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Homology of FI-modules

THOMAS CHURCH

JORDAN S ELLENBERG

We prove an explicit and sharp upper bound for the Castelnuovo–Mumford regularity
of an FI-module in terms of the degrees of its generators and relations. We use this
to refine a result of Putman on the stability of homology of congruence subgroups,
extending his theorem to previously excluded small characteristics and to integral
homology while maintaining explicit bounds for the stable range.

18G10, 20C30

1 Introduction

In recent years, there has been swift development in the study of various abelian
categories related, in one way or another, to stable representation theory; see Church,
Ellenberg and Farb [4], Church, Ellenberg, Farb and Nagpal [5], Sam and Snowden [14]
and Wiltshire-Gordon [16]. The simplest of these is the category of FI-modules
introduced in [4], which can be seen as a category of modules for a certain twisted
commutative algebra. A critical question about these categories is whether they are
noetherian; that is, whether a subobject of a finitely generated object is itself finitely
generated.1

The category of FI-modules over Z is noetherian [5, Theorem A], so any finitely
generated FI-module V can be resolved by finitely generated projectives. One can
ask for more — in the spirit of the notion of Castelnuovo–Mumford regularity from
commutative algebra, one can ask for a resolution of V whose terms have explicitly
bounded degree. Castelnuovo–Mumford regularity has proven to be a very useful
invariant in commutative algebra, and we expect the same to be the case in this twisted
commutative setting. In the present paper, we prove a strong bound for the Castelnuovo–
Mumford regularity of FI-modules, and explain how this regularity theorem allows us
to refine a result of Putman [12] on the homology of congruence subgroups. Although
much of the paper is homological-algebraic in nature, the heart of the main results is
Theorem E; this is a basic structure theorem for FI-modules, whose proof at the core

1In some contexts, such abelian categories are called “locally noetherian”, the term “noetherian” being
reserved for categories where every object is noetherian. We use “noetherian” here in the broader sense,
but we acknowledge that not every FI-module is finitely generated.
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boils down to a combinatorial argument on injections from Œd � to Œn� involving certain
sets of integers enumerated by the Catalan numbers.

The theorems we obtain with these combinatorial methods naturally hold for FI-
modules with coefficients in Z. This is in contrast with earlier representation-theoretic
approaches, which tend to apply only to FI-modules with coefficients in a field, usually
required to have characteristic 0. On the other hand, the approach via representation
theory provides a very beautiful theory unifying the study of many different categories
(see eg Sam and Snowden [13]), while the arguments of the present paper are quite
specific to FI-modules. It would be very interesting to understand the extent to which
the combinatorics in Section 3 can be generalized beyond FI-modules to the family of
stable representation categories considered by Sam and Snowden.

Notation FI is the category of finite sets and injections; an FI-module W is a functor
W W FI! Z–Mod. Given a finite set T , we write WT for W.T /. For every n 2N D
f0; 1; 2; : : : g, we set Œn� WD f1; : : : ; ng, and we write Wn for WŒn� DW.Œn�/.

When W is an FI-module, we write degW for the largest k 2N such that Wk ¤ 0. To
include edge cases such as W D 0, we formally define degW 2 f�1g[N [f1g by

degW WD inf
˚
k 2 f�1g[N [f1g

ˇ̌
Wn D 0 for all n > k 2N

	
:

FI-homology The functor H0W FI-Mod! FI-Mod captures the notion of “minimal
generators” for an FI-module. Given an FI-module W , the FI-module H0.W / is the
quotient of W defined by

H0.W /T WDWT = span.imf�W WS !WT j f W S ,! T; jS j< jT j/:

This is the largest FI-module quotient of W such that all maps f�WH0.W /S!H0.W /T
with jS j < jT j are zero. An FI-module W is generated in degree at most m if
degH0.W /�m.

The functor H0 is right exact, and we define HpW FI-Mod! FI-Mod to be its pth

left-derived functor. One can think of Hp.W / as giving minimal generators for the
“pth syzygy” of the FI-module W . Our first main theorem bounds Hp.W / in terms of
H0.W / and H1.W /.

Theorem A Let W be an FI-module with degH0.W / � k and degH1.W / � d .
Then W has regularity at most kC d � 1: that is, for all p > 0, we have

degHp.W /� pC kC d � 1:

It is natural to shift our indexing by writing dp.W / WD degHp.W / � p ; with this
indexing, Theorem A states simply that dp.W /� d0.W /C d1.W /.
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We will define in Section 2.1 the notion of a free FI-module, and we will see that
Hp.W / can be computed explicitly from a free resolution of W . For now, we record
one corollary:

Corollary B Let M be a free FI-module generated in degree at most k , and let V
be an arbitrary FI-module generated in degree at most d . For any homomorphism
V !M , the kernel ker.V !M/ is generated in degree at most kC d C 1.

Uniform description of an FI-module Our next main result is the following theorem,
which gives a uniform description of an FI-module in terms of a explicit finite amount
of data.

Theorem C Let W be an arbitrary FI-module, and define

N WDmax.degH0.W /; degH1.W //:

Then for any finite set T ,

(1) WT D colim
S�T
jS j�N

WS :

Moreover, N is the smallest integer such that (1) holds for all finite sets.

We deduce Theorem C from [5, Corollary 2.24] by showing that the complex zS��W we
introduced there computes the FI-homology H�.W /. An alternate proof of Theorem C
has recently been given by Gan and Li [8]; in contrast with our approach via FI-
homology, they prove directly that an FI-module that is presented in finite degree
admits a description as in (1).

Homology of congruence subgroups As an application of these theorems, we have
the following result on the homology of congruence subgroups, which strengthens a
recent theorem of Putman [12]. For L¤ 0 2 Z, let �n.L/ be the level-L principal
congruence subgroup

�n.L/ WD ker
�
GLn.Z/! GLn.Z=LZ/

�
:

For S � Œn�, let �S .L/� �n.L/ be the subgroup

�S .L/ WD fM 2 �n.L/ jMij D ıij if i … S or j … Sg:

Notice that if jS j Dm, the subgroup �S .L/ is isomorphic to �m.L/.

Theorem D For all L¤ 0 2 Z, all n� 0, and all k � 0,

Hk.�n.L/IZ/D colim
S�Œn�

jS j<11�2k�2

Hk.�S .L/IZ/:
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In fact, we prove a version of Theorem D for any ring satisfying one of Bass’s stable
range conditions; see Theorem D 0 in Section 5.2. This theorem has already been used
by Calegari and Emerton [2, Section 5] to prove stability for the completed homology
of arithmetic groups.

The conclusion of Theorem D is based on the main result of Putman in [12] on
“central stability” for Hk.�n.M/IZ/, but its formulation here is a combination of [12,
Theorem B] and our earlier theorem with Farb and Nagpal [5, Theorem 1.6]. Our
main improvement over Putman is that Theorem D applies to homology with integral
coefficients (or any other coefficients), while [12] only applied to coefficients in a field
of characteristic at least 2k�2 �18�3. This limitation was removed in Church, Ellenberg,
Farb and Nagpal [5], but at the cost of losing any hope of an explicit stable range. The
methods of the present paper maintain the applicability to arbitrary coefficients while
recovering Putman’s stable range.

Ingredients of Theorem D In light of Theorem C, in order to obtain the conclusion of
Theorem D, we must bound the degree of H0 and H1 for the FI-module Hk satisfying
.Hk/n DHk.�n.L/IZ/. The key technical ingredients are Theorem A and a theorem
of Charney on a congruence version of the complex of partial bases. We obtain in
Proposition 5.13 a spectral sequence with E2pq DHp.Hq/. Charney’s theorem tells us
that this spectral sequence converges to zero in an appropriate sense, and Theorem A
then lets us work backward to conclude that E2pq vanishes outside the corresponding
range, giving the desired bound on the degree of H0.Hq/ and H1.Hq/.

Remark The argument of Theorem D bears an interesting resemblance to that of
the second author with Venkatesh and Westerland in [6]. In that paper, one proves
a stability theorem for the cohomology of Hurwitz spaces, using the fact that this
cohomology carries the structure of module for a certain graded Q–algebra R . As
in the present paper (indeed most stable cohomology theorems), the topological side
of the argument requires proving that a certain complex, carrying an action of the
group whose cohomology we wish to control, is approximately contractible. The
algebraic piece of [6] involves showing that deg TorRi .M;Q/ can be bounded in terms
of deg TorR0 .M;Q/ and deg TorR1 .M;Q/ [6, Proposition 4.10]. Exactly as in the proof
of Theorem D, it is these bounds that allow us to carry out an induction in the spectral
sequence arising from the quotient of the highly connected complex by the group
of interest.

Combinatorial structure of FI-modules Our last theorem is a basic structural prop-
erty of FI-modules; this structural theorem provides the technical foundation for our
other results, and is also of independent interest in its own right.
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An FI-module M is torsion-free if for every injection f W S ,! T between finite sets,
the map f�W MS ! MT is injective. In this case, for any subset S � T , we may
regard MS as a submodule of MT by identifying it with its image under the canonical
inclusion.

Theorem E Let M be a torsion-free FI-module generated in degree at most k , and
let V � M be a sub-FI-module generated in degree at most d . Then for all n >
min.k; d/C d and any a � n,

Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
D VŒn��f1gC � � �CVŒn��fag:

Theorem E holds for any d � 0 and k � 0. However, in the cases of primary interest,
we will have k < d , so in practice, the threshold for Theorem E will be n > kC d .
We note also that Theorem E is trivially true for a > d : the inclusion

VŒn��f1gC � � �CVŒn��fag � Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
always holds, and it is easy to show that VŒn��f1gC � � �CVŒn��fag D Vn when a > d .

Stating Theorem E without M Although Theorem E seems to be a theorem about
the relation between the FI-module M and its submodule V , actually the key object
is V ; the role of M is somewhat auxiliary. In fact, in Section 3.1, we will give a more
general formulation in Theorem E 0 that makes no reference to M ; in place of the
intersection Vn\ .MŒn��f1gC � � �CMŒn��fag/, we use the subspace of Vn annihilated
by the operator

Qa
iD1.id � .i nCi// 2 ZŒSnCa�; see Section 3.1 for more details.

Theorem E 0 is stronger than Theorem E and has content even in the case corresponding
to V DM , when Theorem E says nothing. Aside from their application to FI-homology
in this paper, these results are fundamental properties of the structure of FI-modules,
and should be of interest on their own.

Theorem E and homology We will show that if M is a free FI-module, Theorem E
has a natural homological interpretation as a bound on the degree of vanishing of a
certain derived functor applied to M=V ; see Remark 2.7 and Corollary 4.5 for details. It
is this interpretation that allows us to connect Theorem E with the bounds on regularity
in Theorem A.

Bounds on torsion The conclusion of Theorem E can be phrased as a statement
about the quotient FI-module M=V , and in the case aD 1, this conclusion becomes
particularly simple: it states that the map .M=V /Œn��f1g! .M=V /Œn� is injective when
n >min.k; d/C d . This yields the following corollary of Theorem E. In general, an
FI-module W is torsion-free in degrees at least m if the maps f�W MS !MT are
injective whenever jS j �m.
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Corollary F If M is torsion-free and generated in degree at most k , and its sub-FI-
module V is generated in degree at most d , then the quotient M=V is torsion-free in
degrees at least min.k; d/C d .

Alternate proofs of Theorem A In the time since this paper was first posted, alternate
proofs of Theorem A have been given by Li [10] (based partly on Li and Yu [11]) and
Gan [7]. The structure of those proofs is different from ours. In this paper, we prove
Theorem E in a self-contained way and then deduce Theorem A as a direct consequence.
By contrast, both Li and Gan use Corollary F as a stepping stone (replacing the need for
the full strength of Theorem E); they prove both Theorem A and Corollary F together,
using an induction on k that bounces back and forth between those two results.

Sharpness of Theorem E Before moving on, we give a simple example showing that
the bound of min.k; d/C d in Theorem E and Corollary F is sharp.

Example Fix any k � 0 and any d > k . Let M be the FI-module over Q such
that MT is freely spanned by the k–element subsets of T . The FI-module M is
torsion-free and generated in degree k by Mk 'Q.

For any d –element set U , consider the element vU WD
P
S�U; jS jDk eS . Let V �M

be the sub-FI-module such that VT is spanned by the elements vU 2 MT for all
d –element subsets U � T . The FI-module V is generated by vŒd� 2 Vd ' Q, so
Corollary F asserts that the quotient W WDM=V should be torsion-free in degrees at
least kC d .

In fact, we have Wn¤ 0 for n<kCd and WnD 0 for n� kCd , which we can verify
as follows. By definition, Vn is spanned by the

�
n
d

�
elements vU as U ranges over the

d –element subsets U � Œn�, so the dimension of Vn is at most
�
n
d

�
. When n < kCd ,

we have dimVn �
�
n
d

�
<
�
n
k

�
D dimMn so Vn ¤Mn , verifying the first claim. On the

other hand, with a bit of work, one can check directly that VkCd DMkCd , which then
implies Vn DMn for all n� kC d , verifying the second claim.

Since WnD 0 for n� kCd , we see that W is torsion-free in degrees at least kCd as
guaranteed by Corollary F; however, the fact that WkCd�1 ¤ 0 shows that this bound
cannot be improved.

Castelnuovo–Mumford regularity What we prove in Theorem A is that

degHp.V /� cV Cp

for some constant cV depending on V . By analogy with commutative algebra, this
statement could be thought of as saying that the Castelnuovo–Mumford regularity of V
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is at most cV . For FI-modules over fields of characteristic 0, that all finitely generated
FI-modules have finite Castelnuovo–Mumford regularity in this sense is a recent result
of Sam and Snowden [14, Corollary 6.3.4].

We emphasize that Theorem A gives an explicit description of the regularity of V
which depends only on the degrees of generators and relations for V . This is much
stronger than the bounds for the regularity of finitely generated modules M over
polynomial rings CŒx1; : : : ; xr �, which depend on the number of generators of M . We
take this strong bound on regularity as support for the point of view that the category
of FI-modules is in some sense akin to the category of graded modules for a univariate
polynomial ring CŒT �. (See Table 1 for more details of this analogy.) Of course, in the
latter context, the fact that the regularity is bounded by the degree of generators and
relations is a triviality because Hp.V /D 0 for all p > 1; by contrast, the category of
FI-modules has infinite global dimension.

Despite these analogies, we would like to emphasize one surprising feature of the
bound

degHp.V /�p � degH0.V /C degH1.V /� 1

we obtain for FI-modules: one cannot expect a bound of this form to hold for graded
modules over a general graded ring, for the simple reason that the bound is not invariant
under shifts in grading.2 The existence of such a bound for FI-modules reflects the fact
that, although a version of the grading shift does exist for FI-modules (see Section 2.2),
its effect on generators and relations is considerably more complicated. In particular,
this shift is not invertible for FI-modules.

Infinitely generated FI-modules One striking feature of Theorem A, and another
contrast with polynomial rings, is that its application is not restricted to finitely generated
FI-modules: Theorem A bounds the regularity of any FI-module which is presented in
finite degree. This is critical for the applications to homology of congruence subgroups
in Section 5.2: for congruence subgroups such as

�n.t/D ker
�
GLn.CŒt �/! GLn.C/

�
;

the FI-modules arising from the homology of �n.t/ are not even countably generated!
Nevertheless, the bounds in Theorem D 0 below apply equally well to this case.

2Indeed, since degHi .V Œk�/ D degHi .V / � k for graded modules, applying this inequality to
V Œk� rather than V would shift the left side by �k but the right side by �2k , leading to the absurd
conclusion that degHp.V /�p � degH0.V /C degH1.V /� 1� k for any k . This is impossible unless
degHp.V /D�1 for p>1 , meaning the ring has homological dimension 1 (as we saw for CŒT � above).
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2 Summary of FI-modules

In this introductory section, we record the basic definitions and properties of FI-modules
that we will use in this paper. Experts who are already familiar with FI-modules can
likely skip Section 2 on a first reading (with the exception of Lemma 2.6 and Remark 2.7,
which are less standard and play a key role in later sections).

As we mentioned in the introduction, there is a productive analogy between FI-modules
and graded CŒT �–modules. For the benefit of readers unfamiliar with FI-modules, in
Table 1 we have listed all the constructions for FI-modules described in this section,
along with the analogous construction for CŒT �–modules. These analogies are not
intended as precise mathematical assertions, only as signposts to help the reader orient
themself in the world of FI-modules.

(Those readers used to the six-functors formalism may prefer to dualize the right side of
Table 1, thinking of 'W FB ,! FI as analogous to the structure map f W Spec CŒT �!
Spec C , so that the adjoint functors M � '� correspond to f �1� f� . Similarly,
� W Z FI� Z FB is analogous to the closed inclusion i W Spec C! Spec CŒT �, and
the adjunctions �� ��� � correspond to i�1� i� D iŠ� i Š .)

2.1 Free FI-modules and generation

FB-modules Just as FI denotes the category of finite sets and injections, FB denotes
the category of finite sets and bijections. An FB-module W is an element of FB-Mod,
the abelian category of functors W W FB ! Z–Mod. An FB-module W is just a
sequence Wn of ZŒSn�–modules, with no additional structure.
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FI a category CŒT � an algebra over
FB� FI its subcat. of isos C �CŒT � a field

'W FB ,! FI C ,!CŒT �

'�W FI-Mod! FB-Mod forget action CŒT �–Mod!C–Mod take underlying
of nonisos vector space

M W FB-Mod! FI-Mod left adjoint of '� C–Mod!CŒT �–Mod V 7!CŒT �˝CV
D “free FI-mod on W ” D free CŒT �–Mod on V

� W Z FI� Z FB nonisos 7! 0 CŒT ��C T 7! 0

��W FB-Mod! FI-Mod make nonisos act by 0 C–Mod!CŒT �–Mod make T act by 0
�W FI-Mod! FB-Mod left adjoint of �� CŒT �–Mod!C–Mod M 7!M=TM

(extend scalars by �) DM ˝CŒT � C

H0W FI-Mod! FI-Mod H0 WD �
� ı� M=TM considered as CŒT �–Mod

�W FI-Mod! FB-Mod right adjoint of �� CŒT �–Mod!C–Mod M 7!MŒT �

D ker.M T
�!MŒ1�/

S W FI-Mod! FI-Mod .SW /T WDWTtf?g grading shift M 7!MŒ1�

DW FI-Mod! FI-Mod coker.W!SW / coker.M T
�!MŒ1�/

KW FI-Mod! FI-Mod ker.W!SW / ker.M T
�!MŒ1�/

D �� ı �

Table 1: Analogies between FI-modules and graded CŒT �–modules

Free FI-modules FB is the subcategory of FI consisting of all the isomorphisms
(its maximal subgroupoid). From the inclusion 'W FB ,! FI, we obtain a natural
forgetful functor '� from FI-Mod to FB-Mod that simply forgets about the action of
all nonisomorphisms. Its left adjoint M W FB-Mod! FI-Mod takes an FB-module W
to the “free FI-module M.W / on W ”. We call any FI-module of the form M.W / a
free FI-module.

We recall from [4, Definition 2.2.2] an explicit formula for M.W /, from which we
can see that M is exact:

(2) M.W /T D
M
S�T

WS :

For notational convenience, for m 2 N we write M.m/ WD M.ZŒSm�/. These FI-
modules have the defining property that HomFI-Mod.M.m/; V / ' Vm , since we can
write M.m/' Z

�
HomFI.Œm�;�/

�
.

As a consequence, M.m/ is a projective FI-module (they are the “principal projective”
FI-modules). In general, an FI-module is projective if and only if it is a summand of
some

L
i2I M.mi /.
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We point out that despite the name, free FI-modules need not be projective (since
nonprojective ZŒSn�–modules are in abundance!).3 Nevertheless, for our purposes
free FI-modules will be just as good as projective FI-modules (see Lemma 2.3 and
Corollary 4.5), so this discrepancy will not bother us.

Generation in degree at most k Every FI-module V has a natural increasing filtration

Vh�0i � Vh�1i � � � � � Vh�mi � � � � � V D
[
m�0

Vh�mi;

where Vh�mi is the sub-FI-module of V “generated by elements in degree at most m”.
This filtration, which is respected by all maps of FI-modules, can be defined as follows.

Given an FI-module V , by a slight abuse of notation we write M.V / for the free
FI-module on the FB-module '�V underlying V . From the adjunction M � '� we
have a canonical map M.V /� V , which is always surjective. We modify this slightly
to define the filtration Vh�mi .

Definition 2.1 Let V�m be the FB-module defined by .V�m/T D VT if jT j �m and
.V�m/T D 0 if jT j > m. Then the natural inclusion of FB-modules V�m ,! '�V

induces a map of FI-modules M.V�m/! V .

We define Vh�mi�V to be the image of the canonical map M.V�m/!V . Equivalently,
Vh�mi is the smallest sub-FI-module U � V satisfying Un D Vn for all n �m. We
sometimes write Vh<mi as an abbreviation for Vh�m�1i .

In the introduction we said that an FI-module W is generated in degree at most m if
degH0.W /�m, but there are many equivalent ways to formulate this definition.

Lemma 2.2 Let V be an FI-module, and fix m� 0. The following are equivalent:

(i) V is generated in degree at most m.

(ii) degH0.V /�m.

(iii) V D Vh�mi .

(iv) V admits a surjection from
L
i2I M.mi / with all mi �m.

(v) The natural map M.Wm/!W is surjective in degrees at least m.

3For example, consider the FI-module V for which VT WD ZŒefi;j g�i¤j2T , the free abelian group
on the 2–element subsets of T . This FI-module V is free on the FB-module W having W2 ' Z (the
trivial ZŒS2�–module) and Wn D 0 for n¤ 2 . However, V is not projective, since W2 is not a projective
ZŒS2�–module.
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The functor H0 In the other direction, we do not quite have a projection from FI
to FB, because the noninvertible morphisms in FI have nowhere to go. One wants to
map them to zero, but there’s no “zero morphism” in FB. This problem can be solved
by passing to the Z–enriched versions Z FI and Z FB of these categories: we now
have a functor � W Z FI! Z FB which sends all noninvertible morphisms to zero and
is the identity on isomorphisms.

This induces the “extension by zero” functor ��W FB-Mod! FI-Mod which takes
an FB-module W and simply regards it as an FI-module by defining f� D 0 for all
noninvertible f W S ! T . This functor is exact and has both a left adjoint � and right
adjoint � .

In this section, we consider the left adjoint �W FI-Mod ! FB-Mod. Since every
noninvertible map f W S ,! T increases cardinality, we have the formula .�V /n D
.V=Vh<ni/n . This is almost exactly the definition of H0W FI-Mod! FI-Mod given in
the introduction; the only difference is that �V is an FB-module whereas H0.V / is
the same thing regarded as an FI-module, ie H0 D �� ı�.

We adopt the convention in this paper that if F is a right-exact functor, HF
p denotes

its pth left-derived functor. As we explained in the introduction, we write Hp.V / for
the derived functors HH0

p .V / of H0 , and call these the FI-homology of V .

Lemma 2.3 Free FI-modules are H0–acyclic.

Proof Our goal is to prove that Hp.M.W //D 0 for p > 0. Since M is exact and
takes projectives to projectives, there is an isomorphism Hp.M.W //'H

H0ıM
p .W /.

However, the composition H0ıM is just the exact functor �� . Indeed, the composition
� ı ' is the identity, so '� ı �� D id. It follows that its left adjoint � ıM is the
identity as well. Since H0D �� ı�, we have H0 ıM D �� ı�ıM D �� as claimed.
We conclude that Hp.M.W //'HH0ıM

p .W /DH��

p .W /, which vanishes for p > 0
since �� is exact.

We can now explain how Corollary B follows from Theorem A.

Proof of Corollary B If M D 0, the corollary is trivial, so assume that M ¤ 0. Let
KDker.V !M/ and W D coker.V !M/. Thanks to the equivalences in Lemma 2.2,
the statement of the corollary is that degH0.K/� degH0.M/C degH0.V /C 1.

From the exact sequence 0!K! V !M !W ! 0, we obtain the inequalities

degH0.W /� degH0.M/;

degH1.W /�max
�
degH0.V /; degH1.M/

�
;

degH0.K/�max
�
degH0.V /; degH1.M/; degH2.W /

�
:
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Therefore, to prove the corollary, it suffices to show that the degrees of H0.V /,
H1.M/ and H2.W / are bounded by degH0.M/C degH0.V /C 1. For H0.V /,
this is trivial, since degH0.M/ � 0. Since M is free, H1.M/ D 0 by Lemma 2.3,
so degH1.M/D�1; this also shows degH1.W / � degH0.V /. Finally, applying
Theorem A to W shows that, as desired,

degH2.W /� degH0.W /C degH1.W /C 1� degH0.M/C degH0.V /C 1:

2.2 Shifts and derivatives of FI-modules

The shift functor S Fix a one-element set f?g. Let tW Sets�Sets! Sets be the
coproduct, ie the disjoint union of sets. This must be formalized in some fixed functorial
way such as S tT WD .S � f0g/[ .T � f1g/; but since the coproduct is unique up to
canonical isomorphism, the choice of formalization is irrelevant.

The disjoint union with f?g defines a functor � W FI! FI by T 7! T t f?g. The shift
functor S W FI-Mod! FI-Mod is given by precomposition with � : the FI-module SV

is the composition SV W FI
�
�! FI

V
�! Z–Mod. Concretely, for any finite set T we have

.SV /T D VTtf?g . The functor S is evidently exact.

The kernel functor K and derivative functor D The inclusion of S into S t f?g
defines a natural transformation from idFI to � . From this we obtain a natural trans-
formation � from idFI-Mod to S . Concretely, this is a natural map of FI-modules
�W V ! SV which, for every finite set T , sends VT to .SV /T D VTtf?g via the map
corresponding to the inclusion iT of T into T t f?g.

The functor DW FI-Mod! FI-Mod, the derivative, is defined to be the cokernel of
this map:

DV WD coker.V
�
�! SV /:

We similarly define KW FI-Mod! FI-Mod to be the kernel KV WD ker.V
�
�! SV /.

For any FI-module, we have a natural exact sequence

0!KV ! V ! SV !DV ! 0:

Since id and S are exact functors, D is right exact and K is left exact. Concretely,
we have

.DV /T 'VTtf?g= im.VT !VTtf?g/ and .KV /T Dfv2VT j i.v/D02VTtf?gg:

From this formula for KV , one can check that the functor K essentially coincides
with the right adjoint �W FI-Mod! FB-Mod of �� ; as we saw with H0 , the only
difference is that KV is �V considered as an FI-module, ie K D �� ı � .
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Remark 2.4 Readers paying attention to the analogies in Table 1 might object that
although H0 and D are very different functors of FI-modules, the table indicates that
both correspond to the functor M 7!M=TM of graded CŒT �–modules. But this is
not quite right, and by being careful with gradings we can see the distinction: H0
corresponds to coker.MŒ�1� T�!M/ whereas D corresponds to coker.M T

�!MŒ1�/.
In the graded case we rarely need to worry about the distinction, since grading shifts
are invertible. But for FI-modules this is not true, and the distinction is important.
(Lemma 4.4 below may clarify the behavior of D .)

Lemma 2.5 An FI-module V is torsion-free if and only if KV D 0.

Proof Recall that an FI-module V is torsion-free if for any injection f W S ,! T of
finite sets, the map f�W VS ! VT is injective. By a simple induction, this holds if and
only if f� is injective for all f W S ,!T with jT jD jS jC1. However, such an inclusion
can be factored as f DgıiS for some bijection gW Stf?g'T . Since g� is necessarily
injective, we see that V is torsion-free if and only if �S D .iS /�W VS ! VStf?g is
injective for all finite sets S , ie if KV D 0.

Iterates of shift and derivative We can iterate the shift functor S , obtaining FI-
modules SbV for any b � 0. To avoid the notational confusion of writing .S2V /T '
VTtf?gtf?g , we adopt the notation that Œ?b� denotes a fixed b–element set Œ?b� WD
f?1; : : : ; ?bg. We can then naturally identify .S2V /T ' VTtŒ?2� , and so on.

The iterates Da are also right exact and can be described quite explicitly. For every
FI-module V and every finite set T , we have

(3) .DaV /T '
VTtŒ?a�Pa

jD1 im.VTtŒ?a��f?j g
/
;

where im.VTtŒ?a��f?j g
/ denotes the image of the natural map VTtŒ?a��f?j g

!VTtŒ?a�

induced by the inclusion T t Œ?a��f?j g � T t Œ?a�. We remark that Da is the left
adjoint of the functor Ba of [5, Definition 2.16].

For any submodule V �M the inclusion induces a map DaV !DaM .

Lemma 2.6 If M is a torsion-free FI-module and V �M a submodule,

ker.DaV !DaM/n�a D 0 ()

Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
D VŒn��f1gC � � �CVŒn��fag:

Proof Since M is torsion-free we can identify MS with its image in MStf?g and so
on, so

ker.DaV !DaM/T ' ker
�

VTtŒ?a�Pa
jD1 VTtŒ?a��f?j g

!
MTtŒ?a�Pa

jD1MTtŒ?a��f?j g

�
:
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In other words,

ker.DaV !DaM/T D 0 () VTtŒ?a�\

� aX
jD1

MTtŒ?a��f?j g

�
D

aX
jD1

VTtŒ?a��f?j g
:

Setting T DfaC1; : : : ; ng and identifying Œ?a� with f1; : : : ; ag, we obtain the desired
expression.

Remark 2.7 Notice that the right side of Lemma 2.6 is precisely the conclusion
of Theorem E. Therefore, we can restate Theorem E as saying: if M is torsion-
free and generated in degree at most k , and V � M is generated in degree at
most d , then ker.DaV ! DaM/n�a vanishes for n > d C min.k; d/; in other
words, deg ker.DaV !DaM/ � d Cmin.k; d/� a . This observation will be used
in Section 4, and specifically in the proof of Theorem 4.8 to obtain bounds on HDa

p .

3 Combinatorics of finite injections and FI-modules

The goal of this section is to prove Theorem E. In Section 3.1 we generalize Theorem E
to Theorem E 0 which does not refer to the ambient FI-module M , and is of independent
interest. In Section 3.2 we establish the combinatorial properties of Z

�
HomFI.Œd �; Œn�/

�
that make our proof possible; throughout that section we do not mention FI-modules at
all. In Section 3.3 we apply these properties to prove Theorem E 0 . But before moving
to the combinatorics, we begin by motivating the connections with FI-modules.

3.1 The ideal Im and Theorem E 0

The ideal Im For each pair of distinct elements i ¤ j in Œn�, we write .i j / for the
transposition in Sn interchanging i and j , and we define J ij WD id� .i j / 2 ZŒSn�.
Note that J ij D J

j
i

, and that J ij and J kl commute when their four indices are distinct
(since the transpositions .i j / and .k l/ commute in this case).

For m 2 N , define Im � ZŒSn� to be the two-sided ideal generated by products of
the form

J i1j1
J i2j2
� � �J imjm

;

where i1; j1; : : : ; im; jm are 2m distinct elements of Œn�. (In particular, the terms of
the product commute.) Multiplying out such a product, we have

(4) J i1j1
J i2j2
� � �J imjm

D

X
K�Œm�

.�1/jKj
Y
k2K

.ik jk/D
X

�2.Z=2/m

.�1/��;
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where .Z=2/m denotes the subgroup generated by the commuting transpositions
.ik jk/, and .�1/� denotes the image of � under the sign homomorphism Sn!˙1.

Although the ideals Im will play multiple different roles in the proof of Theorem E,
the following property provides a simple illustration of why we consider these ideals.
Recall that the group ring ZŒSn� acts on Wn for any FI-module W .

Proposition 3.1 Let M be an FI-module generated in degree at most k . Then
IkC1 �Mn D 0 for all n� 0.

Proof We prove first that Im annihilates the free module M.a/ if a < m, meaning
that Im �M.a/n D 0 for all n. For any a , we have a basis for M.a/n given by
injections f W Œa� ,! Œn�. The key observation is that given f W Œa� ,! Œn� and a
generator J i1j1

J i2j2
� � �J imjm

2 Im ,

(5) if im f \fi`; j`g D∅ for some ` 2 Œm�, then J i1j1
J i2j2
� � �J imjm

�f D 0.

Indeed the assumption implies .i` j`/ıf Df , so J i`j`
D id�.i` j`/ satisfies J i`j`

�f D0.
Since the terms of the product commute, it follows that J i1j1

J i2j2
� � �J imjm

�f D 0.

However, when a < m, for every f W Œa� ,! Œm� and J D J i1j1
J i2j2
� � �J imjm

2 Im there
exists some ` for which imf \fi`; j`gD∅. Therefore, J �f D 0 for all basis elements
f 2M.a/n and all generators J 2 Im , proving that Im �M.a/D 0 as claimed.

Returning to the general claim, let M be an FI-module generated in degree at most k .
By Lemma 2.2(iv), M is a quotient of a sum of free modules M.a/ generated in
degrees a � k . We have just proved that IkC1 annihilates any such free module, so it
annihilates the quotient M as well.

Generalizing Theorem E by removing M The statement of Theorem E can be
generalized by removing M from its statement. Recall that Theorem E states that if M
is a torsion-free FI-module and V �M is a submodule, then

(6) Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
D VŒn��f1gC � � �CVŒn��fag

for sufficiently large n. Though it may not be obvious, the central object in this
statement is V . In fact, we can remove the FI-module M from the statement entirely,
and at the same time strengthen the theorem.

Consider the case a D 1, when our goal (6) is that Vn \MŒn��f1g coincides with
VŒn��f1g for large enough n. When M is free, the submodule MŒn��f1g �MŒn� can
be cut out as

MŒn��f1g D fm 2MŒn� �MŒn�tŒ?1� j .1 ?1/ �mDmg:
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In other words, recalling that �W Œn� ,! Œn�t Œ?1� denotes the standard inclusion, the
element zJŒ1� WD J ?1

1 ı � 2 Z
�
HomFI.Œn�; Œn�t Œ?1�/

�
has the property that

MŒn��f1g D ker zJŒ1�jMŒn�

when M is free. For general M we need not have equality here, but we do always
have the containment MŒn��f1g � ker zJŒ1�jMŒn�

. Intersecting with V , we always have
the containments

VŒn��f1g � Vn\MŒn��f1g � ker zJŒ1�jVŒn�
:

The statement of Theorem E is that the first containment is an equality for large
enough n. But we can actually prove the stronger statement that both are equalities:
VŒn��f1gD ker zJŒ1�jVŒn�

for large enough n. Notice that this statement no longer makes
reference to M !

For larger a , we consider the element zJŒa� WDJ ?1
1 � � �J

?a
a ı�2Z

�
HomFI.Œn�; Œn�tŒ?a�/

�
.

We saw in the previous paragraph that MŒn��fig � kerJ ?i
i (identifying MŒn��fig with

its image). Since all the operators J ?i
i commute, this implies that MŒn��fig � ker zJ Œa�

for any i 2 Œa�, so
MŒn��f1gC � � �CMŒn��fag � ker zJŒa�jMŒn�

:

This means that

(7) VŒn��f1gC � � �CVŒn��fag � Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
� ker zJŒa�jVŒn�

for any n� a . This leads us to the following generalization of Theorem E.

Theorem E 0 Let V be a torsion-free FI-module generated in degree at most d satis-
fying IKC1 �V D 0. Then for all n > KC d and any a � n,

VŒn��f1gC � � �CVŒn��fag D ker zJŒa�:

Theorem E 0 is proved in Section 3.3 below, but we first verify here that it implies
Theorem E.

Proof that Theorem E 0 implies Theorem E We begin in the setup of Theorem E,
so let M be a torsion-free FI-module generated in degree at most k , and let V be a
submodule of M generated in degree at most d .

Proposition 3.1 states that IkC1 �M D 0, so the same is true of its submodule V .
Applying Proposition 3.1 to V directly shows that IdC1 �V D 0. Therefore, if we set
K Dmin.k; d/, we have IKC1 �V D 0.

Applying Theorem E 0 , we conclude that VŒn��f1g C � � � C VŒn��fag D ker zJŒa�jVŒn�

for all n > K C d . In light of (7), this implies that VŒn��f1g C � � � C VŒn��fag D
Vn\

�
MŒn��f1gC � � �CMŒn��fag

�
for n > KC d , as desired.
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In fact, Theorem E 0 is strictly stronger than Theorem E. To see this, notice that
Theorem E says nothing when V D M , while Theorem E 0 implies the following
structural statement (by taking aDKC 1 and noting that zJŒKC1� 2 IKC1 ), which is
nontrivial whenever K < d .

Corollary 3.2 Let V be a torsion-free FI-module generated in degree at most d
satisfying IKC1 � V D 0. (For example, this holds if V can be embedded into some
FI-module generated in degree at most K .) Then for all n > KC d ,

Vn D VŒn��f1gC � � �CVŒn��fKgCVŒn��fKC1g:

3.2 The combinatorics of Z
�
HomFI.Œd�; Œn�/

�
The discussion above did not depend on any ordering on Œn� (essentially treating it as
an arbitrary finite set). By contrast, throughout the rest of this section we rely heavily
on the ordering on Œn�. This is inconsistent with the philosophy of FI-modules, so
throughout Section 3.2 we will not mention the category FI at all.

Definition 3.3 (the collection †.b/) For b2N , let †.b/ denote the set of b–element
subsets S � Œ2b� satisfying the following property:

(��) The i th largest element of S is at most 2i � 1:

For a 2 N with 1 � a � b , let †.a; b/ � †.b/ consist of all those S 2 †.b/
containing Œa�:

(8) †.a; b/ WD fS 2†.b/ j Œa�� S � Œ2b�g:

For example, it follows from (��) that 1 2 S for any S 2†.b/, so for any b 2N we
have †.1; b/ D †.b/. At the other extreme, we have †.b; b/ D fŒb�g. The subsets
†.a; b/ interpolate between †.1; b/D†.b/ and †.b; b/D fŒb�g; for example,

†.1; 4/D 1234; 1235; 1236; 1237; 1245; 1246; 1247; 1256; 1257;

1345; 1346; 1347; 1356; 1357I

†.2; 4/D 1234; 1235; 1236; 1237; 1245; 1246; 1247; 1256; 1257I

†.3; 4/D 1234; 1235; 1236; 1237I

†.4; 4/D 1234:

We have written the elements of †.a; b/ in lexicographic order, which ordering we
denote by 4. We denote by xS the complement xS WD Œ2b� nS . We will only use this
notation for b–element subsets S � Œ2b�, so the notation is unambiguous; in particular,
xS is always a b–element subset of Œ2b� as well.
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Remark 3.4 We record some relations between the different collections †.a; b/:

(a) For any S 2 †.b/ and any m � 2b C 1 with m … S , the union S [ fmg

belongs to †.bC 1/. In particular, this holds if m 2 xS . If S 2 †.a; b/, then
S [fmg 2†.a; bC 1/.

(b) For any S 2†.b/ and any c � b , if R � S is the c–element subset consisting
of the c smallest elements, then R 2†.c/. If S 2†.a; b/ for a � c � b , then
R 2†.a; c/ as well.

(c) If S; T 2 †.b/ satisfy T 4 S and S 2 †.a; b/, then T 2 †.a; b/ as well. In
other words, †.a; b/ is an “initial segment” of †.b/ (this is immediately visible
in the description of †.a; 4/ above).

Descendants The condition (��) gives one way to define the Catalan numbers: the
nth Catalan number is j†.n/j D .1=.nC1//

�
2n
n

�
. This is not a coincidence; our interest

in †.b/ comes from the following characterization of the sets S 2 †.b/, which is
related to another definition of the Catalan numbers.

Given any b–element subset S � Œ2b�, write the elements of S in increasing order as
s1; : : : ; sb and the elements of xS in increasing order as t1; : : : ; tb . Let .Z=2/S denote
the subgroup of S2b generated by the commuting transpositions .sk tk/ 2 S2b . If we
define JS 2 Ib as

(9) JS WD
Y
i

J tisi ;

by (4) we have JS D
P
�2.Z=2/S .�1/

�� . In these terms, the defining property (��)
of †.b/ has the following formulation:

(10) S 2†.b/ () S is lexicographically first among f� �S j � 2 .Z=2/Sg:

Given S 2†.b/, we refer to the subsets f� �S j � 2 .Z=2/Sg as the descendants of S ;
by (10), S lexicographically precedes all of its descendants.4 In fact, we will use the
following generalization. For any subset U � Œn� with S � U , and any b distinct
elements u1 < � � �< ub of Œn� nU , we can consider the subgroup .Z=2/b generated
by the disjoint transpositions .si ui /. By comparison with (10), it is straightforward
to conclude:

Lemma 3.5 S 2†.b/ implies U is lexicographically first among f� �U j� 2 .Z=2/bg.

4A set S and its descendant � �S need not determine the same subgroup .Z=2/S ¤ .Z=2/� �S , so the
relation of being a descendant is neither symmetric nor transitive. For example, if S D f1; 2g � Œ4� , then
S 0 D f1; 4g is a descendant of S , but .Z=2/S D h.1 3/; .2 4/i whereas .Z=2/S

0
D h.1 2/; .3 4/i . The

descendants of S are S D 12 , S 0 D 14 , 23 and 34 whereas the descendants of S 0 are S 0 D 14 , 23 , 13
and 24 .
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The Sn –module F and subgroups Fix d 2 N and n 2 N for the remainder of
Section 3. Let F denote the ZŒSn�–module associated to the permutation action on
the set of injections f W Œd � ,! Œn�. (In other words, as an Sn–module F is isomorphic
to Z

�
HomFI.Œd �; Œn�/

�
; however, we will wait until the next section to explore this

connection with the category FI.)

Definition 3.6 We define certain subgroups of the free abelian group F corresponding
to particular subsets of the basis ff W Œd � ,! Œn�g. In these definitions, S is a b–element
subset S 2†.b/:

F¤S WD hf W Œd � ,! Œn� j S 6� imf i;

F b WD hf W Œd � ,! Œn� j 8S 2†.b/; S 6� imf i D
\

S2†.b/

F¤S ;

F a;b WD hf W Œd � ,! Œn� j 8S 2†.a; b/; S 6� imf i D
\

S2†.a;b/

F¤S ;

FDS WD hf W Œd � ,! Œn� j imf \ Œ2b�D Si:

In general none of these subgroups are preserved by the action of Sn on F .

We emphasize the contrast between F¤S and FDS : for fixed b , a given injection
f W Œd � ,! Œn� may lie in F¤S for many different S 2 †.b/; in contrast, f lies in
FDS for at most one S 2 †.b/ (namely S D imf \ Œ2b�, if this subset happens to
belong to †.b/).

Since †.b/ D †.1; b/ � � � � � †.b; b/, we have F b D F 1;b � F 2;b � � � � � F b;b .
Similarly, from Remark 3.4(b) we have F a;a � � � � � F a;b � � � � . In other words, if
a � a0 and b � b0 , then F a;b � F a

0;b0 . Note that, since †.a; a/ consists of the single
set S D Œa�, the subgroup F a;a is spanned by injections f W Œd � ,! Œn� with i … imf

for some i 2 Œa�.

We make no assumptions whatsoever on d , n or b in this section, although in some
cases the definitions become rather trivial. (For example, when b > d , we have
F D F b ; when d > n, we have F D 0; when 2b > n, we have Ib D 0.)

Proposition 3.7 For any b such that n� bC d , we have

F D Ib �F CF
b:

Proof It is vacuous that Ib �F CF b � F , so we must prove that F � Ib �F CF b.
Assume otherwise; then some basis element f does not lie in Ib �F CF b . Choose f
so that imf is lexicographically last among all such f . Since f … F b , there exists
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some S 2†.b/ with S � imf . Since n� bCd , we may choose b distinct elements
u1 < � � �< ub from Œn� n imf . Let J D J u1

s1
� � �J ub

sb
, and consider the element

.J � id/ �f D
X

�¤12.Z=2/b

.�1/�� �f:

By Lemma 3.5 we have im.� � f /D � � imf � imf for all � ¤ 1. By our definition
of f (that its image was lexicographically last), � �f is contained in Ib �F CF b for
all � ¤ 1, so .J�id/ �f 2 Ib �F CF b . However, J �f 2 Ib �F by definition, so this
implies that J �f �.J�id/�f Df lies in Ib �FCF b , contradicting our assumption.

Decomposing F in terms of the subgroups JS FDS We will also need, for a dif-
ferent purpose, a more specific version of Proposition 3.7. For each S 2 †.b/, we
have defined in (9) the operator JS 2ZŒS2b�. For any n� 2b we may consider this as
an operator in ZŒSn�, which we also denote by JS .

Proposition 3.8 For any a � b such that 2b � n,

F a;bC1 � F a;bC
X

S2†.a;b/

JSFDS :

Proof For this proof only, define

(11) F .a;b/ WD F a;bC
X

S2†.a;b/

FDS

D
˝
f W Œd � ,! Œn�

ˇ̌
ÀS 2†.a; b/ s.t. S ¨ imf \ Œ2b�

˛
:

In words, F .a;b/ is spanned by those injections f W Œd � ,! Œn� such that imf \ Œ2b�

does not properly contain any element of †.a; b/ (but imf \ Œ2b� is allowed to be
equal to some S 2†.a; b/).

We begin by showing that F a;bC1 � F .a;b/ . Consider a basis element f which does
not lie in F .a;b/ . By definition, there exists S 2†.a; b/ such that S ¨ imf \ Œ2b�.
Choose m2 imf \Œ2b� with m…S , and define T DS[fmg. We have T 2†.a; bC1/
by Remark 3.4(a), so f … F a;bC1 as desired.

We now show that for any S 2†.a; b/, we have

(12) FDS � JSFDS CF
a;b
C

X
S 02†.a;b/
S 0�S

FDS 0 :

Consider a basis element f 2 FDS and the associated element

.JS � id/ �f D
X

�¤12.Z=2/S

.�1/�� �f:
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By assumption, imf \ Œ2b� D S , so im.� � f /\ Œ2b� D � � imf \ Œ2b� D � � S is
a descendant of S . By (10), the fact that S 2 †.a; b/ means that � � S � S for all
� ¤ 1 2 .Z=2/S . Thus for each � , there are two possibilities for the b–element
subset � �S : either � �S does not belong to †.a; b/, in which case � �f 2 F a;b ; or
� �S 2†.a; b/ but � �S � S , in which case � �f 2 FD� �S . In other words,

.id�JS / �f 2 F a;bC
X

S 02†.a;b/
S 0�S

FDS 0 :

Writing f D JS �f � .JS � id/ �f , this demonstrates (12).

Beginning with (11), we apply (12) to each S 2 †.a; b/ in lexicographic order to
obtain the desired

F a;bC1 � F .a;b/D F a;bC
X

S2†.a;b/

FDS �
X

S2†.a;b/

JSFDS CF
a;b:

3.3 Proof of Theorem E 0

We are now ready to apply the combinatorial apparatus above to FI-modules and prove
Theorem E 0 .

Proof of Theorem E 0 We continue with the notation of Section 3.2, so F denotes the
Sn–module Z

�
HomFI.Œd �; Œn�/

�
, and F b and F a;b are the subgroups of F defined in

Definition 3.6. Define subgroups V b�Vn and V a;b�Vn by V b WD im.F b˝Vd!Vn/

and V a;b WD im.F a;b˝Vd ! Vn/. From the containments following Definition 3.6
we see that V b D V 1;b � V 2;b � � � � � V b;b .

Let us understand these subgroups V a;b more concretely. To say that V is generated
in degree at most d means that Vn is spanned by its subgroups VT as T ranges over
subsets T � Œn� with jT j D d . (Throughout this proof, T will always denote a subset
T � Œn� with jT j D d .)

By definition, V b is the subgroup of Vn spanned by f�.Vd / where f W Œd � ,! Œn�

ranges over injections for which imf does not contain any S 2†.b/. In other words,

V b D span
˚
VT

ˇ̌
T � Œn�; jT j D d s.t. T does not contain any S 2†.b/

	
:

Similarly, V b;b is by definition the subgroup of Vn spanned by those VT for which
Œb� 6� T and jT j D d . Since VŒn��fig is the subgroup spanned by those VT where
i … T , we see that

(13) V b;b D VŒn��f1gC � � �CVŒn��fbg:
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Fix some n > K C d and some a � n. According to (13), the desired conclusion
of the theorem states that ker zJŒa� D V a;a when n > K C d . From (7), we know
that V a;a � ker zJŒa� for all n, so what we need to prove is that ker zJŒa� � V a;a

when n > K C d . We accomplish this by proving by reverse induction on b that
ker zJŒa� � V a;b for all b � a .

Our base case is b D K C 1. In this case we will prove something much stronger
than the inductive hypothesis; we will prove Corollary 3.2 by showing that it is a
direct consequence of Proposition 3.7. Recall that we always have the containments
V KC1�V a;KC1�V KC1;KC1�Vn . The statement of Proposition 3.7 for bDKC1
is that F D IKC1 � F C F ` , and the hypothesis is satisfied since n � .K C 1/C d .
Therefore,

Vn D im.IKC1 �F ˝Vd /CV
KC1
D IKC1 �VnCV

KC1:

Since IKC1 �Vn D 0 by assumption, we conclude that

Vn D V
KC1
D V a;KC1 D V KC1;KC1:

Notice that VnDV KC1;KC1 is precisely the conclusion of Corollary 3.2, as mentioned
above. This concludes the base case.

For the inductive step, The key is to show that for all a � b �K we have

(14) V a;bC1\ ker zJŒa� � V
a;b:

Given this, if we assume ker zJŒa� � V a;bC1 by induction, (14) implies ker zJŒa� D
V a;bC1\ ker zJŒa� � V a;b , which is the desired inductive hypothesis. The remainder
of the argument thus consists of the proof of (14).

For convenience, we would like to assume that K � d . If K > d , replacing K by d
in the statement of Theorem E 0 makes the conclusion stronger, while the hypothesis
is still satisfied because IdC1 � V D 0 by Proposition 3.1. Therefore, making this
replacement if necessary, we may assume that K � d . Our assumption on n thus
implies n>KCd � 2K � 2b . Therefore, we may apply Proposition 3.8, which states
that F a;bC1 � F a;bC

P
S2†.a;b/ JSFDS . We conclude that every v 2 V a;bC1 can

be written as

(15) v D va;bC
X

S2†.a;b/

vS ; where va;b 2 V a;b; vS 2 JSFDS �Vd :

It will suffice to show that if an element v as in (15) lies in ker zJŒa� , then in fact each
term vS is zero, which implies (14).
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Assume that v 2 V a;bC1 \ ker zJŒa� , and suppose for a contradiction that vS ¤ 0 for
some S 2†.a; b/. Let S be the lexicographically first such element of †.a; b/. We
may thus write

(16) v D va;bC vS C
X

T2†.a;b/
S�T

vT :

For any S 2†.a; b/, write the elements of S in order as s1 < � � �< sb , and define

zJS WD J
?1
s1
� � �J ?b

sb
ı � 2 Z

�
HomFI.Œn�; Œn�t Œ?b�/

�
:

We will establish a series of claims about zJS , which hold for any S 2†.a; b/.

Claim 3.9 zJS � .ker zJŒa�/D 0.

Proof To say that S 2†.a; b/ means that Œa��S , so the elements of S are necessarily
1 < 2 < � � �< a < saC1 < � � �< sb . Therefore,

zJS D J
?1
1 � � �J

?a
a J ?aC1

saC1
� � �J ?b

sb
D zJŒa� �X:

Since zJS D zJŒa� �X DX � zJŒa� , we have ker zJŒa� � ker zJS as claimed.

By (5), we have

(17) zJS �f D 0 for any f W Œd � ,! Œn� with S 6� imf

since for any such f there exists si … imf , so fsi ; ?ig \ imf D ∅. This has the
following consequences.

Claim 3.10 zJS �F
a;b D 0.

Proof By definition, any f 2 F a;b has S 6� imf , so zJS �f D 0 by (17).

Claim 3.11 zJS �JTFDT D 0 for any T 2†.a; b/ such that S � T .

Proof Given a generator f 2FDT we know that imf \ Œ2b�D T . As in the proof of
Proposition 3.8, the terms of JT �f consist of � �f for � 2 .Z=2/T . The intersections
im.� � f / \ Œ2b� are precisely the descendants � � T . Since T 2 †.a; b/ we have
� � T < T . In particular, since S � T 4 � � T , every term satisfies S 6� im.� � f /.
By (17), zJS �JTFDT D 0 as desired.
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We now apply these consequences to the decomposition (16). By Claim 3.9, our
assumption that v 2 ker zJŒa� implies that zJS � v D 0. Claims 3.10 and 3.11 show that
zJS � v

a;b D 0 and zJS � vT D 0. We conclude that zJS � vS D zJS � v D 0; it remains to
show that this implies vS D 0 2 Vn .

We show this using the following two claims, which we prove in turn. Define � 2
EndFI.Œn� t Œ?b�/ to be the involution � WD .t1 ?1/ � � � .tb ?b/, where .t1; : : : ; tb/
denotes the complement of S in Œ2b� as before.

Claim 3.12 zJS �JS D zJS when restricted to FDS .

Proof As in Claim 3.11, given f 2 FDS with imf \ Œ2b� D S , the terms of
JS �f consist of f together with � � f for � ¤ 1 2 .Z=2/S . Each of the latter
has im.� �f /\ Œ2b�D � �S � S . Therefore, S 6� � � f for � ¤ 1, so zJS � � � f D 0
by (17). We conclude that zJS �JS �f D zJS �.f C

P
.�1/�� �f /D zJS �f , as claimed.

Claim 3.13 � zJs D � ıJS when restricted to FDS .

Proof Note that �.J ?1
s1
� � �J ?b

sb
/��1 D J t1s1 � � �J

tb
sb

. Therefore,

� zJS D J
t1
s1
� � �J tbsb ı � ı � 2 Z

�
HomFI.Œn�; Œn�t Œ?b�/

�
:

By definition, the image of a map f 2 FDS does not contain ti , so when restricted
to FDS , we have � ı � D �. We conclude that � zJS D J t1s1 � � �J

tb
sb
ı � D � ı JS , as

claimed.

We now complete the proof. Write vS D JS �wS for wS 2FDS �Vd � Vn . Claim 3.12
implies that zJS �vS D zJS �JS �wS D zJS �wS . Thus zJS �wS D0, so certainly � zJSwS D0.
Claim 3.13 implies that � zJSwS D �.JSwS /D �.vS /. Combining these, we see that
�.vS /D 0. Since V is torsion-free, � is injective, so this proves that vS D 0.

This contradicts our assumption that vS ¤ 0, so we conclude from (15) that v 2 V a;b .
This concludes the proof of the containment (14); as we explained following (14), this
completes the proof of the inductive hypothesis and thus concludes the proof of the
theorem.

4 Bounds on the homology of FI-modules

An outline of the proof of Theorem A Before launching into the proof of Theorem A,
we outline the steps that we will take. Recall that Theorem A states that for an FI-
module W , the degree of the FI-homology Hp.W / can be bounded in terms of certain
invariants of W . In this outline, whenever we speak of a “bound on” a particular
FI-module, we mean a bound on its degree:
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(1) We prove that a bound on DaX can be converted to a bound on H0.X/

(Proposition 4.6).

(2) We show that Theorem E gives a bound on the degree of HDa

1 .W / for all a .

(3) Using homological properties of the functor D , we show that this bound on
HDa

1 .W / implies a bound on HDa

p .W / for all p and all a .

(4) If Xp is the pth syzygy of W ,5 it is almost true that Hp.W / D H0.Xp/;
specifically, we have Hp.W /DH1.Xp�1/ and Hp.W / ,!H0.Xp/. Similarly,
it is almost true that HDa

p .W / D Da.Xp/, and we prove that for sufficiently
large a this is true. Therefore, by using step (1), we can convert our bound on
HDa

p .W / to the desired bound on Hp.W /.

4.1 Relations and H1

Our main theorems will be proved in terms of a presentation of the FI-module in
question. We saw in Lemma 2.2 that W is generated in degree at most k if and only
if degH0.V / � k . The existence of a presentation for W with relations in degree
at most d is very close to the condition degH1.W / � d , but they are not quite
equivalent.6 Therefore, we distinguish these in our terminology as follows.

Definition 4.1 We say that an FI-module W is generated in degree at most k and
related in degree at most d if there exists a short exact sequence

0! V !M !W ! 0;

where M is a free FI-module generated in degree at most k and V is generated in
degree at most d .

Proposition 4.2 Any FI-module W is generated in degree at most degH0.W / and
related in degree at most max.degH0.W /; degH1.W //.

Proof Set M WDM.Wh� degH0.W /i/. By Lemma 2.2, the natural map M �W is
surjective.

5Here we consider syzygies relative to a free resolution of W that is minimal in the sense that all maps
become 0 after applying H0 .

6For instance, a FI-module W admitting a finite-length filtration whose graded pieces are free has
H1.W /D 0 , but such a W need not itself be free (recall that free FI-modules need not be projective). If
we could always find a surjection M.H0.W //�W lifting the isomorphism on H0 , there would be no
problem, but such a surjection does not always exist. For example, it can happen that H0.W /n ' Z=2Z
while Wn is a free abelian group, in which case there is no map H0.W /n!Wn at all.
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Let V be its kernel, so that 0! V !M ! W ! 0 is a presentation of W as in
Definition 4.1. By Lemma 2.3 M is H0–acyclic, so we have the exact sequence

0!H1.W /!H0.V /!H0.M/:

From this, we conclude that degH0.V / is bounded by the degrees of the other
two terms. Since H0.M/ D W� degH0.W / , we see in particular that degH0.M/ D

degH0.W /. Thus V is generated in degree at most max.degH0.W /; degH1.W //,
as desired.

From this proposition, we see that relations will indeed behave as we would expect,
as long as degH0.W / � degH1.W /. We will reduce to this case in the proof of
Theorem A using the following proposition, whose proof was explained to us by Eric
Ramos; we are grateful to the referee for suggesting the current statement. Similar
arguments appear in Li and Yu [11] in the proof of Corollary 3.4 and the second proof
of Lemma 3.3.

Given an FI-module W and some m� 0, consider the FI-module ZDWh�mi=Wh<mi .
Note that H0.Z/ vanishes except in degree m, where H0.Z/m D Zm DH0.W /m ,
so we have a surjection M.Zm/�Z . In terms of the original FI-module W , we have
a natural surjection from M.H0.W /m/ to Wh�mi=Wh<mi which is an isomorphism in
degree m.

Proposition 4.3 Let W be an FI-module with degH0.W / <1. Then the natural
surjection

M.H0.W /m/�Wh�mi=Wh<mi

is an isomorphism whenever m � degH1.W / or m> degH0.W /. In particular, the
inclusion Wh< degH1.W /i ,!W induces an isomorphism on Hi for all i > 0.

Proof We proceed by reverse induction on m, showing both that M.H0.W /m/ '
Wh�mi=Wh<mi and that the inclusion Wh<mi ,! W induces isomorphisms on Hi
for all i > 0. Our base case consists of all m > degH0.W /, when both claims are
essentially tautological: in this case M.H0.W //m D 0 and Wh<mi D Wh�mi D W ,
so both sides of the claimed isomorphism vanish, proving the first claim. Similarly
Wh<mi DW if m> degH0.W /, so the second claim is automatic.

For “usual” FI-modules with degH0.W / < degH1.W / there is nothing left to prove;
it remains to handle FI-modules with degH1.W /� degH0.W /.

For the inductive step, write Z for the quotient Z WD Wh�mi=Wh<mi , and let A be
the kernel of the surjection M.Zm/�Z , so that 0! A!M.Zm/!Z! 0. The
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FI-module A vanishes in degrees at most m: in degree m the map M.Zm/m!Zm is
an isomorphism, and M.Zm/ itself is zero in degrees less than m. Since A vanishes
in degrees at most m, H0.A/ also vanishes in degrees at most m; since H0.M.Zm//
vanishes in degrees greater than m, the map H0.A/! H0.M.Zm// is zero. Since
M.Zm/ is H0–acyclic, we conclude that there is an isomorphism H1.Z/'H0.A/.

Now consider the long exact sequence

� � � !H1.Wh�mi/!H1.Z/!H0.Wh<mi/! � � � :

By induction, we know that degH1.Wh�mi/ D degH1.W / � m, and by definition
degH0.Wh<mi/ < m. Therefore, degH1.Z/�m.

We showed above that H1.Z/ vanishes in degrees greater than m, while H0.A/
vanishes in degrees at most m, so H1.Z/DH0.A/D 0. Therefore, AD 0, and the
natural map M.H0.W /m/ D M.Zm/ ! Z is an isomorphism, as claimed. Since
free FI-modules are H0–acyclic, we conclude that the inclusion Wh<mi ,! Wh�mi
induces an isomorphism on Hi for all i > 0; the inclusion Wh�mi ,! W induces
an isomorphism on Hi for all i > 0 by induction, so we have proved the inductive
hypothesis.

4.2 Homological properties of the derivative

Considering FB-Mod as a full subcategory of FI-Mod, the functor S restricts to a
functor S W FB-Mod! FB-Mod.

Lemma 4.4 There is a natural isomorphism of functors

D ıM DM ıS W FB-Mod! FI-Mod :

Proof There is automatically a natural transformation M ı S ! D ıM . It would
suffice to check that this is an isomorphism on free FB-modules, but it will be no more
difficult to check this on arbitrary FB-modules W . From the formula (2) for M.W /
we see that .SM.W //T D

L
S�Ttf?gWS , with �W M.W /! SM.W / the inclusion

of those summands with ? … S . (Incidentally, this shows that free FI-modules are
torsion-free.) It follows that

.DM.W //T D
M

S�Ttf?g
?2S

WS D
M
R�T

WRtf?g D
M
R�T

.SW /R DM.SW /T ;

as claimed (for the second equality we reindex by S DRt f?g). It is straightforward
to check that this identification agrees on morphisms as well.
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Corollary 4.5 Free FI-modules are Da–acyclic for all a � 1.

Proof Just as in the proof of Lemma 2.3, we have HDa

p .M.W // ' HDaıM
p .W /.

However, Lemma 4.4 implies that Da ıM DM ı Sa . This is exact since both M
and S are, so HMıSa

p D 0 for all p > 0.

Proposition 4.6 If V is an FI-module generated in degree at most k , then DaV D 0
for all a > k . On the other hand, if degDaV � m for some m � �1, then V is
generated in degree at most mC a .

Proof If V is generated in degree at most k , there is a surjection M.V�k/� V .
Since Da is right exact, we have a surjection DaM.V�k/� DaV for any a . By
Lemma 4.4, DaM.V�k/ 'M.SaV�k/. However, SaV�k D 0 when a > k , since
.SaV�k/R D .V�k/RtŒ?a� D 0. Therefore, DaV D 0 for a > k .

For the second claim, to say that degDaV � m means that .DaV /T D 0 when-
ever jT j > m. The formula (3) for .DaV /T shows that the defining surjection
VTtŒ?a�� H0.V /TtŒ?a� factors through .DaV /T � H0.V /TtŒ?a� , so it follows
that H0.V /R D 0 whenever jRj>mCa . In other words, V is generated in degree at
most mC a .

The derived functors of D We can now establish the basic properties of the derived
functors HD

p of the derivative D .

Lemma 4.7 Let W be an FI-module.

(i) The derived functor HD
1 coincides with K , so there is a natural exact sequence

0!HD
1 .W /!W ! SW !DW ! 0:

(ii) W is torsion-free if and only if HD
1 .W /D 0.

(iii) HD
p D 0 for all p > 1.

(iv) D takes projective FI-modules to projective FI-modules.

(v) If Y is an FI-module of finite degree, then we have degDY � degY � 1 and
degHD

1 .Y /� degY .

Proof Given W , let M be a free FI-module with M � W ; for instance, we may
take the universal M DM.W /�W . Let V be the kernel of this surjection, so we
have 0! V !M !W ! 0. Since M is free, HD

1 .M/D 0 by Corollary 4.5, so
we have an isomorphism HD

1 .W /' ker.DV !DM/.
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(i) The key properties are that S is exact and that M
�
�! SM is injective, ie that free

FI-modules are torsion-free (which we saw in the proof of Lemma 4.4). Thus we have
a diagram:

V //

��

SV //

��

DV //

��

0

0 // M // SM // DM // 0

Applying the snake lemma, we obtain the desired exact sequence

ker.SV ! SM/D 0!HD
1 .W /!W ! SW !DW ! 0:

In particular, this identifies HD
1 .W / with KW D ker.W ! SW /.

(ii) Given that HD
1 DK , this is the statement of Lemma 2.5.

(iii) Since M is D–acyclic, we have HD
2 .W / ' HD

1 .V /. The FI-module V is
torsion-free, being a submodule of M , so HD

1 .V /D 0 by (ii). Since W was arbitrary,
this proves that HD

2 D 0, which implies that HD
p D 0 for all p > 1.

(iv) Since projective FI-modules are summands of
L
M.mi /, it suffices to prove this

for M.m/DM.ZŒSm�/. Lemma 4.4 states that

DM.m/DDM.ZŒSm�/'M.SZŒSm�/'M

� mM
iD1

ZŒSm�1�

�
D

mM
iD1

M.m� 1/;

which is indeed projective.

(v) It is clear that degSY D degY � 1, since .SY /n D YŒn�tŒ?� ' YnC1 (unless
degY D 0, when degSY D�1). Both claims now follow from (i), the first from the
surjection SY �DY and the second from the injection HD

1 .Y / ,! Y .

4.3 Proof of Theorem A

We now have in place all the tools we need to prove our main theorems bounding the
degree of homology of FI-modules. The key technical result is Theorem E, together with
Lemma 2.6 and Remark 2.7 establishing a connection between its conclusion and Da .

Theorem 4.8 Let W be an FI-module generated in degree at most k and related in
degree at most d , and let N WD d Cmin.k; d/� 1. For all a � 1 and all p � 1,

(�ap) degHDa

p .W /�N � aCp:
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Proof We will reduce by induction to the case when aD 1 or p D 1. To accomplish
this reduction, we prove that .�a�1p /C .�a�1p�1/D) .�ap/ for any a � 2 and p � 2.

Fix a� 2 and p� 2. By Lemma 4.7(iv), Da takes projective FI-modules to projective
FI-modules, so we may compute the left derived functors of Da by means of the
Grothendieck spectral sequence applied to the composition D ıDa�1 . Thanks to the
vanishing of HD

p for p > 1 from Lemma 4.7(iii), this spectral sequence has only two
nonzero columns, so it degenerates to the short exact sequences

(18) 0!DHDa�1

p .W /!HDa

p .W /!HD
1 .H

Da�1

p�1 W /! 0:

The assertions .�a�1p / and .�a�1p�1/ state respectively that

degHDa�1

p .W /�N � .a� 1/Cp DN � aCpC 1;

degHDa�1

p�1 .W /�N � .a� 1/C .p� 1/DN � aCp:

Lemma 4.7(v) tells us that degDY � degY � 1 and degHD
1 .Y / � degY , so these

bounds imply

degDHDa�1

p .W /�N � aCp;

degHD
1 .H

Da�1

p�1 .W //�N � aCp:

The short exact sequence (18) now implies

degHDa

p .W /�N � aCp;

which is precisely the assertion .�ap/. This establishes that .�a�1p /C .�a�1p�1/D) .�ap/

for any a � 2 and p � 2.

Given this implication, it suffices to prove directly that .�ap/ holds when either aD 1 or
pD 1, since all remaining cases with a� 2 and p� 2 then follow by induction. When
aD 1 and p � 2, we have HD

p .W /D 0 by Lemma 4.7(iii), so degHD
p .W /D�1

and the bound .�ap/ certainly holds. What remains as the unavoidable core of the
problem is the bound (�ap ) when p D 1, namely that degHDa

1 .W /�N � aC 1 for
all a � 1.

To compute HDa

1 .W /, consider a presentation 0 ! V ! M ! W ! 0 as in
Definition 4.1, with M free and generated in degree at most k and V generated
in degree at most d . Since M is free, it is Da–acyclic by Corollary 4.5, so

HDa

1 .W /' ker.DaV !DaM/:

But recall from Remark 2.7 that the conclusion of Theorem E can be restated as a
claim about the map DaV ! DaM and its kernel! Specifically, the conclusion of
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Theorem E says for any a � 1, that

ker.DaV !DaM/n�a D 0 for all n > d Cmin.k; d/;

or in other words, that

deg ker.DaV !DaM/� d Cmin.k; d/� aDN C 1� a:

This means that the conclusion of Theorem E applied to the relations V � M is
precisely the claim (�ap ) for p D 1 and all a � 1. As explained above, all other cases
now follow by induction.

Proof of Theorem A Fix k0 � 0 and d � 0, and let U be an FI-module with
degH0.U / � k0 and degH1.U / � d . Our goal is to prove that degHp.U /� p �
k0C d � 1 for all p > 0.

We first reduce to the case when k0 < d . Let k WD min.k0; d � 1/ and define W to
be the submodule W WD Uh�ki . In the most common case when k0 < d , this has
no effect: we have k D k0 and W D U . In the other case when k0 � d , we have
degH1.U /� d D kC1, so Proposition 4.3 states that Hp.W /'Hp.U / for all p >0.
Since k � k0 in either case, to prove the theorem it suffices to prove that

degHp.W /�p � kC d � 1 for all p > 0.

For the rest of the proof, we discard the FI-module U and work only with W , which
has degH0.W /� k and degH1.W /� d with k < d .

Given these bounds, Proposition 4.2 tells us that W is generated in degree at most k
and related in degree at most max.k; d/ D d . Therefore, there exists a surjection
M�W from a free FI-module M generated in degree at most k , whose kernel is
generated in degree at most d . Set M0 WDM and extend this to a resolution of W by
free FI-modules:

� � � !M2!M1!M0!W ! 0:

For each p > 0, let Xp be the pth syzygy of W , namely Xp WD im.Mp!Mp�1/'

ker.Mp�1!Mp�2/. Let us assume that this resolution is minimal in the very weak
sense that degH0.Xp/DdegH0.Mp/ for all p>0. (The existence of such a resolution
is a consequence of the fact that every FI-module V generated in degree at most k
admits a surjection from a free FI-module generated in degree at most k , namely
M.V�k/ as discussed in Proposition 4.6.) Set X0 WDW .

For all p � 1, we have an exact sequence

(19) 0!Xp!Mp�1!Xp�1! 0:
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Since the Mi are H0–acyclic by Corollary 4.5, applying H0 to (19) gives Hi .Xp/'
HiC1.Xp�1/ for all i � 1; iterating, we obtain Hp.W / ' H1.Xp�1/. Similarly,
HDa

p .W /'HDa

1 .Xp�1/ for any a � 1.

Let us write
N WD d C k� 1I

so our eventual goal is to prove that degHp.W /�N Cp for all p � 1. Before that,
we prove that for all p � 1,

(20) degH0.Xp/�N Cp:

By construction X1 D ker.M !W /; by our hypothesis, X1 is generated in degree
at most d , so degH0.X1/ � d � d C k D N C 1. This proves (20) for p D 1; we
proceed by induction on p .

Fix p � 2, and assume by induction that (20) holds for p�1, ie that degH0.Xp�1/�
N C p � 1. By minimality of the resolution, degH0.Mp�1/ D degH0.Xp�1/, so
Mp�1 is generated in degree at most N C p � 1. By Proposition 4.6, this implies
that DNCpMp�1 D 0. Then applying DNCp to (19) yields a long exact sequence
containing the segment

HDNCp

1 .Xp�1/!DNCpXp! 0DDNCpMp�1:

This shows that DNCpXp is a quotient of HDNCp

1 .Xp�1/ ' HDNCp

p .W /. We
proved in Theorem 4.8 that

degHDNCp

p .W /�N � .N Cp/Cp D 0;

so degDNCpXp � 0. (The statement of Theorem 4.8 has d Cmin.k; d/� 1, but this
coincides with N D d C k� 1 since k < d .) By Proposition 4.6, this implies that Xp
is generated in degree at most N Cp , which is the result to be proved. This concludes
the proof of (20).

We saw above that (19) implies Hi .Xp/'HiC1.Xp�1/ for i � 1. To complete the
proof of the theorem, we consider the segment of the long exact sequence involving
i D 0:

0DH1.Mp�1/!H1.Xp�1/!H0.Xp/!H0.Mp�1/!H0.Xp�1/:

This shows that Hp.W /'H1.Xp�1/ injects into H0.Xp/ for all p > 0. We proved
in (20) that degH0.Xp/�N Cp , so we conclude that degHp.W /�N Cp for all
p > 0, as desired.
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5 Application to homology of congruence subgroups

5.1 A complex computing Hi .V /

For any category C , let C–Mod denote the category of functors C! Z–Mod. Given
V 2C–Mod and W 2Cop–Mod, their tensor product over C is an abelian group V ˝CW .
It can be defined as the largest quotient ofM

X2Ob C

V.X/˝ZW.X/

in which

vX ˝f
�.wY / 2 V.X/˝W.X/ � f�.vX /˝wY 2 V.Y /˝W.Y /

for all X; Y 2 Ob C , vX 2 V.X/, wY 2W.Y / and f 2 HomC.X; Y /.7

In this paper we will be interested in the tensor product of an FI-module V and
co-FI-module W . This can be described explicitly as follows.

Definition 5.1 Given V 2 FI-Mod and W 2 FIop-Mod, the abelian group V ˝FIW

is defined by

V ˝FIW

D

� M
T2Ob FI

VT ˝ZWT

�.˝
f�.vS /˝wT � vS ˝f

�.wT /
ˇ̌
f W S ,! T

˛
D

�M
n�0

Vn˝ZSn
Wn

�.˝
f�.vn/˝wnC1 � vn˝f

�.wnC1/
ˇ̌
f W Œn� ,! ŒnC 1�

˛
:

We think of an FI-module V 2 FI-Mod as a “right module over FI”, and a co-FI-
module W 2 FIop-Mod as a “left module over FI”. This is consistent with our notation
V ˝FIW for the tensor. Moreover, if W is an FIop

�FI-module, we will say that W
is an FI-bimodule; in this case V ˝FI W is not just an abelian group, but in fact an
FI-module. This is familiar from the analogous situation with R–modules: the tensor
of a right R–module with an R–bimodule is a right R–module. To verify the claim in
this setting, just note that

.FIop
�FI/-ModD ŒFIop

�FI;Z–Mod�D ŒFI; ŒFIop;Z–Mod��D ŒFI;FIop-Mod�:

7The reader may recognize this as an example of a coend: given V and W we can define a functor
V �W W C � Cop ! Z–Mod; then V ˝C W coincides with the coend

R C
V �W , and the quotient

construction above is just the standard coequalizer formula for a coend.
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In other words, we can think of an FI-bimodule W as a functor from FI to FIop-Mod;
after tensoring with V 2 FI-Mod, we are left with a functor from FI to Z–Mod, which
is just an FI-module.

Definition 5.2 The FIop
�FI-module K is defined on objects by

K.S; T /D ZŒBij.S; T /�I

in particular, K.S; T /D 0 if jS j ¤ jT j. Given a morphism

.f W S 0 ,! S; gW T ,! T 0/ in HomFIop �FI
�
.S; T /; .S 0; T 0/

�
;

we consider two cases. If f and g are both bijective, K.f;g/W K.S; T /!K.S 0; T 0/

is the map defined by Bij.S; T / 3 ' 7! g ı' ıf 2 Bij.S 0; T 0/. If either f or g is not
bijective, K.f;g/ D 0.

Since K is an FI-bimodule, the tensor V ˝FI K is itself an FI-module. In fact, this
FI-module is already familiar to us! To avoid confusion, in the remainder of the paper
we will write H FI

i .V / for the FI-homology of V , which was denoted simply by Hi .V /
in previous sections.

Proposition 5.3 Given V 2 FI-Mod, the FI-module V ˝FI K is isomorphic to the
FI-module H FI

0 .V / defined in the introduction. As a consequence,

H FI
i .V /D TorFI

i .V;K/ for any i � 0:

Proof Definition 5.1 presents V ˝FIK as a quotient ofM
n�0

Vn˝ZSn
Kn;

so we first identify the FI-module Vn˝ZSn
Kn . Since K is not only a co-FI-module

but an FI-bimodule, Kn is an Sn � FI-module: as an FI-module Kn sends a set T to
ZŒBij.Œn�; T /�, and the action of Sn by precomposition commutes with this FI-module
structure. Thus the FI-module Vn˝ZSn

Kn sends T to VT if jT j D n, and to 0 if
jT j ¤ n. Passing to the direct sum, we find that

L
n�0 Vn˝ZSn

Kn sends T to VT for
any finite set T of any cardinality; in other words, the FI-module

L
n�0 Vn˝ZSn

Kn
can be identified with V itself.

We now consider the relations: Definition 5.1 states that V ˝FIK is the quotient of
V '

L
Vn˝ZSn

Kn by the relations

f�.vn/˝ knC1 � vn˝f
�.knC1/ for all f W Œn� ,! ŒnC 1�:
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However, by definition, f � acts as 0 on K whenever f is not bijective. Therefore,
these relations reduce to f�.vn/� 0 for all vn 2Vn and f W Œn� ,! ŒnC1�. The quotient
of
L
n Vn by these relations is precisely H FI

0 .V / as we defined it in the introduction.
The assertion that H FI

i .V / D TorFI
i .V;K/ is then tautological (but see Remarks 5.4

and 5.5 for further discussion).

Remark 5.4 The notation TorFI
� .V;W / requires some justification, since this could

denote the left-derived functors of V ˝FI � or of �˝FI W . Fortunately, the tensor
product functor

�˝FI�W FI-Mod�FIop-Mod! Z–Mod

is a left-balanced functor in the sense of [15, Definition 2.7.7], so by [15, Exercise 2.7.4]
its left-derived functors in the first variable and in the second variable coincide. In other
words, these derived functors TorFI

� .V;W / can be computed either from a resolution V�
of V by projective FI-modules, or from a resolution W� of W by projective FIop-
modules, as we would expect.

Remark 5.5 When W is an FI-bimodule, V ˝FI W and thus TorFI
� .V;W / are FI-

modules, but there is one important point to make. We can compute the FI-module
TorFI

i .V;W / from a projective resolution W�!W of FI-bimodules, but in fact some-
thing much weaker suffices. We do not need the terms Wi of this resolution to be
projective FI-bimodules; it suffices that each FI-bimodule Wi be “FIop-projective”,
meaning that for each finite set T 2 Ob FI the FIop-module .Wi /T is a projective
FIop-module.

This is familiar from the situation of R–modules: if M is a right R–module and N is
an R-S –bimodule, then to compute the S –modules TorR� .M;N / from a resolution
N�! N by R-S –bimodules, it suffices that each Ni be projective (or even flat) as
an R–module. The reason is that such an R-S –bimodule is acyclic for the functor
M ˝R �W R-S–Mod! S–Mod; the situation for FI-modules is the same.

The only projective FIop-modules we will need to consider are the corepresentable func-
tors ZŒInj.�; U /�D ZŒHomFIop.U;�/� for a fixed finite set U (such corepresentable
functors are always projective).

We may therefore describe H FI
i .V / in a uniform way that applies to all FI-modules V

by finding an appropriate resolution C�!K of FIop-projective FI-bimodules.

A uniform construction of FI-complexes We will make use of the same construction
in multiple places below, so we begin by describing this construction in a general context;
we are grateful to the referee for suggesting this.
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Definition 5.6 We denote by FI the twisted arrow category whose objects are pairs
.T; U / where T is a finite set and U � T is a subset, and where a morphism from
.T; U / to .T 0; U 0/ is an injection f W T ,! T 0 such that f .U /� U 0 .

Given an FI -module F , we will construct two chain complexes of FI-modules. In
fact, for any functor F from FI to any abelian category A, we construct two chain
complexes CF

�
and zCF

�
taking values in ŒFI;A�.

Construction 5.7 (the complexes CF
�

and zCF
�

) Given a functor F W FI !A, for
each k � 0, define zCF

k
W FI!A by

zCFk .T /D
M

f W Œk�,!T

F.T; imf /:

An FI-morphism gW T ,! T 0 defines for each f W Œk� ,! T an FI -morphism
gW .T; imf / ! .T 0; img ı f /, and g�W zC

F
k
.T / ! zCF

k
.T 0/ is given by the in-

duced maps.

Next, we define the boundary map @W zCF
k
! zCF

k�1
. For k � 1 and 1 � i � k ,

let ıi W Œk� 1� ,! Œk� be the ordered injection whose image does not contain i .
For any f W Œk� ,! T , the identity idT defines an FI -morphism from .T; imf /

to .T; imf ı ıi /. Let di W zCFk ! zCF
k�1

be the map induced on each factor by
idT W .T; imf / ! .T; imf ı ıi /; note that this commutes with the FI-action g�
defined above.

We define @W zCF
k
! zCF

k�1
by @ WD

P
.�1/idi . The familiar formula ıi ııj D ıjC1ııi

for i � j implies that dj ı di D di ı djC1 by the functoriality of F , so @2 D 0.
Therefore, the differential @ makes zCF

�
a chain complex with values in ŒFI;A�.

We define the complex CF
�

as the quotient of zCF
�

by the following relations. The
permutations � 2Sk act on zCF

k
by precomposition, and breaking up into orbits we have

zCFk .T /D
M

U�T; jU jDk

M
f W Œk�'U

F.T; U /:

We define CF
k

to be the quotient of zCF
k

by the relations �� D .�1/� for all � 2 Sk ;
in other words, we pass to the quotient where Sk acts by the sign representation. The
functoriality of F guarantees that CF

k
is still a functor FI!A.

The individual homomorphisms di do not respect these relations, so they do not
descend to CF

k
. However, the alternating sum @ D

P
.�1/idi does descend to a

differential @W CF
k
! CF

k�1
, and so we obtain a chain complex

CF
�
D � � � ! CFk ! CFk�1! � � � ! CF0
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with values in ŒFI;A�. Note that on objects we have

.CFk /T D
M

U�T; jU jDk

F.T; U /;

where FI-morphisms act with a factor of ˙1 coming from the orientation of the
subset U .

Remark 5.8 When the finite set T is fixed, the following standard argument shows
that the chain complex CF

�
.T / is a summand of zCF

�
.T /. Choosing an ordering

of T , let zC ord
�
.T / be the subcomplex of zCF

�
.T / spanned by those summands where

f W Œk� ,! T is order preserving. The differential @ preserves this subcomplex, and
the projection zCF

�
.T / ! CF

�
.T / restricts to an isomorphism zC ord

�
.T / ' CF

�
.T /.

However, we emphasize that CF
�

is not a summand of zCF
�

when these are considered
as complexes of FI-modules.

We now use this construction to define a complex C�! K of FI-bimodules, which
will give us our resolution of K .

Definition 5.9 (the complex C� ) Given U � T , let F.T; U / be the FIop-module
defined by F.T; U /S D ZŒf W S ,! T n U �. One easily checks that this defines a
functor F W FI ! FIop-Mod, so Construction 5.7 defines a chain complex C� WD CF�
with values in ŒFI;FIop-Mod�, ie a complex of FI-bimodules. Concretely, Ck.S; T /
is the free abelian group on pairs .U � T; f W S ,! T / where jU j D k and imf is
disjoint from U .

Remark See [5, Equation (10)] and the surrounding section for more discussion of this
complex. A caution: we could similarly have defined a complex zCF

�
of FI-bimodules,

but be warned that the FIop
�FI-module BV discussed following [5, Corollary 2.18]

is not isomorphic to zCF
�

, although they contain much the same information.

The resolution C� ! K We consider the augmentation map @W C0!K defined by

C0.S; T / 3 .∅; f W S ,! T / 7!

�
f 2 Bij.S; T / if jS j D jT j;
0 if jS j< jT j;

2K.S; T /:

Since C1.S; T / has basis .fug � T; f W S ,! T n fug/, the composition @2W C1 !
C0!K is 0. Therefore, this augmentation extends C� to a complex

� � � ! C1! C0!K! 0:

Geometry & Topology, Volume 21 (2017)



2410 Thomas Church and Jordan S Ellenberg

Proposition 5.10 The complex C�! K is a resolution of K by FIop-projective FI-
bimodules. As a consequence, given any FI-module V , the FI-homology of V is
computed by the FI-chain complex V ˝FI C� :

H FI
i .V /DHi .V ˝FI C�/:

Proof We first verify that C�!K is a resolution, ie that H0.C�/'K and H�.C�/D0
for �> 0. It suffices to check this pointwise, so fix finite sets S and T and consider
the chain complex of abelian groups C�.S; T /.

For each hW S ,! T , let C h
k
.S; T / be the summand of Ck.S; T / spanned by the

elements of the form .U; h/. The differential @ preserves this summand, so we have a
direct sum decomposition C�.S; T /D

L
hWS,!T C

h
�
.S; T /. Similarly, let Kh.S; T /

be the corresponding summand of K.S; T /; concretely, this summand is isomorphic
to Z if h is bijective and 0 otherwise. It therefore suffices to show for fixed hW S ,! T

that C h
�
.S; T / is a resolution of Kh.S; T /.

Let �T�h.S/ be the .jT�h.S/j�1/–dimensional simplex with vertex set T � h.S/,
and let zC�.�T�h.S// be its reduced cellular chain complex. A basis for C h

k
.S; T / is

given by the k–element subsets U of T �h.S/, oriented appropriately. In other words,
we can identify C h

k
.S; T /' zCk�1.�

T�h.S//, and this extends to an isomorphism of
chain complexes C h

�
.S; T /' zC��1.�

T�h.S//.

If T � h.S/ is nonempty, the simplex �T�h.S/ is contractible, so H�.C h� .S; T //'
zH��1.�

T�h.S//D 0 for all � � 0. Since Kh.S; T /D 0 when h is not bijective, this
is as desired. In the remaining case when h is a bijection and �T�h.S/ is empty, the
only nonzero term of this resolution is C h0 .S; T /' zC�1.∅/' Z'Kh.S; T /, which
again is as desired.

We next verify that the FI-bimodules Ck are FIop-projective, meaning that for each finite
set T the FIop-module Ck.�; T / is a projective FIop-module. For a fixed k–element
subset U � T , let CU

k
.S; T / be the summand of Ck.S; T / spanned by elements

.U; f W S ,!T nU/. These summands are preserved by FIop-morphisms, so this defines
a summand CU

k
.�; T / of the FIop-module Ck.�; T /. This summand CU

k
.�; T / is

isomorphic to the corepresentable functor ZŒInj.�; T nU/�D ZŒHomFIop.T nU;�/�.
Since Ck.�; T /D

L
CU
k
.�; T /, this shows that Ck.�; T / is a projective FIop-module,

as desired.

It now follows from Proposition 5.3 and Remark 5.5 that H FI
i .V /DHi .V ˝FIC�/.

Remark 5.11 A result essentially equivalent to the conclusion of Proposition 5.10
has been proved independently in a recent preprint of Gan and Li [9, Theorem 1].
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Remark 5.12 It is possible to interpret C� as the “Koszul resolution of FI over K ”,
thinking of f 2 HomFI.S; T / as graded by jT j � jS j D jT � f .S/j. Moreover, under
Schur–Weyl duality C� corresponds to the classical Koszul resolution of Sym� V byV�

V _˝ Sym� V . For reasons of space we will not pursue this further here; see [14,
Section 6] for more details, including strong theorems regarding this Koszul duality for
FI-modules over C .

We can now prove Theorem C.

Proof of Theorem C The desired result states for a particular integer N (namely the
maximum of degH FI

0 .V / and degH FI
1 .V /), that

(21) colim
S�T; jS j�N

VS D VT for all finite sets T:

We introduced in [5, Definition 2.19] a certain complex of FI-modules zS��V , and
combining our earlier results [5, Theorem C, Corollary 2.24] shows that (21) holds if
and only if H0. zS��V /n D 0 and H1. zS��V /n D 0 for all n > N .

Our main goal will be therefore to prove that V ˝FI C� ' zS��.V /. Given this, we
know that

Hi . zS��V /'Hi .V ˝FI C�/' TorFI
i .V;K/'H

FI
i .V /;

where the second isomorphism holds by Proposition 5.10 and the third isomorphism
holds by Proposition 5.3. Therefore, (21) holds if and only if H FI

0 .V /n D 0 and
H FI
1 .V /n D 0 for all n > N . In other words, the desired condition (21) holds ex-

actly when degH FI
0 .V / � K and degH FI

1 .V / � N , which is precisely what the
theorem claims.

Recall from Definition 5.6 the category FI . For any FI-module V , we can define an
FI -module FV by FV .T; U /D VT nU , since an FI -morphism .T; U /! .T 0; U 0/

restricts to an inclusion T nU ,!T 0nU 0 . We first show that the complex of FI-modules
V ˝FI C� coincides with the complex CFV

�
of Construction 5.7.

We saw in the proof of Proposition 5.10 that Ck.�; T /D
L
jU jDk C

U
k
.�; T / where

CU
k
.�; T / is the corepresentable functor ZŒHomFIop.T nU;�/�. By the Yoneda lemma,

the tensor of V with a functor corepresented by R is simply VR . Therefore, as abelian
groups we have an isomorphism

.V ˝FI Ck/T '
M
jU jDk

VT nU ' C
FV

k
.T /:

Checking the morphisms and differential, we see that V ˝FI C� and CFV
�

coincide as
chain complexes of FI-modules.
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We conclude by showing that CFV
�

coincides with zS��.V /. We will in fact show that
zCFV
�

coincides with the Sn–complex of FI-modules B�.V / of [5, Equation (10)]. As
an abelian group

zC
FV

k
.T /D

M
f W Œk�,!T

VT nimf ;

and Bk.V /T is defined by the same formula [5, Definition 2.9]. Given an injection
gW T ,!T 0 , unwinding Construction 5.7 shows that the map g�W zC

FV

k
.T /! zC

FV

k
.T 0/

sends the summand labeled by f to the summand labeled by g ı f W Œk� ,! T 0 by
the map .gjT nimf /�W VT nimf ! VT 0nimgıf . This is precisely the FI-structure on
Bk.V /. Finally, the maps di of Construction 5.7 agree with those defined just before
[5, Equation (10)], so the resulting differentials @D

P
.�1/idi agree as well.

The Sk –actions on zCFV

k
and on Bk.V / agree, and CFV

k
and zS�k.V / are respectively

obtained from these by tensoring over Sk with the sign representation. So we conclude
that V ˝FI zC� ' C

FV
�

is isomorphic to zS��.V / as chain complexes of FI-modules, as
desired.

5.2 Homology of congruence subgroups

In this section, we state and prove Theorem D 0 , a more general version of Theorem D
from the introduction.

Let R be a commutative ring satisfying Bass’s stable range condition SRdC2 , and
fix a proper ideal p ¨ R . (We use Bass’s indexing convention, under which a field
satisfies SR2 , and any noetherian d –dimensional ring satisfies SRdC2 .) Let �n.p/ be
the congruence subgroup defined by the exact sequence of groups:

1! �n.p/! GLn.R/! GLn.R=p/:

As explained in [5, Section 3], these groups form an FI-group �.p/ (a functor FI!
Groups satisfying �.p/T ' �jT j.p/), and thus their integral homology forms an FI-
module:

Hk WDHk.�.p/IZ/:

Theorem D 0 Let R be a commutative ring satisfying Bass’s stable range condition
SRdC2 , and let p¨R be a proper ideal. Then for all k � 2,

degH FI
0 .Hk/� 2

k�2.2d C 9/� 2 and degH FI
1 .Hk/� 2

k�2.2d C 9/� 1:

In particular, for all n� 0 and all k � 0, we have

(22) Hk.�n.p/IZ/D colim
S�Œn�

jS j<2k�2.2dC9/

Hk.�S .p/IZ/:
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Theorem D is the special case of Theorem D 0 when R D Z. Indeed, any Dedekind
domain R satisfies Bass’s condition SR3 (ie SRdC2 for d D 1), yielding the bound
jS j<11 �2k�2 in Theorem D. Note that although we take group homology with integer
coefficients in the statement of Theorem D 0 , these coefficients could be replaced by
any other abelian group; the proof applies unchanged.

By the stable range, we mean the range n� 2k�2.2d C 9/ where the description (22)
is not vacuous. Our stable range is slightly better than that of [12], where Putman
obtained the range n� 2k�2.2d C 16/� 3. For example, [12, Theorem B] gives for a
Dedekind domain R the stable range n� 18 � 2k�2� 3, while Theorem D 0 gives the
stable range n� 11 � 2k�2 .

Proof of Theorem D 0 To avoid confusion with the homology of a chain complex,
in this section we write H FI

p .W / for the FI-homology of an FI-module W (which in
previous sections was denoted simply by Hp.W /).

An action of an FI-group � on an FI-module M is a collection of actions of �T
on MT that are consistent with the FI-structure. Given such an action, the coinvariants
form an FI-module Z˝� M , whose components are simply Z˝�T

MT . The left-
derived functors Hi .�IM/ are simply the FI-modules defined by Hi .�IM/T WD

Hi .�T IMT /. In the special case when M D M.0/ and the action is trivial, we
write Hi .�/; this is the group homology, considered as an FI-module Hi .�/T WD
Hi .�T IZ/.

We will need the following proposition, which constructs for any FI-group a spectral
sequence based on the FI-homology of its group homology.

Proposition 5.13 To any FI-group � there is naturally associated an explicit FI-chain
complex X�

�
on which � acts, for which we have a spectral sequence:

E2pq DH
FI
p .Hq.�//D)HpCq.�IX

�
�
/:

Proof Recall from Definition 5.6 the category FI used in Construction 5.7. Define
the FI -module A by A.T;U / D ZŒ�T =�T nU �. An FI -morphism f W .T; U /!

.T 0; U 0/ has f .U / � U 0 , so the induced map f�W �T ! �T 0 satisfies f�.�T nU / �
�T 0nU 0 , verifying that A is indeed an FI -module.

The FI-chain complex X� D X�� we are interested in will be the FI-chain complex
X� WD C

A
�

arising from A via Construction 5.7:

Xk.T /D
M

U�T; jU jDk

ZŒ�T =�T nU �:
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For each T the obvious action of �T on ZŒ�T =�T nU � induces an action of �T on
Xk.T /. The FI-module structure on Xk is induced by the FI-structure maps �T !�T 0 ,
and the differential @ descends from the identity on �T . Therefore, the action of �T
on Xk.T / is compatible with both, giving an action of the FI-group � on the FI-chain
complex X� .

From this action, we obtain two spectral sequences converging to the homology
H�.�IX�/ of the complex X� :

xE2pq DHp.�IHq.X�//D)HpCq.�IX�/;

E1pq DHq.�IXp/D)HpCq.�IX�/:

The desired spectral sequence mentioned in the proposition is the second one (though we
will use the first spectral sequence later). It remains to identify E2pq with H FI

p .Hq.�//,
so let us compute E1pq DHq.�IXp/.

By definition Xp.T / is a direct sum of factors ZŒ�T =�T nU �. By Shapiro’s lemma, the
contribution of such a factor to Hq.�T IXp.T // is precisely Hq.�T nU /DHq.�/T nU .
We find that

Hq.�IXp/T DHq.�T IXp.T //D
M

U�T; jU jDp

Hq.�/T nU D .Hq.�/˝FI Cp/T ;

where the last equality comes from the proof of Theorem C. We conclude that

E1pq DHq.�IXp/'Hq.�/˝FI Cp:

Moreover, the differential d1WHq.�IXp/!Hq.�IXp�1/ is induced by @WXp!Xp�1 ,
and comparing the definitions of X� and C� shows that .E1pq; d1/D .Hq.�/˝FIC�; @/.
By Proposition 5.10 we conclude that, as claimed,

E2pq D TorFI
p .Hq.�/;K/DH

FI
p .Hq.�//D)HpCq.�IX�/:

We now continue with the proof of Theorem D 0 . Returning to the notation of that
theorem, let � be the congruence FI-group �.p/, and Hk D Hk.�.p// its group
homology. We would like to apply Proposition 5.13, but to do this we need to bound the
equivariant homology HpCq.�IX�/. We can do this using the other spectral sequence
xE2pq DHp.�IHq.X�//D)HpCq.�IX�/ if we can bound Hq.X�/. And fortunately,

this complex X� (or a complex quite close to it) has already been considered by Charney!

In Proposition 5.13 we defined X�DCA� based on the functor A.T;U /DZŒ�T =�T nU �.
Let zX� WD zCA� be the ordered version of this complex; concretely, we can write

zXk.T /D
M

.t1;:::;tk/�T

ZŒ�T =�T�ft1;:::;tkg�:
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In the foundational paper [3], Charney considered (in the case T D f1; : : : ; ng) a
complex Y�.T / that is similar to zX�.T / but somewhat larger. Her key technical
result in that paper is that Y�.T / is q–acyclic if jT j � 2q C d C 1. Moreover, [3,
Proposition 3.2] implies that Yq.T / coincides with zXq.T / as long as jT j � qCd , so
Charney’s result8 implies that zX�.T / is q–acyclic if jT j � 2qCdC1. By Remark 5.8
we know that X�.T / is a summand of zX�.T /, so X�.T / is q–acyclic in the same
range. Said differently, Hq.X�/T D 0 for jT j>2qCd ; that is, degHq.X�/� 2qCd .

Any FI-module M with degM �N automatically has degHi .�IM/�N for all i ,
since H�.�IM/ D H�.�T I 0/ D 0 when jT j > N . Therefore, Charney’s bound
degHq.X�/� 2qC d implies, for all p ,

deg xE2pq D degHp.�IHq.X�//� 2qC d:

Since this spectral sequence converges to xE2pq D)HpCq.�IX�/, we conclude that

(23) degHk.�IX�/� 2kC d:

The bound (23) marks the end of the input from topology in this proof. The remainder
of the proof is just careful bookkeeping and repeatedly applying Theorem A to our
spectral sequence of FI-modules

E2pq DH
FI
p .Hq/D)HpCq.�IX�/:

In fact, this bookkeeping can be formulated as the following completely general
statement:

Claim 5.14 Consider a spectral sequence of FI-modules E2pq D) VpCq converging
to FI-modules Vk satisfying degVk � 2kC d for some integer d � 0. Suppose that
for all q , we know that

(˛) degE2pq � degE20qC degE21q � 1Cp;

and suppose for simplicity that E2p0 D 0 for p > 0. Then for all k � 2, we have

(24) degE20k � 2
k�2.2d C 9/� 2 and degE21k � 2

k�2.2d C 9/� 1:

Proof We would like to prove this claim (24) by induction on k for all k � 2, but
we need to modify it slightly so it holds in the base cases k 2 f0; 1g as well. Therefore,
we will prove along the way that

(25) 8p � 2; degE2pk � 2k�1.2d C 9/� 4Cp

8Note that our indexing differs from Charney’s in that her complex has zXq.T / in degree q� 1 ; this is
why we have 2qC d C 1 and qC d in place of her 2qC d C 3 and qC d C 1 , respectively.
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holds for all k � 0. Notice that (24) + (˛ ) D) (25), so this only requires additional
work in the base cases when k 2 f0; 1g. We first prove (25) in these base cases, and
then prove by induction on k that both (24) and (25) hold for all k � 2.

Case k D 0 Our assumption that E2p0 D 0 for all p � 1 implies degE2p0 D�1, so
(25) holds.

Case k D 1 Since E23;0 D 0 and E24;0 D 0, the spectral sequence degenerates at E2

for E20;1 and E21;1 , yielding E20;1 D E10;1 D V 1 and E21;1 D E11;1 � V 2 . Since
degV 1 � 2 C d and degV 2 � 4 C d , we conclude that degE20;1 � d C 2 and
degE21;1�dC4. Applying the assumption (˛ ), we conclude that degE2p;1�2dC5Cp
for all p � 2; this is precisely the bound (25) in the case k D 1.

General case Let Np;m WD 2m�1.2dC9/�4Cp be the bound occurring in (25). Fix
k � 2, and assume by induction that (25) holds for all m<k ; that is, degE2p;m�Np;m
for all p � 2 and all m< k .

Now consider the entry E20;k . Since E10;k is a constituent of V k , we have degE10;k �
degV k � 2d Ck . No nontrivial differential has source Er0;k , but we have differentials
d r W Err;k�rC1! Er0;k . The maximum of Nr;k�rC1 over r � 2 occurs when r D 2,
when we have N2;k�1D 2k�2.2dC9/�2. Therefore, for all r � 2 the sources of these
differentials satisfy degErr;k�rC1 � 2k�2.2d C 9/� 2. Since degE10;k � 2d C k <
2k�2.2d C9/�2, we conclude that degE20;k � 2

k�2.2d C9/�2, as claimed in (24).
Similarly, the degrees of the sources of the differentials d r W Er1Cr;k�rC1!Er1;k are
bounded above by N3;k�1 D 2k�2.2d C 9/� 1. Since

degE11;k � degV kC1 � 2d C kC 1 < 2k�2.2d C 9/� 1;

we conclude that degE21;k � 2
k�2.2d C 9/� 1, as claimed in (24).

Now applying the assumption (˛ ) to (24), we conclude that (25) holds for k as well.
This concludes the proof of the claim.

We now finish the proof of Theorem D 0 by applying this claim to the spectral sequence
E2pqDH

FI
p .Hq/D)HpCq.�IX�/ of Proposition 5.13. The hypothesis E2p0D 0 of the

claim is satisfied because H0 is the free FI-module H0'M.0/, so E2p0DH FI
p .H0/D0

for p > 0. The assumption (˛ ) is precisely the statement of Theorem A, and the bound
degHk.�IX�/� 2kC d was obtained in (23) above.

The description (22) for k � 2 follows from (24) by Theorem C. The only thing that
remains is some arithmetic to check that (22) holds for k D 0 and k D 1 as well.
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For k D 0 this is trivial, since H0 DM.0/ is free: this means degH FI
0 .H0/D 0 and

degH FI
1 .H0/D�1, so Theorem C then gives an identification as in (22) over jS j � 0.

Since d � 0, we have 20�2.2d C 9/� 9
4
> 1, so the bound in (22) holds.

Similarly, for k D 1 we saw in the proof above that degH FI
0 .H1/D degE20;1 � 2Cd

and degH FI
1 .H1/D degE21;1 � 4Cd , so Theorem C gives an identification as in (22)

over jS j � 4C d . For integer m the conditions m < 21�2.2d C 9/ D d C 9
2

and
m� d C 4 are equivalent, so again the bound in (22) follows.

We close with a variant of Theorem D 0 which has been used by Calegari and Emerton [2]
in their study of completed homology. An inclusion of ideals q� p induces an inclusion
�n.q/��n.p/, so given an inverse system of ideals such as � � � � pi � � � � � p2� p, we
can consider the inverse limit lim

 �
Hk.�n.p

i // of the homology of the corresponding
congruence subgroups.

Theorem D 00 Let R be the ring of integers in a number field, and let .pi /i2I be an in-
verse system of proper ideals in R . Fix N >1. Then for all n�0 and all k�0, we have

lim
 �
i2I

Hk.�n.pi /IZ=N/D colim
S�Œn�

jS j<11�2k�2

lim
 �
i2I

Hk.�S .pi /IZ=N/:

Proof Any number ring R is a Dedekind domain, so R satisfies Bass’s stable range
condition SR3 . Therefore, for any n � 0 and any k � 0, we can deduce from
Theorem D 0 that

lim
 �
i2I

Hk.�n.pi /IZ=N/D lim
 �
i2I

colim
S�Œn�

jS j<11�2k�2

Hk.�S .pi /IZ=N/:

It remains to check that we can exchange the limit and colimit. This is of course not true
in general, but we can verify that it is true in this case as follows. The existence of the
Borel–Serre compactification [1] implies that Hk.�n.p/IZ=N/ is a finitely generated
Z=N –module for any p�R . This is enough to give the desired result: since this colimit
is over a finite poset, it can therefore be written as a coequalizer of finitely generated
Z=N –modules. The limit of the coequalizers is the coequalizer of the limits (any inverse
system of finite abelian groups satisfies the Mittag-Leffler condition, so the lim1 term
vanishes), which is to say that the limit and colimit can be exchanged as desired.
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