesic segment crossing exactly
those hyperplanes that separate F from F 0 .

Hence there exists a convex subcomplex EF such that there is a cubical embedding
F �EF with convex image such that for each F 0 in the parallelism class of F , there
exists a 0–cube e 2EF such that F � feg ! X factors as F � feg id

�!F 0 ,! F .
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Proof Let F;F 0 be parallel, let H.F / be the set of hyperplanes crossing F (hence
H.F 0/ D H.F /) and let S be the finite set of hyperplanes separating F from F 0 .
Let E be the cubical convex hull of F [F 0 . Then every element of H.F / crosses E ,
and the same is true of S , since any geodesic starting on F and ending on F 0 must
contain a 1–cube dual to each element of S . Conversely, let H 2 H cross the hull
of F [F 0 and suppose that H 62 H.F /[ S . Then either H crosses F but not F 0 ,
which is impossible, or F and F 0 lie in the same halfspace

 �
H associated to H . But

then
 �
H contains a combinatorial halfspace

 �
H � that contains F;F 0 , so E \

 �
H � is a

convex subcomplex containing F [F 0 and properly contained in E (since H does
not cross E \

 �
H � ). This contradicts that E is the convex hull. Hence the set of

hyperplanes crossing E is precisely H.F /[S . Each hyperplane in H.F / crosses each
hyperplane in S , and it follows from [21, Proposition 2.5] that E Š F � I for some
convex subcomplex I such that the set of hyperplanes crossing I is precisely S . It is
easily verified that I is the convex hull of a geodesic segment. This proves .1/D) .2/;
the other direction is obvious.

The “hence” assertion follows from an identical argument, once S is taken to be the
set of hyperplanes H with the property that for some F 0;F 00 in the parallelism class
of F , we have that H separates F from F 0 .

Lemma 2.5 For each convex subcomplex F �X , either F is unique in its parallelism
class, or F is contained in a combinatorial hyperplane.

Proof If F is parallel to some F 0 ¤ F , then as discussed above, there is a cubical
isometric embedding F � Œ0; a�! X , with a� 1, whose restriction to F � f0g is the
inclusion F ,! X . Cubical isometric embeddings take combinatorial hyperplanes to
subcomplexes of combinatorial hyperplanes, and F �f0g is a combinatorial hyperplane
of F � Œ0; a� since a� 1, so the claim follows.

The following will be used often starting in Section 8.1.

Lemma 2.6 If F;F 0 are convex subcomplexes, then gF .F
0/ and gF 0.F / are parallel

subcomplexes. Moreover, if F \F 0 ¤∅, then gF .F
0/D gF 0.F /D F \F 0 .

Proof Suppose that H is a hyperplane crossing gF .F
0/. Then H separates gF .x/

and gF .y/ for some x;y 2F 0 . By Lemma 2.1, H separates x;y and hence crosses F 0 .
Thus H crosses both F and F 0 . Conversely, suppose that a hyperplane H crosses
F and F 0 , separating x;y 2 F 0 . Then H cannot separate x from gF .x/ or y from
gF .y/, so H separates gF .x/ and gF .y/, and in particular crosses gF .F

0/. Thus
the set of hyperplanes crossing gF .F

0/ is precisely the set of hyperplanes H that
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cross both F and F 0 . Similarly, the set of hyperplanes crossing gF 0.F / is the set of
hyperplanes H that cross both F and F 0 . Hence gF .F

0/; gF 0.F / are parallel.

Suppose that F \F 0 ¤ ∅ and let x 2 F \F 0 . Then gF .x/ D x , by definition, so
gF .F

0/�F\F 0 . On the other hand, let y 2 gF .F
0/, so yD gF .y

0/ for some y0 2F 0 .
Let m be the median of y;y0;x for some x 2 F \F 0 . By convexity of F and of F 0 ,
we have m 2F \F 0 and dX .y;y

0/� dX .y
0;m/. Hence y Dm, so y 2F \F 0 . Thus

gF .F
0/� F \F 0 , as required.

The following lemmas concern the projection of geodesics onto hyperplanes:

Lemma 2.7 Let ˛ � X be a combinatorial geodesic and let K � X be a convex
subcomplex. Then gK .˛/ is a geodesic in K . Moreover, suppose that there exists R

such that dX .a;K/ �R and dX .a
0;K/ �R, where a; a0 are the initial and terminal

0–cubes of ˛ . Then dX .t;K/� 2R for all 0–cubes t of ˛ .

Proof Let ˛0 D gK .˛/. Any hyperplane separating t; t 0 2 ˛0 separates s; s0 2 ˛ with
gK .s/D t and gK .s

0/D t 0 , by the definition of gates. Hence the set of hyperplanes
crossing ˛0 has the following properties: if H;H 0 cross ˛0 and are separated by H 00 ,
then H 00 crosses ˛0 ; if H;H 0;H 00 are pairwise-disjoint hyperplanes crossing ˛0 , then
one of them separates the other two. Hence, if a0; : : : ; am is an ordered sequence of
0–cubes of ˛ , then gK .a0/; : : : ; gK .am/ has the property that gK .ai/; gK .aiC1/ are
either equal or adjacent for all i . If a hyperplane H separates gK .ai/ from gK .aiC1/

and also separates gK .aj / from gK .ajC1/, then H must separate ai from aiC1 and
aj from ajC1 , a contradiction. This proves the first assertion.

To prove the second assertion, let ˛0 D gK .˛/. Let H be the set of hyperplanes
separating ˛ from gK .˛/. For all t 2 ˛ , any hyperplane V separating t from K must
not cross K . Hence V separates a or a0 from K . The total number of such V is at
most 2R� jHj.

2.2 Contact and crossing graphs and complexes

As before, X is an arbitrary CAT.0/ cube complex and CX its contact graph. Recall
that hyperplanes H;H 0 represent adjacent vertices of CX if N .H /\N .H 0/ ¤ ∅,
which occurs if either H \H 0 ¤∅ (in which case H;H 0 cross, denoted H?H 0 ), or
if there are 1–cubes, dual to H;H 0 respectively, with a common 0–cube that does not
form the corner of a 2–cube, in which case H;H 0 osculate. If H;H 0 are adjacent
in CX , we say that they contact, denoted H ?̂ H 0 . As we just did, we often abuse
notation by saying two hyperplanes are adjacent, when we really mean that the vertices
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represented by these hyperplanes are adjacent; similarly, we will talk about a sequence
of hyperplanes forming a geodesic, etc. We sometimes refer to the crossing graph
C]X of X , the spanning subgraph of CX formed by removing open edges that record
osculations.

The following statements are the beginning of the analogy between, on one hand, X
and its contact graph and, on the other hand, MCG.S/ and the curve complex of the
surface S .

Theorem 2.8 (hyperbolicity of contact graphs [33]) For any CAT.0/ cube com-
plex X , there is a simplicial tree T and a .10; 10/–quasi-isometry CX ! T .

Under fairly mild geometric hypotheses, whether or not the quasi-tree CX is actually
a quasi-point can be detected by examining the simplicial boundary; moreover, if X
admits an essential, proper, cocompact group action, then CX is either a join of infinite
subgraphs, or is unbounded [32]. This is closely related to the action of rank-one
elements on CX (recall that g 2 Aut.X / is rank-one if it is hyperbolic and no axis
bounds a half-flat in X ). As for the extension graph of a right-angled Artin group, there
is a Nielsen–Thurston-style classification of automorphisms describing how elements
of Aut.X / act on the contact graph.

Theorem 2.9 (classification of cubical automorphisms [32]) Let X be a CAT.0/
cube complex such that every clique in CX is of uniformly bounded cardinality. Let
g 2 Aut.X /. Then one of the following holds:

(1) Invariant clique There exists n> 0 and a hyperplane H such that gnH DH .

(2) Invariant join There exists a subgraph ƒ of CX such that gƒ � ƒ and the
following holds: ƒ D ƒ0 tƒ1 , and each vertex of ƒ0 is adjacent to all but
finitely many vertices of ƒ1 . In this case, g is not a rank-one element.

(3) Loxodromic g has a quasigeodesic axis in CX .

In the last case, g is contracting and no positive power of g stabilizes a hyperplane.

We will not use the subgraph ƒ in the rest of this paper; that description follows from
Theorem D of [32]. We will use the following: if g 2 Aut.X / is not rank-one, then it
either stabilizes a cube in X and thus has a bounded orbit in CX , or its combinatorial
axis lies uniformly close to a half-flat F in X . As explained in [32, Proposition 5.1],
the set of hyperplanes crossing F has uniformly bounded diameter in CX , and hence
the same is true of the hgi orbit in CX .
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2.3 Special cube complexes, right-angled Artin groups, and
the extension graph

The right-angled Artin group A� presented by the graph � is the group with presenta-
tion ˝

Vertices.�/ j fŒv; w� W v;w 2 Vertices.�/; fv;wg 2 Edges.�/g
˛
;

ie the generators are the vertices of � and two generators commute if and only if
the corresponding vertices span an edge of � . The Salvetti complex S� is the non-
positively-curved cube complex with a single 0–cube and an n–cube for each set of n

pairwise-commuting generators, for n� 1. Note that S� is compact, and A� finitely
generated, if and only if � is finite. See the survey [22] for more details.

The universal cover zS� is a CAT.0/ cube complex with special features. For each
induced subgraph ƒ of � , the inclusion ƒ ,! � induces an injective local isometry
Sƒ! S� , lifting to a Aƒ–equivariant convex embedding zSƒ ,! zS� . In particular,
when ƒ is the link of a vertex v , then zSƒ is a combinatorial hyperplane in zS� which
is a copy of a hyperplane whose dual 1–cubes are labeled by the generator v . Moreover,
when ƒ is the star of v , the subcomplex zSƒ is isomorphic to R� zSLk.v/ , where R is
a convex subcomplex isometric to R and stabilized by hvi.

The extension graph �e associated to � , introduced by Kim and Koberda [43], is the
graph with a vertex for each A� conjugate of each generator v with v 2 �.0/ and an
edge joining the distinct vertices corresponding to vg; wh if and only if Œvg; wh�D 1.
Like the contact graph of a cube complex, �e is always a quasi-tree [43], and in fact,
in many situations, �e is quasi-isometric to C zS� , as explained in [44].

Part I Geometry of the contact graph

We now discuss projection to the contact graph and identify “hierarchy paths” in a
cube complex. These results will be reworked in Part II once we have introduced factor
systems.

Disc diagram techniques, originating in unpublished notes of Casson and developed
in [25; 62; 72], have proven to be a useful tool in studying the geometry of CX (see
[26; 33; 32]), and we will continue to make use of these here.

3 Hierarchy paths

The next proposition establishes Theorem A(2).
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Proposition 3.1 (hierarchy paths) Let X be a CAT.0/ cube complex with contact
graph CX and let x;y 2 X be 0–cubes. Then there exist hyperplanes H0; : : : ;Hk

with x 2 N .H0/, y 2 N .Hk/, and combinatorial geodesics 
i ! N .Hi/, such that
H0 ?̂H1 ?̂ � � � ?̂Hk is a geodesic of CX and 
0
1 � � � 
k is a geodesic joining x;y .

Proof Since the set of hyperplane carriers covers X , there exist hyperplanes H;H 0

with x2N .H /, y 2N .H 0/. Let kDdCX .H;H
0/, and let H DH0;H1; : : : ;HkDH 0

be a geodesic sequence of hyperplanes in CX , so that N .Hi/\N .HiC1/ ¤ ∅ for
0 � i � k � 1 and N .Hi/\N .Hj /D ∅ for ji � j j > 1. Let 
0 be a combinatorial
geodesic of N .H0/ joining x to a 0–cube in N .H0/\N .H1/. For 1 � i � k � 1,
let 
i be a geodesic of N .Hi/ joining the terminal 0–cube of 
i�1 to a 0–cube of
N .Hi/ \ N .HiC1/. Finally, let 
k be a geodesic of N .Hk/ joining the terminal
0–cube of 
k�1 to y . Since hyperplane carriers are convex subcomplexes of X , each

i is a geodesic of X and in particular contains at most one 1–cube dual to each
hyperplane. Let 
 D 
0 � � � 
k .

We now show that the above choices can be made in such a way that the path 


is immersed in X , ie 
 has no self-intersections. Since N .Hi/\N .Hj / D ∅ for
ji � j j > 1 we can restrict our attention to intersections between 
i and 
iC1 . Any
such point of intersection must lie in N .Hi/ \N .HiC1/ and we can then replace

i and 
iC1 by 
 0i and 
 0

iC1
, where 
 0i � 
i and 
 0

iC1
� 
 0

iC1
are the geodesic

subpaths obtained by restricting to the subpaths before and after the intersection point,
respectively. Applying this procedure for each i to the first intersection point ensures
that 
 is immersed.

Let � be a combinatorial geodesic of X joining y to x , so that 
� is a closed path
in X , and let D! X be a disc diagram with boundary path 
� . Suppose that D has
minimal area among all disc diagrams with this boundary path, and that the choice of
geodesic of CX , and the subsequent choice of paths 
i , were made in such a way as to
minimize the area of D . See Figure 1.

Figure 1: The diagram D , showing some possible (in orange) and impossible
(in pink) dual curves
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Note that for all i , if K;L are dual curves emanating from 
i , then K;L do not
intersect. Otherwise, convexity of N .Hi/ would enable a new choice of 
i , lowering
the area of D .

Let K be a dual curve in D emanating from 
 . It suffices to show that K must
end on � . Indeed, it will then follow that j
 j � j� j, whence 
 is a geodesic of the
desired type. To this end, suppose that K emanates from a 1–cube of 
i . Then K

cannot end on 
i , since 
i contains exactly one 1–cube dual to the hyperplane to which
K maps. K cannot end on 
j with ji � j j > 2, for then CX would contain a path
.Hi ;V;Hj /, where V is the hyperplane to which K maps, contradicting the fact that
dCX .Hi ;Hj /D ji � j j. If K ends on 
i˙2 , then 
i˙1 could be replaced by a path in
N .V / that is the image of a path in the interior of D , contradicting our minimal-area
choices. Indeed, recall that we chose the CX–geodesic and the associated geodesics 
i

so that the resulting diagram D (which can be constructed given any such choices) is
of minimal area among all diagrams constructible by any choice of such CX and X
geodesics.

Finally, suppose K ends on 
iC1 . Then no dual curve emanating from the part of

i
iC1 subtended by the 1–cubes dual to K can cross K . Hence the 1–cube of 
i

dual to K is equal to the 1–cube of 
iC1 dual to K , contradicting the fact that 
 is
immersed.

Definition 3.2 A geodesic 
 D 
1 � � � 
n such that 
i ! N .Hi/ for 1 � i � n and
H1 ?̂ � � � ?̂Hn is a geodesic of CX is a hierarchy path. The geodesic H1 ?̂ � � � ?̂Hn

carries 
 , and each 
i is a syllable of 
 .

The following is immediate from the product structure of hyperplane-carriers:

Proposition 3.3 Let 
 D 
1 � � � 
n be a hierarchy path carried by H1 ?̂ � � � ?̂ Hn .
Then there exists a hierarchy path 
 0D 
 0

1
� � � 
 0n , joining the endpoints of 
 and carried

by H1 ?̂ � � � ?̂Hn , such that for each i , we have 
 0i DAie , where the combinatorial
geodesic Ai lies in Hi � f˙1g �Hi � Œ�1; 1�ŠN .Hi/ and e is either a 0–cube or a
1–cube dual to Hi .

A hierarchy path satisfying the conclusion of Proposition 3.3 is reduced. A reduced
hierarchy path 
1 � � � 
n is a hereditary hierarchy path if it is trivial or if for each i ,
the subpath path Ai ! Hi � f˙1g of 
i is a hereditary reduced hierarchy path in
Hi � f˙1g. From Proposition 3.3 and the definition of a hereditary reduced hierarchy
path, we obtain:

Corollary 3.4 Let X be a finite-dimensional CAT.0/ cube complex and let x;y2X .0/.
Then x and y are joined by a hereditary reduced hierarchy path.
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4 Projection to the contact graph

The notion of projecting geodesics in X to CX was discussed in [32, Section 2],
motivating the following definition:

Definition 4.1 (projection to the contact graph) Let K be a convex subcomplex of X .
For each k 2K , let fHi \Kgi2I be the maximal collection of hyperplanes of K with
k 2

T
i2I N .Hi/. Define �K W K! 2CK by setting �K .k/DfHigi2I . The projection

of X on CK is the map �K D �K ıgK W X ! 2CK . Note that �K assigns to each point
of X a clique in the contact graph of K and hence a clique in CX .

If H is a hyperplane, let H˙ be H � f˙1g � N .H / Š H � Œ�1; 1�. There is a
bijection between hyperplanes which intersect HC and ones which intersect H� ;
moreover, associated hyperplanes contact (respectively, cross) in HC if and only if
they contact (respectively, cross) in H� , whence CHC and CH� are both the same
subset of CX . Abusing notation slightly, we let �H denote the projection from X to
CHC D CH� � CX . This map is defined as in Definition 4.1 since H˙ is a convex
subcomplex, and it is not hard to see that it is independent of whether we took gates in
HC or H� (another option is to pass to the first cubical subdivision and just project
to H and then to its contact graph, since subdividing makes H into a subcomplex).

Let x;y 2 X be 0–cubes, and let H be a hyperplane that does not separate x from y .
Let HC be the copy of H bounding N .H / that lies in the component of X �H

containing fx;yg. It is easily checked that any hyperplane that separates gHC.x/ from
gHC.y/ must separate x from y . In particular, if H does not separate x from y and
it does not cross any hyperplane separating x from y , then �H .x/D �H .y/. In other
words, if 
 � X is a geodesic with �X .
 /\B

C]X
1

.H /D∅, then �H .x/D �H .y/,
where x;y are the endpoints of 
 . Let x0 2 
 be a 0–cube and suppose that the
hyperplane U crosses H and separates the pair x;x0 , hence separating gHC.x/

from gHC.x
0/. Then U separates x;y , and hence belongs to �X .
 /\BC]X

1
.H /,

contradicting our assumption. Hence �H .
 /D �H .x/D �H .y/. Thus:

Proposition 4.2 (bounded geodesic image) For any H 2CX and any geodesic 
 �X
whose image in CX is disjoint from BC]X

1
.H /, the projection �H .
 / is a clique.

5 Weak proper discontinuity of the action
on the contact graph

We now consider the elements which act weakly properly discontinuously (WPD), in
the sense of [13]. In particular, we study the WPD elements of a group G acting on X ,
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and prove Theorem A(1). By definition, as an isometry of CX , some h 2G is WPD if
for all � � 1 and hyperplanes H , there exists N > 0 such thatˇ̌˚

g 2G W dCX .H;gH / < �; dCX .h
N H;ghN H / < �

	ˇ̌
<1:

In the presence of a factor system and a cocompact group action, we achieve a stronger
conclusion in Section 14, namely that the action on the contact graph is acylindrical.

Proposition 5.1 Let X be a CAT.0/ cube complex on which the group G acts metri-
cally properly by isometries. Suppose that h2G is loxodromic on CX . Then h is WPD.

Proof Fix � � 1 and let H be a hyperplane. By hypothesis, hhiH is a quasigeodesic
in CX . It follows (see [32, Theorem 2.3]) that there exists M DM.h;H;X / such
that for all N � 0, and any hierarchy path 
 D 
1 � � � 
p joining some x 2 H to
hN x 2 hN H and carried on a geodesic H DH0 ?̂H1 ?̂ � � � ?̂Hp D hN H of CX ,
we have j
i j �M for 0� i � p . (Recall that 
 is a geodesic, being a hierarchy path;
hence 
 contains at most one 1–cube dual to each hyperplane.)

Suppose that g 2G has the property that

dCX .H;gH / < � and dCX .h
N H;ghN H / < �:

Suppose, moreover, that N has been chosen so that p > 2�C 12, and choose i so
that jp=2� i j � 2. Choose a point y 2 
i and let H.y/ be the set of hyperplanes
separating y from gy 2 g
i .

We claim that each W 2 H.y/ intersects 
 and g
 . Indeed, suppose that W in-
tersects 
 but not g
 . Suppose that W intersects 
j with j � i . Then W sepa-
rates x; hN x (since 
 is a geodesic) but not gx; ghN x , so W separates x;gx or
hN x;ghN x . Since W also separates y;gy , the former must hold. Hence

p D dCX .H; h
N H /� �Cjp� i j � 1

2
pC �;

contradicting our choice of N . The case where W intersects 
j , j < i , is similar.

Hence, if W crosses 
s with s � i , then W crosses g
t , with t � i . (We have
the reverse conclusion if s � i .) The fact that H0 ?̂ H1 ?̂ � � � ?̂ Hp and its g–
translate are CX–geodesics implies that W intersects 
s with ji � sj � �C 6. Hence
dX .y;gy/�M.�C 6/, whence the number of such g is finite since the action of G

on X is proper.

We say that a group is nonelementary if it does not contain a cyclic subgroup of finite
index, and that an action of the group G is WPD if it admits a WPD element and G is
nonelementary.

Geometry & Topology, Volume 21 (2017)



Hierarchically hyperbolic spaces, I 1753

Corollary 5.2 (characterization of WPD elements) Let X be a uniformly locally
finite CAT.0/ cube complex. Then for any nonelementary group G acting properly
on X , one of the following holds:

(1) The induced action of G on CX is WPD, and the WPD elements are precisely
those h 2 G that are rank-one and do not have positive powers that stabilize
hyperplanes.

(2) Every h 2G is either not rank-one, or has a positive power stabilizing a hyper-
plane.

Proof Apply Proposition 5.1 and Theorem 2.9.

The following is an application to determining acylindrical hyperbolicity. Follow-
ing [21], we say that the action of the group G on the CAT.0/ cube complex X is
essential if every halfspace contains points in a fixed G–orbit arbitrarily far away from
the associated hyperplane.

Corollary 5.3 Let G be a nonelementary group acting properly and essentially on a
uniformly locally finite CAT.0/ cube complex X . Suppose that X is not a product of
unbounded subcomplexes and at least one of the following two holds:

(1) G acts cocompactly on X .

(2) G acts with no fixed point in the simplicial boundary @4X in the sense of [32].

Then G is acylindrically hyperbolic.

Proof By [55, Theorem 1.2] it suffices to find a hyperbolic space on which G acts
with a loxodromic WPD element. By [32, Theorem 5.4] there exists a rank-one element
g 2 G no positive power of which stabilizes a hyperplane. The conclusion follows
from Corollary 5.2.

A major motivation for studying WPD actions arises from a result of Bestvina and
Fujiwara relating WPD actions to bounded cohomology. Recall that the space �QH.G/,
which is the quotient of the space of quasimorphisms of G by the subspace generated
by bounded functions and homomorphisms G!R, coincides with the kernel of the
map H2

b
.G;R/!H2.G;R/. Theorem 7 of [13] asserts that if G admits a WPD action,

then �QH.G/ is infinite-dimensional. This yields an alternative proof of the dichotomy
obtained by Caprace and Sageev [21, Theorem H], as a consequence of rank-rigidity: a
group G admitting a sufficiently nice action on a CAT.0/ cube complex X that is not
a product has infinite-dimensional �QH.G/; instead of using rank-rigidity and results
of [18; 20; 52], one can deduce their result from rank-rigidity, Corollary 5.2, and [13].
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6 Contractibility

We now prove Theorem A(3). The contact complex C�X of the CAT.0/ cube com-
plex X is the flag complex with 1–skeleton CX .

Theorem 6.1 Let X be a CAT.0/ cube complex with countable 0–skeleton and at
least one 1–cube. Then C�X is contractible.

Proof For each n� 0, choose a convex, compact subcomplex Bn in such a way that
Bm � Bn for m � n and

S
n�0 Bn D X . This choice is possible since X .0/ may be

written as an increasing union of finite sets; Bn can then be taken to be the cubical
convex hull of the nth one.

Since each Bn is convex in X , it is itself a CAT.0/ cube complex whose hyperplanes
have the form H\Bn , where H is a hyperplane of X . Moreover, the map H\Bn!H

induces an embedding C�Bn! C�X whose image is a full subcomplex (ie any kC 1

0–simplices of C�Bn span a k–simplex of C�Bn if and only if their images in C�X
span a k–simplex of C�X ). Thus the set fC�Bngn�0 provides a filtration of C�X by
full subcomplexes, each of which is the contact complex of a compact CAT.0/ cube
complex. Indeed, every hyperplane intersects all but finitely many of the Bn , and hence
appears as a 0–simplex in all but finitely many of the subcomplexes C�Bn .

For any m� 0 and any continuous map f W Sm! C�X , compactness of imf implies
that there exists n� 0 such that imf � C�Bn . By Lemma 6.2, C�BnC1 is contractible,
since it is the contact complex of a compact CAT.0/ cube complex. Hence the inclusion
C�Bn ,! C�BnC1 is null-homotopic, whence Sm f

�! C�Bn ,! C�BnC1 ,! C�X is null-
homotopic. It then follows from Whitehead’s theorem [68; 69] that X is contractible.

Lemma 6.2 Let X be a compact CAT.0/ cube complex with at least one 1–cube.
Then C�X is contractible.

Proof We will argue by induction on n D jC�X .0/j, ie the number of hyperplanes
in X . When nD 1, the cube complex X is necessarily a single 1–cube, so C�X is a
0–simplex. Let n� 1. Since X has finitely many hyperplanes, there exists a hyperplane
H � X such that one of the components of X �H has closure H � Œ0; 1�, where
N .H / is identified with H � Œ�1; 1� and H with H � f0g. This generalizes the case
in which X is a tree and H is the midpoint of an edge containing a degree-1 vertex;
accordingly, such a hyperplane H will be called a leaf hyperplane. When H is a leaf
hyperplane, we always denote by HC the halfspace H � Œ0; 1� and by H� the other
closed halfspace.
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By Lemma 6.3, ADCl.X �N .H // is a convex proper subcomplex of X , so that C�A
embeds in C�X as a full subcomplex. Moreover, by Lemma 6.4, there is a convex proper
subcomplex H 0�X such that C�X Š C�A[L .L?fH g/, where L is a subcomplex of
C�Cl.X �N .H // isomorphic to C�H 0 . Each of A and H 0 is a CAT.0/ cube complex
whose set of hyperplanes corresponds bijectively to a subset of X .0/ � fH g, so by
induction, C�A and L are contractible. Since L is contractible, there is a homotopy
equivalence f W L ? fH g ! L that is the identity on L, whence the pasting lemma
yields a homotopy equivalence C�X ! C�A. Since A is contractible, the same is
therefore true of C�X .

Lemma 6.3 Let H be a leaf hyperplane of the CAT.0/ cube complex X . Then
Cl.X �N .H // is a convex subcomplex of X .

Proof Since HC � N .H /, the subcomplex Cl.X �N .H // is exactly the convex
hull of the halfspace H�\X .0/ of the 0–skeleton induced by H .

Lemma 6.4 Let H be a leaf hyperplane of the compact CAT.0/ cube complex X .
Then there is convex subcomplex H 0 ¨ X such that there is an isomorphism

C�X Š C�Cl.X �N .H //[L .L? fH g/;

where L is a subcomplex of C�Cl.X �N .H // isomorphic to C�H 0 .

Proof Let A D Cl.X � N .H //. Let fV1; : : : ;Vsg be the hyperplanes of X that
contact H , and let L be the full subcomplex of C�X generated by fV1; : : : ;Vsg.
Lemma 7.11 of [33] implies that there is an isometrically embedded subcomplex
H 0 � X such that a hyperplane intersects H 0 if and only if that hyperplane belongs
to fV1; : : : ;Vkg. By replacing H 0 if necessary by its convex hull, we may assume
that H 0 is convex, and hence C�H 0 Š L. The decomposition is obvious from the
definitions.

7 Automorphisms of the contact graph

We now provide a short example which shows that the analogue of Ivanov’s theorem,
that the mapping class group is the automorphism group of the curve graph [41], fails
to hold for the contact graph. Indeed, the example below shows that this failure holds
even if one considers an edge-colored version of the contact graph differentiating edges
associated to crossing hyperplanes from those associated to osculating ones. We note
that in the case of RAAGs, the fact that the automorphism group of the contact graph
may be much larger than the RAAG itself is familiar from the case of the extension
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graph, where Kim and Koberda prove that the automorphism group of the extension
graph is often uncountable [44, Theorem 66].

Example 7.1 In the cube complex pictured in Figure 2 one sees that the automorphism
group of the cube complex is virtually cyclic, and in particular, pairs of valence-zero
vertices, such as those labeled a; b , cannot be permuted willy-nilly. Whereas in the
contact graph, the pair of simplices (labeled a0; b0 ), one for each hyperplane separating
off such a vertex, can be swapped arbitrarily; thus the contact graph contains a .Z=2Z/1

subgroup.
a

b

a0

b0

Figure 2: Cube complex X (left) and its associated contact graph yCX (right)

Part II Factor systems, projections, and the distance formula

Throughout, X is a CAT.0/ cube complex. The setting in which we will work is
established in Definition 8.1 and forces X to be uniformly locally finite.

8 Factored contact graphs

8.1 Factor systems

Definition 8.1 (factor system) A set F of subcomplexes which satisfies the following
is called a factor system in X :

(1) X 2 F.

(2) Each F 2 F is a nonempty convex subcomplex of X .

(3) There exists ��1 such that for all x 2X .0/ , at most � elements of F contain x .

(4) Every nontrivial convex subcomplex parallel to a combinatorial hyperplane of X
is in F.

(5) There exists � � 0 such that for any pair of subcomplexes F;F 0 2 F, either
gF .F

0/ 2 F or diam.gF .F
0// < � .
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Convexity of each F 2 F implies that each F is a CAT.0/ cube complex whose
hyperplanes have the form H \ F , where H is a hyperplane of X , and the map
H \F 7!H induces an injective graph homomorphism CF ,! CX whose image is
an induced subgraph, which, by an abuse of notation, we also denote CF .

If F is a factor system for X , then for each F 2 F the set FF D fH 2 F WH �Fg is a
factor system in F such that each point in F lies in at most ��1 elements of FF . (The
distinction between FF and fH \F WH 2 Fg is small: the latter consists of the former,
together with some subcomplexes of diameter at most � . It is mainly for convenience
that we choose to work, everywhere, with FF rather than fH \F WH 2 Fg.)

8.2 Examples of factor systems

8.2.1 Special groups Universal covers of special cube complexes, defined in [37],
contain factor systems provided the co-special action has finitely many orbits of hyper-
planes, as we shall show below. This provides a very large class of groups for which
the distance formula from Section 9 holds. Let us start by studying universal covers of
Salvetti complexes.

The following definition is tailored to the proof of Proposition 8.3.

Definition 8.2 Let � be a simplicial graph. A collection R of subgraphs of � is
rich if

(1) � 2R,

(2) all links of vertices of � are in R, and

(3) if A;B 2R then A\B 2R.

The collection of all subgraphs of � is a rich family. Also, any graph admits a minimal
rich family, consisting of � together with all nonempty intersections of links of vertices.

Proposition 8.3 Let � be a finite simplicial graph, A.�/ a right-angled Artin group,
and zS� the universal cover of its Salvetti complex. Let R be a rich family of subgraphs
of � .

Let F be the (A.�/–invariant) collection of convex subcomplexes of zS� containing all
lifts of the sub-Salvetti complexes Sƒ of S� , for all ƒ 2R. Then F is a factor system.

In other words, F contains a subcomplex stabilized by each conjugate of A.ƒ/, for
each subgraph ƒ of � .
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Proof of Proposition 8.3 In the definition of a factor system, item (1) holds because
� 2R. Items (2) and (3) are clear. Item (4) holds because combinatorial hyperplanes
in zS� are exactly lifts of sub-Salvetti complexes of S� corresponding to links of
vertices. More precisely, if a hyperplane H is dual to a 1–cube corresponding to the
generator v 2 �.0/ , then the combinatorial hyperplanes on the two sides of H are lifts
of SLk.v/ � S� .

The content of the proposition is hence that item (5) holds (for � D 0). To simplify the
notation, we will identify the 0–skeleton of zS� with A.�/. Under this identification,
the 0–skeleton of each F 2 F corresponds to a coset of A.ƒ/ < A.�/ for some
subgraph ƒ 2R, and each such coset is the 0–skeleton of some F 2 F.

Let F;F 0 2 F, whose 0–skeleta are (possibly after applying an element of A.�/)
A.ƒ0/ and gA.ƒ1/, for some subgraphs ƒ0; ƒ1 of � and g 2A.�/. We can assume,
using the action of some g 2 A.�0/, that 1 2 gF .F

0/. Recall from Lemma 2.4 and
Lemma 2.6 that gF .F

0/ is in a natural way one of the factors in a product region R

of zS� , the other factor being (naturally identified with) a possibly trivial geodesic 

from 1 to g , up to changing the choice of g within the same coset of A.ƒ1/. Also,
gF .F

0/� f1g is contained in F and gF .F
0/� fgg is contained in F 0 . Let ƒ2 be the

link in ƒ of the set of vertices of ƒ that label some 1–cube along 
 . The following
claim concludes the proof.

Claim The 0–skeleton of gF .F
0/ is A.ƒ/, where ƒD

T2
iD0ƒi 2R.

Let us first show gF .F
0/.0/�A.ƒ/. Consider a geodesic ı joining 1 to h2 gF .F

0/.0/ .
Any 1–cube e of ı is contained in F as well as parallel to a 1–cube of F 0 , which
implies that the label v of e belongs to ƒ0\ƒ1 . Let us now show that e also belongs
to ƒ2 . Once we have done that, it is clear that h can be written as a product of
generators each belonging to A.ƒ/.

Fix any 1–cube e0 of 
 . The product region R contains a square with two 1–cubes
parallel to e and two 1–cubes parallel to e0 . This means that the labels of e; e0 commute
and are distinct. As this holds for any e0 , the label of e belongs to ƒ2 , as required.

We are left to show A.ƒ/� gF .F
0/.0/ . If h 2A.ƒ/, there exists a geodesic ı from 1

to h whose 1–cubes are labeled by elements of 
 . It is then easy to see that zS� (and
in fact R) contains a product region naturally identified with ı � 
 with the property
that ı � f1g is contained in F and ı � fgg is contained in F 0 . In particular, ı , and
thus h, is contained in gF .F

0/, as required.

Definition 8.4 (induced factor system) Let X be a CAT.0/ cube complex with a
factor system F and let Y �X be a convex subcomplex. The induced factor system FY
is the set of nonempty subcomplexes of Y of the form F \Y , for F 2 F.
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Lemma 8.5 Let X be a CAT.0/ cube complex with a factor system F and let Y � X
be a convex subcomplex. Then FY is a factor system in Y .

Proof Item (1) of Definition 8.1 holds since X \ Y D Y . Item (2) follows since
intersections of convex subcomplexes are convex. Item (3) follows since F is a
uniformly locally finite collection. To verify item (4), let HC be a combinatorial
hyperplane of Y and let H be the (genuine) hyperplane whose carrier contains HC as
one of its bounding copies. By convexity of Y , the hyperplane H has the form W \Y
for some hyperplane W of X , and hence HC DW C\Y , where W C is one of the
combinatorial hyperplanes bounding the carrier of W . But W C 2 F, by item (4), so
W C\Y DHC 2 FY .

It suffices to verify item (5), namely that FY is closed under (large) projection. To
that end, let F;F 0 2 F and suppose that diam.gF\Y.F

0 \ Y// � � , where � is the
constant associated to F by Definition 8.1. Then, by item (5), applied to F, we have
gF .F

0/2F. It thus suffices to show that gF .F
0/\YDgF\Y.F

0\Y/. For convenience,
let AD F \Y , A0 D F 0\Y . Since A� Y , we have gA.A

0/� Y . Since A� F and
A0 � F 0 , we have gA.A

0/� gF .F
0/. Hence gA.A

0/� gF .F
0/\Y .

Conversely, suppose that x 2 gF .F
0/ \ Y . Then x 2 A, since x 2 F \ Y . Since

x 2 gF .F
0/, there exists x0 2 F 0 such that a hyperplane H separates x0 from F if

and only if H separates x0 from x . Let z D gY.x
0/. Note that convexity of Y is

used here to make z well-defined. Let V be a hyperplane separating z from x . Then
either V separates x0 from x , and hence from F , whence V separates z from A, or
V separates x;x0 from z . Suppose the latter. Since V separates x0 from z , it must
separate x0 from Y since z D gY.x

0/. But then V cannot cross Y , and hence cannot
separate z 2 Y from x 2 Y , a contradiction. Thus V separates z from x if and only if
V separates z from A, so x D gA.z/. It remains to show that z 2A0 , but this follows
from Lemma 8.6.

Lemma 8.6 Let X be a CAT.0/ cube complex and let Y;Z be convex subcomplexes,
with AD Y \Z . Then for all x 2 Z , we have gY.x/ 2A.

Proof Let y D gY.x/, let aD gA.x/, and let m be the median of x; a, and z . Then
m2Z since it lies on a geodesic from x to a, and x; a2Z , and Z is convex. Similarly,
m lies on a geodesic from y to a, and thus m 2 Y . It follows that m 2 A, whence
mD a since dX .x;m/� dX .x; a/. But then dX .x; a/� dX .x;y/, so y D a.

If C is a special cube complex then C admits a local isometry into some Salvetti
complex by [37, Theorem 1.1], and this is the Salvetti complex of a finitely generated
right-angled Artin group when C has finitely many immersed hyperplanes (eg when
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C is compact special). Such a local isometry lifts to a convex embedding at the
level of universal covers, whence Proposition 8.3 and Lemma 8.5 immediately imply
that the universal cover of C admits a factor system. (Note that finite generation of
the right-angled Artin group is important, since otherwise the universal cover of the
Salvetti complex does not have a factor system because each 0–cube is contained in
infinitely many combinatorial hyperplanes in this case.) We will now describe such
factor systems.

Definition 8.7 Let C be a special cube complex whose set H of immersed hyperplanes
is finite. For every A � H and 1–cubes e; e0 of C , write e �A e0 if there is a path
e D e0 � � � en D e0 in the 1–skeleton of C such that each ei is dual to some immersed
hyperplane from A. Let CA be the collection of full subcomplexes of C whose 1–
skeleton is an equivalence class of 1–cubes with respect to the equivalence relation �A .

Notice that each D 2 CA is locally convex.

Corollary 8.8 (factor systems for special groups) Let X be the universal cover of a
special cube complex C with finitely many immersed hyperplanes, the set of which we
denote by H . Then X admits a factor system: the collection of all lifts of subcomplexes
in
S

A�H CA is a factor system for X .

Proof Let � be the crossing graph of C , which has a vertex for each immersed
hyperplane, with two vertices adjacent if the corresponding immersed hyperplanes
have nonempty intersection. Then for each immersed hyperplane H of C there is a
corresponding 1–cube eH in S� . In [37, Theorem 1.1] it is shown that there is a local
isometry �W C ! S� such that if the 1–cube e is dual to the immersed hyperplane H

then it gets mapped isometrically to eH .

The local isometry � lifts to a convex embedding z�W X! zS� (see eg [73, Lemma 3.12]),
so in view of Proposition 8.3 and Lemma 8.5 there is a factor system on X consisting
of all preimages of elements of the factor system F for zS� , where F is the factor
system associated to the collection of all subgraphs of � described in Proposition 8.3.

From now on we identify the 0–skeleton of zS� with A.�/, and regard the 1–cubes
of zS� as labeled by an immersed hyperplane of C (they are naturally labeled by
vertices of � , which are immersed hyperplanes of C ).

Let us consider an element of F 2 F that intersects z�.X / in, say, g 2A.�/. We want
to show that F 0DF \ z�.X / is the image via z� of the lift zD of some D 2

S
A�H CA .

The 0–skeleton of F is gA.ƒ/ for some subgraph ƒ of � whose set of vertices will
be denoted A. By convexity of F 0 we know that we can connect g to any element
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of the 0–skeleton of F 0 (that is to say gA.ƒ/\ z�.X /) by a path in the 1–skeleton
of F 0 all whose 1–cubes are labeled by elements of A. On the other hand, if we can
connect g to, say, h by a path in the 1–skeleton of F 0 all whose 1–cubes are labeled
by elements of A, then h 2 gA.ƒ/. These facts easily imply that the 0–skeleton
of F 0 coincides with the 0–skeleton of z�. zD/ for some D 2 CA , which in turn implies
z�. zD/D F \ z�.X /.

It can be similarly shown that for any D 2
S

A�H CA , we have that �. zD/ is of the
form F \ z�.X / for some F 2 F, and this concludes the proof.

The same proof goes through to show the following more general version of the
corollary:

Corollary 8.9 Let X be the universal cover of the special cube complex C , whose
set of immersed hyperplanes is finite, and let � be the crossing graph of the immersed
hyperplanes of C . If R is a rich collection of subgraphs of � , then the collection of
all lifts of subcomplexes in

S
ƒ2R Cƒ.0/ is a factor system for X .

8.2.2 A nonspecial example

Example 8.10 Let S;T be wedges of finitely many circles and let D be a compact,
2–dimensional, non-positively-curved cube complex with the following properties:

(1) D.1/ D S [T .

(2) The universal cover zD of D is zS � zT .

(3) H D �1D has no nontrivial finite quotient.

Such D were constructed by Burger and Mozes [19], whose complex actually has
simple fundamental group, and by Wise [71]. Let z̨ ! zS and ž ! zT be nontrivial
combinatorial geodesics mapping to immersed closed combinatorial paths ˛; ˇ!D .
Since each of zS ; zT is convex in zS � zT , each of the maps ˛!D , ˇ!D is a local
isometry of cube complexes. Hence Œ˛�; Œˇ� 2H �f1g respectively lie in the stabilizers
of the hyperplanes zS �fog and fo0g� zT of zS � zT , where .o0; o/ is a basepoint chosen
so that o0; o are arbitrary midpoints of 1–cubes of zS ; zT . Suppose moreover that
j˛j D jˇj D r � 1.

Let R D Œ0; r � � Œ0; 2�. Regard R as a 2–dimensional non-positively-curved cube
complex in the obvious way, and form a complex Z0 from R tD by identifying
f0g � Œ0; 2� with frg � Œ0; 2� and identifying the images of Œ0; r �� f0g and Œ0; r �� f2g
with ˛ and ˇ , respectively. Since ˛ and ˇ are locally convex in both R and D , the
complex Z0 is non-positively-curved, and its fundamental group is H�hŒ˛�itDhŒˇ�i .
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Let A D Œ0; 1� � Œ0; r � with the obvious cubical structure, and attach A to Z0 by
identifying f0g � Œ0; r � with the “meridian” in R, ie the image of Œ0; r �� f1g. Finally,
attach a square by gluing a length-2 subpath of its boundary path to the image of
Œ0; 1�� f0g [ Œ0; 1�� frg � A in A[Z0 . The resulting complex is Z . Since C is
locally convex in Z0 and f0g � Œ0; r � is locally convex in A, the complex Z is a
non-positively-curved cube complex. See Figure 3.

A
R

S

T

D.2/

Figure 3: A complex Z with r D 7 . The square at left represents the 2–
skeleton of D . Note that A is the carrier of a self-intersecting hyperplane,
A is attached to R by identifying the “inner” boundary component with the
waist of R , and R is attached to S [T by a local isometry of its boundary.

The following properties of Z will be needed in Section 11.

Proposition 8.11 The universal cover zZ of Z has a factor system.

Proof Let Z0 be constructed exactly as in the construction of Z in Example 8.10,
except beginning with S � T instead of with the complex D . The 1–skeleta of D

and S �T are identical, so the paths ˛; ˇ exist in S �T , rendering this construction
possible. It is easily verified that the universal cover of Z0 is isomorphic to zZ and that
Z0 has a finite-sheeted special cover. The claim follows from Corollary 8.8.

Proposition 8.12 Let G �fi �1Z . Then there exists a hyperplane H of zD and g 2G

such that gH crosses H .

Proof Let W !Z be the immersed hyperplane dual to the image of Œ0; 1��f0g �A

in Z . Then W self-crosses. Moreover, if yZ!Z is a finite-sheeted cover such that
some component yC of the preimage of the meridian C has the property that yC ! C

is bijective, then some lift of W to yZ is again a self-crossing immersed hyperplane.
But C is homotopic into D , whose fundamental group has no finite quotients. Hence
any finite cover of Z has a self-crossing immersed hyperplane.

Having shown that there are many interesting groups with factor systems, below we
show the utility of these systems. First, though, we propose the following question,
to which we expect a positive answer; we believe that a proof of this will require
significant work.
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Question 8.13 Does every CAT.0/ cube complex which admits a proper, cocompact
group action contain a factor system?

8.3 Factored contact graphs

Definition 8.14 (factored contact graphs, projection to the factored contact graph)
Let F be a factor system for X . For each convex subcomplex F � X , the factored
contact graph yCF is obtained from CF as follows.

Let F 0 2FF �fFg and suppose that F 0 is either parallel to a combinatorial hyperplane
or has diameter � � , and let ŒF 0� be its parallelism class. We add a vertex vF 0 to CF ,
corresponding to this parallelism class ŒF 0�, and join vF 0 by an edge to each vertex
of CF 0 � CF , ie each newly added vertex vF 0 gets connected to each vertex of CF

which corresponds to a hyperplane of F that intersect F 0 . We repeat this for each such
F 0 2 FF �fFg. We emphasize that yCF consists of CF together with a cone-vertex for
each parallelism class of subcomplexes in FF �fFg that are parallel to combinatorial
hyperplanes or have diameter � � (or both). Also, observe that CF is an induced
subgraph of yCF .

The projection of X to yCF is the map �F W X ! 2
yCF .0/

obtained by composing the
projection to CF given in Definition 4.1 with the inclusion CF ,! yCF . Recall that this
map assigns to each point of X a clique in yCF consisting of the vertices corresponding
to the hyperplanes whose carriers contain the given point.

Remark 8.15 When F 2 F is a single 0–cube, CF D ∅, so yCF D ∅. Hence
j2
yCF .0/

j D 1 and �F is defined in the obvious way. When the constant � from
Definition 8.1 is at least 1, no F 2 F is a single point.

Lemma 8.16 Let F;F 0 be parallel. Then there is a bijection f W FF ! FF 0 such that
f .H / is parallel to H for all H 2 FF .

Proof If F 00 2 F is contained in F , then there is a parallel copy F 000 of F 00 in F 0 .
Provided either F 00 is a combinatorial hyperplane or has diameter at least � , we have
F 000 2 F. The existence of f now follows easily.

The next lemma is immediate.

Lemma 8.17 Let F 2 F and let F 0 be a convex subcomplex parallel to F . Then
CF D CF 0 and the bijection f W FF ! FF 0 from Lemma 8.16 descends to a bijection
of parallelism classes inducing an isomorphism yCF ! yCF 0 that extends the identity
CF ! CF 0 . Moreover, �F D �F 0 .
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Remark 8.18 (crossing, osculation and coning) In the case where F is the factor
system obtained by closing the set of subcomplexes parallel to hyperplanes under
projections with diameter � � , then yCX is quasi-isometric to CX . This is because we
are coning off contact graphs of intersections of hyperplane-carriers, and these subgraphs
are already contained in vertex-links in CX . More generally, let HI D

T
i2I HCi be

an intersection of combinatorial hyperplanes. The hyperplanes of HI have the form
W \HI , where W is a hyperplane that crosses each of the hyperplanes Hi . Coning
off C.W ˙\HI / in CHI does not affect the quasi-isometry type, since C.W ˙\HI /

is the link of a vertex of CHI . It is when W is disjoint from HI but exactly one
of W ˙ is not — ie precisely when W osculates with each Hi — that coning off
C.W C\HI /� CHI affects the geometry.

The crucial property of projections to factored contact graphs is:

Lemma 8.19 (bounded projections) Let F be a factor system for X and let � be the
constant from Definition 8.1. Let F;F 0 2 F. Then one of the following holds:

(1) diamyCF .�F .F
0// < �C 2.

(2) F is parallel to a subcomplex of F 0 .

Proof If diam.gF .F
0//� � , then either �F .F

0/ is coned off in yCF or gF .F
0/D F .

We also note the following version of Proposition 4.2 for factored contact graphs:

Proposition 8.20 (bounded geodesic image II: the factoring) Let F 2 F and let

 ! F be a combinatorial geodesic. Suppose U 2 FF and that dyCF .�F .
 /; yCU /� 1.
Then gU .
 / consists of a single 0–cube. Hence �U .
 / is a clique.

Proof Suppose that gU .
 / contains distinct 0–cubes x;y and let H be a hyperplane
separating them. Then H crosses U and thus corresponds to a vertex of CU � yCU � yCF .
On the other hand, H cannot separate any 0–cube of 
 from U and thus separates the
endpoints of 
 . Hence H is a vertex of �F .
 /.

8.4 Hierarchy paths revisited

Let F be a factor system for X and let F 2 F. The vertices of yCF are naturally
associated to subcomplexes of X : to each vertex V of CF (� yCF ), we associate one of
the two combinatorial hyperplanes V ˙ bounding N .V /. The remaining vertices
are cone points corresponding to parallelism classes of subcomplexes in FF . A
path of yCF is a sequence .v0; : : : ; vn/ of vertices with consecutive vertices adjacent.
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A combinatorial path 
 ! F is carried by the path .v0; : : : ; vn/ of yCF if 
 D

0e0
1e1 � � � 
nen , where for 0 � i � n, we have 
i ! Ti with Ti associated to vi

and jei j � 1. In this situation, we say that the sequence T0; : : : ;Tn carries 
 and
represents .v0; : : : ; vn/.

Proposition 8.21 Let v0; v1; : : : ; vr be a path in yCX and let x 2 T0 , y 2 Tr be
0–cubes, where T0;Tr are subcomplexes associated to v0; vr , respectively. Then for
1� i � r � 1, we can choose for each vertex vi an associated subcomplex Ti so that
T0; : : : ;Tr carries a path in X joining x to y .

Proof We argue by induction on r . If r D 0, then the claim follows by path-
connectedness of T0 . Now let r �1. Suppose first that vr is a cone-vertex, so that vr�1

is a hyperplane-vertex, and let V be the corresponding hyperplane. Since V crosses Tr ,
either combinatorial hyperplane Tr�1 bounding the carrier of V intersects Tr . There
exists a 0–cube y0 2 Tr�1 \ Tr . On the other hand, if vr is a hyperplane-vertex,
then Tr is a specified combinatorial hyperplane parallel to a hyperplane crossing each
subcomplex Tr�1 associated to vr�1 , if vr�1 is a cone-vertex. If vr�1 is also a
hyperplane-vertex, then at least one of the possible choices of Tr�1 is a combinatorial
hyperplane intersecting the combinatorial hyperplane Tr . Again, we have a 0–cube
y0 2 Tr \Tr�1 . In either case, by induction, we can choose T1; : : : ;Tr�2 to carry a
path joining x to y0 , which we concatenate with a path in Tr joining y0 to y . The
path er�2 is nontrivial if vr�1 corresponds to a hyperplane separating Tr from every
possible choice of Tr�2 .

Remark 8.22 (explicit description of paths carried by geodesics) In the proof of
Proposition 8.21, we used the fact that a path v0; v1; : : : ; vr in yCF has the property that,
if vi is a cone-vertex, associated to some U 2 FF , then vi˙1 are hyperplane vertices,
associated to hyperplanes Hi˙1 that cross U , so that all four combinatorial hyperplanes
H˙

i˙1
intersect U . Hence we can and shall always assume that jei˙1j D 0 when vi is a

cone-vertex; see Figure 4. This enables us to use the proof of Proposition 3.1 verbatim
in the proof of Proposition 8.23.

In view of the previous proposition, we will use the same notation for a vertex of yCF

as for some representative subcomplex. A hierarchy path is a geodesic of F that is
carried by a geodesic of yCF .

Proposition 8.23 Let F 2 F. Then any two 0–cubes x;y 2 F are joined by a
hierarchy path.

Proof Let � be a combinatorial geodesic of X joining x to y ; since F is convex,
� � F . Let T 2 FF contain x (such a T exists because every 0–cube of F is
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Figure 4: The two round regions are elements of F; the ladders represent
carriers of hyperplanes. The dotted path is carried by a geodesic in the
factored contact graph. Transitions between various 
i and ei are indicated
by bold vertices. Notice that there are numerous such paths, but we choose
paths with ei trivial whenever possible.

contained in a combinatorial hyperplane of F ) and let T 0 2 FF contain y . Let
T D T0;T1; : : : ;Tn D T 0 be a geodesic of yCF . Then we can choose the Ti in
their parallelism classes so that N1.Ti/\N1.TiC1/ ¤ ∅ for 0 � i � n� 1. Using
Proposition 8.21, for each i , let 
i ! Ti be a geodesic segment, chosen so that

1e1 � � � 
nen is a piecewise-geodesic path joining x to y , with each jei j � 1 and
jei jD0 except possibly if 
i ; 
iC1 lie in disjoint combinatorial hyperplanes representing
vertices of CF (ie non-cone-vertices). The disc diagram argument from the proof of
Proposition 3.1 can now be repeated verbatim to complete the proof, because FF

satisfies property (4) from Definition 8.1.

8.5 Factored contact graphs are quasi-trees

In this section, we will use the following criterion of Manning, which determines if a
geodesic metric space is quasi-isometric to a tree:

Proposition 8.24 (bottleneck criterion [48]) Let .Z; d/ be a geodesic metric space.
Suppose that there exists ı � 0 such that for all x;y 2Z , there exists mDm.x;y/

such that d.x;m/D d.y;m/D 1
2
d.x;y/ and every path joining x to y intersects the

closed ı–ball about m. Then .Z; d/ is .26ı; 16ı/–quasi-isometric to a tree.

Proposition 8.25 Let F 2F. Then yCF is .78; 48/–quasi-isometric to a simplicial tree.

Proof Denote by H the set of vertices of yCF corresponding to hyperplanes of F and
by V the set of cone-vertices. Let T;T 0 be complexes associated to vertices of yCF

(regarded as representatives, to be chosen, of parallelism classes of subcomplexes
in FF ). Let T D T0;T1; : : : ;Tn D T 0 be a geodesic of yCF joining T to T 0 and let
m be the midpoint of this geodesic. Suppose, moreover, that T0; : : : ;Tn carries a
hierarchy path 
 D 
0 � � � 
n such that each hyperplane intersecting 
 separates T from
T 0 ; indeed, we can choose 
 to connect a point p 2 gT .T

0/ to its gate gT 0.p/. We may
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assume that n� 4, for otherwise Proposition 8.24 is satisfied by m with ıD 3
2

. Hence,
since every vertex adjacent to an element of V is in H , there exists i so that Ti is a
combinatorial hyperplane and dyCF .Ti ;m/� 1. Let T 0i be the hyperplane such that Ti

is in the image of T 0i �f˙1g under T 0i �Œ�1; 1�ŠN .T 0i / ,!F . Since every hyperplane
crossing 
i separates T from T 0 , we have that either T 0i separates T from T 0 , or T 0i
crosses a hyperplane that separates T from T 0 . Hence, there is a hyperplane H such
that H separates T;T 0 and dyCF .H;m/ � 2. Let T D S0; : : : ;Sk D T 0 be another
path in yCF joining T to T 0 . Then there exists j such that either Sj is a combinatorial
copy of H , or H crosses Sj . Thus dyCF .m;Sj / � 3, and the claim follows from
Proposition 8.24.

9 The distance formula

The main theorem of this section is:

Theorem 9.1 (distance formula) Let X be a CAT.0/ cube complex and let F be a
factor system. Let F contain exactly one representative of each parallelism class in F.
Then there exists s0 � 0 such that for all s � s0 , there are constants K � 1, C � 0

such that, for all x;y 2 X .0/ ,

dX .x;y/�K;C

X
F2F

ffdyCF .�F .x/; �F .y//ggs:

The rest of this section is devoted to proving Theorem 9.1. Throughout, X and F are as
in the statement of the theorem. The constants ��1, ��1 are those from Definition 8.1.
For convenience, if F 2 F and x;y 2 X , we write dyCF .x;y/ WD dyCF .�F .x/; �F .y//.

9.1 Projection lemmas

Lemma 9.2 Let X be a CAT.0/ cube complex, let A� B � X be convex subcom-
plexes, and let x;y 2 X be 0–cubes. Then

dyCA.�A.x/; �A.y//� dX .gA.x/; gA.y//� dX .gB.x/; gB.y//:

Proof The first inequality follows since projection to the factored contact graph is
distance nonincreasing. The second inequality is Lemma 2.1.

Lemma 9.3 Let x;y 2 X .0/ and let T0;T1; : : : ;Tr represent a geodesic in yCX with
x 2 T0 , y 2 Tr . For 0� i � r , let xi D gTi

.x/, yi D gTi
.y/. Then

dX .x;y/� dyCX .x;y/�

rX
iD0

dTi
.xi ;yi/� 3dX .x;y/:
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Proof For 0 � i � r , let Si be the set of hyperplanes separating xi ;yi , so that
jSi j D dX .xi ;yi/D dTi

.xi ;yi/. For each i , observe that if the hyperplane U separates
x from y and crosses Ti , then U separates xi from yi . Otherwise, U would separate
xi from x (say), but the only such hyperplanes are those separating x from Ti , so this
situation would contradict the fact that U crosses Ti . Hence the set of hyperplanes
separating x from y and crossing some Ti is

Sr
iD0 Si . Each hyperplane H separating

x;y either crosses some Ti , or there exists i so that N .H / contains Ti in one of the
bounding copies of H . Hence

dX .x;y/�

ˇ̌̌̌ r[
iD0

Si

ˇ̌̌̌
C r �

rX
iD0

jSi jC r;

which establishes the first inequality.

For some i ¤ j , let U 2 Si \Sj . Then ji � j j � 2, since otherwise Ti ;U;Tj would
provide a shortcut contradicting the fact that dyC.X ;P/.T0;Tr / D r . Hence at most
three elements of fSig

r
iD0

contain U . Thus
Pr

iD0 jSi j � 3
ˇ̌Sr

iD0 Si

ˇ̌
, and the second

inequality follows.

Proposition 9.4 (large link lemma) Let T0;T1; : : : ;Tr be a geodesic in yCX between
0–cubes x2T0 and y2Tr . Let F 2F�fX g have the property that dyCF .x;y/�4�C10.
Then there exists i 2 f0; 1; : : : ; rg such that F is parallel to some F 0 2 FTi

. Moreover,
any geodesic of X contained in

S
i Ti that joins x;y passes through a subcomplex

of Ti parallel to F 0 .

Proof Recall that we can choose Ti within its parallelism class for 1 � i � r � 1

so that N1.Ti/\TiC1 ¤ ∅. We first exhibit J � 3 and i � r such that for some j

satisfying 0� j � J we have diamyCF .�F .TiCj //� � and for all i 0 satisfying i 0 < i

or i 0 > i CJ we have diamyCF .�F .Ti0//D 0.

Let V be a hyperplane separating gF .x/ from gF .y/. Then V intersects F and hence
V cannot separate x or y from their gates in F . Hence V must separate x from y ;
and thus V intersects some N1.Ti/. Either V separates gTi

.x/ from gTi
.y/, or V is

the unique hyperplane separating Ti from Ti˙1 . Let G be the set of hyperplanes V of
the former type.

Let V 2 G . Then V intersects Ti for at least one and at most three values of i . If
some other hyperplane V 0 2G separates gF .x/ from gF .y/, then V 0 separates gTj

.x/

from gTj
.y/ for at least one and at most three values of j , and for any such i; j , we

have ji � j j � 4; otherwise Ti ;V;F;V
0;Tj would be a shortcut from Ti to Tj , since

F ¤X represents a vertex in yCX . Let i; iC1; : : : ; iCJ be the indices for which TiCj
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is crossed by a hyperplane separating gF .x/ from gF .y/; equivalently, the indices
such that gTk

.F / is trivial if k < i or k > i CJ .

The graph �F

�SJ
jD0 gF .TiCj /

�
D �F

�Sr
jD0 gF .Ti/

�
has diameter at least 4�C 10,

since it contains �F .x/; �F .y/, whence diamyCF .gF .TiCj //� � for some j . Indeed,
there is at most one hyperplane separating TiCj from TiCjC1 , whence at most one
hyperplane separates their gates in F . We then have that F is parallel to a subcomplex
of TiCj by Lemma 8.19.

Let 
 �[kTk be a geodesic joining x;y and let 
iCj D gTiCj
.
 /. Then 
iCj has

a subpath � joining gTiCj
.gF .x// to gTiCj

.gF .y//. The path � is parallel to a path
in F and hence belongs to some parallel copy of F in TiC1 .

Lemma 9.5 There exists s0 � 0 such that for all x;y 2 X .0/ and any hierarchy path

0e0 � � � 
r er joining x to y and carried by a geodesic T0; : : : ;Tr of yCX , one of the
following holds for all F 2 F:

(1) there exist i � r and F 0 2 FTi
such that F is parallel to F 0 ;

(2) dyCF .x;y/ < s0 ;

(3) F D X .

Proof Let s0 D 4�C10 and let F ¤ X be an element of F with dyCF .x;y/� s0 . By
Proposition 9.4, there exists i so that F is parallel to some F 0 2 FTi

, as required.

9.2 Proof of the distance formula

We have now assembled all ingredients needed for:

Proof of Theorem 9.1 For each F 2 F, let FF consist of exactly one element from
each parallelism class in FF . We will argue by induction on �, which we recall is the
maximal number of elements in the factor system which can contain any given vertex.

Base case When �D 1, the fact that X and each combinatorial hyperplane belongs
to F ensures that X consists of a single 0–cube, so we are summing over the empty
set of projections, and we are done.

Induction hypothesis Assume �� 2. For each F 2 F�fX g, the set FF is a factor
system in F . Every 0–cube of F is contained in at most �� 1 elements of FF , since
each 0–cube of F lies in at most � elements of F, one of which is X (which is not
contained in F ). We can therefore assume, by induction on �, that for all s � s0 ,
where s0 � 2 is the constant from Lemma 9.5, there exist K0 � 1, C 0 � 0 so that for
all F 2 F�fX g and all x;y 2 X we have

dF .gF .x/; gF .y//�K 0;C 0

X
T2FF

ffdyCT .gF .x/; gF .y//ggs:
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Choosing a hierarchy path By Proposition 8.23, there exists a hierarchy path 
 D

0e0 � � � 
r er that joins x to y and is carried on a geodesic T0; : : : ;Tr in yCX from
T0 to Tr . For each i , let xi D gTi

.x/ and yi D gTi
.y/. Recall that each 
i lies in

N1.Ti/. At the cost of adding 1 to our eventual multiplicative constant K , we can
assume that each ei is trivial.

Enumeration of the nonvanishing terms Let s � s0 and let F 2 F be such that
dyCF .x;y/� s . By Lemma 9.5, either F is parallel to some F 0 2 FTi

for some i , or
F D X .

Let FfTi g
be the set of all F 2 F that are parallel to a proper subcomplex of some Ti ,

and let FfTi g
contain exactly one representative for each parallelism class of elements

of FfTi g
. Recalling that dyCF .x;y/D dyCF 0.x;y/ when F is parallel to F 0 , we getX

F2F

ffdyCF .x;y/ggs D IC IICffrggs;

where

ID
rX

iD0

ffdyCTi
.x;y/ggs;

IID
X

F2FfTi g

ffdyCF .x;y/ggs �3;0

X
i

X
F2FTi

�fTi g

ffdyCF .x;y/ggs:

The estimate of II follows since no factor is parallel to both Ti and Ti0 when ji�i 0j�3.

The upper bound By the inductive hypothesis,

IC II�K 0;C 0

rX
iD0

dTi
.gTi

.x/; gTi
.y//:

Hence, by Lemma 9.3,
dX .x;y/� r

3K0
�C 0 � IC II;

and we obtain the upper bound

dX .x;y/� 3K0.IC IIC r/C 3C 0K0

D 3K0
X

F2F�fX g

ffdyCF .x;y/ggsC 3K0dyCX .x;y/C 3C 0K0

�1;s

X
F2F�fX g

ffdyCF .x;y/ggsC 3K0ffdyCX .x;y/ggsC 3C 0K0:
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The lower bound We have that dX .x;y/ � r and we have the estimate IC II �
3K0dX .x;y/CC 0r , by the induction hypothesis and Lemma 9.3. Hence

IC IICffrggs � .3K0CC 0C 1/dX .x;y/;

and we are done.

10 Projection of parallelism classes

Let X be CAT.0/ cube complex with a factor system F, and let F be the set of
parallelism classes of elements of F. We have previously defined projections from X
to factored contact graphs of elements of F, and noted that �F W X!yCF is independent
of the choice of representative of the parallelism class ŒF �. However, care must be
taken in order to define projections of parallelism classes:

Proposition 10.1 (projections of parallelism classes are bounded or cover) Let
F 0;F 00 2 F with F 0 parallel to F 00 . Then one of the following holds for each F 2 F:

(1) dyCF .�F .F
0/; �F .F

00//� �C 2, where � is a constant of the factor system;

(2) there is a cubical isometric embedding F 0�F!X such that for some f 0;f 002F ,
the subcomplexes F 0;F 00 are the images of F 0 � ff 0g, F 0 � ff 00g, respectively,
and for some f 2 F 0 , the subcomplex F is the image of ff g �F . In particular,S

F12ŒF 0�
�F .F1/D yCF .

Moreover, whether assertion (1) or (2) holds for F 0;F 00 with respect to F is indepen-
dent of the choice of parallelism class representative of F .

Proof By Lemma 2.4, there is a convex subcomplex B and a cubical isometric
embedding F 0 �B ! X with the following properties: B is the convex hull of a
shortest geodesic Œ0; b� joining F 0 to F 00 and F 0;F 00 are respectively the images of
F 0�f0g and F 0�fbg, and in fact Œ0; b� joins gF 0.F

00/ to gF 00.F
0/ (the fact that Œ0; b�

is shortest and joins gF 0.F
00/ to gF 00.F

0/ follows from the fact that it only crosses
the hyperplanes that separate F 0 from F 00 , which is part of Lemma 2.4). Since B

is, at minimum, contained in a combinatorial hyperplane (indeed, cubical isometric
embeddings take hyperplanes to hyperplanes), it is contained in some minimal Y 2 F.
If b � � , then the first assertion holds. Hence suppose b � � . Then either �F .Y / has
diameter at most �C2, in which case the first assertion again holds, or by Lemma 8.19,
F is parallel to a subcomplex F1 of Y containing B . By minimality of Y , we have
F1 D Y . Similarly, for all f 2 F 0 , we have a parallel copy ff g�F1 of F containing
ff g �B . Item (2) follows.
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Definition 10.2 (orthogonal) Let ŒF1�; ŒF2� 2 F. If there are F 0
1
;F 00

1
2 ŒF1� such that

Proposition 10.1(2) holds for F 0
1
;F 00

1
projected to F2 , then ŒF1� and ŒF2� (and F1

and F2 ) are said to be orthogonal.

Remark 10.3 Lemma 8.19 implies that either F is parallel to a subcomplex of F 0 or
�F .F

0/ has uniformly bounded diameter. In the latter case, Proposition 10.1 implies
that either

S
F12ŒF 0�

�F .F1/ is uniformly bounded, or ŒF � and ŒF1� are orthogonal. In
fact, Lemma 8.19 says that if F is not parallel to a subcomplex of F 0 , then �F .F

00/ has
diameter bounded by �C 2 for each F 00 parallel to F 0 . On the other hand, whenever
�F .F

00/ has diameter bounded by �C 2 for each F 00 parallel to F 0 , Proposition 10.1
implies that either

S
F12ŒF 0�

�F .F1/ has diameter bounded by 3�C 6 or ŒF � and ŒF 0�
are orthogonal.

Motivated by the remark, we give the following two definitions. Definition 10.5 provides
projections between parallelism classes; as explained in Remark 10.3, Proposition 10.1
gives conditions ensuring that these projections are coarsely well-defined.

Definition 10.4 (transverse) Parallelism classes ŒF �; ŒF 0� 2 F are transverse if they
are not orthogonal and if F is not parallel to a subcomplex of F 0 , or vice versa, for
some (hence all) F 2 ŒF �, F 0 2 ŒF 0�.

Definition 10.5 (projection of parallelism classes, projection distances) Let ŒF � 2 F.
The projection to ŒF � (really to yCF , which depends only on the parallelism class) is
the map F�fŒF �g ! 2

yCF given by �ŒF �.ŒF 0�/D
S

F12ŒF 0�
�F .F1/.

For each ŒY � 2 F, define a function d�
Y
W .F�fŒY �g/2! Œ0;1� by

d�Y .ŒF �; ŒF
0�/D diamyCY

�
�ŒY �.ŒF �/[�ŒY �.ŒF

0�/
�
:

We fix, until the end of the section, any subset Ftr � F with the property that for each
distinct pair ŒF �; ŒF 0� 2 Ftr we have that ŒF � is transverse to ŒF 0�.

Observe that for each F 2 Ftr , the restriction of d�
F

to Ftr takes uniformly bounded
values. From the definition, it is obvious that d�

F
.ŒF 0�; ŒF 00�/ D d�

F
.ŒF 00�; ŒF 0�/ and

d�
F
.ŒF 0�; ŒF 00�/C d�

F
.ŒF 00�; ŒF 000�/ � d�

F
.ŒF 0�; ŒF 000�/ for all ŒF �; ŒF 0�; ŒF 00�; ŒF 000� 2 Ftr .

Moreover, the fact that the right-hand side of the distance formula (Theorem 9.1) is
finite shows that, for a suitable �, we have jfF W d�

F
.ŒF 0�; ŒF 00�/ � �gj <1 for all

ŒF 0�; ŒF 00� 2 Ftr .

Proposition 10.6 For all ŒF �¤ ŒF 0� in Ftr , we have diamyCF .�F .F
0//� �C 2.

Proof This is just Lemma 8.19 combined with the fact that F cannot be parallel to a
subcomplex of F 0 by our assumptions on Ftr .
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The next result is the analogue for cubical groups of the inequality that Behrstock
established in [3] for the mapping class group. Versions of this inequality in other
contexts have appeared in [11; 12; 61; 66]

Proposition 10.7 (Behrstock inequality) For all ŒF �; ŒF 0�; ŒF 00� 2 Ftr ,

min
˚
d�F .ŒF

0�; ŒF 00�/; d�F 0.ŒF �; ŒF
00�/
	
� 3�C 6:

Proof Let F;F 0;F 00 satisfy d�
F
.ŒF 0�; ŒF 00�/ > 3�C6. Let x 2F 0 . We claim that there

exists Y parallel to F and y 2 Y so that gF 00.x/D gF 00.y/, which will conclude the
proof.

Let 
 be a geodesic from x to gF 00.x/. By Lemma 10.8, there exists Y parallel to F

such that 
 intersects Y , say at y . Since y is on 
 , we have gF 00.x/D gF 00.y/, as
required.

Lemma 10.8 Let F 2 F and let x;y 2 X .0/ satisfy dyCF .�F .x/; �F .y// > 2� C 4.
Then any geodesic from x to y enters a parallel copy of F .

Proof Let 
 be a geodesic from x to y . By Lemma 8.17 — which implies

dyCF .�F .a/; �F .b//D dyCF 0.�F 0.a/; �F 0.b//

for all a; b 2 X whenever F;F 0 are parallel — we can assume that F was chosen
within its parallelism class so that dX .F; 
 / is minimal.

Observe that no hyperplane separates 
 from F . Indeed, suppose that H is such a hyper-
plane. Then gF .x/; gF .y/� gF .H /. By our assumption that dyCF .�F .x/; �F .y// >

2� C 4, we have diamyCF .gF .H // > 2� C 4 > � C 2, whence, by Lemma 8.19, F is
parallel to a subcomplex F 0 of the combinatorial hyperplane H� on N .H / which
is separated from F by H . For any z 2 
 , any hyperplane separating z from F 0

separates z from F , whence dX .
;F
0/ < dX .
;F /, contradicting our choice of F .

Let L be the set of hyperplanes separating x from fyg [ F and let R be the set
of hyperplanes separating y from fxg [F . If L D ∅, then either x 2 F , since no
hyperplane separates x and y from F (for otherwise, by convexity of halfspaces, that
hyperplane would separate 
 from F ). Similarly, R¤∅.

Let L 2 L be closest to y and let R 2R be closest to x . Suppose that L\RD∅.
Then there exists a 0–cube z 2 
 so that no hyperplane in L[R separates z from F .
Hence any hyperplane separating z from F separates fx;yg, and thus 
 , from F ,
which is impossible.

Thus L and R cross. Since gF .x/; gF .y/ 2 gF .L/[gF .R/, arguing as above yields,
say, diamyCF .gF .L// > � C 2, so F is parallel into L, violating our choice of F as
above.
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Observe that Propositions 10.6 and 10.7, together with the discussion preceding them,
imply the following, which we record for later convenience:

Corollary 10.9 (BBF axioms) Let F be a factor system and let F be the set of
parallelism classes in F. Let Ftr be a subset of F such that ŒF �; ŒF 0� are transverse
for all distinct ŒF �; ŒF 0� 2 Ftr . Then fd�

Y
W ŒY � 2 Ftrg satisfies Axioms (0)–(4) of [11,

Section 2.1].

11 Efficient embeddings into products of trees

We now let X be a CAT.0/ cube complex with a proper cocompact action by a group G ,
and we let F be a G–invariant factor system (recall that the existence of any factor
system ensures the existence of a G–invariant one). In this section we produce a very
particular G–equivariant quasi-isometric embedding of X into the product of finitely
many quasi-trees. We begin with the following fact, which is well-known in the study
of cubical groups:

Proposition 11.1 (embeddings in products of trees) Suppose that there exists G0�fi G

such that no hyperplane in X crosses its G0–translates. Then there exist a finite col-
lection fT1; : : : ;Tkg of simplicial trees, a G–action on

Qk
iD1 Ti , and a G–equivariant

isometric embedding X !
Qk

iD1 Ti .

Conversely, suppose that G acts properly and cocompactly on a CAT.0/ cube com-
plex X , and that there is a G–equivariant cubical isometric embedding X !

Qk
iD1 Ti

with each Ti a simplicial tree. Then there exists a finite-index subgroup G0 � G

such that for all hyperplanes H of X and all g 2G0 , the hyperplanes gH and H do
not cross.

Proof By passing to the normal core, we can assume G0 is normal. Let H1; : : : ;Hk

be a complete list of representatives of G0–orbits of hyperplanes. For each i , the cube
complex dual to the wallspace .X .0/;G0 �Hi/ is a simplicial tree Ti on which G0 acts
by isometries, and G acts on

Qk
iD1 Tk , permuting the factors, with G0 stabilizing each

factor (if h2G0 and g 2G and Hj D gHi , then hHj D hgHi D g.g�1hg/Hi D gHi

since G0 is normal). The existence of the embedding follows from [26, Corollary 1];
equivariance is easily checked.

Conversely, let X !
Qk

iD1 Ti be a G–equivariant embedding, and let G0 be the kernel
of the action of G on the factors of

Qk
iD1 X . Since X!

Qk
iD1 Ti sends hyperplanes to

hyperplanes, and sends crossing hyperplanes to crossing hyperplanes, the coloring of the
hyperplanes of

Qn
iD1 Ti by the tree factor that they cross pulls back to a G0–invariant
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coloring of the hyperplanes of X by k colors, with the property that hyperplanes of
like color do not cross. By definition, two hyperplanes in the same G0 orbit have the
same color.

An element of F�fX g is maximal if it is not properly contained in any other element.

Definition 11.2 (hereditarily flip-free) Let G act properly and cocompactly on the
cube complex X . The action is flip-free (with respect to F) if for each cubical isometric
embedding A�B! X such that A;B 2 F� fX g and each of A;B is parallel to a
maximal element of F�fX g, no g 2G has gA parallel to B . The action is hereditarily
flip-free with respect to F if for each H 2 F, the action of StabG.H / on H is flip-free
with respect to FH .

Lemma 11.3 (coloring the factor system) Let G act properly and cocompactly on X ,
let F be a G–invariant factor system, and suppose that there exists G0 �fi G such that
the action of G0 on X is hereditarily flip-free with respect to F. Then there exists
k 2N and a coloring �W F! f1; : : : ; kg such that:

(1) if F;F 0 2 F are parallel, then �.F /D �.F 0/;

(2) �.gF /D �.F / for all F and all g 2G0 ;

(3) if F is parallel to a proper subcomplex of F 0 , then �.F /¤ �.F 0/;

(4) if ŒF � and ŒF 0� are orthogonal, then �.F /¤ �.F 0/.

Hence there is a G0–invariant coloring �W F! f1; : : : ; kg such that for 1� i � k , the
set FiD�

�1.i/ is a G0–invariant collection satisfying the hypotheses of Corollary 10.9.

Proof For n� 1 and fqig
n
iD1

determined below, let fc0
1
; : : : ; c0

qn
g, fc1

1
; : : : ; c1

q1
g; : : : ,

fcn
1
; : : : ; cn

qn
g be disjoint sets of colors, and let " be an extra color.

Define the relation � on F to be the transitive closure of the union of the following
two relations: F � F 0 if F;F 0 are parallel; F � F 0 if there exists g 2 G0 such that
F D gF . Since the G–action preserves parallelism, if F �F 0 , then there exists g 2G0

with F;gF 0 parallel.

We say that F 2 F� fX g is maximal if it is not parallel to a proper subcomplex of
any other F 0 2 F� fX g. Notice that maximal elements exist. In fact, if we had a
chain F1; : : : ;FN , with N larger than the local finiteness constant � of the factor
system, so that Fi is parallel to a proper subcomplex of FiC1 , then there would
be some 0–cube in

T
i gFN

.Fi/, violating local finiteness. Let F1; : : : ;Fn 2 F be
maximal elements of F�fX g, chosen so that any other maximal F 2 F�fX g satisfies
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F � Fi for some unique i ; there are finitely many �–classes since our hypotheses
ensure that there are finitely many G–orbits in F. Let F0 � F consist of those F such
that F � Fi for some i , so that each maximal factor subcomplex is in F0 . Define
�0W F0 ! fc

0
1
; : : : ; c0

ng by �0.F / D c0
i , where i is the unique index with F � Fi .

The coloring �0 of F0 satisfies items (1)–(3) by definition (in particular, maximality
ensures that item (3) holds). Item (4) follows from the assumption that the action
of G0 is flip-free. Indeed, if ŒF � and ŒF 0� are orthogonal then, by definition, we can
choose F;F 0 within their parallelism classes so that F �F 0 ,!X isometrically. But if
�0.F /D�0.F

0/, then F is parallel to gF 0 for some g2G0 , contradicting flip-freeness
since each of F;F 0 is parallel to a maximal element, namely a translate of some Fi .

Note that since F0 is a locally finite collection and G0 acts on X cocompactly, G0
F
WD

StabG0.F / acts cocompactly on F for each F 2 F. For each F 2 F, let FF be the
induced factor system, so that

S
F FF D F. By hereditary flip-freeness of the overall

action of G0 on X , the action of G0
F

on each F is flip-free with respect to FF . Hence,
by induction, for 1� i � n, we have a coloring �0

Fi
W FFi

! fci
1
; : : : ; ci

qi
g satisfying

all four conclusions of the proposition with respect to the G0
Fi

–action.

We define �i W
S

F�Fi
FF !fc

i
1
; : : : ; ci

qi
g as follows. If F is parallel to Fi , then each

F 0 2 FF is parallel to some F 0i 2 FFi
, and if F 0 is also parallel to F 00i 2 FFi

, then
�0

Fi
.F 0i /D �

0
Fi
.F 00i /. Hence let �i.F

0/D �Fi
.F 0i /. We now extend G0–equivariantly

to obtain �i . More precisely, for each F � Fi , choose g 2G0 so that gF is parallel
to Fi , and define �i on FF so that �i.F

0/ D �i.gF 0/ for all F 0 2 FF . This is
independent of the choice of gF because of how �i was defined on the subcomplexes
parallel to Fi . Moreover, since �0

Fi
is G0

Fi
–invariant, and parallel complexes have

identical stabilizers, this is independent of the choice of g .

Let F � Fi and let F 0;F 00 2 FF . Suppose that �i.F
0/D �i.F

00/. Choose g 2G0 so
that gF is parallel to Fi . Then

�i.gF 0/D �i.gF 00/D �i.F
0
i /D �i.F

00
i /;

where F 0i ;F
00
i 2 FFi

are parallel to gF 0;gF 00 , respectively. Hence neither of F 00i nor
F 0i is parallel to a subcomplex of the other, and they are not orthogonal, by our induction
hypothesis. Hence the same is true of F 0;F 00 , so that �i correctly colors FF .

For i � 0, we extend �i to the rest of F by letting �i.H /D " when H 62
S

F�Fi
FF

(or H 62 F0 when i D 0). We finally define the coloring � on F by

�.F /D .�0.F /; �1.F /; : : : ; �n.F //:

(The total number of colors is .nC 1/
Qn

iD1.qi C 1/.)
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Let F;F 0 2 F. If the set of i for which F is contained in FH for some H � Fi

differs from the corresponding set for F 0 , then �.F /¤ �.F 0/ since there is at least
one coordinate in �.F / equal to " for which the corresponding coordinate in �.F 0/ is
not ", or vice versa. It follows from the definition of the �i that F cannot be parallel
to a proper subcomplex of F 0 , and they cannot be orthogonal, if �.F /D�.F 0/. Hence
� is the desired coloring.

We can now prove Theorem F:

Proposition 11.4 (embedding in a product of quasi-trees) Let G;X , and F be as
in Lemma 11.3. Then there is a partition F[ fŒX �g D

Fk
iD1 Fi such that each C.Fi/

is a quasi-tree, G acts by isometries on
Qk

iD1 C.Fi/, and there is a G–equivariant
quasi-isometric embedding X !

Qk
iD1 C.Fi/.

Proof Lemma 11.3 allows us to finitely and equivariantly color the elements of F so
that elements of the same color are transverse. By Corollary 10.9 and [11, Theorem A],
each color gives rise to a quasi-tree and a map from X to each quasi-tree. Comparing
Theorem 9.1 to the distance estimate [11, Theorem 4.13] shows, as in [11, Section 5.3],
that these maps give the desired quasi-isometric embedding in the product of the quasi-
trees associated to the various colors.

Remark 11.5 Proposition 11.6 shows that Proposition 11.4 does not follow from
Proposition 11.1. Any stipulation that no hyperplane crosses its G0–translates is
satisfied when, for example, hyperplane-stabilizers are separable (this uses Scott’s
criterion for separability [64]). Such separability occurs when the action of G on X is
virtually cospecial (eg when G is word-hyperbolic [1]); this is stronger than assuming
the action of G on X is virtually flip-free.

Proposition 11.6 There exists a group G acting properly and cocompactly on a
CAT.0/ cube complex X in such a way that X admits a G–equivariant quasi-isometric
embedding into the product of finitely many quasi-trees, but X does not admit a
G0–equivariant isometric embedding in a finite product of trees for any finite-index
G0 �G .

Proof We will actually find G and X such that the following three properties hold:

(1) X admits a factor system F.

(2) For every finite-index subgroup G0 �G , there exists a hyperplane H of X and
some g 2G0 such that the hyperplanes H;gH cross.

(3) The action of G00 on X is hereditarily flip-free for some G00 �fi G .

Geometry & Topology, Volume 21 (2017)



1778 Jason Behrstock, Mark F Hagen and Alessandro Sisto

Let Z be the complex from Example 8.10, whose notation we will use throughout this
proof, let G D �1Z , and let X D zZ . Property (1) is Proposition 8.11 and property (2)
is Proposition 8.12. Thus, by Proposition 11.1, X has no G–equivariant isometric
embedding in a finite product of trees. The existence of the desired quasi-isometric
embedding will follow from Proposition 11.4 once we have established property (3).

To that end, it will be convenient to compute an explicit factor system for X . We take
� � rC1 and let F be the smallest subset containing X , all combinatorial hyperplanes
of X , and gF .F

0/ whenever F;F 0 2 F and diam.gF .F
0//� � .

We first describe the combinatorial hyperplanes in X . We can and shall assume that the
paths ˛; ˇW Œ0; r �! S;T from Example 8.10 are surjective. This is for convenience
only; it reduces the number of isomorphism types of hyperplane that we need to
consider. Let X0 be the universal cover of Z0 , which decomposes as a tree of spaces
whose vertex-spaces are copies of zS � zT and whose edge-spaces are lines. Then X is
formed from X0 by attaching all lifts of the carrier of the self-crossing hyperplane W

(which is a segment of length r C 2) along a segment of length r .

X thus has compact hyperplanes, all of which are lifts of W . Each corresponds to a
cardinality-2 parallelism class of combinatorial hyperplanes. The projection of such a
combinatorial hyperplane W C onto some other hyperplane is either an isomorphism
or has image of diameter at most r , whence this projection is excluded from F by our
choice of � . The projection of any other hyperplane onto W C also has diameter at
most r and is similarly excluded. Every product subcomplex of the form W C �E

with W C a compact combinatorial hyperplane has the property that E is contained in
a 1–cube and thus is not a combinatorial hyperplane. Hence the compact hyperplanes
do not affect whether the action of G is flip-free.

The remaining combinatorial hyperplanes are of two types: there are two-ended combi-
natorial hyperplanes, which are parallel to lifts of zC , and bushy hyperplanes, which are
trees of the following type. Each is formed by beginning with a copy of zS , attaching
a path of length 2 to each vertex, attaching a copy of zT to the end of each of these
paths, etc. Then, at the midpoint of each of the length-2 paths (ie the points at which
the hyperplane intersects a lift of zC ), attach a single 1–cube (dual to a compact
hyperplane). Observe that any subcomplex parallel to a bushy hyperplane is a bushy
hyperplane, but that two-ended hyperplanes are parallel to lines properly contained in
bushy hyperplanes.

Let T;T 0 be subcomplexes parallel to two-ended hyperplanes and let B;B0 be bushy
hyperplanes. If B;B0 intersect some lift of zS � zT but do not intersect, then B and B0

are parallel, so that gB.B
0/D B . If B;B0 are distinct and intersect, then gB.B

0/ is a
single point. If B;B0 do not intersect a common vertex-space, then gB.B

0/D gB.T /
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for some two-ended hyperplane separating B from B0 . But gB.T / is either a single
point or is a parallel copy of T for any bushy B and two-ended T . Hence F consists
of X , combinatorial hyperplanes and their parallel copies. Maximal elements of F�fX g
are bushy hyperplanes or lifts of zC .

Let G00 be the unique index-2 subgroup of G (this is the kernel of the map G! Z2

sending the element represented by C to 1). Then the action of G00 on X is flip-free.
Indeed, X does not contain the product of two bushy hyperplanes, so we need only
consider the case of a product z̨ � ž in some zS � zT . But any G00–translate of ž is
either in the same product piece — and thus parallel to ˇ — or at even distance from ž

in the Bass–Serre tree, and hence is again a component of the preimage of ˇ , and
hence not parallel to z̨ . To verify hereditary flip-freeness, it suffices to note that each
element of F�fX g is a tree, and thus contains no nontrivial products.

12 Consistency and realization

In this section, we prove an analogue in the cubical context of the consistency theorem
in the mapping class group; see [7, Theorem 4.3]. (For an analogue of this theorem in
Teichmüller space with the Teichmüller metric, see [30, Section 3].) For the purposes
of this section, X is an arbitrary CAT.0/ cube complex with a factor system F. Let �
be the constant from Definition 8.1. For each F 2 F, let

BF D fS � CF .0/ W diamyCF .S/� 1g:

If U;V 2 F, and V is parallel to a proper subcomplex of U , then there is a map
�U

V
W BU ! 2

yCV .0/

defined as follows: let b 2BU be a clique in CU and let

�U
V .b/D

[
W

�V .W /;

where W varies over all combinatorial hyperplanes parallel to hyperplanes of U in
the clique b .

Let Eb 2
Q
ŒF �2FBF be a tuple, whose ŒF �–coordinate we denote by bF . The tuple Eb

is realized if there exists x 2 X such that �F .x/D bF for all ŒF � 2 F; note that by
Lemma 8.17 bF is independent of the choice of representative F 2 ŒF �. In this section
we first give a set of consistency conditions on coordinate projections which hold for
any element of x 2 X (for the analogue in the mapping class group, see [3]). We then
show that this set of necessary consistency conditions on a vector of coordinates is,
essentially, also sufficient for that vector to be realized by an element of X .
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Remark 12.1 In this section, we use the sets BF , simply because the projection of a
point to the contact graph is always a clique. In the more general context introduced
in Section 13 — specifically in Definition 13.1 — we abstract the conditions on tuples
in
Q
ŒF �2FBF provided by the next several results, in terms of tuples in

Q
S2S 2S ,

where S is some set of uniformly hyperbolic spaces, and the tuple restricted to each
coordinate is a uniformly bounded (though not necessarily diameter–1) set. In the
cubical setting, instead of doing this using S D yCF , we instead use BF because it
yields more refined statements.

Recall that the parallelism classes ŒF �; ŒF 0�2F are transverse if they are not orthogonal
and if F is not parallel to a subcomplex of F 0 , or vice versa, for some (hence all)
F 2 ŒF �, F 0 2 ŒF 0�. We begin with the consistency conditions, which take the form of
the following inequalities:

Proposition 12.2 (realized tuples are consistent) Let Eb 2
Q
ŒF �2FBF be realized by

x 2 X . There exists �0 D �0.�/ such that for all U;V 2 F, the following hold:

(1) If U and V are transverse, then

min
˚
dyCU .bU ; �U .V //; dyCV .bV ; �V .U //

	
� �0I

(2) If V is parallel to a proper subcomplex of U , then

min
˚
dyCU .bU ; �U .V //; diamyCV .bV [ �

U
V .bU //

	
� �0:

A tuple Eb (realized or otherwise) satisfying the conclusions of the above proposition is
said to be �0 –consistent. More generally, a tuple Eb satisfying inequalities (1) and (2)
from Proposition 12.2, with �0 replaced by some � � �0 , will be called �–consistent.

Proof of Proposition 12.2 First suppose that neither U nor V is parallel to a sub-
complex of the other. If dyCU .bU ; �U .V // > 2�C 4, then dU .gU .x/; gU .V // > � , so
that the set HU of hyperplanes crossing U and separating x from V has cardinality at
least � . Suppose also that dyCV .bV ; �V .U //> 2�C4, so that the set HV of hyperplanes
crossing V and separating x from U has cardinality at least � . Let W 2HV and let
W C be an associated combinatorial hyperplane not separated from x by any hyperplane
crossing V . Notice that �U .W

C/ contains �U .x/ D bU (because W separates x

from U ) and intersects �U .V /. In particular, diamyCU .�U .W
C// > �C 2 and hence,

by Lemma 8.19, U is parallel to a subcomplex U 0 of W C containing gW C.x/. We
have diamyCV .�V .U

0//� �C 2 for otherwise V would be parallel into U 0 , which is
impossible since U 0 is parallel to U . Also, �V .U

0/ contains �V .x/D bV and hence
dyCV .�V .U /; �V .U

0// > �C 2, ie Proposition 10.1(1) does not hold, so U and V are
orthogonal by Proposition 10.1.
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Let V be parallel to a proper subcomplex of U and let fWig be the set of combinatorial
hyperplanes of U containing gU .x/. Suppose that dyCU .bU ; �U .V // > �C 2. Then
for each i , we have that gV .Wi/ is a single point (since otherwise there would be
a hyperplane intersecting gV .Wi/ and hence intersecting both V and Wi ), hence
gV .Wi/D gV .x/, whence bV D �

U
V
.bU /. In either case, �0 D �C 2 suffices.

Remark 12.3 We note that Proposition 10.7 can alternatively be proven as an imme-
diate consequence of Proposition 12.2 and Lemma 8.19. The formulation here is very
close to that in the mapping class group; see [3] and [7].

Theorem 12.4 (consistency and realization) Let �0 � 1 be the constant from
Proposition 12.2. For each � � �0 , there exists � � 0 such that, if Eb 2

Q
ŒF �2FBF is

�–consistent, then there exists y 2 X such that dyCF .bF ; �F .y//� � for all ŒF � 2 F.

Proof For each ŒU � 2 F, let EU be the smallest convex subcomplex of X with the
property that y 2 EU if �U .y/ intersects the 2�–neighborhood of bU in yCU . By
Lemma 8.17, we have EU DEU 0 if ŒU �D ŒU 0�.

Moreover, we claim that �U .EU / has diameter at most 5� . Indeed, let E be the set
of all 0–cubes x such that �U .x/\N2�.bU /¤∅. Given x;y 2 E , let H1; : : : ;Hk

and V1; : : : ;V` be sequences of subcomplexes, representing geodesics in yCU , so that
x 2H1 , y 2V` , and Hk ;V1 correspond to points of bU . Hence there is a combinatorial
path from x to y and carried on

S
i Hi [

S
j Vj ; by construction, each 0–cube on

this path lies in E . Hence E is 1–coarsely connected. Now let z 2 EU � E be a
0–cube and let H be a hyperplane whose carrier contains z and which crosses a
geodesic from z to a point of E . Since EU is the convex hull of E , the hyperplane
H separates two 0–cubes of E lying in N .H /. Hence dyCU .�U .z/; bU /� 2�C 1 and
thus �U .EU /� 5� .

Suppose ŒU �; ŒV � 2 F are transverse. By �–consistency and Lemma 8.19, we have that
either V �EU or U �EV . The same is true if V is parallel to a proper subcomplex
of U , by �–consistency. Finally, if U � V isometrically embeds in X , then some
representative of ŒV � lies in EU and some representative of ŒU � lies in EV . Hence, in
all cases, at least one representative subcomplex corresponding to one of the cliques
bU or bV belongs to EU \EV , ie EU \EV ¤ ∅ for all U;V . Thus, by the Helly
property, for any finite collection ŒF1�; : : : ; ŒFn� of elements of F, we can find an x 2X
such that dyCFi

.�Fi
.x/; bFi

/� 5� for each i .

Fix any 0–cube x0 2X and let �1 be a (large) constant to be chosen later. Also, denote
by Fmax the set of all ŒF � 2 F�fX g such that
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� dyCF .�F .x0/; bF / > �1 , and
� F is not parallel to a proper subcomplex of a representative of ŒF 0� 2 F�fX g

for which dyCF 0.�F 0.x0/; bF 0/ > �1 .

Let l D dyCX .�X .x0/; bX /. We claim that Fmax has finitely many elements. Suppose
not, and let ŒF1�; : : : ; ŒFp.lC5�/C1� 2 Fmax , for some p to be determined below so
that dyCF .�Fi

.x0/; bFi
/ > �1 for 1 � i � p.l C 5�/C 1. Consider x 2 X satisfying

dyCFi
.�Fi

.x/; bFi
/� 5� for each i and such that dyCX .�X .x/; bX /� 5� . The existence

of such a point x was established above.

Thus, there exists m� l C 5� such that ŒT0�; : : : ; ŒTm� 2 F�fX g is a sequence, with
T0 a combinatorial hyperplane parallel to a hyperplane representing a vertex of �X .x0/

and Tm enjoying the same property with x replacing x0 , representing a geodesic
in yCX joining �X .x0/ to �X .x/. Suppose that we have chosen constants �1 and � so
that �1� 6��6� 5�C4�C10. Hence, for each i , we have dyCFi

.�Fi
.x0/; �Fi

.x//�

�1�5�� 4�C10. Proposition 9.4 now implies that each Fi is parallel to a subcomplex
of Tj for some j 2 f0; : : : ;mg. Hence Fi 2 Fmax \ FTj

, so that it suffices to show
that the latter is finite.

Note that for each j , the set Fmax\FTj
is the set of maximal elements H 2 FTj

with
dyCH .�H .�Tj

.x0//; bH / > �1 . This follows from the fact that gH .gTj
.x0//D gH .x0/.

Either Fmax\FTj
D fTj g, or dyCTj

.�Tj
.x0/; bTj

/� �1 and, by induction on �, there
exists p � 1 with jFmax\FTj

j � p . Hence jFmaxj � p.l C 5�/.

The finiteness of Fmax holds for any choice of x0 , but it will be convenient for what
follows to assume that x0 has been chosen so that �X .x0/ contains the clique bX .

As before, choose x 2 X so that dyCF .�F .x/; bF /� 5� for each ŒF � 2 Fmax . Let F0max
be the set of all ŒF �2Fmax with the property that for each ŒF 0�2Fmax transverse to ŒF �,
the closest parallel copy of F to x is closer in X than the closest parallel copy of F 0

to x .

Claim 1 Let ŒF1�; ŒF�1� 2 Fmax be transverse. Then there exists a unique i 2 f˙1g

such that dyCFi
.�Fi

.x0/; �Fi
.F�i//�� . Moreover, dX .Fi ;x/<dX .F�i ;x/, assuming

F˙i is the closest representative of ŒF˙i � to x .

Proof of Claim 1 Suppose first that dyCF1
.�F1

.x0/; �F1
.F�1// > � . Then, by

Proposition 12.2, we have

dyCF�1
.�F�1

.x0/; �F�1
.F1//� �;

and we are done. If dyCF1
.�F1

.x0/; �F1
.F�1//� � , then

dyCF1
.�F1

.x/; �F1
.F�1// > �:
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Proposition 12.2 implies that dyCF�1
.�F�1

.x/; �F�1
.F1//� � . But then

dyCF�1
.�F�1

.x0/; �F�1
.F1//� �1� � � � � 2> �:

To prove the “moreover” clause, notice that dyCFi
.�Fi

.x/; �Fi
.F�i//> 4�C10. Hence,

by Proposition 9.4, for any point x0 on any parallel copy of F�i there is a geodesic
from x0 to x passing through a parallel copy of Fi .

If Fmax D∅ then we can choose y D x0 . Otherwise, F0max ¤∅, and Claim 1 implies
that the elements of F0max are pairwise orthogonal; hence X contains P D

Q
ŒF �2F0max

F .
By Lemma 2.4, there is a convex subcomplex Q� X such that the convex hull of the
union of all subcomplexes parallel to P is isomorphic to P �Q. Since jP j > 1 by
our choice of �1 , there is at least one hyperplane crossing P , whence Q is not unique
in its parallelism class and hence lies in a combinatorial hyperplane U . By induction
on �, there exists yU 2 U such that dyCW .�W .yU /; bW /� �2 for some fixed �2 and
all ŒW � 2 FU . Let yQ D gQ.yU /.

By induction on �, for each ŒF � 2 F0max , we can choose F 2 ŒF � and a point yF 2 F

such that dyCH .�H .yF /; bH /� �2 for all ŒH � 2 FF and some �2 . Importantly, �2 can
be chosen to depend only on �; � and �� 1, ie �2 is independent of Fmax , and we
can thus assume that �1 > �2C 2� . By pairwise orthogonality, there exists y 2 P �Q

such that gF .y/D yF for all ŒF � 2 F0max and gQ.y/D yQ . We now choose � so that
dyCW .�W .y/; bW /� � for all ŒW � 2 F.

First, if W is parallel to a proper subcomplex of some ŒF � 2 F0max , then any � � �2

suffices.

Second, suppose that some ŒF � 2 F0max is parallel to a proper subcomplex of W .
Suppose dyCW .bW ; �W .F //� �C 2�1 . Notice that �W .y/D �W .yF / because F is
parallel to a subcomplex of W , and hence

dyCW .bW ; �W .yF //D dyCW .bW ; �W .y//� 2�C 2�1:

Hence suppose dyCW .bW ; �W .F // > �C 2�1 , so diamyCF .bF [�
W
F
.bW //� � . Since,

up to parallelism, W properly contains F and ŒF � 2 Fmax , we can conclude that if
W ¤X then we have dyCW .bW ; �W .x0//� �1 , while the same inequality also holds in
the case W DX because of our choice of x0 . Hence dyCW .�W .x0/; �W .F // > �C�1 .
The inequality

dyCW .�W .x0/; �W .F // > �C �1 � dyCW .�W .x0/; bW /

implies that a hierarchy path joining gW .x0/ to a point in W projecting to bW cannot
pass through an element of ŒF �. This fact together with Proposition 9.4 gives the
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inequality dyCF .�F .x0/; �
W
F
.bW //� 4�C10. Hence dyCF .�F .x0/; bF /� 4�C10C� ,

which contradicts F 2 Fmax , so that this case does not arise.

Third, suppose that ŒW � is transverse to some ŒF � 2 F0max . If dyCF .�F .y/; �F .W // >

� C �2 , then by consistency of Eb , Proposition 12.2, and the fact �W .y/ 2 �W .F /

(since y lies in a parallel copy of F ), we have dyCW .�W .y/; bW /� � . Hence, suppose
dyCF .�F .y/; �F .W // � � C �2 . In this case dyCF .�F .x0/; �F .W // > �1 � �2 � � ,
whence dyCW .�W .x0/; �W .F //� � .

Now, since y belongs to (a parallel copy of) F , we have dyCW .�W .y/; �W .F //D 0.
We now wish to argue that the inequality dyCW .�W .y/; bW / � �1 C � C 2C � is
impossible, thus concluding the proof in this case. In fact, if it holds, then

dyCW .�W .x0/; bW /� dyCW .�W .y/; bW /� diam.�W .F //� dyCW .�W .F /; �W .x0//

� �1:

Hence W is contained in some W 0 with ŒW 0� 2 Fmax . Notice that ŒW 0� must be
transverse to ŒF �, since F cannot be parallel into W nor vice versa, by maximality of
F and W 0 , and since, if ŒW 0� was orthogonal to ŒF �, then ŒW � would be as well.

Note dyCF .�F .y/; �F .W
0//� � , since this holds for W . Then we have the inequality

dyCW 0.�W 0.x0/; �W 0.F //� � , by an argument above. But then, by Claim 1, the closest
parallel copy of W 0 to x is closer than the closest parallel copy of F , in contradiction
with ŒF � 2 F0max .

The only case left is when W is orthogonal to all ŒF � 2 F0max , which implies that W is,
up to parallelism, contained in Q. In this case, �W .y/D �W .gQ.yQ//D �W .yQ/,
whence we are done by the choice of yQ .

Remark 12.5 Let � � �0 and let Eb be a �–consistent tuple. Theorem 12.4 yields
a constant � and a 0–cube x 2 X .0/ such that dyCF .x; bF / � � for all F 2 F. By
Theorem 9.1, any other 0–cube y with this property is at a uniformly bounded distance —
depending on � and � — from x . The definition of a factor system implies that X is
uniformly locally finite, so the number of such 0–cubes y is bounded by a constant
depending only on �; � , and the growth function of X .0/ .

Part III Hierarchically hyperbolic spaces

13 Quasi-boxes in hierarchically hyperbolic spaces

In this section, we work in a level of generality which includes both mapping class
groups and each CAT.0/ cube complex X with a factor system F.
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Definition 13.1 (hierarchically hyperbolic space) The metric space .X ; dX / is a
hierarchically hyperbolic space if there exists ı � 0, an index set S, and a set
fyCW jW 2Sg of ı–hyperbolic spaces, such that the following conditions are satisfied:

(1) Projections There is a set f�W W X ! 2
yCW jW 2Sg of projections sending

points in X to sets of diameter bounded by some � � 0 in the various yCW 2S.

(2) Nesting S is equipped with a partial order v, and either SD∅ or S contains
a unique v–maximal element; when V vW , we say V is nested in W . We
require that W vW for all W 2S. For each W 2S, we denote by SW the
set of V 2S such that V vW . Moreover, for all V;W 2S with V properly
nested into W there is a specified subset �V

W
� yCW with diamyCW .�

V
W
/ � � .

There is also a projection �W
V
W yCW !2

yCV . (The similarity in notation is justified
by viewing �V

W
as a coarsely constant map yCV ! 2

yCW .)

(3) Orthogonality S has a symmetric and antireflexive relation called orthogo-
nality: we write V?W when V;W are orthogonal. Also, whenever V vW

and W?U , we require that V?U . Finally, we require that for each T 2S and
each U 2ST for which fV 2ST j V?U g ¤∅, there exists W 2ST �fT g

such that whenever V?U and V v T , we have V v W . Finally, if V?W ,
then V;W are not v–comparable.

(4) Transversality and consistency If V;W 2S are not orthogonal and neither
is nested in the other, then we say V;W are transverse, denoted V t W . There
exists �0 � 0 such that if V t W , then there are sets �V

W
� yCW and �W

V
� yCV

each of diameter at most � and satisfying

min
˚
dyCW .�W .x/; �

V
W /; dyCV .�V .x/; �

W
V /
	
� �0

for all x 2 X ; alternatively, in the case V vW , then for all x 2 X we have

min
˚
dyCW .�W .x/; �

V
W /; diamyCV .�V .x/[ �

W
V .�W .x///

	
� �0:

Suppose that either U Ĺ V or U t V , and either U Ĺ W or U t W . Then if
V t W , we have

min
˚
dyCW .�

U
W ; �

V
W /; dyCV .�

U
V ; �

W
V /
	
� �0

and if V Ĺ W , we have

min
˚
dyCW .�

U
W ; �

V
W /; diamyCV .�

U
V [ �

W
V .�U

W //
	
� �0:

Finally, if V vU or U?V , then dyCW .�
U
W
; �V

W
/��0 whenever W 2S�fU;V g

satisfies either V vW or V t W and either U vW or U t W .
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(5) Finite complexity There exists n� 0, the complexity of X (with respect to S),
such that any sequence .Ui/ with Ui properly nested into UiC1 has length at
most n.

(6) Distance formula There exists s0 � � such that for all s � s0 there exist
constants K;C such that for all x;x0 2 X ,

dX .x;x
0/�.K ;C /

X
W 2S

ffdyCW .�W .x/; �W .x
0//ggs:

We often write �X ;s.x;x0/ to denote the right-hand side of item (6); more
generally, given W 2S, we denote by �W ;s.x;x

0/ the corresponding sum taken
over SW .

(7) Large links There exists � � 1 such that the following holds. Let W 2 S

and let x;x0 2 X . Let N D �dyCW .�W .x/; �W .x
0//C �. Then there exists

fTigiD1;:::;bN c �SW �fW g such that for all T 2SW �fW g, either T 2STi

for some i , or dyCT .�T .x/; �T .x
0// < s0 . Also, dyCW .�W .x/; �

Ti

W
/ � N for

each i .

(8) Bounded geodesic image For all W 2S, all V 2SW �fW g, and all geodesics

 of yCW , either diamyCV .�

W
V
.
 //�B or 
 \NE.�

V
W
/¤∅ for some uniform

B;E .

(9) Realization For each � there exist �e; �u such that the following holds. Let
Eb 2

Q
W 2S 2

yCW have each coordinate correspond to a subset of yCW of diameter
at most � ; for each W , let bW denote the yCW –coordinate of Eb . Suppose that
whenever V t W we have

min
˚
dyCW .bW ; �

V
W /; dyCV .bV ; �

W
V /
	
� �

and whenever V vW we have

min
˚
dyCW .bW ; �

V
W /; diamyCV .bV [ �

W
V .bW //

	
� �:

Then the set of all x 2 X such that dyCW .bW ; �W .x//� �e for all yCW 2S is
nonempty and has diameter at most �u . (A tuple Eb satisfying the inequalities
above is called �–consistent.)

(10) Hierarchy paths There exists D � 0 such that any pair of points in X can be
joined by a .D;D/–quasi-geodesic 
 with the property that, for each W 2S,
the projection �W .
 / is at Hausdorff distance at most D from any geodesic
connecting �W .x/ to �W .y/. We call such quasi-geodesics hierarchy paths.

We say that the metric spaces fXig are uniformly hierarchically hyperbolic if each Xi

satisfies the axioms above and all constants can be chosen uniformly.
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Observe that a space X is hierarchically hyperbolic with respect to SD ∅, ie hier-
archically hyperbolic of complexity 0, if and only if X is bounded. Similarly, X is
hierarchically hyperbolic of complexity 1, with respect to SD fX g, if and only if X
is hyperbolic.

Remark 13.2 (cube complexes with factor systems are hierarchically hyperbolic
spaces) In the case where X is a CAT.0/ cube complex with a factor system, we
take S to be a subset of the factor system containing exactly one element from each
parallelism class. We take fyCW jW 2Sg to be the set of factored contact graphs of
elements of S. All of the properties required by Definition 13.1 are satisfied: given
U;V 2S, we have U v V if and only if U is parallel into V ; orthogonality is defined
as in Section 10. The last condition on orthogonality is satisfied since each element of
a factor system is either unique in its parallelism class or is contained in a hyperplane.
The first two inequalities in item (4) follow from Proposition 10.7; the second two
follow from the first two since each �U

V
is the image of the convex subcomplex U 2S

under the projection �V . Finiteness of complexity follows from the definition of a
factor system (specifically, uniform local finiteness of the family of factors). Item (6)
is provided by Theorem 9.1, item (7) by Proposition 9.4, item (8) is Proposition 8.20,
item (9) is Theorem 12.4, and item (10) is Proposition 8.23. In order to ensure that
nesting and orthogonality are mutually exclusive, we require that elements of the factor
system S are not single points.

Remark 13.3 The bounded geodesic image constant E from Definition 13.1 can be
taken to be 1 for cube complexes with factor systems, as well as for the mapping class
group. However, we allow an arbitrary (fixed) constant in the general definition for
greater flexibility.

Remark 13.4 In the case of a factor system, the constant in item (1) of Definition 13.1
is 1, since points of X project to cliques in each factored contact graph. The constant
in item (2) is � C 2, where � is the constant from Definition 8.1. For simplicity, in
Definition 13.1, we use a single constant to fulfill both of these roles.

13.1 Product regions and standard boxes

Let X be a hierarchically hyperbolic space and let U 2S. With �0 as in Definition 13.1,
we say that a tuple Eav 2

Q
W vU 2

yCW or Ea? 2
Q

W ?U 2
yCW is �0–consistent if the

inequalities from item (4) are satisfied for each pair of coordinates aW and aV in the
tuple with the relevant �W .x/ term replaced by aW (and similarly for V ).

Let Eav and Ea? be �0–consistent. Let Ea 2
Q
yCW 2S 2

yCW be the tuple with aW D �
U
W

for each W t U or U v W , and such that aW otherwise agrees with the relevant
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coordinate of Eav or Ea? , depending on whether W vU or W?U . We claim that Ea is
�0–consistent. Indeed, all inequalities involving some W t U or U vW are satisfied
because of the last three inequalities in Definition 13.1(4). Otherwise, if W v U

or W?U , then, if V v W , we have that V;W are either both nested into or both
orthogonal to U , and in both cases the consistency inequality holds by assumption.

Item (9) of Definition 13.1 (realization) combines with the above discussion to yield a
natural coarsely defined map �U W EU �FU ! X , where EU and FU are the sets of
consistent elements of

Q
W ?U 2

yCW and
Q

W vU 2
yCW , respectively.

Remark 13.5 When X is a cube complex with a factor system S, the space FU can
be taken to be the subcomplex U 2S, we can take EU to be the complex provided
by Lemma 2.4, and �U to be the inclusion, which is a cubical isometric embedding.

We will denote PU D �U .EU �FU /. In this context we define a gate, gPU
W X !PU ,

in the following way. Given x 2X , we let gPU
.x/ be a point that coarsely realizes the

coordinates aW D �W .x/ for W nested into or orthogonal to U and �W .x/D �
U
W

for W t U or U vW .

By Definition 13.1(6) (distance formula), for a fixed U the subspaces �U .EU �fbvg/

of X are pairwise uniformly quasi-isometric, and similarly for FU . Abusing notation
slightly, we sometimes regard EU as a metric space by identifying it with some
�U .EU � fbvg/, and similarly for FU . Moreover, EU is a hierarchically hyperbolic
space, with respect to fV 2S W V?U g[fW g, where W is some nonmaximal element
of S into which each element orthogonal to U is nested; and, similarly, FU is a
hierarchically hyperbolic space with respect to SU . It is straightforward to check
that fEU gU2S are uniformly hierarchically hyperbolic with respect to the index set
described above, with constants depending only on the constants for X .

Remark 13.6 (how to induct on complexity) Observe that if U is not v–maximal,
then any v–chain in SU is strictly contained in a v–chain of S, so that the complexity
of FU is strictly less than that of X . Moreover, by definition, there exists W 2 S,
not v–maximal, such that each V with V?U satisfies V v W . Hence EU has
complexity strictly less than that of X . We will make use of these observations when
inducting on complexity in the proof of Theorem 13.11.

A standard 1–box is a hierarchy path I ! FU , where U 2S. We then inductively
define a standard n–box to be a map of the form �W .B � I �Rn�1 �R/! X , with
�.b; t/ D �U .�1.b/; 
 .t//, where �1W B ! EU is a standard box and 
 W I ! FU is
a hierarchy path. It is straightforward to show inductively that a standard box is a
quasi-isometric embedding.
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13.2 Results

The goal of this section is to establish the following three theorems:

Theorem 13.7 Let X be a hierarchically hyperbolic space. Then for every n 2N and
every K;C;R0; �0 the following holds. There exists R1 such that for any ball B �Rn

of radius at least R1 and f W B ! X a .K;C /–quasi-Lipschitz map, there is a ball
B0 � B of radius R0 � R0 such that f .B0/ lies inside the �0R0–neighborhood of a
standard box.

Remark In Theorem 13.7, we do not require B;B0 to be centered at the same point
in Rn .

Theorem 13.8 Let X be a hierarchically hyperbolic space. Then for every simply
connected nilpotent Lie group N , with a left-invariant Riemannian metric, and every
K;C , there exists R with the following property. For every .K;C /–quasi-Lipschitz
map f W B! X from a ball in N into X and for every h 2N we have

diam.f .B \ hŒN ;N �//�R:

In particular, any finitely generated nilpotent group which quasi-isometrically embeds
into X is virtually abelian.

Theorem 13.9 Let X be a hierarchically hyperbolic space with respect to a set S.
If there exists a quasi-isometric embedding f W Rn ! X then n is bounded by the
maximal cardinality of a set of pairwise orthogonal elements of S, and in particular by
the complexity of X .

Notation 13.10 Let ! be a nonprincipal ultrafilter, which will be arbitrary, but fixed
for the rest of the paper. For a sequence of spaces .Xm/, we denote its ultralimit
lim! Xm by X ; similarly, for sequences of maps, lim! fm D f , etc. For scaling
constants, we will have sequences of positive real numbers .rm/; when comparing
two such sequences we write .rm/ < .r

0
m/ if rm < r 0m for !–ae m. Also, we write

.rm/� .r 0m/ if lim! r 0m=rm D1.

Each of the above theorems follows from:

Theorem 13.11 Let fXmg be uniformly hierarchically hyperbolic spaces and let N
be a simply connected nilpotent Lie group endowed with a left-invariant Riemannian
metric. Let .fmW Bm! Xm/ be a sequence of quasi-Lipschitz maps with uniformly
bounded constants, where Bm �N is a ball of radius r1

m . Then:
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(1) For every ultralimit X of .Xm/ and corresponding ultralimit map f W B !X ,
the map f is constant along ultralimits of cosets of ŒN ;N �.

(2) Suppose that N is abelian and let .r0
m/ satisfy .r0

m/� .r1
m/. Then there exist

sequences .pm/ and .rm/ with .r0
m/� .rm/ � .r

1
m/ and B.pm; rm/ � Bm so

that the following holds. Let X be the ultralimit of .Xm/ with scaling factor
.rm/ and observation point .f .pm// and let B be the ultralimit of the sequence
B.pm; rm/ with observation point .pm/ and scaling factors .rm/. Then there
exists an ultralimit F of standard boxes such that the ultralimit map f W B !X
satisfies f .B/� F .

We first deduce the other theorems from Theorem 13.11.

Proof of Theorem 13.7 Fix n;K;C; �0;R0 > 0. If the statement was false then there
would exist a sequence of maps fmW Bm! X where

� each Bm is a ball of radius r1
m about 02Rn , each fm is .K;C /–quasi-Lipschitz

and r1
m!1,

� no ball B0 � Bm of radius R0 � R0 is such that fm.B
0/ is contained in the

�0R0–neighborhood of a standard box.

In the notation of Theorem 13.11(2), if .pm/ is the observation point of B , then it is
readily checked that, !–ae, we have fm.B.pm; rm//�N�0rm

.Fm/, where r D .rm/,
F D .Fm/. By the proof of Theorem 13.11(2), we have that dRn.pm; 0/ �

1
2
r1
m .

Letting sm Dmin
˚
rm;

1
2
r1
m

	
, and recalling that lim! r1

m D lim! rm DC1, we have
sm �R0 !–ae; thus for sufficiently large m, taking B0 D B.pm; sm/ contradicts the
second item above.

Proof of Theorem 13.8 This follows directly from Theorem 13.11(1). The statement
about nilpotent groups follows from the well-known fact that every finitely generated
nilpotent group is virtually a lattice in a simply connected nilpotent Lie group [47].

Proof of Theorem 13.9 Using Theorem 13.11(2), we see that some rescaled ultralimit
f of f maps an asymptotic cone of Rn , which is itself a copy of Rn , into a rescaled
ultralimit of standard boxes, whence the claim follows.

13.3 Proof of Theorem 13.11

We now complete the proofs of Theorems 13.7, 13.8, and 13.9 by proving Theorem 13.11.
Throughout, X is a hierarchically hyperbolic space; below we use the notation from
Definition 13.1.
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Fix W 2S and let 
 W I!FW be a hierarchy path: we now define the “projection” from
X to 
 . Roughly speaking, we map x 2 X to any point in 
 that minimizes the yCW –
distance from x . Let ˇ D �W .
 .I// and let cˇW yCW ! ˇ be closest-point projection.
Define a map q
 W X ! 
 as follows: for each z 2 ˇ , let t.z/ be an arbitrary point
of 
 such that �W .t.z//D z , and then, for each x 2 X , let q
 .x/D t.cˇ.�W .x///.

Let PW denote the image in X of the restriction of �W to EW � .im 
 /.

Lemmas 13.12 and 13.13 accomplish in the hierarchically hyperbolic setting an analogue
of a result in the mapping class group proven in [8, Theorems 3.4 and 3.5]; note that in
[8] the results are formulated in the asymptotic cone, rather than in the original space.

Lemma 13.12 Let .X ; d/ be a hierarchically hyperbolic space. There exists a constant
` � 1 depending only on the constants from Definition 13.1 such that the following
holds. Suppose that 
 W I ! FW is a hierarchy path connecting x to y and let
M D supU2SW �fW g

�U;s0
.x;y/. Let z 2 X and let RD dX .z;PW /. Then

diamX .q
 .B.z;R=`///� `M C `:

Proof For a suitable constant `, we will prove the following: given v;w 2 X , if
d.q
 .v/; q
 .w// > `M C `, then any hierarchy path ˛ from v to w intersects the
`M –neighborhood of PW ; then the lemma will follow by increasing `.

First, fix a hierarchy path ˛ from v to w . For ` large enough, the ı–hyperbolicity of
yCW and the fact that ˛ is a hierarchy path guarantee the existence of points t1; t; t2 ,
appearing in this order along ˛ , such that:

(1) dyCW .t; 
 /� 2ıC 2D ,

(2) dyCW .t; cˇ.�W .v///; dyCW .t; cˇ.�W .w///� 100ıC 100D ,

(3) dyCW .t; ti/ > 10�0 for i 2 f1; 2g.

Using Definition 13.1(9) (realization) we pick any t 0 2 PW whose yCU –coordinate is
�–close to that of cˇ.t/ whenever U vW and whose yCU –coordinate is �–close to
that of t whenever U?W .

By choice of t 0 and taking the threshold in the distance formula larger than � we
have that any term in the distance formula contributing to dX .t; t

0/ comes from some
U 2S which is either nested in W or transverse to it. We will first argue that the latter
terms are uniformly bounded. This is because if U t W contributes to the distance
formula with any threshold � �0 C � , we have dyCU .�

W
U
; �U .t// > �0 and hence

dyCW .�
U
W
; �W .t// � �0 by the first consistency inequality (see Definition 13.1(4)).
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yCW
�W .v/ �W .w/

�W .t1/ �W .t/
�W .t2/

ˇ D �W .
 / cˇ.�W .v// cˇ.t/� �W .t
0/ cˇ.�W .w//

Figure 5: Sketch of Lemma 13.12

But then we also have dyCW .�
U
W
; �W .ti// > �0 and hence again by the first con-

sistency condition we have dyCU .�
W
U
; �U .ti// � �0 . However, since �W ı ˛ is an

unparametrized .D;D/–quasi-geodesic and t lies between t1 and t2 , there is a bound
on dyCU .�

W
U
; �U .t// in terms of �0 , D , ı only; this is the uniform bound we wanted.

From now on, we assume that the thresholds used in the distance formula exceed this
bound. We now know that �W ;s.t; t

0/ coarsely bounds dX .t; t
0/ for any sufficiently

large threshold s .

By Definition 13.1(7) (large link lemma), any term that contributes to �W ;s0
.t; t 0/ is

either W or an element of STi
, for at most �.2ıC2DC1/ elements Ti 2SW �fW g,

each within distance �.2ıC 2DC 1/ from �W .t/, where �� 1 is a uniform constant.

By Definition 13.1(8) (bounded geodesic image), applied to geodesics joining �W .v/ to
�W .x/ and from �W .w/ to �W .y/ (or vice versa), we have dyCF .v;x/; dyCF .w;y/�B

for any F 2STi
. Since �F .t/ is D–close to a geodesic from �F .v/ to �F .w/ for

F 2STi
and similarly for �F .t

0/ with respect to �F .v/ and �F .w/, we thus haveX
F2STi

ffdyCF .t; t
0/ggs0C2DC2B �R

X
F2STi

ffdyCF .x;y/ggs0
;

where RD .s0C 2DC 2B/=s0 . Hence

�W ;s0C2DC2B.t; t
0/� �.2ıC 2DC 1/

C�.2ıC 2DC 1/R max
i

� X
F2STi

ffdyCF .x;y/ggs0

�
� `0M C `0:

We hence get dX .t; t 0/� `M , as required.

Lemma 13.13 Let fXmg be uniformly hierarchically hyperbolic spaces, with respect
to fSmg, and let X be an ultralimit of .Xm/. Also, let x , y be distinct points of X .
Then there exists an ultralimit FU of the sequence .FUm

/, an ultralimit 
 of hierarchy
paths 
m , contained in FU and connecting distinct points x0;y 0 , and a Lipschitz map
q
 W X ! 
 such that
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(1) q
.x/D x0 , q
.y/D y 0 ;

(2) q
 restricted to PU is the projection on the first factor, where PU ŠEU �


is an ultralimit of .PUm
/;

(3) q
 is locally constant outside PU .

Proof We first claim that there exist Um 2Sm such that

(1) lim!.1=sm/�Um;s0
.xm;ym/ > 0,

(2) for any U 0m 2SUm
�fUmg, we have lim!.1=sm/�U 0m;s0

.xm;ym/D 0.

In fact, since x ¤ y , there exists some .yCUm/ satisfying the first property, by the
distance formula and the existence of a v–maximal element. Also, if .yCUm/ satisfies
the first property but not the second one, then by definition we have a sequence .yCVm/

satisfying the first property and so that each Vm is !–ae properly nested into Um . By
Definition 13.1(5), in finitely many steps we find .Um/ with the desired property.

Now let 
m be a hierarchy path in FUm
connecting x0m D gPUm

.xm/ to y0m D

gPUm
.ym/. We can define q
 to be the ultralimit of the maps q
m

as in Lemma 13.12,
and all properties are easily verified.

Proof of Theorem 13.11 The main task is to prove Theorem 13.11(2). Along the way
we will point out how to adapt the first part of the argument to obtain Theorem 13.11(1).

We will prove the proposition by induction on complexity, the base case being that
of complexity 0, where the distance formula implies that every ultralimit of .Xm/ is
a point.

Consider the ultralimit X 1 of .Xm/ with scaling factor .r1
m/ and an ultralimit map

f 1W B1!X 1 . (For Theorem 13.11(1), we don’t restrict the choice of scaling factors
used in forming X 1 .)

If f 1.B1/ is a single point, then the conclusion is immediate. Hence, consider x¤ y

in f 1.B1/. Let 
 , U , x0;y 0 and q
 W X 1!
 be as in Lemma 13.13. In the situation
of Theorem 13.11(1), towards a contradiction, we pick x ¤ y in the same ultralimit
of cosets of ŒN ;N �, which we can do if N is not abelian. It follows by Pansu’s
differentiability theorem [57, Theorem 2], which applies because the asymptotic cones
of N are Carnot groups [56], that every Lipschitz map from B1 to R is constant along
cosets of ŒN ;N �; this contradicts the properties of q
 established in Lemma 13.13
when N is not abelian. Theorem 13.11(1) is hence proven, and from now on we focus
exclusively on Theorem 13.11(2). By Rademacher’s theorem there exists .pm/ 2 .B

1
m/

such that g
 D q
 ı f
1 is differentiable at p and the differential is nonzero and

dRn.pm; 0/ �
1
2
r1
m . In particular B

�
pm;

1
2
r1
m

�
� Bm . Abusing notation slightly, we

are regarding 
 as an interval in R.
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Claim 1 For every � > 0 there exists l� > 0 such that for any l � l� we have that
f 1.B.p; l// is contained in the �l–neighborhood of PU .

Proof of Claim 1 We identify a neighborhood of p with a neighborhood of 0 in Rn .

We know that there exists a linear function A such that for any v1 and v2 in this
neighborhood we have

jg
.v1/�g
.v2/j D jA.v2� v1/jC o.maxfkv1k; kv2kg/:

Moreover, consider v of norm 1 and set Av D � > 0. Given any v1 with

d.f 1.v1/;EU �
/� �kv1k;

then, since f 1 is K–Lipschitz and q
 is constant outside EU �
 , we have g
.v1/D

g
.v2/, where v2 D v1C .�kv1k=K/v . Hence

0D jg
.v1/�g
.v2/j D
��kv1k

K
C o..1C �=K/kv1k/;

which cannot happen for kv1k small enough depending on � .

Claim 2 There exists .r2
m/ with .r0

m/ � .r
2
m/ � .r1

m/ such that for all .rm/ with
.r2

m/� .rm/� .r1
m/ we have f .B/�EU 0 �


0 , where B is the ultralimit of .Bm/

with observation point .pm/ and scaling factor .rm/.

Claim 2 follows from Claim 1 by an application of the principle from nonstandard
analysis called underspill; nonetheless, we provide a proof in the interest of self-
containment.

Proof of Claim 2 In view of Claim 1, there exists a function �W N!RC such that
�.k/! 0 as k!1 and such that for every k the set Ak �N , defined by

Ak D
˚
m j fm.B.pm; r

1
m=2

k//�N�.k/r1
m=2k .EUm

� 
m/
	
;

satisfies !.Ak/D 1. Let k.m/Dmax
˚
k �m Wm 2

T
i�k Ai

	
, which by the above is

well-defined !–ae and satisfies lim! k.m/D1. By definition of k.m/, for !–ae m

we have fm.B.pm; r
1
m=2

k//�N�.k/r1
m=2k .EUm

� 
m/ for every k � k.m/.

Let .r2
m/Dmaxf.r0

m/; .r
1
m=2

k.m//g. We claim that if .r2
m/� .rm/� .r1

m/, then the
result holds for the scaling factor .rm/. To do this, we show for each j 2 N that
!.A0j /D 1, where

A0j D fm j fm.B.pm; j rm//�Nrm=j .EUm
� 
m/g:

Geometry & Topology, Volume 21 (2017)



Hierarchically hyperbolic spaces, I 1795

Fix j . For a given m, let k 0.m/ satisfy r1
m=2

k0.m/C1< j rm� r1
m=2

k0.m/ . For !–ae m

we have k 0.m/� k.m/ since .rm/� .r1
m=2

k.m//. In particular, for !–ae m we have

fm.B.pm; j rm//� fm.B.pm; r
1
m=2

k0.m///

�N�.k0.m//r1
m=2k0.m/.EUm

� 
m/

�N2�.k0.m//jrm
.EUm

� 
m/:

Since .rm/ � .r1
m/, we have lim! k 0.m/ D 1, and hence 2�.k 0.m// � 1=j 2 for

!–ae m; the claim follows.

By induction on complexity, enabled by Remark 13.6, we know that for some .rm/�

.r2
m/ the ultralimit g of gmD gEUm

ıfm maps B into some ultralimit F 0 of standard
boxes, whence it is readily deduced that f .B/ is contained in the ultralimit F 0�
 0 of
standard boxes. Note that, provided rm �

1
2
r1
m , the ultralimit B contains the required

ultralimit of .B.pm; rm//.

14 Acylindricity

Definition 14.1 (automorphism of a hierarchically hyperbolic space) Let X be a
hierarchically hyperbolic space, with respect to S. An automorphism g of .X ;S/
is a bijection gW S!S and a collection fgU W yCU ! yC.gU / W U 2Sg of isometries
such that for all U;V 2S we have gV .�

U
V
/D �

gU
gV

and such that g preserves ?, v
and t.

By items (6) and (9) of Definition 13.1, every automorphism g of S induces a quasi-
isometry �gW X ! X with uniformly bounded constants. Such a quasi-isometry �g

can be described as follows. For x 2 X and U 2S, �gU .�g.x// coarsely coincides
with gU .�U .x//. When it will not introduce confusion, we will use the notation “g”
for the quasi-isometry �g as well as for the element g 2 Aut.S/. In the remainder of
this section, we are interested in the situation where the action of G on X by uniform
quasi-isometries is proper and cocompact.

Let S DS.X ;S/ be the unique v–maximal element and consider G �Aut.S/. Since
each g 2 G preserves the nesting relation, G fixes S , and hence gS is an isometry
of yCS for each g 2 G . Note that this action coarsely preserves the union of the sets
in �S .X /.

Remark 14.2 When X is a cube complex with a factor system, S D X and yCS is
the factored contact graph yCX . The union of sets in the image of �X W X ! 2

yCX .0/

is
coarsely equal to yCX , by the definition of �X .

Geometry & Topology, Volume 21 (2017)



1796 Jason Behrstock, Mark F Hagen and Alessandro Sisto

Theorem 14.3 Let the group G � Aut.S/ act properly and cocompactly on the
hierarchically hyperbolic space X and let S be the unique v–maximal element of S.
Then for all � > 0, there exist constants R;N such that there are at most N elements
g 2 G such that dyCS .�S .x/; �S .gx// < � and dyCS .�S .y/; �S .gy// < � whenever
x;y 2 X satisfy dyCS .�S .x/; �S .y//�R.

Before proving Theorem 14.3, we note two corollaries. Recall that the action of the
group G on the metric space .M; d/ is acylindrical if for all � > 0 there exist constants
R;N such that there are at most N elements g 2 G such that d.x;gx/ < � and
d.y;gy/ < � whenever x;y 2M satisfy d.x;y/ �R. (Note that if M is bounded,
then any action on M is automatically acylindrical. In particular, if X is a cube complex
decomposing as the product of unbounded subcomplexes and G acts geometrically
on X , then the action of G on CX is trivially acylindrical.)

Corollary 14.4 (acylindrical hyperbolicity) Let G � Aut.S/ act properly and co-
compactly on the hierarchically hyperbolic space X . Then G acts acylindrically on a
hyperbolic space quasi-isometric to UD

S
x2X �S .x/. In particular, if U is unbounded

and G is not virtually cyclic, then G is acylindrically hyperbolic.

Proof Let S be as in Theorem 14.3. Let T0 � yCS be the union of all sets of the form
�S .x/ with x 2 X , together with all of their G–orbits, so that T0 is G–invariant and
coarsely equal to the union of the elements of �S .X /. Definition 13.1(10) thus ensures
that T0 is quasiconvex in the hyperbolic space yCS , so that we can add geodesics of
yCS to T0 to form a G–hyperbolic space T that is G–equivariantly quasi-isometric to
the union of the elements of �S .X /. The action of G on T is thus acylindrical by
Theorem 14.3.

In the cubical case, acylindricity can be witnessed by the contact graph instead of the
factored contact graph.

Corollary 14.5 Let G act properly and cocompactly on the CAT.0/ cube complex X ,
and suppose that X contains a G–invariant factor system. Then G acts acylindrically
on yCX , and hence on CX .

Proof For any G–invariant factor system F, the action of G on yCX is acylindrical by
Theorem 14.3 and Remarks 13.2 and 14.2. Let F be a factor system in X and let � be the
constant for F from Definition 8.1. Let F0 be the smallest set of convex subcomplexes
of X that contains X and each subcomplex parallel to a combinatorial hyperplane,
and has the property that gF .F

0/ 2 F0 whenever F;F 0 2 F0 and diam.gF .F
0//� � .
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By definition, F0 � F, so F0 has bounded multiplicity and thus F0 is a factor system.
The associated factored contact graph of X , on which G acts acylindrically, is G–
equivariantly quasi-isometric to CX , and the result follows.

Proof of Theorem 14.3 Fix � > 0, and for convenience assume that it is 100 times
larger than all the constants in Definition 13.1. Let R0 � 1000� and consider x;y 2X
such that RD dyCS .�S .x/; �S .y//�R0 , and let H be the set of all g 2G such that
dyCS .�S .gx/; �S .x// < � and dyCS .�S .gy/; �S .y// < � .

We will consider, roughly speaking, the set of all U 2S such that x;y project far away
in U , the corresponding �U

S
is near the middle of a geodesic from �S .x/ to �S .y/,

and U is v–maximal with these properties. We do so because these U correspond to
product regions “in the middle” between x and y . Formally, let L1 be the set of all
U 2S�fSg with the following properties:

(1) dyCU .�U .x/; �U .y// > � ;

(2)
ˇ̌
dyCS .�S .x/; �

U
S
/� 1

2
R
ˇ̌
� 10� ;

(3) U is not properly nested into any U 0 2S�fSg with dyCU 0.�U 0.x/; �U 0.y// > � .

When applying an element g that moves x;y a bounded amount, any U 2 L1 gets
moved to some gU with similar properties but slightly worse constants. To capture
this, we let L2 be the set of all U 2S�fSg such that

(1) dyCU .�U .x/; �U .y// >
1
2
� ;

(2)
ˇ̌
dyCS .�S .x/; �

U
S
/� 1

2
R
ˇ̌
� 11� ;

(3) U is not properly nested into any U 02S�fSg with dyCU 0.�U 0.x/; �U 0.y//>2� .

Bounding jL2j Consider a hierarchy path 
 from x to y . Then there are x0;y0 on

 such that

� dyCS .�S .x
0/; �S .y

0//� 23� , and

� whenever U 2S�fSg is such that

dyCU .�U .x/; �U .y// >
1
2
� and

ˇ̌
dyCS .�S .x/; �

U
S /�

1
2
R
ˇ̌
� 11�;

then dyCU .�U .x
0/; �U .y

0// > s0 (recall that s0 is the minimal threshold of the
distance formula).

The existence of x0;y0 follows since we can choose x0 and y0 projecting close to points
on a yCS–geodesic from �S .x/ to �S .y/ that lie on opposite sides of the midpoint,
at distance slightly larger than 11� from the midpoint. Bounded geodesic image
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(Definition 13.1(8)) guarantees that the second condition holds because it ensures that
�U .x/; �U .y/ coarsely coincide with �U .x

0/; �U .y
0/ (recall that � is much larger

than s0 and all other constants in Definition 13.1).

By Definition 13.1(7) (large link lemma), with W D S and x;x0 replaced by x0;y0 ,
each U 2 L2 is nested into one of at most 23��C � elements T of S. For p as in
the claim below, the number of U 2 L2 nested into the same such T is bounded by p ,
for otherwise some U (the Ui in the conclusion of the claim) would fail to satisfy the
third property in the definition of L2 . Hence jL2j � p�.23�C 1/.

Claim There exists p with the following property. Let T 2 S, let x;y 2 X , and
let fUig

p
iD1
�ST be distinct and satisfy dyCUi

.�Ui
.x/; �Ui

.y//� � . Then there exist
U 0 2ST and i such that Ui Ĺ U 0 and dyCU 0.�U 0.x/; �U 0.y// > 2� .

Proof of claim Define the level of Y 2S to be the maximal k such that there exists a
v–chain of length k in SY . The proof is by induction on the level k of a v–minimal
T 0 2 ST into which each Si is nested. For the base case k D 1 it suffices to take
p D 2 since in this case there is no pair of distinct U1;U2 2ST 0 .

Suppose that the statement holds for a given p.k/ when the level of T 0 is at most k .
Suppose further that jfUigj � p.kC 1/ (where p.kC 1/ is a constant, much larger
than p.k/, that will be determined shortly) and there exists a v–minimal T 0 2ST of
level kC 1 into which each Ui is nested. There are two cases.

If dyCT 0.�T 0.x/; �T 0.y// > 2� , then we are done (for p � 2). If not, then item (7) of
Definition 13.1 (large link lemma) yields K and T1; : : : ;TK , each properly nested
into T 0 (and hence of level � k ), such that any given Ui is nested into some Tj . In
particular, if p.k C 1/ �Kp.k/, there exists j such that at least p.k/ elements of
fUig are nested into Tj . By the induction hypothesis and Definition 13.1(5) (finite
complexity), we are done.

Case L1 ¤ ∅ Suppose that there exists U 2 L1 . In this case the idea is that there
actually are product regions in the middle between x;y , and the action of an element
moving x;y not too much permutes the gates into such product regions, so that there
cannot be too many such elements.

First of all, our choice of R0 and Definition 13.1(8) (bounded geodesic image) ensure
that for all g 2 H, we have gU 2 L2 . Indeed, if U 2 L1 then

dyCgU .�gU .x/; �gU .y//� dyCgU .�gU .gx/; �gU .gy//� 2B � �� 2B > 1
2
�;

ensuring the first property in the definition of L2 . The second property follows from
the fact that �S .x/ gets moved distance � � by g , and the third property holds for gU
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because otherwise, using bounded geodesic image, we would find a contradiction with
the third property of U from the definition of L1 .

Fix any g 2 H and let P1 DEU �FU and P2 DEgU �FgU be the spaces provided
by Section 13.1. We claim that dX .ggP1

.x/; gP2
.x// is uniformly bounded. From this,

properness of the action and the bound on jL2j yield a bound on jHj.

Clearly, ggP1
.x/ coarsely coincides with gP2

.gx/, since coordinates of gates are
defined equivariantly. Hence we must show that w D gP2

.gx/ coarsely coincides with
z D gP2

.x/.

By Definition 13.1(6) (distance formula), it suffices to show that the projections
of w and z coarsely coincide in every yCY for Y 2 S. By definition of gP2

, it
suffices to consider Y 2 S which is either nested into or orthogonal to gU . For
such Y , �Y

S
coarsely coincides with �

gU
S

by the final part of Definition 13.1(4)
(transversality and consistency). Moreover, any geodesic from x to gx stays far
from �Y

S
, so that Definition 13.1(8) (bounded geodesic image) gives a uniform bound

on dyCY .�Y .x/; �Y .gx//, as required.

Case L1 D ∅ Suppose now that L1 D ∅. In this case, the idea is that a hierarchy
path from x to y does not spend much time in any product region near the middle, and
hence it behaves like a geodesic in a hyperbolic space. Fix a hierarchy path 
 in X
joining x;y and let p 2 
 satisfy

ˇ̌
dyCS .�S .p/; �S .x//�

1
2
R
ˇ̌
� � . We will produce

a constant M3 , depending on the constants from Definition 13.1 and on � such that
dX .p;gp/�M3 . It will then follow that jHj is bounded in view of properness of the
action of G on X .

We now bound dX .p;gp/ using the distance formula. First, note that

dyCS .�S .p/; �S .gp//� 10ıC �

(where ı is the hyperbolicity constant of yCS ).

If U 2S contributes to the sum �X ;s0
.p;gp/ with threshold s0 , then, given the bound

on dyCS .p;gp/ and bounded geodesic image, dyCS .�S .p/; �
U
S
/� 2� . Fix now any U

satisfying dyCS .�S .p/; �
U
S
/ � 2� . Our goal is now to bound dyCU .�U .p/; �U .gp//

uniformly. It follows from the assumption that L1D∅ that dyCU .�U .x/; �U .y//� 3� ,
and also

dyCU .�U .gx/; �U .gy//D dyCg�1U .�g�1U .x/; �g�1U .y//� 3�:

Indeed, if, say, U satisfied dyCU .�U .x/; �U .y// > 3� , then either U or some other U 0

with dyCU 0.�U 0.x/; �U 0.y// > � and U v U 0 would belong to L1 , since for U v U 0

and U 0 ¤ S , the sets �U
S

and �U 0

S
coarsely coincide.
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Since 
 is a hierarchy path, dyCU .�U .x/; �U .p// and dyCU .�U .gx/; �U .gp// are
bounded by dyCU .�U .x/; �U .y//C2D and dyCU .�U .gx/; �U .gy//C2D , respectively,
which are both bounded by, say, 4� . Hence,

dyCU .�U .p/; �U .gp//� 9�C dyCU .�U .x/; �U .gx//

(where the diameters of the projection sets are taken care of by the extra � ), and the
last term is uniformly bounded by bounded geodesic image. We then get the desired
bound, concluding the proof.

Corollary 14.6 Let G � Aut.S/ act properly and cocompactly on the hierarchically
hyperbolic space X . Let g; h 2 G be hyperbolic on the maximal S 2S and satisfy
gnh¤ hgn , hng¤ ghn for all n¤ 0. Then there exists N > 0, depending on g and h,
such that hgN ; hN i is freely generated by gN ; hN .

Proof By Corollary 14.4, G acts acylindrically on a hyperbolic space, whence the
claim follows from [31, Proposition 2.4].

In particular, when G acts properly and cocompactly on a CAT.0/ cube complex
with a factor system, eg when G is compact special, the conclusion of Corollary 14.6
is satisfied. Thus acylindricity can be used to find free subgroups of groups acting
on cube complexes by different means than are used in the discussion of the Tits
alternative [21; 63]. The above corollary recovers Theorem 47 of [44] about subgroups
of right-angled Artin groups generated by powers of elements acting loxodromically
on the extension graph once we observe, as in [44], that there is a quasi-isometry from
the extension graph to the contact graph (whenever the right-angled Artin group does
not have a free Z factor).

In the case X is a uniformly locally finite cube complex, not necessarily equipped
with a factor system, one can obtain the same conclusion, provided g; h 2 Aut.X / act
loxodromically on CX , by a ping-pong argument.
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