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Top-dimensional quasiflats in CAT(0) cube complexes

JINGYIN HUANG

We show that every n–quasiflat in an n–dimensional CAT.0/ cube complex is at
finite Hausdorff distance from a finite union of n–dimensional orthants. Then we
introduce a class of cube complexes, called weakly special cube complexes, and
show that quasi-isometries between their universal covers preserve top-dimensional
flats. This is the foundational result towards the quasi-isometric classification of
right-angled Artin groups with finite outer automorphism group.

Some of our arguments also extend to CAT.0/ spaces of finite geometric dimension.
In particular, we give a short proof of the fact that a top-dimensional quasiflat in
a Euclidean building is Hausdorff close to a finite union of Weyl cones, which
was previously established by Kleiner and Leeb (1997), Eskin and Farb (1997) and
Wortman (2006) by different methods.

20F67; 20F65, 20F69

1 Introduction

1.1 Summary of results

A quasiflat of dimension d in a metric space X is a quasi-isometric embedding
�W Ed !X , ie there exist positive constants L;A such that for all x;y 2 Ed ,

L�1d.x;y/�A� d.�.x/; �.y//�Ld.x;y/CA:

Top-dimensional (or maximal) flats and quasiflats in spaces of higher rank are analogues
of geodesics and quasigeodesics in Gromov hyperbolic spaces, which play a key role
in understanding the large scale geometry of these spaces. In particular, several quasi-
isometric rigidity results were established on the study of such flats or quasiflats. Here
is a list of examples:
� Euclidean buildings and symmetric spaces of noncompact type; see Mostow [34],

Kleiner and Leeb [30], Eskin and Farb [17], Kramer and Weiss [32].
� Universal covers of certain Haken manifolds (see Kapovich and Leeb [27]);

higher-dimensional graph manifolds (see Frigerio, Lafont and Sisto [18]); two-
dimensional tree groups and their higher dimensional analogues (see Behrstock,
Januszkiewicz and Neumann [7; 5].
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� CAT.0/ 2–complexes; see Bestvina, Kleiner and Sageev [9], with applications to
the quasi-isometric rigidity of atomic right-angled Artin groups in their paper [8].

� Flats generated by Dehn twists in mapping class groups; see Behrstock, Kleiner,
Minsky and Mosher [6].

In this paper, we will mainly focus on top-dimensional quasiflats and flats in CAT.0/
cube complexes. All cube complexes in this paper will be finite-dimensional. Our first
main result shows how the cubical structure interacts with quasiflats.

Theorem 1-1 If X is a CAT.0/ cube complex of dimension n, then for every n–
quasiflat Q in X , there is a finite collection O1; : : : ;Ok of n–dimensional orthant
subcomplexes in X such that

dH

�
Q;

k[
iD1

Ok

�
<1;

where dH denotes the Hausdorff distance.

An orthant O of X is a convex subset which is isometric to the Cartesian product of
finitely many half-lines R�0 . If O is both a subcomplex and an orthant, then O is called
an orthant subcomplex. We caution the reader that the definition of orthant subcomplex
here is slightly different from other places, ie we require an orthant subcomplex to be
convex with respect to the CAT.0/ metric.

The 2–dimensional case of Theorem 1-1 was proved in [9]. We will use this theorem as
one of the main ingredients to study the coarse geometry of right-angled Artin groups
(see Corollary 1-4 below and the remarks after). Also note that recently Behrstock,
Hagen, and Sisto have obtained a quasiflat theorem of quite a different flavor in [4].
Their result does not imply our result and vice versa.

Based on Theorem 1-1, we study how the top-dimensional flats behave under quasi-
isometries. In general, quasi-isometries between CAT.0/ complexes of the same
dimension do not necessarily preserve top dimension flats up to finite Hausdorff
distance, even if the underlying spaces are cocompact. However, motivated by Haglund
and Wise [20], we can define a large class of cube complexes such that top-dimensional
flats behave nicely with respect to quasi-isometries between universal covers of these
complexes. Our class contains all compact nonpositively curved special cube complexes
up to finite cover [20, Proposition 3.10].

Definition 1-2 A cube complex W is weakly special if and only if it has the following
properties:
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(1) W is nonpositively curved.

(2) No hyperplane self-osculates or self-intersects.

The notions of self-osculation and self-intersection were introduced in [20, Defini-
tion 3.1].

Theorem 1-3 Let W 0
1

and W 0
2

be two compact weakly special cube complexes with
dim.W 0

1
/ D dim.W 0

2
/ D n, and let W1 and W2 be the universal covers of W 0

1
and

W 0
2

, respectively. If f W W1 ! W2 is an .L;A/–quasi-isometry, then there exists a
constant C D C.L;A/ such that for any top-dimensional flat F �W1 , there exists a
top-dimensional flat F 0 �W2 with dH .f .F /;F

0/ < C .

We now apply this result to right-angled Artin groups (RAAGs). Recall that for every
finite simplicial graph � with its vertex set denoted by fvigi2I , one can define a group
using the following presentation:

hfvigi2I j Œvi ; vj �D 1 if vi and vj are adjacenti:

This is called the right-angled Artin group with defining graph � , and we denote it by
G.�/. Each G.�/ can be realized as the fundamental group of a nonpositively curved
cube complex xX .�/, which is called the Salvetti complex (see Charney [13] for a
precise definition). The 2–skeleton of the Salvetti complex is the usual presentation
complex for G.�/. The universal cover of xX .�/ is a CAT.0/ cube complex, which
we denote by X.�/.

Corollary 1-4 Let �1 , �2 be finite simplicial graphs, and let �W X.�1/!X.�2/ be
an .L;A/–quasi-isometry. Then:

(1) dim.X.�1//D dim.X.�2//.

(2) There is a constant D D D.L;A/ such that for any top-dimensional flat F1

in X.�1/, we can find a flat F2 in X.�2/ such that dH .�.F1/;F2/ <D .

This is the foundation for a series of work on quasi-isometric classification and rigidity
of RAAGs by the author and Kleiner [21; 22; 24; 23].

Remark We could also use Theorem 1-3 to obtain an analogous statement for quasi-
isometries between the Davis complexes of certain right-angled Coxeter groups, but in
general the dimensions of maximal flats in a Davis complex are strictly smaller than the
dimension of complex itself, so we need extra condition on the right-angled Coxeter
groups; see Corollary 5-18 for a precise statement.
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Corollary 1-4 implies that � maps chains of top-dimensional flats to chains of top-
dimensional flats, and this gives rise to several quasi-isometry invariants for RAAGs.
More precisely, we consider a graph Gd .�/ where the vertices are in 1–1 correspondence
to top-dimensional flats in X.�/ and two vertices are connected by an edge if and
only if the coarse intersection of the corresponding flats has dimension � d . The
connectedness of Gd .�/ can be read off from � , which gives us the desired invariants.

Definition 1-5 Let d � 1 be an integer. Let � be a finite simplicial graph and let
F.�/ be the flag complex that has � as its 1–skeleton. � has property .Pd / if and
only if:

(1) Any two top-dimensional simplices �1 and �2 in F.�/ are connected by a
.d�1/–gallery.

(2) For any vertex v 2 F.�/, there is a top-dimensional simplex �� F.�/ such
that � contains at least d vertices that are adjacent to v .

A sequence of n–dimensional simplices f�ig
p
iD1

in F.�/ is a k –gallery if �i\�iC1

contains a k –dimensional simplex for 1� i � p� 1.

Theorem 1-6 Gd .�/ is connected if and only if � has property .Pd /. In particular,
for any d � 1, property .Pd / is a quasi-isometry invariant for RAAGs.

Remark Another interesting fact in the case d D 1 is that one can tell whether �
admits a nontrivial join decomposition by looking at the diameter of G1.�/. This
basically follows from the argument in Dani and Thomas [14]. See Theorem 5-30 for
a precise statement. Thus in the case of X.�/, one can determine whether the space
splits as a product by looking at the intersection pattern of top-dimensional flats. We
ask whether this is true in general: if Z is a cocompact geodesically complete CAT.0/
space that has n–flats but not .nC1/–flats, can one determine whether Z splits as a
product of two unbounded CAT.0/ spaces by looking at the intersection pattern of
n–flats in Z?

Actually, a large portion of our discussion generalizes to n–dimensional quasiflats in
CAT.0/ spaces of geometric dimension D n (the notion of geometric dimension and
its relation to other notions of dimension are discussed in Kleiner [28]). This will be
discussed in the appendix and see Theorem A-18 and Theorem A-19 for a summary.

In particular, this leads to a short proof of the following result, which was previously
established in Kleiner and Leeb [30], Eskin and Farb [17], and Wortman [37] by
different methods, and it is one of the main ingredients in proving quasi-isometric
rigidity for Euclidean buildings.
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Theorem 1-7 Let Y be a Euclidean building of rank n, and let Q � Y be an n–
quasiflat. Then there exist finitely many Weyl cones fWig

h
iD1

such that

dH

�
Q;

h[
iD1

Wi

�
<1:

On the way to Theorem 1-7, we also give a more accessible proof of the following
weaker version of one of the main results in Kleiner and Lang [29].

Theorem 1-8 Let qW Y ! Y 0 be a quasi-isometric embedding, where Y and Y 0

are CAT.0/ spaces of geometric dimension � n. Then q induces a monomorphism
q�W Hn�1.@T Y /!Hn�1.@T Y 0/. If q is a quasi-isometry, then q� is an isomorphism.

Here @T Y and @T Y 0 denote the Tits boundary of Y and Y 0 respectively.

1.2 Sketch of proofs

1.2.1 Proof of Theorems 1-1 and 1-7 The proof of Theorem 1-1 has five steps, as
below. The first one follows Bestvina, Kleiner and Sageev [9] closely, but the others
are different, since part of the argument in [9] depends heavily on special features of
dimension 2, and does not generalize to the n–dimensional case.

Let X be a CAT.0/ piecewise Euclidean polyhedral complex with dim.X /D n, and
let QW En!X be a top-dimensional quasiflat in X .

Step 1 Following [9], one can replace the top-dimensional quasiflat, which usually
contains local wiggles, by a minimizing object which is more rigid.

More precisely, let us assume without of loss of generality that Q is a continuous
quasi-isometric embedding. Let ŒEn� be the fundamental class in the nth locally finite
homology group of En and let Œ� �DQ�.ŒEn�/. Let S be the support set (Definition 3-1)
of Œ� �. It turns out that S has nice local property (it is a subcomplex with geodesic
extension property) and asymptotic property (it looks like a cone from far away).
Moreover, dH .S;Q/ <1.

In the next few steps, we study the structure of S by looking at its “boundary”.

Recall that X has a Tits boundary @T X , whose points are asymptotic classes of
geodesic rays in X , and the asymptotic angle between two geodesic rays induces a
metric on @T X . See Section 2.2 for a precise definition. We define the boundary of S ,
denoted @T S , to be the subset of @T X corresponding to geodesic rays inside S .
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Step 2 We produce a collection of orthants in X from S . More precisely, we find an
embedded simplicial complex K � @T X such that @T S �K . Moreover, K is made
of right-angled spherical simplices, each of which is the boundary of an isometrically
embedded orthant in X . This step depends on the cubical structure of X , and is
discussed in Section 4.1.

Step 3 We show @T S is actually a cycle. Namely, it is the “boundary cycle at infinity”
of the homology class Œ� �. This step does not depend on the cubical structure of X

and is actually true in greater generality by the much earlier, but still unpublished work
of Kleiner and Lang [29]. However, their paper was based on metric current theory.
Under the assumption of Theorem 1-1, we are able to give a self-contained account
which only requires homology theory; see Section 4.2.

Step 4 We deduce from the previous two steps that @T S is a cycle made of .n�1/–
dimensional all-right spherical simplices. Moreover, each simplex is the boundary of
an orthant in X .

Step 5 We finish the proof by showing S is Hausdorff close to the union of these
orthants. See Section 4.3 for the last two steps.

If X is a Euclidean building, then it is already clear that the cycle at infinity can be
represented by a cellular cycle, since the Tits boundary is a polyhedral complex (a
spherical building). The problem is that X itself may not be a polyhedral complex.
There are several ways to get around this point. Here we deal with it by generalizing
several results of [9] to CAT.0/ spaces of finite geometric dimension, which is of
independent interest.

1.2.2 Proof of Theorem 1-3 Let W1 and W2 be the universal covers of two weakly
special cube complexes. We also assume dim.W1/D dim.W2/D n. Our starting point
is similar to the treatment in Kleiner and Leeb [30] and Bestvina, Kleiner and Sageev [8].
Let KQ.Wi/ be the lattice generated by finite unions, coarse intersections and coarse
subtractions of top-dimensional quasiflats in Wi , modulo finite Hausdorff distance.
Any quasi-isometry qW W1!W2 will induce a bijection q]W KQ.W1/! KQ.W2/.

It suffices to study the combinatorial structure of KQ.Wi/. By Theorem 1-1, each
element ŒA� 2 KQ.Wi/ is made of a union of top-dimensional orthants, together with
several lower dimensional objects. We denote the number of top-dimensional orthants
in ŒA� by jŒA�j. ŒA� is essential if jŒA�j > 0, and ŒA� is minimal essential if for any
ŒB� 2 KQ.Wi/ with ŒB� � ŒA� (ie B is coarsely contained in A) and ŒB�¤ ŒA�, we
have jŒB�j D 0.

It suffices to study the minimal essential elements of KQ.Wi/, since every element
in KQ.Wi/ can be decomposed into minimal essential elements together with several
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lower dimensional objects. In the case of universal covers of special cube complexes,
these elements have nice characterizations and behave nicely with respect to quasi-
isometries:

Theorem 1-9 If ŒA� 2 KQ.Wi/ is minimal essential, then there exists a convex
subcomplex K �Wi which is isometric to .R�0/

k �Rn�k such that ŒK�D ŒA�.

Theorem 1-10 jq].ŒA�/j D jŒA�j for any minimal essential element ŒA� 2 KQ.W1/.

Theorem 1-3 essentially follows from the above two results.

1.3 Organization of the paper

In Section 2 we will recall several basic facts about CAT.�/ spaces and CAT.0/ cube
complexes. We also collect several technical lemmas in this section, which will be
used later.

In Section 3 we will review the discussion in [9] which will enable us to replace the
top-dimensional quasiflat by the support set of the corresponding homology class. In
Section 4 we will study the geometry of this support set and prove Theorem 1-1. In
Sections 5.1 and 5.2, we look at the behavior of top-dimensional flats in the universal
covers of weakly special cube complexes and prove Theorem 1-3 and Corollary 1-4.
In Section 5.3, we use Corollary 1-4 to establish several quasi-isometric invariants for
RAAGs.

In the appendix, we generalize some results of Sections 3 and 4 to CAT.0/ spaces of
finite geometric dimension and prove Theorem 1-8 and Theorem 1-7.

Acknowledgements This paper is part of the author’s PhD thesis and it was finished
under the supervision of B Kleiner. The author would like to thank B Kleiner for all
the helpful suggestions and stimulating discussions. The author is grateful to B Kleiner
and U Lang for sharing the preprint [29], which influenced several ideas in this paper.
The author also thanks the referee for extremely helpful comments and clarifications.

2 Preliminaries

We start with some basic notation. The open balls and closed balls of radius r in
a metric space will be denoted by B.p; r/ and xB.p; r/ respectively. The sphere of
radius r centered at p is denoted by S.p; r/. The open r –neighborhood of a set A in
a metric space is denoted by Nr .A/. The diameter of A is denoted by diam.A/.
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For a metric space K , C�K denotes the �–cone over K ; see [11, Definition I.5.6].
When � D 0, we call it the Euclidean cone over K and denote it by CK for simplicity.
All products of metric spaces in this paper will be l2 –products.

The closed and open stars of a vertex v in a polyhedral complex are denoted by st.v/
and st.v/ respectively. We use “�” for the join of two polyhedral complexes and “ı”
for the join of two graphs.

2.1 Mk –polyhedral complexes with finite shapes

In this section, we summarize some results about Mk –polyhedral complexes with
finitely many isometry types of cells from [11, Chapter I.7], see also [10].

An Mk –polyhedral complex is obtained by taking a disjoint union of a collection of
convex polyhedra from the complete simply connected n–dimensional Riemannian
manifolds with constant curvature equal to k (n is not fixed) and gluing them along
isometric faces. The complex is endowed with the quotient metric (see [11, Defini-
tion I.7.37]). Note that the topology induced by the quotient metric may be different
from the topology as a cell complex.

An M1 –polyhedral complex is also called a piecewise spherical complex. If the
complex is made of right-angled spherical simplices, then it is also called an all-right
spherical complex. A M0 –polyhedral complex is also called a piecewise Euclidean
complex.

We are mainly interested in the case where the collection of convex polyhedra we use
to build the complex has only finitely many isometry types. Following [11], we denote
the isometry classes of cells in K by Shape.K/. Note that we can barycentrically
subdivide any Mk –polyhedral complex twice to get an Mk –simplicial complex.

For an Mk –polyhedral complex K and a point x 2 K , we denote the unique open
cell of K which contains x by supp.x/ and the closure of supp.x/ by Supp.x/. We
also denote the geometric link of x in K by Lk.x;K/; see [11, Section I.7.38]. In
this paper, we always truncate the usual length metric on Lk.x;K/ by � . If an �–ball
B.x; �/ around x has the properties that

� B.x; �/ is contained in the open star of x in K ,
� B.x; �/ is isometric to the �–ball centered at the cone point in Ck.Lk.x;K//,

then we call B.x; �/ a cone neighborhood of x .

Theorem 2-1 [11, Theorem I.7.39] Suppose K is an Mk –polyhedral complex with
Shape.K/ finite. Then for every x 2K , there exists a positive number � (depending
on x ) such that B.x; �/ is a cone neighborhood of x .
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Theorem 2-2 [11, Theorem I.7.50] Suppose K is an Mk –polyhedral complex with
Shape.K/ finite. Then K is a complete geodesic metric space.

Lemma 2-3 If K is an Mk –polyhedral complex with Shape.K/ finite, then there
exist positive constants c1 and c2 , which depend on Shape.K/, such that every geodesic
segment in K of length L is contained in a subcomplex which is a union of at most
c1LC c2 closed cells.

This lemma follows from [11, Corollaries I.7.29 and I.7.30].

2.2 CAT.�/ spaces

Please see [11] for an introduction to CAT.�/ spaces.

Let X be a CAT.0/ space and pick x;y 2X . We denote by xy the unique geodesic
segment joining x and y . For any y; z 2 X n fxg, we denote the comparison angle
between xy and xz at x by †x.y; z/ and the Alexandrov angle by †x.y; z/.

The Alexandrov angle induces a distance on the space of germs of geodesics emanating
from x . The completion of this metric space is called the space of directions at x

and is denoted by †xX . The tangent cone at x , denoted TxX , is the Euclidean cone
over †xX . Following [9], we define the logarithmic map logpW X n fxg !†xX by
sending y 2X nfxg to the point in †xX represented by xy . Similarly, one can define
logx W X ! TxX . For a constant speed geodesic l W Œa; b�! X , we denote by l�.t/

and lC.t/ respectively the incoming and outgoing directions in †l.t/X for t 2 Œa; b�.
Note that if X is a CAT.0/ Mk –polyhedral complex with finitely many isometry types
of cells, then †xX is naturally isometric to Lk.x;X /, so we will identify these two
objects.

Let us denote the Tits boundary of X by @T X . We also have a well-defined map
logx W @T X !†xX . For �1; �2 2 @T X , recall that the Tits angle †T .�1; �2/ between
them is defined as

†T .�1; �2/D sup
x2X

†x.�1; �2/:

This induces a metric on @T X , which is called the angular metric. There are several
different ways to define †T .�1; �2/ (see [30, Section 2.3] or [11, Chapter II.9]):

Lemma 2-4 Let X be a complete CAT.0/ space and let �1; �2 be as above. Pick a
base point p 2X , and let l1 and l2 be two unit speed geodesic rays emanating from p

such that li.1/D �i for i D 1; 2. Then:
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(1) †T .�1; �2/D limt;t 0!1†p.l1.t/; l2.t
0//

(2) †T .�1; �2/D limt!1†l1.t/.�1; �2/

(3) 2 sin.†T .�1; �2/=2/D limt!1 d.l1.t/; l2.t//=t

The space .@T X;†T / is CAT.1/; see [11, Chapter II.9]. We denote the Tits cone,
which is the Euclidean cone over @T X , by CT X . Note that CT X is CAT.0/. Denote
the cone point of CT X by o. Then for each p 2X , there is a well-defined 1–Lipschitz
logarithmic map logpW CT X !X sending a geodesic ray o� � CT X (� 2 @T X ) to
the geodesic ray p� � X . This also gives rise to two other 1–Lipschitz logarithmic
maps,

logpW CT X ! TpX; logpW @T X !†pX:

We always have †p.�1; �2/ � †T .�1; �2/, and the following flat sector lemma (see
[30, Section 2.3] or [11, Chapter II.9]) describes when the equality holds.

Lemma 2-5 Let X , �1 , �2 , l1 , l2 and p be as above. If †T .�1; �2/D†p.�1; �2/<� ,
then the convex hull of l1 and l2 in X is isometric to a sector of angle †p.�1; �2/ in
the Euclidean plane.

Any convex subset C �X is also a CAT.0/ space (with the induced metric) and there
is an isometric embedding i W @T C ! @T X . There is a well-defined nearest point
projection �C W X ! C , which has the following properties.

Lemma 2-6 Let X;C and �C be as above. Then:

(1) �C is 1–Lipschitz.

(2) For x 62 C and y 2 C such that y ¤ �C .x/, we have †�C .x/.x;y/�
�
2

.

See [11, Chapter II.2] for a proof of the above lemma.

Two convex subset C1 and C2 are parallel if d. � ;C1/jC2
and d. � ;C2/jC1

are constant.
In this case, the convex hull of C1 and C2 is isometric to C1�Œ0; d.C1;C2/�. Moreover,
�C1
jC2

and �C2
jC1

are isometric inverse to each other; see [30, Section 2.3.3] or [11,
Chapter II.2].

Let Y �X be a closed convex subset. We define the parallel set of Y , denoted by PY ,
to be the union of all convex subsets which are parallel to Y . PY is not a convex set
in general, but when Y has the geodesic extension property, PY is closed and convex.

Now we turn to CAT.1/ spaces. In this paper, CAT.1/ spaces are assumed to have
diameter � � (we truncate the length metric on the space by � ). We say a subset of a
CAT.1/ space is convex if it is � –convex.
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For a CAT.1/ space Y and p 2 Y , K � Y , we define the antipodal set of z in K to
be Ant.p;K/ WD fv 2K j d.v;p/D �g.

Let Y and Z be two metric spaces. Their spherical join, denoted by Y � Z , is
the quotient space of Y �Z �

�
0; �

2

�
under the identifications .y; z1; 0/� .y; z2; 0/

and
�
y1; z;

�
2

�
�
�
y2; z;

�
2

�
. One can write the elements in Y �Z as formal sums

.cos˛/yC .sin˛/z , where ˛ 2
�
0; �

2

�
, y 2 Y and z 2Z . Let

w1 D .cos˛1/y1C .sin˛1/z1; w2 D .cos˛2/y2C .sin˛2/z2:

Their distance in Y �Z is defined to be

dY �Z .w1; w2/D cos˛1 cos˛2 cos
�
d�Y .y1;y2/

�
C sin˛1 sin˛2 sin

�
d�Z .z1; z2/

�
;

where d�
Y

is the metric on Y truncated by � , similarly for d�
Z

.

When Y is only one point, Y �Z is the spherical cone over Z . When Y consists of
two points a distance � from each other, Y �Z is the spherical suspension of Z . The
spherical join of two CAT.1/ spaces is still CAT.1/.

Definition 2-7 (cell structure on the link) Let X be an M� –polyhedral complex and
pick a point x2X . Suppose �x is the unique closed cell which contains x as its interior
point. Then Lk.x;X / is isometric to Lk.x; �x/ � Lk.�x;X / D Sk�1 � Lk.�x;X /,
where k is the dimension of �x . Note that Lk.�x;X / has a natural M1 –polyhedral
complex structure which is induced from the ambient space X .

When X is made of Euclidean rectangles, Lk.�x;X / is an all-right spherical complex.
Moreover, there is a canonical way to triangulate Lk.x; �x/ into an all-right spherical
complex which is isomorphic to an octahedron as simplicial complexes. The vertices of
Lk.x; �x/ come from segments passing through x which are parallel to edges of �x .
Thus Lk.�x;X / has a natural all-right spherical complex structure. In general, there
is no canonical way to triangulate Lk.x; �x/. However, there are still cases when we
want to treat Lk.x;X / as a piecewise spherical complex. In such cases, one can pick
an arbitrary all-right spherical complex structure on Lk.x; �x/.

If X is CAT.0/, then we can identify †xX with Lk.x;X /. In this case, †xX is
understood to be equipped with the above polyhedral complex structure.

Any two points of distance less than � from each other in a CAT.1/ space are joined
by a unique geodesic. A generalization of this fact would be the following.

Lemma 2-8 Let Y be CAT.1/ and let �� Y be an isometrically embedded spherical
k –simplex with its vertices denoted by fvig

k
iD0

. Pick v 2� and v0 2 Y . If d.v0; vi/�

d.v; vi/ for all i , then v D v0 .
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By spherical simplices, we always means those which are not too large, ie those
contained in an open hemisphere.

Proof We proceed by induction. When k D 1, it follows from the uniqueness
of geodesics. In general, since 4 D 41 � 42 , where 41 is spanned by vertices
fvig

k�2
iD0

and 42 is spanned by vk�1 and vk , there exists w 2 42 such that v 2
41 � fwg. Triangle comparison implies d.v0; w/ � d.v; w/, so we can apply the
induction assumption to the .k�1/–simplex 41 � fwg, which implies v D v0 .

Lemma 2-9 Let Y be a CAT.1/ piecewise spherical complex with finitely many
isometry types of cells, and let K� Y be a subcomplex which is a spherical suspension
(in the induced metric). Pick a suspension point v 2K . Then all points in Supp.v/ are
suspension points of K and we have a splitting KDSk�K0 , where kD dim.Supp.v//
and Sk is the standard sphere of dimension k .

Proof By Theorem 2-1, v has a small neighborhood isometric to the �–ball centered
at the cone point in the spherical cone over †vK . Since v is a suspension point,
KDS0�Lk.v;K/DS0�†vK . However, †vKD†v Supp.v/�K0DSk�1�K0 for
some K0 , thus K D Sk �K0 . Also every point in Supp.v/ belongs to the Sk –factor,
hence is a suspension point.

2.3 CAT.0/ cube complexes

All cube complexes in this paper are assumed to be finite-dimensional.

Every cube complex X (a polyhedral complex whose building blocks are cubes) has
a canonical cubical metric: endow each n–cube with the standard metric of the unit
cube in Euclidean n–space En , then glue these cubes together to obtain a piecewise
Euclidean metric on X . This metric is complete and geodesic if X is of finite dimension,
and is CAT.0/ if the link of each vertex is a flag complex [11; 19].

Now we come to the notion of hyperplane, which is the cubical analogue of “track”
introduced in [16]. A hyperplane h in a cube complex X is a subset such that:

(1) h is connected.

(2) For each cube C �X , h\C is either empty or a union of mid-cubes of C .

(3) h is minimal, ie if there exists h0 � h satisfying (1) and (2), then hD h0 .

Recall that a mid-cube of C D Œ0; 1�n is a subset of form f �1
i

�
1
2

�
, where fi is one of

the coordinate functions.

Geometry & Topology, Volume 21 (2017)



Top-dimensional quasiflats in CAT(0) cube complexes 2293

For each edge e 2X , there exists a unique hyperplane which intersects e in one point.
This is called the hyperplane dual to the edge e . Following [20], we say a hyperplane h

self-intersects if there exists a cube C such that C \h contains at least two different
mid-cubes. A hyperplane h self-osculates if there exist two different edges e1 and e2

such that (1) e1 \ e2 ¤ ∅; (2) e1 and e2 are not consecutive edges in a 2–cube;
(3) ei \ h¤∅ for i D 1; 2.

Let X be a CAT.0/ cube complex, and let e �X be an edge. Denote the hyperplane
dual to e by he . Suppose �eW X ! e Š Œ0; 1� is the CAT.0/ projection. It is known
that:

(1) he is embedded, ie the intersection of he with every cube in X is either a
mid-cube, or an empty set.

(2) he is a convex subset of X , and he with the induced cell structure from X is
also a CAT.0/ cube complex.

(3) he D �
�1
e

�
1
2

�
.

(4) X n he has exactly two connected components; they are called halfspaces.

(5) If Nh is a union of closed cells in X which has nontrivial intersection with he ,
then Nh is a convex subcomplex of X and Nh is isometric to he � Œ0; 1�. We
call Nh the carrier of he . Note that NhDPe , where Pe is the parallel set of e .

We refer to [36] for more information about hyperplanes.

Now we investigate the coarse intersection of convex subcomplexes. The following
lemma adjusts [8, Lemma 2.3] to our cubical setting.

Lemma 2-10 Let X be a CAT.0/ cube complex of dimension n, and let C1 , C2 be
convex subcomplexes. Suppose 4D d.C1;C2/, Y1 D fy 2 C1 j d.y;C2/D4g and
Y2 D fy 2 C2 j d.y;C1/D4g. Then:

(1) Y1 and Y2 are not empty.

(2) Y1 and Y2 are convex; �C1
maps Y2 isometrically onto Y1 and �C2

maps Y1

isometrically onto Y2 ; the convex hull of Y1[Y2 is isometric to Y1 � Œ0;4�.

(3) Y1 and Y2 are subcomplexes.

(4) There exists ADA.�; n; �/ such that if p12C1 , p22C2 and d.p1;Y1/��>0,
d.p2;Y2/� � > 0, then

(2-11) d.p1;C2/�4CAd.p1;Y1/; d.p2;C1/�4CAd.p2;Y2/:
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Proof For assertion (1), since X has finite dimension, X has only finitely many
isometry types of cells; we use the “quasicompact” argument of Bridson [10]. Suppose
we have sequences of points fxng

1
nD1

in C1 and fyng
1
nD1

in C2 such that

(2-12) d.xn;yn/ <4C
1
n
:

Then by Lemma 2-3, there exists an integer N such that for every n, the geodesic
joining xn and yn is contained in a subcomplex Kn which is a union of at most N

closed cells. Write C1n D C1 \Kn and C2n D C2 \Kn , which are also subcom-
plexes. Since there are only finitely many isomorphisms types among fKng

1
nD1

,
we can assume, up to a subsequence, that there exist a finite complex K1 and
subcomplexes C11 , C21 of K1 such that for any n, there is a simplicial iso-
morphism 'nW Kn ! K with 'n.C1n/ D C11 and 'n.C2n/ D C21 . By (2-12),
dK1.C11;C21/ �4 in the intrinsic metric of K1 , so there exist x1 2 C11 and
y1 2 C21 such that dK1.x1;y1/ � 4 by compactness of K1 . It follows that
dX .'

�1
n .x1/; '

�1
n .y1//� dKn

.'�1
n .x1/; '

�1
n .y1//�4.

We prove (4) with � D 1; the other cases are similar. A similar argument as above
implies that there is a constant A > 0, such that if x 2 C1 and d.x;Y1/ D 1, then
d.x;C2/ >AC4. Note that the combinatorial complexity depends on � and n, so A

also depends on � and n. Now for any p1 2C1 and d.p1;Y1/� 1, let p0D�Y1
.p1/

and let l W Œ0; d.p0;p1/�! X be the unit speed geodesic from p0 to p1 . We have
l.1/ 2 fx 2 C1 j d.x;Y1/ D 1g, so d.l.1/;C2// > AC4 while d.l.0/;C2// D 4.
Then (2-11) follows from the convexity of the function d. � ;C2/.

The assertion (2) is a standard fact in [11, Chapter II.2].

To prove (3), it suffices to prove that for every y1 2 Y1 , we have Supp.y1/ 2 Y1 .
Denote y2 D �C2

.y1/ 2 Y2 (hence y1 D �C1
.y2/ by (2)) and l W Œ0; ��!X the unit

speed geodesic from y1 to y2 . Recall that we use l�.t/ and lC.t/ to denote the
incoming and outgoing directions of l in †l.t/X for t 2 Œ0; ��. Our goal is to construct
a “parallel transport” of Supp.y1/ (which is a k –cube) along l .

Since X has only finitely many isometry types of cells, l is contained in a finite union
of closed cells, and we can find a sequence of closed cubes fBig

N
iD1

and 0 D t0 <

t1 < � � �< tN�1 < tN D4 such that each Bi contains fl.t/ j ti�1 < t < tig as interior
points. We denote Supp.y1/ by �t0

from now on.

Starting At l.0/D y1 , we have a splitting †y1
X D†y1

�t0
�K1 for some convex

subset K1 � †y1
X . Since y1 D �C1

.y2/ and �t0
� C1 , by Lemma 2-6 we know

d†y1
X .l
C.t0/; †y1

�t0
/ � �

2
. Thus lC.t0/ 2K1 and d†y1

X .v; l
C.t0//D

�
2

for any
v 2 †y1

�t0
. It follows that the segment B1 \ l is orthogonal to �t0

in B1 . Since
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�t0
is a subcube of B1 , by geometry of cubes, there is an isometric embedding

e1W �t0
� Œ0; t1� ! B1 with e1.y1; t/ D l.t/. Denote �t1

D e1.�t0
� ft1g/; then

l.t1/ 2�t1
� Supp.l.t1//� B1\B2 . Note that �t1

is not necessarily a subcomplex
of B1 (or B2 ), but it is always parallel to some subcube of B1 (or B2 ).

Continuing By construction we know d†l.t1/
.l�.t1/; v/D

�
2

for v 2†l.t1/�t1
, so

d†l.t1/
.lC.t1/; †l.t1/�t1

/ � �
2

, since d†l.t1/
.l�.t1/; l

C.t1//D � . However, there is
a splitting †l.t1/X D †l.t1/�t1

�K2 for some convex subset K2 � †l.t1/X . Thus
lC.t1/ 2 K2 and d†l.t1/

X .v; l
C.t1// D

�
2

for any v 2 †l.t1/�t1
. It follows that

inside B2 , the segment B2\ l is orthogonal to �t1
. Recall that �t1

is parallel to a
subcube of B2 , hence by geometry of cubes, we have an isometric embedding

e2W �t1
� Œt1; t2�! B2

with e2.y; t/ D l.t/ for some y 2 �t1
. Write �t2

D e2.�t1
� ft2g/; we know �t2

is parallel to some subcube of B3 , so one can proceed to construct an isometric
embedding e3 as before. More generally, we can build ei W �ti�1

� Œti�1; ti �!Bi with
ei.y; t/D l.t/ for some y 2�ti�1

and �ti
D ei.�ti�1

� ftig/ inductively. Note that
l.ti/ 2�ti

� Supp.l.ti//� Bi \BiC1 by construction.

Arriving Since y2 D l.tN / 2 BN \C2 , where BN and C2 are subcomplexes, we
have l.tN / 2 �tN

� Supp.l.tN // � BN \ C2 by construction. Moreover, we can
concatenate the embeddings feig

N
iD1

constructed in the previous step to obtain a map
eW �t0

� Œ0;4�!X such that

� e.y; t/D l.t/ for some y 2�t0
;

� e.�t0
� f0g/� C1 ;

� e.�t0
� f4g/� C2 ;

� e is 1–Lipschitz (e is actually an isometric embedding, since e is a local
isometric embedding by construction).

Therefore d.y;C2/�4 for any y 2�t0
(recall that Supp.y1/D�t0

), which implies
assertion (3).

Remark 2-13 (1) By the same proof, items (1), (2) and (4) in the above lemma are
true for piecewise Euclidean CAT.0/ complexes with finitely many isometry
types of cells. However, (3) might not be true in such generality.

(2) If C1 and C2 are orthant subcomplexes, then by items (2) and (3), Y1 (or Y2 )
is isometric to O �

Qk
iD1 Ii , where O is an orthant and each Ii is a finite

interval. In other words, there exists an orthant subcomplex O �X such that
dH .Y1;O/ <1.
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(3) Equation (2-11) implies that for any R1;R2 > 0, we have

NR1
.C1/\NR2

.C2/�NR0
1
.Y1/; NR1

.C1/\NR2
.C2/�NR0

2
.Y2/;

where

R01 Dmin
�
1;

R1CR2��

A
CR2

�
; R02Dmin

�
1;

R1CR2��

A
CR1

�
;

with ADA.�; n; 1/. Moreover, @T C1\ @T C2 D @T Y1 D @T Y2 .

The last remark implies that Y1 and Y2 capture the information about how C1 and C2

intersect coarsely. We use the notation I.C1;C2/D .Y1;Y2/ to describe this situation,
where I stands for the word “intersect”. The next lemma gives a combinatorial
description of Y1 and Y2 .

Lemma 2-14 Let X , C1 , C2 , Y1 and Y2 be as in Lemma 2-10. Pick an edge e

in Y1 .or Y2/, and let h be the hyperplane dual to e . Then h\Ci ¤∅ for i D 1; 2.
Conversely, if a hyperplane h0 satisfies h0\Ci ¤∅ for i D 1; 2, then

I.h0\C1; h
0
\C2/D .h

0
\Y1; h

0
\Y2/

and h0 comes from the dual hyperplane of some edge e0 in Y1 .or Y2/.

Proof The first part of the lemma follows from the proof of Lemma 2-10. Let
I.h0 \ C1; h

0 \ C2/ D .Y
0
1
;Y 0

2
/. Pick x 2 Y 0

1
and set x0 D �h0\C2

.x/ 2 Y 0
2

. Then
�h0\C1

.x0/Dx . We identify the carrier of h0 with h0�Œ0; 1�. Since Ci is a subcomplex,
.h0\Ci/�

�
1
2
� �; 1

2
C �

�
D Ci \

�
h0 �

�
1
2
� �; 1

2
C �

��
for i D 1; 2 and � < 1

2
. Thus

for any y 2 C2 , one has †x0.x;y/�
�
2

, which implies that x0 D �C2
.x/. Similarly,

x D �C1
.x0/ D �C1

ı �C2
.x/, hence x 2 Y1 and Y 0

1
� Y1 . By the same argument,

Y 0
2
� Y2 , thus Y 0i D Yi \ h0 for i D 1; 2 and the lemma follows.

Definition 2-15 We call an isometrically embedded orthant O straight if for any
x 2 O , the space †xO is a subcomplex of †xX (see Definition 2-7 for the cell
structure on †xX ). In particular, if the orthant is 1–dimensional, we will call it a
straight geodesic ray. Note that O itself may not be a subcomplex.

Remark 2-16 Any k –dimensional straight orthant O �X is Hausdorff close to an
orthant subcomplex of X .

To see this, let k 0 D maxx2Ofdim.Supp.x//g; we proceed by induction on k 0 � k .
The case k 0 � k D 0 is clear. Assume k 0 � k D m � 1 and pick x0 2 O such that
dim.Supp.x0// D k 0 . Then there exists B � Supp.x0/ such that B Š Œ0; 1�k , B is
parallel to a k –dimensional subcube of Supp.x0/ and O \ Supp.x0/� B . Choose a
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line segment e Š Œ0; 1� in Supp.x0/ such that x0 2 e , e is orthogonal to B and e is
parallel to some edge e0 of Supp.x0/.

Suppose h is the hyperplane dual to e and suppose Nh Š e � h is the carrier of h.
For any other point x 2O , the segment x0x is orthogonal to e by our construction,
thus there exists a point y 2 e such that O � fyg � h � Nh . Now we can endow
fyg � h with the induced cubical structure and use our induction hypothesis to find an
orthant complex O1 in the k –skeleton of fyg � h such that dH .O;O1/ <1. Since
Nh Š e � h, we can slide O1 along e in Nh to get an orthant subcomplex in the
k –skeleton of X .

Lemma 2-17 Let X be a CAT.0/ cube complex. If l1 and l2 are two straight geodesic
rays in X , then either †T .l1; l2/D 0, or †T .l1; l2/�

�
2

.

Proof We can assume without loss of generality that l1 and l2 are in the 1–skeleton
and l1.0/ is a vertex of X . We parametrize these two geodesic rays by unit speed.
Let fbmg

1
mD1

be the collection of hyperplanes in X such that bm\ l1 D l1
�

1
2
Cm

�
,

and let hm be the halfspace bounded by bm which contains l1 up to a finite segment.
Suppose Nm is the carrier of bm .

Suppose l2\ bm ¤∅ for infinitely many m. Since each bm separates X , there exists
an m0 such that l2\ bm ¤∅ for all m�m0 . Recall that l2 is in the 1–skeleton, so
for each m�m0 , there exists an edge em such that em � l2 , em �Nm and em\ bm

is a point. Consider the function f .t/D d.l2.t/; l1/ for t � 0. Then f is convex and
there exist infinitely many intervals of unit length (they come from em for m�m0 )
such that f restricted to each interval is constant, so there exists a t0 such that f jŒt0;1/

is constant, which implies †T .l1; l2/D 0.

If l2\ bm ¤∅ for finitely many m, then there exists an m0 such that hm0
\ l2 D∅,

which implies the CAT.0/ projection of l2 to l1 is a finite segment. If †T .l1; l2/ <
�
2

,
then �l1

.l2/ is an infinite segment by Lemma 2-4, which is a contradiction, so
†T .l1; l2/�

�
2

.

We will see later on that the subset of @T X which is responsible for the behavior of
top-dimensional quasiflats is spanned by those points represented by straight geodesic
rays. The following lemma makes the word “span” precise.

Lemma 2-18 Let X be a CAT.0/ cube complex, and let fligkiD1
be a collection

of straight geodesic rays in X , emanating from the same base point p , such that
†T .li ; lj / D †p.li ; lj / D

�
2

for i ¤ j . Then the convex hull of fligkiD1
is a k –

dimensional straight orthant.
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One may compare this lemma with [3, Propositions 2.10 and 2.11].

Proof By Lemma 2-5, li and lj together bound an isometrically embedded quarter
plane for i ¤ j . We prove the lemma by induction and assume the claim is true
for fligk�1

iD1
. We parametrize lk by arc length and denote by O0 the straight orthant

spanned by fligk�1
iD1

. Note that O0\ lk D p .

For s > 0 and 1 � i � k � 1, let ci be the geodesic ray such that (1) ci is in the
quarter plane spanned by lk and li ; (2) ci starts at lk.s/; (3) ci is parallel to li .
Thus †T .ci ; cj / D

�
2

and †lk.s/.ci ; cj / �
�
2

for i ¤ j . Note that fcig
k�1
iD1

are also
straight geodesic rays, and floglk.s/

cig
k�1
iD1

are distinct points in the 0–skeleton of
†lk.s/X . It follows that actually †lk.s/.ci ; cj /D

�
2

for i ¤ j . Hence by the induction
assumption, there is a straight orthant Os spanned by fcig

k�1
iD1

.

By Lemma 2-8, @T O0 D @T Os . Let l � Os be a unit-speed geodesic ray emanat-
ing from lk.s/. Then d.l.t/;O0/ is a bounded convex function. Since †lk.s/Os

is an all-right spherical simplex in †lk.s/X spanned by floglk.s/
cig

k�1
iD1

, we have
†lk.s/.l.t/; lk.0// D

�
2

for any t > 0. Similarly, we have †lk.0/.y; lk.s// D
�
2

for
any y 2O0 n fls.0/g. Hence by triangle comparison, d.l.t/;O0/ attains its minimum
at t D 0. Thus d.l.t/;O0/ has to be a constant function. Thus d.x;O0/� s for any
x 2Os , and similarly d.x;Os/� s for any x 2O0 , which implies the convex hull of
O0 and Os is isometric to O0 � Œ0; s�; see eg [11, Chapter II.2]. Moreover, the convex
hull of O0 and Os is contained in the convex hull of O0 and Os0 for s � s0 . So the
convex hull of fligkiD1

is a straight orthant O .

3 Proper homology classes of bounded growth

In this section we summarize some results from [9] about locally finite homology
classes of certain polynomial growth and make some generalizations to adjust the
results to our situation.

3.1 Proper homology and supports of homology classes

For an arbitrary metric space Z , we define the proper (singular) homology of Z with
coefficients in an abelian group G , denoted H

p
�.ZIG/, as follows. Elements in the

proper n–chain group C
p
n .ZIG/ are of the form †�2ƒg��� (here ƒ may be infinite,

g� 2G and the �� are singular n–simplices) such that for every bounded set K �Z ,
the set f�2ƒ jg�¤ Id and ��.4n/\K¤∅g is finite. The usual boundary map gives
rise to a group homomorphism @W C

p
n .ZIG/!C

p
n�1

.ZIG/, yielding a chain complex
C

p
�.ZIG/, and H

p
�.ZIG/ is defined to be the homology of this chain complex.
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We will use Greek letters ˛; ˇ; : : : to denote (proper) singular chains. We denote the
union of images of singular simplices in a (proper) singular chain ˛ by Im ˛ . If ˛ is a
(proper) cycle, we denote the corresponding (proper) homology class by Œ˛�.

We also define the relative version of proper homology H
p
�.Z;Y / for Y � Z in

a similar way (Y is endowed with the induced metric). Then there is a long exact
sequence

� � � !H
p
n.Y /!H

p
n.Z/!H

p
n.Z;Y /!H

p
n�1

.Y /!H
p
n�1

.Z/! � � � :

Moreover, by the usual procedure of subdividing the chains, we know excision holds.
Namely, for a subspace W such that the closure of W is in the interior of Y , the
map H

p
�.Z�W;Y �W /!H

p
�.Z;Y / induced by inclusion is an isomorphism. As a

corollary, if B �Z is bounded, then there is a natural isomorphism H
p
�.Z;Z�A/Š

H�.Z;Z�A/, since we can replace the pair .Z;Z�A/ by .O;O �B/ by excision,
where O is a bounded open neighborhood of B . Pick a point z 2Z nY ; then there
is a homomorphism i W H

p
k
.Z;Y /!H

p
k
.Z;Z n fzg/ŠHk.Z;Z n fzg/ induced by

the inclusion of pairs .Z;Y / ! .Z;Z � fzg/. The map i is called the inclusion
homomorphism.

If Z is also a simplicial complex or polyhedral complex, we can similarly define the
proper simplicial (or cellular) homology by considering the former sum of simplices or
cells such that for every bounded subset K � Z , we have only finitely many terms
which intersect K nontrivially. The simplicial version (or the cellular version) of the
homology theory is isomorphic to the singular version in a simplicial complex (or
polyhedral complex) by the usual proof in algebraic topology.

The proper homology depends on the metric of the space, so it is not a topological
invariant. By definition, every proper chain is locally finite and we have a group homo-
morphism H

p
�.Z;Y /!H lf

� .Z;Y /, where H lf
� .Z;Y / is the locally finite homology

defined in [9]. If Z is a proper metric space, then these two homology theories are the
same.

A continuous map f W Z1!Z2 is (metrically) proper if the inverse image of every
bounded subset is bounded. In this case, we have an induced map on proper homology
f�W H

p
k
.Z1;G/!H

p
k
.Z2;G/.

In the rest of this paper, we will always take G D Z=2Z and omit G when we write
the homology.

Definition 3-1 For z 2Z nY , let i W H
p
k
.Z;Y /!Hk.Z;Z n fzg/ be the inclusion

homomorphism defined as above. For Œ� �2H
p
k
.Z;Y /, we define the support set of Œ� �,

denoted SŒ��;Z;Y , to be fz 2Z nY j i�Œ� �¤ Idg. We will write SŒ��;Z if Y is empty,
and use SŒ�� to denote the support set if the underlying spaces Z and Y are clear.
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It follows that SŒ�� D
�T

Œ� 0�DŒ��2H
p
k
.Z;Y / Im � 0

�
nY .

If Z �Z1 , then SŒ��;Z;Y � SŒ��;Z1;Y . These two sets are equal if Z is open in Z1 .
If Z is a polyhedral complex and Y D∅, then the support set is always a subcomplex.
In particular, if Œ� � 2 H

p
n.Z/ is a nontrivial top-dimensional class, then Œ� � can be

represented by a top-dimensional polyhedral cycle, which implies the support set
SŒ��¤∅. But the support of a nontrivial class can be empty if it is not top-dimensional.

The support sets of (proper) homology classes behave like the support sets of currents
in the following situation.

Lemma 3-2 Let Z1 be a metric space of homological dimension �n, and let Y1�Z1

be a subspace. Pick Œ� � 2 H
p
n.Z1;Y1/. If f W .Z1;Y1/! .Z2;Y2/ is a proper map,

then Sf�Œ�� � f .SŒ��/.

Recall that Z1 has (Z=2Z)–homological dimension � n if Hr .U;V / D 0 for any
r > n and U;V open in Z1 .

Proof Pick y 2Sf�Œ�� . Since f �1.y/ is bounded, we have the following commutative
diagram:

H
p
n.Z1;Y1/

f�
����! H

p
n.Z2;Y2/??yi�

??yi�

Hn.Z1;Z1 nf
�1.y//

f�
����! Hn.Z2;Z2 n fyg/

Thus if Sf�Œ�� ¤∅, then Œ� 0�D i�Œ� � 2Hn.Z1;Z1 nf
�1.y// is nontrivial. It suffices

to show there exists x 2 f �1.y/ such that Œ� 0� is nontrivial when viewed as an element
in Hn.Z1;Z1 n fxg/.

Fix a singular chain � 0 2 Cn.Z1;Z1 n f
�1.y// which represents Œ� 0�. We argue by

contradiction and assume that Œ� 0� is trivial in Hn.Z1;Z1 n fxg/ for any x 2 f �1.y/.
Let K D f �1.y/ \ Im � 0 . For each x 2 K , there exists an �.x/ > 0 such that
xB.x; 2�.x// \ Im @� 0 D ∅ and Œ� 0� is trivial in Hn

�
Z1;Z1 n

xB.x; 2�.x//
�
. Since

f �1.y/ is bounded and closed, K is compact and we can find finitely many points
fxig

N
iD1

in K such that K �
SN

iD1 B.xi ; �.xi//. Let U D
SN

iD1 B.xi ; �.xi// and let
U 0 D .Z1 n f

�1.y//[U . Then Im � 0 � U 0 and Œ� 0� is trivial in Hn.Z1;U
0/. We

put U 00 D U 0 n
�SN

iD1
xB.xi ; 2�.xi//

�
. Then Im @� 0 � U 00 and U 00 � Z1 n f

�1.y/.
So if we can show that Œ� 0� is trivial in Hn.Z1;U

00/, then Œ� 0� must be trivial in
Hn.Z1;Z1 nf

�1.y//, which yields a contradiction.
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Let us assume N D 1. Then there is a Mayer–Vietoris sequence

HnC1

�
Z1;U

0
[ .Z1 n

xB.x1; 2�.x1///
�
!Hn.Z1;U

00/

!Hn.Z1;U
0/˚Hn

�
Z1;Z1 n

xB.x1; 2�.x1//
�
:

The first term is trivial since Z1 has homological dimension � n and Œ� 0� is trivial
in the last term by construction, so Œ� 0� has to be trivial in the second term. Using an
induction argument, we can obtain the contradiction similarly for N � 2.

Remark 3-3 (1) The assumption on Z1 is satisfied if Z1 is a CAT.�/ space of
geometric dimension � n, see [28, Theorem A].

(2) The assumption on Z1 is satisfied if Z1 is a locally finite n–dimensional
polyhedral complex (with the topology of a cell complex) or an Mk –polyhedral
complex of finite shape, since such a space supports a CAT.1/ metric which
induces the same topology as its original metric.

3.2 The growth condition

In Sections 3.2–3.3, Y will be a piecewise Euclidean CAT.0/ complex of dimension n.
The following result shows every top-dimensional quasiflat in Y is Hausdorff close to
the support set of some proper homology class. Therefore to understand quasiflats, we
can focus on the support sets, which have nice local and asymptotic properties.

Lemma 3-4 [9, Lemma 4.3] If Q� Y is an .L;A/–quasiflat of dimension n, then
there exists Œ� � 2H

p
n.Y / satisfying the following conditions:

(1) There exists a constant D DD.L;A/ such that dH .S;Q/�D , where S is the
support set of Œ� �.

(2) There exists aD a.L;A/ such that for every p 2 Y ,

(3-5) Hn.B.p; r/\S/� a.1C r/n:

Here Hn denotes the n–dimensional Hausdorff measure and dH denotes the Hausdorff
distance.

Since Y is uniformly contractible, we can approximate the .L;A/–quasi-isometric
embedding qW Rn! Y by a Lipschitz .L;A/–quasi-isometric embedding zq , which
is proper. Then Œ� � is chosen to be the pushforward of the fundamental class of Rn

under zq .

The support set of a top-dimensional homology class enjoys the following geodesic
extension property.
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Lemma 3-6 [9, Lemma 3.1] Let S be the support set of some top-dimensional
proper homology class in Y . Pick arbitrary p 2 Y and y 2 S . Then there is a geodesic
ray y� � S , which fits together with the geodesic segment py to form a geodesic
ray p� .

Note that this lemma does not imply S is convex; see [9, Remark 3.2]. However, we
still can define the Tits boundary of S .

Definition 3-7 Let Z be a CAT.0/ space and let A �Z be any subset. We define
the Tits boundary of A, denoted @T A, to be the set of points � 2 @T Z such that there
exists a geodesic ray x� such that x� �A. The Tits boundary @T A is endowed with
the usual Tits metric. We define the Tits cone of A, denoted CT A, to be the Euclidean
cone over @T A.

Let S be as in Lemma 3-6. Then @T S is nonempty if S is nonempty.

There is a similar version of the geodesic extension property for the link †yS �†yY ,
where y 2 S .

Lemma 3-8 Let S be as in Lemma 3-6. Then for any point y 2 Y , †yS is the
support set of some top-dimensional homology class in †yY .

Proof By subdividing Y in an appropriate way, we may assume y is a vertex of Y .
Suppose S DSŒ�� . We can represent Œ� � as a cellular cycle � D†�2ƒ�� , where the ��
are closed top-dimensional cells in Y (recall that we are using Z=2Z coefficients, so
all the coefficients are either 0 or 1). Then S D

S
�2ƒ �� . Let ƒy D f�2ƒ j y 2 ��g.

Since � is a cycle, �y D †�2ƒy
Lk.y; ��/ is a top-dimensional cycle in the link

Lk.y;Y /Š†yY . Moreover, SŒ�y � D
S
�2ƒy

Lk.y; ��/D Lk.y;S/.

Lemma 3-9 Let K be a k –dimensional CAT.1/ piecewise spherical complex, and
let K0 � K be the support set of a top-dimensional homology class. Pick arbitrary
w 2K , v 2K0 , and suppose wv is a local geodesic joining v and w . Then there is
a (nontrivial) local geodesic segment vv0 �K0 which fits together with wv to form a
local geodesic segment wv0 . Moreover, length.vv0/ can be as large as we want.

Now we turn to the global properties of S . Since we are in a CAT.0/ space, for
any p 2 Y and 0 < r � R, we have a map ˆr;RW B.p;R/! B.p; r/ obtained by
contracting points toward p by a factor of r=R. This contracting map together with
Lemma 3-6 implies B.p; r/\S �ˆr;R.B.p;R/\S/ [9, Corollary 3.3, item 1].

Since ˆr;R is .r=R/–Lipschitz, we have the following result.
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Theorem 3-10 [9, Corollary 3.3] Let S be the support set of some top-dimensional
proper homology class in Y , and let nD dim.Y /. Then:

(1) Monotonicity of density For all 0� r �R,

(3-11)
Hn.B.p; r/\S/

rn
�

Hn.B.p;R/\S/

Rn
:

(2) Lower density bound For all p 2 S and r > 0,

(3-12) Hn.B.p; r/\S/� !nrn;

with equality only if B.p; r/\ S is isometric to an r –ball in En , where !n is the
volume of an n–dimensional Euclidean ball of radius 1.

From (3-11) we know the quantity

(3-13)
Hn.B.p; r/\S/

rn

is monotone increasing with respect to r , and (3-5) tells us that if S comes from a top-
dimensional quasiflat, then (3-13) is bounded above by some constant. Thus the limit
exists and is finite as r !1. More generally, we will consider those top-dimensional
proper homology classes whose support sets S satisfy

(3-14) lim
r!C1

Hn.B.p; r/\S/

rn
<1;

where n D dim.Y /. We call them proper homology classes of C rn growth. These
classes form a subgroup of H

p
n.Y /, which will be denoted by H

p
n;n.Y /.

The following lemma can be proved by a packing argument.

Lemma 3-15 [9, Lemma 3.12] Pick Œ� � 2H
p
n;n.Y / and let S D SŒ�� . Then given a

base point p 2Y , for all � > 0 there is an N such that for all r � 0, the set B.p; r/\S

does not contain an �r –separated subset of cardinality greater than N .

Lemma 3-16 Let S and p be as in Lemma 3-15. Denote the cone point in CT S by o.
Then

(3-17) lim
r!C1

dGH
�

1
r
.B.p; r/\S/;B.o; 1/

�
D 0:

Here dGH denotes the Gromov–Hausdorff distance, B.o; 1/ is the ball of radius 1 in
CT S centered at o and 1

r
.S \B.p; r// means we rescale the metric on S \B.x; r/

by a factor 1
r

.
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Proof We follow the argument in [9]. It suffices to prove that for any � >0, there exists
R> 0 such that for any r >R, we can find an �–isometry between 1

r
.B.p; r/\S/

and B.o; 1/.

For r > 0, we denote the maximal cardinality of an �r –separated net in B.p; r/\S

by mr . By Lemma 3-15, there exists N0 such that mr �N0 for all r . Pick R1 such
that mr �mR1

for all r ¤R1 and denote the corresponding �R1 –net in B.p;R1/\S

by fxig
N
iD1

. By Lemma 3-6, for each i , we can extend the geodesic pxi to obtain a
geodesic ray p�i such that xi�i �S . Let li W Œ0;1/! Y be a constant-speed geodesic
ray joining p and �i such that li.R1/D xi and li.0/D p .

Since the quantity d.li.t/; lj .t//=t is monotone increasing, fli.t/gNiD1
is a maximal

�t –separated net in B.p;R1/\S for t �R1 . We pick R>R1 such that for all t >R

and 1� i; j �N , we have

(3-18)
ˇ̌̌̌
d.li.t/; lj .t//

t
� lim

t!C1

d.li.t/; lj .t//

t

ˇ̌̌̌
< �:

Now we fix t >R and define a map such that for each i , li.t/2B.p; t/\S is mapped
to the point yi 2 B.o; 1/� CT S satisfying yi 2 o�i and d.yi ; o/D d.li.t/;p/=t . It
follows from (3-18) that

(3-19)
ˇ̌̌̌
d.li.t/; lj .t//

t
� d.yi ;yj /

ˇ̌̌̌
< �:

We claim fyig
N
iD1

is an �–net in B.o; 1/.

Pick an arbitrary y 2 B.o; 1/ and suppose y 2 o� for � 2 @T S . We parametrize the
geodesic ray p� by constant speed D d.y; o/ and denote this ray by l . Since there
exists a geodesic p0� � S such that dH .p�;p0�/D C <1, we can find x 2 p0� � S

with d.x; l.t// <C for every t . Thus x 2B.p; td.y; o/CC /\S �B.p; tCC /\S ,
which implies there exists some i such that d.li.tCC /;x/� �.tCC /. These estimates
together with d.li.t CC /; li.t//� C (the ray li has speed � 1) imply

(3-20) d.l.t/; li.t//� �t C .2C �/C:

Here i might depend on t , but we can choose a sequence ftkg1kD1
such that tk!C1

and

(3-21) d.l.tk/; li0
.tk//� �t C .2C �/C

for every k with i0 fixed, thus

(3-22) d.y;yi0
/D lim

k!C1

d.l.tk/; li0
.tk//

tk
� �:
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So fyig
N
iD1

is an �–net in B.o; 1/; this fact together with (3-19) give us the �–isometry
as required.

Remark 3-23 (1) Define @p;r S D f� 2 @T S j p� �B.p; r/[Sg. Then the above
proof shows

(3-24) lim
r!C1

dH .@p;r S; @T S/D 0:

(2) @T S has similar behavior to the Tits boundary of a convex subset in the following
aspect. Let l W Œ0;1/! Y be a constant-speed geodesic ray. If there exist a
constant C <1 and a sequence ti!C1 such that d.l.ti/;S/ < C , then @T l

is an accumulation point of @T S . The proof is similar to the above argument.

3.3 �–splittings

As we have seen from Lemma 3-16, the growth bound (3-14) implies that S looks
more and more like a cone if one observes S from a farther and farther away point
(this is called asymptotic conicality in [9]). So one would expect some regularity of S

near infinity. The following key lemma from [9] will be our starting point.

Lemma 3-25 [9, Lemma 3.13] Let S and p be as in Lemma 3-15. Then for all
ˇ > 0 there is an r <1 such that if x 2 S nB.p; r/, then the antipodal set satisfies

(3-26) diam.Ant.logx p; †xS// < ˇ:

The proof of this lemma in [9] actually shows something more. Given a base point p2Y

and x 2 S , we define the antipode at 1 of logx p in S , denoted Ant1.logx p;S/,
to be f� 2 @T S j x� � S and x 2 p�g. Then we have:

Lemma 3-27 Let S and p be as in Lemma 3-15. Then for all ˇ > 0 there is an
r <1 such that if x 2 S nB.p; r/, then

(3-28) diam.Ant1.logx p;S// < ˇ:

The diameter here is with respect to the angular metric on @T X .

Lemma 3-25 tells us that †yS looks more and more like a suspension as d.y;p/!1

(for y 2 S ). If we also assume Shape.Y / is finite, then for all y 2 S , †yS is built
from cells of finitely many isometry types. Moreover, by Theorem 3-10, there is a
positive constant N such that †yS has at most N cells for any y 2 S . Thus the
family f†ySgy2S has only finite possible combinatorics. As ˇ! 0, one may expect
†yS to actually be a suspension (this is called isolated suspension in [9]).
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Now we restrict ourselves to the case of finite-dimensional CAT.0/ cube complexes of
finite dimension. Then the spaces of directions are finite-dimensional all-right spherical
CAT.1/ complexes (see Definition 2-7 for the definition of cell structure on the spaces
of directions).

Lemma 3-29 Suppose F is a family of all-right spherical CAT.1/ complexes with
dimension at most d . Then for every ˛ > 0 and N > 0, there is a constant ˇ D
ˇ.d;N; ˛/ > 0 such that if K0 satisfies the following conditions:

(1) K0 �K is a subcomplex of some K 2 F ,

(2) the number of cells in K0 is bounded above by N ,

(3) K0 has the geodesic extension property in the sense of Lemma 3-9,

(4) there exists v 2K such that diam.Ant.v;K0// < ˇ ,

then K0 is a metric suspension (in the metric induced from K ) and v lies at a distance
< ˛ from a suspension point of K0 .

Proof We prove the lemma by contradiction. Suppose there exist ˛ > 0, N > 0 and
a sequence fK0ig

1
iD1

such that for each i , K0i satisfies conditions (2) and (3), K0i is a
subcomplex of some Ki 2 F , and there exists a vi 2Ki such that

(3-30) diam.Ant.vi ;K
0
i// <

1
i
;

but no point in the ˛–neighborhood of vi is suspension point of K0i .

Let wi be the point in K0i which realizes the minimal distance to vi in the length
metric of Ki (note that the original metric on Ki is the length metric truncated by � ).
If li is the geodesic segment (in the length metric) joining vi and wi , then by (3-30)
and the geodesic extension property of K0i , there exists a C such that length.li/ < C

for all i . So for any i , there exists a subcomplex Li �Ki such that li �Li and the
number of cells in Li are uniformly bounded by constant N1 (by Lemma 2-3).

Let Mi be the full subcomplex spanned by K0i [Li , ie Mi is the union of simplices
in Ki whose vertex sets are in K0i [Li . Then Mi is a � –convex, hence CAT.1/,
subcomplex of Ki , and the number of cells in Mi is uniformly bounded above by
some constant N2 . Without loss of generality, we can replace Ki by Mi . Since Mi

has only finitely many possible isometry types, after passing to a subsequence, we can
assume there exist a finite CAT.1/ complex M and a subcomplex K0 �M such that
for every i , there is a simplicial isomorphism �i W Mi !M mapping K0i onto K0

(here �i is also an isometry).

Since M is compact, there is a subsequence of f�i.vi/g
1
iD1

converging to a point
v 2 M . We claim Ant.v;K0/ is exactly one point. First Ant.v;K0/ ¤ ∅ by the
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geodesic extension property of K0 . If there were two distinct points u;u0 2Ant.v;K0/,
then we could extend the geodesic segment viu, viu0 into K0 , yielding a contradiction
with (3-30) for large i .

Suppose Ant.v;K0/D fv0g. Then Ant.v0;K0/D v . In fact, if this were not true, then
we would have some point w 2Ant.v0;K0/ such that 0< d.v; w/ < � . Then we could
extend the geodesic segment vw into K0 to get a local geodesic vw0 with w0 2K0

and length.vw0/ D � . This would actually be a geodesic since we are in a CAT.1/
space, thus w0 2 Ant.v;K0/ and w0 ¤ v0 , contradicting Ant.v;K0/D v0 .

Now pick a point k 2K0 , with k¤ v and k¤ v0 . Then d.k; v0/ < � and d.k; v/ < � .
We extend the geodesic segment v0k into K0 to get a geodesic of length � , then the
other end must hit v since Ant.v0;K0/ D v . Thus kv � K0 by the uniqueness of
geodesic joining k and v . Similarly we know kv0 � K0 , thus there is a geodesic
segment in K0 passing through k and joining v and v0 . By CAT.1/ geometry, K0

(with the induced metric from M ) splits as a metric suspension and v , v0 are suspension
points. However, by the assumption at the beginning of the proof, f�i.vi/g

1
iD1

should
have distance at least ˛ from a suspension point for every i , so v should also be
˛–away from a suspension point; this contradiction finishes the proof.

Remark 3-31 (1) The above proof also shows the following result. Let K be
a piecewise spherical CAT.1/ complex, and let K0 � K be a subcomplex
with geodesic extension property in the sense of Lemma 3-9. Pick v 2K . If
Ant.v;K0/ is exactly one point, then v 2K0 and v is a suspension point of K0 .

(2) By the same proof, it is not hard to see Lemma 3-29 is also true when F is a
finite family of finite piecewise spherical CAT.0/ complexes (not necessarily
all-right).

From Lemmas 3-4, 3-25 and 3-29, we have the following analogue of [9, Theorem 3.11].

Theorem 3-32 Let X be an n–dimensional CAT.0/ cube complex, and let S D SŒ�� ,
where � 2H

p
n;n.X /. Then for every p 2X and every � > 0, there is an r <1 such

that if x 2S nB.p; r/, then †xS is a suspension and logx p is �–close to a suspension
point of †xS .

Remark 3-33 By the same proof, the conclusion of Theorem 3-32 is also true if X is
a proper n–dimensional CAT.0/ complex with a cocompact (cellular) isometry group.
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4 The structure of the top-dimensional support sets

Throughout this section, X is an n–dimensional CAT.0/ cube complex. Pick a
homology class Œ� � 2H

p
n;n.X / and let S D SŒ�� . Also recall that †xX is an all-right

spherical CAT.1/ complex for each x 2X ; see Definition 2-7.

Let �k be the k –dimensional all-right spherical simplex, and let �k
mod be the quotient

of �k by the action of its isometry group (�k
mod is endowed with the quotient metric).

Define the function �W �k ! .0;C1/ by

(4-1) �.v/D inffd.v; v0/ j v0 2�k and Supp.v0/\ v D∅g:

Recall that Supp.v0/ denotes the unique closed face of �k which contains v0 as an
interior point. By symmetry of �k , � descends to a function �W �k

mod! .0;C1/.

For any k 0 � k , we have a canonical isometric embedding i W �k
mod ,! �k0

mod with
�D � ı i . Let �mod D lim

��!
�k

mod be the corresponding direct limit of metric spaces.

Let Y be an all-right spherical CAT.1/ complex. Then there is a well-defined 1–
Lipschitz map

� W Y !�mod

such that � restricted to any k –face �k � Y is the map �k ! �k
mod ,! �mod .

Moreover, for v 2 Y ,

(1) v 2 Supp.v0/ if d.v; v0/ < �.�.v//,

(2) � ı � is continuous on the interior of each face of Y .

When Y D†xX for some x 2X and v 2†xX , we also call �.v/ the �mod direction
of v .

4.1 Producing orthants

In this section, we study geodesic rays with constant �mod direction, ie unit-speed
geodesic rays l W Œ0;1/! S with �.l�.t//D �.lC.t//D �.l�.t 0//D �.lC.t 0// for
any t ¤ t 0 . Here are two examples.

(1) If a geodesic ray l stays inside an orthant subcomplex of O � Y (or more
generally a straight orthant), then it has constant �mod direction. Moreover, the
�mod direction of @T l in @T O is equal to �.l˙.t//.

(2) If Y is a product of trees, then each geodesic ray in l 2 Y has constant �mod

direction. Again, the �mod direction of @T l in @T Y (in this case @T Y is an
all-right spherical complex) is equal to �.l˙.t//.
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Later, geodesic rays with constant �mod direction will play an important role in the
construction of orthants; see Lemma 4-9. First we show such geodesics exist in the
support set of a top-dimensional proper cycle and there are plenty of them.

Lemma 4-2 If Y is a k –dimensional all-right spherical CAT.1/ complex and if
K � Y is the support set of some top-dimensional homology class, then for any v 2K ,
there exists a v0 2K such that d.v; v0/D � and �.v/D �.v0/.

Recall that the metric on Y is the length metric on Y truncated by � .

Proof The lemma is clear when k D 1 by Lemma 3-9. We assume it is true for
i � k�1. Denote k 0D dim.Supp.v//. We endow Sk0 with the structure of an all-right
spherical complex and pick w2Sk0 such that �.v/D�.w/. Suppose w0DAnt.w;Sk0/

and suppose  0W Œ0; ��!Sk0 is a unit-speed geodesic joining w and w0 . It is clear that
�.w/D �.w0/. Our goal is to construct a unit-speed local geodesic  W Œ0; ��!K such
that  .0/D v and �. .s//D �. 0.s// for all s 2 Œ0; ��, as in the following diagram:

Œ0; ��
 0

����! Sk0



??y ??y�
K

�
����! �mod

Then  is actually a geodesic and we can take v0 D  .�/ to finish the proof.

There exists a sequence of faces f�0j g
N
jD1

in Sk0 and 0D t0< t1< � � �< tN�1< tN D�

such that each �0j contains f 0.t/ j tj�1< t < tj g as interior points. Let �1D Supp.v/.
Then since �.v/ D �.w/, we can find v1 2 �1 such that there exists an isometry
ˆW �1 ! �0

1
with ˆ.v/ D w and ˆ.v1/ D 

0.t1/, in particular �.v1/ D �.
0.t1//.

Define  W Œ0; t1�!K to be the geodesic segment vv1 .

Recall that we have identified †v1
Y with Lk.v1;Y /; see Definition 2-7. Now let

�1 D Supp.v1/ and k1 D dim.�/ � 1. Then †v1
Y D Lk.v1; �1/ � Lk.�1;Y / D

Sk1 �Lk.�1;Y /. Similarly, †v1
K D Lk.v1; �1/�Lk.�1;K/D Sk1 �Lk.�1;K/. Let

K1 D Lk.�1;K/ and Y1 D Lk.�1;Y /. Then they are all-right spherical complexes,
K1 is a subcomplex of Y1 , and Y1 is CAT.1/. Moreover, since †v1

K is the support
set of some top-dimensional homology class in †v1

Y (Lemma 3-8), so is K1 in Y1 .
As �.t1/ 2†v1

K D Sk1 �K1 , we write

(4-3) �.t1/D .cos˛1/x1C .sin˛1/y1

for x1 2Sk1 and y1 2K1 . By the induction assumption, we can find y0
1
2Ant.y1;K1/

such that �.y0
1
/ D �.y1/. Let x0

1
D Ant.x1;S

k1/. Suppose �2 � K is the unique
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face (v1 2 �2 ) such that Supp..cos˛1/x
0
1
C .sin˛1/y

0
1
/ D †v1

�2 . Let v1v2 � �2

be the geodesic segment which starts at v1 , and goes along the direction .cos˛1/x
0
1
C

.sin˛1/y
0
1

until it hits some boundary point v2 of �2 . Note that vv1 and v1v2 fit
together to form a local geodesic in K .

On the other hand, at  0.t1/2Sk0 , we have † 0.t1/S
k0DLk. 0.t1/; � 01/�Lk.� 0

1
;Sk0/D

Sk1 �Lk.� 0
1
;Sk0/, where � 0

1
D Supp. 0.t1// and k1 is the same as the previous para-

graph. Write  0�.t1/D .cos˛1/u1C .sin˛1/v1 for u1 2 Sk1 and v1 2 Lk.� 0
1
;Sk0/,

where we have the same ˛1 as (4-3) since ˆ is an isometry. Then  0C.t1/ D

.cos˛1/u
0
1
C .sin˛1/v

0
1

for u0
1
D Ant.u1;S

k1/ and v0
1
D Ant.v1;Lk.� 0

1
;Sk0//. Note

that �.v0
1
/D �.v1/D �.y1/D �.y

0
1
/, so we can extend the isometry ˆ to get a map

ˆ0W �1[�2!�0
1
[�0

2
such that ˆ0 is an isometry with respect to the length metric

on both sides and ˆ0.v1v2/D  .Œt1; t2�/. Thus d.v1; v2/D t2� t1 and we can define
 W Œt1; t2�!K to be the geodesic segment v1v2 . It is clear that �. .s//D �. 0.s//
for all s 2 Œ0; t2�. We can repeat this process to define the required local geodesic
 W Œ0; ��!K .

Corollary 4-4 For any x 2S and v 2†xS , there exists a geodesic ray x� �S which
has constant �mod direction and logx � D v .

Proof Since x has a cone neighborhood in S , we can find a short geodesic seg-
ment xx0 in the cone neighborhood such that logx x0 D v . There is a unique closed
cube C1 � S such that xx0 � C1 and v is an interior point of †xC1 . We extend
xx0 in C1 until it hits the boundary of C1 at x1 . By Lemma 4-2, there exists a
v1 2 Ant.logx1

x; †x1
S/ with �.v1/ D �.logx1

x/ D �.v/. Now we choose cube
C2 � S and segment x1x2 � C2 with logx1

x2 D v1 as before. Note that xx1 and
x1x2 together form a local geodesic segment (hence a geodesic segment). We repeat
the previous process to extend the geodesic. Since S is a closed set, the extension can
not terminate, which will give us the geodesic ray x� as required.

Corollary 4-5 The set of points in @T S which can be represented by a geodesic ray
in S with constant �mod direction is dense.

Proof Fix a base point p , pick some � 2 @T S . For any � > 0, by (3-24), we can find
an r1 such that

(4-6) dH .@p;r S; @T S/ < 1
2
�

for all r > r1 . By Lemma 3-27, we can find r2 such that for r > r2 ,

(4-7) diam.Ant1.logx p;S// < 1
2
�

for any x 2 S nB.p; r/.
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If r0 D maxfr1; r2g, then we can find p�1 � B.p; r0/[S such that †T .�1; �/ �
�
2

by (4-6). Pick x 2 p�1 such that d.p;x/ > r0 . By Corollary 4-4, we can find a
geodesic ray x�2 � S of constant �mod direction such that x�2 fits together with px

to form a geodesic ray p�2 , thus †T .�1; �2/ <
�
2

by (4-7). Then †T .�; �2/ < � , which
finishes the proof since � and � are arbitrary.

Let l be a geodesic ray of constant �mod direction. Then we define �.l/ to be �.l˙.t//.
The definition does not depend on the choice of sign ˙ and t .

Lemma 4-8 If l � S is a unit-speed geodesic ray of constant �mod direction, then
there exists a t0 <1, which depends on the position of l.0/ and �.l/, such that for
any t > t0 , †l.t/S D†l.t/l �Yt for some Yt �†l.t/S .

Proof We apply Theorem 3-32 with p D l.0/ and � D �.�.l// (see (4-1) for the
definition of �) to get t0<1 such that †l.t/S is a metric suspension and the suspension
point is �.�.l//–close to lC.t/ (or l�.t/) for all t > t0 . By Lemma 2-9, lC.t/ and
l�.t/ are suspension points, thus †l.t/S D†l.t/l �Yt .

Based on Lemma 4-8, we define a parallel transport of †l.t/S along l as follows.
Let t0 be as in Lemma 4-8. For any t > t0 , l.t/ has a product neighborhood in S of
form Xt � .t � �; t C �/, where Xt is some subset of X with the induced metric. So
for any jt 0 � t j < � , we can identify †l.t/S and †l.t 0/S . Moreover, for any t1 > t0
and t2 > t0 , we can cover the geodesic segment l.t1/l.t2/ by finitely many product
neighborhoods, which will induce an identification of †l.t1/S and †l.t2/S . This
identification does not depend on the covering we choose.

To see this identification more concretely, take t > t0 , a product neighborhood Xt �

.t � �; t C �/ of l.t/ in S , and v 2†l.t/S , we construct a short geodesic l.t/xt � S

in the cone neighborhood of l.t/ going along the direction v . If jt 0� t j< � , we can
find an isometrically embedded parallelogram in the product neighborhood such that
l.t/xt and l.t 0/xt 0 are opposite sides of the parallelogram and l.t/l.t 0/ is one of the
remaining sides (we might have to shorten l.t/xt a little).

In general, for any t 0> t0 , we can cover the geodesic segment l.t/l.t 0/ by finitely many
product neighborhoods as before and construct a local isometric embedding � from a
parallelogram to X such that two opposite sides of the parallelogram are mapped to
some geodesic segments l.t/xt and l.t 0/xt 0 and one of the remaining sides is mapped
to l.t/l.t 0/. Since X is CAT.0/, � is actually an isometric embedding. So we have a
well-defined parallel transport of †l.t/S along l.t/ for t > t0 .

In the construction of the above parallelogram, the length of l.t/xt (or l.t 0/xt 0 ) may
go to 0 as jt 0� t j !1. However, in the special case where there exists s0 > 0 such
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that †l.t/l is contained in the 0–skeleton of †l.t/S for all t > s0 (or equivalently
l.Œs0;1// is parallel to some geodesic ray in the 1–skeleton of X ), l.Œt0;1// has a
product neighborhood of the form X 0� Œt0;1/ in S , where X 0 is a subcomplex of X

with the induced metric. Therefore for any t > t0 and a segment l.t/xt � S short
enough, we can parallel transport l.t/xt along l to infinity, ie there is an isometrically
embedded “infinite parallelogram” with one side l.t/xt and one side l.Œt;1//.

Lemma 4-9 If l W Œ0;1/! S is a unit-speed geodesic ray of constant �mod direction,
then there exists an orthant subcomplex O �X satisfying the following conditions:

(1) @T l 2 @T O .

(2) If dim.O/D k and if fligkiD1
are the geodesic rays emanating from the tip of

the orthant such that O is the convex hull of fligkiD1
, then @T li 2 @T S for all i .

Proof By the previous lemma, we can choose some r > 0 such that for t > r ,
the l˙.t/ are suspension points in †l.t/S . Pick some t > r and let k be the di-
mension of Supp.lC.t//. Let fvt

i g
k
iD1

be vertices of Supp.lC.t//. Suppose that
˛i D d†l.t/S .v

t
i ; l
C.t//, where the values of k and ˛i are the same for all t > r by the

splitting in Lemmas 4-8 and 2-9. Moreover, we would like the labels vt
i to be consistent

under parallel transportation, ie for t 0¤ t (with t 0> r ), vt 0

i is the parallel transport of vt
i

along l . By Theorem 3-32, we can choose r 0 � r such that if x 2 S nB.l.0/; r 0/, then
logx l.0/ is �–close to some suspension point in †xS for �Dmin1�i�k

˚
1
2

�
�
2
�˛i

�	
.

Now we pick some t > r 0 , and construct a short geodesic segment l.t/xi � S going
along the direction of vt

i in the cone neighborhood of l.t/. We choose an arbitrary
extension of l.t/xi into S and call the geodesic ray l t

i for 1� i � k . We claim that
for any y 2 l t

i (with y ¤ l.t/),

(4-10) †yS D†yl t
i �Y

for some Y �†yS , hence the extension is unique and l t
i is a straight geodesic.

Suppose the claim were not true. Pick the first point yi 2 l t
i such that (4-10) is not

satisfied. Since †l.t/.yi ; l.0// � � � ˛i >
�
2

, hence d.yi ; l.0// > d.l.0/; l.t// > r 0 .
By our choice of r 0 , there is a suspension point in †yi

S which has distance less than
1
2
.�

2
� ˛i/ from logyi

l.0/. Since †yi
.l.0/; l.t// < ˛i , logyi

l.t/ has distance less
than ˛iC

1
2

�
�
2
�˛i

�
< �

2
from a suspension point. Since all points in l t

i between l.t/

and yi satisfy (4-10), logyi
l.t/ is a vertex in the all-right spherical complex †yi

S .
Thus logyi

l.t/ is also a suspension point and (4-10) must hold at y D yi , which is a
contradiction.
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We claim next that l t
i is parallel to l t 0

i for any t > r 0 and t 0 > r 0 . In fact, fixing t , by
the discussion before Lemma 4-9 and the uniqueness of l t 0

i , we know the claim is true
for jt 0� t j< � , where � depends on t . For the general case, we can apply a covering
argument as before.

Fix t0 > r 0 . By Lemma 2-4, for all i ,

(4-11) †T .l
t0

i ; l/D lim
t!C1

†l.t/.l
t
i ; l/D ˛i <

�
2
:

Thus †T .l
t0

i ; l/D†l.t0/.l
t0

i ; l/D ˛i for all i . It follows that l and l
t0

i bound a flat
sector by Lemma 2-5.

We fix a pair i; j with i ¤ j , and parametrize l
t0

i by arc length. We can assume without
loss of generality that l.t0/ is in the 0–skeleton. Let fhmg

1
mD1

be the collection of
hyperplanes such that hm \ l

t0

i D l
t0

i

�
mC 1

2

�
. Then (4-11) and Lemma 2-4 imply

that the CAT.0/ projection of l onto l
t0

i is surjective, thus there exists a sequence
ftmg

1
mD1

such that l.tm/ 2 hm . Recalling that j ¤ i , note that l
tm

j starts at l.tm/,
†l.tm/.l

tm

i ; l
tm

j /D �
2

and l
tm

i is orthogonal to hm , so l
tm

j � hm .

By convexity of hm , we can find a geodesic ray cm which starts at l
t0

i

�
mC 1

2

�
, stays

inside hm and is asymptotic to l
tm

j for every m, thus by Lemma 2-4,

(4-12) †T .l
t0

i ; l
t0

j /D lim
m!C1

†
l

t0
i
.mC 1

2
/
.l

t0

i ; cm/D
�
2
:

By (4-12), †T .l
t0

i ; l
t0

j /D†l.t0/.l
t0

i ; l
t0

j /D
�
2

for i ¤ j . By Lemma 2-18, we know
that the geodesic rays fl t0

i g
k
iD1

span a straight orthant O . Moreover, Lemma 2-8
together with (4-11) imply @T l 2 @T O . By Remark 2-16, we can replace O by an
orthant subcomplex which is Hausdorff close to O .

4.2 Cycle at infinity

By Lemma 4-9 and Corollary 4-5, there exists a dense subset G of @T S such that for
any v 2 G , there exists an orthant subcomplex Ov 2 X such that v 2 4v D @T Ov .
Denote the vertices of 4v by Fr.v/, then Fr.v/� @T S by Lemma 4-9.

It is clear that G�
S
v2G4v . We claim

S
v2G4v is a finite union of all-right spherical

simplices. In fact, it suffices to show
S
v2G Fr.v/ is a finite set, which follows from

Lemmas 2-17, 3-15 and 4-9 (note that each point in
S
v2G Fr.v/ is represented by a

straight geodesic contained in S ).

Moreover,
S
v2G �v has the structure of a finite simplicial complex. Take two simplices

�v1
and �v2

. We know �vi
D @T Ovi

for orthant subcomplex Ovi
, and Remark 2-13

implies �v1
\�v2

is a face of �1 (or �2 ).
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We endow K D
S
v2G4v � @T Y with the angular metric and denote the Euclidean

cone over K by CK , which is a subset of CT X .

Lemma 4-13 (1) K is a topologically embedded finite simplicial complex in @T X .

(2) CK is linearly contractible.

Recall that linearly contractible means there exists a constant C such that for any
d > 0, every cycle of diameter � d can be filled in by a chain of diameter � Cd .

Proof Let †T be the angular metric on K and dl be the length metric on K as
an all-right spherical complex. Our goal is to show that IdW .K;†T /! .K; dl/ is a
bi-Lipschitz homeomorphism. Let f�ig be the collection of faces of K (each �i is
an all-right spherical simplex). Suppose fOig

N
iD1

are orthant subcomplexes of X such
that @T Oi D�i . If points x and y are in the same �i for some i , then

(4-14) dl.x;y/D†T .x;y/:

If x and y are not in the same simplex, then we put �i D Supp.x/, �j D Supp.y/
and �k D�i \�j . Assume without loss of generality that dl.x; �k/ �

1
2
dl.x;y/.

Let .Y1;Y2/ D I.Oi ;Oj /. Then @T Y1 D @T Y2 D �k . Moreover, it follows from
(2-11) and Lemma 2-4 that

(4-15) †T .x;y/� 2 arcsin
�

1
2
A sin.dl.x; �k//

�
� 2 arcsin

�
1
2
A sin

�
1
2
dl.x;y/

��
;

where A can be chosen to be independent of i and j since fOig
N
iD1

is a finite
collection. Equations (4-14) and (4-15) imply IdW .K;†T /! .K; dl/ is a bi-Lipschitz
homeomorphism, thus (1) is true.

To see (2), it suffices to prove .K;†T / is linearly locally contractible, ie there exist
C <1 and R > 0 such that for any d < R, every cycle of diameter � d can be
filled in by a chain of diameter � Cd . By the above discussion, we only need to prove
.K; dl/ is locally linearly contractible.

Since .K; dl/ is compact and can be covered by finitely many cone neighborhoods
(see Theorem 2-1), it suffices to show each cone neighborhood is linearly contractible;
but any cone neighborhood is isometric to a metric ball in the spherical cone of some
lower dimensional finite piecewise spherical complex, thus we can finish the proof by
induction on dimension.

Since G is a dense subset of @T S and K is compact, it follows that @T S �K and
CT S � CK � CT X . We denote the base point of CT X by o.

Lemma 4-16 K has the structure of an .n�1/–simplicial cycle.
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Proof In the following proof, we will use d to denote the metric on X , and use xd to
denote the metric on CT X .

Pick a base point p 2X . By the proof of Lemma 3-16, we know that for any � > 0,
there exist a finite collection of constant speed geodesic rays fligNiD1

and an R� <1

such that li.t/ 2 S and fli.t/gNiD1
is a �t –net in B.p; t/ \ S for t � R� . Write

�i D @T li and define f�W S!CT S �CK by sending li.t/ to the point in o�i �CT S

which has distance d.li.t/;p/ from o (t �R� ). For x 62
SN

iD1 li ŒR�;1/, we pick a
point y 2

SN
iD1 li ŒR�;1/ which is nearest to x and define f�.x/D f�.y/.

It is clear that

(4-17) jd.x;p/� xd.f�.x/; o/j � �maxfd.x;p/;R�g

for any x 2 S , and

(4-18) jd.x;y/� xd.f�.x/; f�.y//j � �maxfd.p;x/; d.p;y/;R�g

for any x 2 S and y 2 S . Moreover,

(4-19) xdH .f�.B.p; r/\S/;B.o; r/\CT S/� �maxfr;R�g:

We might need to pick a larger R� for (4-19).

We want to approximate f� by a continuous map. Let us cover S by a collection
of open sets fB.x; rx/ \ Sgx2S , where rx D �maxfd.x;p/;R�g. Since S has
topological dimension � n, this covering has a refinement fUig

1
iD1

of order � n;
see [25, Chapter V]. Note that diam.Ui/ � 2�maxfd.p;Ui/;R�g. Denote the nerve
of fUig

1
iD1

by N , which is a simplicial complex of dimension � n.

Now we define a map b0W N ! CK as follows. For any vertex vi 2L, pick xi 2 Ui

where Ui is the open set associated with vertex vi , then set b0.vi/ D f�.xi/. Then
use the linear contractibility of CK to extend the map skeleton by skeleton to get b0 .
By choosing a partition of unity subordinate to the covering fUig

1
iD1

, we obtain a
barycentric map b from S to the nerve N (see [25, Chapter V]), then the continuous
map b0 ı bW S ! CK also satisfies (4-17)–(4-19) with � replaced by L0� , where L0 is
some constant which only depends on the linear contractibility constant of CK . So we
can assume without loss of generality that f�W S!CK is continuous and (4-17)–(4-19)
still hold for f� .

Recall that S is the support set of some top-dimensional proper homology class Œ� �.
We can also view Œ� � as the fundamental class of S and assume � is the proper singular
cycle representing this class. If ˛ D f�.�/, then Œ˛� 2H

p
n.CK/ since f� is a proper

map by (4-17). Our next goal is to show

(4-20) SŒ˛� D CK
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for � small enough. Since K is a simplicial complex, (4-20) would imply K also has
a fundamental class whose support set is exactly K itself, proving Lemma 4-16.

Recall that we have a 1–Lipschitz logarithmic map logpW CT X ! X sending base
point o to p . By (4-17) and (4-18), there exists a constant L<1 such that

(4-21) xd.z; o/D d.logp.z/;p/

for all z 2 Imf� , and

(4-22) j xd.z; w/� d.logp.z/; logp.w//j �L�maxf xd.o; z/; xd.o; w/;R�g

for all z; w 2 Imf� . Moreover,

(4-23) d.logp ıf�.x/;x/�L�maxfd.x;p/;R�g

for all x 2 S .

By (4-21), logp is proper. Let ˇ D logp.˛/D logp ıf�.�/. By (4-23), the geodesic
homotopy between logp ıf�W S!X and the inclusion map i W S!X is proper, thus
Œˇ�D Œ� � and SŒˇ� D SŒ�� D S . By Lemma 3-2,

(4-24) logp.SŒ˛�/� SŒˇ� D S:

Equations (4-24), (4-22) and (4-23) imply there exists L<1 such that

(4-25) xdH .B.o; r/\SŒ˛�;B.o; r/\ Imf�/�L�maxfr;R�g:

This together with (4-19) imply

(4-26) xdH .B.o; r/\SŒ˛�;B.o; r/\CT S/�L�maxfr;R�g:

Since K is a simplicial complex, SŒ˛� D CK0 , where K0 is some subcomplex of K .
Recall that by the construction of K , the only subcomplex of K that contains @T S is
K itself. Now (4-26) implies the Hausdorff distance between @T S and K0 is bounded
above by L� , thus for � small enough, K0 DK and (4-20) holds. We also know @T S

is dense in K from this.

We actually defined a boundary map

(4-27) @W H
p
n;n.X /!Hn�1.@T X /

in the proof of the above lemma; namely, for � small enough, we send Œ� � 2H
p
n;n.X /

to f��Œ� � 2 H
p
n.CT X /, which passes to an element in Hn�1.@T X / via the map

H
p
n.CT X /!Hn.CT X;CT X n fog/ŠHn�1.@T X /.

In the construction of f� , we have to choose a base point, the geodesic rays fli.t/gNiD1
,

the covering fUig
1
iD1

and the maps b and b0 . However, different choices give maps
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in the same proper homotopy class if the corresponding � is small enough. Also the
geodesic homotopy from f�1

to f�2
is proper if �1 and �2 are small enough, so the

above boundary map is well-defined.

Next we construct a map in the opposite direction as follows. Let �0 be a Lipschitz
.n�1/–cycle in @T X . Let ˛0 be the cone over �0 . Note that one can cone off elements
in Cn�1.@T X / to obtain elements in C

p
n .CT X /, which induces a homomorphism

Hn�1.@T X /!H
p
n.CT X /. Actually Œ˛0�2H

p
n;n.CT X / since the cone over a Lipschitz

cycle would satisfy the required growth condition. If � 0D log.˛0/, then Œ� 0�2H
p
n;n.X /

since log is 1–Lipschitz. Now we define the “coning off” map

(4-28) cW Hn�1.@T X /!H
p
n;n.X /

by sending Œ�0� to Œ� 0�. The base point in the definition of log does not matter because
different base points give maps which are of bounded distance from each other. It is
easy to see that c is a group homomorphism.

For � > 0, pick a finite �–net of Im �0 and denote it by f�igNiD1
. Suppose p D log.o/

and suppose fligNiD1
are the unit-speed geodesic rays emanating from p with @T liD �i .

Pick R� > 0 such that

(4-29)
ˇ̌̌̌
d.li.t/; lj .t//

t
� lim

t!C1

d.li.t/; lj .t//

t

ˇ̌̌̌
< �

for t >R� . Let I� 0 be the smallest subcomplex of X which contains Im � 0 . By using
the rays fligNiD1

as in the proof of Lemma 4-16, we can construct a continuous proper
map g�W I� 0 ! CT X skeleton by skeleton so that

(4-30) d.g� ı log.x/;x/�L�maxfd.x; o/;R�g

for x 2 Im˛0 , which implies g��Œ�
0�D Œ˛0� for � small.

Let Œ� 00� be the fundamental class of SŒ� 0� and let f��W SŒ� 0�! CT X be the map in
Lemma 4-16. We claim that g��Œ�

0�D f��Œ�
00� for � small, which would imply

(4-31) @ ı c D Id :

To see the claim, note that Œ� 0�D Œ� 00� in H
p
n.I� 0/. For � small, there is a proper geodesic

homotopy between g�jSŒ�0� and f� by (4-23) and (4-30), thus g��Œ�
00� D f��Œ�

00�.
Moreover, g��Œ�

00�D g��Œ�
0�, so f��Œ� 00�D g��Œ�

0�D Œ˛0�.

From (4-23) and the discussion after it we know

(4-32) c ı @D Id :

Thus @ is also a group homomorphism and we have the following result.
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Corollary 4-33 If X is an n–dimensional CAT.0/ cube complex, then:

(1) @W H
p
n;n.X /!Hn�1.@T X / is a group isomorphism, and the inverse is given by

cW Hn�1.@T X /!H
p
n;n.X /.

(2) If qW X !X 0 is a quasi-isometric embedding from X to another n–dimensional
CAT.0/ cube complex X 0 , then q induces a monomorphism q�W Hn�1.@T X /!

Hn�1.@T X 0/. If q is a quasi-isometry, then q� is an isomorphism.

Proof We only need to prove (2). Let us approximate q by a Lipschitz quasi-isometric
embedding and denote the smallest subcomplex of X 0 that contains Im q by Iq . Now
we have a homomorphism

(4-34) q�W H
p
n;n.X /!H

p
n;n.Iq/ ,!H

p
n;n.X

0/:

We can define a continuous map pW Iq ! X skeleton by skeleton in such a way
that d.x;p ı q.x// < D for all x 2 X (here D is some positive constant), which
induces p�W H

p
n;n.Iq/! H

p
n;n.X /. It is easy to see p� ı q� D Id and q� ıp� D Id,

so the first map in (4-34) is an isomorphism. Note that the second map in (4-34) is a
monomorphism, thus q� is injective and .2/ follows from .1/.

We refer to Theorem A-19 and the remarks after it for generalizations of the above
corollary.

Remark 4-35 Though we are working with Z=2 coefficients, it is easy to check that
the analogue of Corollary 4-33 for arbitrary coefficients is also true (the same proof
goes through).

Remark 4-36 By the above proof and the argument in Lemma 4-16, there exists a
positive D0 , which depends on the quasi-isometry constant of q , such that

(4-37) dH .q.SŒz��/;Sq�Œz��/ <D0

for any Œz�� 2H
p
n;n.X /.

4.3 Cubical coning

Note that the above coning map c does not give us much information about the
combinatorial structure of the support set. Now we introduce an alternative coning
procedure based on the cubical structure. We can assume, by Lemma 4-16, that
K D

SN
iD1�i , where each �i is an all-right spherical .n�1/–simplex. Let fOig

N
iD1

be the collection of top-dimensional orthant subcomplexes in X such that @T Oi D�i .
By (2-11), we can pass to suborthants and assume fOig

N
iD1

is a disjoint collection.
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The natural quotient map
FN

iD1�i !K induces a quotient map QW
FN

iD1 Oi ! CK
sending the tip of each Oi to the cone point of CK . We define an inverse map
F W CK!

FN
iD1 Oi �X by sending each x 2 CK to some point in Q�1.x/.

Lemma 4-38 F W CK!X is a quasi-isometric embedding.

Recall that CK is endowed with the induced metric from CT X .

Proof Let oi be the tip of Oi and LD maxi¤j d.oi ; oj /. For x 2 Oi and y 2 Oj ,
let ci;x � Oi be the constant-speed geodesic ray with ci;x.0/D oi and ci;x.1/D x .
We can define cj ;y �Oj similarly. Let c0j be the geodesic ray which (1) is asymptotic
to cj ;y ; (2) has the same speed as cj ;y ; (3) satisfies c0j .0/D oi . Then by Lemma 2-4
and convexity of d.ci.t/; c

0
j .t//,

(4-39) d.Q.x/;Q.y//D lim
t!1

d.ci;x.t/; cj ;y.t//

t

D lim
t!1

d.ci;x.t/; c
0
j .t//

t

� d.ci;x.1/; c
0
j .1//

� d.ci;x.1/; cj ;y.1//� d.c0j .1/; cj ;y.1//

� d.x;y/� d.oi ; oj /

� d.x;y/�L:

It follows that

(4-40) d.F.x/;F.y//� d.x;y/CL

for any x;y 2 CK .

For the other direction, pick x 2 Oi and y 2 Oj , and let us assume without loss
of generality that i ¤ j and x;y are interior points of Oi and Oj . We extend oix

(or oj y ) to get a ray oi�1 � Oi (or oj�2 � Oj ). Let .Y1;Y2/ D I.Oi ;Oj /. Since
d.x;y/� d.x;Y1/Cd.Y1;Y2/Cd.y;Y2/� d.x;Y1/Cd.y;Y2/CL, we can assume
without loss of generality that

(4-41) d.x;Y1/�
1
2
.d.x;y/�L/:

From (4-15), we have

(4-42) d.F.x/;F.y//� d.x; oi/ sin.†T .�1; �2//�
1
2
Ad.x; oi/ sin.†T .�1; @T Y1//

�
1
2
Ad.x;Y1/�L0

�
1
4
Ad.x;y/�L0� 1

2
L

Geometry & Topology, Volume 21 (2017)



2320 Jingyin Huang

if †T .�1; �2/ <
�
2

, and

(4-43) d.F.x/;F.y//� d.x; oi/� d.x;Y1/�L0 � d.x;y/�L0� 1
2
L

if †T .�1; �2/�
�
2

. Here A and L0 depend on Oi and Oj , but there are finitely many
orthants, so we can make A and L0 uniform.

Since X is linearly contractible, we can approximate F by a continuous quasi-isometric
embedding F 0 such that d.F.x/;F 0.x//�L for some constant L and any x 2 CK .
Let K.n�2/ be the .n�2/–skeleton of K and define �W CK! Œ0; 1� to be

�.x/D

8̂<̂
:

1 if d.x;CK.n�2//� 1;

2� d.x;CK.n�2// if 1< d.x;CK.n�2// < 2;

0 if d.x;CK.n�2//� 2:

Let
F1.x/D �.x/F

0.x/C .1� �.x//F.x/

for x 2 CK , where �.x/F 0.x/C .1� �.x//F.x/ denotes the point in the geodesic
segment F 0.x/F.x/ which has distance �.x/d.F 0.x/;F.x// from F.x/. Though F

may not be continuous, F1 is continuous, since the only discontinuity points of F

are in the 1–neighborhood of CK.n�2/ , however inside such a neighborhood we have
F1 D F 0 by definition. Also note that d.F.x/;F1.x//�L0 for all x 2 CK .

Since F1 D F outside the 2–neighborhood of CK.n�2/ , there exists an orthant sub-
complex O 0i �Oi such that F�1

1
.O 0i/ is an orthant in CK for 1� i �N and

(4-44) dH

�
Im F1;

N[
iD1

O 0i

�
<1:

Let ŒCK� 2H
p
n.CK/ be the fundamental class. If Œ� �D .F1/�ŒCK� 2H

p
n;n.X /, then

(4-45)
N[

iD1

O 0i � SŒ�� � Im F1:

The first inclusion follows from the construction of O 0i and the second follows from
Lemma 3-2. Equations (4-44) and (4-45) immediately imply:

Lemma 4-46 dH

�
SŒ��;

N[
iD1

O 0i

�
<1:

Now we are ready to prove the main result.
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Theorem 4-47 Let X be a CAT.0/ cube complex of dimension n. Pick Œ� �2H
p
n;n.X /

and suppose S D SŒ�� . Then there is a finite collection O1; : : : ;Ok of n–dimensional
orthant subcomplexes of S such that

dH

�
S;

k[
iD1

Ok

�
<1:

Proof By Lemma 4-46, it suffices to show Œ� � D Œ� � in H
p
n.X /. Note that (4-45)

implies @T SŒ�� D K , so @.Œ� �/ D ŒK� D @.Œ��/, where ŒK� is the fundamental class
of K and @ is the map in (4-27). Thus Œ� �D Œ� � by Corollary 4-33.

In particular, by Lemma 3-4 and Theorem 4-47, we have:

Theorem 4-48 If X is a CAT.0/ cube complex of dimension n, then for every n–
quasiflat Q in X , there is a finite collection O1; : : : ;Ok of n–dimensional orthant
subcomplexes in X such that

dH

�
Q;

k[
iD1

Ok

�
<1:

5 Preservation of top-dimensional flats

5.1 The lattice generated by top-dimensional quasiflats

We investigate the coarse intersection of the top-dimensional quasiflats in this section.

Let X be a finite-dimensional CAT.0/ cube complex. For two subsets A and B , we
say they are coarsely equivalent (denoted A� B ) if dH .A;B/ <1. We assume the
empty subset is coarsely equivalent to any bounded subset. Denote by ŒA� the coarse
equivalence class which contains A. We say ŒA�� ŒB� if there exists an r <1 such
that A�Nr .B/. If ŒA�� ŒB� and ŒA�¤ ŒB�, we will write ŒA�¨ ŒB�. Also we define
the union ŒA�[ ŒB� to be ŒA[B�, but intersection is not well-defined in general.

The class ŒA� is admissible if it can be represented by a subset which is a finite union
of (not necessarily top-dimensional) orthant subcomplexes in X (here A is allowed
to be empty). Let A.X / be the collection of admissible classes of subsets in X .
Pick ŒA1�; ŒA2� 2A.X /. We define another two operations between ŒA1� and ŒA2� as
follows.
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(1) By Lemma 2-10(4), there exists an r <1 such that

ŒNr1
.A1/\Nr1

.A2/�D ŒNr2
.A1/\Nr2

.A2/�

for any r1 � r and r2 � r . We define the intersection ŒA1� \ ŒA2� to be
ŒNr .A1/\Nr .A2/�, which is also admissible.

(2) By Lemma 2-10(4), there exists an r <1 such that

ŒA1 nNr1
.A2/�D ŒA1 nNr2

.A2/�

for any r1� r and r2� r . Define the subtraction ŒA1��ŒA2� to be ŒA1nNr .A2/�,
which is also admissible.

If Y is another CAT.0/ cube complex with dim.Y /D dim.X / and there is a quasi-
isometry f W X ! Y , then we define f].ŒA�/ to be Œf .A/�. This is well-defined since
A� B implies f .A/� f .B/. Note that:

(1) f].ŒA�/[f].ŒB�/D f].ŒA�[ ŒB�/.

(2) If ŒA�; ŒB�; Œf .A/� and Œf .B/� are all admissible, then

f].ŒA�/\f].ŒB�/D f].ŒA�\ ŒB�/ and f].ŒA�/�f].ŒB�/D f].ŒA�� ŒB�/:

We only verify the last equality. Since f is a quasi-isometry, there exist constants
a> 1, b > 0 such that for r large enough, we have

f .A/ nNarCb.f .B//� f .A nNr .B//� f .A/ nN.r=a/�b.f .B//:

Since Œf .A/� and Œf .B/� are admissible, the first term and the last term of the above
inequality are in the same coarse class for r large enough. This finishes the proof.

Let Q.X / be the collection of top-dimensional quasiflats in X , modulo the above
equivalence relation. Theorem 4-48 implies Q.X / � A.X /. Let KQ.X / be the
smallest subset of A.X / which contains Q.X / and is closed under union, intersection
and subtraction as defined above. More precisely, each element KQ.X / can be written
as a finite string of elements of Q.X / with union, intersection or subtraction between
adjacent terms and braces which indicate the order of these operations. Let f W X ! Y

be a quasi-isometry. Then by induction on the length of the string, one can show
Œf .A/� is admissible and Œf .A/� 2KQ.Y / for each ŒA� 2KQ.X /. By considering the
quasi-isometry inverse of f , we have the following theorem.

Theorem 5-1 Let X and Y be n–dimensional CAT.0/ cube complexes. If f W X!Y

is a quasi-isometry, then f induces a bijection f]W KQ.X /! KQ.Y /. Moreover, for

Geometry & Topology, Volume 21 (2017)



Top-dimensional quasiflats in CAT(0) cube complexes 2323

ŒA�; ŒB� 2 KQ.X /, we have:

f].ŒA�/[f].ŒB�/D f].ŒA�[ ŒB�/;

f].ŒA�/\f].ŒB�/D f].ŒA�\ ŒB�/;

f].ŒA�/�f].ŒB�/D f].ŒA�� ŒB�/:

For ŒA� admissible, pick a representative in ŒA� which is a finite union of orthant
complexes. Define the order of ŒA�, denoted jŒA�j, to be the number of top-dimensional
orthant complexes in the representative. By Lemma 2-10, this definition does not
depend on the choice of representative. Since every element in KQ.X / is admissible,
we have a map KQ.X /! f0g[ZC with the following properties:

(1) jŒQ�j � 2dim X for ŒQ� 2Q.X /.
(2) jŒA�[ ŒB�j D jŒA�jC jŒB�j � jŒA�\ ŒB�j for ŒA�; ŒB� 2 KQ.X /.
(3) Let f be as in Theorem 5-1. Then jŒA�j D 0 if and only if jf].ŒA�/j D 0 for

ŒA� 2 KQ.X /.

The first assertion follows from (3-12).

We say an element ŒA� 2 KQ.X / is essential if jŒA�j > 0. We call ŒA� a minimal
essential element if for any ŒB� 2KQ.X / with ŒB�¨ ŒA�, we have jŒB�j D 0. Minimal
essential elements have the following properties:

(1) For any ŒA� 2 KQ.X /, there is a decomposition ŒA�D
�SN

iD1ŒAi �
�
[ ŒB� such

that each ŒAi � is a minimal essential element and jŒB�j D 0. We also require ŒB�
and each ŒAi � to be in KQ.X /.

(2) For two different minimal essential elements ŒA1�; ŒA2� 2 KQ.X /, we have
jŒA1�\ ŒA2�j D 0, thus jŒA1�[ ŒA2�j D jŒA1�jC jŒA2�j.

(3) Let f be as above. If ŒA� is a minimal essential element in KQ.X /, then f].ŒA�/
is also a minimal essential element.

We only prove (1). For each top-dimensional orthant subcomplex ŒOi � such that
ŒOi �� ŒA�, let ŒAi � be the minimal element in KQ.X / which contains ŒOi �. We claim
that ŒAi � is minimal essential. Suppose the contrary true, ie there exists ŒA0i � 2KQ.X /
such that jŒA0i �j ¤ 0 and ŒA0i �¨ ŒAi �. The minimality of ŒAi � implies ŒOi �� ŒA

0
i � does

not hold. However, in such a case ŒOi � � ŒAi �� ŒA
0
i � ¨ ŒAi �, which contradicts the

minimality of ŒAi �. We choose ŒB�D ŒA��
�SN

iD1 Ai

�
.

Lemma 5-2 Let X , Y be n–dimensional CAT.0/ cube complexes and let f W X!Y

be an .L0;A0/–quasi-isometry. If jf].ŒA�/jDjŒA�j for any minimal essential element ŒA�
in KQ.X /, then there exists a constant CDC.L0;A0/ such that for any top-dimensional
flat F �X , there exists a top-dimensional flat F 0 � Y such that dH .f .F /;F

0/ < C .
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Proof By Theorem 5-1 and the above discussion, we know jf].ŒA�/j D jŒA�j for any
ŒA� 2 KQ.X /, in particular jŒf .F /�j D jŒF �j D 2n (here n D dim.X / D dim.Y /).
By Lemma 3-4, let Œ� � 2 H

p
n.Y / be the class such that dH .SŒ��; f .F // <1. By

Theorem 4-47, SŒ�� is Hausdorff close to a union of 2n orthant subcomplexes. Thus
@T SŒ�� is contained in 2n right-angled spherical simplices of dimension n� 1. Then
Hn�1.@T SŒ��/ � Hn�1.Sn�1/. We pick a base point p 2 SŒ�� and consider the
logarithmic map logpW CT Y ! Y . Lemma 3-6 implies SŒ�� � logp.CT SŒ��/. Thus

Hn.B.p; r/\SŒ��/

rn
�

Hn.B.p; r/\ logp.CT SŒ��//

rn
�

Hn.B.o; r/\CT SŒ��/

rn
� !n:

Here o is the cone point in CT Y and !n is the volume of unit ball in En . The second
inequality follows from the fact that logp is 1–Lipschitz and the third inequality follows
from Hn�1.@T SŒ��/�Hn�1.Sn�1/. By Theorem 3-10(2), SŒ�� is isometric to En .

5.2 The weakly special cube complexes

It is shown in [8] that the assumption of Lemma 5-2 is satisfied for 2–dimensional
RAAGs. Our goal in this section is to find an appropriate class of cube complexes which
shares some key properties of the canonical CAT.0/ cube complexes of RAAGs such
that the assumption of Lemma 5-2 is satisfied. In [20], Haglund and Wise introduced
a class of RAAG-like cube complexes, which are called special cube complexes. We
adjust their definition for our purposes in the following way.

Definition 5-3 A cube complex K is weakly special if:

(1) K is nonpositively curved.

(2) No hyperplane self-osculates or self-intersects.

The second condition means that for any vertex v and two distinct edges e1 and e2

such that v 2 e1\ e2 , the hyperplanes dual to e1 and e2 are different.

If K is compact, then there exists a finite sheet, weakly special cover xK of K such
that every hyperplane in xK is two-sided, ie there exists a small neighborhood of the
hyperplane which is a trivial interval bundle over the hyperplane. This follows from
the argument in [20, Proposition 3.10].

In the rest of this section, we will denote by W 0 a compact weakly special cube
complex, and W the universal cover of W 0 . Since we mainly care about W , there is
no loss of generality in assuming every hyperplane in W 0 is two-sided. The goal of
this section is to prove the following theorem.
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Theorem 5-4 Let W 0
1

and W 0
2

be two compact weakly special cube complexes with
dim.W 0

1
/ D dim.W 0

2
/ D n. Suppose W1 , W2 are the universal covers of W 0

1
, W 0

2

respectively. If f W W1!W2 is a .L;A/–quasi-isometry, then there exists a constant
C D C.L;A/ such that for any top-dimensional flat F � W1 , there exists a top
dimensional flat F 0 �W2 with dH .f .F /;F

0/ < C .

This theorem follows from Lemma 5-2 and the following lemma.

Lemma 5-5 Let W1;W2 and f be as in Theorem 5-4. If f]W KQ.W1/!KQ.W2/ is
the induced bijection in Theorem 5-1, then jf].ŒA�/j D jŒA�j for any minimal essential
element ŒA� 2 KQ.W1/.

In the rest of this section, we will prove Lemma 5-5.

We label the vertices and edges of W 0 by fxvig
Nv
iD1

and fxeig
Ne

iD1
such that: (1) different

vertices have different labels; (2) two edges have the same label if and only if they are
dual to the same hyperplane. We also choose an orientation for each edge such that if
two edges are dual to the same hyperplane, then their orientations are consistent with
parallelism (this is possible since each hyperplane is two-sided). All the labelings and
orientations lift to the universal cover W . The edges in W dual to the same hyperplane
also share the same label.

For every edge-path ! in W 0 or W , define L.!/ to be the word xvi xe
�i1
i1
xe �i2

i2
xe �i3

i3
� � � ,

where xvi is the label of the initial vertex of ! , xeij is the label of the j th edge and
�ij D˙1 records the orientation of the j th edge.

Definition 5-3 and the way we label W 0 imply:

(1) For two edges e0
1

and e0
2

in W 0 dual to the same hyperplane, e0
1

is embedded if
and only if e0

2
is embedded, ie its end points are distinct.

(2) Pick any vertex v0i 2W 0 . Then two distinct edges e0
1

and e0
2

with v0i 2 e0
1
\ e0

2

have different labels.

(3) If !0
1

and !0
2

are two edge paths in W 0 such that L.!0
1
/DL.!0

2
/, then !0

1
D!0

2
.

If !1 and !2 are two edge paths in W such that L.!1/D L.!2/, then there
exists a unique deck transformation  such that  .!1/D !2 .

We will be using the following simple observation repeatedly.

Lemma 5-6 Pick vertices v1 and v2 in W which have the same label. For i D 1; 2,
let flij gkjD1

be a collection such that each lij is a geodesic ray, a geodesic segment or
a complete geodesic that contains vi . Suppose that:

Geometry & Topology, Volume 21 (2017)



2326 Jingyin Huang

(1) Each lij is a subcomplex of W .

(2) For each j , there is a graph isomorphism �j W l1j ! l2j which preserves the
labels of vertices and edges and the orientations of edges, moreover �j .v1/D v2 .

(3) The convex hull of fl1j g
k
jD1

, which we denote by K1 , is a subcomplex isometric
to
Qk

jD1 l1j .

Then the convex hull of fl2j g
k
jD1

, which we denote by K2 , is a subcomplex isometric
to
Qk

jD1l2j . Moreover, let  be the deck transformation such that  .v1/D v2 . Then
 .K1/DK2 .

Let dim.W /D n and let O be a top-dimensional orthant subcomplex in W . We now
construct a suitable doubling of O which will serve as a basic move to analyze the
minimal essential elements in KQ.W /.

Let frj gniD1
be the geodesic rays emanating from the tip of O such that O is the

convex hull of frj gnjD1
. We parametrize r1 by arc length. Since the labeling of W is

finite, we can find a sequence of nonnegative integers fnj g
1
jD1

with nj !1 such that
the label and orientation of the incoming edge at r1.nj /, the label and orientation of
the outgoing edge at r1.nj / and the label of r1.nj / do not depend on j .

We identify O with Œ0;1/�O 0 , where O 0 is an .n�1/–dimensional orthant orthogonal
to r1 . By our choice of r1.n1/ and r1.n2/, we can extend r1.n2/r1.n1/ over r1.n1/

to reach a vertex v such that L.r1.n1/v/D L.r1.n2/r1.n1//. Here v does not need
to lie on r1 ; see Figure 1.

u

r (0)
1

r (n  )
1 1

r (n  )
1 2

r (n  )
1 3

v

r (n  )v
1 1

r (n  )
1 2

r (n  )
1 1

r (n  )
1 3

r (n  )
1 2

Figure 1

Let K1 be the convex hull of fn2g � O 0 and r1.n2/r1.n1/. Then K1 is of form
K1 D Œn1; n2��O 0 . Note that the parallelism map between fn1g �O 0 and fn2g �O 0

preserves labeling and orientation of edges. Then it follows from Lemma 5-6 that
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the convex hull of fn1g �O 0 and r1.n1/v is a subcomplex isometric to r1.n1/v�O 0 .
(Actually if  2 �1.W

0/ is the deck transformation satisfying  .r1.n2// D r1.n1/,
then  .K1/ is the convex hull of fn1g �O 0 and r1.n1/v .) We call this subcomplex
the mirror of K1 and denote it by K0

1
. Since K1 \K0

1
D fn1g �O 0 , it follows that

K0
1
[ .Œn1;1/�O 0/ is again an orthant; see Figure 2.

u

u

K'

1 u2

1

K3K2K1

K'2

K'3

u3

v

Figure 2

Let K2 D Œn2; n3� �O 0 . We extend r1.n1/v over v to reach a vertex u such that
L.vu/ D L.r1.n3/r1.n2//. Note that the parallelism map between fvg � O 0 and
fn3g�O 0 preserves labeling and orientation of edges. Then it follows from Lemma 5-6
that the convex hull of fvg �O 0 and vu is a subcomplex isometric to K2 . (Actually
if  2 �1.W

0/ is the deck transformation satisfying  .r1.n3// D v , then  .K2/ is
the convex hull of fvg �O 0 and vu.) This convex hull is called the mirror of K2 ,
and is denoted by K0

2
. Since vu and r1.n1/v fit together to form a geodesic segment,

K0
1
\K0

2
D fvg �O 0 . Thus K0

2
[K0

1
[ .Œn1;1/�O 0/ is again an orthant. We can

continue this process, and consecutively construct the mirror of Ki D Œni ; niC1��O 0

in W (denoted K0i ) arranged in the pattern indicated in the above picture. Similarly
one can verify that K0i is isometric to Ki , and K0i \K0

iC1
is isometric to O 0 .

Now we obtain a subcomplex KD
�S1

iD1 Ki

�
[
�S1

iD1 K0i
�
. It is clear that ŒO �� ŒK�.

The discussion in the previous paragraph implies that
S1

iD1 K0i is also a top-dimensional
orthant. We will call it the mirror of O . Moreover, K is isometric to R� .R�0/

n�1 .
More generally, by the same argument as above and Lemma 5-6, we have the following
result.
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Lemma 5-7 If K �W is a convex subcomplex isometric to .R�0/
k �Rn�k , then

there exists a convex subcomplex K0 isometric to .R�0/
k�1 � Rn�kC1 such that

ŒK�� ŒK0�.

Pick a minimal essential element ŒA� 2 KQ.W /. Then there exists a top-dimensional
orthant O with ŒO � � ŒA�, where ŒO � may not be an element in KQ.W /. Using
Lemma 5-7, we can double the orthant n times to get a top-dimensional flat F with
ŒO �� ŒF �. Since ŒA� is minimal, ŒA�\ ŒF �D ŒA�, which implies the following result.

Corollary 5-8 If ŒA� 2 KQ.W / is a minimal essential element, then there exists a
top-dimensional flat ŒF � such that ŒA�� ŒF �. In particular, jŒA�j � 2dim.W / D 2n .

Pick a top-dimensional orthant subcomplex O and denote the .n�1/–faces of O

by fOig
n
iD1

. We say that ŒOi � is branched if there exist top-dimensional orthant
subcomplexes O 0 and O 00 such that ŒO �, ŒO 0� and ŒO 00� are distinct elements and
ŒO �\ ŒO 0�D ŒO �\ ŒO 00�D ŒOi �; otherwise ŒOi � is called unbranched.

Lemma 5-9 If O and Oi are as above, then ŒOi � is branched if and only if there exists
a suborthant O 0i � Oi and geodesic rays l1 , l2 and l3 emanating from the tip of O 0i
such that:

(1) ŒO 0i �D ŒOi �.

(2) Œl1�, Œl2� and Œl3� are distinct.

(3) The convex hull of lj and O 0i is a top-dimensional orthant for 1� j � 3.

Proof If Oi is branched, let O 0 and O 00 be the orthant subcomplexes as above. We
can assume O 0 \O D O 00 \O D ∅. Let .Y1;Y2/ D I.O;O 0/. Since Y1 and Y2

bound a copy of Y1 � Œ0; d.O;O
0/� inside W , we have dim.Y1/D dim.Y2/ � n� 1.

However, (2-11) implies ŒY1�D ŒO �\ŒO
0�D ŒOi �, so Y1 and Y2 are .n�1/–dimensional

orthant subcomplexes. We can find a copy of Y2 � Œ0;1/ inside O 0 and we claim
Y1 � Œ0; d.O;O

0/�[Y2 � Œ0;1/ is also a top-dimensional orthant subcomplex.

To see this, note that .Y1 � Œ0; d.O;O
0/�/\ .Y2 � Œ0;1//D Y2 . Pick y 2 Y2 , and let

fvig
n�1
iD1

be mutually orthogonal directions in †yY2 . Moreover, we can assume each vi

is in the 0–skeleton of †yY2�†yW . Let v 2†y.Y1� Œ0; d.O;O
0/�/ be the direction

corresponding to the Œ0; d.O;O 0/� factor and let v0 2†y.Y2� Œ0;1// be the direction
corresponding to the Œ0;1/ factor. It is clear that v and v0 are distinct points in the
0–skeleton of †yW . If d.v; v0/ D �

2
, then v , v0 and fvig

n�1
iD1

would be mutually
orthogonal directions, which yields a contradiction with the fact that dim.W / D n.
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Thus d.v; v0/D � and Y1 � Œ0; d.O;O
0/�[Y2 � Œ0;1/ is indeed a top-dimensional

orthant subcomplex.

Note that the orthant constructed above is the convex hull of Y1 and some geodesic
ray l emanating from the tip of Y1 . We can repeat this argument for O 00 to obtain the
required suborthants and geodesic rays in the lemma. The other direction of the lemma
is trivial.

Let O , frj gnjD1
, fnig

1
iD1

, Ki and K0i be as in the discussion before Lemma 5-7. Let
aj D njC1� n1 for j � 0. We identify

�S1
iD1 Ki

�
[
�S1

iD1 K0i
�

with R�
Qn

jD2 rj
such that Ki D Œai�1; ai ��

Qn
jD2 rj . Thus K0i D Œ�ai ;�ai�1��

Qn
jD2 rj . Let l be

the unit-speed complete geodesic line in W such that l.0/D r1.n1/ and it is parallel
to the R factor. For x 2 R, we denote the geodesic ray in

�S1
iD1 Ki

�
[
�S1

iD1 K0i
�

that starts at l.x/ and goes along the rj factor by fxg � rj .

Let i 2 �1.W
0/ be the deck transformation satisfying i.l.ai//D l.�ai�1/. Then

by our construction, i.Ki/DK0i . Moreover, under the product decomposition Ki D

Œai�1; ai ��
Qn

jD2 rj and K0iD Œ�ai ;�ai�1��
Qn

jD2 rj , we have that i maps Œai�1; ai �

to Œ�ai ;�ai�1� and fixes the factor
Qn

jD2 rj pointwise.

Let zO D
S1

iD1 K0i be the mirror of O . There is an isometry � acting on� 1[
iD1

Ki

�
[

� 1[
iD1

K0i

�
DR�

nY
jD2

rj

by flipping the R factor (the other factors are fixed). For 1 � j � n, let Oj be the
.n�1/–face of O which is orthogonal to rj and let zOj be the .n�1/–face of zO such
that Œ�. zOj /�D ŒOj �. (Recall that ŒO �D

�S1
iD1 Ki

�
.)

Lemma 5-10 ŒOj � is branched if and only if Œ zOj � is branched.

Proof If j D 1, then ŒO1� D Œ zO1� D ŒO � \ Œ zO � and the lemma is trivial, so let us
assume j ¤ 1. If ŒOj � is branched, then by Lemma 5-9, we can assume without loss
of generality (one might need to modify Ki and K0i by cutting off suitable pieces
and replace l by a geodesic in R�

Qn
jD2 rj which is parallel to l ) that there exist

i0 � 0 and geodesic rays c1 , c2 , c3 emanating from l.ai0
/ such that Œc1�, Œc2�, Œc3� are

distinct elements and the convex hull of cm , l.Œai0
;1// and fai0

g� rk (for k ¤ 1; j ),
which we denote by Hm , is a top-dimensional orthant subcomplex for 1�m� 3.

Let  be the deck transformation satisfying  .l.ai0
// D l.�ai0

/. Such a  exists
by the construction of l (in the previous paragraph, we might possibly replace the
original l by a geodesic parallel to l , however the same  works). Let zcm D  .cm/
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for 1�m� 3. Then Œzc1�, Œzc2�, Œzc3� are distinct since  is an isometry. Since  is label
and orientation preserving, cm and zcm correspond to the same word for 1 �m � 3,
moreover  .faig � rk/D f�aig � rk for k ¤ 1. To prove Œ zOj � is branched, it suffices
to show the convex hull of zcm , l..�1;�ai0

�/ and f�ai0
g � rk (for k ¤ 1; j ) is a

top-dimensional orthant subcomplex.

For mD 1, we chop H1 into pieces so that

H1 D

1[
iDi0C1

Li ; where Li D c1 � l.Œai�1; ai �/�
Y

k¤1;j

rk :

Let i be the deck transformation defined before Lemma 5-10 and let L0i D  .Li/.
We claim that

i

�
c1 � fai�1g �

Y
k¤1;j

rk

�
D iC1

�
c1 � faiC1g �

Y
k¤1;j

rk

�
for i � i0 C 1. This claim follows from the following two observations: (1) both
sides of the equality contain l.�ai/; (2) i , iC1 and the parallelism between
c1�fai�1g�

Q
k¤1;j rk and c1�faiC1g�

Q
k¤1;j rk preserve labeling and orientation

of edges. It follows from the claim that H 0
1
D
S1

iDi0C1 L0i is a top-dimensional orthant
subcomplex. By a similar argument as before, we know



�
c1 � faig �

Y
k¤1;j

rk

�
D i0C1

�
c1 � fai0C1g �

Y
k¤1;j

rk

�
;

thus H 0
1

is the convex hull of zc1 , l..�1;�ai �/ and f�aig�rk , for k¤1; j . Moreover,
ŒH 0

1
�\ Œ zO �D Œ zOj �. We can repeat this construction for zc2 and zc3 , which implies Œ zOj � is

branched. By the same argument, if Œ zOj � is branched, we can prove ŒOj � is branched.

Remark 5-11 It is important that we keep track of information from the labels of O

while constructing the mirror of O ; in other words, if we construct zO by the pattern
indicated in Figure 3, we will not be able to conclude that ŒOj � is branched from the
fact that Œ zOj � is branched.

K0
1

K0
1

K0
1 K1 K2 K3

Figure 3
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Lemma 5-12 If ŒA� 2 KQ.W / is a minimal essential element, then:

(1) jŒA�j D 2i for some integer i with 1� i � n.

(2) There exists a top-dimensional flat F and another 2n�i�1 minimal essential
elements fAj g

2n�i�1
jD1

with jŒAj �j D jŒA�j such that ŒF �D ŒA�[
�S2n�i�1

jD1 ŒAj �
�
.

Proof We find a top-dimensional orthant subcomplex O such that ŒO � � ŒA�. By
the argument before Lemma 5-7, we can double this orthant n times to a get top-
dimensional flat F such that ŒO �� ŒF �. Assume without loss of generality that O �F .
Denote by fOig

n
iD1

the .n�1/–faces of O and let �i W F ! F be the isometry that
fixes Oi pointwise and flips the direction orthogonal to Oi .

Let G be the group generated by f�ig
n
iD1

. Then G Š .Z=2/n . We define

ƒb D f1� i � n j ŒOi � is branchedg; ƒu D f1� i � n j ŒOi � is unbranchedg:

Let Gb be the subgroup generated by f�igi2ƒb
and let Gu be the subgroup generated

by f�igi2ƒu
. We denote by Gi the subgroup generated by f�1 � � � �i�1; �iC1 � � � �ng.

Claim 1 For any  2G , ŒOi � is branched if and only if Œ .Oi/� is branched.

Proof Writing  D �i1
�i2
� � � �ik

, we prove it by induction on k . The case k D 0

is trivial. In general, suppose ŒOi � is branched if and only if Œ�i2
� � � �ik

.Oi/� is
branched. It follows from the way we construct F that Œ�i1

�i2
� � � �ik

.O/� is the
mirror of Œ�i2

� � � �ik
.O/�. So by Lemma 5-10, Œ�i1

�i2
� � � �ik

.Oi/� is branched if and
only if Œ�i2

� � � �ik
.Oi/� is branched, thus the claim is true.

Claim 2 ŒA��

� [
2Gu

 .O/

�
:

Proof If ŒOi � is branched, by Lemma 5-9 there exists a subcomplex Mi isometric to
.R�0/

n�1�R such that ŒMi �\ŒF �D ŒO �. By Lemma 5-7 we can find a top-dimensional
flat Fi such that ŒMi �� ŒFi �. Since Fi\F ¤∅, by Lemma 2-10 ŒF\Fi �D ŒF �\ ŒFi �.
Note that F \ Fi is a convex subcomplex of F with jŒF \ Fi � \ Œ�i.O/�j D 0, so
ŒF \Fi ��

�S
2Gi

 .O/
�
. Recall that ŒA� is a minimal essential element, so

ŒA�� ŒF �\

� \
i2ƒb

ŒFi �

�
D

\
i2ƒb

.ŒFi �\ ŒF �/�
\

i2ƒb

� [
2Gi

 .O/

�
D

� [
2Gu

 .O/

�
:

Claim 3
� [
2Gu

 .O/

�
� ŒA�:
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Proof First we need the following observation. Let ŒP1� and ŒP2� be two different
top-dimensional orthant complexes. Suppose each ŒQ� 2Q.X / satisfies the property
that either ŒP1�� ŒQ� and ŒP2�� ŒQ�, or ŒP1�ª ŒQ� and ŒP2�ª ŒQ�. Then this property
is also true for each element in KQ.X /. To see this, let AP1;P2

.X / be the collection of
elements in A.X / which satisfy this property. Then one readily verifies that AP1;P2

.X /

is closed under union, intersection and subtraction. Moreover, Q.X / � AP1;P2
.X /.

Thus KQ.X /�AP1;P2
.X /.

Pick an unbranched face ŒOi �. By Lemma 4-16, Equation (4-34) and Remark 4-36, for
every top-dimensional quasiflat Q with ŒO �� ŒQ�, there exists another top-dimensional
orthant complex O 0 such that ŒO 0�� ŒQ� and @T O 0\@T OD @T Oi . This together with
Lemma 2-10 (see also Remark 2-13) imply ŒO �\ ŒO 0�D ŒOi �, thus ŒO 0�D Œ�i.O/� and
Œ�i.O/�� ŒQ� (recall that ŒOi � is unbranched). Similarly, one can prove if Œ�i.O/�� ŒQ�

for a top-dimensional quasiflat Q, then ŒO �� ŒQ�. It follows from the above observation
that Œ�i.O/�� ŒA� for i 2ƒu .

Let  2 Gu . Write  D �i1
�i2
� � � �ik

with ij 2 ƒu for 1 � j � n. We will prove
Claim 3 by induction on k . The case k D 1 is already done by the previous paragraph.
In general, we assume Œ�i1

�i2
� � � �ik�1

.O/�� ŒA�. Note that ŒO �\ Œ�ik
.O/�D ŒOik

�,
where ŒOik

� is unbranched, so

Œ�i1
�i2
� � � �ik�1

.O/�\ Œ�i1
�i2
� � � �ik

.O/�D Œ�i1
�i2
� � � �ik�1

.Oik
/�.

Claim 1 implies Œ�i1
�i2
� � � �ik�1

.Oik
/� is also unbranched, so Œ�i1

�i2
� � � �ik

.O/�� ŒA�

by the same argument as in the previous paragraph.

Claim 2 and Claim 3 imply
�S

2Gu
 .O/

�
D ŒA�. So jŒA�j D jGuj, where jGuj

is the order of Gu . Now the first assertion of the lemma follows. Moreover, for
any  2 G , let ŒA � 2 KQ.W / be the unique minimal essential element such that
Œ .O/� � ŒA �. Claim 1 implies fŒ .Oi/�gi2ƒb

and fŒ .Oi/�gi2ƒu
are the branched

faces and unbranched faces of Œ .O/� respectively. By the same argument as in
Claim 2 and Claim 3, we can show ŒA � D

�S
 02Gu

 0.O/
�
, where Gu denotes

the corresponding coset of Gu . Since there are jGj=jGuj cosets of Gu , the second
assertion of the lemma also follows.

Proof of Lemma 5-5 If jŒA�j D 2n , by Corollary 5-8 we know there exists a top-
dimensional flat F such that ŒA� � ŒF �, so actually ŒA� D ŒF �. Then f .A/ is a
top-dimensional quasiflat, thus jf].ŒA�/j � 2n . However, f].ŒA�/ is also minimal
essential, so by Corollary 5-8 we actually have jf].ŒA�/j D 2n D jŒA�j. Let g be a
quasi-isometry inverse of f . If ŒA0� 2 KQ.W2/ is a minimal essential element, then
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by the same argument, we know that jŒA0�j D 2n implies jg].ŒA0�/j D 2n D jŒA0�j. So
jŒA�j D 2n if and only if jf].ŒA�/j D 2n for minimal essential element ŒA� 2 KQ.W1/.

In general, we assume inductively that jŒA�j D k if and only if jf].ŒA�/j D k for any
k � 2n�iC1 and any minimal essential element ŒA�2KQ.W1/ (we are doing induction
on i ). If ŒB1� 2 KQ.W1/ is a minimal essential element with jŒB1�j D 2n�i , then by
Lemma 5-12, we can find a top-dimensional flat F and another 2i�1 minimal essential
elements fŒBj �g

2i

jD2
such that jŒBj �j D jŒB1�j and

(5-13) ŒF �D

2i[
jD1

ŒBj �:

Since f .F / is a top-dimensional flat, we have

(5-14) jf].F /j D

ˇ̌̌̌
f]

� 2i[
jD1

ŒBj �

�ˇ̌̌̌
D

ˇ̌̌̌ 2i[
jD1

f].ŒBj �/

ˇ̌̌̌
D

2iX
jD1

jf].ŒBj �/j � 2n:

But our induction assumption implies

(5-15) jf].ŒBj �/j< 2n�iC1:

Since f].ŒBj �/ is minimal essential element for each j , Equation (5-15) together with
assertion (1) of Lemma 5-12 imply

(5-16) jf].ŒBj �/j � 2n�i :

Now (5-14) and (5-16) imply

(5-17) jŒBj �j D jf].ŒBj �/j D 2n�i

for all j . By considering the quasi-isometry inverse, we know jŒB�j D 2n�i if and only
if jf].ŒB�/j D 2n�i for minimal essential element ŒB� 2 KQ.W1/. By Lemma 5-12(1)
and our induction assumption, we have actually proved that jŒB�j D k if and only if
jf].ŒB�/j D k for any k � 2n�i and any minimal essential element ŒB� 2KQ.W1/.

5.3 Application to right-angled Coxeter groups and Artin groups

5.3.1 The right-angled Coxeter group case For a finite simplicial graph � with
vertex set fvigi2I , there is an associated right-angled Coxeter group (RACG), denoted
by C.�/, with the following presentation:

hfvigi2I j v
2
i D 1 for all i I Œvi ; vj �D 1 if vi and vj are joined by an edgei:
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The group C.�/ has a nice geometric model D.�/, called the Davis complex. The
1–skeleton of D.�/ is the Cayley graph of C.�/ with edges corresponding to vi , v�1

i

identified. For n� 2, the n–skeleton D.n/.�/ of D.�/ is obtained from D.n�1/.�/

by attaching an n–cube whenever one finds a copy of the .n�1/–skeleton of an n–cube
inside D.n�1/.�/. This process will terminate after finitely many steps and one obtains
a CAT.0/ cube complex where C.�/ acts properly and cocompactly.

The action of C.�/ on D.�/ is not free; however, D.�/ can be realized as the
universal cover of a compact cube complex. The following construction is from [15].
Let feigi2I be the standard basis of RI and let �I D Œ0; 1�I �RI be the unit cube
with the standard cubical structure. Let F.�/ be the flag complex of � . For each
simplex �� F.�/, let R� be the linear subspace spanned by feigvi2� . Define

K.�/D
[
�

˚
faces of �I parallel to R�

	
;

where � varies among all simplices in F.�/. Then the Davis complex D.�/ is exactly
the universal cover of K.�/; see [15, Proposition 3.2.3].

One can verify that K.�/ is weakly special. In order to apply Theorem 5-4 in a
nontrivial way, we need the following extra condition:

(�) There is an embedded top-dimensional hyperoctahedron in F.�/:

One can check there exists a top-dimensional flat in D.�/ if and only if (�) is true.

Corollary 5-18 Let �1 and �2 be two finite simplicial graphs satisfying (�). If
�W D.�1/! D.�2/ is an .L;A/–quasi-isometry, then dim.D.�1// D dim.D.�2//.
Moreover there is a constant D DD.L;A/ such that for any top-dimensional flat F1

in D.�1/, we can find a flat F2 in D.�2/ such that

dH .�.F1/;F2/ <D:

Proof It suffices to show that dim.D.�1// D dim.D.�2//. The rest follows from
Theorem 5-4 and the above discussion.

We can assume the quasi-isometry � is defined on the 0–skeleton of D.�1/. Since
D.�2/ is CAT.0/, we can extend � skeleton by skeleton to obtain a continuous quasi-
isometry. Similarly, we assume the quasi-isometry inverse �0 is also continuous. Since
� and �0 are proper, there are induced homomorphisms for the proper homology
��W H

p
�.D.�1//!H

p
�.D.�2// and �0�W H

p
�.D.�2//!H

p
�.D.�1//; see Section 3.1.

Note that the geodesic homotopy between �0 ı� (or � ı�0 ) and the identity map is
proper, so �� ı�0� D Id and �0� ı�� D Id. Hence �� is an isomorphism.
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By symmetry, it suffices to show dim.D.�1// � dim.D.�2//. If dim.D.�1// <

dim.D.�2//, then H
p
n.D.�1// is trivial (n D dim.D.�2//) since there are no n–

dimensional cells in D.�1/. On the other hand, (�) implies there is a top-dimensional
flat in D.�2/, thus H

p
n.D.�2// is nontrivial, which yields a contradiction.

5.3.2 The right-angled Artin group case Recall that for every simplicial graph � ,
there is a corresponding RAAG G.�/. Suppose xX .�/ is the Salvetti complex of G.�/.
Then the 1–cells and 2–cells of xX .�/ are in 1–1 correspondence with the vertices and
edges in � receptively. The closure of each k –cell in xX .�/ is a k –torus, which we
call a standard k –torus. One can verify that the Salvetti complex xX .�/ is a weakly
special cube complex.

We label the vertices of � by distinct letters (they correspond to the generators of G.�/),
which induces a labeling of the edges of the Salvetti complex. We choose an orientation
for each edge in the Salvetti complex and this gives us a directed labeling of the edges
in X.�/. If we specify some base point v 2X.�/ (here v is a vertex), then there is a
1–1 correspondence between words in G.�/ and edge paths in X.�/ which start at v .

A subgraph � 0 � � is a full subgraph if there does not exist an edge e � � such that
the two endpoints of e belong to � 0 but e ª � 0 . In this case, there is an embedding
xX .� 0/ ,! xX .�/ which is locally isometric. If pW X.�/! xX .�/ is the universal cover,

then each connected component of p�1. xX .� 0// is a convex subcomplex isometric
to X.� 0/. Following [8], we call these components standard subcomplexes associated
with � 0 . Note that there is a 1–1 correspondence between standard subcomplexes
associated with � 0 and left cosets of G.� 0/ in G.�/. A standard k –flat is the standard
complex associated with a complete subgraph of k vertices. When k D 1, we also call
it a standard geodesic.

Given a subcomplex K �X.�/, we denote the collection of labels of edges in K by
label.K/ and the corresponding collection of vertices in � by V .K/.

Let V � � be a set of vertices. We define the orthogonal complement of V , denoted
by V ? , to be the set fw 2 � j d.w; v/D 1 for any v 2 V g.

The following theorem follows from Theorem 5-4.

Theorem 5-19 Let �1 , �2 be finite simplicial graphs, and let �W X.�1/! X.�2/

be an .L;A/–quasi-isometry. Then dim.X.�1//D dim.X.�2//. Moreover there is a
constant D DD.L;A/ such that for any top-dimensional flat F1 in X.�1/, we can
find a flat F2 in X.�2/ such that

dH .�.F1/;F2/ <D:
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One can argue as in Corollary 5-18 or using the invariance of cohomological dimension
to show dim.X.�1//D dim.X.�2//.

Using Theorem 5-19, we can set up some immediate quasi-isometry invariants for
RAAGs. Let F.�/ be the flag complex of � . We will assume nD dim.F.�// in the
following discussion, then dim.X.�//D nC 1.

We construct a family of new graphs fGd .�/g
n
dD1

, where the vertices of Gd .�/ are
in 1–1 correspondence with the top-dimensional flats in X.�/, and two vertices v1

and v2 are joined by an edge if and only if the associated flats F1 and F2 satisfy
the condition that there exists an r > 0 such that Nr .F1/\Nr .F2/ contains a flat of
dimension d . Let Gs

d
.�/ be the full subgraph of Gd .�/ spanned by those vertices

representing standard flats of top dimension.

Lemma 2-10 and Theorem 5-19 yield the following result.

Corollary 5-20 Given a pair of finite simplicial graphs �1 , �2 and a quasi-isometry
qW X.�1/! X.�2/, there is an induced graph isomorphism q�W Gd .�1/! Gd .�2/

for 1� d � dim.F.�1//D dim.F.�2//.

The relation between Gd .�/ and � is complicated, but several basic properties of Gd .�/

can be directly read from � . We first investigate the connectivity of Gd .�/.

Lemma 5-21 Suppose 1� d � n. Then Gd .�/ is connected if and only if Gs
d
.�/ is

connected.

Proof For the ( direction, it suffices to show every point v 2 Gd .�/ is connected
to some point in Gs

d
.�/. Let Fv be the associated top-dimensional flats. Pick a

vertex x 2 Fv and suppose feig
nC1
iD1

are mutually orthogonal edges in Fv emanating
from x . Let e?

1
be the subspace of Fv orthogonal to e1 and let li be the unique

standard geodesic such that ei � li . Then by Lemma 5-6, the convex hull of l1 and
e?

1
is a top-dimensional flat Fv;1 . By construction, Fv;1 is adjacent to Fv in Gd .�/.

Now we can replace Fv by Fv;1 , and run the same argument with respect to l2 .
After finitely many steps, we will arrive at a standard flat F which is the convex hull
of flignC1

iD1
, moreover F is connected to Fv in Gd .�/. Note that F only depends on

the choice of base vertex x and the frame feig
nC1
iD1

at x . So we also denote F by
F D Fv.x; e1; : : : ; enC1/.

Now we prove the other direction. Pick a different base point x0 2 Fv and frame
fe0ig

nC1
iD1

at x0 . We claim Fv.x; e1; : : : ; enC1/ and Fv.x
0; e0

1
; : : : ; e0

nC1
/ are connected

in Gs
d
.�/. Note that:
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(1) If x0D x , e0i D ei for 2� i � nC1 and e0
1
D�e1 , then F and F 0 are adjacent

inside Gs
d
.�/.

(2) If x0 is the other end point of e1 , e0
1
D
��!
x0x and e0i is parallel to ei for 2� i�nC1,

then F D F 0 .

In general, we can connect x and x0 by an edge path ! � Fv and use the previous
two properties to induct on the combinatorial length of ! .

Let fFig
m
iD1

be a chain of top-dimensional flats representing an edge path in Gd .�/

such that F1 and Fm are standard flats. Pick i , let .Y;Y 0/ D I.Fi ;FiC1/ and let
�W Y ! Y 0 be the isometry induced by CAT.0/ projection as in Lemma 2-10(2). Since
Y contains a d –dimensional flat, for vertex x 2 Y there are d mutually orthogonal
edges feig

d
iD1

such that x 2 ei � Y . Let x0 D �.x/ and let e0i D �.ei/. We add more
edges such that feig

nC1
iD1

and fe0ig
nC1
iD1

become bases for Fi and FiC1 respectively. Let
Fi;i D Fi.x; e1; : : : ; enC1/ and FiC1;i D FiC1.x

0; e0
1
; : : : ; e0

nC1
/. By Lemma 2-14,

Fi;i and FiC1;i are adjacent in Gs
d
.�/ for 1� i �m�1. Moreover, for 2� i �m�1,

Fi;i and Fi;i�1 are connected by a path inside Gs
d
.�/ by the previous claim. Thus F1

and Fm are connected inside Gs
d
.�/.

Recall that the notion of k –gallery is defined in Definition 1-5.

Lemma 5-22 Gs
d
.�/ is connected if and only if � satisfies the following conditions:

(1) For any vertex v 2 F.�/, there is a top-dimensional simplex � � F.�/ such
that �\ v? contains at least d vertices.

(2) Any two top-dimensional simplices �1 and �2 in F.�/ are connected by a
.d�1/–gallery.

Proof For the only if part, pick vertex x 2 X.�/ and let �d;x be the full subgraph
of Gs

d
.�/ generated by those vertices representing top-dimensional standard flats

containing x . Then there is a canonical surjective simplicial map �W Gs
d
.�/! �d;x

by sending any top-dimensional standard flat F to the unique standard flat F 0 with
x 2 F 0 and label.F /D label.F 0/. Since Gs

d
.�/ is connected, �d;x is also connected

and (2) is true.

To see (1), suppose there exists a vertex v 2 F.�/ such that for any top-dimensional
simplex ��F.�/, �\v? contains less than d vertices. Pick a vertex x1 2X.�/. If
e �X.�/ is the unique edge such that V .e/D v and x1 2 e , then by our assumption,
e is not contained in any top-dimensional standard flat. This is also true for any edge
parallel to e . Let h be the hyperplane dual to e . Suppose x2 is the other endpoint of e .
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For i D 1; 2, let Fi be the top-dimensional standard flat such that xi 2 Fi . Then F1

and F2 are separated by h. Since F1 and F2 are joined by a chain of top-dimensional
standard flats such that each flat in the chain has trivial intersection with h (otherwise
some edge parallel to e would be contained in a top-dimensional standard flat), we can
find F 0

1
and F 0

2
in this chain which are adjacent in Gs

d
.�/ and separated by h. Let

.Y1;Y2/DI.F 0
1
;F 0

2
/. Then for a vertex y 2Y1 , there are d mutually orthogonal edges

feig
d
iD1

such that y 2 ei � Y1 . Let hi be the hyperplane dual to ei . Then hi \h¤∅
for 1� i � d by Lemma 2-14, hence in � we have d.V .ei/;V .e//D d.V .ei/; v/D 1

for 1� i � d , which yields a contradiction.

For the other direction, note that (2) implies that �d;x is connected for any vertex
x2X.�/ and (1) implies that for adjacent vertices x1;x22X.�/, there exist vi 2�d;xi

for i D 1; 2 such that v1 and v2 are either adjacent or identical in Gs
d
.�/, thus Gs

d
.�/

is connected.

The next result follows from Corollary 5-20, Lemma 5-21 and Lemma 5-22.

Theorem 5-23 Given G.�1/ and G.�2/ which are quasi-isometric to each other, for
1� d � dim.F.�1//, the graph �1 satisfies conditions (1) and (2) in Lemma 5-22 if
and only if �2 also satisfies these conditions.

Now we turn to the diameter of G1.�/.

If � admits a nontrivial join decomposition �D�1ı�2 , then diam.G1.�//� 2. To see
this, take two arbitrary top-dimensional flats F1 and F2 in X.�/, then Fi DAi �Bi ,
where Ai and Bi are top-dimensional flats in X.�1/ and X.�2/ respectively for
i D 1; 2; see [30, Lemma 2.3.8]. Let F DA1�B2 . Then diam.Nr .Fi/\Nr .F //D1

for some r > 0 and i D 1; 2, thus diam.G1.�// � 2. Our next goal is to prove the
following converse.

Lemma 5-24 If diam.G1.�//�2 and if � is not one point, then � admits a nontrivial
join decomposition � D �1 ı�2 .

In the first part of the following proof, we will use the argument in [14, Section 4.1].

Proof Following [14, Section 4.2], let �c be the complement graph of � . So �c

and � have the same vertex set, and two vertices are adjacent in �c if and only if they
are not adjacent in � . It suffices to show �c is disconnected.

We argue by contradiction and suppose �c is connected. Pick a top-dimensional
simplex � in the flag complex F.�/ of � , where we identify � with the 1–skeleton
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of F.�/. Note that � corresponds to a top-dimensional standard torus T� in the
Salvetti complex. For any vertex x 2X.�/, we denote the unique standard flat in X.�/

which contains x and covers T� by F�;x .

If � does not contain vertices other than those in �, then we are done; otherwise we
can find a vertex zv 2 � with

(5-25) zv 62�:

Let ! be an edge path of �c which starts at zv , ends at zv and travels through every
vertex in �c . By recording the labels of consecutive vertices in ! , we obtain a word W .
Let W 0 be the concatenation of eight copies of W .

Pick a vertex x1 2X.�/ and let l be the edge path which starts at x1 and corresponds
to the word W 0 . Let x2 be the other endpoint of l . Note that l is actually a geodesic
segment by our construction of W 0 . For i D 1; 2, let Fi D F�;xi

and let wi be the
vertex in G1.�/ corresponding to Fi . We claim d.w1; w2/ > 2.

If d.w1; w2/� 2, then there exists a top-dimensional flat F such that

(5-26) diam.Nr .Fi/\Nr .F //D1

for some r > 0 and i D 1; 2. Let .Y1;Y /D I.F1;F /. By (5-26) and Lemma 2-10,
Y1 is not a point (and neither is Y ) and we can identify the convex hull of Y [Y1 with
Y1 � Œ0; d.F1;F /�. Pick an edge ea � Y1 and let K1 be the strip ea � Œ0; d.F1;F /�

inside Y1� Œ0; d.F1;F /�. By considering the pair F and F2 , we can similarly find an
edge eb � F2 and a strip K2 isometric to eb � Œ0; d.F2;F /� which joins F and F2 .
See Figure 4.

F F1

K1 K2

F2

ea eb

Figure 4

We parametrize the geodesic segment l D x1x2 by arc length such that l.0/ D v1 .
Assume l.N / D x2 . Let hi be the hyperplane dual to the edge l.i � 1/l.i/ for
1� i �N . Note that

(5-27) hj separates hi and hk for i < j < k:

Moreover, each hi separates F1 and F2 by (5-25), hence also separates ea and eb .
Consider the set K1[F [K2 , which is connected and contains ea and eb , so each hi

must have nontrivial intersection with at least one of K1 , F and K2 .
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We claim each of K1 , F and K2 could intersect at most 2M hyperplanes from the
collection fhig

N
iD1

, where M is the length of word W (and M > 1 since � contains
more than one vertex). This will yield a contradiction since N D 8M . We prove the
claim for K1 ; the case of K2 is similar.

Let ha be the hyperplane dual to ea and let ƒD f1� i �N j ha\ hi ¤∅g. Then

(5-28) f1� i �N jK1\ hi ¤∅g �ƒ:

If ha D hi0
for some i0 , then by (5-27), hi0

is the only hyperplane in fhig
N
iD1

intersecting K1 . Hence we are done in this case. Now we assume ha 62 fhig
N
iD1

. Let
ei be an edge dual to hi . Then it follows from ha\ hi ¤∅ that for any i 2ƒ,

(5-29) d.V .ei/;V .ea//D 1

in � . If the claim for K1 is not true, then (5-28) implies ƒ has cardinality bigger
than 2M ; moreover, it follows from (5-27) that if i 2ƒ and j 2ƒ, then k 2ƒ for
any i � k � j . By the construction of the word W , we know every vertex of � is
contained in the collection fV .ei/gi2ƒ , which contradicts (5-29).

Now we prove the claim for F . Suppose F \ hi ¤ ∅. Then V .ei/ 2 �. By the
construction of W 0 , we know there exist positive integers a; a0 < M such that
d.V .eiCa/;V .ei// � 2 and d.V .ei�a0/;V .ei// � 2 in � . Then F \ hj D ∅ for
j D iCa and j D i �a0 . By (5-27), F \hj D∅ for j > iCa and j < i �a0 . Thus
the claim is true for F .

Theorem 5-30 The following are equivalent:

(1) diam.G1.�// <1.

(2) diam.G1.�//� 2.

(3) � admits a nontrivial join decomposition or � is one point.

Moreover, these properties are quasi-isometry invariants for right-angled Artin groups.

Note that .1/) .3/ follows by considering the concatenation of arbitrarily many
copies of W in Lemma 5-24 and applying the same argument.

Remark 5-31 It is shown in [2] and [1] that G.�/ has linear divergence if and only if
� is a nontrivial join, which also implies that � being a nontrivial join is quasi-isometry
invariant. Moreover, their results together with [26, Theorem B and Proposition 4.7]
implies the following stronger statement.

Given X DX.�/ and X 0DX.� 0/, let � D�ı�1ı� � �ı�k be the join decomposition
such that � is the maximal clique factor, and each �i does not allow nontrivial further
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join decomposition. Similarly, let � D�0 ı� 0
1
ı � � � ı� 0

k0
. Let X DRn�

Qk
iD1 X.�i/

and let X 0 D Rn0 �
Qk0

jD1 X.� 0j / be the corresponding product decomposition. If
�W X !X 0 is an .L;A/ quasi-isometry, then nD n0 , k D k 0 and there exist constants
L0 DL0.L;A/, A0 DA0.L;A/, D DD.L;A/ such that after re-indexing the factors
in X 0 , we have an .L0;A0/ quasi-isometry �i W X.�i/!X.� 0i/ so that

d

�
p0 ı�;

kY
iD1

�i ıp

�
<D;

where pW X !
Qk

iD1 X.�i/ and p0W X 0!
Qk

iD1 X.� 0i/ are the projections.

More generally, let X and X 0 be locally compact CAT.0/ cube complexes which admit
a cocompact and essential action. Let X D

Qn
jD1 Zj �

Qk
iD1 Xi be the finest product

decomposition of X , where the Zj are exactly the factors which are quasi-isometric
to R. Suppose Z D

Qn
jD1 Zj . Then X DZ �

Qk
iD1 Xi . Similarly, we decompose

X 0 as X 0DZ0�
Qk0

iD1 X 0i . Then any quasi-isometry between X and X 0 respects such
product decompositions in the sense of the previous paragraph. This is a consequence
of [26, Theorem B], [26, Proposition 4.7] and [12, Theorem 6.3].

Appendix: Top-dimensional support sets in spaces of finite
geometric dimension, and application to Euclidean buildings

In this section we adjust previous arguments to study the structure of top-dimensional
quasiflats in Euclidean buildings and prove the following result.

Theorem A-1 If Y is a Euclidean building of rank n and Œ� � 2H
p
n;n.Y /, then there

exist finitely many Weyl cones fWig
h
iD1

such that

dH

�
SŒ��;

h[
iD1

Wi

�
<1:

Moreover, we can assume Wi � SŒ�� for all i .

For the case of discrete Euclidean buildings, our previous method goes through without
much modification. One way to handle the nondiscrete case is to use [30, Lemma 6.2.2],
which says the support set of a top-dimensional class locally looks like a polyhedral
complex, to reduce to the discrete case. But this lemma relies on the local structure
of Euclidean buildings. We introduce another way, based on the generalization of
results in Section 3.2 to CAT.0/ spaces of finite geometric dimension (or homological
dimension), which is of independent interest.
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Lemma A-2 Lemma 3-4 is true under the assumption that Y is a CAT.0/ space of
homological dimension � n.

Proof Let �W En! Y be a top-dimensional .L;A/–quasiflat. We can assume � is
Lipschitz as before since Y is CAT.0/. Let ŒEn� be the fundamental class of En . Pick
� D ��.ŒEn�/ and let S D SŒ�� be the support set. Pick � > 0, suppose U is the
1–neighborhood of Im� and suppose fU�g�2ƒ is a covering of U , where each U�
is an open subset of U with diameter < 1. Since every metric space is paracompact,
we can assume this covering is locally finite and define a continuous map 'W U ! En

via the nerve complex of this covering as in Lemma 4-16, such that there exists a
constant C such that

(A-3) d.' ı�.x/;x/ < C

for any x 2 En , thus '�.Œ� �/ D ŒEn�. Then we have SŒEn� D En � '.SŒ��/ by
Lemma 3-2. It follows that dH .S; Im�/ <D DD.L;A/.

Remark A-4 In the above proof, we need to define ' in an open neighborhood of
Im� since SŒ��;Im� might be strictly smaller than SŒ��;Y . Also we do not need to
bound the dimension of the nerve complex of fU�g�2ƒ as in Lemma 4-16 since Y is
CAT.0/, while in Lemma 4-16, the target space CK is linearly contractible with the
contractibility constant possibly greater than 1.

Recall that in a polyhedral complex, every top-dimensional homology class can be
represented by a cycle with image inside the support of the homology class. However,
we do not know if this is still true in the case of an arbitrary metric space of homological
dimension n. The following result helps us to get around this point.

Lemma A-5 Let Y be a metric space of homological dimension �n and Œ� �2H
p
n.Y /.

If O is an open neighborhood of SŒ�� , then there exists a proper cycle � 0 such that
Œ� �D Œ� 0� and Im � 0 �O .

Proof We first prove a relative version of the above lemma for the usual homology
theory. Let V �U be open sets in Y . Pick Œ˛�2Hn.U;V / and let KDSŒ˛� . We claim
for any open neighborhood O �K , there exist chains ˇ and  such that Imˇ � U ,
Im  � V [O and ˛ D @ˇC  .

Let K0 D Im˛ n .V [ O/. For every point x 2 K0 , there exists �.x/ > 0 such
that xB.x; 2�.x// � U n Im @˛ and Œ˛� is trivial in Hn.U;U n xB.x; 2�.x///. Since
K0 is compact, we can find finitely many points fxig

N
iD1

in K0 such that K0 �SN
iD1 B.xi ; �.xi//. Suppose UK 0 D

SN
iD1 B.xi ; �.xi// and W D V [ O [ UK 0 .
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Then Im˛�W and Œ˛� is trivial in Hn.U;W /. Let W 0DW n
�SN

iD1
xB.xi ; 2�.xi//

�
.

Then Im @˛ �W 0 � V [O , so it suffices to show Œ˛� is trivial in Hn.U;W
0/, but this

follows from the Mayer–Vietoris argument in Lemma 3-2.

Now we turn to the case of Œ� � 2H
p
n.Y /. Pick a base point p 2 Y , put

U1 WD B.p; 4/; Ui WD B.p; 3i
C 1/ n xB.p; 3i�1

� 1/ for i > 1I

U 01 WD Y n xB.p; 3/; U 0i WD B.p; 3i�1/[ .Y n xB.p; 3i// for i > 1:

By barycentric subdivision, we can assume every singular simplex in � has image of
diameter � 1

3
.

Set �0D � , V0DY and Vi DY n xB.p; 3i/ for i � 1. Given �i with Im �i � .O[Vi/

(this is trivially true for iD0), we define �iC1 inductively as follows. First subdivide �i

to get a proper cycle � 0
iC1

such that

� Im �i D Im � 0
iC1

,
� � 0

iC1
D �i C @ˇiC1 with ImˇiC1 � UiC1 , and

� � 0
iC1
D � 0

iC1;1
C � 0

iC1;2
for Im � 0

iC1;1
� UiC1 and Im � 0

iC1;2
� U 0

iC1
.

It follows that Im @� 0
iC1;1

� UiC1 \U 0
iC1

and Im @� 0
iC1;1

� Im �i � .O [ Vi/. So
we can view Œ� 0

iC1;1
� as an element in Hn.UiC1;UiC1 \ U 0

iC1
\ .O [ Vi//. Then

by the previous claim, there exists a chain ˇ0
iC1

with Imˇ0
iC1
� UiC1 such that

Im.� 0
iC1;1

C @ˇ0
iC1

/� F , where

F D .UiC1\U 0iC1\ .O [Vi//[ .O \UiC1/D .UiC1\U 0iC1\Vi/[ .O \UiC1/

D .UiC1\ViC1/[ .O \UiC1/

D .O [ViC1/\UiC1:

Let �iC1 D �i C @.ˇiC1Cˇ
0
iC1

/. Then

Im �iC1 � .F [ Im � 0iC1;2/� .F [ .O [Vi//� .O [ViC1/

and the induction goes through.

Let � 0D �C
P1

iD1 @.ˇiCˇ
0
i/. Since Im.ˇiCˇ

0
i/�Ui , the infinite summation makes

sense and � 0 is a proper cycle. Also Im � 0 �O by construction.

Remark A-6 The above proof also shows that Œ� � 2H
p
n.Y / is nontrivial if and only

if SŒ�� ¤∅. This is not true for lower-dimensional cycles.

Corollary A-7 Let Z be a CAT.1/ space of homological dimension n. If Œ� � 2
Hn.Z/ is a nontrivial element, then for every point x 2Z , there exists a point y 2 SŒ��
such that d.x;y/D � .
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Proof We argue by contradiction and assume there exists a point x 2 Z such that
SŒ���B.x; �/. Then by Lemma A-5, there exists a cycle � 0 such that Im � 0�B.x; �/

and Œ� 0�D Œ� �. However, B.x; �/ is contractible and Œ� 0� must be trivial, which yields
a contradiction.

Let Y be a CAT.0/ space. Pick p 2 Y and let TpY be the tangent cone at p . Denote
the base point of TpY by o. Recall that there are logarithmic maps logpW Y ! TpY

and logpW Y nfpg!†pY . By [31, Theorem 3.5] (see also [33]), logpW Y nfpg!†pY

is a homotopy equivalence. Thus we get:

Lemma A-8 The map .logp/�W H�.Y;Y nfpg/!H�.TpY;TpY nfog/ is an isomor-
phism.

We need a simple observation about support sets in cones before we proceed. Let Z

be a metric space and let CZ be the Euclidean cone over Z with base point o. Pick a
Œ� � 2Hi.CZ;CZ nB.o; r//. Recall that there is an isomorphism

@W Hi.CZ;CZ nB.o; r//!Hi�1.Z/

induced by the boundary map.

Lemma A-9 Suppose S D S@Œ��;Z and suppose CS is the cone over S inside CZ .
Then SŒ��;CZ;CZnB.o;r/ D CS \B.o; r/.

The next lemma is an immediate consequence of [28, Theorem A].

Lemma A-10 If Z is a CAT.�/ space of homological dimension � n, then for any
p 2Z , †pZ is of homological dimension � n� 1.

Now we are ready to prove the geodesic extension property for top-dimensional support
sets. The argument is similar to [9, Lemma 3.1].

Lemma A-11 Let Y be a CAT.0/ space of homological dimension n. Pick an element
Œ� � 2H

p
n.Y / and let S D SŒ�� . Then for a geodesic segment pq � Y with q 2 S , there

exists a geodesic ray q� � S such that pq and q� fit together to form a geodesic ray.

Proof First we claim that for any � > 0, there exists a point z 2 S \S.p; �/ such that
the concatenation of pq and qz is a geodesic. Let

logqW .Y;Y nB.q; 2�//! .TqY;TqY nB.o; 2�//;
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and let ˛D logq.�/. By Lemma A-10, the homological dimension of TpY is bounded
above by n. Then by Lemma 3-2,

(A-12) SŒ˛�;TqY;TqY nB.o;2�/ � f .SŒ��;Y;Y nB.q;2�//D f .S \B.q; 2�//:

Let @W Hn.TqY;TqY nB.o; 2�//!Hn�1.†qY / be the isomorphism and let Œˇ�D@Œ˛�.
Then Œˇ� is nontrivial in Hn�1.†qY / by Lemma A-8 and this commuting diagram:

Hn.Y;Y nB.q; 2�//
.logq/�
����! Hn.TqY;TqY nB.o; 2�//??y ??y

Hn.Y;Y n fqg/
.logq/�
����! Hn.TqY;TqY n fog/

Let CSŒˇ� be the Euclidean cone over SŒˇ� �†qY inside TqY . Then

(A-13) CSŒˇ�\B.o; 2�/D SŒ˛�;TqY;TqY nB.o;2�/ � f .S \B.q; 2�//

by (A-12) and Lemma A-9. Moreover, by Corollary A-7 and Lemma A-10, there exists
an x 2 SŒˇ� such that

(A-14) d.x; logq.p//D �;

where logqW Y n fqg !†qY . So the claim follows from (A-13).

By repeatedly applying the above claim, for each positive integer n we can obtain a
unit-speed geodesic cnW Œ0; ��! Y such that c.0/D q , c.m�=2n/ 2 S for any integer
0�m� 2n and logq.c.�//D x , where x is the point in (A-14). Note that S\ xB.q; �/

is compact, so we assume without loss of generality that r D limn!1 cn.�/. If
cW Œ0; ��! Y is the unit-speed geodesic joining q and r , then cn converges uniformly
to c , which implies c.Œ0; ��/� S . Moreover, logq.c.�//D x . Thus the concatenation
of pq and qr is a geodesic by (A-14). Now we can repeatedly apply this �–extension
procedure to obtain the geodesic ray as required.

In general, the above set S\ xB.q; �/ is not equal to the geodesic cone Cq.S\S.q; �//

based at q over S \S.q; �/ no matter how small � is. However, we have

lim
�!0

dGH
�

1
�
.Cq.S \S.q; �///;CSŒˇ�\ xB.o; 1/

�
D lim
�!0

dGH
�

1
�
.S \ xB.q; �//;CSŒˇ�\ xB.o; 1/

�
D 0:

Thus the tangent cone of S exists for every point in S .

Remark A-15 By the same proof, we know Lemma A-11 is still true if Y is an
Alexandrov space which has curvature bounded above and homological dimension D n.
In this case, p� is locally geodesic.
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Lemma A-16 Let Z be a CAT.1/ space of homological dimension � n and let
Œ� � 2 zHn.Z/ be a nontrivial class. Then the following assertions hold.

(1) Hn.SŒ��/�Hn.Sn/.

(2) Let V .n; r/ be the volume of r –ball in Sn . Then for any 0 � r �R < � and
any p 2 SŒ�� ,

1�
Hn.B.p; r/\SŒ��/

V .n; r/
�

Hn.B.p;R/\SŒ��/

V .n;R/
:

(3) If Hn.SŒ��/DHn.Sn/, then SŒ�� is an isometrically embedded copy of Sn .

Here Sn denotes the n–dimensional standard sphere with constant curvature 1.

Proof We claim there exists a 1–Lipschitz map from a subset of SŒ�� to a full-measure
subset of Sn . Let us assume this is true for i D n� 1. Pick p 2 SŒ�� , let S0 �†pZ

be the spherical suspension of †pZ and let o be one of the suspension points. Then
there is a well-defined 1–Lipschitz map logpW B.p; �/! S0 �†pZ sending p to o.
Let Œˇ� be the image of Œ� � under the map

zHn.Z/!Hn.Z;Z n fpg/!Hn.B.p; �/;B.p; �/ n fpg/

.logp/�
����!Hn.B.o; �/;B.o; �/ n fog/! zHn�1.†pZ/:

We can slightly adjust the proof of Lemma A-11 to show that

(A-17) logp.SŒ��\B.p; �//� .S0
�SŒˇ�/\B.o; �/:

The induction assumption implies that there are a subset K 2 SŒˇ� and a 1–Lipschitz
map f W K ! Sn�1 such that Hn�1.Sn�1 n f .K// D 0. Note that f induces a 1–
Lipschitz map zf W S0 �K! S0 �Sn�1 D Sn whose image also has full measure, thus
by (A-17), there exists K0 � SŒ�� such that the image of zf ı logpW K

0! Sn has full
measure. It follows that Hn.SŒ��/�Hn.Sn/.

The first inequality of (2) follows from (1) and (A-17). The second inequality follows
from Remark A-15 and the proof of [9, Corollary 3.3].

Now we prove (3). By Remark A-15, for every point x 2 SŒˇ� , there exists a geodesic
segment lx � SŒ�� emanating from p along the direction x , which has length D � .
Let A be the closure of

S
x2SŒˇ�

lx . Then A � SŒ�� and Hn.A/ � Hn.Sn/. Then
(2) implies that actually ADSŒ�� . Pick arbitrary q 2SŒ��\B.p; �/. Then there exists
a sequence fqng

1
nD1
�
S

x2SŒˇ�
lx such that limn!1 qn D q . Since qnp � SŒ�� by

construction, qp � SŒ�� . It follows that SŒ�� is � –convex in Y . Then SŒ�� can be
viewed as a compact and geodesically complete CAT.1/ space. By [35, Proposition 7.1],
SŒ�� is isometric to Sn .
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We can recover the monotonicity (3-11) and the lower density bound (3-12) from
Lemma A-11 and Lemma A-16, then we can define the group H

p
n;n.Y / as before when

Y is a CAT.0/ space of homological dimension � n and the rest of the discussion in
Section 3.2 goes through without any change. Recall that the homological dimension of
a CAT.0/ space is equal to its geometric dimension [28, Theorem A], so the following
result holds.

Theorem A-18 Let Y be a CAT.0/ space of geometric dimension n. Pick an element
Œ� � 2H

p
n;n.Y / and let S D SŒ�� . Then:

(1) Local property I Each point p 2 Y has a well-defined tangent cone TpY .

(2) Local property II S has the geodesic extension property in the sense of
Lemma 3-6.

(3) Monotonicity and lower density bound For all 0� r �R and p 2 Y ,

Hn.B.p; r/\S/

rn
�

Hn.B.p;R/\S/

Rn
:

If p 2 S , then
Hn.B.p; r/\S/� !nrn;

with equality only if B.p; r/\S is isometric to an r –ball in En . Here !n is
the volume of an n–dimensional Euclidean ball of radius 1.

(4) Asymptotic conicality I Let B.o; 1/ be the unit ball in CT S centered at the
cone point o. For any p 2 Y ,

lim
r!C1

dGH
�

1
r
.B.p; r/\S/;B.o; 1/

�
D 0:

Moreover, putting @p;r S WD f� 2 @T S j p� � B.p; r/[Sg, then

lim
r!C1

dH .@p;r S; @T S/D 0:

(5) Asymptotic conicality II For all ˇ > 0 there is an r <1 such that if x 2

S nB.p; r/, then

diam.Ant1.logx p;S// < ˇ;

where the diameter is with respect to the angular metric on @T Y .

Now we reinterpret the group H
p
n;n.Y /. Recall that there is another logarithmic map

logpW CT Y ! Y sending the base point o of CT Y to p 2 Y . Since logp is proper
and 1–Lipschitz, it induces a map H

p
n;n.CT Y /!H

p
n;n.Y /.
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Next we define a map in the other direction. Pick Œ� � 2 H
p
n;n.Y /, let S D SŒ�� be

the support set and let US be the 1–neighborhood of S . By Lemma A-5, we can
assume Im � �US . For � > 0, we define the map f�W US ! CT S as in Lemma 4-16.
To approximate f� by a continuous map, we choose a locally finite covering of
US by its open subsets which satisfies the diameter condition in Lemma 4-16, then
proceed as before to obtain a continuous map f�W US ! CT X . Here the image
may not stay inside CT S , however it is sublinearly close to CT S . Now we define
exp�.Œ� �/D lim�!0 f��.Œ� �/; note that f��.Œ� �/ does not depend on � when it is small.
Since (4-23) is still true, .logp/� ı exp� D Id.

To see that exp� ı.logp/� D Id, we follow the proof of (4-30); the only difference is
that we need to replace I� 0 there by the 1–neighborhood of Im � 0 , then use the nerve
complex of a suitable covering to approximate g� as we did for f� . So

.logp/�W H
p
n;n.CT Y /!H

p
n;n.Y /

is an isomorphism, with the inverse map exp� defined as above.

Let h�W CT Y ! CT Y be the homothety map with respect to the base point o and
a factor �. Then h� is properly homotopic to h1 for any 0 < � <1, so for any
Œˇ� 2H

p
i .CT Y /, we have h��.Œˇ�/D Œˇ� and h�.SŒˇ�/D SŒˇ� . It follows that every

cycle in H
p
i .CT Y / is conical. Thus the map

j W H
p
i .CT Y /!Hi.CT Y;CT Y n fog/!Hi�1.@T Y /

is an isomorphism with inverse given by the “coning off” procedure. It follows that the
map defined in (4-27) and (4-28) are isomorphisms, and the analogues of Corollary 4-33
and Remark 4-36 in the case of CAT.0/ spaces with finite homological dimension are
still true (again, for our argument to go through, we need to replace the set Iq in the
proof of Corollary 4-33 by some r –neighborhood of the image of q ). This discussion
can be summarized as follows.

Theorem A-19 Let qW Y ! Y 0 be a quasi-isometric embedding, where Y and Y 0 are
CAT.0/ spaces of geometric dimension � n. Then:

(1) The map @ WD j ı.exp�/W H
p
n;n.Y /!Hn�1.@T Y / is a group isomorphism, with

inverse given by the coning off map cW Hn�1.@T Y /!H
p
n;n.Y /; see (4-28).

(2) The map q induces a monomorphism q�W Hn�1.@T Y /!Hn�1.@T Y 0/. If q is
a quasi-isometry, then q� is an isomorphism.

(3) There exists a D0 > 0, depending on the quasi-isometry constants of q , such that

dH .q.SŒz��/;Sq�Œz��/ <D0

for any Œz�� 2H
p
n;n.Y /.
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We refer to the work of Kleiner and Lang [29] for a more general version of the above
theorem.

Remark A-20 Pick Œ� � 2Hn�1.@T Y /. Then by Lemma A-8 and Theorem A-19,

Sc.Œ��/ D fy 2 Y j Œ� � is nontrivial under .logy/�W Hn�1.@T Y /!Hn�1.†yY /g;

where c is the coning off map in (4-28).

Now we are ready to prove Theorem A-1. To avoid repetition, we will only sketch the
main steps.

Proof of Theorem A-1 If Y is a Euclidean building of rank n, it follows from [30,
Corollary 6.1.1] that the homological dimension of Y is less than or equal to n. This
also follows from [28, Theorem A] by noticing that †pY is a spherical building of
dimension n� 1 for any p 2 Y . Let Œ� � 2H

p
n;n.Z/.

Step 1 Let Œ˛�D exp�.Œ� �/ 2H
p
n;n.CT Y /. Since @T Y is a spherical building, SŒ˛� is

a cone over K , where K D
Sh

iD1 Ci and each Ci is a chamber in @T Y .

Step 2 Let Wi � Y be a Weyl cone such that @T Wi D Ci . Note that for any i ¤ j ,
there is an apartment of @T Y which contains Ci and Cj . Thus we can assume Wi

and Wj are contained in a common apartment of Y . So Wi and Wj satisfy inequalities
similar to (2-11). The quotient map

Fh
iD1 Ci!K induces a map 'W CK! Y which

is a quasi-isometric embedding as in Lemma 4-38. We can assume ' is continuous.
Put Œ� �D '�.ŒCK�/, where ŒCK� is the fundamental class of CK . Then it follows from
the proof of Lemma 4-46 that dH

�
SŒ��;

Sh
iD1 Wi

�
<1. Moreover, we can assume

that Wi � SŒ�� .

Step 3 It suffices to show that Œ� �D Œ� �. Pick p 2 Y . Note that there exists a D > 0

such that d.logp.x/; '.x// <D for any x 2 CK . Then

Œ� �D '�.ŒCK�/D .logp/�.Œ˛�/D ..logp/� ı exp�/.Œ� �/D Œ� �:

The following result is an immediate consequence of Lemma A-2 and Theorem A-1.

Corollary A-21 If Y is a Euclidean building of rank n and Q� Y is an n–quasiflat,
then there exist finitely many Weyl cones fWig

h
iD1

such that

dH

�
Q;

h[
iD1

Wi

�
<1:
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