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Building Anosov flows on 3–manifolds
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We prove we can build (transitive or nontransitive) Anosov flows on closed three-
dimensional manifolds by gluing together filtrating neighborhoods of hyperbolic sets.
We give several applications of this result; for example:

(1) We build a closed three-dimensional manifold supporting both a transitive
Anosov vector field and a nontransitive Anosov vector field.

(2) For any n , we build a closed three-dimensional manifold M supporting at least n

pairwise different Anosov vector fields.
(3) We build transitive hyperbolic attractors with prescribed entrance foliation; in

particular, we construct some incoherent transitive hyperbolic attractors.
(4) We build a transitive Anosov vector field admitting infinitely many pairwise

nonisotopic transverse tori.

37D20; 57M99

Dedicated to the memory of Marco Brunella
(Varese, Italy, 1964 – Rio de Janeiro, Brazil, 2012)

1 Introduction

1.1 General setting and aim of this paper

Anosov vector fields are the paradigm of hyperbolic chaotic dynamics. They are
nonsingular vector fields on compact manifolds for which the whole manifold is a
hyperbolic set: if X is an Anosov vector field, the tangent bundle to the manifold M

splits in a direct sum Es˚RX ˚Eu , where Es and Eu are continuous subbundles
invariant under the flow of X , and the vectors in Es and Eu are respectively uniformly
contracted and uniformly expanded by the derivative of this flow. As with all hyperbolic
dynamics, Anosov vector fields are structurally stable: any vector field C 1 –close to
X is topologically equivalent (or orbit equivalent) to X . Therefore, there is hope
for a topological classification of Anosov vector fields up to topological equivalence,
and many works started this kind of classification in dimension 3 (see for instance
Ghys [19; 20], Barbot [1; 3], Fenley [13; 14] and Barbot and Fenley [5]).
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However, we are still very far from proposing a classification, even in dimension 3.
For instance we still do not know which manifolds support Anosov vector fields, or
how many Anosov vector fields may be carried by the same manifold.

The simplest examples of Anosov vector fields on three-dimensional manifolds are the
suspension of an Anosov–Thom linear automorphism of the torus T 2 and the geodesic
flow of a hyperbolic Riemann surface. These two (classes of) examples share some
strong rigidity properties:

� Plante [27] has proved that every Anosov vector field on a torus bundle over
the circle is topologically equivalent to the suspension of an Anosov–Thom
automorphism.

� Ghys [19] has proved that, up to finite covering, every Anosov vector field on
a circle bundle is topologically equivalent to the geodesic flow of a hyperbolic
surface.

� Ghys [20] has proved that, up to finite cover, every Anosov vector field on a
three-manifold whose stable and unstable foliations are C1 is topologically
equivalent to a suspension or a geodesic flow.

However, a lot of nonalgebraic examples of Anosov vector fields on closed three-
manifolds have been built by different authors (including Handel and Thurston [22],
Goodman [21], Fried [17], Fenley [13], Barbot [4] and Foulon and Hasselblatt [15]).
Let us mention in particular Franks and Williams [16], who have built a nontransitive
Anosov vector field, and Bonatti and Langevin [9], who have built an Anosov vector
field admitting a closed transverse cross-section (diffeomorphic to a torus) which does
not cut every orbit.

Both Franks and Williams’ and Bonatti and Langevin’s examples were obtained by
gluing filtrating neighborhoods of hyperbolic sets along their boundaries. The aim of
the present paper is to develop a general theory of this class of examples. We first
describe some elementary bricks (called hyperbolic plugs). Then we prove a quite
general result allowing us to build Anosov vector fields (on closed three-manifolds) by
gluing together such elementary bricks. We also provide a simple criterion allowing us
to decide whether an Anosov flow built in this manner is topologically transitive or not.
Finally we illustrate our “construction game” by several examples.

1.2 Hyperbolic plugs

In order to present our main results, we need to state some definitions. We call a
plug any pair .V;X / where V is a compact 3–manifold with boundary and X is a
vector field on V , transverse to the boundary of V (in particular, X is assumed to
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be nonsingular on @V ). Given such a plug .V;X /, we can decompose @V as the
disjoint union of an entrance boundary @inV (the part of @V where X is pointing
inwards) and an exit boundary @outV (the part of @V where X is pointing outwards).
The plug .V;X / will be called an attracting plug if @outV D∅, and a repelling plug if
@inV D∅. The plug .V;X / will be called a hyperbolic plug if its maximal invariant
set ƒD

T
t2R X t .V / is nonsingular and hyperbolic with 1–dimensional stable and

unstable bundles. Here X t is the flow induced by X on V .

If .V;X / is a hyperbolic plug, the stable lamination W s.ƒ/ (resp. the unstable lamina-
tion W u.ƒ/) of the maximal invariant set ƒD

T
t2R X t .V / intersects transversally

the entrance boundary @inV (resp. the exit boundary @outV ) and is disjoint from @outV

(resp. @inV ). By transversality, Ls
X
WD W s.ƒ/\ @inV and Lu

X
WD W u.ƒ/\ @outV

are one-dimensional laminations; we call them the entrance lamination and the exit
lamination of V . We will see that the laminations Ls

X
and Lu

X
satisfy the following

properties (see Proposition 3.8):

(i) They contain finitely many compact leaves.

(ii) Every half noncompact leaf is asymptotic to a compact leaf.

(iii) Each compact leaf may be oriented such that its holonomy is a contraction. This
orientation will be called the contracting orientation.

A lamination satisfying this three properties will be called a Morse–Smale lamination,
or an MS lamination for short. If the lamination is indeed a foliation, we will call it an
MS foliation.

If .V;X / is a hyperbolic attracting plug, then Ls
X

is a foliation on @inV . In particular,
every connected component of @V D @inV is a two-torus (or a Klein bottle if we allow
V to be nonorientable).

Let us first state an elementary result, which is nevertheless a fundamental tool for our
“construction game”:

Proposition 1.1 Let .U;X / and .V;Y / be two hyperbolic plugs. Let T out be a union
of connected components of @outU and T in be a union of connected components
of @inV . Assume that there exists a diffeomorphism 'W T out! T in such that '�.Lu

X
/

is transverse to the foliation Ls
Y

. Let Z be the vector field induced by X and Y on the
manifold W WD U tV =' . Then .W;Z/ is a hyperbolic plug.1

1This entails that there is a differentiable structure on W (compatible with the differentiable structures
of U and V by restriction) such that Z is a differentiable vector field.
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This proposition will be proven in Section 3.1. A classical example of the use of
Proposition 1.1 is the famous Franks–Williams example of a nontransitive Anosov
vector field. It corresponds to the case where .U;X / is an attracting plug, .V;Y / is a
repelling plug, T out D @outU and T in D @inV . In that case, W is boundaryless and Z

is Anosov and nontransitive.

If .V;X / is a hyperbolic plug such that V is embedded in a closed three-dimensional
manifold M and X is the restriction of an Anosov vector field X on M , then the
stable (resp. unstable) lamination of the maximal invariant set of V is embedded in
the stable (resp. unstable) foliation of the Anosov vector field X . This leads to some
restrictions on the entrance and exit laminations of V , and motivates the following
definition.

A lamination L on a compact surface S is a filling MS lamination if it satisfies
properties (i), (ii) and (iii) above and if every connected component C of S nL is “a
strip whose width tends to 0 at both ends”: more precisely, C is simply connected,
and the accessible boundary of C consists of two distinct noncompact leaves L1 and
L2 which are asymptotic to each other at both ends.

Any filling MS lamination can be embedded in a C0;1 foliation.2 As a consequence, a
closed surface carrying a filling MS lamination is either a torus or a Klein bottle. We will
prove that the entrance lamination Ls of a hyperbolic plug is a filling MS lamination if
and only if this is also the case for the exit lamination Lu (see Lemma 3.21). Therefore
we will speak of hyperbolic plugs with filling MS laminations. Theorem 1.12 shows
that every hyperbolic plug with filling MS laminations can be embedded in an Anosov
vector field.

Example 1.2 Consider a transitive Anosov vector field X on a closed 3–dimensional
manifold M , and a finite collection ˛1; : : : ; ˛m , ˇ1; : : : ˇn of (pairwise different)
orbits of Y . Let Y be the vector field obtained from X by performing some DA
bifurcations (see Section 8.1) in the stable direction on the orbits ˛1; : : : ; ˛m , and some
DA bifurcations in the unstable direction on the orbits ˇ1; : : : ˇn . Let U be the compact
manifold with boundary obtained by cutting out from M some pairwise disjoint tubular
neighborhoods of ˛1; : : : ; ˛m , ˇ1; : : : ˇn whose boundaries are transverse to Y . Then
.U;Y / is a hyperbolic plug with filling MS laminations. More precisely, on each
connected component of @inV (resp. @outV ) the entrance lamination Ls

X
(resp. the

exit lamination Lu
X

) consists of one or two Reeb components (see Figure 14 as an
illustration of the case of two Reeb components).

2Notice that the converse is not true; see Remark 3.20.
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We finish this section by stating an addendum to Proposition 1.1 which allows us to
build more and more complicated hyperbolic plugs with filling MS laminations. Two
filling MS laminations L1 and L2 are called strongly transverse if they are transverse
and if every connected component C of S n .L1 [L2/ is a topological disc whose
boundary @C consists of exactly four segments a1 , a2 , b1 and b2 , where a1 and b1

lie on leaves of L1 , and a2 and b2 lie on leaves of L2 .

Figure 1: An example of pairs of strongly transverse filling MS laminations
on the torus T 2 (left) and an example of pairs of transverse filling MS
laminations on the torus T 2 which are not strongly transverse (right)

Proposition 1.3 In Proposition 1.1, assume furthermore that the plugs .U;X / and
.V;Y / have filling MS laminations and that '�.Lu

X
/ is strongly transverse to Ls

Y
. Then

the plug .W;Z/ has filling MS laminations.

1.3 Building transitive Anosov flows

In this section, we consider a hyperbolic plug with filling MS laminations .U;X /, and
a diffeomorphism 'W @outU ! @inU such that the laminations Lu

X
and Ls

X
are strongly

transverse; we say that ' is a strongly transverse gluing diffeomorphism. We denote
by Z the vector field induced by X on the closed manifold U=' . Note that there is a
differentiable structure on U=' such that Z is a differentiable vector field.

In general the vector field Z is not hyperbolic,3 and the dynamics of Z depends on
the gluing diffeomorphism ' . It could even happen (in principle) that two strongly
transverse gluing diffeomorphisms '0 and '1 , isotopic through strongly transverse
gluing diffeomorphisms, lead to vector fields Z0 and Z1 which are not topologically
equivalent. It is therefore necessary to choose carefully the gluing diffeomorphism ' .

3Starting from any example, one can perturb the gluing map ' in such a way that the new vector field
Z exhibits a bunch of parallel periodic orbits filling a solid torus. This clearly prevents this vector field Z

from being hyperbolic.
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Question 1.4 For a hyperbolic plug .U;X / with filling MS laminations and a strongly
transverse gluing diffeomorphism '0W @

outU ! @inU , does there exist a strongly trans-
verse gluing diffeomorphism '1 , isotopic to '0 through strongly transverse gluing
diffeomorphisms, such that the vector field Z1 induced by X on U='1 is Anosov?

We are not able to answer this question in general. Nevertheless we can give a positive
answer in the particular case where the maximal invariant set ƒ of X in U admits
an affine Markov partition (ie a Markov partition such that the first return map on
the rectangles is affine for some coordinates). If ƒ does not contain any attractor
nor repeller, then a slight perturbation of X leads to a vector field Y , topologically
equivalent to X , whose maximal invariant set ƒY admits such an affine Markov
partition (see Lemma 5.3). We will therefore allow ourselves to use such perturbations.

Let .U;Y / be another hyperbolic plug with filling MS laminations and  W @outU!@inU

be a strongly transverse gluing diffeomorphism. We say that .U;X; '/ and .U;Y;  /
are strongly isotopic if there is a continuous path .U;Xt ; 't / of hyperbolic plugs
with filling MS laminations and strongly transverse gluing diffeomorphisms such that
.U;X0; '0/ D .U;X; '/ and .U;X1; '1/ D .U;Y;  /. Notice that this implies that
.U;X / and .U;Y / are topologically equivalent.

We will prove the following result:

Theorem 1.5 Let .U;X / be a hyperbolic plug with filling MS laminations such
that the maximal invariant set of X contains neither attractors nor repellers, and let
'W @outU ! @inU be a strongly transverse gluing diffeomorphism. Then there exist a
hyperbolic plug .U;Y / with filling MS laminations and a strongly transverse gluing
diffeomorphism  W @outU ! @inU such that .U;X; '/ and .U;Y;  / are strongly
isotopic, and such that the vector field Z induced by Y on U= is Anosov.

Theorem 1.5 allows us to build an Anosov vector field Z by gluing the entrance and
the exit boundary of a hyperbolic plug. We will now state a result providing a simple
criterion to decide whether this Anosov vector field Z is transitive or not.

Given a hyperbolic plug .U;X / with filling MS laminations and a strongly transverse
gluing map 'W @outU ! @inU , consider the oriented graph P defined as follows:

� The vertices of P are the basic pieces ƒ1; : : : ; ƒk of X .

� There is an edge going from ƒi to ƒj if W u
X
.ƒi/ intersects W s

X
.ƒj /, or

'�.W
u

X
.ƒi/\ @

outU / intersects W u
X
.ƒj /\ @

inU .

We say that .U;X; '/ is combinatorially transitive if P is strongly connected, ie if any
two edges of P can be joined by an oriented path.
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Proposition 1.6 Under the hypotheses of Theorem 1.5, if .U;X; '/ is combinatorially
transitive, then the Anosov vector field Z is transitive.

In Theorem 1.5, starting with a hyperbolic plug without attractors nor repellers and
a strongly transverse gluing map ' , we build another vector field Y orbit equivalent
to X and a gluing map  isotopic to ' through strongly transverse gluing such that
the vector field induced by the gluing is Anosov. It is natural to ask if the resulting
Anosov flow is independent of the choices (of Y and  ), up to orbit equivalence.

Question 1.7 Let .V;Y1;  1/ and .V;Y2;  2/ be two hyperbolic plugs with filling
MS laminations endowed with strongly transverse gluing diffeomorphisms. Moreover,
suppose .V;Y1;  1/ and .V;Y2;  2/ are strongly isotopic. Let Z1 and Z2 be the
vector fields induced by Y1 and Y2 on V = 1 and V = 2 . Assume that Z1 and Z2

both are Anosov. Are Z1 and Z2 topologically equivalent?

In a forthcoming paper [8], we will provide a positive answer to this question, at least
in the case where the Anosov flows Z1 and Z2 are topologically transitive.

1.4 Examples

To illustrate the power of Theorem 1.5, we will use it to build various types of ex-
amples of Anosov vector fields. We like to think of hyperbolic plugs as elementary
bricks of a “construction game”. Proposition 1.1 and Theorem 1.5 allow us to glue
these elementary bricks together in order to build more complicated hyperbolic plugs,
hyperbolic attractors, transitive or nontransitive Anosov vector fields. We hope that the
statements below will convince the reader of the interest and of the versatility of this
“construction game”.

1.4.1 The “blow-up, excise and glue surgery” As a first application of Theorem 1.5,
we shall prove the following result:

Theorem 1.8 Given any transitive Anosov vector field X on a closed (orientable)
three-manifold M , there exists a transitive Anosov vector field Z on a closed (ori-
entable) three-manifold N such that “the dynamics of Z is richer than the dynamics
of X ”. More precisely, there exists a compact set ƒ�N invariant under the flow of Z ,
and a continuous onto map � W ƒ!M such that � ıX t DZt ı� for every t 2R.

The proof of Theorem 1.8 relies on what we call the blow-up, excise and glue surgery.
Let us briefly describe this surgery (details will be given in Section 8). We start with a
transitive Anosov vector field X on a closed three-manifold M .
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Step 1 (blow-up) We blow-up two periodic orbits of X . More precisely, we pick two
periodic orbits (with positive eigenvalues) O and O 0 of X ; we perform an attracting DA
(derived from Anosov) bifurcation on O and a repelling DA bifurcation on O 0 . This
gives rise to a new vector field X on M which has three basic pieces: a saddle
hyperbolic set ƒ, an attracting periodic orbit O and a repelling periodic orbit O 0 .

Step 2 (excise) Then we excise two solid tori: we consider the manifold with
boundary U DM n .T tT 0/, where T and T 0 are small tubular neighborhoods of O

and O 0 . Under some mild assumptions, .U;X jU / is a hyperbolic plug.

Step 3 (glue) Finally, we glue the exit boundary to the entrance boundary of U : we
consider the manifold N WD U=' , where 'W @outU ! @inU is an appropriate gluing
map, and the vector field Z induced by X on M . Theorem 1.5 ensures that (up to
perturbing X within its topological equivalence class) ' can be chosen such that Z is
Anosov, and Proposition 1.6 implies that Z is transitive. The hyperbolic set ƒ can be
seen as a compact subset of N which is invariant under the flow of Z . Well-known
facts on DA bifurcations show that there exists a continuous map � W ƒ!M inducing
a semiconjugacy between the flow of X and Z , as stated by Theorem 1.8.

Starting with a given transitive Anosov vector field on a closed three-manifold, Theorem
1.8 can be applied inductively, giving birth to an infinite sequence of transitive Anosov
vector fields which are “more and more complicated”. Moreover, the “blow-up, excise
and glue surgery” admits many variants, allowing to construct myriads of examples
of Anosov vector fields. For example, instead of starting with a single Anosov vector
field X , we could have started with n transitive Anosov vector fields X1; : : : ;Xn in
order to get a single transitive Anosov vector field Z which “contains” the dynamics
of X1; : : : ;Xn . We could also have started with a nontransitive Anosov vector field X ;
in this case, we get an Anosov vector field Z which might or might not be transitive
depending on the choice of the periodic orbits we use for the DA bifurcations. As an
application, we will obtain the following result, which answers a question that A Katok
asked us:

Theorem 1.9 There exists a closed orientable three-manifold supporting both a transi-
tive Anosov vector field and a nontransitive Anosov vector field.

1.4.2 Hyperbolic attractors As already mentioned above, the entrance foliation
Ls.U;X / of an attracting hyperbolic plug .U;X / is always an MS foliation (it has
finitely many compact leaves, every half leaf is asymptotic to a compact leaf and every
compact leaf can be oriented so that its holonomy is a contraction). Using Theorem 1.5,
we shall prove a converse statement: every MS foliation can be realized as the entrance
foliation of a transitive attracting hyperbolic plug. More precisely:
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Theorem 1.10 For every MS foliation F on a closed orientable surface S , there
exists an orientable transitive attracting hyperbolic plug .U;X / and a homeomorphism
hW @inU ! S such that h�.Ls.U;X //D F .

Let .U;X / be an attracting hyperbolic plug, and ƒ be the maximal invariant set
of .U;X /. Each compact leaf 
 of the foliation Ls.U;X / can be endowed with the
contracting orientation. Recall that the contracting orientation of 
 is defined so that
its holonomy is a contraction. The attractor ƒ is said to be incoherent if one can
find two compact leaves 
1 and 
2 of Ls.U;X / in the same connected component of
@inU such that 
1 and 
2 equipped with their contracting orientations are not freely
homotopic. The notion of incoherent hyperbolic attractors was introduced by J Christy
in his PhD thesis [11]. Christy studied the existence of Birkhoff sections for hyperbolic
attractors of vector fields on three-manifolds. He proved that a transitive hyperbolic
attractor admits a Birkhoff section if and only if it is coherent, and he announced that
he could build incoherent transitive hyperbolic attractors. He did publish an example of
incoherent hyperbolic attractor in Christy [12], but it is not clear whether this example
is transitive or not. The existence of incoherent transitive hyperbolic attractors is an
immediate consequence of Theorem 1.10:

Corollary 1.11 There exist incoherent transitive hyperbolic attractors (on orientable
manifolds).

1.4.3 Embedding hyperbolic plugs in Anosov flows Using Theorem 1.10, we will
be able to prove that every hyperbolic plug with filling MS laminations can be embedded
in an Anosov flow. More precisely:

Theorem 1.12 Consider a hyperbolic plug with filling MS laminations .U0;X0/.

� Up to changing .U0;X0/ by a topological equivalence, we can find an Anosov
vector field X on a closed orientable three-manifold M such that there exists an
embedding � W U0 ,!M with ��X0 DX .

� Moreover, if the maximal invariant set of .U0;X0/ contains neither attractors
nor repellers, the construction can be done in such a way that the Anosov vector
field X is transitive.

In other words, the first item of Theorem 1.12 states that, for every hyperbolic plug
with filling MS laminations .U0;X0/, we can find a closed three-manifold M , an
Anosov vector field X on M , and a closed submanifold with boundary U of M ,
such that X is transverse to @U and such that .U0;X0/ is topologically equivalent
to .U;X jU /. The manifold M and the Anosov vector field X will be constructed
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by gluing appropriate attracting and repelling hyperbolic plugs on .U0;X0/. These
attracting and repelling hyperbolic plugs will be provided by Theorem 1.10.

In order to get the second item of Theorem 1.12, we will modify the Anosov vector field
provided by the first item, using the “blow-up, excise and glue procedure” discussed
above.

1.4.4 Manifolds with several Anosov vector fields Our techniques also allow to
construct examples of three-manifolds supporting several Anosov flows. Barbot [4]
constructed an infinite family of three-manifolds, each of which supports at least two
(topologically nonequivalent) Anosov flows. We shall prove the following result:

Theorem 1.13 For any n � 1, there is a closed orientable three-manifold M sup-
porting at least n transitive Anosov vector fields Z1; : : : ;Zn which are pairwise
topologically nonequivalent.

Remark 1.14 The manifold M that we will construct to prove Theorem 1.13 has
a JSJ decomposition with three pieces: two hyperbolic pieces and one Seifert piece.
These examples also positively answer two questions asked by Barbot and Fenley in
the final section of their recent paper [5].4 The vector fields Z1; : : : ;Zn that we will
construct are pairwise homotopic in the space of nonsingular vector fields on M .

Theorem 1.13 admits many variants. For example, we claim that the manifold M that
we will construct also supports at least n nontransitive Anosov flows. We also claim
that, for every n � 1, there exists a graph manifold supporting at least n transitive
Anosov vector fields. We will not prove those claims to avoid increasing too much the
length of the paper; we leave them as exercises for the reader.

1.4.5 Transitive Anosov vector fields with infinitely many transverse tori By
Theorem 1.5 we can build transitive Anosov vector fields by gluing hyperbolic plug
along their boundary. Conversely, one may try to decompose a transitive Anosov vector
field X on a closed three-manifold M into hyperbolic plugs by cutting M along a
finite family of pairwise disjoint tori that are transverse to X . Ideally, one would like
to find a canonical (maximal) finite family of pairwise disjoint tori embedded in M

and transverse to X such that, by cutting M along these tori, one gets a canonical
(maximal) decomposition of .M;X / into hyperbolic plugs. This raises the following

4They asked the following questions: Do there exist examples of manifolds, with a JSJ decomposition
containing more than one hyperbolic piece, supporting transitive Anosov or pseudo-Anosov flows? Do
there exist examples of manifolds, with both hyperbolic and Seifert pieces in their JSJ decomposition,
supporting transitive Anosov or pseudo-Anosov flows?
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question: given an Anosov vector field X on a closed three-manifold M , are there only
finitely many tori (up to isotopy) embedded in M and transverse to X ? Unfortunately,
we shall prove that this is not the case:

Theorem 1.15 There exists a transitive Anosov vector field Z on a closed orientable
three-manifold M such that there exist infinitely many pairwise nonisotopic tori em-
bedded in M and transverse to Z .

Roughly speaking, Theorem 1.15 implies that there is no possibility of finding a “fully
canonical” maximal decomposition of any transitive Anosov vector field into hyperbolic
plugs. In another paper [7], we prove that one can find a maximal decomposition of
any transitive Anosov vector field X into hyperbolic plugs, such that the maximal
invariant sets of the plugs are canonically associated with X . This is what we call the
spectral-like decomposition for transitive Anosov vector fields.

Homage This work started in January 2012, as we were reading in a working group
the beautiful paper [10] of Marco Brunella. It was during the same month that we
learned the sad news of Marco’s death. We dedicate this paper to his memory.
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Part I Proof of the gluing theorem

2 A brief outline of the proof

In this section, we will give a brief outline of the proof of the gluing theorem,
Theorem 1.5.

We consider a hyperbolic plug .V;X / with filling MS laminations and without attractors
and repellers, and a strongly transverse gluing diffeomorphism '0W @

outV ! @inV . We
want to construct a hyperbolic plug .V;Y / and a strongly transverse gluing diffeomor-
phism  W @outV ! @inV such that .V;X; '/ and .V;Y;  / are strongly isotopic, and
such that the vector field Z induced by Y on V = is Anosov.
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By classical arguments, to show that a vector field is Anosov, it is sufficient to consider
the return map of the orbits of Z on some “section”, and prove that this return map
is hyperbolic. In our situation, it is sufficient and convenient to consider the return
map ‚ of the orbit of Z on @inV . Note that this return map ‚ is the product
of the “crossing map” �W @inV n Ls

Y
! @outV n Lu

Y
, defined by the flowlines of Y ,

and the gluing map  W @outV ! @inV . We will see that the hyperbolicity of the
vector field Z can be deduced from the existence of two cone fields Cs

in and Cu
in on

@inV , satisfying some invariance and expansion/contraction properties under the return
map ‚ (Lemma 6.1).

So we are left to construct the vector field Y , the gluing map  and the cone fields
Cs

in and Cu
in . We begin by a series of perturbations of .V;X / and '0 , which will yield

some nice properties:

� First, we replace the vector field X by a vector field Y , arbitrarily close to X

in C 1 –topology, such that the maximal invariant set ƒY of .V;Y / admits an affine
Markov partition (ie a Markov partition such that the return map on the rectangles is
affine in some coordinates). This yields a very useful property: the holonomy of every
compact leaf of the entrance (resp. exit) lamination Ls

Y
(resp. Lu

Y
) is a homothety.

More details can be found in Lemma 5.3.

� Then we extend the laminations W s.ƒY / and W u.ƒY / to foliations F s and Fu

on an invariant neighborhood U0 of ƒY such that the holonomy of every compact leaf
in Ws

in D F s\ @inV and Wu
out D Fu\ @outV is a homothety (Lemma 5.6).

� As Y can be chosen arbitrarily C 1 –close to X , the laminations '0;�.Lu
Y
/ and Ls

Y

are still strongly transverse. In Proposition 5.7, we perturb the gluing map '0W @
outV !

@inV to 'W @outV ! @inV such that, in some invariant neighborhood U � U0 of ƒY ,
the following properties hold:

(1) the laminations '�.Lu/ and Ls are strongly transverse;

(2) the foliations '�.Ws
out/ and '�.Wu

out/ coincide with Ws
in and Wu

in , respectively,
on '.U\@outV /\ .U\@inV /, where Ws

outDF s\@outV and Wu
inDF s\@inV ;

(3) ' is isotopic to '0 among strongly transverse gluing maps.

� Finally, we can extend the foliations F s and Fu on U0 to two foliations Gs and
Gu on V , and modify the gluing map 'W @outV ! @inV to '1W @

outV ! @inV to get a
global transversality property (see Lemmas 5.13 and 5.15).

The outcome of this series of perturbations is summarized in Proposition 5.2.

Then comes the core of the proof: we perturb the gluing map '1 into a gluing map  
in order to get the hyperbolicity properties. For any � > 1 and " > 0, we construct
 in D  in

�;"
W @inV ! @inV (see Proposition 6.2) such that
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(1)  in coincides with the identity map on a neighborhood of the lamination Ls ;

(2)  in preserves each leaf of the foliation Gu
in ;

(3) the foliation . in/�1
� .Gs

in/ is "–C 1 –close to the foliation Gs
in ;

(4) the derivative of � ı in expands vectors tangent to Gu
in by a factor larger than �:

for any vector u tangent to a leaf of Gu
in , one has k.� ı in/�.u/k> �kuk.

A key ingredient in the construction of  in is the following: If x is a point of @inV nLs

which is very close to the lamination Ls , then the forward orbit of x will spend a very
long time near ƒ. As a consequence, the derivative of the crossing map � at x will
expand a vector tangent to Gu

in by a very large factor. Therefore, property (4) above is
automatically satisfied on a sufficiently small neighborhood of @inV nLs , no matter
what  in might be.

Analogously, there exists a diffeomorphism  out D  out
�;"
W @outV ! @outV . Then we

obtain  D  �;" WD  in
�;"
ı '1 ı 

out
�;"

and ‚�;" WD  �;" ı� . The properties of  in
�;"

and  out
�;"

ensure that we can find some cone fields Cs
in and Cu

in satisfying the desired
contraction/expansion properties for the return map ‚ D  ı� .

3 Definitions and elementary properties

In this paper we consider nonsingular vector fields on compact three-dimensional
manifolds (with or without boundary).

3.1 Hyperbolic plugs

Definitions 3.1 Throughout this paper, a plug is a pair .V;X / where V is a (not
necessarily connected) compact three-dimensional manifold with boundary, and X

is a nonsingular C 1 vector field on V transverse to the boundary @V . Given such a
plug .V;X /, we decompose @V as a disjoint union

@V D @inV t @outV;

where X points inward (resp. outward) V along @inV (resp. @outV ). We call @inV the
entrance boundary of V , and @outV the exit boundary of V . If @outV D ∅, we say
that .V;X / is an attracting plug. If @inV D∅, we say that .V;X / is a repelling plug.

If @V is nonempty, the flow of X is not complete. Every orbit of X is defined for
a closed time interval of R. The maximal invariant set ƒ of X in V is the set of
points x 2 V whose forward and backward orbits are defined forever; equivalently,
ƒ is the set of points whose orbit is disjoint from @V . The stable set W s.ƒ/ is the
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set of points whose forward orbit is defined forever. Equivalently, W s.ƒ/ is the set of
points whose forward orbit accumulates on ƒ, and is the set of points whose positive
orbit is disjoint from @outV . Analogously the unstable set W u.ƒ/ is the set of points
whose backward orbit is defined forever. Equivalently, it is the set of points whose
negative orbit is disjoint from @inV .

Definition 3.2 Throughout the paper, a hyperbolic plug is a plug .V;X / whose
maximal invariant set ƒ is hyperbolic with one-dimensional strong stable and strong
unstable bundles: for x 2ƒ, there is a splitting

TxV DEs.x/˚RX.x/˚Eu.x/

which depends continuously on x and is invariant under the derivative of the flow
of X , and there is a Riemannian metric on V such that the differential of the time one
map of the flow of X contracts uniformly the vectors in Es and expands uniformly
the vectors in Eu .

We cannot recall here the whole hyperbolic theory. Let us just recall some elementary
properties from the classical theory of hyperbolic dynamical systems that we will use
in the other sections:

� For every x , the strong stable manifold

W ss.x/D fy 2 V j d.X t .y/;X t .x//! 0 as t !C1g

is a C 1 curve through x tangent at x to Es.x/. The strong unstable manifold W uu.x/

of x is the strong stable manifold of x for �X .

� The weak stable manifold W s.x/ (resp. weak unstable manifold W u.x/) of x is
the union of the stable manifolds (resp. unstable manifolds) of the points in the orbit
of x . The weak stable and weak unstable manifolds of points x 2ƒ are C 1 injectively
immersed surfaces which depend continuously on x . The weak stable (resp. unstable)
manifold of x is invariant under the positive (resp. negative) flow, and by the negative
(resp. positive) flow for the times it is defined.

� There exist two 2–dimensional laminations W s.ƒ/ and W u.ƒ/ whose leaves
are the weak stable and unstable manifolds, respectively, of the points of ƒ. These
laminations are of class C 0;1 , ie the leaves are C 1 –immersed manifolds tangent to a
continuous plane field. Moreover, these laminations are of class C 1 when the vector
field X is of class C 2 (see Hasselblatt [23, Corollary 2.3.4], for example).

� The 2–dimensional laminations W s.ƒ/ and W u.ƒ/ are everywhere transverse
and the intersection W s.ƒ/\W u.ƒ/ is precisely ƒ.
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� The nonwandering set �.X / is contained in ƒ. It is the union of finitely many
transitive hyperbolic sets, called basic pieces of X . Every point in ƒ belongs to the
intersection of the stable manifold of one basic piece with the unstable manifold of a
basic piece.

� There is a C 1 –neighborhood U of X such that, for every Y 2 U , the pair .V;Y /
is a hyperbolic plug, and it is topologically (orbitally) equivalent to X : there is a
homeomorphism 'Y W V ! V mapping the oriented orbits of Y on the orbits of X .
Furthermore, for Y C 1 –close to X , the homeomorphism 'Y can be chosen C 0 –close
to the identity.

3.2 Separatrices, free separatrices and boundary leaves

We will now introduce some notions which are useful for describing more precisely
the geometry of the stable and unstable laminations of hyperbolic sets of vectors fields
on three-manifolds. These notions were introduced by the first two authors in [6].

Let .V;X / be a hyperbolic plug, and ƒ be its maximal invariant set. By gluing some
manifolds with boundary R and A, respectively, on @inV and @outV , one can embed
V in a closed three-manifold M D R [ V [A and extend X to a smooth vector
field on M , such that @inV is the exit boundary of a repelling region and @outV is the
entrance boundary of an attracting region for X for the new vector field. After this
operation, V appears as a filtrating neighborhood, ie the intersection of a repelling and
an attracting region, for a vector field on a closed three-manifold. This allows us to use
some notions that were defined in [6] for hyperbolic maximal invariant sets of filtrating
neighborhoods of flows on closed three-manifolds.

Definitions 3.3 A stable separatrix of a periodic orbit O � ƒ is a connected com-
ponent of W s.O/ nO . A stable separatrix of a periodic orbit O �ƒ is called a free
separatrix if it is disjoint from ƒ.

Remark 3.4 For x 2ƒ, the weak stable manifold W s.x/ is an injectively immersed
manifold.

� If W s.x/ does not contain periodic orbit, then W s.x/ is diffeomorphic to the
plane R2 , and the foliation of W s.x/ by the orbits of flow of X is topologically
equivalent to the trivial foliation of R2 by horizontal lines.

� If W s.x/ contains a periodic orbit O , then O is unique, and every orbit of X

on W s.x/ is asymptotic to O in the future. If the multipliers5 of O are positive,

5That is, the eigenvalues of the derivative at p of the first return map of the orbits of X on a local
section intersecting O at a single point p .

Geometry & Topology, Volume 21 (2017)



1852 François Béguin, Christian Bonatti and Bin Yu

O

a free stable separatrix


 2ƒ

W s.O/

Figure 2

then W s.x/ is diffeomorphic to a cylinder, and O has two stable separatrices. If
the multipliers of O are negative, then W s.x/ is diffeomorphic to a Möbius band,
and O has only one stable separatrix. In any case, each stable separatrix of O is
diffeomorphic to a cylinder S1 �R, and the foliation of this separatrix by the orbits
of X is topologically equivalent to the trivial foliation of S1 �R by vertical lines.

Remarks 3.5 Let x be a point in ƒ.

(1) Each orbit of X on W s.x/ cuts @inV in at most one point, and this point depends
continuously on the orbit. Thus, the connected components of W s.x/\ @inV are in
one-to-one correspondence with the connected components of W s.x/ nƒ.

(2) Due to the dynamics inside each leaf W s.x/, one easily shows that, for each
connected component C of W s.x/ nƒ, one has one of the two possible situations
below:

� Either there is an orbit O 2ƒ\W s.x/ such that C is a connected component of
W s.x/ nO . In that case, Lemma 1.6 of [6] proves that O is a periodic orbit, and C

is a free stable separatrix of O . In particular, C is diffeomorphic to a cylinder, and
the foliation of C by the orbits of X is topologically equivalent to the trivial foliation
of S1 �R by vertical lines. Since each orbit X of C cuts @inV at exactly one point,
which depends continuously on the orbit, one deduces than C \ @inV is diffeomorphic
to a circle (see Figure 3, left).

� Or there are two orbits O1; O2 2ƒ\W s.x/ such that C is a connected component
of W s.x/ n .O1[O2/; in other words, C is a strip bounded by O1 and O2 and the
foliation of C by the orbits of X is topologically equivalent to the trivial foliation of
R2 by horizontal lines. Since each orbit X of C cuts @inV at exactly one point, which
depends continuously on the orbit, one deduces that C \ @inV is diffeomorphic to a
line (see Figure 3, right, or Figure 8 from another point of view).
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O

orbits in ƒ

O1

O2

orbits in ƒ

C

C

Figure 3: The two cases for a connected components C of W s.x/ nƒ (Remark 3.5(2))

Definition 3.6 An unstable manifold W u.x/ is called an unstable boundary leaf if
there is an open path I cutting W u.x/ transversely at a point y such that one connected
component of I n fyg is disjoint from W u.ƒ/.

Remark 3.7 Lemma 1.6 of [6] shows that the unstable boundary leaves are precisely
the unstable manifolds of the periodic orbits having a free stable separatrix, and,
moreover, that there are only finitely many periodic orbits in ƒ having a free stable
separatrix. As an immediate consequence, there are only finitely many boundary leaves
in W u.ƒ/.

One defines, similarly, free unstable separatrices and the stable boundary leaves.

3.3 Entrance and exit laminations

Let .V;X / be a hyperbolic plug, ƒ be its maximal invariant set, and W s.ƒ/ and
W u.ƒ/ be the 2–dimensional stable and unstable laminations of ƒ, respectively.
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The vector field X is tangent to the laminations W s.ƒ/ and W u.ƒ/, and is transverse
to @V . This implies that the laminations W s.ƒ/ and W u.ƒ/ are transverse to @V . As
a consequence, each leaf of these 2–dimensional laminations cuts @V along C 1 –curves,
and the laminations W s.ƒ/ and W u.ƒ/ cut @V along 1–dimensional laminations.
Thus

Ls
DW s.ƒ/\ @V DW s.ƒ/\ @inV and Lu

DW u.ƒ/\ @V DW u.ƒ/\ @outV

are 1–dimensional. The aim of this section is to describe elementary properties of the
laminations Ls of @inV and Lu of @outV . More precisely:

Proposition 3.8 The laminations Ls and Lu satisfy the following properties:

(1) The laminations contains finitely many compact leaves.

(2) Every half leaf is asymptotic to a compact leaf.

(3) Each compact leaf may be oriented so that its holonomy is a contraction.

Sketch of proof Item (1) is a direct consequence of Remarks 3.5 and 3.7: the compact
leaves of Ls are in one-to-one correspondence with the free stable separatrices of
periodic orbits, and there are only finitely many such separatrices.

Consider a noncompact leaf 
 of Ls . According to Remarks 3.5, it corresponds to a
connected component of some W s.x/ nƒ which is a strip B bounded by two orbits
O1 and O2 in ƒ\W s.x/. Consider the unstable manifold W u.Oi/. These unstable
leaves are boundary leaves of W u.ƒ/. According to Remark 3.7, it follows that O1

and O2 belong to the unstable manifolds of periodic orbits having a free separatrix.
Therefore the �–lemma (see [23]) implies that B accumulates these free separatrices,
and 
 accumulates on the corresponding compact leaves of Ls . Lemma 1.8 of [6]
makes this argument rigorously for proving item (2).

Let us now explain item (3). Let 
0 be a compact leaf of Ls . Then 
0 is the intersection
of @inV with a free stable separatrix of a periodic orbit O0 �ƒ. The leaves of Ls , in
the neighborhood of 
0 , are the transverse intersection of the weak stable manifolds of
orbits which belong to W u.O0/. Notice that W u.O0/ and @inV are both transverse
to the lamination W s.ƒ/. Furthermore, 
0 and O0 are contained in the same leaf
W s.O0/, which is either a cylinder or a Möbius band.

� If W s.O0/ is a cylinder then 
0 and O0 are homotopic in the leaf W s.O0/.
Therefore the holonomy of Ls along 
0 is conjugated to the holonomy of the
lamination induced by W s.ƒ/ on W u.O0/. This holonomy is a contraction if
one endows the orbit O0 with the orientation induced by the vector field �X .
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� If W s.O0/ is a Möbius band then 
0 is homotopic (in W s.O0/) to 2 � O0 .
Therefore the holonomy of Ls along 
0 is conjugated to the square of the
holonomy of the lamination induced by W s.ƒ/ on W u.O0/; once again, this
holonomy is a contraction if one endows the orbit O0 with the orientation
induced by the vector field �X .

Definition 3.9 A lamination (resp. a foliation) on a closed surface is called an MS
lamination6 (resp. an MS foliation) if it satisfies the following properties:

(1) It has only finitely many compact leaves.

(2) Every half leaf is asymptotic to a compact leaf.

(3) each compact leaf may be oriented such that its holonomy is a contraction.

Proposition 3.8 states that the entrance/exit laminations of a hyperbolic plug are MS
laminations.

Remark 3.10 If .V;X / is a hyperbolic attracting plug, then Ls is a foliation on @inV

(and @outV is empty). In particular, @V consists of some tori (and possibly some Klein
bottles if V is not orientable).

3.4 Connected component of the complement of the laminations

Let us start with a very general observation:

Definition 3.11 Let S be a closed surface, L be a 1–dimensional lamination with
finitely many compact leaves, and C be a connected component of S nL. We call C

a strip if it satisfies the two following properties:

� C is homeomorphic to R2 .

� The accessible boundary7 of C consists of exactly two noncompact leaves of L
which are asymptotic to each other at both ends.

Otherwise we say that C is an exceptional component of S nL. See Figure 3 as an
illustration.

Lemma 3.12 Let S be a closed surface and L be a 1–dimensional lamination with
finitely many compact leaves. Then there are only finitely many exceptional components
in S nL.

6“MS” stands for “Morse–Smale”
7That is, the points in the boundary which are an extremal point of a segment whose interior is

contained in C .
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Proof There is a smooth Morse–Smale vector field Z on S transverse to the lami-
nation L — one easily builds a continuous vector field transverse to the lamination;
transversality is an open property; hence (see Palis and de Melo [25, Chapter 4]) one
may perturb this vector field to turn it into a smooth Morse–Smale vector field. Now,
at most finitely many connected components or S nL may contain a singular point of
Z or a whole periodic orbit of Z .

If C is a component which does not contain any singular point or any periodic orbit,
then the dynamics of Z restricted to C does not contain any nonwandering point.
Furthermore, by transversality of Z with L (hence of the accessible boundary or C )
any orbit reaching a small neighborhood of @C goes out of C in a finite time. As a
direct consequence, there is T > 0 such that no orbit of ZjC is defined for a time
interval of length larger than T . This implies that either C is an annulus bounded by
two compact leaves of L, or C is a strip (as Definition 3.11).

3.5 The crossing map

We consider a hyperbolic plug .V;X /. As usual, we denote by ƒ the maximal invariant
set of .V;X /, by Ls � @inV the entrance lamination of .V;X / and by Lu � @outV the
exit lamination of .V;X /.

Definition 3.13 The positive orbit of any point x 2 @inV nLs reaches @outV in a finite
time at a point �.x/ 2 @outV nLu . The map x 7! �.x/ will be called the crossing map
of the plug .V;X /. Using the fact that the orbits of X are transverse to @V , one easily
sees that � defines a diffeomorphism from @inV nLs to @outV nLu . See Figure 4.

Lemma 3.14 A connected component C of @inV nLs is a strip if and only if �.C /
is a strip in @outV nLu .

Proof Using the fact that � is a diffeomorphism, up to reversing the flow of X , one
is reduced to proving the following assertion: if C is a strip then �.C / is a strip.

Assume that C is a strip. First notice that �.C / is homeomorphic to C , hence to
R2 . It remains to check that the accessible boundary consists of two leaves. For
that purpose, one considers a smooth vector field Z on @inV transverse to Ls and
without singular point in C . Then the orbits of Z restricted to the union of C with its
accessible boundary induces a trivial foliation by segments. Consider now the image
of this foliation by � . This is a foliation of �.C /. However, as Z is transverse to the
boundary of C which is contained in the stable manifold of the hyperbolic set ƒ, the
�–lemma (or a cone field argument) implies that ��.Z/ tends uniformly to the tangent
direction to the unstable lamination Lu when �.x/ tends to the boundary of �.C /.
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@inV

@outV

�.x/

.V;X /

ƒ
Lu

Ls

x

Figure 4: A hyperbolic plug .V;X / , its maximal invariant set ƒ (in green)
and its crossing map �

Thus one gets a foliation on the closure of �.C /; this implies that �.C / is a strip,
which concludes the proof.

A very similar proof allows us to prove:

Lemma 3.15 A connected component C of @inV nLs is an annulus bounded by two
compact leaves (resp. a Möbius band bounded by one compact leaf) of Ls if and only if
�.C / is an annulus bounded by two compact leaves (resp. a Möbius band bounded by
one compact leaf) of Lu .

3.6 Filling MS lamination and prefoliation

If a hyperbolic plug can be embedded in an Anosov flow, the stable and unstable
manifolds of its maximal invariant set are sublaminations of the stable and unstable
foliations, respectively. This leads to restrictions on its stable and unstable laminations.
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Definition 3.16 We say that a lamination L of a closed surface S is a prefoliation if
it can be completed as a foliation of S . Notice that this implies that every connected
component of S is either the torus T2 or the Klein bottle K.

As a direct consequence of Proposition 3.8 and Lemmas 3.12 and 3.14, one obtains:

Lemma 3.17 Let .V;X / be an hyperbolic plug. The lamination Ls is a prefoliation if
and only if every exceptional component of @inV nLs is either an annulus or a Möbius
band bounded by compact leaves of Ls . Furthermore,

Ls is a prefoliation () Lu is a prefoliation :

The components of @inV nLs and @outV nLu which are annuli or Möbius bands will
sometimes lead to specific difficulties. For this reason we introduce a more restrictive
notion:

Definition 3.18 A lamination L on a closed surface S is called a filling MS lamination
if

� it is an MS lamination (see Definition 3.9);
� S nL has no exceptional component (in other words, every connected component

of S nL is a strip; see Definition 3.11 and Figure 5).

Figure 5: A filling MS lamination

Lemma 3.19 Let L be a filling MS lamination of a closed surface S . Then L is
a prefoliation. In particular, every component of S is either a torus T2 or a Klein
bottle K. Furthermore, if F is a foliation containing L as a sublamination, then F is an
MS foliation. Finally, two foliations containing L as a sublamination are topologically
conjugated.
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Idea for the proof One just need to foliate each connected component of the comple-
ment of L. Such a component is a strip bounded by two asymptotic leaves. There is a
unique way to foliate such a strip up to topological conjugacy.

Remark 3.20 The converse of the first statement of Lemma 3.19 is not true, ie there
exist prefoliations which are not filling MS laminations. An easy example is given by
a lamination on T2 consisting of a single closed leaf not homotopic to 0.

Once again, as a consequence of Proposition 3.8 and Lemmas 3.12 and 3.14, one easily
shows:

Lemma 3.21 Let .V;X / be a hyperbolic plug. The stable lamination Ls is a filling
MS lamination if and only if @inV nLs has no exceptional component. The entrance
lamination Ls is a filling MS lamination if and only if Lu is a filling MS lamination.

If Ls and Lu are filling MS laminations, we will say that .V;X / is a hyperbolic plug
with filling MS laminations.

3.7 Hyperbolic plugs with prefoliations and invariant foliation

Let .V;X / be a hyperbolic plug such that the entrance lamination Ls
X

and the exit
lamination Lu

X
are prefoliations. The following lemma shows that every foliation on

@outV transverse to Lu extends to an X –invariant foliation of V containing W s.ƒ/

as a sublamination.

Lemma 3.22 Let F s be a foliation on @outV which is transverse to Lu . Then F s

extends on V to an invariant foliation F s with two-dimensional leaves containing
W s.ƒ/ as a sublamination. In particular, F s\ @inV is a foliation which extends Ls .

Proof First notice that V nW s.ƒ/ is the (backwards) X –orbit of the set @outV . The
X –orbits of the leaves of F s are the leaves of a foliation F s

0
of V nW s.ƒ/. The

foliation F s
0

is tangent to X and therefore transverse to @inV . It induces a 1–foliation
on @inV nLs .

Thus, it is enough to check that the leaves of F s
0

tend to the leaves of W s.ƒ/. Notice
that a point in V nW s.ƒ/ in a very small neighborhood of W s.ƒ/ has its positive
orbit which meets @outV at a point very close to Lu . Thus, to prove that F s

0
extends

by continuity to W s.ƒ/, it is enough to consider the negative orbits through small
segments of leaves of F s centered at points of Lu .
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Thus we fix " > 0 and we consider the family of segments of size " of leaves of F s

centered at the points of Lu . It is a C 1 –continuous family of segments parametrized
by a compact set. We consider the negative orbits by the flow of X of these segments.
We need to prove that these orbits tend to the stable leaves of ƒ as time tends to �1.
This is the classical �–lemma (see [23]).

Lemma 3.23 Every X –invariant C0;1 foliation F containing W s.ƒ/ as a sublamina-
tion induces on @outV a one-dimensional foliation L transverse to Lu .

Proof As F is X –invariant, it is transverse to @outV . Thus it induces a one-
dimensional foliation L on @outV . Furthermore, as F is C0;1 and contains W s.ƒ/,
which is transverse to W u.ƒ/ along ƒ, one gets that F is transverse to W u.ƒ/ in a
neighborhood O of ƒ. Now every point x of Lu is on the orbit of X of a point in O .
The X –invariance of both W s.ƒ/ and F implies that F and W u.ƒ/ are transverse
at x . One deduces that L is transverse to Lu .

Thus, the 2–dimensional X –invariant foliations on V containing W s.ƒ/ as a sublam-
ination are in one-to-one correspondence with the 1–dimensional foliation on @outV

transverse to Lu .

This shows in particular that V admits many invariant foliations. These foliations will
help us to recover the hyperbolic structure when we will glue the exit with the entrance
boundaries. For that we need to control the expansion/contraction properties of the
crossing map along the directions tangent to these foliations. This is the aim of the
next lemma:

Lemma 3.24 Let F s be an invariant C0;1 –foliation on V containing W s.ƒ/ and let
F s

in denote the intersection F s \ @inV . Then the derivative �� of the crossing map
contracts arbitrarily uniformly the vectors tangent to F s

in in small neighborhoods of Ls .
More precisely, for every " > 0 there is ı > 0 such that, given any x 2 @inV nLs with
d.x;Ls/ < ı and any vector u 2 Tx@

inV tangent to the leaf of F s
in , one has

k��.u/k< "kuk:

Proof The maximal invariant set ƒ admits arbitrarily small filtrating neighborhoods.8

Recall that ƒ is hyperbolic and such that the area on the center stable space Ecs.x/D

8Recall that a filtrating neighborhood of a compact set is a neighborhood which is a filtrating set where
a filtrating set is the intersection of an attracting region with a repelling region. Here an attracting region is
a compact region with boundary transverse to the flow such that every orbit enters into the region at each
point of the boundary, and a repelling region is an attracting region for the reverse flow. As an important
consequence, an orbit which exits a filtrating neighborhood never comes back. More basic properties of
filtrating neighborhoods can be found in Section 3.2.
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Ess.x/˚RX.x/ is uniformly contracted along the orbit of x 2 ƒ. Let Ecs.x/ for
x 2 V denote the tangent plane to F s . One denotes by

J s
t .x/D

ˇ̌
Det..Xt /�jEcs.x//

ˇ̌
the determinant of the restriction to Ecs.x/ of the derivative of the flow of X at time t .

One deduces that there is a filtrating neighborhood U of ƒ and 0< � < 1 such that

x 2 U and t � 1 D) J s
t .x/ < �

t < 1:

The proof consists now in noting that, for x 2 @inV close to Ls , the orbit segment
joining x to �.x/ consists of a segment contained in U whose length tends to infinity
as x tends to Ls and two bounded segments: one joining x 2 @inV to U and one
joining U to �.x/ 2 @outV .

The first and the last segments have a bounded effect on J s
t , as their lengths are

uniformly bounded. One deduces that

J s
�.x/.x/! 0 as x!ƒs;

where �.x/ is the crossing time of x (that is, �.x/DX�.x/.x//.

Let u be a unit tangent vector to F s
in at x 2 F s

in . The difficulty is that the vector
��.u/ is not the image .X�.x//�.u/; the vector ��.u/ is the projection along X.y/

on Ty@
outV of .X�.x//�.u/, where y D �.x/ D X�.x/.x/. In order to simplify the

calculation let us choose a metric on V such that X is orthogonal to @V and kXkD 1.
With these notations, one gets

k��.u/k D J s
�.x/.x/:

Thus, k��.u/k=kuk tends to 0 as x! Ls . This completes the proof.

3.8 Strongly transverse lamination

Consider an Anosov flow X on a closed 3–manifold M , and assume that two plugs
.V1;X1/ and .V2;X2/ are embedded in .M;X / such that a component S of @outV1

is also a component of @inV2 . Then the laminations Lu
1

and Ls
2

are not only transverse,
they extend on S as two transverse foliations (the unstable and stable foliation of X );
not every two transverse filling MS laminations may extend as two transverse foliations.
This difficulty leads to the following definition:

Definition 3.25 Let S be a compact surface and let L1 and L2 be two laminations
on S . We say that L1 and L2 are strongly transverse if
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� L1 and L2 are transverse at every point of L1\L2 ;
� every connected component of S nL1\L2 is a disc whose closure is the image

of a square Œ0; 1�2 by an immersion which is a diffeomorphism on .0; 1/2 , and
such that Œ0; 1�� f0; 1g is mapped in leaves of L1 and f0; 1g � Œ0; 1� is mapped
in leaves of L2 .

One can easily show the following lemma:

Lemma 3.26 If L1 and L2 are strongly transverse, they extend in transverse foliations.
In particular, L1 and L2 are prefoliations.

3.9 Gluing vector fields

Let V1 and V2 be manifolds with boundary, S1 and S2 be unions of boundary
components of @V1 and @V2 , and X1 and X2 be vector fields on V1 and V2 , transverse
to S1 and S2 such that X1 goes out V1 through S1 and X2 goes in V2 through S2 .
Let 'W S1! S2 be a diffeomorphism. Let V be the quotient .V1qV2/=x ' '.x/.

Lemma 3.27 With the notation above there is a differential structure on V such that
V is a smooth manifold and there is a C 1 vector field on V such that the restriction of
X to Vi is Xi for i D 1; 2.

Proof Just notice that the flow box theorem implies that there is a tubular neighborhood
Ui of Si in Vi and some coordinates .x; t/W U1! Si � .�"; 0� (resp. .x; t/W U2!

S2 � Œ0; "/) such that, in these coordinates Xi is the trivial vector field @
@t

.

Definition 3.28 Let X0 and X1 be two vector fields on the same compact 3–manifold
with boundary V such that .V;X0/ and .V;X1/ both are hyperbolic plugs with
filling MS laminations. Let '0W @

out
X0

V ! @in
X0

V and '1W @
out
X1

V ! @in
X1

V be strongly
transverse gluing maps for .V;X0/ and .V;X1/, respectively. We say that .V;X0; '0/

and .V;X1; '1/ are strongly isotopic if there exists a continuous path .U;Xt ; 't /t2Œ0;1�
of hyperbolic plugs with filling MS laminations and strongly transverse gluing maps.

Remark 3.29 If .V;X0; '0/ and .V;X1; '1/ are strongly isotopic, the structural sta-
bility of hyperbolic plugs implies that .V;X0/ and .V;X1/ are topologically equivalent.

4 Gluing hyperbolic plugs without cycles

In this section, we consider two hyperbolic plugs .U;X / and .V;Y /. We also consider
a union T out of connected components of @outU , a union T in of connected components
of @inV and a gluing map 'W T out!T in such that the lamination '�.Lu

X
/ is transverse
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to the lamination Ls
Y

. Then we consider the manifold with boundary W WD .U tV /='

and the vector field Z induced by X and Y on W .

The aim of the section is to prove that .W;Z/ is a hyperbolic plug (Proposition 1.1)
and that .W;Z/ has filling MS laminations provided that this is the case for .U;X /
and .V;Y / and provided that ' is a strongly transverse gluing map (Proposition 1.3).

4.1 Hyperbolicity of the new plug: proof of Proposition 1.1

Proof of Proposition 1.1 The vector field Z is transverse to the boundary of W ;
hence .W;Z/ is a plug. So we only need to check that the maximal invariant set of
.W;Z/ is a hyperbolic set. Let ƒX , ƒY and ƒZ be the maximal invariant sets of
.U;X /, .V;Y / and .W;Z/, respectively. Then ƒZ is the union of ƒX , ƒY and the
Z–orbit of the set '�.Lu

X
/\ Ls

Y
. The orbit of '�.Lu

X
/\ Ls

Y
inherits a hyperbolic

structure for Z : for x 2 '�.Lu
X
/ \ Ls

Y
, the stable (resp. unstable) bundle at x is

the direct sum of the line R �Z.x/ and the line tangent to Ls
Y

(resp. '�.Lu
X
/) at x .

Moreover, the so-called �–lemma (see [26, page 155], for example) implies that
this hyperbolic structure on the orbit of '�.Lu

X
/\ Ls

Y
extends continuously to the

(previously existing) hyperbolic structures on ƒX and ƒY . This provides the desired
hyperbolic structure on the maximal invariant set ƒZ .

The following simple observation (whose proof is left to the reader) will be used many
times in the remainder of the paper:

Proposition 4.1 The exit boundary of the plug .W;Z/ is

@outW D .@outU nT out/[ @outV:

Furthermore, the lamination Lu
Z

coincides with�
Lu

X
on @outU nT out;

Lu
Y
t .�Y /�.'�.Lu

X
/ nLs

Y
/ on @outV;

where �Y is the crossing map of the plug .V;Y /.

4.2 Filling MS laminations: proof of Proposition 1.3

In this subsection, we assume that the hyperbolic plugs .U;X / and .V;Y / have filling
MS laminations and that ' is a strongly transverse gluing map.

Proof of Proposition 1.3 According to Lemma 3.21 it is enough to prove that Lu
Z

is a
filling MS lamination. For that we consider a connected component C of @outW nLu

Z
.
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If C � @outU nT out , then C is a connected component of @outU nLu
X

and therefore is
a strip bounded by two asymptotic leaves, ending the proof in this case.

According to Proposition 4.1, we can now assume that C � @outV . Furthermore,
according to Proposition 4.1, C is disjoint from Lu

Y
, so one can consider ��1

Y
.C /:

If ��1
Y
.C / is contained in @inV n T in , then ��1

Y
.C / is a connected component of

@inV nLs
Y

such that C itself is a connected component of @outV nLu
Y

. This is a strip
bounded by two asymptotic leaves, ending the proof in this case.

So assume that ��1
Y
.C / is contained in T in .

Lemma 4.2 Assume that ��1
Y
.C / is contained in T in � @inV . Then ��1

Y
.C / is a

connected component of T in n .Ls
Y
['�.Lu

X
//.

Proof The set ��1
Y
.C / is disjoint from Ls.Y / because the range of ��1

Y
is @inV nLs

Y
.

Proposition 4.1 implies that it is also disjoint from '�.Lu
X
/, as C is disjoint from

�.'�.Lu
X
//� Lu

Z
. Therefore ��1

Y
.C / is contained in a connected component C1 of

T in n .Ls
Y
[ '�.Lu

X
//. Now �Y .C1/ is disjoint from Lu

Z
(Proposition 4.1) so one

deduces the other inclusion: �Y .C1/� C .

Let C1 WD�
�1
Y .C /. By definition of strongly transverse lamination, C1 is an immersed

square Œ0; 1�2 bounded by two segments 
1 and 
2 (images of the horizontal segments
Œ0; 1�� f0; 1g) in Ls

Y
and two segments �1 and �2 in '�.Lu

X
/ (images of the vertical

segments f0; 1g�Œ0; 1�). Notice that LiD�Y .�i/ for iD1; 2 is a leaf of Lu
Z

contained
in the accessible boundary of C . We will see that L1 and L2 are asymptotic on both
sides. More precisely:

Lemma 4.3 With the notation above, there is a foliation on C [L1[L2 whose leaves
are segments with one endpoint in L1 and the other endpoint on L2 . Furthermore, the
length of the leaves tends to 0 when one of their endpoints tends to one end of Li .

Proof According to Lemma 3.22 applied to .V;Y /, there is a Y –invariant foliation F s

on V containing W s.ƒY / as a sublamination and such that the foliation Fs
out induced

by F s on @outV is transverse to Lu
Y

. We denote by Fs
in the foliation induced by F s

on @inV . The lamination Ls
Y

is a sublamination of Fs
in . In particular, the sides 
1 and


2 are leaf segments of Fs
in . Unfortunately, the foliation Fs

in may fail to be transverse
to the segments �1 and �2 . However, since the transversality is an open property, there
is a neighborhood of 
1 [ 
2 in C1 which is foliated by segments of leaves of Fs

in
with one endpoint on �1 and the other endpoint on �2 . As a consequence, there is a
foliation G1 of C1 , which coincides with Fs

in\C1 on a neighborhood of 
1[
2 , such
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that the leaves of G1 are segments with one endpoint on �1 and the other endpoint
on �2 . The announced foliation is �Y .G1/. Lemma 3.24 implies that the length of the
leaves of this foliation tends to 0 when one of their endpoints tends to one of the ends
of �Y .�i/DLi .

Lemma 4.3 implies that C is a strip whose accessible boundary consists of two leaves
of Lu

Z
which are asymptotic to each other at both ends. This concludes the proof of

Proposition 1.3.

Ls
Y

C1

'�.Lu
X /

�1


1


2

C1

foliation G1

�2

�Y

foliation �Y .G1/

L1

L2

C

Figure 6: The crossing map �Y W .C1;G1/! .C; �Y .G1//

5 Normal form

Given a hyperbolic plug .V;X / with filling MS laminations, and a strongly transverse
gluing map '0W @

outV ! @inV , the main purpose of this section is to perturb .V;X /
(within its topological equivalence class) and the map '0 (with its isotopy class of
strongly transverse gluing map) in order to get some foliations on @inV and @outV

satisfying some nice properties. Our perturbation uses Markov partition by disjoint
rectangles. Such a Markov partition exists if and only if the hyperbolic set does not
contain any attractor or repeller. For this reason, we will need to assume that the
maximal invariant set of .V;X / does not contain attractors or repellers.

Definition 5.1 A hyperbolic plug .V;X / is called a saddle hyperbolic plug if the
maximal invariant set of .V;X / does not contain attractors or repellers.

More precisely, we will prove the following proposition:

Proposition 5.2 Let .V;X / be a saddle hyperbolic plug with filling MS laminations,
endowed with a strongly transverse gluing map '0W @

outV ! @inV . Then there exists a
vector field Y on V arbitrarily C 1 –close to X and a map '1W @

out
X

V ! @in
X

V with the
following properties:
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� .V;Y / is a hyperbolic plug, '1 is a strongly transverse gluing map for .V;Y /,
and .V;Y; '1/ is strongly isotopic to .V;X; '0/ (Definition 3.28). We denote
by ƒY the maximal invariant set of .V;Y /.

� There exist smooth Y –invariant foliations Gs and Gu on V , such that W s.ƒY /

is a sublamination of Gs and W u.ƒY / is a sublamination of Gu . We denote by
Gs

in , Gs
out , Gu

in and Gu
out the intersections of Gs and Gu with @inV and @outV .

� For each compact leaf of Gu
out and of Gs

in , the holonomy is conjugated to a
homothety.

� The image of Gu
out by '1 is transverse to Gs

in .

Apart from proving this proposition, we will also establish some bounds on the rate of
contraction/expansion of the crossing map (see Lemma 5.14) and build specific invariant
neighborhoods of the maximal invariant set of .V;X /, called adapted neighborhoods.

5.1 Linear model for the vector field X

If ƒ is a locally maximal hyperbolic set without attractors and repellers for a vector field
in dimension 3, then ƒ admits a local transverse cross-section † (see [6]). Moreover,
the first return map on † admits a Markov partition by disjoint rectangles contained
in † such that †\ƒ is the maximal invariant set of the union of the rectangles (see [6],
for instance). One can refine such a Markov partition by considering intersections of the
rectangles with their (positive or negative) images under the first return map. Iterating
the process, the diameters of the rectangles can be made arbitrarily small. When the
diameters are small enough the restrictions of the first return map to the rectangles are
almost affine. Hence, one can perform a C 1 –small perturbation9 of the vector field
such that the first return map becomes affine on each rectangles, preserving the vertical
and horizontal foliations. This proves the following lemma:

Lemma 5.3 Let .V;X / be a saddle hyperbolic plug and ƒX its maximal invariant
set. There is an arbitrarily small C 1 perturbation Y of X , topologically equivalent
to X , admitting an affine Markov partition, which is a Markov partition consisting of
smooth disjoint rectangles such that

9A complete argument is somewhat more delicate. Consider a Markov partition R in † and denote
by f the return map on † . The diameter of the rectangles of the refined Markov partition R.n/ WD
f �n.R/^ � � � ^R^ � � � ^f n.R/ goes to 0 as n goes to infinity. Unfortunately, the distance between two
rectangles could a priori become much smaller than the size of the rectangles: in this case, the linearization
on the rectangles requires a perturbation whose C 1 norm is large outside the rectangles. However, by
performing a first arbitrary C 1 –small perturbation, we can always assume that the flow is C 2 . And when
the flow is C 2 , the distance between two rectangles of the Markov partition R.n/ remains proportional to
the size of the rectangles as n goes to infinity. Then the argument become rigorous: the linearization can
be performed by a arbitrary C 1 –small perturbation.
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� the boundary of each rectangle is disjoint from ƒY ;
� every orbit of ƒY meets the union of the interior of the rectangles;
� there are coordinates on the rectangles such that the first return map preserves

the horizontal and vertical foliations defined by these coordinates and is affine
on each rectangle.

Lemma 5.3 motivates the following definition:

Definition 5.4 An affine plug is a saddle hyperbolic plug admitting an affine Markov
partition by disjoint rectangles.

Remark 5.5 For an affine plug, the holonomy of each compact leaf of the entrance
(resp. exit) lamination Ls (resp. Lu ) is an affine contraction, ie an homothety.

As Y can be chosen arbitrarily C 1 –close to X , the laminations .'0/�.Lu
Y
/ and Ls

Y

are still strongly transverse. Thus .V;Y; '0/ is still a saddle hyperbolic plug endowed
with a strongly transverse gluing diffeomorphism.

By pushing along the flow the vertical and horizontal foliations of the rectangle of an
affine Markov partition, one gets a pair of invariant foliations which extend the stable
and unstable laminations of the maximal invariant set. More precisely:

Lemma 5.6 Let .V;Y / be an affine plug with maximal invariant set ƒ. There is an
invariant neighborhood U0 of ƒ endowed with two smooth invariant 2–dimensional
foliations F s and Fu such that

� F s and Fu are transverse to each other;
� F s and Fu are both transverse to @V D @inV [ @outV ;
� the leaves of the laminations W s.ƒ/ and W u.ƒ/ are leaves of F s and Fu ,

respectively.

Let U in
0

and Uout
0

denote the intersections of U with @inV and @outV , respectively. By
transversality, F s and Fu induce

� two smooth transverse 1–dimensional foliations Ws
in and Wu

in on U in
0

such that
Ls is a sublamination of Ws

in ;
� two smooth transverse 1–dimensional foliations Ws

out and Wu
out on Uout

0
such

that Lu is a sublamination of Wu
out .

Furthermore, one can choose the foliations F s and Fu so that the only compact leaves
of Ws

in and Wu
out are those of the laminations Ls and Lu , and their holonomies are

homotheties.
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Proof The neighborhood U0 is just the union of the orbits of Y intersecting the
rectangles of an affine Markov partition of ƒ. The foliation F s and Fu are obtained
by saturating by the flow of Y the vertical and horizontal foliations of the rectangles.
All the desired properties are immediate, except maybe for the fact that the only
compact leaves of Ws

in and Wu
out are those of the laminations Ls and Lu . Let us prove

this. On the one hand, by the Poincaré–Bendixson theorem, a compact leaf in Ws
in

(resp. Wu
out ) cannot be induced by a planar leaf in F s (resp. Fu ). On the other hand,

since the return map on the rectangles of the Markov partition is affine, every leaf of F s

(resp. Fu ) which is not planar contains a periodic orbit of Y , hence belongs to the
lamination W s.ƒ/ (resp. W u.ƒ/). It follows that the only compact leaves of Ws

in and
Wu

out are those of the laminations Ls and Lu .

5.2 Local linearization of the gluing map

The aim of this section is to prove the following result, which provides a kind of
“normal form” for the gluing map of an affine plug in a neighborhood of the intersection
of the laminations of the boundary.

Proposition 5.7 Let .V;X / be an affine plug, with maximal invariant set ƒ, such
that the entrance lamination Ls and the exit lamination Lu of .V;X / are prefoliations.
Let '0W @

outV ! @inV be a diffeomorphism such that '0;�.Lu/ and Ls are strongly
transverse. Let U0 be an invariant neighborhood of ƒ endowed with two smooth
foliations F s and Fu as given by Lemma 5.6. Let U in

0
and Uout

0
be the intersections

of U0 with @inV and @outV . Observe that these are neighborhoods of the laminations
Ls and Lu in @inV and @outV , respectively. Let Ws

in , Wu
in , Ws

out and Wu
out be the

foliations induced by F s and Fu on U in
0

and Uout
0

.

Then there exists a diffeomorphism 'W @outV ! @inV and an invariant neighborhood
U � U0 of ƒ such that

� '�.Lu/ and Ls are strongly transverse;

� the foliations '�.Ws
out/ and '�.Wu

out/ coincide with Ws
in and Wu

in on the inter-
section '.Uout/\U in;

� ' is isotopic to '0 among strongly transverse gluing maps.

The proof of the proposition uses the following technical lemma:

Lemma 5.8 Let D be a compact disc of dimension 2 endowed with three smooth
foliations F , G and H . Assume that F is transverse to both G and H . Let K and L
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be sublaminations of F and H , respectively. We assume that K and L have empty
interior and that K\L is disjoint from the boundary @D .

Then there is a smooth isotopy . t /t2Œ0;1� of diffeomorphisms of D with the following
properties:

�  0 D id.
�  t coincides with the identity map in a neighborhood of @D for every t .
�  t preserves each leaf of F for every t .
�  1.H/ coincides with G in a neighborhood of K\ 1.L/.

Proof First observe that any diffeomorphism coinciding with the identity close to @D
and preserving every leaf of F is isotopic to the identity inside the set of diffeomor-
phisms preserving each leaf of F : to prove this fact, one just need consider a barycentric
isotopy along the leaves. Therefore, we only need to build the diffeomorphism  1 .

Using the fact that K and L have empty interior, the intersection of every leaf of
K with L is totally discontinuous. As K has empty interior, one deduces that one
can cover K\L by finitely many pairwise disjoint rectangles such that the vertical
segments of these rectangles are segments of leaves of F , the horizontal segments of
these rectangles are segments of leaves of G and the boundaries of these rectangles are
disjoint from K\L. Fix such a rectangle R.

Let � be a connected component of K\R (note that � is a vertical segment of R).
One can find an arbitrarily thin vertical subrectangle R� of R containing � such
that the vertical sides of R� are disjoint from K . Any connected component of the
intersection of a leaf of L with R� is disjoint from the horizontal boundary of R� ,
and “crosses R� horizontally” intersecting every vertical segment of R� once. If R�

is thin enough, then the same is true for a connected component of the intersection
of a leaf of H with R� in a neighborhood of L\R (because H is transverse to �
and the horizontal boundary of R� is disjoint from L). Therefore one can find a
diffeomorphism  � supported in the interior of R� , preserving the vertical segments
of R (ie the leaves of F ) and such that any connected component of R� with a leaf
H is mapped on an horizontal segment of R� (ie in a leaf of G ) in a neighborhood
of L\R� . Now one can cover L\R by finitely many disjoint such rectangles R�i

and the announced diffeomorphism  1 is the product of the  �i
.

We are now ready to prove the proposition.

Proof of Proposition 5.7 We consider the foliations Ws
in , Wu

in , '0.Ws
out/ and '0.Wu

out/

defined by Lemma 5.6 on some neighborhoods U in
0
� @inV and Uout

0
� @outV of Ls

and Lu , respectively.
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Since .V;X / is a saddle hyperbolic plug, the laminations Ls and Lu have empty
interior. By assumption, the laminations '0.Lu/ and Ls are (strongly) transverse to
each other. One deduces that the intersection '0.Lu/\Ls is a totally discontinuous
compact subset of the surface @inV . Therefore '0.Lu/\ Ls can be covered by the
interior of a finite union of disjoint arbitrarily small compact discs Di .

As the laminations '0.Lu/ and Ls are (strongly) transverse, there is a neighborhood O
of '0.Lu/\Ls on which the foliations '0.Wu

out/ and Ws
in are transverse. By shrinking

O if necessary, one may assume that O � '0.Uout
0
/\ U in

0
. We choose the discs Di

small enough so that they are contained in O .

According to Lemma 5.8 for each of the disc Di there is a diffeomorphism 'i supported
in the interior of Di , preserving each leaf of Ws

in (and isotopic to the identity through
diffeomorphisms preserving the leaves of Ws

in ) and such that  i.'0.Wu
out// coincides

with Wu
in in the neighborhood of  i.'0.Lu/\Di/\Ls . Let  in be the diffeomorphism

of @inV coinciding with  i on each Di and with the identity out of the Di . Let
'1 WD  in ı '0 . Note that '1.Wu

out/ coincides with Wu
in in the neighborhood of

'1.Lu/\Ls . So we got half of the conclusion. Now, what is left is to push '0.Ws
out/

on Ws
in without destroying what has been done.

For that purpose, we consider the foliations Ws
out , Wu

out , '
�1
1
.Ws

in/ and '�1
1
.Wu

in/.
Notice that Wu

out and '�1
1
.Wu

in/ coincide in a neighborhood O1 of Lu \ '�1
1
.Ls/,

where the foliations Ws
out and '�1

1
.Ws

in/ are transverse. We cover Lu \ '�1
1
.Ls/

by a family of disjoint discs �j contained in O1 and with boundary disjoint from
Lu \ '�1

1
.Ls/. We apply Lemma 5.8 with F D Wu

out D '�1
1
.Wu

in/, G D Ws
out and

HD '�1
1
.Ws

in/. This provides a diffeomorphism, denoted by . out/�1 , supported in
the union of the interiors of the discs �j keeping invariant each leaf of '�1

1
.Wu

in/

and sending '�1
1
.Ws

in/ on Ws
out , in a small neighborhood of . out/�1.'�1

1
/.Ls/\Lu .

Notice that . out/�1.'�1
1
.Ws

in//D '
�1
1
.Ws

in/DWu
out . The desired diffeomorphism is

' WD '1 ı 
out D  in ı'0 ı 

out .

5.3 Adapted neighborhoods

In the remainder of the section, we consider an affine saddle plug .V;X /, a strongly
transverse gluing map 'W @outV ! @inV , an invariant neighborhood U of the maximal
invariant set ƒ of .V;X / and some transverse foliations F s and Fu on U containing
respectively W s.ƒ/ and W u.ƒ/ as sublaminations. We set U in WD U \ @inV and
Uout WD U \ @outV . We denote by Ws

in , Wu
in , Ws

out and Wu
out the foliations induced

by F s and Fu on U in and Uout . We assume that these objects satisfy the conclusion
of Proposition 5.7, ie we assume that the foliations '�.Ws

out/ and '�.Wu
out/ coincide

with Ws
in and Wu

in on '.Uout/\U in . Recall that U in WD U \ @inV is a neighborhood
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of Ls . Hence U in contains all but finitely many elements of the connected components
of @inV nLs .

Definitions 5.9 An in-square is a disc C � @inV with the following properties:

� The boundary @C is contained in U in .

� @C consists of exactly four segments: two segments of leaves of Ws
in and two

segments of leaves of Wu
in .

� There is a diffeomorphism from C to Œ0; 1�2 such that, on a neighborhood of
the boundary of C , this diffeomorphism maps Ws

in and Wu
in on the horizontal

and vertical foliations of Œ0; 1�2 .

A compact neighborhood U in
1
� U in of Ls will be called an adapted neighborhood

of Ls if, for any connected component C of the complement of Ls , the complement
C nU in

1
is either empty or is the interior of an in-square.

As Ls is a filling MS lamination one easily proves:

Lemma 5.10 The lamination Ls admits a basis of adapted neighborhoods: every
neighborhood of Ls in @inV contains an adapted neighborhood.

One defines analogously adapted neighborhoods of Lu , and proves that Lu admits a
basis of adapted neighborhoods.

5.4 The crossing map

Recall that, for every point x in @inV nLs , the positive orbit of x exits V at a point
�.x/ of @outV nLu . The map �W @inV nLs! @outV nLu is a diffeomorphism called
the crossing map of .V;X / (see Section 3.5). The invariance (under the flow of X ) of
the neighborhood U and the foliations F s and Fu imply that

�.U in
nLs/D Uout

nLu; ��.Ws
in/DWs

out; ��.Wu
in/DWu

out:

One easily deduces the next two lemmas:

Lemma 5.11 If V in � U in is an adapted neighborhood of Ls , then �.V in/[Lu is an
adapted neighborhood of Lu .

Definition 5.12 An invariant neighborhood V of ƒ will be called an adapted neigh-
borhood of ƒ if both V inD V\@inV and VoutD V\@outV are adapted neighborhoods
of Ls and Lu , respectively.
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Lemma 5.13 Let Gs
in and Gu

in be smooth transverse foliations on @inV , which coincide
respectively with Ws

in and Wu
in on an adapted neighborhood of Ls . Then Gs

in and Gu
in

extend to smooth transverse X –invariant foliations Gs and Gu in V , which coincide
with F s and Fu , respectively, on a neighborhood of ƒ. As a consequence, ��.Gs

in/ and
��.Gu

in/ extend on @outV to smooth transverse foliations Gs
out and Gu

out which coincide
with Ws

out and Wu
out , respectively, on an adapted neighborhood of Lu .

The following lemma shows that the crossing map is “as strongly hyperbolic as we
want” in small neighborhoods of Ls :

Lemma 5.14 Given any � > 1, there is an adapted neighborhood U in
�

of Ls such that,
for x 2 U in

�
nLs , the crossing map � expands vectors tangent to the leaves of Wu

in by
more than �, and contracts vectors tangent to the leaves of Ws

in by a factor smaller
than ��1 .

Proof It is a direct consequence of Lemma 3.24. Let us just recall the idea. For every
point x 2 @inU nLs close enough to Ls , the positive orbit goes in finite time in a small
neighborhood of the hyperbolic set ƒX , then spends an arbitrarily large interval of
time close to ƒX , and then reaches @outU in a finite time. Therefore it is enough to
choose the adapted neighborhood U in

�
small enough for getting the desired strength of

hyperbolicity for the crossing map.

5.5 Modifying the gluing map to get some transversality

Let Gs and Gu be a choice of smooth transverse X –invariant foliations given by
Lemma 5.13. We denote by Gs

in , Gu
in , Gs

out and Gu
out the one-dimensional foliations

induced by Gs and Gu on @inV and @outV , respectively. According to Proposition 5.7,
we can (and we do) assume that there exists an invariant neighborhood U of ƒ such that
'�.Gs

out/ and '�.Gu
out/ coincide with Gs

in and Gu
in on '.Uout/\U in . Up to shrinking U ,

we may (and we do) assume that U is an adapted neighborhood.

Lemma 5.15 There is a map '1W @
outV ! @inV , isotopic to ' and coinciding with

' on an adapted neighborhood of the exit lamination Lu , such that .'1/�.Gu
out/ is

transverse to Gs
in .

Remark 5.16 The map '1 is a strongly transverse gluing map since it coincides with
' on an adapted neighborhood of Lu . Moreover, '1 is isotopic to ' inside the set of
strongly transverse gluing maps.

We start the proof of Lemma 5.15 with a very general lemma:
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Lemma 5.17 Let F and G be smooth foliations of the square C D Œ0; 1�2 such that
Œ0; 1�� f0; 1g consists of leaves of F and f0; 1g � Œ0; 1� consists of leaves of G , and F
and G are transverse in a neighborhood of the boundary @C . Then there is a smooth
diffeomorphisms  of C equal to the identity map in a neighborhood of @C such that
 .G/ is transverse to F .

Proof The hypothesis imply that each of the foliations F and G are smoothly con-
jugated to trivial foliations, so we may assume that F is the horizontal foliation
fŒ0; 1�� ftggt2Œ0;1� . Now there is a foliation H on C , transverse to the leaves of F ,
coinciding with G in a neighborhood of @C , and having the same holonomy from
f0g � Œ0; 1�! f1g � Œ0; 1� as G .

The foliations G and H are smoothly conjugated by a diffeomorphism  which
coincides with the identity close to @C , completing the proof.

Proof of Lemma 5.15 The proof consists of three steps:

Claim 5.18 There is a diffeomorphism  inW @inV ! @inV which coincides with the
identity map on a neighborhood of Ls and such that . in ı'/�.Lu/ is transverse to Gs

in .

Proof We have assumed that there exists an adapted neighborhood U of ƒ such that
'�.Gs

out/ and '�.Gu
out/ coincide with Gs

in and Gu
in on '.Uout/\U in . Hence, '�.Lu/ is

already transverse to Gs
in on U in . So it is enough to consider a connected component R

of @inV nU in . Since U in is an adapted neighborhood of Ls , R is an in-rectangle: the
restrictions to R of Gs

in and Gu
in are the trivial horizontal and vertical foliations of R.

Moreover, '�.Lu/\R is a lamination coinciding with Gu
in in a neighborhood of @R,

and each leaf of '�.Lu/\R is a segment joining the bottom horizontal segment to the
top horizontal segment of @R. A similar proof to the one of Lemma 5.17 proves the
existence of a diffeomorphism  in

R
equal to the identity in a neighborhood of @R and

such that . in
R
ı'/�.Lu/\R is transverse in R to Gs

in . The announced diffeomorphism
 in is the product of the diffeomorphisms  in

R1
; : : : ;  in

Rn
associated with the connected

components R1; : : : ;Rn of @inV nU in .

Let '1 WD  
in ı' . Notice that '1 is isotopic to ' through strongly transverse gluing

diffeomorphisms. Moreover, there is an adapted neighborhood V � U of ƒ such that
.'1/�.Gs

out/ and .'1/�.Gu
out/ coincide with Gs

in and Gu
in on '1.Vout/\V in .

Claim 5.19 There is  outW @outV !@outV which is the identity map in a neighborhood
of Lu and such that .'1 ı 

out/�1
� .Ls/ is transverse to Gu

out .

Proof The proof is identical to the one of the first claim, reversing the flow of X .
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Now we set '2 WD '1 ı 
out . Then '2 is isotopic to ' through strongly transverse

diffeomorphisms, .'2/�.Lu/ D .'1/�.Lu/ is transverse to Gs
in , and .'2/�.Gu

out/ is
transverse to Ls

in . So Gs
in and '2.Gu

out/ may fail to be transverse only in the interior of
a connected component of @inV nLs[ .'2/�.Lu/. As Ls and . 2/�.Lu/ are strongly
transverse, the closure of each component of @inV n.Ls[. 2/�.Lu// is a square having
two sides on leaves of Ls and two sides on leaves of . 2/�.Lu/. One concludes by
applying Lemma 5.17 in each of these squares with F D Gs

in and G D .'2/�.Gu
out/,

which completes the proof.

Proof of Proposition 5.2 It suffices to put together Lemmas 5.3 and 5.6, Proposition
5.7 and Lemma 5.15. Lemma 5.3 explains how to obtain the plug .V;Y /. Lemma 5.6
implies the existence of the desired foliations Gs and Gu . Proposition 5.7 and Lemma
5.15 ensure the existence of a map '1W @

out
X

V ! @in
X

V satisfying the required properties.

Definition 5.20 The return map ‚W @inV ! @outV associated with .V;X; '1/ is
obtained by composing the crossing map � and the gluing map '1 :

‚ WD '1 ı�:

Note that if '1 satisfies the conclusion of Lemma 5.15 then the foliation ‚�.Gu
in/ and

Gs
in are transverse:

‚�.Gu
in/ t Gs

in:

6 Perturbation of the return map and proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5 and Proposition 1.6.

In all of this section, we consider a saddle hyperbolic plug .V;X / with filling MS
laminations, and a strongly transverse gluing map 'W @outV ! @inV . We denote by
ƒ the maximal invariant set of .V;X /. Since .V;X / is a saddle hyperbolic plug,
ƒ does not contain attractors nor repellers. We denote by �W @inV nLs! @outV nLu

the crossing map of .V;X /, and by ‚ WD ' ı� the return map of X on @inV .

According to Proposition 5.2, we may (and we do) assume that V is endowed with a pair
of two-dimensional smooth X –invariant foliations Gs and Gu , transverse to @V and
transverse to each other, containing respectively W s.ƒ/ and W u.ƒ/ as sublaminations.
We denote by Gs

in , Gu
in , Gs

out and Gu
out the one-dimensional foliations induced by Gs

and Gu on @inV and @outV , respectively. Recall that the entrance lamination Ls and
the exit lamination Lu are sublaminations of Gs

in and Gu
out , respectively. Again by

Proposition 5.2, we may (and we do) assume that the holonomy of each compact leaf
of Gs

in and Gu
out is conjugated to a homothety, and that '�.Gu

out/ is transverse to Gs
in .

Geometry & Topology, Volume 21 (2017)



Building Anosov flows on 3–manifolds 1875

6.1 Reduction of Theorem 1.5 to a perturbation of the return map ‚

Theorem 1.5 states that there exists a strongly transverse gluing diffeomorphism
 W @outV ! @inV , which is isotopic to ' through strongly transverse gluing diffeo-
morphisms and such that the vector field induced by X on the closed manifold V = 

is Anosov. As stated by the following lemma, proving that X is Anosov amounts to
proving that its first return map ‚ WD  ı� is hyperbolic:

Lemma 6.1 Consider a strongly transverse gluing map  W @outV ! @inV . Denote by
Z the vector field induced by X on the closed manifold V = , and by ‚ WD  ı�
the return map of Z on @inV . Assume that there exist two continuous cone fields Cs

in
and Cu

in on @inV such that:

� The cone fields Cu
in and Cs

in are invariant under d‚ and d‚�1
 

, respectively,
and the vectors in Cu

in and Cs
in are uniformly expanded by d‚ and d‚�1

 
,

respectively (for some Riemannian metric).
� Cu

in contains the direction tangent to Gu
in and the direction tangent to  �.Gu

out/,
but it contains neither the direction tangent to Gs

in nor the direction tangent
to  �.Gs

out/.
� Cs

in contains the direction tangent to Gs
in and the direction tangent to  �.Gs

out/,
but it contains neither the direction tangent to Gu

in nor the direction tangent
to  �.Gu

out/.

Then the induced vector field induced Z is Anosov.

Proof By assumption, the maximal invariant set ƒ of .V;X / does not contain at-
tractors or repellers. Therefore, ƒ is transversally totally discontinuous, and we may
consider a local section † of ƒ. By this, we mean that † is a collection of closed
topological discs, † is transverse to X (or, equivalently, Z ), the boundary of † is
disjoint from ƒ, and the interior of † intersects every orbit of X in ƒ. We denote
by f the first return map of the orbit of X on †. We denote by Gs

†
and Gu

†
the

1–dimensional foliations induced by Gs and Gu on †. Note that † can be chosen so
that it is contained in an arbitrarily small neighborhood of ƒ.

Every orbit of Z either is contained in ƒ or intersects @inV . Therefore, the interior
of † [ @inV intersects every orbit of Z . We denote by f the first return map
of the vector field Z on † [ @inV . By classical elementary arguments, proving
that the vector field Z is hyperbolic (ie Anosov) amounts to proving that f is
hyperbolic. In order to prove that f is indeed hyperbolic, we will construct some
cone fields Cs and Cu on int.†/[ @inV , prove that Cu and Cs are invariant under df 
and df �1

 
, respectively, and that the vectors in Cu and Cs are uniformly expanded by

df and df �1
 

, respectively.

Geometry & Topology, Volume 21 (2017)



1876 François Béguin, Christian Bonatti and Bin Yu

By assumption, we already have some cone fields Cu
in and Cs

in on @inV . Moreover, ƒ is
a hyperbolic set for X ; hence there exist some cone fields Cu

†
and Cs

†
on int.†/ which

are invariant under df and df �1 , respectively, and such that the vectors in Cu
†

and
Cs
†

and uniformly expanded by df and df �1 , respectively. We may assume that these
cone fields Cu

†
and Cs

†
, respectively, contain the directions tangent to the foliations

induced by Gu and Gs on †. We consider the cone fields Cu and Cs on int.†/[@inV ,
which coincide with Cu

in and Cu
in on @inV and coincide with Cu

†
and Cs

†
on int.†/. In

order to check that these cone fields satisfy the desired properties, we will decompose
the first return map f into four parts. Namely, we consider the restrictions of f to
†\ f �1

 
.†/, @inV \ f �1

 
.@inV /, @inV \ f �1

 .†/ and @inV \ f �1
 
.†/. We denote

these restrictions by f ;1 , f ;2 , f ;3 and f ;4 , respectively.

� The map f ;1W †! † is nothing but the first return map f of the orbits of X

on † (because a segment of orbit of Z which does not cross @inV is a segment of
orbit of †). Hence, Cu

†
and Cs

†
are invariant under df ;1 and df �1

 ;1
, respectively, and

the vectors in Cu
†

and Cs
†

are uniformly expanded by df ;1 and df �1
 ;1

, respectively.

� The map f ;2W @inV ! @inV is a restriction of the return map ‚ (namely, the
restriction to the set of points x such that the forward Z –orbit of x intersects @inV

before intersecting †). Hence our assumption ensures that Cu
in and Cs

in are invariant
under df ;2 and df �1

 ;2
, respectively, and that the vectors in Cu

in and Cs
in are uniformly

expanded by df ;2 and df �1
 ;2

, respectively.

� Consider U a neighborhood of ƒ. By taking U small enough, we can assume that
there is uniform expansion (resp. contraction) of the vectors tangent to Gu (resp. Gs )
along the orbits of X while they stay in U . Now let U0 be a much smaller neighborhood
of ƒ. By taking † small enough, one can assume that † is contained in U0 . Hence,
any orbit of X that enters U and hits † will have to spend a long time in U before
hitting †. Therefore, up to choosing † small enough, one can apply arguments
similar to those of the proof of Lemma 5.14, and get that, for any segment of an orbit
of X that starts at @inV and ends in †, the vectors tangent to Gu

in (resp. Gs
in ) will be

expanded (resp. contracted) by a very large factor along that segment. According to
our assumptions, the cone fields Cu

in contains the direction tangent to Gu
in but does not

contain the direction tangent to Gs
in . Therefore, provided that the section † is contained

in a small enough neighborhood of ƒ, the derivative of f ;3W @inV !† will map the
cone field Cu

in to an arbitrarily thin cone field around Gu
†

(in particular, the image of Cu
in

will be contained in Cu
†

) and will expand uniformly the vectors in Cu
in . Similarly, the

derivative of f �1
 ;3

will map Cs
†

inside Cs
in , and will expand uniformly the vectors in Cs

†
.

� Similar arguments show that, provided that the section † is contained in a small
enough neighborhood of ƒ, the cone fields satisfy the desired properties with respect
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to the map f ;4W †! @inV (here we use the fact that Cu
in and Cs

in respectively contain
the directions tangent to  .Gu

out/ and  .Gs
out/, but do not contain the directions tangent

to  .Gs
out/ and  .Gu

out/).

The four points above show that, if † is contained in a small enough neighborhood
of ƒ, then the cone fields Cu and Cs are invariant under df and df �1

 
, respectively,

and such that the vectors in Cu and Cs and uniformly expanded by df and df �1
 ,

respectively. In other words, the first return map f is hyperbolic provided that † is
small enough. Hence the vector field Z is Anosov.

The gluing map  W @outV ! @inV (whose existence is claimed by Theorem 1.5) will
be obtained as a composition  D  in ı ' ı  out , where ' is the original gluing
map,  in is a self-diffeomorphism of the entrance boundary @inV and  out is a self-
diffeomorphism of the exit boundary @outV . The diffeomorphisms  in and  out will
be provided by the following proposition:

Proposition 6.2 Given any � > 1 and " > 0, there is a diffeomorphism  inW @inV !

@inV with the following properties:

�  in coincides with the identity map on a neighborhood of the lamination Ls .
�  in preserves each leaf of the foliation Gu

in .
� the foliation . in/�1

� .Gs
in/ is "–C 1 –close to the foliation Gs

in .
� the derivative of � ı in expands vectors tangent to Gu

in by a factor larger than �:
for any vector u tangent to a leaf of Gu

in , one has k.� ı in/�.u/k> �kuk.

Analogously, there exists a diffeomorphism  outW @outV ! @outV such that:

�  out coincide with the identity map on a neighborhood of the lamination Lu .
�  out preserves each leaf of the foliation Gs

out .
� The foliation  out

� .Gu
out/ is "–C 1 –close to the foliation Gu

out .
� The derivative of .� ı in/�1 expands vectors tangent to Gs

out by a factor larger
than �: for any unit vector u tangent to a leaf of Gs

out , one has k.�ı out/�1
� .u/k>

� � kuk.

Proof of Theorem 1.5 assuming Proposition 6.2 Given �>1 and ">0, we consider
the diffeomorphisms  in

�;"
and  out

�;"
associated with �; " by Proposition 6.2. Then we

consider the gluing map
 �;" WD  

in
�;" ı' ı 

out
�;"

and the vector field Z�;" induced by X on the closed manifold V = �;" . Observe
that, since  in and  out coincide with the identity on neighborhoods of Ls and Lu ,
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respectively,  in
�;"

is a strongly transverse gluing map which is isotopic to ' inside the
set of strongly transverse gluing maps. We want to prove that the vector field Z�;"

is Anosov provided that " is small enough and � is large enough. So we are left to
proving that the return map

‚�;" WD  �;" ı�

satisfies the hypotheses of Lemma 6.1 provided that " is small enough and � is large
enough. For technical reasons, it is convenient to introduce the map

y‚�;" WD . 
in/�1

ı‚�;" ı 
in
D ' ı out

ı� ı in;

and the foliations

Gs
in;�;" WD . 

in
�;"/
�1
� .G

s
in/ and Gu

out;�;" D . 
out
�;"/�.G

u
out/:

Note that
. in
�;"/
�1
� .G

u
in/D Gu

in and . out
�;"/�.G

s
out/D Gs

out;

since  in
�;"

preserves the foliation Gu
in and  out

�;"
preserves the foliation Gs

out by assump-
tion.

Since the diffeomorphism  out
�;"

preserves each leaf of Gs
out , we can define hs

out;�;" as
the holonomy of the foliation Gs

out between x and  out
�;"
.x/.

Claim 6.3 The length of the segment of leaf of Gs
out joining a point x to  out

�;"
.x/ is

bounded by a constant independent of ", � and x . As a consequence, the action of the
holonomy hs

out;�;" on vectors tangent to Gu
out is uniformly bounded independently of "

and �.

Proof Recall that Lu is a filling MS lamination, Lu is a sublamination of the foliation
Gu

out and  out
�;" is the identity map in a neighborhood Lu . Therefore, if x is not a fixed

point of  out
�;"

, then the points x and  out
�;"
.x/ belong to the same segment of leaf of

Gs
out nLu . As Lu is a filling MS lamination, these segments have a uniformly bounded

length, proving the first assertion. The second assertion is a direct consequence of the
first one and the fact that Gs

out is a smooth foliation.

Claim 6.4 The perturbed foliations Gs
in;�;" and Gu

out;�;" tend to the nonperturbed
foliations Gs

in and Gu
out when "! 0 for the C 1 –topology. As a consequence, for "

small enough, the foliation .y‚�;"/�.Gu
in/D'�.G

u
out;�;"/ is uniformly (in �; ") transverse

to Gs
in;�;" .

Proof The first assertion follows immediately from the definition of the foliations
Gs

in;�;" and Gu
out;�;" , and from the properties of the maps  in and  out . The second

assertion is a direct consequence of the first one.
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Claim 6.5 There exist some constants C > 0 and "0 > 0 such that, for any � > 1 and
0 < " < "0 , the return map y‚�;" expands uniformly the vectors tangent to Gu

in by a
factor larger than C�, and its inverse .y‚�;"/�1 expands uniformly the vectors tangent
to Gs

in;�;" by a factor larger than C�.

Proof Let u be a vector tangent to Gu
in D Gu

in;�;" . One writes

y‚�;";�.u/D '� ı . 
out
�;"/� ı�� ı . 

in
�;"/�.u/:

See Figure 7. By definition of the map  in
�;";�

, one has

k�� ı . 
in
�;"/�.u/k> � � kuk:

Furthermore, �� ı . in
�;"
/�.u/ is tangent to Gu

out . Thus we just need to see that the
action of  out

�;"
on the vectors tangent to Gu

out is bounded, independently of � and "
(for " smaller than some "0 ).

Recall that hs
out;�;" is the holonomy of the foliation Gs

out between x and  out
�;"
.x/. The

foliation Gu
out is transverse to Gs

out , and  out
�;"
.Gu

out/ is "–C 1 –close to Gu
out . In particular,

there exists "0 such that, for 0< " < "0 , the foliation . out
�;"
/�.Gu

out/ is uniformly (in
� and ") transverse to the foliation Gs

out . Therefore, for v tangent to Gu
out , the ratio

between k.hs
out;�;"/�.v/k and k. out

�;"
/�.v/k is bounded independently of �, " and v .

Using Claim 6.3, we conclude that the map y‚�;" expands uniformly the vectors tangent
to Gu

in by a factor larger than C�. See Figure 7. The arguments are similar for the
action of the map .y‚�;"/�1 on the vectors tangent to Gs

in;�;" .

Gu
in

Gs
in

Ls

 in

u

 in
� u

O‚�uD '� 
out
� �� 

in
� u

�

'

Gs
out Gu

out Lu

 out

 out
� �� 

in
� u

�� 
in
� u

Figure 7: The action of y‚�;" on a vector u tangent to Gu
in
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During the proof of Claim 6.5, we have chosen "0 such that the foliations '�.Gu
out;�;"/

are uniformly transverse to Gs
in;�;" for " 2 Œ0; "0� and � > 1. Moreover, the foliation

'�.Gs
out/ is transverse to the foliation Gu

in . This allows us to choose a continuous cone
field yCu

in on @inV such that yCu
in contains the direction tangent to the foliation Gu

in and
the direction tangent to the foliation '�.Gu

out;�;"/ for " 2 Œ0; "0� and � > 1, and such
that yCu

in contains neither the direction tangent to the foliation Gs
in;�;" for any " 2 Œ0; "0�

and � > 1 nor the direction tangent to the foliation '�.Gs
out/. As a direct consequence

of Claim 6.5 one gets:

Fact 6.6 For every " 2 Œ0; "0�, when �!1 the cone field yCu
in is mapped by ��;" in

an arbitrarily small cone field around Gu
out;�;" and the vectors in yCu

in are expanded by an
arbitrarily large factor. As a consequence, there exists �0 such that, for every " 2 Œ0; "0�

and �� �0 , the cone field yCu
in is strictly invariant by y‚�;" and the vectors in that cone

field are uniformly expanded by y‚�;" .

From now on, we fix "2 Œ0; "0� and ���0 . We consider the cone field Cu
in WD 

in
�;"
.yCu

in/.
This cone field contains the direction tangent to the foliations

. in
�;"/
�1
� .G

u
in/D Gu

in and . in
�;"/
�1
� '�.G

u
out;�;"/D . �;"/�.G

u
out/;

and it does not contain the direction tangent to the foliations

. in
�;"/
�1
� .G

s
in;�;"/D Gs

in or . in
�;"/
�1
� ı'�.G

s
out/D . �;"/�.G

s
out/:

Moreover, Fact 6.6 implies that the cone field Cu
in is strictly invariant by ‚�;" and

that the vectors in Cu
in are uniformly expanded by ‚�;" (for the norm associated with

the pullback under  in
�;"

of the initial Riemannian metric). In other words, the cone
field Cu

in satisfies all the hypotheses of Lemma 6.1 (for the return map ‚�;" ). The
construction of a cone field Cs

in is completely similar. So we can apply Lemma 6.1,
which shows that the vector field Z�;" is Anosov.

Remark 6.7 There is a version of Theorem 1.5 where one does not glue the whole
exit boundary of a hyperbolic plug on the whole entrance boundary. More precisely,
let .V;X / be a saddle hyperbolic plug with filling MS laminations .V;X /. Let T in

and T out be unions of connected components of @inV and @outV , respectively. Let
'W T out! T in be a map such that '�.Lu \T out/ is strongly transverse to Ls \T in .
Exactly the same arguments as above allow to prove that there is a vector field Y on
V which is C 1 –close to X and map  W T out! T in such that

� .V;X; '/ and .V;Y;  / are strongly isotopic;
� if Z is the vector field induced by X on V = , then .V = ;Z / is a hyperbolic

plug.
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Gu
in

Gs
in

Ls

B

Figure 8: A connected component of @inV nLs

6.2 Perturbation of the return map ‚ : proof of Proposition 6.2

This section is devoted to the proof of Proposition 6.2. We will only deal with the
diffeomorphism  inW @inV ! @inV . The construction of the diffeomorphism  out is
analogous, up to reversing the flow.

Let us briefly present the construction of  in . Fix " > 0 and � > 1. According to
Lemma 5.14, the crossing map � expands the vectors tangent to Gu

in by a factor of at
least � on some neighborhood of Ls . The image by � of such a neighborhood is a
neighborhood of Lu . This neighborhood contains an adapted neighborhood, whose
complement consists of finitely many in-squares (see Lemma 5.10). Our proof will
consist in building the diffeomorphism  in in one of these in-squares and extending it
on the whole @inV by gluing it with the identity map by a bump function, using the fact
that the expansion of vectors tangent to Gu

in is arbitrarily large out of these in-squares.

As Ls is a filling MS lamination, every connected component B of @inV n Ls is a
strip whose accessible boundary consists of two noncompact leaves of Ls , which are
asymptotic to each other at both ends. Each end of B spirals around a compact leaf
of Ls ,10 with contracting linear holonomy (see Figure 8). Our construction will be
divided in two steps:

� We will first build a diffeomorphism  h of B , defined as the product of a
diffeomorphism h of a segment I u of a Gu

in leaf by the identity map in the
direction of the leaves of Gs

in . The diffeomorphism  h will have all the announced
properties, except that it will not coincide with the identity close to the boundary
of S , so it cannot be extended to the whole @inV .

10This fact is a direct consequence of the definition of a filling MS lamination; see Definitions 3.9
and 3.18.
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� Then, we will “slow down” the diffeomorphism  h close to the ends of B , in
order to be able to extend  h continuously on @inV (in a way that the extension
of  h will coincide with the identity on the complement of B ).

The main difficulty is to manage to “slow down”  h without destroying the hyper-
bolicity. A key ingredient to do that will be the uniform control of distortion of the
holonomies of Gs

in (this is the reason why we need the holonomy of Gs
in along a compact

leaf to be conjugated to a homothety).

6.2.1 Distortion control of the holonomies

Lemma 6.8 Let F be an MS foliation of a compact surface S such that the holonomy
of each compact leaf is conjugated to a homothety. Let L be a filling MS sublamination
of F . Let G be a smooth foliation transverse to F .

Then there is C > 1 with the following property: Let I and J be two segments of
G–leaves whose interiors are contained in a connected component B of S n L and
whose endpoints are on the boundary of B . Let HI;J be the holonomy of the foliation
F from J to I . Then, for every x;y 2 J , one has

C�1 <
DHI;J .x/

DHI;J .y/
< C:

An important point is that the constant C depends neither on the connected component
B of S nL nor on the segments I or J .

Proof First notice that the existence of such an announced constant C does not
depend on the metric on the surface S (only the value of C will depend on the metric).
Therefore we may choose a metric on S such that the holonomy of every compact
leaf of F is a homothety. More precisely, denote by 
1; : : : ; 
p the compact leaves
of F . We choose a metric on S such that, for every i 2 f1; : : : ;pg, there is a tubular
neighborhood Ti of the compact leaf 
i such that the fibers of the tubular neighborhood
are segments of leaves of G , and such that the holonomy map from any fiber to any
other fiber is a homothety.

Since L is a filling MS lamination, every half-leaf of F spirals around some compact
leaf. It follows that the length of a segment of leaf of F which is disjoint from
T1[ � � � [Tp is uniformly bounded. As a consequence, there exists a constant ` with
the following property: Given a connected component B of S nL, and two segments
I and J of G–leaves as in the statement of Lemma 6.8, the holonomy map HI;J can
be decomposed as

HI;J DHI;I1
ıHI1;J1

ıHJ1;J ;
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where I1 and J1 are segments of G–leaves in B of S nL, and with endpoints on the
boundary of B such that HI;I1

and HJ1;J are homotheties, and the holonomy HI1;J1

is along F –leaf segments of length bounded by `. Notice that I1 and J1 may be equal
to I and J , respectively.

On the one hand, the distortion of HI;J coincides with the distortion of HI1;J1
(since

HI;I1
and HJ1;J are homotheties). On the other hand, the distortion of HI1;J1

is
uniformly bounded (because the holonomies of the foliation F along segments of leaves
of length bounded by ` have uniformly bounded derivative). Hence, the distortion of
HI;J is uniformly bounded.

6.2.2 Building  in on a large square

Definition 6.9 Let I be a compact segment of Gu
in –leaf contained in a connected

component B of @inV nLs . Given a diffeomorphism h of I such that the endpoints of
I are flat fixed points for h, we denote by  h the unique diffeomorphism of B such
that:
�  h is the identity out of the Gs

in –saturation of I .
�  h preserves (globally) the foliation Gs

in .
�  h preserves each leaf segment of Gu

in .
� The restriction of  h to I is h.

The aim of this subsection is to prove the following result:

Proposition 6.10 Given any � > 1 and any component B of @inV n Ls , there is a
segment I of Gu

in –leaf contained in B and a diffeomorphism hW I ! I such that the
endpoints of I are flat fixed points for h and such that, for any vector u tangent to Gu

in
at some point x 2 B , one has

k.� ı h/�.u/k> � � kuk:

Proposition 6.10 announces a control of the expansion on unit vectors tangent to Gu
in

at any point x of a connected component B of @inV nLs . We start by getting such a
control along one segment of Gu

in –leaf crossing B :

Lemma 6.11 Let B be a component of @inV nLs , and � be a leaf of the restriction
of Gu

in to B . Fix any constant A> 1. Then there is a diffeomorphism hW � ! � , equal
to the identity map outside of some compact part of � , such that for every vector u

tangent to Gu
in at some point x 2 � one has

k.� ı h/�.u/k>A � kuk:
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Proof Observe that � is a interval of bounded length, and �.�/ is an entire leaf
of Gu

out hence isometric to R. Furthermore, according to Lemma 5.14, the rate of
expansion of the crossing map � for vectors tangent to � tends to infinity close to the
ends of � . Therefore Lemma 6.11 is a direct consequence of the following general
lemma (whose proof is left to the reader).

Lemma 6.12 Let �W �0; 1Œ!R be a diffeomorphism whose derivative tends to C1
when t tends to 0 or 1. For any A> 1, there is a diffeomorphism z� which coincides
with � in a neighborhood of 0 and of 1 and whose derivative is everywhere larger
than A.

This completes the proof of Lemma 6.11

The following lemma allows us to compare the rate of expansion of the map � ı h

for vectors tangent to Gu
in at different points of @inV nLs .

Lemma 6.13 Let B be a connected component of @inV nLs and � be a leaf of the
restriction of Gu

in to B . There exists a constant ˛� > 0 with the following property:
for every diffeomorphism hW � ! � supported in a compact segment I � � and every
vectors u and v tangent to Gu

in at some points x;y 2 B such that x and y belong to
the same leaf of Gs

in and y 2 � , one has

k.� ı h/�.u/k

kuk
> ˛�

k.� ı h/�.v/k

kvk
:

Proof Denote by �x the leaf of the restriction of Gu
in to B containing x . Observe that

�.B/ is a connected component of @outV nLu , and † WD �.�/ and †x WD �.�x/ are
two leaves of Gu

out contained in �.B/. We denote by H�x!� W �x! � the holonomy
of the foliation Gs

in from �x to � . We denote by H†!†x
W †!†x the holonomy of

the foliation Gs
out from † to †x .

By construction, the restriction of  h to �x is conjugated to h by H�x!� . One
deduces that the restriction of � ı h to �x can be written as

(1) .� ı h/j�x
DH†!†x

ı .� ı h/j� ıH�x!�:

The following lemma gives a uniform upper bound for the derivative of H†!†x
:

Lemma 6.14 There exists a constant ˇ > 1 such that the holonomy of the foliation
Gs

out between two leaves of Gu
out in the same connected component @outV nLu has a

derivative which is bounded by ˇ .

Proof Just notice that Gs
out is a smooth foliation, and that the segment of leaves of

Gu
out contained in @outV nLu have uniformly bounded length.
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The following lemma gives a uniform lower bound for the derivative of H†!†x
:

Lemma 6.15 There is a constant ˇ� > 0 such that, for every x 2 B and any vector u

tangent to �x , one has
k.H�x!� /�.u/k> ˇ� � kuk:

Proof The component B is a strip whose ends converge to compact leaves whose
holonomies are conjugated to homotheties. Lemma 6.8 asserts that the holonomy of
the foliation Gs

in between two leaves of the restriction to B of Gu
in have uniformly

bounded distortion C . As a consequence, for every x 2 B , the derivative on the
holonomy H�x ;� is larger than `.�/=.C �`.�x//, where ` is the length. One concludes
by noticing that the length `.�x/ is uniformly bounded, with

inf
x2B

`.�/

C � `.�x/
> 0:

Putting together equality (1) and Lemmas 6.14 and 6.15, one easily sees that the constant
˛� WD ˇ� �ˇ

�1 satisfies the properties announced in Lemma 6.13. This completes the
proof of Lemma 6.13.

Proof of Proposition 6.10 One just needs to combine Lemmas 6.11 and 6.13, with a
constant A larger than ˛� ��.

6.2.3 Estimates for the derivative of  h

Corollary 6.16 Let B be a connected component of @inV nLs and I be a segment of
a Gu

in –leaf contained in B , and let h be a diffeomorphism of I such that the endpoints
of I are flat fixed points for h. We consider the diffeomorphism  h of B associated
with h (see Section 6.2.2). Let u be a vector tangent to Gu

in at some point y 2B . Then

C�1 inf
x2I
jDh.x/j � kuk � kD h.u/k � C sup

x2I

jDh.x/j � kuk;

where C is the bound on the distortion of the holonomy of foliation Gs
in given by

Lemma 6.8.

Proof Let �y be the leaf through y of the restriction of Gu
in to B . Notice that the

restriction of  h to �y is the conjugation of h by the holonomy of Gs
in . By Lemma 6.8,

the distortion of this holonomy is bounded by C . This yields the desired estimates.

6.2.4 “Slowing down” the diffeomorphisms  h close to the ends of the strip
Proposition 6.10 built a diffeomorphism  h of a connected component B of @inV nLs .
Recall that B is a strip bounded by two noncompact leaves of Ls which are asymptotic
to each other at both ends. Each end of the strip B spirals around a compact leaf of Ls .
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The diffeomorphism  h coincides with the identity outside of the Gs
in –saturation of

some compact interval I � B . Nevertheless,  h does not tend to the identity close to
the ends of B . This is the reason why we need to “slow down”  h close to the ends
of B .

We consider a compact leaf c of Ls (or equivalently of Gs
in ) contained in the closure

of B (ie there is one end of B spiraling around c ). We orient c so that its holonomy
is a linear contraction. Recall that Gu

in is a smooth foliation transverse to Gs
in . So, one

can choose a smooth tubular neighborhood O of c such that

� the boundary @O is transverse to Gs
in ,

� the fibers of O are segments of leaves of Gu .

We choose a parametrization of c by S1 DR=Z such that the universal cover of O

can be identified with R� Œ�1; 1�, where the lifts of the leaves of Gu
in are the segments

ftg� Œ�1; 1�. For every � 2 S1 and every t 2R, we will denote by H�;t the holonomy
of the foliation Gs

in from the fiber �u
�
Df�g�Œ�1; 1� to the fiber �u

�Ct
Df�Ctg�Œ�1; 1�.

More precisely, we choose a lift x� of � and consider the holonomy of the lifted foliation
Gs

in from the fiber fx�g � Œ�1; 1� to the fiber fx� C tg � Œ�1; 1�; the projection of this
holonomy does not depend on the lift x� . Notice that, for every t > 0 and every � , the
holonomy H�;t is defined on the whole fiber, and is a contraction.

Lemma 6.17 Let C be the constant given by Lemma 6.8. Let I be a segment of
Gu

in –leaf contained in �u
�
\B . We denote by It the image of I by the holonomy H�;t .

Let h be a diffeomorphism of I such that the endpoints of I are flat fixed points of h.
For every " > 0, there is a diffeomorphism  C of B , with the following properties:

�  C preserves each leaf �u of Gu
in .

�  C is equal to h on I .

�  C is the identity out of the Gs
in –saturation of I .

�  C coincides with  h outside O , and also coincides with  h DH�;�thH�1
�;�t

on I�t for every t > 0.

� For t > 0 large enough,  C is the identity map on It .

�  C.Gs
in/ is "–C 1 –close to Gs

in .

� The action of  C on vectors tangent to Gu
in is controlled by the derivative of h;

more precisely, for every vector u tangent to Gu
in ,

(2) C�1 inf
x2I
jDh.x/j � kuk � k. C/�.u/k � C � sup

x2I

jDh.x/j � kuk:
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Proof We consider the isotopy .ht /t2Œ0;1� joining h to the identity by convex sum, ie
ht .x/�xD t.h.x/�x/. Hence Dht .x/�1D t � .Dh.x/�1/. We consider a smooth
decreasing map � W R! Œ0; 1Œ such that �.t/D 1 for t < 0 and �.t/D 0 for t large
enough. We define  C as follows:

�  C D  h outside O .

�  C D Id outside the Gs
in –saturation of I .

�  C DH�;th�.t/H
�1
�;t

on It .

One easily checks that this definition is coherent. The diffeomorphism  C trivially
satisfies all the desired properties, except for the two last ones (the control of distance
between the foliations  C.Gs

in/ and Gs
in , and the control of the action of the derivative

of  C on the vectors tangent to the Gu
in –leaves).

To obtain proximity between the foliations  C.Gs
in/ and Gs

in , one just needs to notice
that

� the C 1 –distance between  C.Gs
in/ and Gs

in tends to 0 when supR jD�.t/j tends
to 0;

� we can choose the function � so that supR jD�.t/j is arbitrarily small.

So we are left to check the last property. For this purpose, we consider a vector u

tangent to a Gu
in –leaf at some point y 2 B . Assume that the point y belongs to O .

Hence, we have

k. C/�.u/k D k.H�;t ı h�.t/ ıH�1
�;t /�.u/k

D
kDH�;t .z2/k

kDH�;t .z1/k
� k1C �.t/ � .Dh.z1/� 1/k � kuk;

where z1 DH�1
�;t
.y/ and z2 D h.z1/. Using Lemma 6.8 and the fact that j�.t/j is less

than 1, this yields the desired inequality (2). If the point y is not in O , the inequality
follows from Corollary 6.16 (since  C D  h outside O ).

6.2.5 End of the proof of Proposition 6.2

Proof of Proposition 6.2 Fix � > 1 and " > 0. According to Lemma 5.14, there is
an adapted neighborhood of U in

�
of Ls in @inV , such that

(3) k.�/�.u/k� � �kuk for every vector u tangent to Gu
in at some point x 2U in

� nL
s:

The set @inV nU in
�

is contained in finitely many connected components B1; : : : ;Bm

of @inV nLs . Recall that each Bi is a strip bounded by two noncompact leaves of Ls

which are spiraling (at both ends) around some compact leaves of Ls .
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For i D 1; : : : ;m, we consider a homeomorphism hi associated with � and Bi by
Proposition 6.10. The map � ı hi

expands vectors tangent to Gu
in by a factor larger

than �:

(4) k.� ı hi
/�.u/k � � � kuk for every u tangent to Gu

in at some point x 2 Bi .

The only trouble is that  hi
cannot be extended as a diffeomorphism on the closure

of Bi . To overcome this problem, we will modify  hi
on the ends of the strip Bi

using Lemma 6.17.

Let m be a lower bound for the derivatives of all the hi . According to Corollary 6.16,
there exists a constant C such that, for every i ,

(5) k. hi
/�.u/k � C�1m � kuk for every u tangent to Gu

in at some point x 2 Bi .

Now, we use Lemma 5.10 and again Lemma 5.14 to get an adapted neighborhood
U in � U in

�
of Ls such that

(6) k.�/�.u/k � .� �C
2m�1/ � kuk

for every vector u tangent to Gu
in at some point x 2 @inV nU in:

By definition of adapted neighborhood, the complement of U in consists of finitely
many in-rectangles, and each connected component of @inV nLs contains at most one
of these in-rectangles. We denote by Ri the in-rectangle contained in the strip Bi . The
set @inV nU in

�
is contained in the interior of the union of the Ri . Up to fattening the in-

rectangles Ri (that is, up to shrinking the adapted neighborhood U in ) one may assume
that the Gu

in –sides of the in-rectangle Ri are contained in the tubular neighborhoods of
the compact leaves of Ls in the closure of Bi .

Applying Lemma 6.17 to both the Gu
in –sides of the rectangle Ri , one gets a diffeomor-

phism  i of the strip Bi such that:

�  i preserves every leaf of the restriction of Gu
in to Bi .

� The restriction of  i to the in-rectangle Ri is  hi
.

�  i coincides with the identity map out of a compact subset of Bi .

�  i expands vectors tangent to Gu
in by a factor larger than C�2m:

(7) k. i/�.u/k � C�2m � kuk for every u tangent to Gu
in at some point x 2 Bi .

� The C 1 –distance between the foliations . i/�.Gs
in/ and Gs

in is smaller than ".

We consider the diffeomorphism  in of @inV which coincides with  i on the strip
Bi and coincides with the identity map out of the union of the Bi . Let us check that
 in satisfies all the announced properties: it is the identity map on a neighborhood
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of Ls , preserves every leaf of Gu
in , and . in/�.Gs

in/ is "–C 1 –close to Gs
in . It remains

to control the action of derivative of � ı in on vectors tangent to Gu
in .

� On @inV n
S

i Bi , the diffeomorphism  in coincides with the identity. Therefore,
(3) and the inclusion of @inV n

S
i Bi in U in

�
imply that � ı in expands vectors

tangent to Gu
in by a factor larger than �.

� On Bi n U in D Ri , the diffeomorphism  in coincides with  hi
. Therefore,

(4) implies that � ı in expands vectors tangent to Gu
in by a factor larger than �.

� On Bi \U in , the diffeomorphism  in coincides with  i . Therefore (6) and (7)
imply that � ı in expands vectors tangent to Gu

in by a factor larger than �.

This completes the proof of Proposition 6.2 (and therefore also of Theorem 1.5).

6.3 Transitivity

The aim of this subsection is to prove Proposition 1.6.

Lemma 6.18 Every orbit of the Anosov flow given by Theorem 1.5 which is not
contained in V has its stable and unstable manifold cutting Lu and Ls , respectively.

Proof This orbit cuts @outV such that its stable manifold contains a leaf of the
foliation Gs

out , all of whose leaves cut Lu .

Proof of Proposition 1.6 Lemma 6.18 implies that every orbit 
 of the resulting
Anosov flow has its stable (resp. unstable) manifold cutting transversely the unstable
(resp. stable) manifold of a basic piece of the maximal invariant set ƒ in V . The
combinatorial transitivity means that, after gluing, all the basic pieces of ƒ are related
by a cycle, and hence belong to the same basic piece of the Anosov flow. Now the
stable and unstable manifolds of 
 cut the unstable and stable manifold of this basic
piece of the Anosov flow, so that 
 belongs to this basic piece. One deduces that the
whole manifold is a unique basic piece, which means that the flow is transitive.

Part II Applications of the gluing theorem

7 MS foliations and filling MS laminations

The purpose of this section is to investigate the geometry of filling MS laminations
on closed orientable surfaces. We will define the combinatorial types of a filling
MS lamination: these are simple combinatorial objects encoding the orientations of
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the compact leaves of the lamination. Then we will focus on the particular case of
MS foliations, and prove that every MS foliation is characterized up to topological
equivalence by any of its combinatorial types. This result will play a crucial role in the
proofs of Theorems 1.8, 1.10, 1.12 and 1.13.

All along this section, we will consider filling MS laminations on the torus T2 . Indeed,
up to diffeomorphism, T2 is the only closed, connected, orientable surface which carries
filling MS laminations. From now on, we assume that an orientation of T2 is fixed.

7.1 Combinatorial type of a filling MS lamination

Lemma 7.1 Let L be a filling MS lamination on T2 . The compact leaves of L,
regarded as nonoriented closed curves on T2 , are noncontractible and pairwise freely
homotopic.

Proof According to Lemma 3.17, L can be completed to an MS foliation F. Lemma 7.1
is a consequence of the Poincaré–Hopf theorem applied to the foliation F .

Lemma 7.1 allows us to compare the orientations of two compact leaves of a filling
MS lamination:

Definition 7.2 (coherently orientated compact leaves) Let L be a filling MS lamina-
tion on T2 , and 
 and 
 0 be some compact leaves of L, endowed with their contracting
orientations. We say that 
 and 
 0 are coherently oriented if they are freely homotopic,
when regarded as oriented closed curves.


 
 0 
 
 0

Figure 9: Compact leaves with coherent contracting orientations (left) and
compact leaves with incoherent contracting orientations (right)

Lemma 7.1 implies that the compact leaves of a filling MS lamination are “cyclically
ordered”; let us formalize this:
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Definition 7.3 (geometrical enumeration) Let L be a filling MS lamination of T2 ,
with n compact leaves. An enumeration 
0; : : : ; 
n�1 of the compact leaves of L is
called a geometrical enumeration if it satisfies the following properties:

� For iD0; : : : ; n�1, the leaves 
i and 
.iC1/ mod n bound a connected component
Ai of T2 n

S
k 
k .

� A1 is on the right-hand side11 of 
0 , with respect to the contracting orientation
of 
0 .

Definition 7.4 (combinatorial type) Let L be a filling MS lamination on T2 , and

0; : : : ; 
n�1 be a geometrical enumeration of the compact leaves of L. The combina-
torial type of the lamination L (associated with the enumeration 
0; : : : ; 
n�1 ) is the
map

� W f0; : : : ; n� 1g ! f�;Cg

defined as follows: �.i/DC if and only if the contracting orientations of 
i and 
0

are coherent.12

Remark 7.5 Let L be a filling MS lamination on T2 , with n compact leaves. There
are n possible geometrical enumeration of the compact leaves of L. To each geometrical
enumeration is associated a combinatorial type of L. These combinatorial types can
easily be deduced from one another.

7.2 MS foliations are characterized by their combinatorial types

Definition 7.6 (topological equivalence on oriented surfaces) Let L and L0 be lami-
nations on oriented surfaces S and S 0 . We will say that L and L0 are topologically
equivalent if there exists an orientation-preserving homeomorphism hW S ! S 0 such
that h�.L/D L0

Keep in mind that we only consider topological equivalences induced by orientation-
preserving homeomorphism. Now, let us focus our attention on MS foliations.

Proposition 7.7 An MS foliation on T2 is characterized up to topological equivalence
by any of its combinatorial types.

Proof Consider two MS foliations F1 and F2 on T2 . Fix some geometrical enu-
merations 
 1

0
; : : : ; 
 1

n�1 and 
 2
0
; : : : ; 
 2

n�1
of the compact leaves of F1 and F2 , and

denote by �1 and �2 the corresponding combinatorial types of F1 and F2 . Assume
that �1 D �2 . We will prove that F1 and F2 are topologically equivalent.

11The orientation of T2 provides an notion of local right-hand side of an oriented closed curve. To
include the particular case where L has a single compact leaf, we allow A0 to be on both sides of 
0 .

12In particular, �.0/ is always equal to C .
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If we endow the compact leaf 
 j
i with its contracting orientation, then the holonomy

of F i along 
 j
i is a contraction. Therefore, we can find an arbitrarily small tubular

neighborhood U
j
i of 
 j

i such that Fj is transverse to @U j
i . For j D 1; 2, we can

assume that the neighborhoods U
j
1
; : : : ;U

j
n are pairwise disjoint. We denote by A

j
i

the connected component of T2 n
S

i int.U j
i / which lies between U

j
i and U

j
iC1

. We
denote by @r U

j
i (resp. @`U j

i ) the boundary component of U
j
i which is also a boundary

component of A
j
i (resp. A

j
i�1

). The contracting orientation of the leaf 
 j
1

induces an
orientation of the closed curves @`U j

i and @r U
j
i . Note that @Aj

i D @
r U

j
i [ @

`U
j
iC1

.

Claim 7.8 For each i, there is an orientation-preserving homeomorphism  i W A
1
i !A2

i

which maps @r U 1
i and @`U 1

iC1
onto @r U 2

i and @`U 2
iC1

, respectively, and is such that
. i/�.F1/D F2 .

Proof Indeed, A
j
i is a compact annulus, disjoint from the compact leaves of Fj ,

whose boundary is transverse to Fj . Since every half-leaf of Fj accumulates on a
compact leaf, this implies that the restriction of Fj to A

j
i is topologically conjugate

to the vertical foliation on the annulus .R=Z/� Œ�1; 1�. The claim follows.

Claim 7.9 For each i, there is an orientation-preserving homeomorphism �i W U
1
i !U2

i

which coincides with  i on @r U 1
i and  i�1 on @`U 1

i and is such that ��.F1/D F2 .

Proof We endow 
 1
i (resp. 
 2

i ) with the orientation that is coherent with the con-
tracting orientation of 
 1

1
(resp. 
 2

1
). Since �1.i/D �2.i/, there are two possibilities:

either both the holonomies of 
 1
i and 
 2

i are contractions, or both the holonomies of

 1

i and 
 2
i are dilations. Assume, for example, that they both are contractions.

Choose an oriented arc ˛j
i in U

j
i , transverse to Fj and going from @`U

j
i to @r U

j
i ,

such that:
�  i.e.˛

1
i // D e.˛2

i / and  i.s.˛
1
iC1

// D s.˛2
iC1

/ .mod n/, where e.˛
j
i / and

s.˛
j
i / are the endpoints of the arc ˛j

i .
� e.˛1

i / and s.˛1
iC1

/ are in the same leaf of the restriction of F1 to A1
i .mod n/.

The arc ˛j
i is a cross-section for the restriction of Fj to U

j
i . Denote by f j

i the
first return map of the leaves of Fj on ˛j . The maps f 1

i and f 2
i are contractions.

Hence they are topologically conjugate by an orientation-preserving homeomorphism
hi W ˛

1
i ! ˛2

i . One deduces automatically that there exists an orientation-preserving
homeomorphism �i W U

1
i ! U 2

i which maps @`U 1
i and @r U 1

i onto @`U 2
i and @r U 2

i ,
respectively, with �i;�.F1/D F2 . Note that there is some freedom for the choice of
the conjugating homeomorphism hi : the restriction of hi to a fundamental domain of
the contraction f j

i can be chosen arbitrarily. As a consequence, �i can be chosen so
that it coincides with  i (resp.  i�1 ) on @r U 1

i (resp. @`U 1
i ). The claim is proved.
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The homeomorphisms �1;  1; : : : ; �n;  n provided by the two claims can be glued
together to obtain a global orientation-preserving homeomorphism �W T2! T2 such
that ��.F1/D F2 . This completes the proof of Proposition 7.7.

Remark 7.10 Proposition 7.7 is false for filling MS laminations: by removing noncom-
pact leaves to a given filling MS lamination, one can easily find infinitely many filling
MS laminations with the same combinatorial type which are pairwise not topologically
equivalent. Nevertheless, every filling MS lamination L can be embedded in an MS
foliation F with the same compact leaves as L, the combinatorial types of F are the
same as those of L, and F is characterized up to topological equivalence by these
combinatorial types.

Definition 7.11 (zipped Reeb lamination/foliation) A zipped Reeb lamination (resp.
foliation) is a filling MS lamination (resp. foliation) on T2 with a single compact leaf.
See Figure 10.

Example 7.12 Consider the vector field X on R2 defined by

X.x;y/ WD sin.�x/
@

@x
C cos.�x/

@

@y
:

The orbits of this vector field define a foliation on R2 . This foliation is invariant under
the standard action of Z2 . Therefore, it induces a foliation on T2 D R2=Z2 . One
easily checks that this a zipped Reeb foliation.

Figure 10: A zipped Reeb lamination

Definition 7.13 Let F and F 0 be MS foliations on T2 . Suppose that F 0 has one more
compact leaf than F , and suppose that there is a combinatorial type � W f1; : : : ; ng !
fC;�g of F and a combinatorial type � 0W f1; : : : ; nC 1g ! fC;�g of F 0 such that
� 0jf1;:::;ng D � . We say that the foliation F 0 is obtained by adding a compact leaf
to F .
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Figure 11: Adding compact leaves to MS foliations

The two following statements are immediate consequences of Proposition 7.7:

Corollary 7.14 All zipped Reeb foliations are topologically equivalent.

Corollary 7.15 Up to topological equivalence, every simple foliation on T2 can be
obtained by adding inductively a finite number of compact leaves to a zipped Reeb
foliation.

7.3 Contracting orientation versus dynamical orientation

Consider a hyperbolic plug .U;X /. The compact leaves of the laminations Ls
X

and
Lu

X
can be equipped with their contracting orientation. We will define another natural

orientation for these compact leaves.

Definition 7.16 (dynamical orientation) Let 
 be a compact leaf of the lamina-
tion Lu

X
. According to (the proof of) Proposition 3.8, there exists a periodic orbit O

of X such that 
 is a connected component of W u.O/\ @outU . The orbit O has a
natural orientation defined by the vector field X .

� If O has positive multipliers, then W u.O/ is a cylinder, and both 
 and O are
noncontractible closed curves on this cylinder. The dynamical orientation of 

is the orientation for which 
 is freely homotopic to the orbit O endowed with
its natural orientation, in the cylinder W u.O/. See Figure 12.

� If O has negative multipliers, then W u.O/ is a Möbius band. The dynamical
orientation of 
 is the orientation for which 
 is freely homotopic to two times
the orbit O endowed with its natural orientation, in the cylinder W u.O/.

We define similarly the dynamical orientation of a compact leaf of Ls
X

.

Proposition 7.17 Let .U;X / be a hyperbolic plug. If 
 is a compact leaf of Lu
X

, the
contracting orientation and the dynamical orientation of 
 coincide. If 
 is a compact
leaf of Ls

X
, the contracting orientation and the dynamical orientation of 
 are opposite.
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Proof Let ƒ be the maximal invariant set of .U;X /. Recall that Lu
X
DW u.ƒ/\@outU

and Ls
X
DW s.ƒ/\@inU . The proposition is a consequence of the definitions together

with the following fact: if O is a periodic orbit of X , the holonomy of the two-
dimensional lamination W u.ƒ/ along O (where the orbit O is equipped with its
natural orientation induced by X ) is a contraction, and the holonomy of the two-
dimensional lamination W s.ƒ/ along O is a dilation.

@outU

O

W u.O/


 with its
dynamical
orientation

A leaf of W u.ƒ/

@outU
Lu

X

O




Figure 12: Dynamical orientation (left) and proof of Proposition 7.17 (right)

7.4 Simplification of an MS foliation

The following elementary proposition provides a kind of “normal form” for a filling
MS lamination of T2 .

Proposition 7.18 Let L be a filling MS lamination of class C 1 on the torus T2 ,

0; : : : ; 
n�1 a geometrical enumeration of its compact leaves and � W f
0; : : : ; 
n�1g!

fC;�g a combinatorial type. Write �i WD �.
i/ 2 fC;�g. We endow T2 D R2=Z2

with its standard euclidean coordinates, and we assume that 
0 is isotopic to f0g �S1 .
Then there is a diffeomorphism 'W T2! T2 isotopic to the identity map such that the
lamination '�.L/ has the following properties:

� '.
i/D
˚

i
n

	
�S1 .

� On the annulus
�

i
n
; iC1

n

�
�S1 , the leaves of the lamination '�.L/ are the graphs

of C 1 functions from
�

i
n
; iC1

n

�
to S1 ; moreover, the derivatives of these functions are

(1) positive on the whole interval
�

i
n
; iC1

n

�
if �i < 0 and �iC1 > 0;

(2) negative on the whole interval
�

i
n
; iC1

n

�
if �i > 0 and �iC1 < 0;

(3) positive on
�

i
n
; i

n
C

1
2

�
and negative on

�
i
n
C

1
2
; iC1

n

�
if �i < 0 and �iC1 < 0;

(4) negative on
�

i
n
; i

n
C

1
2

�
and positive on

�
i
n
C

1
2
; iC1

n

�
if �i > 0 and �iC1 > 0.
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Proposition 7.18 can be thought of as a kind of “differentiable version” of Proposition 7.7
(indeed, Proposition 7.7 shows that an MS foliation is fully characterized up to topolog-
ical equivalence by its combinatorial types, whereas Proposition 7.18 shows that a C 1

filling MS lamination is partially characterized up to differentiable equivalence by its
combinatorial types).

Idea of the proof The proof of Proposition 7.18 roughly follows the same scheme as
that of Proposition 7.7. One first embeds L in an MS foliation F , using Lemma 3.19.
Then one chooses a diffeomorphism mapping the compact leaf 
i on

˚
i
n

	
� S1 for

every i . To get the normal form on a small tubular neighborhood Ui of the compact
leaf 
i , one uses the fact that a foliation of a surface is C 1 –equivalent on a neighborhood
of a compact leaf to the suspension of the holonomy of this compact leaf. To conclude,
it remains to get the announced normal form on a compact annulus Ai lying between
the tubular neighborhoods Ui and UiC1 ; this is an easy task since the restriction of F
to the compact annulus Ai is a trivial foliation by segments joining one boundary
component of Ai to the other one. We leave the details to the reader.

8 The “blow-up, excise and glue surgery”

The purpose of this section is to describe the “blow-up, excise and glue surgery”
which was sketched in the introduction. As immediate applications, we will prove
Theorems 1.8 and 1.9.

8.1 DA bifurcations

In his seminal paper [28], S Smale constructed one of the first examples of surface
diffeomorphism displaying a one-dimensional hyperbolic attractor. This diffeomor-
phism was obtained by bifurcating a linear Anosov diffeomorphism of T2 . Smale’s
construction is known as a DA bifurcation.13 Since then DA bifurcations have been
generalized to various contexts, including Axiom A vector fields in dimension 3 (a
good reference for this purpose is Ghrist, Holmes and Sullivan [18, Section 2.2.2]).

Given some hyperbolic plug .U;X /, one can build another hyperbolic plug .U 0;X 0/
by performing a DA bifurcation on a periodic orbit of X and excising a small tubular
neighborhood of this orbit. We shall describe this operation in detail.

8.1.1 Attracting DA bifurcation on a periodic orbit with positive multipliers We
consider a hyperbolic plug14 with filling MS laminations .U;X /, and a periodic orbit

13“DA” stands for “derived from Anosov”.
14Note that the entrance boundary @inU and/or the exit boundary @outU can be empty.
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O
O

Figure 13: An attracting DA bifurcation

O of the vector field X . We assume that O has positive multipliers. To avoid dealing
with some particular cases, we assume moreover that O has no free separatrix.15 We
denote by ƒ the maximal invariant set of .U;X /.

The vector field X is structurally stable. Therefore, up to perturbing X within its
topological equivalence class, we can assume that X is C 1 –linearizable on a neigh-
borhood of the periodic orbit O . This means that there exists a coordinate system
.x;y; �/W V ! Œ�1; 1�� Œ�1; 1��R=Z, defined on a neighborhood V � int.U / of the
orbit O , such that

X.x;y; �/D �x
@

@x
C�y

@

@y
C

@

@�

for some constants � < 0< �. For 0< � < 1, we consider the vector field X which
vanishes on U nV , and which is defined on V by

Y�.x;y; �/D�2�y�
�

x

�

�
�
�

y

�

�
@

@y
;

where �W Œ�1; 1�! RC is the bump function defined by �.t/D .1� t2/21Œ�1;1�.t/.
Then we consider the vector field

X 0 WDX CY�:

A straightforward computation shows that O is an attracting hyperbolic periodic orbit
for the vector field X 0 . We say that X 0 is derived from X by an attracting DA
bifurcation on the orbit O .

15Recall that a stable separatrix of O is a connected component of W s
X
.O/nO . Since O has positive

multipliers, W s
X
.O/ is a cylinder and O has two stable separatrices. A stable separatrix is said to be free

if it is disjoint from the maximal invariant set of .U;X / . Free unstable separatrices are defined in the
same way. Note that the assumption “O has no free separatrix” is not very restrictive since it is satisfied
by all but finitely many periodic orbits. See the proof of Proposition 3.8.
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Now we pick a (small) real number � > 0, and we consider the solid torus T � V

defined by
T WD f.x;y; �/ j x2

Cy2 < �2
g:

Obviously, T is a tubular neighborhood of the periodic orbit O . We assume that �
is small enough that the two following properties hold: T is included in the basin of
attraction (for X 0 ) of O , and X 0 is transverse to @T . We consider the manifold with
boundary

U 0 WD U nT

endowed with the vector field X 0 . Note that X 0 is transverse to @U 0 (since X 0 is
transverse to @T and X 0 D X on @U 0 n @T D @U ). Hence .U 0;X 0/ is a plug. The
following proposition summarizes the relationships between the plugs .U;X / and
.U 0;X 0/:

Proposition 8.1 The plug .U 0;X 0/ satisfies the following properties:

(1) U 0 D U nT , where T is a tubular neighborhood of a periodic orbit of X .

(2) @inU 0 D @inU and @outU 0 D @outU [ @T .

Moreover, if � is small enough:

(3) .U 0;X 0/ is a hyperbolic plug: the maximal invariant set ƒ0 of .U 0;X 0/ is a
hyperbolic set.

(4) .X 0/jƒ0 is a topological extension of X jƒ : there exists a continuous onto map
� W ƒ0!ƒ inducing a semiconjugacy between a reparametrization of the flow
of X 0 and the flow of X . Moreover, � is “almost one-to-one”: the set ��1.x/

is a single point for every x 2ƒ nW s
X
.O/.

(5) If .U;X / is a transitive plug, then so is .U 0;X 0/.

(6) Ls
X 0

is a filling MS lamination, with the same combinatorial types as Ls
X

.

(7) Lu
X 0
\ @outU is a filling MS lamination, topologically equivalent to Lu

X
.

(8) Lu
X 0
\@T is a filling MS lamination with two coherently oriented compact leaves

(Figure 14).

Proof Let us start by setting some notations. Recall that the periodic orbit O cor-
responds to the circle .x D y D 0/ in the .x;y; �/ coordinate system. Recall that
O is a saddle hyperbolic orbit for the vector field X , and an attracting hyperbolic
orbit for the vector field X 0 . We denote by B WDW s

X 0;V
.O/ the basin of attraction

of O for the vector field X 0 . We denote by O˙ the circle .x D 0;y D˙ı/, where
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ı is the unique positive solution of the equation �.y/D 1
2

. Straightforward compu-
tations show that O� and OC are saddle hyperbolic periodic orbits for the vector
field X 0 . One can easily check that, in the .x;y; �/ coordinate system, the local stable
manifolds W s

X 0;V
.O�/ and W s

X 0;V
.OC/ are “horizontal” graphs, and the local basin

W s
X 0;V

.O/ is the open band between the graphs W s
X 0;V

.O�/ and W s
X 0;V

.OC/. It
follows that the accessible boundary of B is precisely W s

X 0
.O�/[W s

X 0
.OC/. We set

yB WD B [W s
X 0
.O�/[W s

X 0
.OC/

Items (1) and (2) follow immediately from the construction of U 0 and X 0 .

Items (3) and (4) are consequences of well-known properties of DA bifurcations. Let us
give more details. Using classical techniques of hyperbolic theory, one can prove that,
for � small enough, the maximal invariant set ƒ0 of .U 0;X 0/ is a saddle hyperbolic
set. The very rough idea is the following. Denote by W the support of the vector
field Y� D X 0 � X , and observe that W is contained in a solid torus which gets
thinner and thinner when � goes to 0. Therefore, when � is very small, every orbit
spends a long time outside W between two visits of W . Therefore, the possible loss
of hyperbolicity in W is counterbalanced by the hyperbolicity outside W . See [18,
Section 2.2.2] for a detailed proof. Moreover, one can prove that the vector field X 0

is a topological extension of the vector field X : there exists a continuous onto map
� W U ! U , inducing a semiconjugacy between a reparametrization of the flow of X 0

and the flow of X . Moreover, the map � admits a concrete description: it “squashes
yB onto W s

X
.O/”. More precisely,

� � maps yB on W s
X
.O/, and maps U n yB on U nW s

X
.O/;

� � W U n yB! U nW s
X
.O/ is a homeomorphism;

� for x 2 W s
X
.O/, the set ��1.x/ is an arc crossing yB from W s

X 0
.O�/ to

W s
X 0
.O�/.

In particular, the restriction � W ƒ0! ƒ is onto, and � W ƒ0 n yB ! ƒ nW s
X
.O/ is a

homeomorphism. See again [18, Section 2.2.2] for a detailed proof. Items (3) and (4)
follow.

Let us prove (5). Assume that .U;X / is a transitive plug. By definition, this means
that ƒ is a transitive hyperbolic set for X . Note that ƒ is not a single orbit since we
have assumed that the orbit O has no free separatrix. Hence, we can find an orbit Q

of X such that Q�ƒ nW s
X
.O/ and such that Q is dense in ƒ. We have seen above

that � W ƒ0 n yB!ƒ nW s
X
.O/ is an homeomorphism. It follows that the set ƒ0 n yB is

topologically transitive for the vector field X 0 . On the other hand, since O has no free
unstable separatrix, W s

X
.O/ is accumulated on both sides by leaves of W s

X
.ƒ/nW s

X
.O/.

Using the properties of the map � , it follows that neither W s
X 0
.O�/ nor W s

X 0
.OC/ is
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isolated in W s
X 0
.ƒ0/. In other words, ƒ0 n yB Dƒ0 n .W s

X 0
.O�/[W s

X 0
.OC// is dense

in ƒ0 . Hence, ƒ0 is transitive (for the vector field X 0 ). By definition, this means that
.U 0;X 0/ is a transitive plug.

Let us turn to (6). Recall that the orbit O has no free separatrix. According to the proof
of Proposition 3.8, this implies that W s

X
.O/ does not contain any compact leaf of the

lamination Ls
X

. The map � induces a homeomorphism from Ls
X 0 n
yB to Ls

X
nW s

X
.O/.

Moreover, if 
 is a (noncompact) leaf of Ls
X
\W s

X
.O/, then ��1.
 / is a strip, bounded

by two (noncompact) leaves of Ls
X 0

, whose interior is contained in the basin B (hence
disjoint from Ls

X 0
). Item (6) follows.

Now we prove (7). The surface @outU is disjoint from the basin B since every orbit
of X 0 in B must accumulate on O in the future, and therefore must exit from U 0 by
crossing @T . The surface @outU is also disjoint from the stable manifolds W s

X 0
.O�/

and W s
X 0
.OC/ (since every orbit in W s

X 0
.O�/ and W s

X 0
.OC/ accumulates on OC

and O� in the future, and therefore remains in U 0 forever). Hence, @outU is disjoint
from yB D B tW s

X 0
.O�/ tW s

X 0
.O�/. But we know that � is a homeomorphism

on the complement of yB . Hence, � induces a topological equivalence between the
laminations Lu

X 0
\ @outU and Lu

X
\ @outU D Lu

X
.

We are left to prove (8). Let 
˙ be the circle fx D 0; y D ˙�g in the .x;y; �/
coordinate system. Let WC be the cylinder fx D 0; y > 0g and W� be the cylinder
fx D 0; y > 0g. It is easy to check that the cylinder W˙ is contained in W u

X 0
.O˙/. It

follows that the circles 
C and 
� are compact leaves of the lamination Ls
X 0
\ @T .

On the other hand, let 
 be a compact leaf of Ls
X 0
\ @T . According to the proof of

Proposition 3.8, 
 DW \@T , where W is a free unstable separatrix of a periodic orbit
P �ƒ0 . Since @T is contained in the basin B , the separatrix W must be contained
in B , and the orbit P must be contained in the accessible boundary of B . But OC and
O� are the only periodic orbits in the accessible boundary of B . Hence, the separatrix
W must be equal to either WC or W� . As a further consequence, the compact leaf

 must be equal to either 
C or 
� . So we have proved that the circles 
C and 
�
are the only compact leaves of the lamination Lu

X 0
\ @T . For later use, note that these

compact leaves are not homotopic to 0 in the torus @T .

By assumption, the periodic orbit O has no free stable separatrix. Hence W u
X
.O/ is

accumulated on both sides by leaves of W u
X
.ƒ/. Using the properties of the map � ,

it follows that W u
X 0
.O˙/ is accumulated on both sides by leaves of W u

X 0
.ƒ0/. As a

further consequence, the compact leaf 
˙ is accumulated on both sides by noncompact
leaves of Ls

X 0
\ @T .

The surface @T is a torus, no compact leaf of Ls
X 0
\ @T is homotopic to 0, and every

compact leaf of Ls
X 0
\ @T is accumulated on both sides by noncompact leaves of
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=

Figure 14: The exit lamination Lu
X 0
\ @T

Ls
X 0
\@T . It follows that every connected component of @T nLs

X 0
is a strip bounded by

two leaves of Ls
X 0

which are asymptotic to each other at both ends. Hence, Ls
X 0
\ @T

is a filling MS lamination.

Using explicit formula for the vector field X 0 , one easily checks that the dynamical
orientation of the compact leaf 
˙ coincides with the orientation induced by the vector
field @

@�
. According to Proposition 7.17, the attracting orientation of the leaf 
˙

coincides with its dynamical orientation. It follows that the attracting orientation of 
�
and 
C are coherent. The proof is complete.

Remark 8.2 For later use, we note that, in the .x;y; �/ coordinate system, the two
compact leaves of the lamination Lu

X 0
\@T are the circles fxD 0; yD˙�g. Moreover,

the attracting orientation of these leaves is the orientation induced by the vector field @
@�

(see the proof of Proposition 8.1).

8.1.2 Attracting DA bifurcation on orbits with negative multipliers In the preced-
ing subsection, the orbit O was assumed to have positive multipliers. Actually, we can
also make an attracting DA bifurcation on a periodic orbit O with negative multipliers.
In this case, the stable manifold W s

X
.O/ is a Möbius band, and Proposition 8.1 must

be replaced by the following statement:

Proposition 8.3 The same as Proposition 8.1, except for (8), which is replaced by:

(8 0 ) Lu
X 0
\@T is a filling MS lamination with a single compact leaf, ie a zipped Reeb

lamination.

8.1.3 Repelling DA bifurcations Instead of an attracting DA bifurcation, it is also
possible to make repelling DA bifurcation on a periodic orbit O . This bifurcation
creates a repelling periodic orbit, instead of an attracting one. As in Section 8.1.1, one
can excise a tubular neighborhood of this repelling periodic orbit, and get a hyperbolic
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plug .U 0;X 0/. The properties of this hyperbolic plug are analogous to those listed in
Propositions 8.1 and 8.3, after having exchanged the roles of the stable and the unstable
directions, and the roles of the entrance and exit boundaries. Remark 8.2 must replaced
by the following statement:

Remark 8.4 In the .x;y; �/ coordinate system, the compact leaves of the lamination
Ls

X 0
\ @T are the circles fx D ˙�; y D 0g. Moreover, the attracting orientation of

these leaves coincides with the orientation induced by the vector field � @
@�

.

8.2 The “blow-up, excise and glue surgery”

We will now explain what we call the “blow-up, excise and glue surgery”, and prove
Theorem 1.8. Recall that this theorem states that, for a given transitive Anosov vector
field X on a closed orientable 3–manifold M , there exists a transitive Anosov vector
field Z on a closed orientable 3–manifold N such that “the dynamics of Z is richer
than those of X ”. By such we mean that there exists a proper compact invariant set
ƒ¨ N and a continuous surjective map � W ƒ!M such that � ıX t DZt ı� for
every t 2R.

We shall need the following lemma:

Lemma 8.5 Let L1 and L2 be filling MS laminations on T2 with the same number
of compact leaves. Assume that all the compact leaves of L1 and L2 are coherently ori-
ented (see Definition 7.2). Then there exists an orientation-preserving diffeomorphism
�W T2! T2 such that ��.L1/ is strongly transverse to L2 . If L1 D L2 , then � can
be chosen isotopic to the identity.

Proof Let n be the number of compact leaves of L1 and L2 . By Proposition 7.18,
there exist two diffeomorphisms �1; �2W T

2! T2 such that, for i D 1; 2:

� The compact leaves of the lamination .�i/�.Li/ are the vertical circles
˚

i
n

	
�S1

for i D 0; : : : ; n� 1.

� In the open annulus
�

i
n
; iC1

n

�
� S1 , the leaves of the lamination .�i/�.Li/

are the graphs of C 1 functions from
�

i
n
; iC1

n

�
to S1 ; moreover, the deriva-

tives of these functions are strictly positive on
�

i
n
; i

n
C

1
2

�
, strictly negative on�

i
n
C

1
2
; iC1

n

�
and vanish precisely on

˚
i
n
C

1
2

	
.

Let � be the diffeomorphism of T2 given by  0.x;y/ D
�
x C 1

2n
;y
�
. Let � WD

.�2/
�1 ı  ı �1 . One easily checks that ��.L1/ is strongly transverse to L2 . If

L1 D L2 , then one may take �1 D �2 , which implies that � is isotopic to the identity.
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We begin with a transitive Anosov vector field X on a closed three-manifold M . We
consider two distinct periodic orbits O and O 0 of X , both of which have positive
multipliers.16 We proceed as follows:

Step 1 (blow-up) We consider a vector field X 0DX 0� on M , derived from X by an
attracting DA bifurcation on the orbit O (see Section 8.1). Note that O is an attracting
hyperbolic periodic orbit for this new vector field X 0 .

Step 2 (excise) As in Section 8.1, we consider a tubular neighborhood T of the
attracting orbit of O 0 such that T is included in the basin of attraction of O 0 , and such
that X 0 is transverse to @T . We set U 0 WDM n T . Clearly, .U 0;X 0/ is a repelling
hyperbolic plug with @outU 0 D @T . According to Proposition 8.1(8), Lu

X 0
is a filling

MS lamination with two coherently oriented compact leaves. We denote by ƒ0 the
maximal invariant set of X 0 . According to Proposition 8.1(4), there is a continuous onto
map � W ƒ0!M inducing a semiconjugacy between a reparametrization of the flow
of X 0 and the flow of X . Since O 0 ª W s

X
.O/, the preimage ��1.O 0/ is a periodic

orbit of X 0 . In other words, we can (and we will) regard O 0 as an orbit of X 0 .

Step 1 0 (blow-up) Now, we consider a vector field X 00 on U 0 , derived from X 0 by
a repelling DA bifurcation on the orbit O 0 . Note that O 0 is a repelling hyperbolic
periodic orbit for X 00 .

Step 2 0 (excise) We consider a tubular neighborhood T 0 of the repelling orbit
of O 0 such that T 0 is included in the basin of repulsion of O 0 , and such that X 00 is
transverse to @T 0 . We set U 00 WD U 0 nT 0 . Then .U 00;X 00/ is a hyperbolic plug with
@outU 00D @outU 0D @T and @inU 00D @T 0 . We denote by ƒ00 the maximal invariant set
of X 0 . According to Proposition 8.1(6), the lamination Lu

X 00
is a filling MS lamination

with the same combinatorial type as Lu
X 0

, ie Lu
X 00

has two coherently oriented compact
leaves. According to Proposition 8.1(8), the lamination Ls

X 00
is also a filling MS lami-

nation with two coherently oriented compact leaves. According to Proposition 8.1(4),
there is a continuous onto map � 0W ƒ00 ! ƒ0 inducing a semiconjugacy between a
reparametrization of the flow of X 00 and the flow of X 0 .

Step 3 (glue) The laminations Ls
X 00

and Lu
X 00

satisfy the hypothesis of Lemma 8.5.
Hence we can find an orientation-preserving diffeomorphism of �W @outU 00! @inU 00

such that ��.Lu
X 00
/ is strongly transverse to Ls

X 00
. By Proposition 8.1, .U 00;X 00/ is a

hyperbolic plug. Moreover, since X is transitive, the maximal invariant set of .U 00;X 00/
is also transitive, and, therefore, .U 00;X 00/ is a saddle hyperbolic plug. We consider the
closed manifold N WDU 00=� and the vector field Z induced by X 00 on N . According
to Theorem 1.5, up to modifying X 00 by a topological equivalence and � by a strongly
transverse isotopy, Z is Anosov.

16The surgery can also be made if O and O 0 both have negative multipliers, but we will not need it.
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We say that the Anosov vector field .N;Z/ are derived from the Anosov vector field
.M;X / by a “blow-up, excise and glue surgery”.

Lemma 8.6 If X is transitive, then so is Z .

Proof Assume that X is transitive. According to Proposition 8.1(5), it follows that
X 00jƒ00 is also transitive. Now, using Proposition 1.6, we deduce that Z is transitive.

Lemma 8.7 The dynamics of the new vector field Z is “richer” than the dynamics
of the initial vector field X . More precisely, there exists a compact subset ƒ00 of N ,
which is invariant under the flow of Z , and a continuous onto map � 0 ı� W ƒ00!M

inducing a semiconjugacy between some reparametrization of the flow of Zjƒ00 on the
flow of X .

Proof The set ƒ00 and the maps � 0 and � were defined above. Observe that ƒ00 can
indeed be seen as a subset of N , since ƒ00 � int.U 00/�N . Moreover, the vector field
Z coincides with X 00 on ƒ00 . The lemma follows from the properties of the maps �
and � 0 .

Proof of Theorem 1.8 The theorem immediately follows from the construction above
and Lemmas 8.6 and 8.7.

8.3 A transitive and a nontransitive Anosov vector field on the same
manifold

The “blow-up, excise and glue” surgery described in the previous paragraph admits
many variants. We shall use one of these variants to prove Theorem 1.9, ie to construct
a closed three-manifold N supporting both a nontransitive Anosov vector field Y and
a transitive vector field Z .

Proof of Theorem 1.9 We start with a transitive Anosov vector field X on a closed
manifold M . We pick two periodic orbits O and O 0 of X with positive multipliers.
Then we consider four vector fields X1; : : : ;X4 on M which are derived from X by
DA bifurcations on O and O 0 . More precisely:

� X1 is obtained by an attracting DA bifurcation on O and an attracting DA
bifurcation on O 0 .

� X2 is obtained by a repelling DA bifurcation on O and a repelling DA bifurcation
on O 0 .

� X3 is obtained by an attracting DA bifurcation on O and a repelling DA bifur-
cation on O 0 .

� X4 is obtained by a repelling DA bifurcation on O and a attracting DA bifurca-
tion on O 0 .
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Observe that O is an attracting orbit for X1 and X3 and a repelling periodic orbit
for X2 and X4 , whereas O 0 is an attracting orbit for X1 and X4 and a repelling
orbit for X2 and X3 . We can find some tubular neighborhoods T and T 0 of O

and O 0 , respectively, such that T and T 0 are contained in the basins17 of O and O 0 ,
respectively, and such that the four vector fields X1; : : : ;X4 are transverse to @T
and @T 0 . We consider the manifold with boundary U WDM n .int.T /[ int.T 0//. Note
that .U;X1/, .U;X2/, .U;X3/ and .U;X4/ are hyperbolic plugs (Proposition 8.1(3)).

We construct a nontransitive Anosov vector field Y by gluing the hyperbolic plugs
.U;X1/ and .U;X2/. The periodic orbits O and O 0 are attracting for X1 . Hence
.U;X1/ is a repelling hyperbolic plug: @out

X1
U D @U D @T [ @T 0 . On the other hand,

the periodic orbits O and O 0 are repelling for X2 . Hence, .U;X2/ is an attracting
hyperbolic plug: @in

X2
U D @U D @T [@T 0 . According to Proposition 8.1(8), Ls

X1
\@T ,

Ls
X1
\ @T 0 , Lu

X2
\ T and Lu

X2
\ T 0 are MS foliations with two coherently oriented

compact leaves. Lemma 8.5 provides an orientation-preserving diffeomorphism

�W @out
X2

U D @U ! @in
X1

U D @U

such that ��.Lu
X1
/ is transverse to Ls

X2
. We consider the closed manifold N� WD

.U tU /=� . The vector fields X1 and X2 induce a vector field Y on N� . According
to Proposition 1.1, .N� ;Y / is a hyperbolic plug. Since @N� D∅, this means that Y

is an Anosov vector field. Note that Y is not transitive, since .N� ;Y / was constructed
by gluing an attracting plug and a repelling plug.

Now, we construct a transitive Anosov vector field Z by gluing the hyperbolic plugs
.U;X3/ and .U;X4/. Recall that O is an attracting orbit for X3 and a repelling orbit
for X4 , whereas O 0 is a repelling orbit for X3 and an attracting orbit for X4 . Therefore,
@in

X3
U D @out

X4
U D @T 0 and @out

X3
U D @in

X4
U D @T . According to Proposition 8.1(8),

Ls
X3

, Lu
X3

, Ls
X4

and Lu
X4

) are filling MS laminations with two coherently oriented
compact leaves. Lemma 8.5 provides an orientation-preserving diffeomorphism

 W .@out
X3

U t @out
X4

U /D @U ! .@in
X3

U t @in
X4

U /D @U

such that  �.Lu
X3
/ is strongly transverse to Ls

X4
on @T , and  �.Lu

X4
/ is strongly

transverse to Ls
X3

on @T 0 . We consider the closed manifold N WD .U tU /= . The
vector fields X3 and X4 induce a vector field Z on N . According to Theorem 1.5,
up to perturbing X3 and X4 by a small topological equivalence and  by a strongly
transverse isotopy, we can assume that Z is an Anosov vector field.

Let us prove that the vector field Z is transitive. Since the initial Anosov vector
field X is transitive, Proposition 8.1(5) ensures that the maximal invariant set ƒ3

17With respect to each of the four vector fields X1; : : : ;X4 .

Geometry & Topology, Volume 21 (2017)



1906 François Béguin, Christian Bonatti and Bin Yu

.U;X1/ .U;X2/ .U;X3/ .U;X4/

Y Z

@T

@T

@T 0

@T 0

@T

@T

@T 0

@T 0

Figure 15: Construction of the Anosov vector fields Y and Z

of .U;X3/ and the maximal invariant set ƒ4 of .U;X4/ are both transitive. More-
over,  �.Lu

X4
/ D  �.W

u
X4
.ƒ4// \ @

out
X4

U intersects Ls
X3
D W s

X3
.ƒ3/ \ @

in
X3

U , and
 �.Lu

X3
/ D  �.W

u
X3
.ƒ3// \ @

out
X3

U intersects Ls
X4
D W s

X4
.ƒ4/ \ @

in
X4

U . Hence,
Proposition 1.6 guarantees that Z is transitive.

The proof of Lemma 8.5 together with Remarks 8.2 and 8.4 imply that the maps �
and  can be chosen isotopic to �Id on each of the two connected components of
@U ' T2 tT2 . As a consequence, the gluing maps � and  can be chosen in such
a way that the manifolds N� and N are diffeomorphic. As a further consequence,
Y and Z can be regarded as vector fields on the same manifold N . The proof is
complete.

9 Attractors with prescribed entrance foliation

Let .V;X / be an oriented plug (ie a hyperbolic plug such that V is oriented). Then the
entrance boundary @inV inherits a canonical orientation, characterized by the following
property: if .e1; e2/ is a basis of the tangent space Tp@

inV of @inV at some point p ,
then .e1; e2/ is a direct basis of Tp@

inV if and only if .e1; e2;X.p// is a direct basis
of TpV . The canonical orientation of the exit boundary @outV is defined similarly.

Definition 9.1 Let F be an MS foliation on a closed oriented surface S and .U;X /
be an oriented attracting hyperbolic plug. If the entrance foliation Ls

X
is topologically

equivalent to F , then we say that F is realized by the plug .U;X /.

The purpose of the present section is to prove Theorem 1.10, which states that every MS
foliation (on a closed oriented surface) can be realized by a transitive attracting hyper-
bolic plug. For pedagogical results, we will first prove a weaker result (Proposition 9.2).
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9.1 Nontransitive attracting plugs with prescribed entrance foliation

As a first step towards Theorem 1.10, we will prove the following proposition:

Proposition 9.2 Assume that some orientation of T2 has been fixed. Any MS foliation
on T2 can be realized by a (not necessarily transitive) attracting hyperbolic plug.

The proof of Proposition 9.2 relies on the results of Section 7. In particular, we will
use the fact that every MS foliation on T2 can be obtained by adding compact leaves
to a zipped Reeb foliation (Corollary 7.15).

Lemma 9.3 There exists an oriented (transitive) attracting hyperbolic plug .U;X /
whose entrance boundary @inU is connected and whose entrance foliation Ls

X
is a

zipped Reeb foliation (see Definition 7.11).

Proof Let X0 be a transitive Anosov vector field on a closed oriented three-manifold M

such that X0 has some periodic orbits with negative multipliers. For example, X0 can
be the suspension of the linear Anosov automorphism AW T2 ! T2 defined by
A.x;y/ D .�2x � y;�x � y/. Choose a periodic orbit O of X0 such that O has
negative multiplier. Make a repelling DA bifurcation on O (see Section 8.1). This
gives rise to a vector field X on M , for which O is a repelling hyperbolic periodic
orbit. As in Section 8.1, consider a tubular neighborhood T of O , such that T is
contained in the basin of O , and such that X is transverse to @T . Set U WDM nT .
Proposition 8.3 shows that .U;X / satisfies the required properties.

Remark 9.4 More generally, for every p � 1, there exists an oriented transitive
attracting hyperbolic plug .U;X /, whose entrance boundary @inU has p connected
components, and such that the restriction of the entrance foliation Ls

X
to each connected

component of @inU is a zipped Reeb foliation. The construction of the plug .U;X /
is similar to those of the proof of Lemma 9.3. The only difference is that we need to
make a DA bifurcation on p periodic orbits instead of a single one.

The core of the proof of Proposition 9.2 is the following lemma:

Lemma 9.5 Let F and F 0 be MS foliations on T2 . Suppose that:

� F 0 can be obtained by adding a compact leaf to F (in the sense of Definition 7.13).
� F is realized by an attracting hyperbolic plug.

Then F 0 can also be realized by an attracting hyperbolic plug.

During the proof of the Lemma 9.5, we will need the existence of a hyperbolic plug as
provided by the following lemma:
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Lemma 9.6 There exists an oriented hyperbolic plug .V;Y / with the following prop-
erties:

� V is a Seifert bundle over a 2–sphere minus two discs.

� The maximal invariant set
T

t2R Y t .V / is a saddle hyperbolic periodic orbit O

with negative multipliers.

� The entrance boundary @inV is a torus, and the entrance lamination Ls
Y
D

W s
Y
.O/\ @inV is made of a single (closed) leaf 
 s , which is essential in @inV .

� The exit boundary @outV is a torus, and the exit lamination Lu
Y
DW u

Y
.O/\@outV

is made of a single (closed) curve 
 u , which is essential in @inV .

Proof Consider a gradient-like diffeomorphism f W S2 ! S2 such that the non-
wandering set of f consists of a repelling hyperbolic fixed point r , a saddle hyperbolic
fixed point (with negative eigenvalues) o and an attracting hyperbolic periodic orbit of
period two. Denote by .N;Y / the suspension of .S2; f /. The nonwandering set of Y

is made of a repelling hyperbolic periodic orbit R, a saddle hyperbolic periodic orbit O

and an attracting hyperbolic periodic orbit A. Let V be the manifold with boundary
obtained by excising from N some small tubular neighborhoods of the periodic orbits
A and R whose boundary are transverse to Y . Then .V;Y / is a hyperbolic plug, and
one can easily check that it satisfies the desired properties.

Proof of Lemma 9.5 By assumption, we can find a connected attracting hyperbolic
plug .U;X / realizing the foliation F . Let .V;Y / be the hyperbolic plug provided by
Lemma 9.6. We have to construct a plug .U 0;X 0/ realizing the foliation F 0 . This plug
will be obtained by gluing together the plugs .U;X / and .V;Y /. We proceed to the
construction.

By assumption, F 0 can be obtained by adding a compact leaf to F . Since Ls
X

is topologically equivalent to F , the foliation F 0 can also be obtained by adding
a compact leaf to Ls

X
. By definition, this means that, one can find a geometrical

enumeration 
1; : : : ; 
n of the compact leaves of Ls
X

and a geometrical enumeration

 0

1
; : : : ; 
 0

nC1
of the compact leaves of F 0 such that the corresponding combinato-

rial types � W f1; : : : ; ng ! fC;�g and � 0W f1; : : : ; nC 1g ! fC;�g of F 0 satisfy
� 0jf1;:::;ng D � .

Since 
1; : : : ; 
n is a geometrical enumeration of the compact leaves of Ls
X

, the
compact leaves 
n and 
1 bound an open annulus A� @inU which is disjoint from the
compact leaves of Ls

X
(in the particular case nD 2, the leaves 
n and 
1 bound two

annuli; we denote by A the annulus which is on the left-hand side of 
1 with respect
to the contracting orientation of 
1 ).
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According to Lemma 9.6(4), the surface @outV is a torus and the lamination Lu
Y is

made of a single (closed) leaf 
 u . We consider a diffeomorphism �W @outV ! @inU

with the following properties:

(i) The curve ��.
 u/ is contained in the annulus A.

(ii) The curve ��.
 u/ is transverse to the foliation Ls
X

.

Such a diffeomorphism � does exist: indeed, the restriction of the foliation Ls
X

to
the annulus A is topologically equivalent to the foliation by vertical lines of the
annulus S1�R. Now we glue the plugs .U;X / and .V;Y /, using � as a gluing map.
In other words, we consider the manifold with boundary U 0 WD .U tV /=� , and the
vector field X 0 on U 0 induced by X and Y . Proposition 1.1 ensures that .U 0;X 0/ is
a connected attracting hyperbolic plug.

We want to prove that the foliation F 0 is realized by .U 0;X 0/, ie that the foliations
Ls

X 0
and F 0 are topologically equivalent. For this purpose, we will use the crossing

map
�V W @

inV n 
 s
! @outV n 
 u:

Recall that �V maps a point x 2 @inV n 
 s to the unique point of intersection of the
orbit of x (for the flow of the vector field Y ) with the surface @outV . As stated in
Proposition 4.1,

(8) Ls
X 0 D 


s
t .��1

V /�.�
�1/�..Ls

X / n 

u/:

The foliation Ls
X

has n compact leaves 
1; : : : ; 
n . By definition of the gluing map � ,
the closed curve ��.
 u/ is disjoint from 
1; : : : ; 
n . Hence, the foliation Ls

X 0
has

nC 1 compact leaves y
1; : : : ; y
nC1 , where we let

y
i WD .�
�1
V ı�

�1/�.
1/ for i D 1 : : : n and y
nC1 WD 

s:

Let yA WD .��1
V
ı ��1/.A/. Since ��.
 u/ is contained in A, the map ��1

V
ı ��1 is

defined on @inU nA and (8) shows that

Ls
X 0 \ .@

inU 0 n yA/ is topologically equivalent to Ls
X \ .@

inU nA/:

Since the annulus @inU 0 n yA contains the compact leaves y
1; : : : ; y
nC1 , this proves
that:

� y
1; : : : ; y
nC1 is a geometrical enumeration of the compact leaves of Ls
X 0

.
� The combinatorial type y� W f1; : : : ; nC1g! fC;�g of Ls

X 0
associated with this

geometrical enumeration satisfies y� jf1;:::;ng D � D � 0jf1;:::;ng .

We are left to prove that y�.nC 1/D � 0.nC 1/. Actually, we will modify the gluing
map � in order to adjust the value of y�.nC1/. Let � W @outV ! @outV be an orientation-
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.U;X /

�

.V;Y /

Figure 16: Proof of Lemma 9.5

preserving homeomorphism which maps the closed curve 
 u on the same curve with the
opposite orientation. Observe that � ı � still satisfies properties (i) and (ii), so we may
replace � by � ı � in our construction. Replacing � by � ı � has the following effect:

� It changes the contracting orientation of y
1 . Indeed, the contracting orientation
of y
1 is the image under .��1

V
ı��1/� of the contracting orientation of 
1 , and

�� reverses the orientation of .��1/�.
1/ since ��1.
1/ is in the same free
homotopy class as 
 u .

� It does not change the contracting orientation of y
 nC1D 
 s . Indeed, Proposition
7.17 ensures that the contracting orientation of 
 s as a leaf of Ls

X 0
is opposite

to the dynamical orientation of 
 s . And the dynamical orientation of 
 s does
not depend on the gluing map.

Therefore, up to replacing � by � ı� , we can decide whether the contracting orientation
of the compact leaves y
1 and y
nC1 D 


s are coherent or not. In other words, up to
replacing � by �ı� , we may assume that y�.nC1/D� 0.nC1/. We have proved that the
foliations Ls

X 0
and F 0 have the same combinatorial type. According to Proposition 7.7,

this implies that these foliations are topologically equivalent. The proof is complete.

Remark 9.7 The attracting plug .U 0;X 0/ constructed in the proof above is never
transitive.

Proof of Proposition 9.2 The proposition is obtained by combining Corollary 7.15
and Lemmas 9.3 and 9.5.

9.2 Transitive attracting plug with prescribed entrance foliations

We are now ready to prove Theorem 1.10. For this purpose, we need an improved
version of Lemma 9.5:
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Lemma 9.8 Let F and F 0 be MS foliations on T2 . Suppose that

� F 0 can be obtained by adding a compact leaf to F ;
� F is realized by a transitive attracting hyperbolic plug .U;X / which has infin-

itely many periodic orbits with negative multipliers.

Then F 0 can be realized by a transitive attracting hyperbolic plug .U 0;X 0/ which has
infinitely many periodic orbits with negative multipliers.

The proof of Lemma 9.8 follows the same strategy as those of Lemma 9.5, but is
slightly more complicated. Instead of using the plug .V;Y / provided by Lemma 9.6,
we will use a plug .W;Z/ with the following characteristics:

Lemma 9.9 There exists a connected oriented hyperbolic plug .W;Z/ such that:

� W is diffeomorphic to the product of a pair of pants by a circle.
� The maximal invariant set

T
t2R Zt .W / is an isolated saddle hyperbolic peri-

odic orbit (with positive multipliers).
� The entrance boundary @inW is made of two tori @in

1
W and @in

2
W ; the entrance

lamination Ls
Z

is made of two isolated compact leaves 
 s
1

and 
 s
2

; more precisely,

 s

1
is an essential simple closed curve in @in

1
W and 
 s

2
is an essential simple

closed curve in @in
2

W .
� The exit boundary @outW is a torus, and the exit lamination Lu

Z
is made of two

closed leaves 
 u
1

and 
 u
2

, which are essential in the torus @outW ; moreover, the
dynamical orientations of 
 u

1
and 
 u

2
coincide.

Proof Consider a gradient-like diffeomorphism f W S2! S2 such that the nonwan-
dering set of f consists of two repelling fixed points r and r 0 , one saddle hyperbolic
fixed point o and one attracting fixed point a. Denote by .N;Z/ the suspension
of .S2; f /. The nonwandering set of Z is made of two repelling periodic orbits R

and R0 , one saddle hyperbolic periodic orbit O and one attracting periodic orbit A.
Let W be the manifold with boundary obtained by excising from N some small tubular
neighborhoods of the periodic orbits R, R0 and A. Then .W;Z/ is a hyperbolic plug,
and one can easily check that it satisfies the desired properties.

Proof of Lemma 9.8 By assumption, the foliation F is realized by a transitive
attracting hyperbolic plug .U;X /, which has infinitely many periodic orbits with
negative multipliers. The foliation F 0 can be obtained by adding a compact leaf to Ls

X
.

This means that we can find a geometrical enumeration 
1; : : : ; 
n of the compact
leaves of Ls

X
and a geometrical enumeration 
 0

1
; : : : ; 
 0

nC1
of the compact leaves

of F 0 such that the corresponding combinatorial types � and � 0 satisfy � 0jf1;:::;ngD � .
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We denote by A the connected component of @inU n
S

i 
i which is bounded by the
compact leaves 
n and 
1 , and which is on the left-hand side of 
1 .

Let .W;Z/ be the plug provided by Lemma 9.6, and �W W @
inW nLs

Z
! @outW nLu

Z

be the crossing map of this plug. Observe that @inW nLs
Z

is the disjoint union of the
open annuli As

1
WD @in

1
W n 
 s

1
and As

2
WD @in

2
W n 
 s

2
. Therefore, @outW nLu

Z
is the

disjoint union of the open annuli Au
1
WD �W .A

s
1
/ and Au

2
WD �W .A

s
2
/. Both Au

1
and

Au
2

are bounded by the compact leaves 
 u
1

and 
 u
2

.

We consider a gluing diffeomorphism �W @outW ! @inU satisfying the two following
properties:

(1) �.Au
2
/ is contained in A (equivalently, @inU nA is contained in �.Au

1
/).

(2) The compact leaves ��.
 u
1
/ and ��.
 u

2
/ are transverse to the foliation Ls

X
.

We consider the attracting plug .U 0;X 0/ obtained by gluing .W;Z/ and .U;X / thanks
to the gluing map � . Proposition 1.1 implies that .U 0;X 0/ is an hyperbolic plug. Note
that @inU 0 D @inW D @in

1
W t @in

2
W . Property (1) above implies that the preimage

under �W ı� of the n compact leaves of Ls
X

are in @in
1

W . This remark and the same
arguments as in the proof of Lemma 9.5 show that the foliation Ls

X 0
\ @in

1
W has the

same combinatorial type as F 0 . It also shows that 
 s
2

is the only compact leaf of the
foliation Ls

X 0
\ @in

2
W ; in other words, Ls

X 0
\ @in

2
W is a zipped Reeb foliation.

Let us summarize. We have constructed an attracting hyperbolic plug .U 0;X 0/ with
the following properties:

� The entrance boundary @inU 0 has two connected components @in
1

W and @in
2

W .
� On the first component @in

1
W , the entrance foliation Ls

X 0
is topologically equiv-

alent to the foliation F 0 .
� On the other connected component @in

2
W , the entrance foliation Ls

X 0
is a zipped

Reeb foliation.

The plug .U 0;X 0/ is not transitive. We will use the “blow-up, excise and glue surgery”
of Section 8 to turn .U 0;X 0/ into a transitive plug.

On the one hand, the maximal invariant set of .U;X / is a transitive hyperbolic attractor;
let us denote it by ƒ. On the other hand, the maximal invariant set of .W;Z/ is a
single hyperbolic periodic orbit O . Hence .U 0;X 0/ has two basic pieces: ƒ and O .
Observe that W u.O/ intersects W s.ƒ/ in U 0 , since �.W u.O/\@outW /D�.
 s

1
[
 s

2
/

intersects W s.ƒ/\ @inU . By assumption, .U;X / contains some periodic orbits with
negative multipliers. Choose such a periodic orbit �, and make an attracting DA
bifurcation on �. This gives rise to a new vector field X 00 on U 0 which is a topological
extension of X 0 , and has three basic pieces: a saddle hyperbolic periodic orbit O , a
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the hyperbolic
plug by doing
DA along an
attracting

periodic orbit
� of .U;X /

.W;Z/

�
.W;Z/

 

Figure 17: Proof of Lemma 9.8

nontrivial saddle basic piece ƒ0 and an attracting periodic orbit � (see Section 8.1 for
more details). Let U 00 be obtained by excising from U 0 a small tubular neighborhood
of the attracting orbit �. According to Proposition 8.1, .U 00;X 00/ is a hyperbolic plug
with the following properties:

� The exit boundary @outU 00 is a torus.
� The exit lamination Lu

X 00
is a zipped Reeb lamination.

� The entrance boundary @inU 00 coincides with @inU 0 ,
� The entrance lamination Ls

X 00
has the same combinatorial type as Ls

X 0
(hence,

Ls
X 00
\@in

1
W has the same combinatorial type as F 0 and Ls

X 00
\@in

2
W is a zipped

Reeb lamination).

The laminations Lu
X 00

and Ls
X 00
\ @in

2
W both are zipped Reeb laminations. So, by

Lemma 8.5, we can find a strongly transverse gluing map  W @outU 00! @in
2

U 00 . We
consider the manifold with boundary U 000 WDU 00= and the vector field X 000 induced by
X 00 on U 000 . Clearly, .U 000;X 000/ is an attracting plug and @inU 000 D @in

1
W . Recall that

.U 00;X 00/ is a saddle hyperbolic plug, so, according to Theorem 1.5 and Remark 6.7,
up to modifying X 00 by a topological equivalence and  by a strongly transverse
isotopy we may assume that .U 000;X 000/ is a hyperbolic plug.

The interior of U 00 is embedded in U 000 , and X 000 coincides with X 00 on its restriction
to int.U 00/. It follows that Ls

X 00
\ @in

1
W must be a sublamination of the foliation Ls

X 000
.

Since Ls
X 00
\ @in

1
U 00 is a filling MS lamination, this implies that Ls

X 000
has the same

combinatorial type as Ls
X 00
\ @in

1
W . As a further consequence, Ls

X 000
has the same

combinatorial type as F 0 . According to Proposition 7.7, this implies that F 0 is realized
by the attracting hyperbolic plug .U 000;X 000/.

Clearly, .U 000;X 000/ has infinitely many periodic orbits with negative multipliers. It
remains to check that the maximal invariant set of .U 000;X 000/ is transitive. The
hyperbolic plug .U 00;X 00/ has two basic pieces: the transitive attractor ƒ0 and the
periodic orbit O . On the one hand, the unstable manifold of O intersects the stable
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manifold of ƒ0 . On the other hand,  �.W u
X 00
.ƒ0/\@outW / intersects W s

X 00
.O/\@in

2
W ,

since the unique compact leaf of Ls
X 00
\@in

2
W is 
 s

2
�W s

X 00
.O/. Therefore, the system

.U 00;X 00;  / is combinatorially transitive. According to Proposition 1.6, this implies
that .U 000;X 000/ is a transitive plug. The proof is complete.

Remark 9.10 The plug .U;X / provided by the proof of Lemma 9.3 has infinitely
many periodic orbits with negative multipliers.

Proof of Theorem 1.10 Let F be an MS foliation on a closed oriented surface S .
We have to prove that F is realized by a transitive attracting plug. If S is connected
(ie is a torus), this immediately follows from Corollary 7.15, Lemma 9.3, Remark 9.10
and Lemma 9.8. If S has several connected components, the proof is roughly the same,
except for the fact that we have to use Remark 9.4 instead of Lemma 9.3.

Remark 9.11 If .U;X / is an oriented transitive attracting hyperbolic plug, then
.U;�X / is an oriented transitive repelling hyperbolic plug, and Lu.U;�X / D Ls

X
.

Using this observation, we deduce from Theorem 1.10 that every MS foliation can be
realized as the exit foliation of a transitive repelling hyperbolic plug.

10 Embedding hyperbolic plugs in Anosov flows

The purpose of the present section is to prove Theorem 1.12 which states that every
hyperbolic plug with filling MS laminations can be embedded in an Anosov flow. We
shall need the following lemma:

Lemma 10.1 For every MS foliation F on a surface S , there exists an MS foliation
G on S which is transverse to F .

Proof Choose a riemannian metric on S , and consider the orthogonal F? of F for
this metric. Obviously, F? is a foliation on S which is transverse to F . In general,
F? is not an MS foliation. Nevertheless, a generic C 1 –small perturbation of F? is
an MS foliation which is still transverse to F .

Proof of Theorem 1.12 Let us prove the first item. We consider a hyperbolic plug
with filling MS laminations .U0;X0/. We have to build a closed three-manifold M and
a (not necessarily transitive) Anosov vector field X on M such that there is a compact
submanifold U of M such that X is transverse to @U and .U;X jU / is topologically
equivalent to .U0;X0/.

According to Lemma 3.19, the lamination Ls
X0

can be completed to an MS foliation F s .
According to Lemma 10.1, we can find an MS foliation G on @inU0 which is transverse
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to F s . Theorem 1.10 provides a transitive repelling hyperbolic plug .UR;XR/ and
a homeomorphism �W @outU1 ! @inU0 such that ��.Lu

XR
/ D G . In particular, the

foliation ��.Lu
XR
/ is strongly transverse to the lamination Ls

X0
. We consider the

manifold U1 WD .UR t U0/=� , endowed with the vector field X1 induced by XR

and X0 . According to Proposition 1.1, .U1;X1/ is a repelling hyperbolic plug.

Now we consider the exit foliation Lu
X1

. According to Lemma 10.1, we can find an MS
foliation H on @outU1 D @

outU0 which is transverse to Lu
X1

. Theorem 1.10 provides
a transitive attracting hyperbolic plug .UA;XA/ and a homeomorphism  W @inUA!

@outU1 such that  �.Ls
XA
/DH . In particular, the foliation  �.Ls

XA
/ is transverse to

the foliation Lu
X1

. We consider the closed manifold M WD .U1 tUA/= , endowed
with and the vector field X induced by X1 and XA . According to Proposition 1.1,
X is a (nontransitive) Anosov vector field.

The plug .M;X / was constructed by gluing together the plugs .UR;XR/, .U0;X0/

and .UA;XA/. Therefore, U0 can be regarded as a submanifold with boundary of M ,
and X0 can be regarded as the restriction of X to U0 . This completes the proof of the
first item of Theorem 1.12.

Now we prove the second item. We assume that the maximal invariant set of .U0;X0/

contains neither attractors nor repellers. We will use the blow-up, excise and glue
surgery to “turn X into a transitive vector field”.

Recall that .M;X / was obtained by gluing together the hyperbolic plugs .UR;XR/,
.U0;X0/ and .UA;XA/. Therefore, UR , U0 and UA can be regarded as compact
submanifolds with boundary of M . We pick two periodic orbits OR and OA of X , both
with positive multipliers, contained respectively in UR and UA . We make a repelling
DA bifurcation on OR , and an attracting DA bifurcation on OA (see Section 8.1).
This gives rise to a new vector field X on M , which has a repelling periodic orbit
OR � UR and an attracting periodic orbit OA � UA . As in Section 8.1, we consider
some open tubular neighborhoods TR and TA of OA and OR , respectively, such
that X is transverse to @TR and @TA . We assume that TA and TR are contained
respectively in UA and UR (therefore TA and TR are disjoint from U0 ). We excise
these tubular neighborhoods from M , ie we consider the compact manifold with
boundary U WDM n .TA tTR/. As explained in Section 8.2, .U;X / is a hyperbolic
plug, and we can find a strongly transverse gluing diffeomorphism �W @outU ! @inU .
Notice moreover that the maximal invariant set of .U;X / contains neither attractors
nor repellers, since we have made a DA bifurcation on a periodic orbit of the unique
attractor of X (turning this attractor into a saddle basic piece) and a DA bifurcation
on a periodic orbit of the unique repeller of X (turning this repeller into a saddle
basic piece). We consider the closed manifold M 0 WD U=�, and the vector field X 0
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induced by X on M 0 . According to Theorem 1.5 (up to perturbing X by topological
equivalence, and � by a strongly transverse isotopy), the vector field X 0 is Anosov.
Observe that U0 can be regarded as a compact submanifold with boundary of M 0

(since the solid tori TA and TR were assumed to be disjoint from U0 ), and X0 can be
regarded as the restriction of X 0 to U0 (indeed, X 0 coincides with X on int.M /�U0 ,
and X coincides with X outside a small neighborhood of the orbits O and O 0 ).

We are left to prove that X 0 is transitive. For this purpose, we will use the criterion
provided by Proposition 1.6. Let ƒA (resp. ƒR ) be the maximal invariant set of the plug
.UA;XA/ (resp. .UR;XR/). Let ƒ1; : : : ; ƒn be the collection of the basic pieces of
the hyperbolic plug .U;X /. Recall that .M;X / was obtained by gluing the hyperbolic
plugs .UR;XR/, .U0;X0/ and .UA;XA/, without creating any new recurrent orbit.
Therefore, the basic pieces of .M;X / are ƒR; ƒ1; : : : ; ƒn; ƒA . For each iD1; : : : ; n,
W s

X
.ƒi/ must intersect W u

X
.ƒR/, because ƒR is the only repelling basic piece for X .

Similarly, W u
X .ƒi/ must intersect W s

X
.ƒA/. Proposition 8.1(4) implies that the basic

pieces of X jU are in one-to-one correspondence with the basic pieces in X . We
denote by xƒR; xƒ1; : : : ; xƒn; xƒA the basic pieces of X jU (using obvious notations).
For i D 1; : : : ; n, W s

X
.xƒi/ intersects W u

X
.xƒR/, and W u

X
.xƒi/ intersects W s

X
.xƒA/.

Moreover, Proposition 8.1(4) implies that W u
X
.xƒA/ \ @

outU is dense in Lu
X

and
W s

X
.xƒR/\ @

inU is dense in Ls
X

. Hence, the image under �� of W u
X
.xƒA/\ @

outU

intersects W s
X
.xƒR/\@

inU . As a consequence, the system .U;X ; �/ is combinatorially
transitive. According to Proposition 1.6, this implies that the Anosov vector field X 0 is
transitive. This completes the proof of the second item of Theorem 1.12.

11 A manifold supporting n transitive Anosov flows

The purpose of this section is to prove Theorem 1.13. We fix an integer n � 1.
In Section 11.1, we construct a manifold M supporting n transitive Anosov vector
Z1; : : : ;Zn . In Section 11.2, we prove that these vector fields are pairwise topologically
nonequivalent.

11.1 Construction of a manifold M supporting n transitive Anosov flows

Lemma 11.1 There exists a transitive hyperbolic plug with filling MS laminations
.U;X / such that:

(1) int.U / is a hyperbolic manifold.
(2) @inU is connected (ie is a torus) and the lamination Ls

X
has 2nC 2 compact

leaves, all of them being coherently oriented.
(3) For each connected component T of @outU , all the compact leaves of the lami-

nation Lu
X
\T are coherently oriented.
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Proof Consider a pseudo-Anosov diffeomorphism f of a closed surface † such that
f has at least two singularities and such that one of the singularities of f has exactly
2nC 2 prongs. The existence of such a pseudo-Anosov diffeomorphism follows for
example from Masur and Smillie [24, Theorem 2]. After possibly replacing f by a
power, we can assume that all the prongs of all the singularities of f are fixed by f .
We denote these singularities by p1; : : : ;pm , where p1 has 2nC 2 prongs. Then we
make a repelling DPA (derived from pseudo-Anosov) bifurcation at p1 , and some
attracting DPA bifurcations at p2; : : : ;pm . This yields an Axiom A diffeomorphism
g of †, whose nonwandering set is composed of a nontrivial saddle basic piece, a
repelling fixed point p1 and some attracting fixed points p2; : : : ;pm . Then we consider
the suspension .N;X / of this diffeomorphism: N is a closed three-manifold, and
X is a nonsingular Axiom A vector field on N whose nonwandering set is made of
a nontrivial saddle basic piece ƒ, a repelling periodic orbit 
1 and some periodic
attracting orbits 
2; : : : ; 
m . We set U WDM n .T1[� � �[Tm/, where T1; : : : ;Tm are
“small” open tubular neighborhoods of the periodic orbits 
1 , 
2; : : : ; 
m . More pre-
cisely, we choose T1; : : : ;Tm to be included in the basins of the orbits 
1 , 
2; : : : ; 
m ,
respectively, and such that their boundaries are transverse to X (just as in Section 8.1).
By construction, .U;X / is a plug, @inU D @T1 (in particular @inU is connected as
announced) and @outU D @T2 [ � � � [ @Tm . Moreover, the same arguments as in the
proof of Proposition 8.1 show that:

� The maximal invariant set of .U;X / is transitive and hyperbolic.
� Ls

X
is a filling MS lamination with 2nC 2 compact leaves, all of them being

coherently oriented.
� Lu

X
\ @Tk is a filling MS lamination with sk compact leaves, where sk is the

number of prongs of the singularity pk , all of them being coherently oriented.

Finally, by a well-known theorem of Thurston [29], the interior of U is hyperbolic.

We will use the hyperbolic plug .V;Y / provided by Lemma 9.6 to prove the following:

Lemma 11.2 There exists a hyperbolic plug with filling MS laminations .W;Z/ such
that:

(1) .W;Z/ is obtained by gluing the hyperbolic plugs .U;X /and .V;Y /, provided
respectively by Lemmas 11.1 and 9.6, along @inU and @outV ; in particular,
@inW D @inV is connected.

(2) The lamination Ls
Z

has 2nC 3 compact leaves; exactly 2nC 2 of these 2nC 3

compact leaves are coherently oriented.

(3) On each connected components of @outW , all the compact leaves of the lamina-
tion Lu

Z
\T are coherently oriented.
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Proof According to Lemma 11.1, @inU is a torus, and Ls
X

is a filling MS lamination
with 2nC 2 compact leaves. Let 
1; : : : ; 
2nC2 be a geometrical enumeration of the
compact leaves of Ls

X
(see Definition 7.3). Let A1 be the connected component of

@inU n
S

i 
i bounded by the compact leaves 
1 and 
2 . Recall that @outV is a torus,
and that the lamination Lu

Y
consists of a single (compact) leaf 
 u . Then we choose

a diffeomorphism  W @outV ! @inU such that the closed leaf  .
 u/ is contained in
the interior of the annulus A1 , and transverse to the lamination Ls

X
(in particular,

the compact leaf  .
 u/ does intersect the lamination Ls.U;X /). We glue the plugs
.U;X / and .V;Y / thanks to the diffeomorphism  . More precisely, we consider the
manifold with boundary W WD .U tV /= and the vector field Z induced by X and
Y on W . Proposition 1.1 asserts that .W;Z/ is a hyperbolic plug.

Let us describe the lamination Lu
Z

. According to Proposition 4.1, we have

Lu.W;Z/D Lu
X t .�U /�. .


u/ nLs
X /;

where �U W @
inU nLs

X
!@outU nLu

X
is the crossing map associated with the plug .U;X /.

Now observe that  .
 u/ nLs
X

does not contain any compact leaf of Lu
Z

(recall that
the compact leaf  .
 u/ does intersect the lamination Ls

X
). Therefore the compact

leaves of Lu
Z

are exactly the same as the compact leaves of Lu
X

. In particular, for each
connected component T of @outW D @outU , all the compact leaves of Lu

Z
\ T are

coherently oriented.

Now we describe the entrance lamination Ls
Z

. The arguments are very similar to those
of the proof of Lemma 9.5. We have

Ls
Z D Ls

Y t .�
�1
V /�. 

�1
� .Ls

X / n 

u/;

where �V W @
inV nLs

Y
!@outV nLu

Y
is the crossing map associated with the plug .V;Y /.

The lamination . �1/�.Ls
X
/ has 2nC2 compact leaves, and we have chosen  so that

these leaves are disjoint from 
 u . Therefore .��1
V
/�.. 

�1/�.Ls
X
/ nLu

Y
/ has 2nC 2

compact leaves. The lamination Ls
Y

consists of a single isolated compact leaf 
 s .
This proves that the lamination Ls.W;Z/ has exactly 2nC 3 compact leaves. Let
us examine the contracting orientations of the leaves. The compact leaves of Ls

X
are

coherently oriented. Moreover, these compact leaves are contained in the annulus
@inU nA1 , and the map ��1

V
ı �1 is well-defined on @inU nA1 (since  �.
 u/ is

contained in A1 ). It follows that the 2nC 2 compact leaves of Ls
Z

contained in
.��1

V
/�.. 

�1/�.Ls
X
// are coherently oriented. It remains to check that the orientation

of the last compact leaf of Ls
Z

is not coherent with the orientations of the 2nC 2

other compact leaves. Actually, we can use exactly the same trick as in the proof of
Lemma 9.5: we consider an orientation-preserving homeomorphism � W @outV ! @outV

which reverses the orientation of the compact leaf 
 u . Exactly the same arguments as
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in the proof of Lemma 9.5 show that either  or  ı� lead to a plug .W;Z/ satisfying
the desired property.

Now we consider two copies W� and WC of the manifold with boundary W provided
by Lemma 11.2. We endow WC with the vector field ZC WDZ , and we endow W�
with the vector field Z� WD �Z . There are some natural identifications:

� @inWC ' @
outW� ' @

inW and @outWC ' @
inW� ' @

outW ;

� Ls
ZC
' Lu

Z�
' Ls

Z
and Lu

ZC
' Ls

Z�
' Lu

Z
.

By Lemma 11.2, there is one (and only one) compact leaf c of the lamination Ls
Z

such that the contracting orientation of c is incoherent with the contracting orientations
of the other compact leaves of Ls

Z
. We denote by cC (resp. c� ) the corresponding

compact leaf of Ls
ZC

(resp. Lu
Z�

).

Lemma 11.3 There exists a diffeomorphism �W @outWC! @inW� such that:

(1) The filling MS laminations ��.Lu
ZC
/ and Ls

Z�
are strongly transverse.

(2) If we view � as a self-homeomorphism of @outW (using the natural identifica-
tions of @outWC and @inW� with @outW ), then � is isotopic to the identity.

Proof This follows immediately from Lemmas 8.5 and 11.2(3).

Lemma 11.4 For every k 2 f1; : : : ; ng, there exists a diffeomorphism �k W @
outW�!

@inWC with the following properties:

(1) .�k/�.Lu
Z�
/ and Ls

ZC
are strongly transverse.

(2) The compact leaves .�k/�.c
�/ and cC bound two open annuli18 in the torus

@inWC , which contain respectively k and 2nC 2� k compacts leaves of the
lamination Ls

ZC
.

(3) If we view � as a self-homeomorphism of @outW , then �k is isotopic to the
identity.

Remark 11.5 Lemma 11.4(2) implies in particular that Ls
ZC
[ .�i/�.Lu

Z�
/ is home-

omorphic to Ls
ZC
[ .�j /�.Lu

Z�
/ only if i D j .

Proof of Lemma 11.4 See Figure 18. Proposition 7.18 provides a diffeomorphism
 0
�W @

outW�! T2 such that:

18In order to avoid unnecessary complications, we will not try to distinguish these two annuli (although
this can be done using the orientations of the leaves .�k/�.c

�/ and cC ).
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red lamination: .�3/�.Lu.W �;�Z// blue lamination: Ls.W C;Z/

.�3/�.c
�/cC

Figure 18: The diffeomorphism �k in the case nD 2 and k D 3

� The 2nC 3 compact leaves of the lamination . �/�.Lu
Z�
/ are the vertical

circles
˚

i
2nC3

	
�S1 for i D 0; : : : ; 2nC2, the leaf . �/�.c�/ being the circle˚

1
2nC3

	
�S1 .

� In the open annulus
�

i
2nC3

; iC1
2nC3

�
�S1 , the leaves of the lamination . 0

�/�.Lu
Z�
/

are graphs of C 1 functions from
�

i
2nC3

; iC1
2nC3

�
to S1 .

� The derivatives of these functions are positive on
�
0; 1

2nC3

�
and negative on�

1
2nC3

; 2
2nC3

�
.

� For i D 2; : : : ; 2nC 2, the derivatives of these functions are positive on the
interval

�
i

2nC3
; i

2nC3
C

1
2

�
and negative on

�
i

2nC3
C

1
2
; iC1

2nC3

�
.

Similarly, one gets a diffeomorphism  CW @
inWC ! T2 such that the lamination

. C/�.Ls
ZC
/ satisfies similar properties (with the leaf . C/�.cC/ instead of the leaf

. �/�.c
�/). Now pick �� 1 and consider the diffeomorphism ‚�W T2!T2 defined

by
‚�.x;y/D .��.x/;y/;

where ��W Œ0; 1�! Œ0; 1� is the function which maps affinely
�
0; 2

2nC3

�
on Œ0; �� and

maps affinely
�

2
2nC3

; 1
�

on Œ�;1� (in other words, ‚k shrinks the annulus
�
0; 2

2nC3

�
�S1

to a very thin annulus). For k 2f1; : : : ; ng, also consider the diffeomorphism �k W T
2!

T2 defined by

�k.x;y/D

�
xC

kC 1
2

2nC 1
;y

�
:

One easily checks that the diffeomorphism .‚� ı C/
�1 ı �k ı .‚� ı �/ satisfies the

desired properties provided that � is small enough.

Definition 11.6 (the vector fields Z1; : : : ;Zn ) Consider the hyperbolic plug

.WC;ZC/t .W�;Z�/:
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.UC;X / .U�;�X /

�

 

.V �;�Y /

�k

.V C;Y /

Figure 19: The hyperbolic plugs used to build the manifold M and the
Anosov vector field Zk

For k D 1 : : : n, consider the diffeomorphism

ˆk W @
outWC t @

outW�! @inWC t @
inW�

defined by ˆk WD � on @outWC and ˆk WD �k on @outW� . According to Lemmas 11.3
and 11.4, ˆk is a strongly transverse gluing diffeomorphism. Now consider the closed
manifold Mk WD .WC tW�/=ˆk and the vector field Zk on Mk induced by the
vector fields Z and �Z (more precisely, Zk WD Z on WC and Zk WD �Z on W� ).
According to Theorem 1.5, up to modifying Z by a topological equivalence and ˆk

by a strongly transverse isotopy, Zk is an Anosov vector field.

Since the gluing map ˆk is isotopic to the identity for every k , the manifolds
M1; : : : ;Mn are pairwise diffeomorphic. From now on, we identify the manifolds
M1; : : : ;Mn with a single manifold M , and view Z1; : : : ;Zn as vector fields on M .

The Anosov vector field .M;Zk/ was obtained by gluing cyclically four hyperbolic
plugs .U�;X�/, .V�;Y�/, .VC;YC/ and .UC;XC/, where UC and U� are two
copies of U, VC and V� are two copies of V , XC D X , X� D�X , YC D Y and
Y� D�Y . See Figure 19.

Proposition 11.7 The JSJ decomposition of the manifold M has three pieces: two
hyperbolic pieces U� and UC , and one Seifert piece S WD V�[VC .

Proof As explained above, M was obtained by gluing two copies U� and UC of U

and two copies V� and VC of V . The interior of U is hyperbolic; therefore, U� and
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UC must be hyperbolic pieces of the JSJ decomposition of M . The manifold V is a
Seifert fiber bundle. During the construction of the manifold M , the two copies V�
and VC of V were glued together using the map  k . The map  k is isotopic to the
identity, and therefore maps the regular fibers of V� on the regular fibers of VC (up to
free homotopy). Therefore S WD V� [VC is a Seifert bundle, and corresponds to a
single piece in the JSJ decomposition of M .

Remark 11.8 The vector fields Z1; : : : ;Zn are pairwise homotopic through nonzero
vector fields on M ; this follows easily from the construction.

Proposition 11.9 For every k 2 f1; : : : ; ng, the Anosov vector field Zk is transitive.

Proof As explained above, .Mk ;Zk/ was obtained by gluing the four hyperbolic
plugs .U�;X�/, .V�;Y�/, .VC;YC/ and .UC;XC/. These four plugs form a cycle,
as shown in Figure 19. The choice of the gluing maps ensures that the unstable manifold
of the maximal invariant set of any of these four plugs intersects the stable manifold
of the maximal invariant set of the next plug in the cycle. Moreover, each of the four
hyperbolic plugs is transitive. Therefore, the graph associated with the gluing procedure
has four vertices, and these four vertices belong to an oriented cycle; in particular, the
gluing procedure is combinatorially transitive. By Proposition 1.6, it follows that Zk

is topologically transitive.

11.2 The vector fields Z1; : : : ;Zn are not topologically equivalent

The strategy to prove the vector fields Z1; : : : ;Zn are pairwise topologically nonequiv-
alent is the following. First, we prove that a topological equivalence between Zi and
Zj must leave invariant the submanifolds W� and WC . Then we use Remark 11.5 to
conclude that such a topological equivalence cannot exist, unless i D j .

We will use the following result, which was proved by Barbot [2, théorème A], elabo-
rating on some arguments of Brunella [10]:

Lemma 11.10 (Barbot) Let Z be an Anosov vector field on a closed three-manifold
M and let T and T 0 be some tori embedded in M and transverse to Z . If T is
homotopic to T 0 , then T is isotopic to T 0 along the orbits of Z .

The phrase “T is isotopic to T 0 along the orbits of Z” means that there exists a
continuous function uW T ! R such that x 7! Zu.x/.x/ maps T onto T 0 . This
implies that there is a homeomorphism gW M !M preserving each orbit of Z and
mapping T onto T 0 .

Lemma 11.11 Assume that the vector fields Zi and Zj are topologically equivalent.
Then one can choose the topological equivalence so that it preserves W� and WC .
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Proof By assumption, Zi and Zj are topologically equivalent: there exists a homeo-
morphism hW M !M mapping the oriented orbits of Zi onto the oriented orbits
of Zj .

Recall that the JSJ decomposition of M comprises two hyperbolic pieces U�;UC
and one Seifert piece S D V� [VC (see Proposition 11.7). By the well-known fact
that the JSJ decomposition of a given closed 3–manifold is unique up to isotopy, the
homeomorphism h permutes the three JSJ pieces up to isotopy, mapping a hyperbolic
piece on a hyperbolic piece, and a Seifert piece on a Seifert piece. Moreover, h cannot
map (even up to isotopy) U� on UC , because h preserves the orientation of the orbits,
and the orbits of Zi and Zj go from UC to U� (see Figure 19). Therefore, h must
leave invariant the three JSJ pieces U� , UC and S up to isotopy.

Now, recall that the boundaries of U� , UC and S are transverse to the vector fields
Zi and Zj (see the proof of Proposition 11.7). Hence, using Lemma 11.10, we can
modify h so that it leaves invariant U� and UC;S in the set-theoretic sense (not “up to
isotopy”). And since @outWC D @

inW� D @
outUC D @

inU� (see Figure 19), it follows
that h preserves the surface @outWC D @

inW� .

It remains to prove that h also preserves the surface @outW� D @
inWC . Recall that

@outW� D @
inWC D @

outV� D @
inVC is an incompressible torus in the interior of the

Seifert piece S DV�[VC (see again Figure 19). But the topology of S is quite simple.
Indeed, V� and VC are Seifert bundles over the projective plane minus two discs. It
follows that, up to homotopy, there are only three incompressible tori in the Seifert
piece S : the two connected components @inV� and @outVC of the boundary of S , and
the torus @outW�D @

inWCD @
outV�D @

inVC . As a consequence, h must preserve the
torus @outW� D @

inWC up to isotopy. And, using once again Lemma 11.10, we can
modify h so that it leaves invariant @outW� D @

inWC in the set-theoretic sense.

Now h leaves invariant @outWC D @
inW� and @outW� D @

inWC . Thus, it must leave
invariant W� and WC .

Proposition 11.12 The vector fields Zi and Zj are not topologically equivalent
unless i D j .

Proof Consider two integers i; j 2 f1; : : : ; ng and assume that the vector fields
Zi and Zj are topologically equivalent. According to Lemma 11.11, there exists a
homeomorphism hW M!M mapping the orbits of Zi to the oriented orbits of Zj and
leaving invariant the two submanifolds W � and W C . This homeomorphism h maps
the laminations Ls

Z�
and .�i/�.Lu

ZC
/ onto the laminations Ls

Z�
and .�j /�.Lu

ZC
/,

respectively. According to Remark 11.5, this is possible only if i D j .
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Figure 20: The gradient-like vector field X0

12 An Anosov flow with infinitely many transverse tori

The purpose of this last section is to prove Theorem 1.15, ie to build a transitive Anosov
vector field Z on a closed three-manifold M such that there exist infinitely many
pairwise nonisotopic tori embedded in M which are transverse to Z .

We first consider the vector field X0 on the torus T2 defined by

X0.x;y/D sin.2�x/
@

@x
C sin.2�y/

@

@y
:

One can easily check that the nonwandering set of X0 consists of four hyperbolic
singularities: a source ˛ WD .0; 0/, two saddles �1 WD

�
1
2
; 0
�

and �2 WD
�
0; 1

2

�
, and

a sink ! WD
�

1
2
; 1

2

�
. Moreover, the invariant manifolds of �1 are disjoint from the

invariant manifold of �2 . See Figure 20.

Now, we consider some pairwise disjoint (small) open discs D˛ , D�1
, D�2

and D!

centered at ˛ , �1 , �2 and ! , respectively, such that the vector field X0 is transverse
to the boundaries of D˛ and D! . We consider a smooth function 'W T2!R such
that ' > 0 on D�1

, ' < 0 on D�2
and 'D 0 on S DT2 n .D�1

[D�2
/ (in particular,

' D 0 on D˛ [D! ). Then we consider the vector field X on T2 �S1 defined by

X.x;y; t/DX0.x;y/C'.x;y/
@

@t
:

We consider the compact three-manifold with boundary U WD .T2 n .D˛ [D!//�S1 .

Lemma 12.1 The pair .U;X / is a hyperbolic plug with the following characteristics:

(1) The maximal invariant set of .U;X / consists of two saddle hyperbolic periodic
orbits.

(2) Both the entrance and exit boundaries @inU and @outU of .U;X / are tori.
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(3) The lamination Ls
X

(resp. Lu
X

) consists of four closed leaves. These leaves
are parallel essential curves in @inU (resp. @outU ). Moreover, the dynamical
orientations (see Definition 7.16) of these leaves are “alternating”: the dynamical
orientations of two adjacent leaves of Ls

X
(resp. Lu

X
) are always incoherent.

Proof The vector field X0 is transverse to @D˛[@D! , and the function ' vanishes on
D˛ [D! . Hence, the vector field X is transverse to @U D .@D˛ �S1/t .@D! �S1/.
In other words, .U;X / is a plug. Moreover, since ˛ is a source and ! is a sink, the
vector field X0 is pointing out of D˛ and into D! . It follows that @inU D @D˛ �S1

and @outU D @D! �S1 . In particular, both @inU and @outU are tori.

The definitions of X0 and S imply that maximal invariant set of .S;X0/ is made of
the two saddles �1 and �2 . It follows that the maximal invariant set of .U;X / consists
of the saddle hyperbolic periodic orbits �1 �S1 and �2 �S1 . In particular, .U;X / is
a hyperbolic plug.

The intersection of W s.�1/[W s.�2/ with @D˛ consists of four points. By definition of
the vector field X , the lamination Ls

X
is the product by S1 of .W s.�1/[W s.�2//\@D˛ .

This shows that Ls
X

consists of four closed leaves, which are parallel essential curves
in @inU D @D˛ �S1 .

Let 
1 and 
2 be two adjacent leaves in Ls.U;X /. Note that the points of W s.�1/\@D˛

and W s.�2/\ @D˛ are alternating with respect to the cyclic order of @D˛ . Therefore,
up to exchanging the names, 
1 and 
2 belong respectively to W s.�1 � S1/ and
W s.�2 �S1/. And since the function ' is positive on D�1

and negative on D�2
, it

follows that the dynamical orientations of 
1 and 
2 are incoherent.

Now we consider two copies .U1;X1/ and .U2;X2/ of the plug .U;X /. We choose
a diffeomorphism  W @outU1! @inU2 such that each of the four compact leaves of
 �.Lu

X1
/ intersects transversally each of the four leaves of Ls

X2
at exactly one point

(see Figure 21, left). We consider the manifold with boundary V WD .U1tU2/= . We
denote by Y the vector field on V induced by X1 and X2 . According to Proposition 1.1,
.V;Y / is a hyperbolic plug. By construction, @inV D @inU1 and @outV D @outU2 . In
particular, both @inV and @outV are tori.

Remark 12.2 Each connected component As of @inU2 nLs
X2

is an annulus bounded
by two (compact) leaves of Ls

X2
. The assumptions on the gluing map  imply that

 �.Lu
X2
/\As consists of four open arcs, each of which is “crossing” the annulus As

(ie going from one end of As to the other).

Lemma 12.3 Lu
Y

and Ls
Y

are filling MS laminations. Each has four compact leaves.
These leaves have “alternating contracting orientations”: the contracting orientations of
two adjacent leaves are always incoherent.
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Ls
X2

��.Lu
X1
/

��.Lu
Y /

Ls
Y

Figure 21: The gluing maps  (left) and � (right)

Proof As usual, we use Proposition 4.1 to write Ls
Y

as a disjoint union

Lu
Y D Lu

X2
t .�2/�.��.Lu

X1
/ nLs

X2
/;

where �2W @
inU2 nLs

X2
! @outU2 nLu

X2
is the crossing map of the plug .U1;X1/.

Each of the four leaves of ��.Lu
X1
/ intersects Ls

X2
. Therefore, ��.��.Lu

X1
/ n Ls

X2
/

does not contain any compact leaf. As a further consequence, the compact leaves of the
lamination Lu

Y
are exactly those of the lamination Lu

X2
. Hence, the lamination Lu

Y
has

four compact leaves (which are parallel essential curves in the torus @outV D @outU2 ),
and the dynamical orientation of two adjacent compact leaves are incoherent. By
Proposition 7.17, this is equivalent to the analogous statement with the contracting
orientation instead of the dynamical orientations.

We are left to prove that Lu
Y

is a filling MS lamination. We already know that this is an
MS lamination thanks to Proposition 3.8. So we are left to prove that every connected
component of @outV nLu

Y
is a strip in the sense of Definition 3.11. For this purpose, we

consider a connected component Au of @outU2 nLu
X2

; this is an open annulus bounded
by two compact leaves 
 u

1
and 
 u

2
of Lu

X2
. The set As WD ��1.Au/ is a connected

component of @inU2 nLs
X2

. The leaves of Lu
Y

contained in the annulus Au are exactly
the images under �� of the connected components of  �.Lu

X1
/\As . Together with

Remark 12.2, this implies that there are exactly four leaves of Lu
Y

in the annulus Au ,
and that each of these four leaves is “crossing” the annulus Au , ie is accumulating on
both 
 u

1
and 
 u

2
. As a further consequence, every connected component of Au nLu

Y
is

a strip bounded by two compact leaves of Lu
Y

which are asymptotic at both ends. In
other words, Lu

Y
is a filling MS lamination.

Lemma 12.4 There exists a diffeomorphism �W @outV ! @inV such that:

Geometry & Topology, Volume 21 (2017)



Building Anosov flows on 3–manifolds 1927

� The laminations ��.Lu
Y
/ and Ls

Y
are strongly transverse.

� Every leaf of ��.Lu
Y
/ intersects every leaf of Ls

Y
(see Figure 21, right).

Proof See Figure 21. Proposition 7.18 provides a diffeomorphism  outW @outV ! T2

such that:

� The compact leaves of the lamination . out/�.Lu
Y
/ are the vertical circles˚

i
4

	
�S1 for i D 0; : : : ; 3.

� In the open annulus
�

i
4
; iC1

4

�
�S1 , the leaves of the lamination . out/�.Lu

Y
/

are graphs of C 1 functions from
�

i
4
; iC1

4

�
to S1 .

� The derivatives of these functions are positive for i D 0 and 2, and negative for
i D 1 and 3. Given any constant A, an elementary modification of the proof of
Proposition 7.18 allows us to assume that the derivatives of these functions are
larger than A for i D 0 and 2, and smaller than �A for i D 1 and 3.

There is a diffeomorphism  inW @inV ! T2 such that the lamination . in/�.Ls
Y
/

satisfies analogous properties. Now, let �0W T
2! T2 be the orientation-preserving

diffeomorphism defined by �0.x;y/D .�y;x/. A straightforward computation shows
that the diffeomorphism �W @outV ! @inV defined by � WD . out/�1 ı�0 ı 

in satisfies
the desired properties.

We consider the closed manifold M WD V =�. We denote by Z the vector field induced
by Y on M . The first item of Lemma 12.4 and Theorem 1.5 imply that the vector
field Z is Anosov (up to perturbing Y within its topological equivalence class and
modifying � by a strongly transverse isotopy). The second item of Lemma 12.4 and
Proposition 1.6 imply that the vector field Z is topologically transitive.

Proposition 12.5 There exist infinitely many pairwise nonisotopic tori embedded in
M which are transverse to the vector field Z .

Proof Let cx and cy be the closed curves on T2 defined respectively by the equations
x D 1

4
and y D 1

4
. We endow cx and cy with the orientations defined by the vector

fields @
@y

and @
@x

, respectively. One can easily check that the vector field X0 is
transverse to cx and cy .

Let q2Nnf0g. Using classical and elementary desingularization process, one can easily
find an oriented simple closed curve cq on T2 , freely homotopic to cxCq�cy , transverse
to the vector field X0 and disjoint from the discs D˛ , D�1

, D�2
and D! (see Figure 22).

The torus Tq WD cq �S1 is embedded in U D .T2 n .D˛ [Dˇ//�S1 and transverse
to the vector field X (because cq is transverse to X0 and since X.x;y; t/DX0.x;y/

for .x;y/ 2 T2 n .D�1
;D�2

/). Now recall that .M;Z/ has been obtained by gluing
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!

! !

!

cy

�1

�2

�1

cx�2

˛

c3

Figure 22: The curves cx , cy and c3

together two copies of the plug .U;X /. Therefore the torus Tq can be seen as a torus
embedded in M transverse to the vector field Z (with the additional property that Tq

is contained in one of the two copies of the plug .U;X / which were glued together to
obtain the manifold M ).

Now consider two different positive integers q and q0 . Fix any �0 2 S1 and consider
the simple closed curve ycq WD cq � f�0g � Tq . Obviously the algebraic intersection
number of the curve ycq and the torus Tq0 is equal to ˙jq� q0j, which is nonzero. An
easy cohomological argument shows that Tq is not isotopic to Tq0 in M .

So we have found infinitely many pairwise nonisotopic tori embedded in M and
transverse to Z . The proof of Proposition 12.5 and Theorem 1.15 is complete.

Remark 12.6 The construction above does not seem to be optimal. Indeed, it should
be possible to find a gluing map � W @outU ! @inU such that the vector field Z� induced
by X on the closed manifold U=� is Anosov. Nevertheless, the existence of such a
gluing map does not follow from Theorem 1.5, since the entrance/exit laminations of
the plug .U;X / are not filling MS laminations.

Remark 12.7 The manifold M constructed above is a graph manifold (it was obtained
by gluing together two copies of S � S1 , where S is the torus minus two discs).
Nevertheless, the construction can easily be modified in order to get a manifold M

which has hyperbolic pieces in its JSJ decomposition.

Proposition 12.5 motivates us to ask the following question, to which we do not know
the answer:

Question 12.8 For every two different positive integers q and q0 , is there a homeo-
morphism of M respecting the orbits of Z and sending Tq to Tq0 ?
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