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The Eynard-Orantin recursion and
equivariant mirror symmetry
for the projective line

BOHAN FANG
CHIU-CHU MELISSA L1Uu
ZHENGYU ZONG

We study the equivariantly perturbed mirror Landau—Ginzburg model of P!. We show
that the Eynard—Orantin recursion on this model encodes all-genus, all-descendants
equivariant Gromov—Witten invariants of P'. The nonequivariant limit of this result
is the Norbury—Scott conjecture, while by taking large radius limit we recover the
Bouchard-Marifio conjecture on simple Hurwitz numbers.
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1 Introduction

The equivariant Gromov—Witten theory of P! has been studied extensively. Okounkov
and Pandharipande [27; 28] completely solved the equivariant Gromov—Witten theory
of the projective line and established a correspondence between the stationary sector of
Gromov-Witten theory of P! and Hurwitz theory. Givental [20] derived a quantization
formula for the all-genus descendant potential of the equivariant Gromov—Witten theory
of P! (and more generally, P”). In the nonequivariant limit, these results imply the
Virasoro conjecture of P!,

The Norbury—Scott conjecture [26] relates (nonequivariant) Gromov—Witten invariants
of P! to Eynard—Orantin invariants [10] of the affine plane curve

{x:Y+%‘(x,Y)e<Cx(C*}.

P Dunin-Barkowski, N Orantin, S Shadrin and L Spitz [5] relate the Eynard—Orantin
topological recursion to the Givental formula for the ancestor formal Gromov—Witten
potential, and prove the Norbury—Scott conjecture using their main result and Givental’s
quantization formula for the all-genus descendant potential of the (nonequivariant)
Gromov-Witten theory of P!, It is natural to ask if the Norbury—Scott conjecture can
be extended to the equivariant setting, in a way that the original conjecture can be
recovered in the nonequivariant limit.
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1.1 Main results

Our first main result (Theorem A in Section 3.7) relates equivariant Gromov—Witten
invariants of P! to the Eynard—Orantin invariants [10] of the affine curve

t 1 Qe t 1
+wj logY 4 wj log

e
{x=tO+Y+Q (x,Y)e(CXC*},
where #° and ¢! are complex parameters, w; and w, are equivariant parameters of the
torus 7 = (C*)2 acting on P!, and Q is the Novikov variable encoding the degree
of the stable maps to P! (see Section 2.2). The superpotential of the T—equivariant
Landau—Ginzburg mirror of the projective line is given by
t! t!

e e
W) C* - C, W,W(Y):10+Y+Q +w110gY+w210ng,

so Theorem A can be viewed as a version of all-genus equivariant mirror symmetry
for P!, We prove Theorem A using the main result in [5] and a suitable version of
Givental’s formula [20] for all-genus equivariant descendant Gromov—Witten potential
of P” (see also Lee and Pandharipande [24]).

Our second main result (Theorem B in Section 3.7) gives a precise correspondence
between genus- g, n—point descendant equivariant Gromov—Witten invariants of P!
and Laplace transforms of the Eynard—Orantin invariant wg , along Lefschetz thimbles.
This result generalizes the known relation between the A-model, genus-0, 1-point
descendant Gromov—Witten invariants and the B-model oscillatory integrals.

1.2 Nonequivariant limit and the Norbury-Scott conjecture

Taking the nonequivariant limit w; = w, = 0, we obtain

Qe"!

vy
which is the superpotential of the (nonequivariant) Landau—Ginzburg mirror for the
projective line. We obtain all-genus (nonequivariant) mirror symmetry for the projective
line.

W,(Y)=1"+Y +

In the stationary phase t® =! =0 and Q = 1, the curve becomes
(x=Y+Y 1:(x,Y)eCxC*},

and Theorem A specializes to the Norbury—Scott conjecture [26]. (See Section 4.2 for
details.)
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1.3 Large radius limit and the Bouchard—Marifio conjecture

Let wp =0, to =0 and ¢ = Qe’' ; we obtain

X = Y+%+W110gY,
which reduces to
x=Y +wlogY
in the large radius limit ¢ — 0. The C*—equivariant mirror of the affine line C is
given by
W:C*—>C, W)=Y +w;log?.

In the large radius limit, we obtain a version of all-genus C*—equivariant mirror
symmetry of the affine line C.

In particular, letting w; = —1 and X = e™, we obtain the Lambert curve
X=Ye .

In this limit, Theorem A specializes to the Bouchard—Marifio conjecture [2] relating
simple Hurwitz numbers (related to linear Hodge integrals by the ELSV formula of
Ekedahl, Lando, Shapiro and Vainshtein [6] and Graber and Vakil [21]) to Eynard—
Orantin invariants of the Lambert curve. (See Section 5 for details.)

Borot, Eynard, Mulase and Safnuk [1] introduced a new matrix model representation
for the generating function of simple Hurwitz numbers, and proved the Bouchard—
Marifio conjecture. Eynard, Mulase and Safnuk [9] provided another proof of the
Bouchard—Marifio conjecture using the cut-and-joint equation of simple Hurwitz num-
bers. Recently, new proofs of the ELSV formula and the Bouchard—Marifio conjecture
have been given by Dunin-Barkowski, Kazarian, Orantin, Shadrin and Spitz [4].

Acknowledgment We thank P Dunin-Barkowski, B Eynard, M Mulase, P Norbury

and N Orantin for helpful conversations. The research of the authors is partially
supported by NSF DMS-1206667 and NSF DMS-1159416.

2 A-model

Let T = (C*)? act on P! by
(t1.12) - [z21. 22 = [t] 21,15 ' 23],

Let C[w] := C[w;, wz] = Hy (point; C) be the T—equivariant cohomology of a point.
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2.1 Equivariant cohomology of P!

The T—equivariant cohomology of P! is given by
HE(P':C) = C[H.w/((H —w1)(H —w)).

where deg H = degw; = 2. Let p; =[1,0] and p, = [0, 1] be the T fixed points.
Then H|,, = w;. The T—equivariant Poincaré dual of p; and p, are H —w, and
H —wy, respectively. Let

H— H—
1

¢1 -

W) —wy 2 Wy — W Wi —wjp
Then deg ¢, = 0, and
o U ¢ﬁ = (Saﬁ‘pa,

So {¢1,¢>} is a canonical basis of the semisimple algebra

H;(PI’C) ®(C[w] C |:W, wi—w, ]
We have
d1+ P2 =1,
. Sap
(¢a»¢ﬂ) = ¢au¢ﬂ=5aﬂ ¢oz:_a, a,B el 2},
P! P! A
where

A1=W1—W2, A2=W2—W1.
Cup product with the hyperplane class is given by
Hu¢a:Wa¢a, O{=1,2.

2.2 Equivariant Gromov-Witten invariants of P!

Suppose that d > 0 or 2g —2 +n > 0, so that M, (P!, d) is nonempty. Given
ViseeosVn € H;(IP’I,(C) and ay,...,an € Z>g, we define genus-g, degree-d, T—
equivariant descendant Gromov—Witten invariants of P!:

n
PLT aj *
<mwnmmxm»’:=/ I v (y7) € Clwl,
1 ng,d [Mg,n (]P],d)]vir ]'1:[1 J J

where ev;: M gn(P 1'd) — P! is the evaluation at the j™ marked point, which is a
T—equivariant map. We define genus-g, degree-d primary Gromov—Witten invariants:

P.T . P.T
Vieevn) g pa = (o) 10 (W) g o a-
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Lett =¢%14+¢t'H.If 2g—2+n > 0, define

1 PLT
(i) Tan ) g ;Q ;1—ral(m---ra,,<yn)ro(tl>nm:so(t>>gn+zd-

Suppose that 2g —2+n+m > 0. Given y1,..., Yn4+m € H;(]P’l), we define

PLT

4! Vi
< EICIRRENE) < ,Vn+1’~~-’)/n+m>
z1— Y Zn—Yn

g.n+m,d
1 n 1
PLT —aj—
= Z (ta; (Y1) T2, (Y T0(Vnt1) -+ TO(Vn+m)>g,n+m,d l_[ Z; !

ai,..., an=>0 j=1

In particular, if n +m > 3 then

PLT
(1 < n_ yn+1...yn+m>
Z1 =Y Zn—Yn 0,n4m,0
1 1 1 n+m-—3 U U

where we use the fact Mo y4+m (P, 0) = Mo m+n x P!, and the identity

_3)
o KDL gy gy =k -3,
Yty =1 T !

Mok 0 otherwise.

We use the second line of (1) to extend the definition of the correlator in the first line
of (1) to the unstable cases (n,m) = (1,0), (1, 1), (2,0):

PLT
< 4l > = 21/ Y1,
Z1— Y 0,1,0 P!
PLT
V1
< ,V2> i=/ Y1Uya,
z1— Y 0,2,0 Pl

PLT

< Y1 Y2 > 1 / ) Uy
’ L 1 A
Z1—=VY1 Z2—V2flop0 F1tZ2Jp1

Suppose that 2g —2+n+m >0 or n > 0. Given 1, ..., Yn+m € Hj”i(IP’l), we define
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PLT
Y1 Vi
<< EICIERCNE) “ ,Vn+17---7)/n+m>>
21— VY1 Zn —Yn g.n+m

_ZZ < ..,Znann,}/n_kl,...,)/n+m,t,...,t>

d=01>0

PLT

- g,n+m+l,d
[ times

Let ¢ = Qe''. Then, for m > 3,

IP’IT
reee el =3 e ym)e = 5m3/P YU Uym+q]_[/ Vi

d>0 i=1

2.3 Equivariant quantum cohomology of P!

As a C[w]-module, QHX(P';C) = H3(P';C). The ring structure is given by the
quantum product * defined by

PL.T
i xv2.v3) =i v2. vados o

VI*VZZVIUV2+Q(/ Vl)(/ )/2),
P! P!

where U is the product in H7 (P') and ¢ = Qe ' In particular,

or equivalently,

Hx H = (w; +w2)H —wiwy +gq.
The T—equivariant quantum cohomology of P! is
OHA(P':C) = C[H.w.ql/(H —wi) » (H —w3) —q).
where deg H = degw; = 2 and degq = 4.
The (nonequivariant) quantum cohomology of P! is

ClH.ql/{H « H —q).

Let 1
—5(wg +wp)
b1(q) = 2 ,
=3+ (w1 —w2) /T + &g/ (w1 —wa)?
— L(wy +wy)
$2(q) = 5 2 :
@) =3+ (w2 — 1) /T 1 4q/ (w1 — wa)?
Then

da(q) *x Pp(q) = 8updal(q).
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so {¢1(q), Pp2(q)} is a canonical basis of the semisimple algebra
* 1. 1
QHF(P';C)&C|w. AI—@)]’
where Al(q) is defined by (2). We also have
(9a(q). #8(9)) = (1 x da(q). 9p(q)) = (1, Pa(q) * Pp(q))

8e,
= Sap (1. $a(9)) =5aﬂ/Pl Palq) = Aa(i])’

where

2
) Al(q)=(wl—vvz),/1+m,
4
A (q) = (W —wy), /1 + m =-A'(g).

Quantum multiplication by the hyperplane class is given by

W1 + %] + A“(q)

H x ¢y = 5 Ga, a=12.
Finally, we take the nonequivariant limit w, = 0, w; — 0% . We obtain:
1 H 1 H
‘/51(4)—54‘%» ¢2(Q)—§—m,
A(q) =24, N(q) =27,

Hx¢1(q) = V/q91(q). Hxp2(q) = —/q9¢2(q).

These nonequivariant limits coincide with the results in [29, Section 2].

2.4 The A-model canonical coordinates and the ¥ -matrix

Let {t° ¢!} be the flat coordinates with respect to the basis {1, H}, and let {u!, 1>}
be the canonical coordinates with respect to the basis {¢(¢), ¢2(¢)}. Then

d 1( W1+W2) d 1 d
- — A 1_ _+—_9
oul 2 Al(g) )0t  Al(g) or!

1_1( _vvl+wz)i+;i
u? 2 A2(q) ] ot0  A2(q) ar!’
du' = di® + %(Al(q) +wy 4 wa)dt

du? = di® + (N (g) +wy +w)d1.
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The above equations determine the canonical coordinates u! and u? up to a constant
in C[wy,wa, 1/(w; —w,)]. Givental’s A—-model canonical coordinates (u!,u?) are
characterized by their large radius limits

3) qlgq)(ul—z°—wlt1)=o, ;Lnao(uz—zO—erl)zo.

For o € {1,2} and i € {0, 1}, define ¥,* by

(x
A“(q Zdl v,

i=0
and define the W—matrix to be
vy 2
[
v
Then
dul du?
[ ! ! }:[dro A,
VA(q) VA(g)
oo 1 lpa,_AO‘(Q)-i'Wl-i-Wz
0o = ) 1 = .
v A*(q) 2./ A%(q)
Let

ot _ [ @H,0 @h)!
- (\I,—l)zo (\11_1)21

be the inverse matrix of W, so that

1
Swhiwf =k

i=0
Then A% (g) .
(\I,—l)ao _ q) —wi —wz’ (‘I’_l)al -
2 A (q) VA% (q)

Let 0=1,iegq= e!'. We take the nonequivariant limit w, =0, w; — 07:

U1=[0+2\/_, u2=0—2f,
1 ——tl —\/_e_ltl
_( eil'  J/—leat' )

V2

vl — 1 ex! e_Z’I
T2\ VTest! —=Temat' )

These nonequivariant limits agree with the results in [29, Section 2].
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2.5 The S—-operator

The S—operator is defined as follows: for any cohomology classes a, b € Hy.(P L.0),

(@.50)) = (@ b >>P1’T.

z— llo,2

The T—equivariant J—function is characterized by

(J.a) = (1,5(a))

for any a € Hy(P').
Let
1 _ 2 _
X = W1 —Wwj, X =Wy —Wwj.
We consider several different (flat) bases for HJ (P L. C):
e The canonical basis: ¢ = (H —w3)/(wq —wy) and ¢ = (H —wq)/(wy —wyp).
¢ The basis dual to the canonical basis with respect to the T—equivariant Poincaré
pairing: ¢' = x'¢; and ¢* = x?¢;.
o The normalized canonical basis ¢; = /x'¢; and ¢, = /x2¢,, which is
self-dual: ¢! = ¢ and ¢ = ¢, .
e The natural basis: 7o =1 and 77 = H.
e The basis dual to the natural basis: 7° = H —w; —w; and T! = 1.
For a, B € {1, 2}, define
%(2) = (6%, S(p))-
Then S(z) = (S “B (2)) is the matrix! of the S—operator with respect to the ordered
basis (¢1,$2):

2
) S(#p) =) baS%(2).

a=1

For i € {0, 1} and « € {1, 2}, define
S; % (2) == (T, S(9%)).
Then (S a) is the matrix of the S—operator with respect to the ordered bases ($ 1 gg 2)
and (T°, T):
1

) S@*) =) T'S;%().

i=0

IWe use the convention that the left superscript/subscript is the row number and the right super-
script/subscript is the column number.
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We have

at, Z S;%(2)a-

By [17; 25], the equivariant J—function is

0 d
J = e(t0+tlH)/z(1 + y q . )
d=1 Hmzl(H_Wl +mz) Hm:](H_WZ +mz)

For ¢ =1, 2, define

© 4
O+t W)z q 1
T =T, = e .
d=0 L2 [ =1 (x* + mz)
Then
aJ 9J%
ﬁ_'] Zja(,bot’ Zﬁ = g 8[1 ¢0h
)
~ z aJ“
S;%(2) = \/X_“' R

© ©  d 1
| wg + )
Z d)zd Hi: (X% +mz) dg:l (d—1)z4 HZZI(XO“FWZZ)
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2.6 The A—-model R -matrix

By Givental [20], the matrix (§i B )(z) is of the form

=N 2
e Z W2 R A (2)e")7 = (WR(2)),Pe'z,

where R(z) = (RP(2)) = I + Y52, Rizk and is unitary, and
00 2n—1
. By z
lim R B(z) =6 — —\ — .
$ 5 R (2) = et exp( 2 2n(2n—1) (xﬂ) )
2.7 Gromov-Witten potentials

Introducing formal variables

2
u= Z uqz%, where u, = Z uSda(q),
a=1

a>0
we define
]P’ T 1 ]P’I,T
Feplwt):= ) —{(ta)(ta)) -+ Ta, (ta,)) g0
al,e.., an,
a;€Zzxo
=2 2> [Tev; (ta) W Tlevion®.
a1,n m=0d—=0 """ IMen+m @ LT iy palle
a;€Z>g

We define the total descendent potential of P! to be

DPI’T(u)zexp(Zhg IFP T(u 0))

n.g

Consider the map 7: Mg nm(P',d) — Mg n which forgets the map to the target
and the last m marked points. Let v; := 7*(v;) be the pull-backs of the classes ¥;
fori =1,...,n from Mg ,. Then we can define

FP T, t):= Z Z Z i Hev (ua])w Hevl+n(t)

----- an m=0d=0 Me.ntm (PLA)] j=1 i=1
a,G >0

Let the ancestor potential of P! be
AP T 1) = exp( > ns! FE’I,;T(u, t)).
n.g
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2.8 Givental’s formula for equivariant Gromov—Witten potential and the
A-model graph sum

The quantization of the S—operator relates the ancestor potential and the descendent
potential of P! via Givental’s formula. Concretely, we have (see [19])

DPI’T(u) = exp(FiPl’T)g_lAPl’T(u,t),

where FFI’T denotes ), FE’T(u,O) atugp=u and u; =upy =---=0, and S
is the quantization [19] of S. Folr our purpose, we need to describe a formula for
a slightly different potential: F; ;Pj n’T(u, t) — the descendent potential with arbitrary
primary insertions.

Now we first describe a graph sum formula for the ancestor potential APl’T(u, t).
Given a connected graph I', we introduce the following notation:

e V(I') is the set of vertices in I".

e FE(I) is the set of edges in I'.

e H(I) is the set of half-edges in I".

e [L°(T) is the set of ordinary leaves in T".

o L(I") is the set of dilaton leaves in I.
With the above notation, we introduce the following labels:
e Genus g: V(') —> Z>y.
e Marking B: V(I')— {1, 2}. Thisinduces B: L(I')=L°(T")ULY(I")—{1,2},
as follows: if / € L(T") is a leaf attached to a vertex v € V(I"), define B(!) = B(v).
e Height k: H(I') —» Z>y.

Given an edge e, let /11(e) and /;(e) be the two half-edges associated to e. The order
of the two half-edges does not affect the graph sum formula in this paper. Given a
vertex v € V(I'), let H(v) denote the set of half-edges emanating from v. The valency
of the vertex v is equal to the cardinality of the set H(v), written val(v) = | H(v)|. A
labeled graph T = (T, g, B, k) is stable if

2g(v)—2+val(v) >0
forall ve V(I').

Let I'(P!) denote the set of all stable labeled graphs I= (I, g, B,k). The genus of a
stable labeled graph I' is defined to be

g@):= Y g +|ED)|-|VD)|+1= ) (g(v)—1)+( > 1)+1.

velV(I) velV (') ecE()
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Define
T (P') = (T = (T, g 8.k) el (P): g() =g, |L°(T)| = n}.

Given « € {1, 2}, define
u*(z) = Z ulz?.

a=0

We assign weights to leaves, edges, and vertices of a labeled graph Te I'(Ply as
follows:

(1) Ordinary leaves To each ordinary leaf / € L°(I") with B(/) = B € {1,2} and
k(l) =k € Z>¢, we assign

£y = zk( u(z) Raﬂ —Z).
(LD []O,:Zl,z fog Rd )

(2) Dilaton leaves To each dilaton leaf / € L(I") with B(/) = B € {1,2} and
2<k(l)y=k € Z>g, we assign

rhB () =[k1 (_ 1 Raﬂ_ )
(LH7 () =11 a:Zm AR

(3) Edges To an edge connecting a vertex marked by « € {1, 2} to a vertex marked
by B € {1,2} and with heights k& and / at the corresponding half-edges, we
assign

(o) =[*u! ](H#w (&,,,g -y Ry“(—z)Ryﬂ(—w))).

y=1,2

(4) Vertices To avertex v with genus g(v) = g € Z>¢ and marking 8(v) = 8, with

n ordinary leaves and half-edges attached to it with heights k,...,k, € Z>¢
and m more dilaton leaves with heights k41, ..., kntm € Z>0, We assign
— k k"l m
T el I N ied
g.n+m

We define the weight of a labeled graph FeT (P1) to be

w®) = [] 8002000 [T ug) ] o
vel(T) heH () g) . E(T)
/ /
T @eipo TT @ipo.

leLo(T) leL1(T)
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Then
PLT 721y, 1 ()
oe(4" Ty = Y D ey oy O
Feren AutD)] 250 1>0 fer, (B |Aut(T)|

1
Now we describe a graph sum formula for F é]f: " T(u, t) — the descendant potential with
arbitrary primary insertions. For o = 1, 2, let

P (@) = VA% (@) $a(q)-

Then $1 (q), d;z () is the normalized canonical basis of QH (P 1. C), the T—equivari-
ant quantum cohomology of P!. Define

%) = (u(9). 5($p())-

Then this is the matrix of the S—operator with respect to the ordered basis (qAS 1(q), $2 (9):

2 ~
©6) S(@pa) = Y $ul@)S%(2).
a=1 -

We define a new weight of the ordinary leaves:

(1’) Ordinary leaves To each ordinary leaf / € L°(T") with (/) = B € {1,2} and
k(l) =k € Z>¢, we assign

298y = Zk( u ) SfA Z)R(—z B).
(L) =[] Elz o aORCD

We define a new weight of a labeled graph FeT (P1) to be
#(F)= [T (Vaf@q #0290 [T w) T oo

vel(I) heH (v) gW) cc E(I)
BW) 1,B()
[T @0 T1 «ipo.
leLo(T) leL1(T)
Then
AEM—12 (T BT
I WA D T DU DD DI
We can slightly generalize this graph sum formula to the case where we have n ordered
variables uy,...,u, and n ordered ordinary leaves. Let
uj = Z(uj)aza
a=0
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and let
1 aj
FE Ty, ) 1= vy ((t))a) )V
Zn;n;)’”' (Mt (P LD D ’
aiGZzo
: ]‘[ evi,, ().
i=1
Define the set of graphs Fg 2(P1) as the definition of T, ,(P') except that the n
ordinary leaves are ordered. Let {/1,...,[,} be the ordinary leaves in I" € Fg 2(P1)
and for j =1,...,n let
; w(z) 5
28y = [ ( =S¥ (5)R(~2) ﬂ).
L =4 > 0 z(DR(=2),

o,y=1,2
Define the weight

o T B(v) 2g(v)—2+val(v) Bi(e)),B(v2(e))
D)= [] (VaPP(g))2@ 24w U< [1 Tk(h)> [T & eien©

veV(D) he H (v) &) e E(T)
n
Sui\BUj) . 1\B()
T T @hHip®-
Jj=1 leL1(I)
Then
#eO—1(F)
— 1
Zhg legn’T(”l"" Jlp,t) = Z
£g£=0 n=>0 Tef (@1) |AUt(F)|
=Yty % _w@
> =07 = |Aut(T")]|
§=0 nZ0 Pely, ,(P1)
3 B-model

3.1 The equivariant superpotential and the Frobenius structure of
the Jacobian ring

Let Y be coordinates on C*. The T—equivariant superpotential W¥: C* — C is
given by

WrY)=Y +t+ % + wy logY+W210g%,
where ¢ = Qe’! and Y = ¢”. In this section, we assume w; —wj is a positive real

number. The Jacobian ring of W}" is

agt;,W> =C[Y, Y_I,CI»W]/<Y_%+W1 _W2>'

Jac(W") = C[Y, Y_l,q,W]/<
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Let AW
r _ 4
dg Y twe.

B:=g¢q

The Jacobian ring is isomorphic to QH7.(IP 1. C) if one identifies B with H:
Jac(W;") = C[B.q,w]/{(B—w1)(B—w2) —q).
The critical points of W/ are Py and P,, where

_ wy—wy + A%(q)
= 5 ,

Endow a metric on Jac(W,") by the residue pairing

Py

=1,2.

2
S(¥)g(Y) dy
,8) = Resy—p, —" ——.
(f.8) 0; esy—p, oy ¥
By direct calculation, we have
(B,B)=w;+wy, (B,1)=(1,B)=1, (1,1)=0.

We let by =1, by = B and define b’ by (b, bj) = 51’ These calculations show the
following well-known fact:

Proposition 3.1 There is an isomorphism of Frobenius manifolds

1 w
QH7 (P! C) ®cw] C [W, — ] = Jac(W,") ®cw) C [W,

W1 —W»p ]
We denote Jac(W,") ®cfw] C[w, 1/(w; —w;)] by Hp. The Dubrovin—-Givental con-
nection is denoted by Vf =z0dy +ve on Hp:= Hp((2)).

3.2 The B-model canonical coordinates

The isomorphism of Frobenius structures automatically ensures their canonical coordi-
nates are the same up to a permutation and constants. We fix the B-model canonical
coordinates in this subsection by the critical values of the superpotential W,", and find
the constant difference to the A—model coordinates that we set up in earlier sections.

Let C) = {(x,y) € C?:x = W,"(e”)} be the graph of the equivariant superpotential.
It is a covering of C*, given by y > e?. Let © 2 P! be the compactification of C*
with Y € C* C P! as its coordinate. At each branch point ¥ = P,, we have the
expansions

(o,]
x=i—g2 y=9 - h@ik.
k=1
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where /1§ (q) = /2/A*(q). Note that we define {y by ¢2 = % — x, which differs
from the definition of ¢ in [7; 11] by a factor of +~/—1.

The critical values are

o A(x
1% = 1% + wat! + A%(g) — x* log X +2 @)

Since . .

ou“ ou“ q wi +wy + A%(q)

—n — 1’ i = + Wy = )

10 al Py 2
we have
@) du®* =du®, a=1,2.
Recall that limg_, Al(g) = w;j —ws>, so in the large radius limit ¢ — 0 we have
(8) lim (2% — 1% —wet!) = x* — x% log x*.

q—0

From (7), (8) and (3), we conclude that

v =u4+a,, a=1,2,

where
ag = x* — x%log x“.
3.3 The Liouville form and Bergman kernel

On C, let
A=xdy

be the Liouville form on C2 = T*C. Then dA = dx Ady. Let
Q= Alcy = W () dy = (e +to +ge™” + (wi —wa)y +w; logq) dy.

Then @ is a holomorphic 1-form on C. Recall that ¢ = Qe’ "and Y = ¢”. Define

) 0od Jy

0‘ ato Y ’
. RLO) (4 dY
o, ._@_ (——i—wz)—y.

Then @y and ®; descend to holomorphic 1-forms on C* which extends to meromor-
phic 1—forms on P1. We have:

e &, has simple poles at Y =0 and ¥ = oo, and
Resy o0 P9 =1, Resy_oo &1 =-1.

o d;—wrydy=—gd(Y!) is an exact 1—form.
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Let B(pi, p2) be the fundamental normalized differential of the second kind on X
(see eg [16]). It is also called the Bergman kernel in [10; 11]. In this simple case with

> >~ P! we have
dY, ®dY,

P e

3.4 Differentials of the second kind

Following [7; 11], given « = 1, 2 and d € Z>, define
dfqa(p) = (2d = )I127 Resy p, B(p. p)(V~18a) 7271,
Then d&, 4 satisfies the following properties:

e d&, 4 is ameromorphic 1—form on P! with a single pole of order 2d +2 at Py .

¢ In the local coordinate ¢, near Py,

ik _( —@d + 1!
Ol,d 2dﬁ2d+1§§d+2

where f({y) is analytic around Py. The residue of d&, 4 at Py is zero, so
d&, 4 is a differential of the second kind.

T f@a)) dla.

The meromorphic 1-form d&, ;4 is characterized by the above properties; d&, 4 can
be viewed as a section in H° (IP’ Lop1((2d +2) PO,)). In particular, d&,,o is

-2 Py
d = d .
S0 =\ Ao () (Y = Pa)
Then we have

(O _ Y _ 1 P, . P,
d(ﬁ) B d((Y—PIXY—Pz)) - Pl—Pzd(Y—Pl Y—Pz)

IR S R B
BRI TR Wy i
2
1 «
= \/—_—20;‘1’0 déy.0,
q)l . q+W2Y
(aw) = ()

1 q+Piwy g+ Pyw,
 P—P, Y—P, Y—P,

N SN GV OO Y _ 2@ (4
= rai (V32 (5 o atom 552 (5 0o
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1 Al w1 +wy 2 wi+wy
2\/—_2(( (9)+ NP (q)) 51,0+( (9)+ ) )) 133 0)
2
1
= = v adSa, s
\/__21; ! °
SO
(o} )
©) d(ﬁ) _ 1 \I,(dfl,o) N d(ﬁ) :(dfl,o)
A e Ve )

3.5 Oscillating integrals and the B-model R -matrix

For a, B € {1,2}, i €{0,1} and z > 0, define

. w w o;
T R )
l V€Y Y€Ya aw

where Yy is the Lefschetz thimble going through Py such that W;*(Y) — —oo near
its ends. It is straightforward to check that Zl _ob' S “isa solutlon to the quantum
differential equation VB f =0 for « = 1, 2. We quote the following theorem:

Theorem 3.2 [3; 18; 20] Near a semisimple point on a Frobenius manifold of
dimension n, there is a fundamental solution S to the quantum differential equation
satistying the following properties:

(1) S has the form
S = WR(z)eY/?,

where R(z) is a matrix of formal power series in z and U = diag(u!, ..., u")
is a matrix formed by canonical coordinates.

(2) If S is unitary under the pairing of the Frobenius structure, then R(z) is unique
. g . e . 2i—1
up to a right multiplication of eXi=142i-12"""" \where the Ay, are constant
diagonal matrices.

Remark 3.3 For equivariant Gromov—Witten theory of P!, the fundamental solution
S in Theorem 3.2 is viewed as a matrix with entries in C[w, 1/(w;—w»)]((z))[g.°.¢'].
We choose the canonical coordinates {#®(¢)} such that there is no constant term by (3).
Then, if we fix the powers of ¢, t° and ¢!, only finitely many terms in the expansion
of eV/7 contribute. So the multiplication \I/R(z)eU/ Z is well-defined and the result
matrix indeed has entries in C[w, 1/(w; —w2)](2))[g.¢°, ¢'].
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Remark 3.4 For a general abstract semisimple Frobenius manifold defined over a
ring A, the expression S = WR(z)eY/? in Theorem 3.2 can be understood in the
following way. We consider the free module M = (e”l/ @@ (e*"/7) over the ring
A((2)) [[t1 L+, t"], where o are the flat coordinates of the Frobenius manifold.
We formally define the differential de*/? = ¢*'/? du'/z and we extend the differential
to M by the product rule. Then we have amap d: M — M dt' @--- & M dt". We
consider the fundamental solution S = WR(z)eY/? as a matrix with entries in M . The
meaning that S satisfies the quantum differential equation is understood by the above
formal differential.

In our case, the multiplication in the A—model fundamental solution S = WR(z)eV/?

is formal in z, as in Remark 3.3. On the B-model side, we use the stationary phase
expansion to obtain a product of the form WR(z)eY/Z. The multiplications WR(z)eY/?
on both the A—-model and B—model can be viewed as matrices with entries in M , and
their differentials are obviously the same with the formal differential above.

We repeat the argument in Givental [19] and state it as the following fact:

Proposition 3.5 The fundamental solution matrix {S’i"‘/ ~/—2mz} has the asymptotic
expansion, where R(z) is a formal power series in z,
Seiz) & 3 »
L2 )Y W RE(2)e
N 2mz )/2=:1 Ly @

Proof By the stationary phase expansion,

S,-a(z) ~ V2 ze™ 7 (1 +aif"lz+a.°‘222 40,

i
it follows that {S'i“} can be asymptotically expanded in the desired form (notice that
U is a matrix in z—degree 0). In particular, by (9),

ﬁe—ﬁ“/z

The above B-model R-matrix R ﬁ“ (z) is related to f é" (1) in Eynard [8] by

Rﬂa (z) ~ il dép.o-

(10) fraw = Rg(-1).

u

Following Eynard [8], define the Laplace transform of the Bergman kernel

BB . _uv VUV i +vih B —ux(p1)—vx(p2)
(”»U"I) u+v5(¥,/3+ 27T e preve Ipaevs (p17p2)e ’
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where «, B € {1, 2}. By [8, Equation (B.9)] and (10),

2
jo.8 _ _uv S pe(-\ga(-L
(11) B (M,U,(])— u+v(8a,ﬂ ZIRJ’( M)Ry( U))
y=
Setting u = —v, we conclude that
(Y R(INT =[5 ke (L) RA(-I) = o8
(RGO R(=)) = 2R (GR )y =0
y=1
This shows R is unitary. |

Following Iritani [22] (with slight modification), we introduce the following definition:

Definition 3.6 (equivariant K-theoretic framing) We define

ch.: Kr(P') > H%(P%@)[[Wl ;Wz]]
by the following two properties, which uniquely characterize it:
(a) ch, isa homomorphism of additive groups:
chz(€1 @ &) = chz(&1) + chz(£>).
(b) If £ is a T—equivariant line bundle on P! then

_277\/__1(C1)T(£))

ch, (L) = exp(
z

For any £ € K7 (P'), we define the K—theoretic framing of € by
TPH ~
k(€)= (_Z)l—(m)T(TPl)/ZF(l _ M)Chz(g),
z
where (¢1)7(TP) =2H —w; —ws,.

By localization, property (b) in the above definition is characterized by

o
& k(Opi(ly p1 + o pa)) = (—2)1 71 ZF(I - X_)e%"ﬁ"” a=12,

z
. 1 . . .
where 1p,: pg — P is the inclusion map.

The following definition is motivated by [12; 14]:
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Definition 3.7 (equivariant SYZ 7—dual) Let £ = Op1(/1p1 + /2 p2) be an equi-
variant ample line bundle on P!, where /; and [, are integers such that /; +/, > 0.
We define the equivariant SYZ 7'—dual SYZ(L) of L to be the oriented graph

2l — Dmi +oo + (2l — D)mi

—00 + (=21y — Vi

(=21, — Dymi

in C. We extend the definition additively to the equivariant K-theory group K7 (P1).

T 400 + 7wl
. exp
—00 — i — 0 0 1
—mi

Figure 1: The equivariant SYZ T—dual of Op1(p2) in C and the (nonequiv-
ariant) SYZ T—dual of Op1(1) in C*

The following theorem gives a precise correspondence between the B-model oscillatory
integrals and the A-model 1-point descendant invariants.

Theorem 3.8 Suppose that z, ¢, wi —w, € (0, 00). Then, for any £ € K7 (P'),

PLT
(12) / eVVtw/z dy — <<1’ K'(E) >> ,
yeSYZ(L) 2=V loz

PLT
(13) / veW/Zydx=—<<K(£) >> .
yESYZ(L) z—y 0,1

Here dx =d(W)(y)).

Proof The left-hand side of (12) is

/ Wiz dy:—l/ eWtW/Zy d(W").
yESYZ(L) Z Jyesyz(c)

By the string equation, the right-hand side of (12) is

T N =
2=V lon \zz—v) 01

So (12) is equivalent to (13).
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It remains to prove (12) for £ = Opi1(l1 p1 + [ p1), where [} + 1, > 0. We will
express both sides of (12) in terms of (modified) Bessel functions. A brief review of
Bessel functions is given in Appendix A. The equivariant quantum differential equation
of P! is related to the modified Bessel differential equation by a simple transform (see
Appendix B).

Let y;, 1, be defined as in Appendix A. Then

0 - 1
/ eWtW/Zdy:/ exp(ey_H tge +wiytwa(l —y)) dy
SYZ(L) SYZ(L)

z

_ e(t°+wzz1)/z/ exp ey_i”+6]€i”_y+(W1—Wz)(y—ﬂi)) dy

z
_ 0 wi+w;
— (—1)w1—w2)/z - 1 /1
=1 exp(Z—I- 2z
2 1 _ 1
X exp| — ﬂcosh(y—t—)+wl 2 (y—t—) dy
Yiy. z 2 z 2
1-42
_ 0 wi+ws
= (—1)w1—w2)/z r 1 ¢!
(=1 eXP(z—i‘ e

) _
exp(—g cosh(y) + %y) dy.

112

% /y
1
By Lemma Al,

2 _
/ exp (—ﬁ cosh(y) + uy) dy
yl] No z z

T —2mili(wy—w
B )(e i 2)/21( ! WZ)/Z( Z )

~sin(((wa—wy)/2)m
' 2
_e_2”l12(W2_W1)/ZI(wz—Wl)/Z( ﬂ))

z
2
— Z e—27rilaxo,/z T Toa 2\/6
sin(x*/z)m) ¥\ "z )

a=1

Therefore, the left-hand side of (12) is

/ M1z dy
SYZ(L)
0 witw 1 & —Qly—D)wixa/z T 2\/6
=—exp| —+ 51 Ze “ = :

2z sin((x*/z)m) x/z2\ 7

a=1
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Recall from Section 2.5 that
PLT PLT
i Uer) B e
z=Y o, =Y llox
0 d
Jo = pWO+t W)z 3 4 !

d d
oAz T (x4 mz)

ze(,o+,lwa)/zi 27" T(x%z+1)
=\ z m!T'(x%/z+m+1)

0 1 2 2
el (2 e ()

2
K(c) = Z(_Z)XO‘/(_Z)JFIF(I . X_a)e_zlanﬁxa/z¢a.

‘We have

zZ
a=1

So the right-hand side of (12) is
PLT 2
<<1’ K (L) >> _ Z(_Z)X“/(—z)ﬂr(l _ ﬁ)e—znilax“/zj_a
z— w 0,2 a1 z X(x
_ 0 wlew? g
2

() —amile @ 2.7
D gmamilax®z T[SV
XD (D sin(e7m) 7\

a=1

0 1 2
= —exp(% + v ;_ZW tl)
2

« 2./4
—QRlg—1)mix%/z
Qe B /Z( ) .

a=1

Remark 3.9 Definition 3.6 (equivariant K-theoretic framing) and Definition 3.7 (equi-
variant SYZ T—dual) can be extended to any projective toric manifold. In [13], the first
author uses the mirror theorem [17; 25] and results in [22] to extend Theorem 3.8 to
any semi-Fano projective toric manifold. The left-hand side of (12) is known as the
central charge of the Lagrangian brane SYZ(L).

Proposition 3.10 The A— and B-model R-matrices are equal:

R§(z) = RS (2).
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Proof By the asymptotic decomposition theorem of the S -matrix (Theorem 3.2),we
only have to compare at the limit ¢ = 0, #y = 0 since both S and S are unitary. Notice
that W has a nondegenerate limit at ¢ = 0, so it suffices to show that

S;%e ™" /Z‘qzo,t():O ~ —/—_12712 S;%e™ /=
The Lefschetz thimble y, is {Y | Y € (—o0,0)}. While the Lefschetz thimble y;
could not be explicitly depicted, we could alternatively consider the thimble y; =
{Y | Y €(0,00)} for z < 0 of the oscillating integral | eW!"lz dy . The integral yields
the same asymptotic answer once we analytically continue z < 0 to z > 0, since the
stationary phase expansion only depends on the local behavior (higher-order derivatives)
of W;" at the critical points.

g=0,t=0

So, letting ¥ = —Tz fora =2,0r Y = —¢q/(Tz) fora =1,

X%
"z

P O ( X +_2A°‘ (@) ) (—z) Xz / T =t/ T pralz=1 g
0

Taking the limit ¢ — 0,

2n—1
1 By z
X e"p( ; 2n(2n—1) (x) )

Here we use the Stirling formula
1 1 - Ban 1—2n
logF(z)~510g(2n)+<z—5)logz—z+;mz .
Notice that 5 9 . s 4 "~ Iy
S* =ZES0"‘ =z/yae ,/2(7 +w2) <
and similar calculation shows (letting Y = —-Tz ifa =2and Y =—¢q/(Tz) ifa =1)

o0
o L _ an (L)Zn—l
0o Vx“exp( 2 3an—1 (12

n=1

<
Il

o Qa,—uz
S,%e }q=0‘

This concludes the proof. |
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Notice that the matrix R is given by the asymptotic expansion. This theorem does not
imply S Go—u/z — Si“e_”a/z/v—an, which are unequal.

3.6 The Eynard-Orantin topological recursion and the B-model
graph sum

Let wg , be defined recursively by the Eynard—Orantin topological recursion [10]:

dY, dY,

wo,1 =0, w0,2=B(Y1,Y2)=(Y )2
1= 1

When 2g —2+n>0,

— [, B8

Wen(Yi.....Y,) = Resy_ p, %
en (Y1 n) Z Y—P 2(log(Y) —log(Y))dW

X (wg—l,n—l-l(Yv )’;’ Yla R Yn—l) +

> Y o 1Y YDwg, 41 (Y, YJ)),

gi+g2=g IUJ={1,....n—1}
INJ=o
where Y # Py is in a small neighborhood of P, and Y # Y is the other point in the
neighborhood such that W;*(Y) = W'(Y).

The B-model invariants wg , can be expressed as graph sums [23; 7; 8; 5]. We will
use the formula stated in [5, Theorem 3.7], which is equivalent to the formula in [7,
Theorem 5.1]. Given a labeled graph T e T, (PY) with LO(T) = {ly,...,1In}, we
define its weight to be

By et 7 (P 5001©).ws(0))
w(l)=(=1) 1_[ 7 1_[ Tk (h) 1_[ k(e).l(e)

veV(T) heH@w) '8 ecET)
a(l, 1 jed
1_[ A&y (X)) 1—[ ( /—) k()
Jj=1 lect(T) 2
Here,
. 2 2k — 1)1 he .
-1
Note that the definitions of BY s lﬂ , h“ and d Ek in this paper are slightly different from

those in [5]; for example, the deﬁmtlon of B,‘: lﬂ in this paper differs from [5, Equation
(3.11)] by a factor of 2~ —k=1=1 Tn our notation, [5, Theorem 3.7] is equivalent to:
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Theorem 3.11 For2g—2-+n>0,

w(T
rer, et (AW

3.7 All-genus mirror symmetry

Given a meromorphic function f(Y) on P! which is holomorphic on P!\ {P;, P,},
define

af y? df

dW (Y = P)(Y — P,)dY’

0(f) =

Then 6( f) is also a meromorphic function which is holomorphic on P!\ {P;, P,}.
For « € {1, 2}, let
2 Py

1
S0 = = M) Y= Py

Then &, ¢ is a meromorphic function on P! with a simple pole at Y = P, and
holomorphic elsewhere. Moreover, the differential of &y ¢ is d&y,0. For k > 0, define

W = d((—1)* 0% (Ea.0)).

Define
v d&go & k) d&po
(14) S¥(z) = —Z/ eX/z 2ED - S KB () = —2/ eX/7 2B
B YE€Vu A =2 B yESYZ(L) =2
Then
S k W)/ Wkﬂ S k(L) k W)/ Wkﬂ
S¥(z)=—z 'H/ "Wz __k_ = § ()= 2 +1/ eIz &
B Y€V =2 B yESYZ(L) V=2
Therefore,
B PLT
W, i o~ k(L) ’
(0] k—1
(15) / MWz __k_ — _km1g KDy = <<¢ (q),—>> ;
yeSYZ(L) V=2 B iy 0,2

where the last equality follows from Theorem 3.8.
Fora=1,2and j=1,...,n,let
2 B
u; (2)

(16) iz =Y 5% () .
! E B /nB(g)

Theorem A (all-genus equivariant mirror symmetry for P!) When n > 0 and
2g —2+n> 0, we have

_ —14n pPLT
a7 Ognlwacryvma=@p = CUT T Fe (un . 0).
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Proof We will prove this theorem by comparing the A—model graph sum in the end
of Section 2.8 and the B—model graph sum in Section 3.6.

» Vertex By Section 3.2, we have /1{(q) = /2/A%(g). So, in the B-model vertex,
h$/ V2 = /1/A%(q). Therefore the B-model vertex matches the A—model vertex.

e Edge By (11), we know that

o —k. — D o I\ 3 1
Bk,’lﬂz[u ) l](ubf:v( “h = Z Ry (_E)Rvﬂ(_Z)))
y=1,2
(g ¥ Ak
y=1,2

By definition,

1
cof =)y (ses— X RECaRSW)).
y=1,2
By Proposition 3.10, Iéﬂ‘" (z) =R "‘(z), SO
BB — 2B
kl - E k. -

* Ordinary leaf We have the following expression for d&7 (see [15]):

dgg =W — Zsz 1—i0Wi

i=0 B

By the calculation for edge above, for k, / € Z>y,

Bef =) (ses- T RECORS W),
y=1,2
We also have
ONRG (—2)) = ba g
Therefore,
kK 2 .
deg =3 3 (IR ()W
i=0 =1
so under the identification
1
V=2

the B-model ordinary leaf matches the A—model ordinary leaf.

W (X)) = (i)
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e Dilaton leaf We have the following relation between }vlz and f é" (u, q) (see [15]):
he ==Y V1R 18 ).
B
By the relation
R = 15 ()
B B\

and the fact h’f (q9) = v/2/APB(q), it is easy to see that the B-model dilaton leaf matches
the A—model dilaton leaf. O

Taking Laplace transforms at appropriate cycles to Theorem A produces a theorem
concerning descendant potential.

Theorem B  (all-genus full descendant equivariant mirror symmetry for P!) Suppose
thatn >0 and 2g—2+n>0. Forany L1, ..., L, € Kp(P'), there is a formal power
series identity

(18) / / eW(J’1)/21+'"+W(yn)/angn
y1€SYZ(L1)  JynesyYZ(Ly) ’
_ (_l)g_1<< k(L) k(L) >>
g.n

21=Y1  Zn—Yn
Remark 3.12 By Theorem 3.8,

PLT
(19) / eW(yl)/Zlydx — _<< K(El) >> .
Y1E€SYZ(L) 21— VY1 0,1

which is the analogue of (18) in the unstable case (g,n) = (0, 1).

Proof of Theorem B By (16),

i - ¢p(q) LT B
if(z) = § :,/Aw(q)<<¢a(4),—z_w>> ul (2).
B=1 0,2

Define the flat coordinates ﬁ?‘ by

2 2
D ul()alq) = #¥(2)¢a(0).

a=1 a=1

1

and a power series in ,

a - ¢B(O)>>
S == o P .
0= (7o 25
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Then
_ : $pO)\\_s L a o p
@)=Y (<<¢a(q) >> - )) =S E @)
B=1 B=1
Notice that (S%) is unitary, ie Zy S%(Z)S%(—Z) = S/Xgﬁ. We have
2 R 2 V( )
S (L) =Y ( 3 58 ()52 z)ﬁ”(z))
a=1 a=1 " B=1

Taking the Laplace transform of wg ;,

f . / WOV 21+ W) 2
g.n
Y1ESYZ(L1) Yn€SYZ(Ln)
:/ / eLi=1 WOi)/zi (—1)8~1+n
Y1€SYZ(Ly) Yn€SYZ(Ln)

: ( Z<< 1‘[ Ta; (g, <0>)>> 11[@-)5;:)

Bisa; 'i=1 &nj=1

:[ / eLi=1 WOi)/zi (—1)8~1+n
Y1€SYZ(£L1) Yn€SYZ(Ly)

(Elf1emo] fi( 5 5 i)

Bisa; ' i=1 &M =1 a=1keZ>

@R=wLIvV=-2

Using (15),

/ / WO/ z1+4Wyn)/zn
g.n
VIE€SYZ(L1)  Jyn€SYZ(Ly)

= (—l)g—1+n(ﬂz << 1_[ Ta; (¢/3: (0))>>

n

2 ~
‘H(Xﬂ Y s, (—z,-»s;“f)(Z,.)<_Z,.—k—1)))

i=1 a=1keZx
= (_1)g_1 Z << l_[ Ta; (¢‘Bl (O))>> l_[ Xﬂt (¢I31 (0)’ K(Ei))Zi_ai_l
Bisa;i " i=1 g.ni—1
- (—1)g—1<< k(L) k(L) >> ]
Zl—lﬂl,“',zn—wn ’
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4 The nonequivariant limit and the Norbury-Scott
conjecture

In this section, we consider the nonequivariant limit wy = wp = 0.

4.1 The nonequivariant R —matrix
By [20, Section 1.3], R(z) =1 + Y po; R,z" is uniquely determined by:

(1) The recursive relation (d + ¥~ 1dW)R, = [dU, R,41].

(2) The homogeneity of R(z): R,q"? is a constant matrix.
The unique solution R(z) satisfying the above conditions was computed explicitly
in [29]:
Lemma 4.1 [29, Lemma 3.1] We have

R, =g Q2n—DI'Q2n—3)! ( -1 2n«/—1(—1)"+1) '
2n

n!24n —1 (—1r+!

By Proposition 3.10, R(z) = ﬁ(z). In this subsection, we recover the above lemma
by computing the stationary phase expansion of S'.

We assume z, g € (0, 00), where g = Qe’l. Then

=—00

% 5 y=+o0 (t0+e? =i fge——im) /7
So” = e dy
y

0 y=too . 1
_ /z/ ¢ ~2Teoh—1"/2)/z g,
e

00
0 y=+o00
— ! /z/ e—2ﬁcosh(y)/z dy
y=—00

y=+

_ 2e(t()—2ﬁ)/z/ Ooe—Zﬁ(cosh(y)—l)/z dy

y=0

Let ' =2, /q(cosh(y) —1)/z; then
zT

_ -1 . l _1_ 1 V4
y = cosh (1+2ﬂ)’ =54 T 2T Gy
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00 1, T=+
S,% =2/ 3 L)’”z( 1/2)2—2"/ YTt

n T=0

2 \i+ts (=1D)"Q2n— D! 1
) T(rry)

> L) (@2n =12
_ (°—2./9)/z z 2 (DN(@e -1
= Jme Z( q) e ,
n=0
" 9
SIZZZESOZ
ad -1 _1\n+1 —_ 1112
= (t*-2/9)/z z Y2 1, n\ z \(D"(2n-D)
Jrze ’;(ﬂ) (1+(4+2)ﬂ) T _
Similarly,
S o (_z 't (@n—D)?
s l— /= t°+2/q)/z Zz 2 2.
0o =+—me ;(ﬂ) o
> -3 —1M?2
S1_ /= (t°+2./q)/z z \'7z (1 n\ z (2n—1!)
Si = vmmze ’;)(ﬂ) (1 (4+2)ﬂ) —
Therefore,
= 1 & S Uz (A B)
S(z) = S(), [Z"1(S(z)e = ,
(2) Nars (). [Z"](S(2) ) Cc D
where
__(@n-npm? o VEIE)T@n—D?
- ﬁn!24”q%”+%’ B ﬁn!Z“”q%”""% ’
C— (2n—1)H? (n 1) ((2n — 3)11)2
ﬁn!Z“”q%"‘% 2 4 V2(n— 1)!24n—4q%n—% ’
p_ Y1) @Dy N (n 1)\/—1(—1)”+1((2n—3)!!)2
ﬁn!24”q%”_i 2 4 \/E(n_l)!24n—4q%n—% ’
and
@n=DUEr=3)!  VEI=D =D 2r=3)!!
R, — nl24n (n—1)124n—1 q_%”
" /DI n=3)1t (=) Qn—1)!l 2n—3)!
(n—1)124n—1 n!24n
5, @r=DN@Er=3 o1 2n/=I(-1yr
—1 n124n V=1 (=t )
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4.2 The Norbury-Scott conjecture

In this subsection, we assume w; = w, = % = 0. Then
1 VS IR 1
(7ay (H) -+ Ta, () = g =1 978 (1 (H) -, (D),
Note that when (Zl_l a,) + 1 — g is not an nonnegative integer, both sides are zero.

When 2g —2 +n > 0, the symmetric n—form wg , is holomorphic near ¥ = 0, and
one may expand it in the local holomorphic coordinate ¥ = x~! = (Y +¢/Y)" 1.

Theorem 4.2 Suppose that 2g —2+n > 0. Then, near Y = 0, the symmetric n—form
wg,n has the expansion

1 (@ + 1)
Wgn = (—l)g_1+" Z «Tal(H)"'Tan (H)))En 1_[ (i]aj——:_z)de.

als..., an j=1

The Norbury—Scott conjecture corresponds to the specialization ¢ = 1, ie t! = 0
and Q0 = 1.

Proof Define W,f‘ by
1 e — g
m =ug ‘t;’:o,t[§=(a+1)!x—a—2dx‘

By Theorem A, it suffices to show that Wk"‘ agrees with the expansion of W;¥ near
Y=0inX=x"".

We now compute W,f‘ explicitly:

0 d
7 e(z°+t1H)/z(1 n _ q )
d=1 l—[m=1(H+mZ)2

d 00 d d
0/, q 1\H
”(1“ )(1+222d(d.)2 2(2@2%)7)
d=1 d=1 m=1
! /z(l + Z de(dv)2)
; 00 (]d 00 d |
9z 1
te (t (1 +d2::1 sz+1(dg)2) _2(12:: ZZd-H(dl) Z ;)
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B erO/z( 3 L)
or! ~ sz—l(d|)2 ) )

0/, = dqg
£ (1 (3 et 1+ Z zzd<d')2( 2 Z )

d=1
or!
=< (tl(;1 =k " 2 (-2 X 3))
S = (1L.S() = (1)

o 0o qd 00 qd d 1
_ 9z .1 _ -
= (l (1 +¢12:1 22d+1(d!)2) 2412:1 z2d+1(41)2 2:1 m)
= = m

§%() = (H,8(1)) = (1, za—J)

S° H.S(H)) = (H.z 20y = 3 ¢’
1(2)=(H,S8(H)) = ( 231)_e (Ez2d+ld!(d+l)!),

d
(@) = (1L.S(H) = (H.]) = ¢! /Z(l " Z zzduv)z)

5(2) = qul.“sij(z),
i=0

S IR V) LR
S P D AT A T

n=0

2 z N L - (_ﬂ)n_i_% 1
S e D DATATh

n=0

! = .
i(z) =) 8521 2),

i=0

LA T

im0 = 73 22 Lt

_ R -GN

Tila-0= 75 2 DA
Fora=1,2,

d k~

(20) Wk = \/_ k‘t() 0, ta—(a—f—l)'x_“ 2dx — d(<_%) étx,O)’
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where

P 1 . n+d( N —n—
(21) EI,O = _«/_—_1’;)(\/6) + (Ln/ZJ)x 1,

= 1 St ntl(on e
(22) €2,0:= _N/——_l,;(_ﬁ) * (L”/zj)x g
Recall that

k

e =a(- ) o).

By (20) and (23), to complete the proof it remains to show that §a,0 agrees with the
expansion of £y o near Y =0in X =x"!' = (Y + %)_1.

Assume that ¢ € (0, 00). We have

1
1 q+
Pi=yq A=244 fio=—= :
V-1Y - /q
Py=—Jq. N=-2Jq &= ot
’ ’ 5 Y—i—ﬂ
The n™ coefficient in the expansion of X = (Y + %)_1 at ¥ = 0 is given by the
residue
~—p— ~ 1 1 q\"1 q dYy
Resy—o% " 1&) odX = — Resy=o (Y + ) (1-5)
esy=0X = £1,0dX —7*Resy=o(¥ + v2) Y=y
— L dResy_! D" Y+ VD
\/__1 yr+1

== 5 ()

where

1 - n—% n—1 ~n __ 1 - n % n ~n
b0 =7 2" () J¥7 = 7 T gy )

which agrees with § 1,0, defined in (21), and

n—1
ResY=05c'_”_1§2,0d5€ =— qiReSY=0 (Y + —) (1 - _)
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R NP

Yn+1

=— q%Resy_

—ﬁ(—@"_é(wﬁ)’

where
1 - L/ on
- __ 1 . n+5 x—n—l
£2,0 ﬁ;( VDR (g )X
which agrees with 52,0 , defined in (22). O

S The large radius limit and the Bouchard-Marino
conjecture

In this section, we will specialize Theorem A to the large radius limit case. In this
case, Theorem A relates the invariant wg , of the limit curve to the equivariant de-
scendent theory of C. After expanding &, o in suitable coordinates, we can relate the
corresponding expansion of wg , to the generation function of Hurwitz numbers and
therefore reprove the Bouchard—Marifio conjecture [2] on Hurwitz numbers.

Let wp, = 0 and 7y = 0, and take the large radius limit ¢ — 0. Then our mirror curve
becomes

x=Y +wjlog?.

When w; = —1, this is just the Lambert curve. Recall that the two critical points P
and P, of W"(Y) are
wy —wy + A%(q)

Pa: 2

Since A!(0) = w; —w,, we have P; — 0 under the limit ¢ — 0. In other words, P;
goes out of the curve under the limit ¢ — 0 and &0 = /2/A%(q) P1/(Y — P;) — 0.
As a result, Wk1 = d(0% (¢ 1,0)) also tends to zero under the large radius limit.

Under the identification W(Y;)/~/=2 = (ii;)¥ in Theorem A, we have (i), — 0
when ¢ — 0. On the A—model side, since ¢ = 0, the S—matrix (S « (z)) is diagonal.
Therefore, we also have (u; )] % — 0 when g — 0 under the 1dent1ﬁcat10n in Theorem A.
This means that in the localization graph of the equivariant GW invariants of P!, we
can only have a constant map to p, € P'. Since H|p, =wy =0 and =0, we
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cannot have any primary insertions. Therefore, in the large radius limit, we get

ng:,’c*(m, JUpit) = Z /M l—[ev ((u,)a]qu(O))wa’

at,e,an€l>g e.n(Pl, 0)]“' .

- - /Mgn 1‘[<u,) YA (—wi),

where
AYu) =uf =2 quf~ o (—DEAg

and A; = =g (E) is the ]th Chern class of the Hodge bundle. At the same time, we
also have S 2 (¢>2 (0), ¢2 (0)) =1, s0 (u;)?2 /W= (U )2 i - Therefore Theorem A
specializes to

1+
(‘)g,n|W2(Y])/f W2/ J=wi = =(=DE Z Wl/ H(“])a, ]AV(_WI)

at,..-,an

Now we study the expansion of &, o near the point ¥ = 0 in the coordinate Z = ex/wr,
We have
2w

£20= =V e T rw

Since Z = Ye¥/1, by taking the differential we have

Y
az _T+wi,y
VA4 YWl
Therefore,
£y =— 1 2 dy 1
2077 3V W dZJZ Y
Let
o0
52,0 = Z CMZM
n=0

near the point ¥ = 0. Then we have

_ndZ 1 2 Yiw, AY

Cu =Resy 508207 M7 \/— ResY_>0e nY/ lm
1 (—p/w)*
V=1V —wq w
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Therefore,

1 (=p/w)H Nkt
W2=———" N zZh1qz7.
Vo R vl w Y D" o)

n=0

On the A—model side, let

()5, = Z o) (M’) zY.

;=0 Ml Wi
Then
FEE (g, uy)
1 / aj , v (MJ/WI)“’ K “ Wi
= L v AY (<wy) ( £z
alg;an Wi Mgn 1_[ l_[ Z Wi /
a;€ZL>g
n a; n o0 .
1 wivi\”’ (—pji /WP,
= @uwwmu24fﬂw
atvman VI Men W1 j=1"p;=0 K
a;€ZL>g
By the ELSV formula [6; 21],
(2g =2+ || +m)! L 15 Ag(1)
Hg = 1_[ ]

|Aut(p)|

_ (g~ 2+|u|+n)'1—[M, [ AY (—wy)(—wq)2E=3+2n

Mg.n l_[]_l(l _MJ)

’

|Aut(u)| Mg.n _1(_W1 — 1j)
SO
* Aut(u)|
DY ' Y 1124,
— (—w1)28—2+Iul+n He o(j)
lGoen (28 =2+ |1l +m)l(=w1) ocSy j=1
When wy = —1, this is just the generating function of the Hurwitz numbers.
Let We u(Z1, ..., Zy) be the expansion of wg (Y7, ..., Y,) in the coordinate Z near

Y = 0. Then we have:

Corollary 5.1 (Bouchard—Marifio conjecture) Forn > 0 and 2g —2 +n > 0, the
invariant Wg n(Zy,--- , Zy) for the curve x =Y +w logY satisfies
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Z Zn
/ Wg,n(zl,"‘,zn)
0 0

_ 1
— (_l)g 1+n _/
alz w1 M

.
VY AY (—wi)
..... a j=1

ai€Z>g " O\ (=i /wita
(X 7"

n

N
=11 =0 Hit
- |Aut(w)|Hg, W
= (et Y ’ S 24,
— (—w)28—2+I1l+ a(j)
l(“):n (2g 2+|M|+n)( Wl) ¢ # nO’ESnjzl
In particular, when w{ = —1, the right-hand side is the generating function of the

Hurwitz numbers and the Bouchard—Marifio conjecture is recovered.

Appendix A: Bessel functions

In this section, we give a brief review of Bessel functions.

The Bessel differential equation is

d*y _dy
24 I x—
@4 o dx? +xdx

The Bessel function of the first kind is defined by

B > (_1)’" x \2m+ao
Ja(x)—rr;m!r(m+a+l)(5) .

The Bessel function of the second kind is defined by

+(x*—a?)y =0.

_Ja(x)cos(am) — J_q(x)
N sin(am) ’

Yo (x)

When 7 is an integer, Y, (x) := limyg—, Yu(x).

Jo(x) and Y, (x) form a basis of the 2—dimensional space of solutions to the Bessel
differential equation (24).

Replacing x by ix in (24), one obtains the modified Bessel differential equation

d*y  dy
2 21 2V —
(25) x W—i—x%—(x +a)y =0.
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The modified Bessel function of the first kind is defined by

[e.°]

c—Q . 1
Io(x) =1"%Jq(ix) = ZOWI!F(WI_{—O{_{—I) (%

)2m+a

The modified Bessel function of the second kind is defined by

I (x) — Ia(x)

L
Ka(x) = 2 sin(orr)

The following integral formulas are valid when R (x) > 0:
1 i X cos 6 sin(a) * —x cosht—at
Iy(x) == e cos(af)df — ———= e dt,
T Jo T 0

o0
Ky (x) :/ p X cosht cosh(at) dt = l/ e~ X coshi—at dr,
0 2 1€y0.0

where yj ¢ is the real line with the standard orientation:

—00 400

We have

¥ Ko (X) + i Iy (x)
7 eocnil_a(x) _ e—ocnila (x)
2 sin(a)

i 10 )
_ e*™! / e~ Xcosht—at g, + evn! / ne—xcos(ie)—a(ie)d(ig)
0

2 oo 2
+ e ori * e—xcosht—at dt
2 0

omi

e — —
— 5 / e x cosht—at dt,
Yo,1

where yp ; is the following contour:

2mi .
+o00 + 2mi
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Therefore,
2 —x cosht—at _ T I g
(26) /)/0.0 e dt sin(om)( «(X) = I (X)),
—Xx cosht—at _ T  ami
(27) LO!I e dl —_ Sin(o{f[) (I—Ol (x) e IO[ (x))
For any integers /; and /, with /1 + 15 > 0, let y;, ;, be the following contour:
2 +00 + 2ymi
-0 — 2[1 i
—211 i

Lemma A.1 Forany [y, [, € Z such that [ + [, > 0, we have

(28) [ e—xcosht—ott dt = — s (ezlla’fil_a(x) —e_ZIZaniIa(X)).
Yiy i sin(ar)
Proof We observe that
(29) / e—xcosht—at dt = e—zkam'/ e—xcosht—ozt dt.
yllfk,IZJrk yll .12

In particular,

)

This proves (28) in the case /1 + 1, = 0. If [; +/, > 0 then

e—xcosht—ott dt = eleam/ e—xcosht—at dt
Y0.0

(6—211ani1_a(x) —eZIla”iIa(x)).

1~
T

- sin( )

Ih—1 Ir—1
(30) Vil = Z Vi—kk — Z Yk k-
k=—1; k=1-1;
Equations (29) and (30) imply
[ e—xcosht—at dt
Ih—1 Ir—1
:( Z e—Zkani)/ e X coshi—at dl—( Z e—2kani)/ e X coshr—at g,
k=—1I; Y0.1 k=1-1; Y0.0
Equation (28) follows from the above equation and (26)—(27). O
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Appendix B: The equivariant quantum differential equation
for P!

The equivariant quantum differential equation of P! is the vector equation
d = 0 g—wiwy \ =
—1 = 1,
24 dq ( I wy+wsp

which is equivalent to the scalar equation

d d _
31 (zqd—q—wl)(zq%—wz)l =ql.
Let 5
I=exp(wlogq)y, X = ﬁ
2z z

Then (31) is equivalent to

dzy dy w1 —Wwjp 2

X2 2

L 4+ == y=0
dx? xdx (X ( 2z ) ) ’

which is the modified Bessel differential equation (25) with o = (w; —w;)/(2z). When
w1 —wy # 0, any solution to (31) is of the form

2 2
I=exp(%logq)(cll 1/2( f)+c21 z/z( f))

where Xl =w;—wy = —XZ, and ¢y and ¢, are functions of w;, wy and z.
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