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Infinite order corks

ROBERT E GOMPF

We construct a compact, contractible 4–manifold C , an infinite order self-diffeomor-
phism f of its boundary, and a smooth embedding of C into a closed, simply
connected 4–manifold X , such that the manifolds obtained by cutting C out of X

and regluing it by powers of f are all pairwise nondiffeomorphic. The manifold C

can be chosen from among infinitely many homeomorphism types, all obtained by
attaching a 2–handle to the meridian of a thickened knot complement.

57N13, 57R55

1 Introduction

The wild proliferation of exotic smoothings of 4–manifolds highlights the failure of
high-dimensional topology to apply in dimension 4, notably through failure of the
h–cobordism theorem. Attempts to understand this issue led to the notion of a cork
twist. A cork, as originally envisioned, is a contractible, smooth submanifold C of
a closed 4–manifold X , with an involution f of @C , such that cutting out C and
regluing it by the twist f changes the diffeomorphism type of X (while necessarily
preserving its homeomorphism type). We can think of C as a control knob with two
settings, toggling between two smoothings of X . The first example of a cork was
discovered by Akbulut [1]. Subsequently, various authors (Curtis, Freedman, Hsiang
and Stong [6], Matveyev [15]; see Gompf and Stipsicz [14] for more history) showed
that any two homeomorphic, simply connected (smooth) 4–manifolds are related by a
cork twist. Since then, much work has been done (see eg Akbulut and Ruberman [3],
Akbulut and Yasui [4]) to understand and apply cork twists. Various people, going back
at least to Freedman in the 1990s, have asked whether higher-order corks may exist —
that is, knobs with n settings for n different diffeomorphism types, or possibly even
infinitely many settings all realizing distinct types. Recently, progress has been made
by modifying known examples of corks: Tange [19] exhibited knobs with n settings for
any finite n, displaying two diffeomorphism types on X . Independently, Auckly, Kim,
Melvin and Ruberman [5] constructed the desired finite order corks. More generally,
they constructed G–corks for any finite subgroup G of SO.4/, where the control knob
can be set to any element of G to yield jGj diffeomorphism types. However, both of

Published: 19 May 2017 DOI: 10.2140/gt.2017.21.2475

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57N13, 57R55
http://dx.doi.org/10.2140/gt.2017.21.2475


2476 Robert E Gompf

these latter papers pose the infinite order case as a still unsolved problem, in spite of
fruitless attacks by various mathematicians. The purpose of the present article is to
exhibit a large family of infinite order corks, arising from a simple general construction.

There is variation in the literature about the definition of a cork. All approaches share
the following:

Definition 1.1 A cork .C; f / is a smooth, compact, contractible 4–manifold C with
a diffeomorphism f W @C ! @C . The cork will be called nontrivial if f does not
extend to a self-diffeomorphism of C . If C is smoothly embedded in a 4–manifold X ,
cutting out C and regluing it by f to get .X � int C /[f C will be called a twist by f .

Note that .C; f k/ is then a cork for any k 2 Z, so we also talk about twisting by
powers f k. By Freedman’s topological h–cobordism theorem rel boundary [9; 10],
f necessarily extends to a self-homeomorphism of C , so a cork twist does not change
the homeomorphism type of a manifold. In some references, f is required to be an
involution, or extend to a finite cyclic (or other finite) group action on @C . Since we
are interested in Z–actions, no additional hypothesis is needed. We can now state our
main existence theorem, which is proved in Section 2.

Theorem 1.2 There is a cork .C; f / and a smooth embedding of C into a closed,
simply connected 4–manifold X , for which the manifolds Xk , k 2 Z, obtained by
twisting by f k are homeomorphic but pairwise nondiffeomorphic. Hence, the corks
.C; f k/ are distinct (up to diffeomorphism commuting with the maps), and nontrivial
unless k D 0.

In the terminology of [5], the embedding C ,!X is Z–effective and exhibits .C; f /
as the first example of a Z–cork.

Corollary 1.3 The homology 3–sphere @C bounds infinitely many smooth, con-
tractible manifolds that are all diffeomorphic, homeomorphic rel boundary and pairwise
nondiffeomorphic rel boundary.

Proof Identify @C as the boundary of C using each of the diffeomorphisms f k.

Corollary 1.4 There is a compact, contractible 4–manifold admitting infinitely many
nondiffeomorphic smooth structures.

Proof This follows immediately from the previous corollary and Akbulut and Ruber-
man [3, Theorem 5.3].

We obtain infinitely many examples of corks .C; f / as in the theorem, distinguished
by the homeomorphism types of their boundaries. However, our examples all have a
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simple form. For any knot � � S3 , let P be its closed complement, and let C.�;m/

be the oriented 4–manifold obtained from I �P , where I denotes the interval Œ�1; 1�

throughout the paper, by attaching a 2–handle along the meridian to � in f1g�P with
framing m. Note that I �P can be identified with the obvious ribbon complement of
� #� in B4 , so this is a special case of removing a slice disk and regluing it with a twist.
Either perspective reveals the identity C.�;m/� C.�;m/, and these are orientation-
reversingly diffeomorphic to C.�;�m/. Clearly, C.�;m/ is the 4–ball when mD 0 or
� is unknotted, but otherwise it is a contractible manifold whose boundary is irreducible
and not S3 . In fact, @C.�;m/ is obtained by

�
�

1
m

�
–surgery on � # � , and contains

two oppositely oriented copies of the complement P . When � is prime, the JSJ
decomposition of @C.�;m/ begins by splitting out these complements. (This gives the
entire decomposition unless � is a satellite knot, in which case the splitting continues
symmetrically.) Since the complements can then be recovered from @C.�;m/, it follows
that the manifolds C.�;m/ (� prime) are never orientation-preservingly homeomorphic
unless the corresponding knots are the same up to orientation and the (nonzero) integers
are equal. In our examples, � is the double twist knot �.r;�s/D �.�s; r/ shown in
Figure 1, where the boxes count full twists, right-handed when the integer is positive.
The resulting oriented 4–manifolds C.r; sIm/DC.�.r;�s/;m/, for r; s>0 and m¤0,
are not orientation-preservingly homeomorphic to each other unless the integers m

agree and the pairs .r; s/ agree up to order. In general, the incompressible torus
f0g � @P in @C.�;m/ can be used to create self-diffeomorphisms of the latter: Let
f W @C.�;m/! @C.�;m/ be obtained by rotating the torus ftg � @P parallel to the
canonical longitude of � , through angle .t C 1/� , t 2 I D Œ�1; 1�, as we pass through
I � @P , and extending as the identity. Our simplest cork, .C.1; 1I �1/; f / is made
in this manner from the figure-eight knot �.1;�1/. Its boundary is given by surgery
with coefficient 1 on the connected sum of two figure-eight knots, with the obvious
incompressible torus in the complement of this sum. More generally, we have:

Theorem 1.5 The cork C appearing in Theorem 1.2 can be taken to be any of the
infinitely many contractible manifolds C.r; sIm/ with r; s > 0 and m¤ 0, and f as
specified above. The manifolds Xk can be assumed to be irreducible, except possibly
if r , s or jmj equals 2.

Recall that a 4–manifold is irreducible if it cannot split as a smooth connected sum
unless one summand is homeomorphic to S4 . Other explicit constructions of corks in
the literature typically involve reducible (blown up) manifolds. It seems likely that the
restriction avoiding 2 is unnecessary; see Remarks 2.1(a).

Our incompressible torus in C.�;m/ can be also used to define other twists. Instead
of twisting parallel to the longitude, we could twist parallel to the meridian, or more
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Figure 1: The double twist knot �.r;�s/

generally, twist using any element of H1.T
2/Š Z˚Z. Thus, it is natural to ask both

about other contractible manifolds and other twists:

Question 1.6 (a) Is every pair .C.�;m/; f /, for � a nontrivial knot, m¤ 0 and
f a longitudinal twist as given above, a Z–cork?

(b) Does twisting by other elements of H1.T
2/ ever extend these to .Z˚Z/–corks?

Akbulut, in a preliminary version of [2], previously studied the meridian twist for �
the trefoil and mD�1, trying to prove nontriviality. However, we show in [13] that
the meridian twist extends over every C.�;˙1/. Recently, Ray and Ruberman [17]
answered (a) in the negative for torus knots � when jmj D 1. It follows that every
boundary diffeomorphism extends over C.�;˙1/ for such knots [13]. See the latter
paper for further discussion and the translation of the main proofs of this paper into the
language of handle calculus. The question is still open for meridian twists when jmj� 2

and for longitudinal twists with nontorus knots � outside our family f�.r;�s/ j r; s>0g.

More recently, Tange has posted papers extending the methods of this article to exhibit
n–fold boundary sums of our Z–corks as Zn–corks [21] and providing constraints on
families of manifolds that can be related by Z–corks [20].

Acknowledgements
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for helpful comments.

2 Constructing corks

The closed manifolds Xk in Theorem 1.2 are made from the elliptic surface E.n/, for a
fixed n� 1, by the Fintushel–Stern knot construction [7]. Recall (see eg [14]) that E.n/
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Figure 2: The punctured torus † in the knot complement M D S3� �Kk (k D 0)

has a standard description in which it is built from S1�S1�D2 (a neighborhood of a
regular fiber F D S1 �S1 ) by adding handles. Of most interest for present purposes,
each of the two circle factors has 6n parallel copies (vanishing cycles) to which 2–
handles are attached with framing �1 (relative to the product framing of the boundary
3–torus). We will use three of these 2–handles. Given a knot K � S3 , let M denote
its closed complement. The knot construction consists of removing S1�S1�D2 from
E.n/ and replacing it by M �S1 , gluing by a diffeomorphism of the boundary 3–torus
that identifies the canonical longitude of K with fpointg�@D2 , and the meridian of K

and circle fpointg � S1 in M � S1 with copies of the two circle factors of F . As
detailed in [7], Freedman’s classification [9; 10] shows that the resulting manifold XK

retains the homeomorphism type of E.n/ (which is simply connected with b2D12n�2

and signature �8n, and is even if and only if n is). However, when n� 2, varying the
knot K results in diffeomorphism types that are distinguished by their Seiberg–Witten
invariants if and only if the knots in question are distinguished by their Alexander
polynomials. The structure of the Seiberg–Witten invariants then also shows that
each XK is irreducible. When nD 1 the discussion becomes more technical, but these
statements remain true for the k–twist knots Kk D �.k;�1/ with k 2 Z [8], except
that the unknot K0 yields the reducible manifold E.1/, a sum of copies of ˙CP2. For
fixed n� 1, let Xk be obtained as above from the twist knot Kk . Since these knots
are distinguished by their Alexander polynomials, Theorem 1.2 follows once we locate
a contractible C �X DX0 DE.n/ with a twist f for which each power f k gives
the corresponding Xk .

Proof of Theorem 1.2 Let †�M be the punctured torus depicted in Figure 2 (near
the clasp of Kk , the �s D �1 twist box in Figure 1) with circles C˙1 generating
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its homology. Set k D 0 for this, but note that the corresponding picture for any k

(with the correct longitude) is then obtained from the k D 0 case by
�
�

1
k

�
–surgery on

the circle @†. To examine this surgery more closely, identify a tubular neighborhood
of † in M with I �†, where I D Œ�1; 1� and f1g �† contains the outer part of
the boundary of I �† visible in the figure. Let A be a collar of @† in †. Then we
can perform the required surgery by cutting out and regluing the solid torus I �A.
Since the surgery coefficient has numerator 1, we can take the gluing diffeomorphism
to be the identity everywhere except on the annulus I � @†. That is, we get from the
k D 0 case to the case of arbitrary k by slitting M open along the annulus I � @†

and regluing by gk for a suitable Dehn twist g of the annulus. Hence, to transform
X0 to Xk , we slit X0 open along the 3–manifold N D I � @†�S1 �M �S1 and
reglue by .g� idS1/k. (This operation can be viewed as a torus surgery, also called a
logarithmic transformation, and would be a Luttinger surgery if f0g � @†�S1 could
be made Lagrangian. The latter is ruled out, however, since Xk has no symplectic
structure unless jkj � 1.) Our goal is to find a contractible manifold C �X0 whose
boundary contains N. Extending g � idS1 as the identity over the rest of @C then
gives the required diffeomorphism f completing the proof.

Our first approximation to C is the manifold Y D I �†�S1 �M �S1 �X0 . Then
@Y clearly contains N , but Y is far from being contractible. In fact, Y is homotopy
equivalent to .S1_S1/�S1 , so it has b1 D 3 and b2 D 2, but no higher-dimensional
homology. Its fundamental group is generated by three circles C �i , i D �1; 0; 1

(suitably attached to the base point), where C �i D fig � Ci � f�ig for i D ˙1 and
distinct points �˙1 2 S1 , and C �

0
D f1g� fpg�S1 for some p 2 int†� .C�1[C1/.

A basis for H2.Y / is given by the pair of tori Ti D f0g �C 0i �S1 , i D ˙1, where
C 0i is parallel to Ci in †� fpg. To improve Y , observe in Figure 2 that the circles
C˙1 in M are both meridians of the knot K0 . Thus, the knot construction matches
all three circles C �i � @Y with vanishing cycles of E.n/. We obtain a new manifold
Y 0 �X0 by ambiently attaching a .�1/–framed 2–handle hi to Y along C �i for each
i D �1; 0; 1. Then Y 0 is simply connected with Ti , i D˙1, still giving a basis for
H2.Y

0/, and N still contained in @Y 0 . To eliminate the last homology, note that for
i D˙1, the core of the handle hi fits together with the annulus I�Ci�f�ig, forming a
pair of disks Di disjointly embedded rel boundary in Y 0 (with @Di Df�ig�Ci�f�ig).
Since each Di \Ti is empty, and Di \T�i is a single point of transverse intersection,
deleting tubular neighborhoods of these disks from Y 0 gives a manifold C with no
homology. To see that �1.C / vanishes, use the core of the 2–handle h0 to surger the
tori Ti to immersed spheres, without changing the intersections with the disks Di .
These spheres then provide nullhomotopies for the meridians of the disks. Thus, C is
a contractible manifold whose boundary contains N , as required.
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Proof of Theorem 1.5 To identify the cork C constructed in the proof of Theorem 1.2,
first consider any framed sphere S in a manifold Q. If we add a handle h to I �Q

along 1 � S , and then delete a neighborhood of the core of h, extended down to
f�1g �Q using the annulus I � S , the result is easily seen to be I �P , where P

is made from Q by surgery on S . We apply this trick with Q D †� S1 from the
previous proof. Attaching the handles h˙1 to Y D I �Q and deleting their cores D˙1

gives a manifold of the form I �P that will become C when h0 is attached. The
manifold P is obtained from Q by surgery on the disjoint curves C˙1 � f�˙1g, with
the framings induced from their identification with vanishing cycles of E.n/. These
framings are �1 relative to the oriented boundary of the fiber neighborhood in E.n/

on which we performed the Fintushel–Stern construction, and hence are �1 relative
to @Y . However, the circles C �

˙1
lie on opposite faces of Y (with I coordinate ˙1),

which inherit opposite orientations from Q. Thus, the framing coefficients are �1

relative to Q. To construct a surgery diagram of Q, we cap off † to get an embedding
QD†�S1�T 2�S1DT 3 , with the latter exhibited as 0–surgery on the Borromean
rings B . To recover Q, we remove its complementary solid torus in T 3. This has the
effect of undoing one Dehn filling, leaving one component of B unfilled. The curves
@†� f�g correspond to canonical longitudes of this drilled-out link component, and
fpg �S1 is a meridian of it. The surgery curves C˙1 � f�˙1g are then �1–framed
meridians of the other two components. Blowing down changes the unfilled curve
into a figure-eight knot �.1;�1/ in S3 , whose complement is P . Attaching h0 to
I � P along C �

0
now gives C D C.1; 1I �1/, and @† � S1 is identified with the

incompressible torus boundary of the figure-eight complement inside @C , with f
twisting longitudinally as required.

Now that we have realized C.1; 1I �1/ as the cork C in Theorem 1.2, using 4–
manifolds Xk generated from E.n/ (so irreducible except for X0 when n D 1),
we can easily realize any C.r; sIm/ with r; s > 0 > m by giving up irreducibility:
Just blow up points on the cores of the handles hi to suitably lower their framings (as
measured in E.n/). This replaces the original manifolds Xk by their .rCsCjmj�3/–
fold blowups, which remain pairwise nondiffeomorphic. To realize m > 0, simply
reverse the orientation on each Xk . Retaining irreducibility is no harder when the
integers r , s and m are all odd. Simply choose n large enough that E.n/ contains
1
2
.rCsCjmj�3/ disjoint spheres of square �2 avoiding the submanifolds used in our

construction. Tubing the 2–handle cores into these spheres has the same effect as
blowing up, without changing Xk . When the integers r , s and jmj are also allowed
to be even but not 2, we need an additional trick. For n � 3 we locate an E.2/

fiber-summand in X0 away from the construction site, then cut it out and reglue it by
a cyclic permutation of the circle factors of the boundary 3–torus. This modifies the

Geometry & Topology, Volume 21 (2017)



2482 Robert E Gompf

manifolds Xk so that they each contain three (and more) disjoint spheres of square �3,
made from sections of E.2/ by capping off with vanishing cycles of E.n� 2/. Using
these along with our previous even spheres allows us to realize any positive values of r ,
s and jmj except 2. The manifolds remain pairwise nondiffeomorphic by a useful result
of Sunukjian [18]. (This shows that manifolds made by the Fintushel–Stern construction
on a given manifold X0 are distinguished by the associated Alexander polynomials, in
spite of subtleties introduced by automorphisms of ZŒH2.X /�.) Irreducibility follows
by examining the Seiberg–Witten basic classes. These are all linear combinations of
the fiber classes of the two elliptic summands (by Doug Park [16, Corollary 22] for X0 ,
extended to each Xk by the Fintushel–Stern formula [7]). Thus, all differences of basic
classes have square 0. However, if any Xk were reducible, it would split off a negative
definite summand carrying a homology class e with square �1. Any basic class c

would have nonzero (odd) value on e . By the gluing formula of [11, Theorem 14.1.1],
reversing the sign of hc; ei would give a new basic class c0 with .c� c0/2 negative.

Remarks 2.1 (a) This irreducibility argument misses the case with r , s or jmj equal
to 2, for the technical reason that a disjoint sphere of square �1 would mean our
starting manifold was reducible. It seems reasonable to conjecture that irreducibility is
still attainable by a different method in this case.

(b) Each of our Z–corks .C.r; sIm/; f / (for r; s > 0>m) generates many other sim-
ilar families of closed manifolds. We can vary the starting manifold X0 and distinguish
the resulting manifolds Xk from each other by Sunukjian’s result, then distinguish
various families from each other by their Seiberg–Witten invariants. Alternatively,
since our construction only uses a single clasp of the knots Kk , we can apply the
construction to other families of knots (or links) related by the twisting of a clasp
described by Figure 2.

(c) Our corks C.r; sIm/ all have Mazur type, built with a single handle of each
index 0, 1 and 2. This is because they have the form C.�;m/ for a 2–bridge knot �
(namely �.r;�s/). The complement P of � then has a handle decomposition with two
1–handles and a 2–handle, as does I �P . The final 2–handle h0 of C.�;m/ cancels
a 1–handle. (See Figure 3 of [13].)

(d) Each of these corks also embeds in the 4–sphere. In fact, the double of any
C.�;m/ is also obtained from the complement of the spin of � by filling trivially to
get S4 (for even m) or by Gluck filling (which gives S4 for all spun knots [12]). We
are left with the following question, which can be restated as a problem about certain
torus surgeries in S4 :

Question 2.2 Does iterated twisting on these corks in S4 always give the standard S4?

Geometry & Topology, Volume 21 (2017)
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