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Collar lemma for Hitchin representations

GYE-SEON LEE

TENGREN ZHANG

There is a classical result known as the collar lemma for hyperbolic surfaces. A
consequence of the collar lemma is that if two closed curves A and B on a closed
orientable hyperbolizable surface intersect each other, then there is an explicit lower
bound for the length of A in terms of the length of B , which holds for every
hyperbolic structure on the surface. In this article, we prove an analog of the classical
collar lemma in the setting of Hitchin representations.

57M50; 30F60, 32G15

1 Introduction

Let S be a closed connected oriented topological surface of genus g � 2, and let � be
its fundamental group. The Teichmüller space of S , which we denote by T .S/, is the
space of hyperbolic structures on S , ie the space of isotopy classes of hyperbolic metrics
on S . Via the holonomy representation, T .S/ can be identified with a component of
the space of conjugacy classes of representations from � to PSL.2;R/. One advantage
of doing so is that it allows us to generalize T .S/ in the following way. It is a
standard fact in representation theory that for any n � 2, there is a unique (up to
conjugation) irreducible representation �nW PSL.2;R/! PSL.n;R/. This gives, via
postcomposition, an embedding

T .S/ ,! Xn.S/ WD Hom.�;PSL.n;R//=PSL.n;R/:

The image of this embedding is known as the Fuchsian locus and the component
of Xn.S/ containing the Fuchsian locus is the nth Hitchin component, which we denote
by Hitn.S/. By definition, Hit2.S/D T .S/, so Hitchin representations can be thought
of as generalizations of Fuchsian representations.

For the hyperbolic structures in T .S/, there is a classical result due to Keen [14]
known as the collar lemma. It gives an effective lower bound on the width of the
maximal collar neighborhood of a simple closed curve in a hyperbolic surface, which
grows to 1 as the length of the simple closed curve is shrunk to 0. A consequence
of the collar lemma is that if two closed curves � and  in a hyperbolic surface have
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nonvanishing geometric intersection number and  is simple, then there is an explicit
lower bound on the length of � in terms of the length of  . This is a powerful tool
that has been used to understand surfaces. For example, it was used to study the length
spectrum of Riemann surfaces; see Buser [5].

The goal of this paper is to generalize a version of the classical collar lemma to
Hitchin representations. By Labourie [15], for any Hitchin representation � and any
nonidentity element X in � , we know that �.X / is diagonalizable over R with
eigenvalues that have pairwise distinct moduli. For the rest of this paper, we will denote
by xC;x� 2 @1� the attracting and repelling fixed points, respectively, of X 2� nfidg.
With this notation, we now state the main theorem of this paper.

Theorem 1.1 Let A, B be elements in � such that aC , bC , a� , b� lie in @1� in
that cyclic order. Also, let � 2Hitn.S/ and let ˛n < � � �< ˛1 and ˇn < � � �< ˇ1 be the
moduli of the eigenvalues of �.A/ and �.B/, respectively. For every k D 0; : : : ; n� 2,
the following hold:

(1)
˛1

˛n
>

ˇkC1

ˇkC1�ˇkC2

:

(2) Let � and  be closed curves in S corresponding to A and B , respectively,
and let i.�;  / be the geometric intersection number between � and  . If  is
simple, then

˛1

˛n
>

�
ˇkC1

ˇkC1�ˇkC2

�u

�

�
ˇn�k�1

ˇn�k�1�ˇn�k

�i.�; /�u

for some nonnegative integer u� i.�;  / that is independent of k .

Observe that Theorem 1.1(2) does not depend on the choice of orientation on � or  .
We can also say what the constant u in Theorem 1.1(2) is. Choose orientations on �
and  and let {̂.�;  / be the algebraic intersection number between � and  . Then

uD 1
2

�
i.�;  /Cj{̂.�;  /j

�
:

In the setting of Hitchin representations, the width of a collar neighborhood is not well
defined since Hitchin representations in general do not give a metric on S . However,
for every Hitchin representation � , we do still have a natural notion of length for free
homotopy classes of closed curves in S . Given any representation � in Hitn.S/ and
any closed curve  in S , we can define the �–length of  to be

l�. /D log
�
�1

�n

�
;
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where �1 and �n are the largest and smallest moduli of the eigenvalues of �.X /,
respectively, and X 2 � corresponds to the closed curve  equipped with a choice of
orientation. Observe that the �–length does not depend on the choice of orientation on 
or the choice of X , and is constant on each free homotopy class of closed curves in S .

If � 2 Hit2.S/, then l�. / is exactly the hyperbolic length of the geodesic homo-
topic to  , measured in the hyperbolic metric corresponding to � . Also, Choi and
Goldman [7] proved that representations in Hit3.S/ are exactly holonomies of convex
RP2 structures on S . Moreover, each such convex RP2 structure also induces a natural
Finsler metric, known as the Hilbert metric, on S . One can then verify, in the case
when � 2 Hit3.S/, that l�. / is the length of the geodesic homotopic to  , measured
in the Hilbert metric induced by the convex RP2 structure corresponding to � .

With this notion of �–length, we have the following corollary of Theorem 1.1, which
one can think of as a generalization of the collar lemma.

Corollary 1.2 Let S be a surface of genus g � 2, and let � and  be two essential
closed curves in S . Then, for any n� 2 and any � 2 Hitn.S/, the following hold:

(1) If i.�;  /¤ 0, then

1

exp.l�.�//
< 1�

1

exp.l�. /=.n� 1//
:

(2) If i.�;  /¤ 0 and  is simple, then there are nonnegative integers u and v with
u� v and uC v D i.�;  / such that

1

exp.l�.�//
<

�
1�

1

exp.l�. /=.n� 1//

�u�
1�

1

exp.l�. //

�v
:

(3) Let ın > 0 be the unique real solution to the equation e�xC e�x=.n�1/ D 1. If
� is a nonsimple closed curve, then

l�.�/ > ın:

The quantity u in the above corollary is the same u as in Theorem 1.1. Observe that
ın is an increasing unbounded sequence, and ı2D log.2/. Also, the expressions on the
right hand side of the inequalities in parts (1) and (2) of Corollary 1.2 are maximized
when nD2. Hence, we can replace n by 2 in the right hand side of all three inequalities
in Corollary 1.2, and they will still hold.

In the case of T .S/, the first inequality in Corollary 1.2 can be rewritten as�
exp.l�.�//� 1

��
exp.l�. //� 1

�
> 1:
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This is weaker than a version of the classical collar lemma, which is the inequality

(1-1) sinh
�

1
2
l�.�/

�
sinh

�
1
2
l�. /

�
> 1;

although in both inequalities, l�.�/ grows logarithmically with 1=l�. /. In general, it
is not known if the inequality (1-1) holds for all Hitchin components. However, it is
a consequence of recent work of Tholozan [18] that it in fact holds for Hit3.S/. See
Section 3.3 for more details.

Choi [6] proved an analog of the Margulis lemma for convex RP2 surfaces. As a
consequence, he showed the existence of a collar neighborhood in the convex RP2

surface about a simple closed curve of sufficiently short length, and found (nonexplicit)
lower bounds for the width of this collar neighborhood in terms of the length of the
simple closed curve. This analog of the Margulis lemma was later extended by Cooper,
Long and Tillman [8] to all convex real projective manifolds. Burger and Pozzetti [4]
also recently proved a statement analogous to Theorem 1.1 for maximal representations
into PSp.2k;R/.

The image of the irreducible representation �nW PSL.2;R/ ! PSL.n;R/ lies in a
conjugate of the subgroup PSO.k; kC 1/� PSL.2kC 1;R/ when nD 2kC 1, and a
conjugate of PSp.2k;R/� PSL.2k;R/ when nD 2k . Hence, we can define Hitchin
components in

Hom.�;PSO.k; kC 1//=PSO.k; kC 1/; Hom.�;PSp.2k;R//=PSp.2k;R/

in the same way as we did for PSL.n;R/. Denote these Hitchin components by
Hitn.S/0 . Since the image of �7 in particular lies in the exceptional Lie group G2 �

PSO.3; 4/, we can also define a Hitchin component Hit.S;G2/ in Hom.�;G2/=G2 .
Note that Hitn.S/0 and Hit.S;G2/ can be naturally identified with a subset of Hitn.S/
and Hit7.S/0 , respectively. In the case when � 2 Hitn.S/ happens to be an element
of Hitn.S/0 , we can strengthen Theorem 1.1(2), which we state as the following
corollary.

Corollary 1.3 Let A and B be elements in � such that aC , bC , a� , b� lie in @1�
in that cyclic order. Let � 2 Hitn.S/0 and let ˛n < � � �< ˛1 and ˇn < � � �< ˇ1 be the
moduli of the eigenvalues of �.A/ and �.B/, respectively. Finally, let � and  be
closed curves on S corresponding to A and B , respectively. If  is simple, then for
every k D 0; : : : ; n� 2,

˛2
1 >

�
ˇkC1

ˇkC1�ˇkC2

�i.�; /

:
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Hitchin representations into PSp.2k;R/ are special examples of maximal representa-
tions. In this case, the inequality in the above corollary is stronger than the one given
by Burger and Pozzetti [4].

The proof of our results relies heavily on the seminal work of Labourie [15], who
showed that every Hitchin representation into PSL.n;R/ (and hence into PSp.2k;R/,
PSO.k; k C 1/ and G2 ) naturally comes with an equivariant Frenet curve; see
Theorem 2.5. While Hitchin representations can be defined for any split real group,
properties of the limit curve of these Hitchin representations are still poorly understood
in general. As such, we are unable to generalize our techniques to prove an analog of
Theorem 1.1 for Hitchin representations into split real groups other than PSL.n;R/,
PSp.2k;R/, PSO.k; kC 1/ and G2 .

Unfortunately, for �2Hitn.S/ when n�4, it is not known whether there exists a metric
on S that induces l� as its length function. However, we can still interpret Corollary 1.2
geometrically by considering the PSL.n;R/ symmetric space �M . Normalize the
Riemannian metric on �M so that for any Z 2 PSL.n;R/ with real eigenvalues,

inffd�M .o;Z � o/ W o 2 �M g Dr2
nP

iD1

.log�i/
2;

where �1; : : : ; �n are the moduli of the eigenvalues of Z and d �M is the distance
function on �M induced by the normalized Riemannian metric. Let M WD �.�/n �M ,
and for any closed curve ! in M , let lM .!/ be the length of ! measured in the
Riemannian metric on M induced by the normalized Riemannian metric on �M . Then
the following corollary holds.

Corollary 1.4 Let � and  be two essential closed curves in S and let X and Y be
elements in � corresponding to � and  , respectively. For any � 2 Hitn.S/, let �0 and
 0 be two closed curves in M that correspond to X;Y 2 � , respectively. Then the
statements in Corollary 1.2 hold, with l�.�/ and l�. / replaced by lM .�0/ and lM . 0/,
respectively.

It is an important remark that this corollary (and hence Corollary 1.2) is not simply a
quantitative version of the Margulis lemma on PSL.n;R/ because the closed curves �0

and  0 do not need to intersect, even when i.�;  /¤ 0.

Theorem 1.1 is a property that is special to Hitchin representations. In fact, for any pair
of simple closed curves in S , one can find a sequence of quasi-Fuchsian representations

�i W �! PSO.3; 1/C � PSL.4;R/
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such that the lengths of the geodesics in �i.�/n �M corresponding to both of these two
simple closed curves converge to 0 along this sequence. In particular, Corollary 1.2
does not hold on the space of quasi-Fuchsian representations. This is explained in
greater detail in Section 3.2.

Theorem 1.1 can also be generalized to the setting where we allow S to be compact
but not necessarily closed; see Corollary 3.4.

As a final consequence of Theorem 1.1, we have the following properness result.

Corollary 1.5 Let C WDf1; : : : ; kg be a collection of closed curves in S that contains
a pants decomposition, such that the complement of C in S is a union of discs. Then
the map

Hitn.S/!Rk ; � 7! .l�.1/; : : : ; l�.k//;

is proper.

In other words, in order for a sequence f�ig
1
iD1

in Hitn.S/ to escape, the �i –length
of some curve in C must grow to 1. We will give the proof of this corollary in the
Appendix because it uses some technical results from Zhang [19]. Refer to Section 3.1
for more corollaries of Theorem 1.1.
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2 Proof of Theorem 1.1

We start this section by discussing some useful topological properties of � and its
boundary in Section 2.1. Then for the sake of demonstrating the proof without too many
technical details, we prove Theorem 1.1(1) for the special case Hit3.S/ in Section 2.2.
Next, we develop the technical tools that we need in Section 2.3, and apply them in
Section 2.4 to prove Theorem 1.1 in its full generality.
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2.1 Properties of the boundary of the group

It is well known that � is Gromov hyperbolic, so the Cayley graph of � has a natural
boundary, which we denote by @1� , and the action of � on its Cayley graph extends
to an action on @1� . Moreover, if we choose � 2 T .S/, ie a hyperbolic structure
on S , we get a �–equivariant identification of @1� with the boundary @H2 of the
hyperbolic plane H2 .

For any hyperbolic element A 2 PSL.2;R/, the axis of A, which we denote by LA , is
the unique geodesic in H2 whose endpoints are the repelling and attracting fixed points
of A in @H2 . The proof of the main theorem relies crucially on an important property
of the action of � on @1� , which we state as Lemma 2.2. These are well-known facts
about surface groups, but for lack of a good reference, we will give the proof here.

Lemma 2.1 Let B and B0 be noncommuting elements in PSL.2;R/ that generate
a subgroup consisting only of hyperbolic isometries. If the translation lengths of B

and B0 are the same and LB0 \LB D∅, then .B �LB0/\LB0 D∅.

Proof Since B and B0 do not commute, LB ¤LB0 . Since the commutator ŒB;B0� is
not parabolic, B and B0 cannot share a fixed point. Hence, by changing coordinates and
replacing B and B0 with their inverses if necessary, we can assume that LB and LB0

are as in Figure 1, and that B and B0 translate along their axes in the directions drawn.

Let L be the geodesic in H2 that is perpendicular to both LB0 and LB , and let R

be the reflection about L. There is a unique geodesic K that is perpendicular to LB

and whose distances to L and B �L are equal. Let S be the reflection about K , and
note that B D SR. Also, observe that the distance between K and L is realized only
by the points K\LB and L\LB , and is half the translation length of B , which we
denote by T . Furthermore, .B �LB0/\LB0 D .SR �LB0/\LB0 D .S �LB0/\LB0

is empty if and only if K\LB0 is empty.

Thus, it is sufficient to show that K \LB0 is empty. Suppose for contradiction that
it is not. As before, there is a unique geodesic K0 such that B0 D S 0R, where S 0 is
the reflection about K0 . Since the translation lengths of B and B0 are the same, the
symmetry between B and B0 ensures that K0\LB is also nonempty.

Now, note that K0\LB0 lies between K\LB0 and L\LB0 because

d.K\LB0 ;L\LB0/ > d.K\LB;L\LB/D
1
2
T D d.K0\LB0 ;L\LB0/:

Similarly, K\LB lies between K0\LB and L\LB . This implies that K and K0

have a common point of intersection, p ; see Figure 1. Observe that B0B�1 D

S 0RR�1S�1 D S 0S fixes p , but that is impossible because B0B�1 is not elliptic.
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LB0

B0

K

K0

L

p

B

LB

Figure 1: An impossible configuration of K and K0 in Lemma 2.1

Lemma 2.2 Let A, B and B0 be pairwise noncommuting elements in � such that B

and B0 are conjugate. If
aC; b0C; bC; a�; b�; b0�

lie in @1� in that cyclic order, then

aC; b0C; B � aC; bC; a�; b�; B�1
� aC; b0�

lie in @1� in that cyclic order; see Figure 2.

Proof Let s0 be the open subsegment of @1� with endpoints b0� and bC that does
not contain b� , and let s1 be the open subsegment of @1� with endpoints b0C and bC

that does not contain b� . Observe that B � b0� lies in s0 and B � b0C lies in s1 .

Choose a hyperbolic metric on S . This identifies @1� with @H2 and � with a discrete,
torsion-free subgroup of PSL.2;R/. Since

aC; b0C; bC; a�; b�; b0�

lie in @1� in that cyclic order, LB and LB0 have to be disjoint. Moreover, B and B0

have the same translation lengths and do not commute. Hence, we can apply Lemma 2.1
to conclude that B �LB0 and LB0 are disjoint. This implies that both B � b0� and
B � b0C have to lie in s1 . Since aC lies in s0 between b0� and b0C , we have that
B � aC must lie in s1 between B � b0� and B � b0C . In particular,

aC; b0C; B � aC; bC; a�

lie in @1� in that cyclic order; see Figure 2.

A similar argument, using B�1 instead of B , shows that

a�; b�; B�1
� aC; b0�; aC

lie in @1� in that cyclic order. This proves the lemma.
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s1

s0 b0C

B �b0�

B �aC B �b0C

bC

B �LB0

LB0

B �LA

B �a�

aC
LA

a�

b0�

B�1� aC

B�1� a�

LB

b�

Figure 2: The cyclic order of the attracting and repelling fixed points of A ,
B , B0 and BAB�1 along @1� in Lemma 2.2

2.2 Proof in the PSL.3; R/ case

In order to demonstrate the main ideas of the proof without involving too many
technicalities, we will first prove Theorem 1.1(1) in the special case when n D 3,
ie �W �! PSL.3;R/D SL.3;R/ is a Hitchin representation.

By Choi and Goldman [7], we know that in this case, � is the holonomy of a convex
RP2 structure on S . In other words, there is a strictly convex domain �� in RP2

which is preserved by the � –action on RP2 induced by � , and on which the �–
action is properly discontinuous and cocompact. Moreover, �.X / is diagonalizable
with positive pairwise distinct eigenvalues for any nonidentity element X 2 � (see
Goldman [11, Theorem 3.2]), so �.X / has an attracting and repelling fixed point
in @�� . Since the Hilbert metric in �� is invariant under projective transformations
and the geodesics of the Hilbert metric are lines, one can use the Švarc–Milnor lemma
[3, Proposition 8.19] to construct a continuous map

�.1/W @1�! @��

which identifies the attracting fixed point of any X 2 �nfidg to the attracting fixed
point of �.X /.

Pick any four projective lines in RP2 that intersect at a common point, such that no
three of the four agree. There is a classical projective invariant of these four projective
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P1

P2

P3

Œl1�
Œl3�

Œl4� Œm�

Œl2�

P4

Figure 3: A choice of vectors li to compute the cross ratio .P1;P2;P3;P4/

lines, called the cross ratio, which can be defined as follows. Let the four projective
lines be P1 , P2 , P3 , P4 and let m be a vector in R3 such that Œm�, the projective
point corresponding to the R–span of m, is the common point of intersection of the Pi .
For each i , choose a vector li 2R3 so that Œli �¤ Œm� and Œli � lies in Pi ; see Figure 3.
By choosing a linear identification

f W
V3R3

!R;

we can evaluate the expression

.P1;P2;P3;P4/ WD
m^ l1 ^ l3

m^ l1 ^ l2
�
m^ l4 ^ l2

m^ l4 ^ l3

as an extended real number. One can then verify that the cross ratio .P1;P2;P3;P4/

does not depend on the choice of m, l1 , l2 , l3 , l4 or the choice of identification f .

This definition of the cross ratio agrees with the classical notion of the cross ratio of
four points on a line in the following way. By taking the dual, the four lines P1; : : : ;P4

become four points p1; : : : ;p4 2 .RP2/� , and they lie in the projective line in .RP2/�

that is dual to the point Œm� in RP2 . One can then check that .P1;P2;P3;P4/ is
exactly the cross ratio of the four collinear points p1; : : : ;p4 .

Proof of Theorem 1.1(1) when n D 3 Observe that

aC; A � bC; bC; a�; b�; A � b�

Geometry & Topology, Volume 21 (2017)



Collar lemma for Hitchin representations 2253

�.A/ � �.B/C
�.B/ � �.A/C

�.B/C
P�.BAB�1/

P 0
2 P�.B/

�.B/��.A/�

�.A/C
P�.A/

�.A/�
�.B/0

P2 P3

P1

P�.ABA�1/
P 0

3

�.A/ � �.B/� �� �.B/�

Figure 4: A schematic for the comparison between the cross ratios
.P1;P2;P�.B/;P3/ and .P1;P

0
2
;P�.B/;P

0
3
/

lie in @1� in that cyclic order. By Lemma 2.2, we see that

aC; A � bC; B � aC; bC; a�; b�; B�1
� aC; A � b�

lie in @1� in that cyclic order, because A � bC and A � b� are the attracting and
repelling fixed points of ABA�1 , respectively.

Choose any � 2Hit3.S/. For any nonidentity element X 2 � , let �.X /C , �.X /0 and
�.X /� be the three fixed points for �.X /, where �.X /C is attracting and �.X /� is re-
pelling. Denote by P�.X / the line segment in �� with endpoints �.X /C and �.X /� .

Now, let

� P1 be the line through �.B/� and �.A/C ,

� P2 be the line through �.B/� and P�.A/\P�.ABA�1/ ,

� P3 be the line through �.B/� and �.A/� ,

� P 0
2

be the line through �.B/� and �.B/ � �.A/C ,

� P 0
3

be the line through �.B/� and �.B/0 .

By using �.1/ to identify @1� with @�� , we have that

�.A/C; �.A/ � �.B/C; �.B/ � �.A/C; �.B/C; �.A/�; �.B/�

Geometry & Topology, Volume 21 (2017)
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lie in @�� in that cyclic order; see Figure 4. It is a classically known property of the
cross ratio (see Proposition 2.10) that

.P1;P2;P�.B/;P3/ > .P1;P
0
2;P�.B/;P

0
3/:

It is an easy cross ratio computation (see Lemmas 2.8 and 2.9) that

.P1;P
0
2;P�.B/;P

0
3/D

ˇ1

ˇ1�ˇ2

and .P1;P2;P�.B/;P3/D
˛1

˛3

:

Hence, we have
˛1

˛3

>
ˇ1

ˇ1�ˇ2

:

Similarly, by reversing the roles of �.B/� and �.B/C , and using �.B/�1 in place
of �.B/, we can also show that

˛1

˛3

>
ˇ2

ˇ2�ˇ3

:

This proves Theorem 1.1(1) in the case when nD 3.

2.3 Properties of Frenet curves of Hitchin representations

Next, we want to generalize the proof given in Section 2.2 to any Hitchin representation.
We will devote this section to developing the tools needed to do so. In the rest of the
paper, we use the same notation for points in RPn�1 and for lines in Rn . It should be
clear to which we are referring from the context.

Denote by F.Rn/ the space of complete flags in Rn . Labourie [15] and Guichard [12]
gave a beautiful characterization of representations in Hitn.S/ as representations
that admit an equivariant Frenet curve @1� ! F.Rn/. When n D 3, the Frenet
curve, postcomposed with the projection from F.R3/ to RP2 , is exactly the map
�.1/W @1� ! @�� described in Section 2.2. This characterization will be the main
tool we use to extend our proof in Section 2.2 to the general case.

We will start by first defining the Frenet property.

Notation 2.3 Let �W S1 ! F.Rn/ be a continuous closed curve and denote the
Grassmannian of k –dimensional subspaces of Rn by Gr.k; n/. For any kD1; : : : ; n�1

and any point x 2 S1 , let �.x/.k/ WD �k.�.x//, where �k W F.Rn/! Gr.k; n/ is the
obvious projection.
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Definition 2.4 A closed curve �W S1! F.Rn/ is Frenet if for every set of distinct
points x1; : : : ;xk in S1 , for every x 2 S1 , and for all positive integers n1; : : : ; nk

such that m WD
Pk

iD1ni � n,

dim
kX

iD1

�.xi/
.ni / Dm and lim

xi!x;8i

xi¤xj ;8i¤j

kX
iD1

�.xi/
.ni / D �.x/.m/:

The Frenet property ensures � has good continuity properties and is “maximally
transverse”. Combining the work of Labourie [15, Theorem 1.4] and Guichard [12,
théorème 1], one can characterize the representations in the Hitn.S/ as those that
preserve an equivariant Frenet curve.

Theorem 2.5 (Guichard, Labourie) A representation � in

Hom.�;PSL.n;R//=PSL.n;R/

lies in Hitn.S/ if and only if there exists a �–equivariant Frenet curve �W @1� !
F.Rn/. If � exists, then it is unique.

We will now prove several properties of these Frenet curves that will be needed. These
are special cases of more general properties that appear in Section 2 of Zhang [19].
However, for the sake of completeness, we will reproduce the proofs.

Lemma 2.6 Let a, m0 , b , m1 , m2 and m3 be distinct points on @1� in that
cyclic order, and let � 2 Hitn.S/ with corresponding Frenet curve � . Also, let P WD

P
�
�.a/.1/C �.b/.1/

�
. Then the following hold:

(1) Let k0 , k1 , k2 and k3 be nonnegative integers that sum to n � 2, and let
M WD

P3
iD0�.mi/

.ki / . The map

fM W @1�! P

given by

fM W x 7!

(
P
�
�.x/.1/C

P3
iD0 �.mi/

.ki /
�
\P if x ¤mj ;

P
�
�.mj /

.kjC1/C
P

i¤j �.mi/
.ki /

�
\P if x Dmj ;

is a homeomorphism with fM .a/D �.a/.1/ and fM .b/D �.b/.1/ .

(2) Let k0 , k1 and k2 be nonnegative integers that sum to n� 1, and let s be the
closed subsegment of @1� with endpoints a and b that does not contain m0 .
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Also, let M WD �.m0/
.k0/ . Then there is some closed subsegment ! of P with

endpoints �.a/.1/ and �.b/.1/ such that the map

gM W s! !

given by

gM W x 7!

(
P
�
�.x/.k2/C �.m1/

.k1/C �.m0/
.k0/

�
\P if x ¤m1;

P
�
�.m1/

.k1Ck2/C �.m0/
.k0/

�
\P if x Dm1;

is a homeomorphism with gM .a/D �.a/.1/ and gM .b/D �.b/.1/ .

Proof Before we start the proof, observe that for any nonnegative integers t0; : : : ; t4
such that

P4
iD0 ti D n� 1, the intersection P

�
�.x/.t4/ C

P3
iD0 �.mi/

.ti /
�
\P is a

single point; otherwise, P
�
�.a/.1/C �.b/.1/

�
� P

�
�.x/.t4/C

P3
iD0 �.mi/

.ti /
�
, which

contradicts the Frenet property of � .

(1) Since � is Frenet, fM is continuous. Moreover, because the domain and target
of fM are both topologically a circle, it is sufficient to show that fM is injective.
Suppose for contradiction that there exist x¤ x0 such that fM .x/D fM .x0/. We will
assume that x;x0 ¤mi for all i D 0; 1; 2; 3 as the other cases are similar. Then

3X
iD0

�.mi/
.ki /C �.x/.1/ D

3X
iD0

�.mi/
.ki /CfM .x/

D

3X
iD0

�.mi/
.ki /CfM .x0/

D

3X
iD0

�.mi/
.ki /C �.x0/.1/;

which is impossible because � is Frenet. The fact that fM .a/D �.a/.1/ and fM .b/D

�.b/.1/ is easily verified.

(2) First, observe that gM viewed as a map from s to P is continuous. Also, for
any x in s , we have that gM .x/D �.a/.1/ if and only if x D a and gM .x/D �.b/.1/

if and only if x D b . This proves that the image of gM is a subsegment ! of P with
endpoints �.a/.1/ and �.b/.1/ .

To finish the proof, we only need to show that gM is injective. Choose x and x0 in the
interior of s with x ¤ x0 , and assume without loss of generality that a, x0 , x and b

lie along s in that order. Again, we assume that x;x0 ¤ m1 as the other cases are
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similar. For any positive integer i � k2 , let

Mi WD �.x/
.i�1/

C �.x0/.k2�i/
C �.m1/

.k1/C �.m0/
.k0/:

By (1), we know that fMi
.x/ lies on ! strictly between fMi

.x0/ and fMi
.b/D�.b/.1/ .

Also, observe that fMi
.x/D fMiC1

.x0/. This implies that fMk2
.x/ lies on ! strictly

between fM1
.x0/ and �.b/.1/ . In particular, gM .x/DfMk2

.x/¤fM1
.x0/DgM .x0/,

so gM is injective.

In the proof of the nD 3 case given in Section 2.2, the classical cross ratio in RP2

was the main computational tool used to obtain our estimates. We will now define a
generalization of the cross ratio for RPn�1 .

Definition 2.7 Let P1; : : : ;P4 be four hyperplanes in Rn that intersect along a .n�2/–
dimensional subspace M D Spanfm1; : : : ;mn�2g � Rn , such that no three of the
four Pi agree. For i D 1; : : : ; 4, let Li D Œli � be a line through the origin in Pi that
does not lie in M . Define the cross ratio by

.P1;P2;P3;P4/ WD
m1 ^ � � � ^mn�2 ^ l1 ^ l3

m1 ^ � � � ^mn�2 ^ l1 ^ l2
�
m1 ^ � � � ^mn�2 ^ l4 ^ l2

m1 ^ � � � ^mn�2 ^ l4 ^ l3
:

In the above definition, choose an identification between
Vn
.Rn/ and R to evaluate

the fraction on the right as a real number. One can check that this number does not
depend on the identification chosen, the choice of basis fm1; : : : ;mn�2g for M , the
choice of Li in Pi , or the choice of representatives li for Li . When convenient, we
sometimes use the notation

.L1;L2;L3;L4/M WD .P1;P2;P3;P4/:

Also, at times, in our notation for the cross ratio, we replace the subspaces Li , Pi

and M of Rn with their projectivizations. As with the nD 3 case, this definition of
the cross ratio agrees with the classical cross ratio of four points along a projective line
in .RPn�1/� .

The following two lemmas summarize some basic properties of this cross ratio.

Lemma 2.8 Let L1; : : : ;L5 be pairwise distinct lines in Rn through 0 and let M

and M 0 be .n�2/–dimensional subspaces of Rn not containing Li for any iD1; : : : ; 5,
such that no three of the five M CLi agree and no three of the five M 0CLi agree.

(1) .X �L1; : : : ;X �L4/X �M D .L1; : : : ;L4/M for any X 2 PSL.n;R/.

(2) If L1;L2;L3;L4 lie in a plane, then .L1;L2;L3;L4/M D.L1;L2;L3;L4/M 0 .
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(3) .L1;L2;L3;L4/M D .L4;L3;L2;L1/M .

(4) .L1;L2;L3;L5/M � .L1;L3;L4;L5/M D .L1;L2;L4;L5/M .

(5) .L1;L2;L3;L4/M � .L1;L3;L2;L4/M D 1.

(6) .L1;L2;L3;L4/M D 1� .L1;L2;L4;L3/M .

Proof (1), (3), (4) and (5) follow immediately from the definition of the cross ratio.
To prove (2), observe that there is a projective transformation X that fixes L1 , L2

and L3 , and maps M to M 0 . Since L4 lies in the plane containing L1 , L2 and L3 ,
X must also fix L4 . This allows us to use (1) to get (2).

To prove (6), assume that MCL1; : : : ;MCL4 are distinct; the other cases are similar.
Choose a basis e1; : : : ; en for Rn so that

MDSpanfe1; : : : ;en�2g; L1D Œen�1�; L4D Œen�; L2D

�
nP

iD1

ei

�
; L3D

�
nP

iD1

˛iei

�
for some real numbers ˛1; : : : ; ˛n . The assumption that M CL1; : : : ;M CL4 are
pairwise distinct implies that ˛n�1 and ˛n are nonzero real numbers. One can then
easily compute that

.L1;L2;L3;L4/M D
˛n

˛n�1

and .L1;L2;L4;L3/M D
˛n�1�˛n

˛n�1

:

In view of Lemma 2.8(2), we will denote .L1;L2;L3;L4/M by .L1;L2;L3;L4/ in
the case when L1 , L2 , L3 and L4 lie in the same plane.

Lemma 2.9 Let X 2 PSL.n;R/ be diagonalizable with n real eigenvalues �1; : : : ; �n

(these are only well defined up to sign) of pairwise distinct moduli, such that j�nj <

� � �< j�1j. Let Li and Lj be fixed lines through the origin in Rn corresponding to the
eigenvalues �i and �j , respectively, with i < j , and let L be a line through the origin
in the plane Li CLj such that Li ¤L¤Lj . Then

.Lj ;L;X �L;Li/D
�i

�j
:

Proof Choose a basis e1; : : : ; en for Rn so that Œek � is a fixed line through the origin
of �.X / corresponding to the eigenvalue �k . In this basis, �.X / is the diagonal matrix
Œxu;v �, where

xu;v D

�
0 if u¤ v;

�u if uD v:

Let M be the .n�2/–dimensional subspace Spanfe1; : : : ; yei ; : : : ; yej ; : : : ; eng of Rn .
Via a projective transformation that fixes e1; : : : ; en , we can assume L D Œei C ej �.
The lemma follows from an easy computation using the cross ratio definition.
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The next task is to understand how the cross ratio interacts with Frenet curves.

Proposition 2.10 Let � 2Hitn.S/, and let � be the corresponding Frenet curve. Also,
let a, b , c , m0 , d and m1 be distinct points along @1� in that cyclic order, and let k0

and k1 be nonnegative integers that sum to n� 2. For any x 2 @1� , define

Px D

(
�.x/.1/C �.m0/

.k0/C �.m1/
.k1/ if x ¤m0;m1;

�.mi/
.kiC1/C �.m1�i/

.k1�i / if x Dmi :

Then the following hold:

(1) .Pa;Pb;Pm0
;Pd / > .Pa;Pb;Pm0

;Pm1
/.

(2) .Pa;Pb;Pm0
;Pd / > .Pa;Pc ;Pm0

;Pd /.

Proof We will only show the proof of (1); the same proof together with Lemma 2.8
gives (2). Let

Lm0
D Pm0

\
�
�.a/.1/C �.b/.1/

�
;

Lm1
D Pm1

\
�
�.a/.1/C �.b/.1/

�
;

Ld D Pd \
�
�.a/.1/C �.b/.1/

�
:

Choose vectors lm0
; lm1

; la; lb; ld 2Rn such that

Œlm0
�DLm0

; Œlm1
�DLm1

; Œla�D �.a/
.1/; Œlb �D �.b/

.1/; Œld �DLd :

By Lemma 2.6(1), we can ensure, by replacing each li with �li if necessary, that

lm0
D ˛laC .1�˛/lb;

ld D ˇlaC .1�ˇ/lb;

lm1
D  laC .1�  /lb

for 0< ˛ < ˇ <  < 1. Then we can compute

.Pa;Pb;Pm0
;Pd /D

1�˛

1�˛=ˇ

>
1�˛

1�˛=

D .Pa;Pb;Pm0
;Pm1

/:

2.4 Proof in the PSL.n; R/ case

We will now use the technical facts established in Section 2.3 to prove Theorem 1.1.
For the rest of this section, fix � 2Hitn.S/ and let � be its corresponding Frenet curve.
The next lemma is the main computation in the proof of Theorem 1.1.
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Lemma 2.11 Let B be a nonidentity element in � . Pick k D 0; : : : ; n� 2, and for
any x 2 @1� , define

Px D P .k/
x WD

8̂<̂
:
�.x/.1/C �.bC/.k/C �.b�/.n�k�2/ if x ¤ bC; b�;

�.bC/.kC1/C �.b�/.n�k�2/ if x D bC;

�.bC/.k/C �.b�/.n�k�1/ if x D b�:

Suppose that x1 , x2 and x3 are points in @1� such that

x1; x2; B �x1; bC; x3; b�

lie on @1� , in that cyclic order. Then

.Px1
;Px2

;PbC ;Px3
/ >

ˇkC1

ˇkC1�ˇkC2

;

where 0< ˇn < � � �< ˇ1 are the eigenvalues of �.B/.

Proof By Proposition 2.10 and parts (5) and (6) of Lemma 2.8, we have

(2-1) .Px1
;Px2

;PbC ;Px3
/ > .Px1

;PB�x1
;PbC ;Pb�/

D
1

.Px1
;PbC ;PB�x1

;Pb�/

D
1

1� .PbC ;Px1
;PB�x1

;Pb�/
:

Note that for all j D 1; : : : ; n,

Lj WD �.b
C/.j/\ �.b�/.n�jC1/

is the fixed line through the origin in Rn of �.B/ corresponding to the eigenvalue ǰ .
Also, observe that PbC and Pb� intersect the plane �.bC/.kC2/\�.b�/.n�k/ at LkC1

and LkC2 , respectively. Let

L WD Px1
\
�
�.bC/.kC2/

\ �.b�/.n�k/
�
;

and it is clear that PB�x1
\
�
�.bC/.kC2/\ �.b�/.n�k/

�
D �.B/ �L. Thus, we can use

Lemma 2.9, to conclude that

.PbC ;Px1
;PB�x1

;Pb�/D .LkC1;L; �.B/ �L;LkC2/D
ˇkC2

ˇkC1

:

Combining this with inequality (2-1) proves the lemma.

Applying Lemma 2.11 to our setting, we can now prove Theorem 1.1.
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Proof of Theorem 1.1 (1) Let ! be the subsegment of P
�
�.aC/.1/C�.a�/.1/

�
with

endpoints �.aC/.1/ and �.a�/.1/ that has nonempty intersection with P
�
�.bC/.kC1/C

�.b�/.n�k�2/
�
. Define

p WD P
�
�.bC/.kC1/

C �.b�/.n�k�2/
�
\!;

q WD P
�
�.A � bC/.1/C �.bC/.k/C �.b�/.n�k�2/

�
\!;

and note that q exists by Lemma 2.6(1). Also, observe that

�.A/ �p D P
�
�.A � bC/.kC1/

C �.A � b�/.n�k�2/
�
\!;

so Lemma 2.6(2) implies that �.A/ �p lies between �.aC/.1/ and q in ! . Lemma 2.8,
Lemma 2.9 and Proposition 2.10 together then allow us to conclude that

˛1

˛n
D
�
�.aC/.1/; �.A/ �p;p; �.a�/.1/

�
>
�
�.aC/.1/; q;p; �.a�/.1/

�
D .PaC ;PA�bC ;PbC ;Pa�/;

where

Px D P .k/
x WD

8̂<̂
:
�.x/.1/C �.bC/.k/C �.b�/.n�k�2/ if x ¤ bC; b�;

�.bC/.kC1/C �.b�/.n�k�2/ if x D bC;

�.bC/.k/C �.b�/.n�k�1/ if x D b�:

By Lemma 2.2, we know that aC , A � bC , B �aC , bC , a� , b� lie along @1� in that
cyclic order. This allows us to apply Lemma 2.11 with x1 , x2 and x3 as aC , A � bC

and a� , respectively, to obtain the desired inequality.

(2) Let r� and rC be the closed subsegments of @1� with endpoints a� and aC

such that b� lies in r� , while bC lies in rC . Orient both r� and rC from a� to aC.
Define B to be the set of unordered pairs fb0C; b0�g in the � –orbit of fbC; b�g such
that b0C lies in rC between bC and A�bC, while b0� lies in r� between b� and A�b�.

Every pair in B is the set of attracting and repelling fixed points for some B0 in � that is
conjugate to B . Since  is simple, for every fb0C; b0�g and fb00C; b00�g in B , we know
that b0C precedes b00C (in the orientation on rC ) if and only if b0� precedes b00� (in the
orientation of r� ). The orientations on r� and rC thus induce an ordering on B . Also,
observe that jBj D i.�;  /C1, so we can label the pairs in B according to the order; ie

B D
˚
fbC

1
; b�1 g; : : : ; fb

C

mC1
; b�mC1g

	
;

where bC
1
D bC , b�

1
D b� , bC

mC1
DA � bC , b�

mC1
DA � b� and mD i.�;  /.
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For each i , let Bi be the element in � that is conjugate to either B or B�1 such that
its attracting and repelling fixed points are bCi and b�i , respectively. By Lemma 2.2,
aC , bC

iC1
, Bi � a

C , bCi , a� , b�i lie along @1� in that cyclic order, so we can apply
Lemma 2.11 with x1 , x2 and x3 as aC, bC

iC1
and a� , respectively, to conclude that

(2-2) .PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/ >

ˇkC1

ˇkC1�ˇkC2

if Bi is conjugate to B , and

(2-3) .PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/ >

ˇn�k�1

ˇn�k�1�ˇn�k

if Bi is conjugate to B�1 , where

Px;i D P
.k/
x;i WD

8̂<̂
:
�.x/.1/C �.bCi /

.k/C �.b�i /
.n�k�2/ if x ¤ bCi ; b

�
i ;

�.bCi /
.kC1/C �.b�i /

.n�k�2/ if x D bCi ;

�.bCi /
.k/C �.b�i /

.n�k�1/ if x D b�i :

Fix any kD 0; : : : ; n�2, and let ! be the subsegment of P
�
�.aC/.1/C�.a�/.1/

�
with

endpoints �.aC/.1/ , �.a�/.1/ whose intersection with P
�
�.bCi /

.kC1/C�.b�i /
.n�k�2/

�
is nonempty. For i D 1; : : : ;mC 1, define

pi WD P
�
�.bCi /

.kC1/
C �.b�i /

.n�k�2/
�
\!;

and for i D 1; : : : ;m, define

qi WD P
�
�.bC

iC1
/.1/C �.bCi /

.k/
C �.b�i /

.n�k�2/
�
\!:

Observe that Lemma 2.6(2) implies that pi and qi are well defined, and that �.a�/.1/,
p1 , q1 , p2 , q2 , : : : , pm , qm , pmC1 , �.aC/.1/ lie in ! in that order. Hence, by
similar arguments as those used in the proof of (1), we have�

�.aC/.1/;piC1;pi ; �.a
�/.1/

�
>
�
�.aC/.1/; qi ;pi ; �.a

�/.1/
�

D .PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/:

We can then use Lemmas 2.9 and 2.8 to obtain

(2-4)
˛1

˛n
D
�
�.aC/.1/;pmC1;p1; �.a

�/.1/
�

D

mY
iD1

�
�.aC/.1/;piC1;pi ; �.a

�/.1/
�

>

mY
iD1

.PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/:
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Let BC WD fi W Bi is conjugate to Bg and B� WD fi W Bi is conjugate to B�1g, and let
u WD jBCj. Then combining the inequalities (2-2), (2-3) and (2-4) yields

˛1

˛n
>
Y

i2BC

.PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/ �

Y
i2B�

.PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/

>

�
ˇkC1

ˇkC1�ˇkC2

�u

�

�
ˇn�k�1

ˇn�k�1�ˇn�k

�i.�; /�u

:

3 Further remarks

In this section, we prove some corollaries of Theorem 1.1, show that it does not hold
for quasi-Fuchsian representations, and perform a comparison with the classical collar
lemma.

3.1 Corollaries

Theorem 1.1 has some interesting consequences. The first is an analog of the classical
collar lemma for Hitchin representations.

Corollary 1.2 Let S be a surface of genus g � 2, and let � and  be two essential
closed curves in S . Denote the geometric intersection number between � and  by
i.�;  /. Then for any n� 2 and any � 2 Hitn.S/, the following hold:

(1) If i.�;  /¤ 0, then

1

exp.l�.�//
< 1�

1

exp.l�. /=.n� 1//
:

(2) If i.�;  /¤ 0 and  is simple, then there are nonnegative integers u and v with
u� v and uC v D i.�;  / such that

1

exp.l�.�//
<

�
1�

1

exp.l�. /=.n� 1//

�u�
1�

1

exp.l�. //

�v
:

(3) Let ın > 0 be the unique real solution to the equation e�xC e�x=.n�1/ D 1. If
� is a nonsimple closed curve, then

l�.�/ > ın:

Proof In this proof, we will use the same notation as we used in Theorem 1.1.

(1) Choose orientations on � and  . The hypothesis on � and  imply that there are
group elements A and B in � corresponding to � and  , respectively, such that

aC; bC; a�; b�

Geometry & Topology, Volume 21 (2017)



2264 Gye-Seon Lee and Tengren Zhang

lie along @1� in that cyclic order. Let 0< ˛n < � � �< ˛1 and 0< ˇn < � � �< ˇ1 be
the eigenvalues of �.A/ and �.B/, respectively. By Theorem 1.1(1), we know that for
all k D 0; : : : ; n� 2,

˛1

˛n
>

ˇkC1

ˇkC1�ˇkC2

;

which implies that
ˇkC2

ˇkC1

< 1�
˛n

˛1

:

Taking the product over all k D 0; : : : ; n� 2, we get

˛n

˛1

C

�
ˇn

ˇ1

�1=.n�1/

< 1:

Since l�.�/D log.˛1=˛n/ and l�. /D log.ˇ1=ˇn/, the above inequality gives us (1).

(2) By Theorem 1.1(2), we know that there is some nonnegative integer u� i.�;  /

such that for any k D 0; : : : ; n� 2, we have

˛n

˛1

<

�
1�

ˇkC2

ˇkC1

�u�
1�

ˇn�k

ˇn�k�1

�i.�; /�u

:

In particular, we also have that for any k D 0; : : : ; n� 2,

˛n

˛1

<

�
1�

ˇkC2

ˇkC1

�i.�; /�u�
1�

ˇn�k

ˇn�k�1

�u

;

so we can assume that

˛n

˛1

<

�
1�

ˇkC2

ˇkC1

�u�
1�

ˇn�k

ˇn�k�1

�v
for some nonnegative integers u and v such that u � v and uC v D i.�;  /. This
implies that

˛n

˛1

<

�
1�

ˇkC2

ˇkC1

�u�
1�

ˇn

ˇ1

�v
;

which we can rewrite as

ˇkC2

ˇkC1

< 1�
.˛n=˛1/

1=u

.1�ˇn=ˇ1/v=u
:

By taking the product of the above inequality over k D 0; : : : ; n� 2, we have�
ˇn

ˇ1

�1=.n�1/

< 1�
.˛n=˛1/

1=u

.1�ˇn=ˇ1/v=u
;
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which can be rewritten as

˛n

˛1

<

�
1�

�
ˇn

ˇ1

�1=.n�1/�u�
1�

ˇn

ˇ1

�v
;

from which (2) follows.

(3) Choose an orientation on �. Since � is nonsimple, there are group elements A

and B corresponding to � such that

aC; bC; a�; b�

lie along @1� in that cyclic order. Let 0< ˛n < � � �< ˛1 and 0< ˇn < � � �< ˇ1 be
the eigenvalues of �.A/ and �.B/, respectively. Note that �.B/ is either conjugate
to �.A/ or �.A/�1 , so ˇn=ˇ1 D ˛n=˛1 . Hence, the same computation as the proof
of (1) then yields the inequality

˛n

˛1

C

�
˛n

˛1

�1=.n�1/

< 1;

which is equivalent to

(3-1)
�
1�

˛n

˛1

�n�1

�
˛n

˛1

> 0:

Consider the polynomial Pn.x/D xn�1C x � 1. Note that for n � 2, we have that
Pn.x/ is strictly increasing on the interval Œ0; 1�, Pn.0/D�1 and Pn.1/D 1. Hence,
Pn has a unique zero in the interval .0; 1/, which we denote by xn . It then follows that

fx 2 Œ0; 1� W Pn.x/ > 0g D .xn; 1�:

Also, observe that

Pn

�
1�

˛n

˛1

�
D

�
1�

˛n

˛1

�n�1

�
˛n

˛1

and 0 < 1�˛n=˛1 < 1. Since ˛n=˛1 satisfies the inequality (3-1), we have

xn < 1�
˛n

˛1

< 1:

This implies that

l�.�/D log
�
˛1

˛n

�
> ın WD � log.1�xn/:

An easy consequence of Corollary 1.2 is the following.
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Corollary 3.1 For any n � 2 and any � 2 Hitn.S/, there are at most 3g� 3 closed
curves in S of �–length at most ın .

In the case of T .S/, one can replace the number ı2 D log.2/ with 4 � sinh�1.1/; see
Buser [5, Theorem 4.2.2].

Proof By Corollary 1.2(1), if � and  are closed curves in S such that i.�;  /¤ 0,
then l�.�/ and l�. / cannot both be smaller than ın . Moreover, Corollary 1.2(3) tells
us that any closed curve of �–length less than ın has to be simple. Thus, the set of
closed curves of �–length less than ın has to be a pairwise disjoint collection of simple
closed curves, so the size of this collection is at most 3g� 3.

Let �M be the PSL.n;R/ symmetric space, and let d �M be the distance function given
by the Riemannian metric on �M . It is well known that for any Z 2 � , the translation
length of �.Z/, namely inffd �M .o; �.Z/ � o/ W o 2 �M g, is

cn

r
nP

iD1

.log�i/
2

for some positive constant cn depending only on n. Here, 0 < �n < � � � < �1 are
the eigenvalues of �.Z/. (See Chapter II.10 of Bridson and Haefliger [3].) For our
purposes, we normalize the metric on �M so that cn D

p
2, ie so that the image of the

totally geodesic embedding of H2 in �M induced by �nW PSL.2;R/! PSL.n;R/ has
sectional curvature �6=.n.n�1/.nC1//. Then for any discrete, faithful representation
�W � ! PSL.n;R/, and for any rectifiable closed curve ! in M WD �.�/n �M , let
lM .!/ be the length of ! in the Riemannian metric on M .

In the case when � 2 Hitn.S/, we can use Corollary 1.2, to obtain a relationship
between the lengths of curves in the quotient locally symmetric space M .

Corollary 1.4 Let � and  be two essential closed curves in S and let X and Y be
elements in � corresponding to � and  , respectively. For any � 2 Hitn.S/, let �0

and  0 be two closed curves in �.�/n �M DWM that correspond to X;Y 2� D�1.M /,
respectively. Then the statements in Corollary 1.2 hold, with l�.�/ and l�. / replaced
by lM .�0/ and lM . 0/, respectively.

Proof Pick any Z 2 � n fidg, and let ! in S and !0 in M be closed curves cor-
responding to Z . Observe then that the translation length of �.Z/ in �M is a lower
bound for lM .!0/.

Also, since

2

nX
iD1

x2
i � .x1�xn/

2
D .x1Cxn/

2
C 2.x2

2 C � � �Cx2
n�1/� 0;
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we have that

.x1�xn/
2
� 2

nX
iD1

x2
i :

This allows us to compute

l�.!/D log
�
�1

�n

�
�

r
2

nP
iD1

.log�i/
2
� lM .!0/;

where 0< �n < � � �< �1 are the eigenvalues of �.Z/.

Let f W S !M WD �.�/n �M be a �1 –injective map such that f .�/ and f . / are
rectifiable curves in the Riemannian metric on M . It then follows from Corollary 1.4
that the statements in Corollary 1.2 hold, with l�.�/ and l�. / replaced with lM .f .�//

and lM .f . //, respectively. In particular, we have a collar lemma for the image of the
harmonic maps corresponding to Hitchin representations that were given by Corlette [9].

Corollary 1.2 also allow us to deduce consequences that are similar to Corollary 1.4,
but with the Hilbert metric on the symmetric space instead of the Riemannian one. The
symmetric space �M can be given a Hilbert metric in the following way. Let S.n;R/
be the space of symmetric n� n matrices with real entries and let P .n;R/ be the set
of positive-definite matrices in S.n;R/. Let P .P / and P .S/ be the projectivizations
of P .n;R/ and S.n;R/, respectively, and observe that P .P / is a properly convex
domain in P .S/'RPN�1 , where N D 1

2
.n.nC 1//. This allows us to equip P .P /

with a Hilbert metric.

Moreover, we can define a PSL.n;R/–action on P .S/ by g �A WD gAgT for any
g 2 PSL.n;R/ and any A 2 P .S/. Note that this action preserves the projective
structure on P .S/, and also preserves P .P /. In fact, PSL.n;R/ acts transitively
on P .P /, and the stabilizer of the projective class of the identity matrix in P .P / is
PSO.n/, so the symmetric space �M can be identified with P .P /. This equips �M
with a Hilbert metric. Denote �M equipped with the Hilbert metric by �M 0 , and for any
discrete, faithful representation �W �! PSL.n;R/, let lM 0 be the length function on
M 0 WD �.�/n �M 0 induced by the Hilbert metric. Corollary 1.2 then also implies the
following corollary.

Corollary 3.2 Let � and  be two essential closed curves in S and let X and Y be
elements in � corresponding to � and  , respectively. For any � 2 Hitn.S/, let �0

and  0 be two closed curves in M 0 that correspond to X;Y 2�D�1.M
0/, respectively.

Then the statements in Corollary 1.2 hold, with l�.�/ and l�. / replaced with 1
2
lM 0.�

0/

and 1
2
lM 0.

0/, respectively.
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Proof For any Z 2� nfidg, let 0<�n< � � �<�1 be the eigenvalues of �.Z/. We can
assume without loss of generality that �.Z/ is a diagonal. Let Eij be the n�n matrix
with 1 at position .i; j / and zero everywhere else, and let Bij DEijCEji . Obviously,
fBij gi�j is a basis of S.n;R/DRN , and it is easy to verify that �.Z/�Bij D�i�j Bij .
That means Bij is an eigenvector of �.Z/ with eigenvalue �i�j . Consequently, the
translation length of �.Z/ is

log
�
�2

1

�2
n

�
D 2 log

�
�1

�n

�
I

see Cooper, Long and Tillmann [8, Proposition 2.1]. The corollary follows easily.

As mentioned in the introduction, if we restrict to Hitchin representations that lie in
Hitn.S/0 � Hitn.S/, then we can strengthen Theorem 1.1(2).

Corollary 1.3 Let A and B be elements in � such that aC , bC , a� , b� lie in @1�
in that cyclic order. Let � 2 Hitn.S/0 and let ˛n < � � �< ˛1 and ˇn < � � �< ˇ1 be the
moduli of the eigenvalues of �.A/ and �.B/, respectively. Finally, let � and  be
closed curves on S corresponding to A and B , respectively. If  is a simple closed
curve in S , then for every k D 0; : : : ; n� 2,

˛2
1 >

�
ˇkC1

ˇkC1�ˇkC2

�i.�; /

:

Proof Since �.B/ is a diagonalizable element in PSO.k; k C 1/ or PSp.2k;R/,
we see that ˇkC1 D 1=ˇn�k for k D 0; : : : ; n � 1, and ˛n D 1=˛1 . Apply this to
Theorem 1.1(2).

From this corollary, the same proof as Corollary 1.2(2) allows us to obtain the following
stronger inequality in the case when � 2 Hitn.S/0 .

Corollary 3.3 Let � and  be two essential closed curves in S such that  is simple
and i.�;  /¤ 0. Then for any � 2 Hitn.S/0 ,

1

exp.l�.�//
<

�
1�

1

exp.l�. /=.n� 1//

�i.�; /

:

Our results can be generalized to surfaces with boundaries in the following way. Let S 0

be a connected, oriented, topological surface with boundary, such that the double of S 0

is S , a closed connected, oriented topological surface of genus g � 2. Let � 0 be
the fundamental group of S 0 , and note that by choosing appropriate basepoints in the
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universal covers of S and S 0 , the inclusion S 0 � S induces an inclusion � 0 � � ,
which in turn induces an inclusion @� 0 � @� . In particular, @� 0 inherits a natural
cyclic order from @� .

The inclusion � 0 � � also allows us to define the restriction map

resW Hitn.S/! Xn.S
0/ WD Hom.� 0;PSL.n;R//=PSL.n;R/

by resW Œ�� 7! Œ�j� 0 �. Using this, define the nth Hitchin component of S 0 to be

Hitn.S 0/ WD res.Hitn.S//:

(See the introduction of Labourie and McShane [16] for an alternative definition.)
While Hitn.S 0/ is still topologically a cell, it is no longer a connected component of
Xn.S

0/, so it is properly contained in its closure Hitn.S 0/ in Xn.S
0/.

Corollary 3.4 Theorem 1.1 holds with � replaced with � 0 , Hitn.S/ replaced with
Hitn.S 0/, and the strict inequalities > replaced with weak inequalities �.

Proof For any closed curve  in S , let X 2� be a corresponding group element. First,
note that the moduli of the eigenvalues of �.X / and res.�/.X / agree, so Theorem 1.1
clearly holds for � 2 Hitn.S 0/.

Since ˛n < � � �< ˛1 and ˇn < � � �< ˇ1 on Hitn.S 0/, these moduli of eigenvalues are
still well defined on Hitn.S 0/, and satisfy the weak inequalities ˛n � � � � � ˛1 and
ˇn � � � � � ˇ1 . Furthermore, as functions on Hitn.S 0/, they are continuous. As such,
the inequalities in Theorem 1.1 hold on Hitn.S 0/, with > replaced with �.

3.2 Counterexample for non-Hitchin representations

Note that in our proof, we used very strongly that the representations we consider are
in Hitn.S/ because we used properties of the Frenet curve to obtain our estimates. In
fact, the collar lemma is special to Hitchin representations, and does not hold even on
the space of discrete and faithful representations from � to PSL.n;R/.

To see this, consider the space of conjugacy classes of quasi-Fuchsian representations
from � to PSL.2;C/D PSO.3; 1/C � PSL.4;R/, which is the group of orientation-
preserving isometries of H3 . These are discrete and faithful representations whose
limit set in the Riemann sphere @H3 is a Jordan curve. It is well known that each
quasi-Fuchsian representation � induces a convex cocompact hyperbolic structure
on the three-manifold S � I . Also, for any nonidentity element X in � , the closed
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geodesic  in S�I (equipped with the hyperbolic metric induced by �) corresponding
to X has �–length

l�. /D log
�
�1

�4

�
;

where �1 and �4 are the moduli of eigenvalues of �.X / with largest and smallest
modulus, respectively.

It is a theorem of Bers [1, Theorem 1] that the space of quasi-Fuchsian representations
can be naturally identified with T .S/�T . xS/, where xS is S with the opposite orienta-
tion. For any quasi-Fuchsian representation � let .�C; ��/ denote the pair of Fuchsian
representations that corresponds to � , such that �C 2 T .S/ and �� 2 T . xS/. Then for
any essential closed curve  in S , let � be the geodesic representative of  in the
hyperbolic metric on S � I corresponding to � , and let �C and �� be the geodesic
representatives of  in the hyperbolic metrics on S and xS corresponding to �C and �� ,
respectively. By Epstein, Marden and Markovic [10, Theorem 3.1], we know that

l�.�/�minf2 � l�C.�C/; 2 � l��.��/g:

For any pair of simple closed curves � and  , and for any � > 0, let � be a quasi-
Fuchsian representation such that

l�C.��C/ <
1
2
� and l��.��/ <

1
2
�:

Hence, l�.��/ and l�.�/ are both smaller than � . This implies that the analog of
Corollary 1.2 does not hold on the space of discrete and faithful, or even Anosov,
representations from � to PSL.4;R/. (See Guichard and Wienhard [13] for more
background on Anosov representations.)

3.3 Comparison with the classical collar lemma

Let � be a representation in the Fuchsian locus of Hitn.S/ and let h be the corre-
sponding Fuchsian representation in T .S/. Also, let X be a nonidentity element in �
and let  be a curve in S corresponding to X . If ��1 and � are the two eigenvalues
of h.X /, then ��nC1 , ��nC3; : : : ; �n�3 , �n�1 are the n eigenvalues of �.X /. Hence
we can get the lengths

lh. /D 2 log.�/ and l�. /D 2.n� 1/ log.�/:

Since h 2 T .S/, the classical collar lemma holds. In other words, for any pair of
curves � and  in S such that  is simple and i.�;  / > 0, we have

(3-2) I�; .h/ WD sinh
�

1
2
lh.�/

�
sinh

�
1
2
lh. /

�
> 1I
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Figure 5: The upper curve sinh
�

1
2
x
�

sinh
�

1
2
y
�
D 1 and the lower curve

.ex � 1/.ey � 1/D 1

see Buser [5, Corollary 4.1.2]. This inequality is sharp, in the sense that for any S ,
there are simple curves � and  in S and a sequence of Fuchsian representations fhig

such that I�; .hi/ converges to 1. For more details, refer to Section 6 of Matelski [17].

On the other hand, Corollary 1.2(1), specialized to the nD 2 case, is the inequality

.elh.�/� 1/.elh. /� 1/ > 1:

This is weaker than the inequality (3-2) because

ex
� 1> 1

2
e�x=2.ex

� 1/D sinh
�

1
2
x
�

for every x > 0; see Figure 5. Moreover, we are unable to show that the inequality
(3-2) fails in Hitn.S/ for any n> 2. This led us to conjecture in an earlier version of
this paper, that for any � in Hitn.S/, there is some representation �0 in the Fuchsian
locus of Hitn.S/ such that

l�. /� l�0. / for any  2 �:

This conjecture implies that

sinh
�

l�.�/

2.n� 1/

�
sinh

�
l�. /

2.n� 1/

�
> 1

for any �2Hitn.S/, which is sharp on every Hitn.S/ because it is sharp when restricted
to the Fuchsian locus.

Recently, Tholozan proved (Section 0.4 of [18]) that the conjecture holds in the case
when nD 3. Furthermore, Labourie disproved our conjecture in the case when n� 4.
We will give his argument here.
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Proposition 3.5 (Labourie) When n � 4, there is some � 2 Hitn.S/ such that for
any �0 in the Fuchsian locus of Hitn.S/, there is some closed curve  in S such that
l�. / < l�0. /.

Proof For any closed curve  in S , let L W Hitn.S/! R denote the map given
by L .�/ D l�. /. As before, let Hitn.S/0 be the PSp.2k;R/ or PSO.k; k C 1/

Hitchin components when nD 2k or nD 2kC1, respectively, and recall that l�. /D

2 log�1.�.X // for all � 2 Hitn.S/0 , where X 2 � is a group element corresponding
to  and �1.�.X // is the modulus of eigenvalue of �.X / with largest modulus.
Proposition 10.3 of Bridgeman, Canary, Labourie and Sambarino [2] then implies that
for any � 2 Hitn.S/0 , the set of differentials fdL W  a closed curve in Sg generates
the entire cotangent space of Hitn.S/0 at � .

Observe that if n� 4, then Hitn.S/0 � Hitn.S/ properly contains the Fuchsian locus.
Thus, it is sufficient to prove the proposition on Hitn.S/0 . Suppose for contradiction
that the proposition is false on Hitn.S/0 . Choose a point �0 in the Fuchsian locus,
and take a smooth path �t for t 2 .��; �/ with � > 0, whose nonzero tangent vector
U 2 T�0

Hitn.S/0 is not tangential to the Fuchsian locus. Along the path, choose a
sequence of representations f�ti

g1
iD1

which converges to �0 as i !1 so that ti > 0

for all i .

Since the proposition is false on Hitn.S/0 , there exists the corresponding sequence
of Fuchsian representations �0ti

such that L .�ti
/�L .�

0
ti
/ for any closed curve 

in S . Also, since �ti
converges to �0 , we see that L .�

0
ti
/ is bounded for all  ,

so the sequence f�0ti
g1
iD1

lie in a compact subset of the Fuchsian locus. By picking
subsequence, we can assume without loss of generality that f�0ti

g1
iD1

converges to
some �0

0
in the Fuchsian locus. The continuity of L then implies that L .�0/ �

L .�
0
0
/ for all  , so �0 D �

0
0

because both �0 and �0
0

lie in the Fuchsian locus.

Thus, the sequence f�0ti
g1
iD1

converges to �0 as well. Choose a Riemannian metric on
a neighborhood of �0 in Hitn.S/0 . By taking a further subsequence of f�ti

g1
iD1

, we
can also assume that either one of the following cases hold:

(i) �0ti
D �0 for all i ;

(ii) the unit vectors at �0 that are tangential to the geodesic between �0ti
and �0

converge to some unit vector V ¤ 0 in T�0
Hitn.S/0 that is tangential to the

Fuchsian locus.

If (i) holds, then we have that dL .U /� 0 for all  . On the other hand, if (ii) holds,
then for all closed curves  in S ,
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dL .U /D
d

dt
L .�t /jtD0

D lim
i!1

L .�ti
/�L .�0/

ti

� lim
i!1

L .�
0
ti
/�L .�

0
0
/

ti

D

�
lim

i!1
si

�
� dL .V /

for some sequence of positive numbers fsig
1
iD1

. More precisely, if Vi denotes the
tangent vector whose exponential is �0ti

and kVik is the norm of Vi with respect to
the chosen Riemannian metric, then si D kVik=ti .

Note that if limi!1 si D1, then dL .V /� 0 for all  , which is impossible since
V ¤ 0 is tangential to the Fuchsian locus. Hence, dL .U C sV /� 0 for some s � 0.

In either case, there is some vector W 2 T�0
Hitn.S/0 (possibly the zero vector) that is

tangential to the Fuchsian locus such that dL .U CW /� 0 for all  . Furthermore,
since U CW ¤ 0, the fact that the differentials dL generate the cotangent space of
Hitn.S/0 at �0 implies that dL .U CW / > 0 for some  . By a similar argument,
we can also show that there is some vector W 0 2 T�0

Hitn.S/0 that is tangential to
the Fuchsian locus such that dL .�U CW 0/� 0 for all  , and this inequality holds
strictly for some  .

Adding these two inequalities together gives dL .W C W 0/ � 0 for all  , and
dL .W CW 0/ > 0 for some  . However, this is impossible since W CW 0 is
tangential to the Fuchsian locus.

Note that Labourie’s argument to disprove our conjecture relied very heavily on the
fact that Hitn.S/0 � Hitn.S/ properly contains the Fuchsian locus. There is thus still
hope that the following modified conjecture might be true.

Conjecture 3.6 Let � be a representation in Hitn.S/. Then there is some representa-
tion �0 in Hitn.S/0 such that

l�. /� l�0. /

for any closed curve  in S .

Appendix: Proof of Corollary 1.5

In this appendix, we will prove the properness result stated as Corollary 1.5. We begin
by recalling some results from Zhang [19] that we will need.
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Let P WD f1; : : : ; 3g�3g be an oriented pants decomposition of S , ie a maximal col-
lection of pairwise nonintersecting, pairwise nonhomotopic, homotopically nontrivial,
oriented simple closed curves on S . These curves cut S into 2g� 2 pairs of pants,
which we label by P1; : : : ;P2g�2 , and also gives us a real analytic diffeomorphism

Hitn.S/! .RC/.3g�3/.n�1/
�R.3g�3/.n�1/

�R.2g�2/.n�1/.n�2/;

which one should think of as a generalization of the Fenchel–Nielsen coordinates on
the Teichmüller space T .S/; see [19, Proposition 3.5].

The first .3g� 3/.n� 1/ positive numbers are called the boundary invariants. For any
� 2 Hitn.S/, these are the numbers

ˇj ;k WD log
�
�k.�.Xj //

�kC1.�.Xj //

�
;

where k D 1; : : : ; n� 1 and j D 1; : : : ; 3g� 3. Here, Xj 2 � is a group element that
corresponds to j , and �1.�.Xj //; : : : ; �n.�.Xj // are the moduli of eigenvalues of
�.Xj / arranged in decreasing order. Note that each of the 3g � 3 curves in P are
associated n� 1 of these numbers. They capture the eigenvalue data of the holonomy
about each of the curves in P , and are a generalization of the Fenchel–Nielsen length
coordinates.

The next .3g�3/.n�1/ real numbers are called the gluing parameters, and these are also
associated to the curves in P . Informally, the n�1 gluing parameters associated to each
curve in P is the data specifying how one should “glue” the representations on adjacent
pair of pants together along a common boundary component. Hence, these generalize
the Fenchel–Nielsen twist coordinates. Just like the Fenchel–Nielsen twist coordinates,
to specify these gluing parameters formally, we need to make additional topological
choices to define what is “zero gluing”. In this case, this additional topological choice
we make is a pair of distinct points aj ; bj 2 @1� so that x�j , aj , xCj , bj lie in @1�
in that cyclic order.

For simplicity, we will fix such a choice once and for all in the following way. Let
P1 and P2 be the two pairs of pants that have j as a common boundary component
(it is possible for P1 D P2 ). For i D 1; 2, choose Ai , Bi and Ci to be elements
in � corresponding the boundary components of Pi so that Ci � Bi � Ai D id and
A1 D A�1

2
D Xj . Let aj be the repelling fixed point of B1 and bj be the repelling

fixed point of C2 . The gluing parameters are then

gj ;k WD log
�
�.Pk;1;Pk;2;Pk;4;Pk;3/

�
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for k D 1; : : : ; n�1, where �W @1�!F.Rn/ is the Frenet curve corresponding to � ,
and

Pk;1 WD �.x
C
j /

.k/
C �.x�j /

.n�k�1/;

Pk;2 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.aj /

.1/;

Pk;3 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k/;

Pk;4 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.bj /

.1/

are four hyperplanes in Rn that intersect at Mk WD �.x
C
j /

.k�1/C �.x�j /
.n�k�1/ .

Finally, the remaining .2g � 2/.n � 1/.n � 2/ real numbers are called the internal
parameters, and are associated to the pairs of pants P1; : : : ;P2g�2 . To each Pj ,
we associate .n � 1/.n � 2/ internal parameters, and they parametrize the Hitchin
representations on a pair of pants after the boundary invariants are fixed. These are
defined in great detail in Section 3 of [19]. For our purposes though, we do not need to
know what these parameters are, but only the following proposition.

Proposition A.1 Fix a pair of pants Pj0
given by P . Let f�ig be a sequence in

Hitn.S/ such that

� the boundary invariants corresponding to @Pj0
remain bounded away from 0 and

1 along f�ig, and

� some internal parameter corresponding to Pj0
grows to 1 or �1 along f�ig.

Let  be a closed curve in S with the property that any closed curve homotopic to 
has nonempty intersection with Pj0

. Then limi!1 l�i
. /D1.

Proof The proof of this proposition is a slight modification of the proof of the main
theorem given in Section 5.1 of [19]. In Section 3.2 of [19], there is a description of a
particular way to cut each Pj into two ideal triangles that share all three edges. Doing
this over all Pj gives us 6g� 6 edges. Here, we view each of these edges e D Œa; b�

as a � –orbit of a pair of distinct points a; b 2 @1� .

Let � 2 Hitn.S/ and � the corresponding Frenet curve. As was done in Section 4.4
of [19], one can associate a particular positive number KŒa; b� to each of these 6g� 6

edges Œa; b�. Using this, define

K.�; j0/ WDminfKŒa; b� W Œa; b�� Pj0
g:

The same argument as given in Section 5.1 of [19] proves that

lim
i!1

K.�i ; j0/D1:
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Let X 2 � be a group element corresponding to  . Let e D Œa; b� be an edge
in Pj0

such that there is a lift ze D fa; bg with the property that x�, a, xC, b lie in
@1� in that cyclic order. Such an edge exists by the hypothesis we imposed on  .
For any p D 0; : : : ; n� 1, one can define subsegments cp.ze/ of the projective line
P
�
�.x�/.1/ C �.xC/.1/

�
� RPn�1 associated to each lift ze D fa; bg of e D Œa; b�.

These are called the crossing .p/–subsegments; see Definition 4.7 of [19]. Using the
cross ratio, we can define a notion of length for these subsegments, which we denote
by l.cp.ze//; see Definition 4.8 of [19].

By the proof of [19, Proposition 4.16], we see that

1

n

n�1X
pD0

l.cp.ze//�K.�; j0/:

Furthermore, by Lemmas 4.9 and 4.10 of [19], we have

l�. /� l.cp.ze//

for all p D 0; : : : ; n� 1, which allows us to conclude that

l�. /�K.�; j0/:

Combining this with the fact that limi!1K.�i ; j0/D1 gives the proposition.

With the above proposition, we are ready to prove Corollary 1.5. Let f�ig be a
sequence in Hitn.S/, let C WD f1; : : : ; kg satisfy the hypothesis of Corollary 1.5 and
let P WD f1; : : : ; 3g�3g � C be a pants decomposition. Observe that the hypothesis
on C ensures the following:

� For any  2 P , there is some  0 2 C that intersects  transversely.
� For each pair of pants P given by P , there is some  2 C such that any closed

curve homotopic to  has nonempty intersection with P .

The pants decomposition P then gives us a parametrization of Hitn.S/ as described
above. We will prove Corollary 1.5 in the following steps.

(1) If there is some boundary invariant ˇj ;k such that limi!1 ˇj ;k.�i/ D 1,
then limi!1 l�i

.j /D1.

(2) If there is some boundary invariant ˇj ;k such that limi!1 ˇj ;k.�i/D 0, then
limi!1 l�i

. /D1 for any closed curve  that intersects j transversely.

(3) If all the boundary invariants remain bounded away from 0 and 1 and
some internal parameter associated to a pair of pants P grows to ˙1, then
limi!1 l�i

. /D1 for any closed curve  with the property that any closed
curve homotopic to  has nonempty intersection with P .
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(4) If all the boundary invariants remain bounded away from 0 and 1 and there
is some gluing parameter gj ;k such that limi!1 gj ;k.�i/ D ˙1, then
limi!1 l�i

. /D1 for any  that intersects j transversely.

Note that together, the four statements above prove Corollary 1.5. Statement (1) is
obvious because

l�.j /D

n�1X
kD1

ˇj ;k.�/;

and all the boundary invariants are positive. Also, statement (3) is a restatement of
Proposition A.1, and statement (2) is an immediate consequence of Theorem 1.1(1),
which is a main result in this paper. The rest of this appendix will be the proof of
statement (4).

Let Xj ;X 2 � correspond to j and  , respectively, such that x�j , x�, xCj , xC lie
in @1� in that cyclic order. We previously chose a pair of points aj ; bj 2 @1� so
that x�j , aj , xCj , bj lie in @1� in that cyclic order in order to define the gluing
parameters gj ;k associated to j . If we choose X l

j � aj and X m
j � bj in place of aj

and bj , we get another collection of gluing parameters, which we denote by gl;m
j ;k

.
The next lemma explains the relationship between gj ;k D g0;0

j ;k
and gl;m

j ;k
. Its proof

is an easy computation which we omit.

Lemma A.2 Let � 2 Hitn.S/, and let �1; : : : ; �n be the moduli of eigenvalues of
�.Xj / arranged in decreasing order. For any integers l and m, we have

g
l;m
j ;k

.�/D .l �m/ log
�
�k

�kC1

�
Cgj ;k.�/:

In particular, when the boundary invariants corresponding to j are bounded away
from 0 and 1 along a sequence of representations f�ig in Hitn.S/, then we have
limi!1 gj ;k.�i/D˙1 if and only if limi!1 gl;m

j ;k
.�i/D˙1. Statement (4) then

follows immediately from this observation and the following proposition.

Proposition A.3 Let � 2Hitn.S/ and let j ,  , x�j , xCj , x�, xC, aj , bj be as above.
Let l and m be integers such that x�j , X l�1

j � aj , x�, X l
j � aj , xCj , X mC1

j � bj , xC,
X m

j � bj lie in @1� in that cyclic order. Then

3l�. /� g
l�1;mC1
j ;k

.�/ and 3l�. /� �g
l;m
j ;k

.�/

for all k D 1; : : : ; n� 1.
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Proof The technique used in this proof is the same as that used in the proof of [19,
Lemma 4.18]. For any k D 1; : : : ; n� 1, let

Pk;0 WD �.x
C
j /

.k/
C �.x�j /

.n�k�1/;

Pk;1 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.x�/.1/;

Pk;2 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.X l�1

j � aj /
.1/;

P 0k;2 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.X l

j � aj /
.1/;

Pk;3 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k/;

Pk;4 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.X m

j � bj /
.1/;

P 0k;4 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.X mC1

j � bj /
.1/;

Pk;5 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.xC/.1/:

Also, for all i , let

L0k;i WD P 0k;i \
�
�.x�/.1/C �.xC/.1/

�
;

Lk;i WD Pk;i \
�
�.x�/.1/C �.xC/.1/

�
;

and let

Lk;aj WD
�
�.X l

j � aj /
.k�1/

C �.X l�1
j � aj /

.n�k/
�
\
�
�.x�/.1/C �.xC/.1/

�
;

Lk;bj WD
�
�.X mC1

j � bj /
.k�1/

C �.X m
j � bj /

.n�k/
�
\
�
�.x�/.1/C �.xC/.1/

�
:

It follows from [19, Lemma 2.5] that

�.x�/.1/; Lk;aj ; Lk;2; Lk;3; Lk;4; Lk;bj ; �.x
C/.1/

lie in the projective line �.x�/.1/ C �.xC/.1/ in that cyclic order. Also, by [19,
Lemma 4.11], we know

3l�. /� log
�
�.x�/.1/;Lk;aj ;Lk;bj ; �.x

C/.1/
�
;

which implies that

3l�. /� log
�
�.x�/.1/;Lk;2;Lk;3; �.x

C/.1/
�
;

3l�. /� log
�
�.x�/.1/;Lk;3;Lk;4; �.x

C/.1/
�
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by Lemma 2.9. Using Lemmas 2.8 and 2.6, we can also deduce that�
�.x�/.1/;Lk;2;Lk;3; �.x

C/.1/
�
D
�
�.x�/.1/;Lk;2;Lk;3; �.x

C/.1/
�
Mk

D .Pk;1;Pk;2;Pk;3;Pk;5/

� .Pk;0;Pk;2;Pk;3;P
0
k;4/

D 1� .Pk;0;Pk;2;P
0
k;4;Pk;3/

D 1C e
g

l�1;mC1

j ;k

� e
g

l�1;mC1

j ;k

and �
�.x�/.1/;Lk;3;Lk;4; �.x

C/.1/
�
D
�
�.x�/.1/;Lk;3;Lk;4; �.x

C/.1/
�
Mk

D .Pk;1;Pk;3;Pk;4;Pk;5/

� .P 0k;2;Pk;3;Pk;4;Pk;0/

D 1�
1

.Pk;0;P
0
k;2
;Pk;4;Pk;3/

D 1C e
�g

l;m

j ;k

� e
�g

l;m

j ;k ;

where Mk WD �.x
C
j /

.k�1/C �.x�j /
.n�k�1/ .
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