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A spectral sequence for stratified spaces
and configuration spaces of points

DAN PETERSEN

We construct a spectral sequence associated to a stratified space, which computes the
compactly supported cohomology groups of an open stratum in terms of the compactly
supported cohomology groups of closed strata and the reduced cohomology groups
of the poset of strata. Several familiar spectral sequences arise as special cases. The
construction is sheaf-theoretic and works both for topological spaces and for the
étale cohomology of algebraic varieties. As an application we prove a very general
representation stability theorem for configuration spaces of points.

55R80; 55T05, 32S60, 14F25, 55N30

1 Introduction

Let X D
S
˛2P S˛ be a stratified space. By this we mean that the topological space X

is the union of disjoint locally closed subspaces S˛ called the strata, and that the
closure of each stratum is itself a union of strata. The set P of strata becomes partially
ordered by declaring that ˛ � ˇ if S˛ � Sˇ .

Let �c.�/ denote the compactly supported Euler characteristic of a space. Since this
invariant is additive over stratifications, one has an equality

(1) �c.S˛/D
X
˛�ˇ

�c.Sˇ /

for all ˛ 2P . By the Möbius inversion formula for the poset P , it therefore holds that

(2) �c.S˛/D
X
˛�ˇ

�P .˛; ˇ/ ��c.Sˇ /;

where �P is the Möbius function of the poset. This expresses the simple combinatorial
fact that if one knows all the integers �c.S˛/, then one can also determine the integers
�c.S˛/ by inclusion-exclusion.

Equation (1) can be upgraded (or “categorified”) to a relationship between actual
cohomology groups. Suppose � W P !Z is a function such that �.˛/ < �.ˇ/ if ˛ <ˇ .
Such a function defines a filtration of S˛ by closed subspaces, and the corresponding
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spectral sequence in compactly supported cohomology reads

(3) E
pq
1 D

M
˛�ˇ

�.ˇ/D�p

HpCq
c .Sˇ ;Z/ D) HpCq

c .S˛;Z/:

By equating the Euler characteristics of the E1 and E1 pages of this spectral sequence
one recovers (1).

It is then natural to ask whether also the dual equation (2) admits a similar interpretation.
The quantity �P .˛; ˇ/ is also an Euler characteristic, by Philip Hall’s theorem: the
Möbius function �P .˛; ˇ/ equals the reduced Euler characteristic of N.˛; ˇ/, by
which we mean the nerve of the poset .˛; ˇ/, where .˛; ˇ/ denotes an open interval
in P . (The preceding is valid only if ˛ < ˇ : in the degenerate case ˛ D ˇ it is natural
to define the reduced cohomology of N.˛; ˇ/ to be Z in degree �2, as we explain
in Section 2.) In any case, one can expect such a categorification to also involve the
reduced cohomology groups of the poset.

In this paper, we construct a spectral sequence accomplishing this goal:

Theorem 1.1 There exists a spectral sequence

E
pq
1 D

M
˛�ˇ

�.ˇ/Dp

M
iCjC2DpCq

H j
c .Sˇ ;

zH i .N.˛; ˇ/;Z// D) HpCq
c .S˛;Z/:

Taking Euler characteristics of both sides, we recover (2). This would seem a very
natural question — given the cohomology of the closed strata, how does one compute
the cohomology of open strata? — and it is close in spirit to the work of Vassiliev
[30; 31]. Yet to my knowledge the result is new.

The proof is elementary and completely sheaf-theoretic, and the theorem we prove in
the body of the paper is a more general statement that is valid with coefficients given
by any sheaf or complex of sheaves F on X . It also works in the setting of `–adic
sheaves, if X is an algebraic variety: in this case, the spectral sequence is a spectral
sequence of `–adic Galois representations.

As an application of our result we prove a very general representation stability theorem
for configuration spaces of points. In particular, a novel feature is that if one is willing
to work with Borel–Moore homology (or, dually, compact support cohomology), then
one can prove homological stability results for an arbitrary topological space M
satisfying rather mild hypotheses; to my knowledge, all existing results in the literature
prove homological stability for configuration spaces of points on manifolds. In this
introduction we focus on the case when M is a (possibly singular) algebraic variety, in
which case the result is easier to state.
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Let M be a space, and let A be a finite collection of closed subspaces Ai � M ni.
We define a configuration space FA.M; n/, parametrizing n ordered points on M
“avoiding all A–configurations”. For instance, if A consists only of the diagonal
inside M 2 , then FA.M; n/ is the usual configuration space of distinct ordered points
on M.

Theorem 1.2 Let M be a geometrically irreducible d–dimensional algebraic variety
over a field � , and A an arbitrary finite collection of closed subvarieties Ai �M ni.

(1) For � DC , the (singular) Borel–Moore homology groups

HBM
iC2dn.FA.M; n/.C/;Z/

form a finitely generated FI-module for all i 2 Z.

(2) The (étale) Borel–Moore homology groups

HBM
iC2dn.FA.M; n/x� ;Z`.�dn//

form a finitely generated FI-module in `–adic Gal.x�=�/–representations, for all
i 2 Z, whenever ` is a prime different from char.�/.

In particular, the homology groups HBM
iC2dn

.FA.M; n/;Q/ form a representation stable
sequence of Sn–representations, and the Sn–invariants HBM

iC2dn
.FA.M; n/=Sn;Q/

satisfy homological stability as n!1.

If M is smooth, or at least a homology manifold, we may conclude instead that
the cohomology groups H i .FA.M; n/;Z/ form a finitely generated FI-module, by
Poincaré duality. See Remark 4.17.

The fact that we obtain a finitely generated FI-module over Z gives a homological stabil-
ity result with rational coefficients, but it also has interesting consequences for the mod p
homology of the unordered configuration spaces: by results of Nagpal [24], our theorem
implies that the groups HBM

iC2dn
.FA.M; n/=Sn;Fp/ become eventually periodic.

Vakil and Wood [29] introduced certain configuration spaces xwc
�
.M/ depending on

a partition �. For a suitable choice of A, one has FA.M; n/=Sn D xwc�.M/, so
Theorem 1.2 implies in particular a homological stability theorem for the spaces
xwc
�
.M/ as n!1, which gives a proof of [29, Conjecture F]. This conjecture has

previously been proven by Kupers, Miller and Tran [21]. Compared to their proof, our
proof gives the stronger assertion of representation stability, and makes no smoothness
assumptions about M (they assume M is a smooth manifold). On the other hand, their
proof gives in many cases integral stability for the unordered configuration space, and
they give an explicit stability range. The latter should be possible in our setting, too,
but we have not done so.
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Vakil and Wood formulated their conjecture after making point counts of varieties
over finite fields, and using the Grothendieck–Lefschetz trace formula to guess what
the cohomology should look like. Since the Grothendieck–Lefschetz trace formula
concerns compact support cohomology, it is in a sense natural that we obtain stronger
results when working with compact support cohomology/Borel–Moore homology from
the start.

As mentioned, one can prove also a version of Theorem 1.2 for an arbitrary topological
space, but the assumptions on M and A become more cumbersome to state. However,
if we let A be the arrangement leading to the configuration spaces considered by Vakil
and Wood, the hypotheses are quite simple: if M is any locally compact topological
space with finitely generated Borel–Moore homology groups, and such that there exists
an integer d � 2 for which HBM

d
.M;Z/Š Z and HBM

i .M;Z/D 0 for i > d , then
HBM
iCdn

.FA.M; n/;Z/ is a finitely generated FI-module if d is even; if d is odd, one
needs to twist by the sign representation, and HBM

iCdn
.FA.M; n/;Z/˝sgnn is a finitely

generated FI-module.

2 Generalities on posets

Let P be a poset, always assumed to be finite. We define its nerve NP to be the
simplicial complex with vertices the elements of P , and a subset S � P forms a face
if and only if all elements of S are pairwise comparable. The corresponding simplicial
set is exactly the usual nerve of P , when P is thought of as a category.

We use zC�.�/ to denote the reduced cellular chains of a simplicial complex �. The
group zCi .�/ is free abelian on the set of i–dimensional faces; we include the empty
set as a .�1/–dimensional face. The homology of this chain complex is zH�.�;Z/.
However, we will prefer to work with cohomology. The usual definition would be to set

zC �.�/D Hom. zC�.�/;Z/

but we will find it more convenient to use the distinguished basis of zCi .�/ to consider
zC i .�/ as also being free abelian on the set of i–dimensional faces; then the differential
becomes an alternating sum over ways of adding an element to a face.

If x � y in P , we denote by zC �.x; y/ the chain complex which in degree d is the
free abelian group spanned by the increasing sequences

x D z�1 < z0 < z1 < � � �< zd < zdC1 D y;

and whose differential @W zCd ! zCdC1 is an alternating sum over ways of adding an
element to the sequence. For x < y , zC �.x; y/ is equal to zC �.N.x; y//, where .x; y/
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denotes an open interval in P ; for x D y , it consists of Z placed in degree �2. We
denote by zH �.x; y/ the cohomology of this cochain complex.

Let � W P ! Z be a strictly increasing function, eg a grading or a linear extension.

Proposition 2.1 For x < y in P , there exists a spectral sequence

E
pq
1 D

M
x�z�y
�.z/Dp

zHpCq�1.x; z/

converging to zero.

Proof Consider the chain complex zC � D zC �.N.x; y�/, where .x; y� denotes a half-
open interval in P . Since .x; y� has a unique maximal element its nerve is contractible,
so the complex zC � is acyclic. We identify zC d with the set of increasing sequences

x D z�1 < z0 < z1 < � � �< zd � y:

Define a decreasing filtration on this complex by taking F p zC d to be the span of all
sequences with �.zd /� p . This makes zC � a filtered complex. Consider the quotient

F p zC �=F pC1 zC �

and its induced differential. Then F p zCd=F pC1 zCd has a basis consisting of sequences
such that �.zd / is exactly equal to p , and the differential is a sum over all ways of
adding an element to the sequence coming before zd . It therefore follows that the
quotient is isomorphic to the direct sumM

x�z�y
�.z/Dp

zC ��1.x; z/;

by an isomorphism taking the sequence

x D z�1 < z0 < z1 < � � �< zd � y 2 F
p zC d=F pC1 zC d

to the sequence

x D z�1 < z0 < z1 < � � � zd�1 < zd D zd 2 zC
d�1.x; zd /:

Thus the spectral sequence associated to this filtration has the required form.

Let Int.P / denote the set of pairs .x; y/ 2 P �P with x � y . We define the Möbius
function

�W Int.P /! Z

by �.x; y/D
P
i .�1/

i rank zH i .x; y/.
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Proposition 2.2 If x < y , then
P
x�z�y �.x; z/D 0.

Proof The left-hand side is the Euler characteristic of the E1 page of the spectral
sequence constructed in Proposition 2.1, and the right-hand side is the Euler character-
istic of the E1 page.

A consequence of this is a simple recursive procedure for calculating the Möbius
function: the Möbius function could equivalently have been defined as

�.x; y/D

�
1 if x D y;
�
P
x�z<y �.x; z/ if x < y:

In most treatments this is taken as the definition of the Möbius function. The fact
that �.x; y/ for x < y equals the reduced Euler characteristic of the nerve of the
interval .x; y/ is then called Philip Hall’s theorem. We may think of Proposition 2.1
as a categorification of the usual recursion for the Möbius function.

3 The construction and several examples

Let X D
S
˛2P S˛ be a stratified space. By this we mean that the space X is the

union of disjoint locally closed subspaces S˛ called the strata, and that the closure of
each S˛ is itself a union of strata. By a “space” we mean either:

(1) X is a locally compact Hausdorff topological space,

(2) X is an algebraic variety over some field.

In the former case, “sheaf” will just mean “sheaf of abelian groups”; in the latter case,
“sheaf” will mean “constructible `–adic sheaf, for ` different from the characteristic”.

The set P of strata becomes partially ordered by declaring that ˛ � ˇ if S˛ � Sˇ . We
assume for simplicity (and without loss of generality) that P has a unique minimal
element 0, ie a unique open dense stratum S0 .

For ˛ 2 P we denote by j˛ the locally closed inclusion S˛ ,! X , and by i˛ the
inclusion S˛ ,!X of the closure of a stratum.

For d � 0, define a sheaf

Ld .F/D
M

0D˛0<˛1<���<˛d2P

.i˛d /�.i˛d /
�F

on X . In particular, L0.F/D F . We may define a differential

Ld .F/! LdC1.F/
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as an alternating sum over ways of adding an element to the sequence ˛0<˛1< � � �<˛d ,
just as in our definition of zC �.�/ for a simplicial complex �; when the element we add
appears at the end of the sequence, ie as ˛dC1 > ˛d , then the differential uses the map

.i˛d /�.i˛d /
�F! .i˛dC1/�.i˛dC1/

�F

obtained from the fact that i˛dC1 factors through i˛d . This makes L�.F/ into a
complex, for the same reason that zC �.�/ is.

Proposition 3.1 The complex L�.F/ is quasi-isomorphic to j
0Š
j�10 F , where j0 is

the inclusion of the open stratum.

Proof We show that

j0Šj
�1
0 F! L0.F/! L1.F/! L2.F/! � � �

is an acyclic complex of sheaves. It suffices to check this on stalks. For x 2 S0 the
induced sequence on stalks reads

Fx! Fx! 0! 0! � � � ;

with the map Fx ! Fx the identity. Thus we may restrict attention to x in some
stratum Sˇ , ˇ ¤ 0. In this case .j

0Š
j�10 F/x will of course vanish, and we will have

Ld .F/x Š
M

0D˛0<˛1<���<˛d2P
˛d�ˇ

Fx;

with the differential on L�.F/x given by adding an element to the sequence of ˛i’s.
But this means that L�.F/x is (up to a degree shift) the tensor product of Fx with the
complex zC �.N.0; ˇ�/, which is acyclic because the poset .0; ˇ� has a unique maximal
element.

Remark 3.2 Another way to think about the complex L�.F/ is that j
0Š
j�10 FŒ�1�

can be calculated as the cone of F! i�i
�F , where i W .X nS0/!X is the inclusion.

Now i�i
�F may be calculated as the homotopy limit of the various .i˛/�.i˛/�F (for

˛ ¤ 0), and L�1.F/ is the bar resolution computing this homotopy limit.

Suppose we are given � W P ! Z an increasing function. We may now define a
decreasing filtration of L�.F/ by taking

F pLd .F/D
M

0D˛0<˛1<���<˛d2P
�.˛d /�p

.i˛d /�.i˛d /
�F:
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The compactly supported hypercohomology spectral sequence associated to this filtra-
tion reads

E
pq
1 DHpCq

c .X;GrpFL
�.F// D) HpCq

c .X;L�.F//DHpCq
c .S0; j

�1
0 F/;

where the second equality is the preceding proposition. Thus we should understand
the associated graded GrpFL

�.F/. By arguments just like those in the proof of
Proposition 2.1, the associated graded can be written as

GrpFL
d .F/D

M
ˇ2P
�.ˇ/Dp

M
0D˛0<˛1<���<˛dDˇ

.iˇ /�.iˇ /
�F;

and hence

GrpFL
�.F/D

M
ˇ2P
�.ˇ/Dp

zC �C2.0; ˇ/˝ .iˇ /�.iˇ /
�FD

M
ˇ2P
�.ˇ/Dp

zH �C2.0; ˇ/˝L .iˇ /�.iˇ /
�F:

The last equality uses that zC �C2.0; ˇ/ is a complex of free modules, so it calculates
the derived tensor product, and that any complex of abelian groups is quasi-isomorphic
to its cohomology.

In full generality, this cannot be simplified further. However, in most cases occurring
in practice it can:

(1) If F D R is a constant sheaf associated to the ring R , then zH �C2.0; ˇ/˝L

.iˇ /�.iˇ /
�F is the constant sheaf zH �C2.0; ˇIR/.

(2) If the cohomology groups zH i .0; ˇ/ are torsion-free, or if F is a sheaf of k–
vector spaces for some field k , then we may replace the derived tensor product
with the usual tensor product.

Let us state our main result only in these two simpler situations.

Theorem 3.3 Let X D
S
ˇ2P Sˇ be a stratified space, where the set P is partially

ordered by reverse inclusion of the closures of strata. Choose a function � W P ! Z
such that �.x/ < �.y/ if x < y .

(i) For any ring R , there is a spectral sequence

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

M
iCjDpCq�2

H j
c .Sˇ ;

zH i .0; ˇIR// D) HpCq
c .S0; R/:
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(ii) If F is a sheaf on X , and we assume either that F is a sheaf of k–vector spaces
or that each interval .0; ˇ/ in P has torsion-free cohomology, then there is a
spectral sequence

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

M
iCjDpCq�2

zH i .0; ˇ/˝H j
c .Sˇ ; i

�
ˇF/ D) HpCq

c .S0; j
�1
0 F/:

If in (ii) X is an algebraic variety and F is an `–adic sheaf, then this spectral sequence
is a spectral sequence of Galois representations, if the cohomology groups zH i .0; ˇ/

are given the trivial Galois action.

3.1 Examples and applications

Example 3.4 If the stratification consists only of a closed subspace i W Z ,!X , then
the complex L�.F/ reduces to the two-term complex F! i�i

�F , and the spectral
sequence reduces to the long exact sequence

� � � !Hk
c .X;F/!Hk

c .Z;F/!HkC1
c .X nZ;F/!HkC1

c .X;F/! � � � : G

Example 3.5 Let X be a complex manifold, and D DD1[ � � � [Dk a strict normal
crossing divisor. Consider the stratification of X by the various intersections of the
components of D . For I � f1; : : : ; kg, let DI D

T
i2I Di , including D∅ DX . Each

interval in the poset of strata is a boolean lattice, so its reduced cohomology vanishes
below the top degree, where it is one-dimensional. The spectral sequence therefore
reduces to

E
pq
1 D

M
jI jDp

H q
c .DI ;Z/ D) HpCq

c .X nD;Z/:

This is the Poincaré dual of the spectral sequence used by Deligne to construct the
mixed Hodge structure on a smooth noncompact complex algebraic variety [11]. In the
algebraic case, it is a spectral sequence of mixed Hodge structures/Galois representa-
tions. G

Example 3.6 Suppose X D An is affine space over a field, and the stratification
consists of all the intersections in some subspace arrangement. Let �.˛/D� dim.S˛/.
Let FDQ` . In this case the spectral sequence simplifies to

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

zH qC3p�2.0; ˇ/˝Q`.p/ D) HpCq
c .S0;Q`/:
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Since all columns have different weight there can be no differentials in the spectral
sequence. It follows that (up to semisimplification of the Galois representation)

Hn
c .S0;Q`/D

nM
jD0

Q`.�j /˝

� M
ˇ Wdim.Sˇ/Dj

zHn�2j�2.0; ˇ/

�
;

which re-proves a result of Björner and Ekedahl [4]. G

Example 3.7 The aforementioned result of Björner and Ekedahl is the algebro-
geometric analogue of a theorem of Goresky and MacPherson [17] about real subspace
arrangements; the latter result, too, can be given an easy proof using our spectral
sequence. Goresky and MacPherson originally proved it as an application of their
stratified Morse theory; many different authors have subsequently given alternative
proofs and/or strengthenings. Their result, in turn, is a refinement of the work of Orlik
and Solomon on complex hyperplane arrangements [25]. In any case, suppose that X is
a real vector space, stratified according to intersections in a real subspace arrangement.
Let �.˛/D� dimR S˛ . The result of Goresky and MacPherson is equivalent to our
spectral sequence degenerating at E1 . The weight argument used in the case of a
complex subspace arrangement is of course not valid in this setting. We can instead
argue as follows:

Choose for each ˛ an open ball U˛ inside S˛ . Then C �c .U˛;Z/ (compactly supported
cochains) is a subcomplex of C �c .S˛;Z/ for all ˛ . The inclusion of each of these
subcomplexes is a quasi-isomorphism, and the restriction maps between these subcom-
plexes can be chosen to be identically zero (since U˛ may be taken to be disjoint from
all Sˇ with ˇ > ˛ ). By additionally choosing an arbitrary quasi-isomorphism between
C �c .U˛;Z/ and H �c .S˛;Z/ we thus get a quasi-isomorphism between the two functors
P ! Chk (where the poset P is thought of as a category) given by ˛ 7! S�c .S˛;Z/
and ˛ 7!H �c .S˛;Z/.

We can compute R�c.X;L�.Z// by means of a double complex, with each vertical
row a direct sum of complexes S�c .S˛;Z/, and the differentials in the horizontal row
given by the differentials in the complex L�.Z/; equivalently, given by the functor
˛ 7! S�c .S˛;Z/. If we apply the quasi-isomorphism of functors constructed in the
previous paragraph we can replace this double complex with one in which the vertical
rows have zero differential, and the horizontal rows are direct sums of complexes of
the form zC �C2.0; ˇ/.

Our spectral sequence arises from a filtration of this double complex. In this case, the
filtration clearly splits, and the spectral sequence degenerates immediately. G
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Example 3.8 Let us give two variations of our spectral sequence.

(1ı) Let D denote Verdier’s duality functor. The filtration on L�.F/ induces a filtra-
tion on DL�.F/, satisfying GrFDL�.F/'DGrFL�.F/ (see eg [18, (2.2.8.1)]).
Thus the associated graded pieces of DL�.F/ are quasi-isomorphic to

D

� M
�.ˇ/Dp

zH �C2.0; ˇ/˝L .iˇ /�.iˇ /
�F

�
D

M
�.ˇ/Dp

zH���2.0; ˇ/˝
L .iˇ /Š.iˇ /

ŠDF:

Since the cohomology of DR in negative degrees equals Borel–Moore homology
with coefficients in R , our filtration of DL�.F/ gives rise to a Borel–Moore
homology spectral sequence

E1pq D
M
ˇ2P
�.ˇ/Dp

M
iCjDpCq�2

HBM
j .Sˇ ; zHi .0; ˇIR// D) HBM

pCq.S0; R/:

(2ı) Instead of taking the compact support cohomology of L�.F/' j
0Š
j�10 F , we

may take the usual cohomology. Since j
0Š
j�10 FŒ1� is the cone of F! i�i

�F ,
where i is the inclusion .X nS0/ ,!X , this gives instead a spectral sequence

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

M
iCjDpCq�2

H j .Sˇ ; zH
i .0; ˇIR// D) HpCq.X;X nS0IR/: G

Example 3.9 Let XDfX.n/g be a topological operad. Suppose that X.n/ is stratified
in such a way that the strata correspond to trees with n legs, the closed stratum corre-
sponding to a tree T is

Q
v2Vert.T /X.nv/, and the composition maps in the operad X

are given tautologically by grafting of trees. Let Y.n/ be the open stratum in X.n/ corre-
sponding to the unique tree with a single vertex. Examples of such operads abound: the
Stasheff associahedra, the Fulton–MacPherson model of the en–operads, the Deligne–
Mumford spaces M0;n , the Boardman–Vogt W –construction applied to an arbitrary
topological operad, Devadoss’s mosaic operad, the cactus operad, Brown’s dihedral
moduli spaces Mı

0;n , the brick operad B.n/ of Dotsenko, Shadrin and Vallette, etc.

Clearly, the compact support cohomology H �c .X.n/;Q/ will form a cooperad. More-
over, the degree-shifted cohomologiesH ��1c .Y.n/;Q/will form an operad: Y.n/�Y.m/
will be a stratum adjacent to Y.nCm�1/ inside X.nCm�1/, and there is a connecting
homomorphism H �c .Y.n/� Y.m/;Q/!H �C1c .Y.nCm� 1/;Q/ coming from the
long exact sequence of a pair in compact support cohomology.

If � is the function taking a stratum to the number of vertices in the corresponding
tree, then we get a filtration of X.n/. The corresponding spectral sequence in com-
pact support cohomology (equation (3) from the introduction) is a cooperad in the
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category of spectral sequences. Its E1 page is the associated graded for a filtration
on H �c .X.n/;Q/, and its E1 page is exactly the bar construction on the operad
H ��1c .Y.n/;Q/. This construction seems to have first been considered in [16, Sec-
tion 3.3], where it was used to prove Koszul self-duality of the en–operads (equivalently,
collapse of the spectral sequence), using the Fulton–MacPherson compactification.

Our Theorem 1.1 then gives a dual spectral sequence. All intervals in the poset of trees
are boolean lattices, and the spectral sequence of Theorem 1.1 takes the simple form

E
pq
1 D

M
#Vert.T /Dp

H q
c

� Y
v2Vert.T /

X.nv/;Q

�
D) HpCq�1

c .Y.n/;Q/:

This is now an operad in the category of spectral sequences, whose E1 page is the
associated graded for a filtration on H ��1c .Y.n/;Q/, and whose E1 page is exactly
the cobar construction on the operad H �c .X.n/;Q/.

Thus we see that working with compact support cohomology gives a quite general
setting for proving bar/cobar-duality results for such pairs of operads X , Y . G

Example 3.10 Suppose that the poset P is Cohen–Macaulay, or more generally that P
is graded with rank function � and that zHi .0; ˇ/D 0 for i < �.ˇ/� 2D dim N.0; ˇ/.
Then if we apply the spectral sequence for the function � , the spectral sequence
simplifies to

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

zHp�2.0; ˇ/˝H q
c .Sˇ ; i

�
ˇF/ D) HpCq

c .S0; j
�1
0 F/:

In fact, something stronger is true: the chain complex L�.F/ is filtered quasi-isomorphic
to a complex of sheaves K�.F/, with

Kd .F/D
M
ˇ2P
�.ˇ/Dd

zHd�2.0; ˇ/˝ .iˇ /�.iˇ /
�F;

and which is filtered by the “stupid filtration”. The Cohen–Macaulay condition is
extremely well studied and is known for large classes of posets. See eg [32, Section 4].

G

Example 3.11 Suppose that X is a complex manifold, and that we are given an
“arrangement-like” divisor D on X , ie D can locally be defined by a product of linear
forms. Then the poset of strata is a geometric lattice and therefore Cohen–Macaulay.
The complex of sheaves K�.F/ is the Verdier dual of the one constructed in [22,
Section 2]. As part of his construction, he needs to inductively choose a certain free
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Z–module ES for each stratum S — the fact that such a choice is possible is not
obvious, and requires the Cohen–Macaulay condition! G

Example 3.12 Suppose that P is Cohen–Macaulay and the two contravariant functors
P ! Chk given by ˛ 7!R�c.S˛; i

�
˛F/ and ˛ 7!H �c .S˛; i

�
˛F/ are quasi-isomorphic.

Then the spectral sequence degenerates at E2 .

Indeed, we can realize R�c.X;K�.F// as a double complex, with each column a
direct sum of complexes R�c.S˛; i�˛F/, and the differentials in each row given by
the differentials in the complex K�.F/. If we have such a quasi-isomorphism we can
therefore replace this double complex with one in which all vertical differentials vanish.
Our spectral sequence is the spectral sequence given by filtering this double complex
column-wise, since K�.F/ has the stupid filtration. Thus it will indeed be the case that
the spectral sequence has nontrivial differential only on E1 .

Suppose that each closed stratum S˛ is a compact complex manifold on which the
dd c–lemma holds, eg a Kähler or Moishezon manifold, and that the sheaf F is the
constant sheaf R. Then the criterion stated in the first sentence of this example is
satisfied. Indeed, we may take as our model for R�c.S˛;R/DR�.S˛;R/ the real de
Rham complex of S˛ , and then the validity of the above criterion is a particular case
of [12, Section 6, Main Theorem (ii)]. G

Example 3.13 Suppose that P is Cohen–Macaulay, and that each closed stratum is
an algebraic variety whose compact support cohomology is of pure weight in each
degree (eg a smooth projective variety). Then the spectral sequence also degenerates
at E2 , using instead a weight argument. G

Example 3.14 For a space M , let F.M; n/ denote the configuration space of n
distinct ordered points on M . If M is an oriented manifold, a spectral sequence
calculating the cohomology of F.M; n/ was constructed by Cohen and Taylor [10].
Their construction was later simplified by Totaro, who noticed that the spectral se-
quence is just the Leray spectral sequence for the inclusion j W F.M; n/ ,!M n [28].
Getzler [15] then realized that the spectral sequence exists for a more or less arbitrary
topological space, if one works with compactly supported cohomology instead: more
precisely, Getzler constructed a complex of sheaves quasi-isomorphic to jŠj

�1F ,
whose compactly supported hypercohomology spectral sequence was Poincaré dual to
the spectral sequence of Cohen and Taylor in the case of an oriented manifold.

So suppose that X D M n for some space M , and let us stratify X according to
points coinciding. Then the poset of strata is the partition lattice …n , which is Cohen–
Macaulay. Our complex K�.F/ is exactly the one considered by Getzler, and the
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resulting spectral sequence

E
pq
1 D

M
ˇ2…n
�.ˇ/Dp

zHp�2.0; ˇ/˝H q
c .M

n�p;Z/ D) HpCq
c .F.M; n/;Z/

is the Poincaré dual of Cohen and Taylor’s if M is an oriented manifold. To see the
identification of K�.F/ with Getzler’s resolution we need to know the cohomology of
the partition lattice.

Note first of all that each lower interval Œ0; ˇ� in the partition lattice is itself a product
of partition lattices: eg if ˇ corresponds to the partition .136j27j45/, then Œ0; ˇ� Š
…3�…2�…2 . Thus by the Künneth theorem we only need to know the top cohomology
group zHn�3.…n;Z/. This calculation is hard to attribute correctly — it follows by
combining the results of [20] and [27]; see also [19, Section 4]. The result is in any
case that zHn�3.…n;Z/ has rank .n�1/Š and that as a representation of the symmetric
group Sn , it is isomorphic to Lie.n/˝ sgnn , where Lie.n/ is the arity-n component of
the Lie operad. But the same is also true for the cohomology group Hn�1.F.C; n/;Z/,
by the results of Cohen [9]; specifically, since the homology of the little disk operad is
the Gerstenhaber operad, and the Gerstenhaber operad in top degree is just a suspension
of the Lie operad, we get the above identification. This explains why the cohomology
groups of F.C; n/ appear in Getzler’s construction of the resolution: the decomposition
of H �.F.C; n// into summands corresponding to different partitions of f1; : : : ; ng
used by Getzler corresponds to

Hk.F.C; n/;Z/Š
M
ˇ2…n
�.ˇ/Dk

zHk�2.0; ˇ/:

If we instead consider the spectral sequence described in Example 3.8(2ı), applied
to the stratification of X DM n according to points coinciding, then we recover the
spectral sequence of Bendersky and Gitler [3]. G

Example 3.15 Consider the example X DM n of a configuration space. Let A�c.M/

be a cdga model for the compactly supported cochains on M with rational coefficients.
Then the criterion described in Example 3.12 is equivalent to A�c.M/ being formal, ie
that A�c.M/ and H �c .M/ are quasi-isomorphic. Hence if A�c.M/ is formal then the
Cohen–Taylor–Totaro spectral sequence degenerates after the first differential.

If in the same situation we consider the second variant of Example 3.8 (ie the Bendersky–
Gitler spectral sequence), then we see by the same argument that the spectral sequence
degenerates after the first differential whenever M is a formal space, a result which is
also proven in Bendersky and Gitler’s original paper. G
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3.2 Compatibility with Hodge theory

We have already mentioned several times that in the algebraic case, we obtain a spectral
sequence of `–adic Galois representations. It is natural to ask whether in the complex
algebraic setting we get a spectral sequence of mixed Hodge structures.

The answer is yes, and it follows from Saito’s theory of mixed Hodge modules [26]. Yet
some care must be taken here. Saito proves the existence of a six functors formalism
on the level of the derived categories Db.MHM.X//, where X is a complex algebraic
variety. We defined the complex L�.F/ in such a way that Ld .F/ is a sum of objects
of the form .i˛d /�.i˛d /

�F . Now if F is a mixed Hodge module then .i˛d /�.i˛d /
�F

is in general only going to be an object of Db.MHM.X//, and this is not good enough:
a “chain complex” of objects in a triangulated category T can in general have several
nonisomorphic totalizations to an object of T , or none at all.

Thus the construction can only be carried out if i�i� is a t–exact functor, for i a closed
immersion. This is of course true for the usual t–structure of constructible sheaves, but
it is false for the perverse t–structure on Dbc .X/: i� is still t–exact, but i� clearly is
not. Since a mixed Hodge module does not have an underlying constructible sheaf but
instead an underlying perverse sheaf, i� is not t–exact for mixed Hodge modules.

However, one can choose instead to give Db.MHM.X// a constructible (ie nonperverse)
t–structure, uniquely characterized by the functor ratW Db.MHM.X//!Dbc .X/ being
t–exact for the constructible t–structure on Dbc .X/ [26, Remark 4.6]. In other words,
an object F 2Db.MHM.X// is in the heart of the constructible t–structure if and only
rat.F/ is quasi-isomorphic to a constructible sheaf. In particular, i� will be t–exact
for this t–structure, and i� will be t–exact whenever i is a closed immersion.

Let H.X/ be the heart of the constructible t–structure of Db.MHM.X//, and let F be
an object of H.X/. Then for d � 0 we obtain an object

Ld .F/D
M

0D˛0<˛1<���<˛d2P

.i˛d /�.i˛d /
�F

of H.X/, and we can define a differential Ld .F/!LdC1.F/ just as before. Thus we
get an object L�.F/ of Db.H.X//, quasi-isomorphic to j

0Š
j�10 F 2 H.X/. Moreover,

we obtain a filtration of L�.F/ by the same procedure as before. This filtration allows
us to write down a Postnikov system in the triangulated category Db.H.X//, with
totalization L�.F/ [14, page 262]:

Grp�1F L�.F/Œ�1�

||

Grp�2F L�.F/Œ�1�

{{

Grp�3F L�.F/Œ�1�

{{

� � � F pL�.F/ // F p�1L�.F/

cc

// F p�2L�.F/ //

cc

F p�3L�.F/ � � �

cc
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Let T be a triangulated category with a t–structure, and T~ its heart. A realization
functor is an exact functor Db.T~/! T whose restriction to the full subcategory T~

is the inclusion into T. If T is itself the derived category of an abelian category (not
necessarily with its standard t–structure), then a realization functor always exists [2,
Section 3]; more generally, a realization functor always exists if T is the homotopy
category of a stable 1–category. In particular, we obtain a realization functor

realW Db.H.X//!Db.MHM.X//:

Exact functors preserve Postnikov systems, and we get a Postnikov system in
Db.MHM.X// whose terms are of the form real.GrpFL

�.F//, up to a degree shift.
Now we note that the functor real commutes with tensoring with a bounded complex
of free abelian groups. Hence, the terms in the Postnikov system in Db.MHM.X//

are given by

real.GrpFL
�.F//Š real

M
ˇ2P
�.ˇ/Dp

zC �C2.0; ˇ/˝ .iˇ /�.iˇ /
�F

Š

M
ˇ2P
�.ˇ/Dp

zC �C2.0; ˇ/˝ real.iˇ /�.iˇ /
�F

Š

M
ˇ2P
�.ˇ/Dp

zC �C2.0; ˇ/˝ .iˇ /�.iˇ /
�F;

using in the last step that .iˇ /�.iˇ /�F is in H.X/. Applying RfŠ to this Postnikov
system, where f W X ! Spec.C/ is the projection to a point, gives a Postnikov system
in the derived category of mixed Hodge structures (the category of mixed Hodge
modules over a point). The associated spectral sequence [14, page 263] is the one of
Theorem 3.3(ii), now equipped with the canonical mixed Hodge structure coming from
the fact that F is a mixed Hodge module.

Remark 3.16 It seems likely that Db.H.X//! Db.MHM.X// is an equivalence
of categories, which would be the analogue for mixed Hodge modules of Beı̆linson’s
theorem that the realization functor from the derived category of perverse sheaves to
the derived category of constructible sheaves is an equivalence [1], but I do not know
if this is known and I have not attempted to prove it.

4 Representation stability

The notion of representation stability was introduced by Church and Farb [8] as an
extension of homological stability to situations where the Betti numbers do not actually

Geometry & Topology, Volume 21 (2017)



A spectral sequence for stratified spaces and configuration spaces of points 2543

stabilize. Roughly, a sequence fV.n/g of representations of Sn over Q is said to be
representation stable if, for n� 0, the representation V.nC1/ is obtained from the
representation V.n/ by adding a single box to the top row of the Young diagram of each
irreducible representation occurring in V.n/. Thus V.nC1/ is completely determined
from V.n/ for sufficiently large n. Note in particular that the Sn–invariants satisfy
V.nC1/SnC1 Š V.n/Sn for n� 0; if fV.n/g were a sequence of homology groups,
the Sn–invariants would satisfy homological stability in the usual sense.

The theory was clarified by the introduction of FI-modules [6]. The key point is that
the underlying sequence of Sn–representations of an FI-module in Q–vector spaces is
representation stable if and only if the FI-module is finitely generated. Most examples
of representation stability arise from an FI-module in this way.

One of the main examples of representation stability is given by the following theorem
of Church [5]: if M is an oriented manifold, then H i .F.M; n/;Q/ is a representation
stable sequence of Sn–representations for any i . In this example, it was known since
[23] that the cohomology of the unordered configuration space F.M; n/=Sn satisfies
homological stability for integer coefficients if M is an open manifold, but also that
integral homological stability is false in general. Church’s result shows in particular that,
with Q–coefficients, the unordered configuration space always satisfies homological
stability.

This result of Church fits well into the general framework of FI-modules. The as-
signment S 7! F.M; S/ is a contravariant functor from FI to spaces: if S � T , then
F.M; T /! F.M; S/ is the map that forgets all the points indexed by elements of
T nS . On applying H i .�;Q/ one gets an FI-module, which turns out to be finitely
generated; in fact, finite generation holds already with integral coefficients [7].

For the remainder of this paper, we will prove a theorem extending Church’s result in
several ways:

(1) Our proof works in a uniform way for a much larger class of configuration-like
spaces, such as “k–equals” configuration spaces, the spaces xwc

�
.M/ considered

by Vakil and Wood, etc.

(2) We give a proof valid also in the algebrogeometric setting, so we get eg rep-
resentation stability in the category of `–adic Galois representations. (This
was previously proven for the spaces F.M; n/ in [13] under more restrictive
assumptions on M.)

(3) We allow M to have singularities. In the paper we focus on the case when M
is an algebraic variety (with arbitrary singularities); we comment towards the
end on the differences in the topological setting.
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In order to have representation stability in the more general setting of a singular space,
one needs to work with Borel–Moore homology/compactly supported cohomology.
Note that compactly supported cohomology is only contravariant for proper maps, and
the map F.M; T /! F.M; S/ is (almost) never proper, so H �c .F.M; S/;Q/ is not
directly an FI-module. This should in any case not be surprising: if we want to recover
Church’s theorem by Poincaré duality when M is an oriented manifold, then we had
better prove that the cohomology H �c .F.M; S/;Q/ satisfies representation stability
up to a degree shift by the dimension of F.M; S/.

4.1 Twisted commutative algebras and FI-modules

Our proof of representation stability uses the formalism of FI-modules and twisted
commutative algebras. We briefly recall the definitions for the reader’s convenience.
Let C be a symmetric monoidal category (the reader is encouraged to take C to be
the category of dg vector spaces over a field of characteristic zero). By a species
in C we mean a functor B ! C, where B the category of finite sets and bijections.
The category of species is equivalent to the category of sequences of representations
of the symmetric groups Sn in C. We write a species as S 7! A.S/ or n 7! A.n/,
depending on whether we wish to consider it as a functor of finite sets or as a sequence
of representations. We call A.n/ the arity-n component of the species A.

Let us consider B as a symmetric monoidal category, with monoidal structure given
by disjoint union. A twisted commutative algebra (tca) in C is a lax symmetric
monoidal functor B ! C. Thus a twisted commutative algebra in C consists of
a sequence fA.n/g of Sn–representations in C, equipped with multiplication maps
A.n/˝A.m/!A.nCm/ which are Sn�Sm–equivariant and satisfy suitable commu-
tativity and associativity axioms. An equivalent definition is that a tca is a left module
over the commutative operad Com in C. A third equivalent definition is that a tca is an
algebra over the operad Com in the category of species in C, where the tensor product
on the category of species is given by Day convolution:

.A˝B/.S/D
M

SDT1tT2

A.T1/˝B.T2/:

Suppose that C is the category of dg R–modules. Let A be a species in C. We define
the suspension SA by

SA.n/D A.n/Œ�n�˝ sgnn:

The suspension is a symmetric monoidal endofunctor on the symmetric monoidal
category of species. In particular, if A is a tca, then so is SA.
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Let FI denote the category of finite sets and injections. By an FI-module in the
category C we mean a functor FI! C.

Let Com be the twisted commutative algebra which has the monoidal unit with trivial
Sn–action in each arity, and for which all multiplication maps Com.S/˝Com.T /!

Com.S tT / are given by the canonical isomorphism 1˝ 1Š 1. In other words, we
are considering the commutative operad as a left module over itself. There is a general
notion of a module over an algebra over any operad, which in this case specializes to
an evident notion of a module over a tca.

Lemma 4.1 Every module over the tca Com is in a canonical way an FI-module, and
vice versa.

Sketch of proof Let M be a module over the tca Com, and let S � T . Then we have
a map

M.S/DM.S/˝ 1DM.S/˝Com.T nS/!M.S t .T nS//DM.T /;

where 1 denotes the monoidal unit in C and D denotes a canonical isomorphism. This
makes M into an FI-module. The converse construction is similar.

If A is a tca in C, then the choice of a morphism aW 1!A.1/ is the same as the choice
of a tca morphism Com! A. Thus the choice of such an a defines the structure of
FI-module on the underlying species of the tca A.

In particular, let C be the category of graded R–modules. For a tca A in C, let us write
Ai .n/ for the degree-i component of A.n/. Then any a 2 A0.1/ defines a structure
of FI-module on the collection Ai .n/, for all i 2 Z. We write jaj for the degree of a
homogeneous element in a graded vector space.

Lemma 4.2 Suppose A is a tca in graded R–modules, and that fa0; a1; a2; : : : g is a
set of generators. Suppose that a0 2A0.1/, jai j<0 for i >0 , and limi!1 jai jD�1 .
Then the FI-module n 7! Ai .n/ defined by multiplication with a0 is finitely generated
for all i 2 Z.

Proof The hypotheses imply that there are only finitely many monomials in fa1;a2; : : : g
(ie all generators except a0 ) of given degree. Those monomials of degree i generate
the FI-module n 7! Ai .n/.

Applying the previous lemma to the d–fold suspension SdA, we get the following:
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Lemma 4.3 Suppose A is a tca in graded R–modules, and that fa0; a1; a2; : : : g is a
set of generators. Suppose that if ak 2 Ai .n/ then i � nd , with equality only for a
single element a0 2 Ad .1/, and that for each p 2 Z, there are only finitely many k
for which ak 2 Ai .n/ and i � nd � p . If d is even, then n 7! AiCdn.n/ becomes
an FI-module by multiplication with a0 , and if d is odd, then n 7! AiCdn.n/˝ sgnn
becomes an FI-module in this way. This FI-module is finitely generated for all i 2 Z.

4.2 The “A–avoiding” configuration spaces

For each finite set S , let MS be the cartesian product of jS j copies of some space M.
The functor S 7!MS is a co-FI-space. If S ,!T , then we denote by �TS W M

T !MS

the projection.

Let A be a finite collection of closed subspaces fAi �MSi g`iD1 , where each Si is
some finite set. For every finite set T , consider the stratification of MT given by all
subspaces

.�TSi /
�1.Ai /�M

T ; i D 1; : : : ; `;

ranging over all inclusions Si ,! T , and all intersections of those subspaces. Let
PA.T / be the poset of strata in this stratification, and let FA.M; T / denote the open
stratum which is the complement of all of the .�TSi /

�1.Ai /.

Example 4.4 If A is a singleton with A1 D��M 2 , then FA.M; n/ is the classical
configuration space of n points on M . If A instead consists only of the small diagonal
in M k , then FA.M; n/ is the “k–equals” configuration space of points on M . G

Example 4.5 If a finite group G acts on M , then we can let A consist of all subspaces
f.x; g �x/ Wx 2M g inside M 2 , in which case FA.M; n/ parametrizes n distinct ordered
points all of which are in distinct G–orbits. An example of this is the complement of
hyperplanes in the Coxeter arrangement associated to the wreath product .�r/n ÌSn
acting on Cn . G

Example 4.6 Suppose that M D Y 2 for some other space Y , and that A consists of
the collection f�13; �14; �23; �24g of diagonals inside M 2 D Y 4. Then FA.M; n/

parametrizes points x1; : : : ; xn and y1; : : : ; yn in Y such that the xi may collide
amongst each other, and so may the yi , but xi ¤ yj for all i; j . G

Example 4.7 Let � be a partition of n. As our notation for partitions we use both
�D .�1; �2; �3; : : : / and �D .1n1 2n2 3n3 : : : /, so that nD

P
j�1 �j D

P
i�1 i �ni .

Vakil and Wood [29] defined an open subspace xwc
�
.M/�M n=Sn , and they studied
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the behavior of these spaces under the operation of “padding � with ones”, ie letting
n1 approach 1 while keeping all ni , i � 2, fixed.

We can understand their construction in our terms as follows: if � is a partition of n
with n1 D 0, let �� � M n be the locus where the first �1 points coincide, the
subsequent �2 points coincide, etc., and put AD f��g. If �0 is the partition of N � n
obtained by padding � with ones, then xwc

�0
.M/ D FA.M;N /=SN . In particular,

rational homological stability for the spaces xwc
�
.M/ under the operation of padding �

with ones follows from representation stability for the spaces FA.M; n/ as n!1. G

Example 4.8 The configuration space of n points in P2 such that no three of them
lie on a line and no six lie on a conic is of the form FA.M; n/, where M D P2 and A

has two elements which are closed subvarieties of M 3 and M 6 , respectively. G

We are going to prove a homological stability result for the spaces FA.M; n/. To
avoid dealing with trivial cases we will assume that jSi j � 2 for all i , and that no
subspace Ai can be written as

Ai D .�
Si
S 0
i

/�1.A0i /

where S 0i is a proper subset of S .

4.3 The setup

Observe that there is an open embedding

FA.M; S tT / ,! FA.M; S/�FA.M; T /:

This makes S 7!FA.M; S/ a twisted cocommutative coalgebra of spaces. Since Borel–
Moore homology is contravariant for open embeddings and admits cross products

HBM
�
.X;R/˝HBM

�
.Y;R/!HBM

�
.X �Y;R/

(which are isomorphisms if R is a field), we get a twisted commutative algebra in
graded R–modules:

S 7!HBM
�
.FA.M; S/;R/;

for any choice of coefficients R .

The functor S 7! PA.S/ forms a twisted commutative algebra in the category of
posets: the product of a stratum in MS and a stratum in MT is a stratum in MStT ,
which identifies PA.S/�PA.T / with an order ideal in PA.S tT /. If ˇ 2PA.S/ and
 2 PA.T /, then we write ˇ�  for their product in PA.S tT /.
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Let L�.S/ denote the complex of sheaves L�.R/ on MS constructed in the previous
part, associated to the stratification PA.S/. The previous paragraph implies that
L�.S/�L�.T / is a subcomplex of L�.S tT /, and DL�.S/�DL�.T / is a quotient
of DL�.S tT /. Applying R�.�/, we see that the functor

S 7!R���.MS ;DL�.S//

is a twisted commutative algebra of chain complexes, whose homology is the tca
S 7!HBM

�
.FA.M; S/;R/.

4.4 The hypotheses

Let us now describe the hypotheses on M and A that will lead to a proof of represen-
tation stability. Fix M and A as above, and a coefficient ring R .

Hypothesis 4.9 We assume that HBM
d
.M;R/ŠR , and that homology vanishes above

this degree. We assume that (possibly after refining the stratifications) all strata in all
spaces M n have finitely generated homology groups, and there exists an increasing
function � W PA.n/! Z for all n such that:

(1) If ˇ 2 PA.S/ satisfies �.ˇ/ D p and  2 PA.T / satisfies �./ D q , then
�.ˇ� /D pC q .

(2) If ˇ 2 PA.n/ satisfies �.ˇ/ D p , then HBM
i .Sˇ ; R/ vanishes above degrees

dn� 2p , and HBM
dn�2p

.Sˇ ; R/ is a projective R–module.

Example 4.10 Suppose that M is a geometrically irreducible algebraic variety of
dimension d

2
, and that A consists of closed subvarieties. Then it will indeed be the

case that HBM
d
.M;Z/Š Z, that HBM

i .M;Z/D 0 for i > d , and that all strata have
finitely generated homology. Let �.ˇ/ be the codimension of Sˇ . After refining the
stratifications we may assume all strata irreducible, in which case � becomes a strictly
increasing function, and conditions (1) and (2) are clearly satisfied. G

Example 4.11 Suppose that all the subspaces in A are given by diagonals, so all
closed strata are products of the same space M . This covers eg all the configuration
spaces considered by Vakil and Wood. In this case, for Sˇ ŠM k �M n, we can take
�.ˇ/ D .n� k/. If we suppose that M has finitely generated homology and finite
dimension d > 1, and HBM

d
.M;R/Š R , then Hypothesis 4.9 is satisfied. To verify

the second condition, note that if ˇ 2 PA.n/ satisfies �.ˇ/D p , then Sˇ ŠM n�p ,
whose highest nonzero Borel–Moore homology group is HBM

d.n�p/
.M n�p; R/ Š R .

Since we assumed d > 1, we get in particular vanishing above degree dn� 2p and
that the homology group in degree dn� 2p is projective. G

From now on we shall assume that Hypothesis 4.9 is satisfied.
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4.5 Proof with coefficients in a field

In this subsection, we fix a field k of coefficients, and all homology groups will be
taken with coefficients in k . In the algebraic case we take k D Q` , where ` is not
equal to the characteristic. We will later see that the proof can be modified to work
also for integral coefficients, but the added complications arising from the lack of a
Künneth isomorphism obscure the ideas somewhat.

Lemma 4.12 There exists a twisted commutative algebra of spectral sequences which
satisfies

E1pq.S/D
M

ˇ2PA.S/
�.ˇ/Dp

M
iCjDpCq�2

zHi .0; ˇ/˝H
BM
j .Sˇ ; k/;

and which converges to the twisted commutative algebra S 7!HBM
�
.FA.M; S/; k/.

Proof By condition (2) in Hypothesis 4.9, the filtration on L�.S/�L�.T / induced by
� agrees with the one on L�.StT /, when we consider L�.S/�L�.T / as a subcomplex
of L�.StT /. This makes the twisted commutative algebra S 7!R���.MS ;DL�.S//
a tca in filtered chain complexes, and the associated spectral sequence is given as above.

We say that an element ˇ 2 PA.T / is indecomposable if, whenever T D S tS 0 and ˇ
is in the image of the multiplication map PA.S/�PA.S

0/! PA.T /, then S or S 0 is
empty.

Lemma 4.13 There exists a constant C such that if ˇ 2 PA.T / is indecomposable,
then �.ˇ/� C � jT j.

Proof The stratum Sˇ is (an open stratum inside) an intersection of subspaces of
the form .�TSi

/�1.Ai /, for some collections of inclusions Si ,! T . We may assume
this collection of subspaces to be irredundant. In order that ˇ be indecomposable, it
is certainly necessary that the images of the Si ,! T cover T , which means that the
number of subspaces that one needs to intersect to obtain Sˇ grows linearly in jT j.
Moreover, since we assumed the collection irredundant and � increasing, the value of �
must go up by at least 1 for each subspace we intersect, which proves the result.

Let E be the twisted commutative algebra in graded vector spaces given by

S 7!E�.S/I Ei .S/D
M

pCqDi

E1pq.S/:
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Lemma 4.14 The tca E satisfies the hypotheses of Lemma 4.3, so that SdE is a
finitely generated FI-module.

Proof The tca E is generated by classes zHi .0; ˇ/˝HBM
j .Sˇ ; k/ where ˇ ranges

over indecomposable elements of PA.n/.

If ˇ 2 PA.n/ satisfies �.ˇ/ D p , then zHi .0; ˇ/ vanishes above degree p � 2, and
HBM
j .Sˇ ; k/ vanishes above degree dn� 2p . Thus the corresponding generators in

Ei .n/ satisfy i � dn�p . In particular, we get a generator in degree i D dn only for
p D 0. But the open stratum is indecomposable only when nD 1, in which case we
get a single generator in this degree from the one-dimensional space HBM

d
.M; k/.

Moreover, by Lemma 4.13, for each p � 0 there are only finitely many strata in PA.n/

(summed over all n) with �.ˇ/ � p , which means that only finitely many of these
generators satisfy i � dn�p . Thus the hypotheses of Lemma 4.3 are satisfied.

Theorem 4.15 The FI-module given by n 7!HBM
iCdn

.FA.M; n/; k/˝sgn˝dn is finitely
generated for all i 2 Z.

Proof By the previous lemma,

n 7! .SdE/.n/D
M

pCqDiCdn

E1pq.n/˝ sgn˝dn

is a finitely generated FI-module. Then so is n 7!
L
pCqDiCdnE

1
pq.n/˝ sgn˝dn ;

being a subquotient of a finitely generated FI-module [6, Theorem 1.3]. But the latter
is just the associated graded of the FI-module n 7!HBM

iCdn
.FA.M; n/; k/˝ sgn˝dn for

the Leray filtration.

Remark 4.16 The sign representation which appears for odd d arises from Lemma 4.3,
and does not play a role in the algebraic case since an algebraic variety has even (real)
dimension. That the sign representation should appear is clear, if we want to recover
representation stability for the usual cohomology H i .F.M; n/; k/ from Poincaré
duality when M is an oriented manifold. Indeed, the Poincaré duality isomorphism
for F.M; n/ involves capping with the fundamental class, which generates the 1–
dimensional vector space HBM

dn
.F.M; n/; k/ Š HBM

dn
.M n; k/. When d is even this

vector space carries the trivial representation of Sn , but when d is odd it has the sign
representation.

Remark 4.17 A space M is called an R–homology manifold of dimension d if for
all x 2M one has

Hi .M;M n fxgIR/Š

�
R if i D d;
0 if i ¤ d:
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Equivalently, DR Š RŒd�. A trivial example is an oriented d–manifold for any R ;
a more typical example is that a complex algebraic variety with finite quotient sin-
gularities is a Q–homology manifold (of dimension twice its dimension over C ).
An R–homology manifold of dimension d satisfies Poincaré duality in the form
HBM
i .M;R/ŠHd�i .M;R/. If we add to Hypothesis 4.9 the condition that M is an

R–homology manifold of dimension d , then the conclusion of Theorem 4.15 (if R is
a field, or the results of the next subsection if R is a PID) become equivalent to the
claim that n 7!H i .FA.M; n/;R/ is a finitely generated FI-module. For instance, if
M is a connected oriented manifold of dimension d > 1, then H i .F.M; n/;Z/ is a
finitely generated FI-module for all i ; this is how the results of [5; 7] can be obtained
as specializations of those in this paper.

4.6 Proof for integral coefficients

In the proof of Theorem 4.15 in the preceding subsection, we used that any subquotient
of a finitely generated FI-module is finitely generated. This was proven for field
coefficients in [6], but the result was then extended to any noetherian ring in [7]. We
will now use the latter result to give a proof also for integral coefficients.

However, the real reason we used field coefficients in the preceding subsection was to
have a robust Künneth isomorphism: without it, it would not be true that generators
for the twisted commutative algebra we considered arise from indecomposable strata.
Namely, if ˇ is decomposable — say Sˇ D S �S 0 — then the cross product map

HBM
�
.S ;Z/˝H

BM
�
.S 0 ;Z/!HBM

�
.Sˇ ;Z/

is not necessarily surjective. To remedy this, we will need to work on the chain level,
analogous to [7, Lemma 4.1].

For the remainder of this section we fix a coefficient ring R which we assume to be a
PID, eg RD Z or RD Z` . In order for the proof to work, we shall need to verify a
refinement of Hypothesis 4.9.

Lemma 4.18 Assume Hypothesis 4.9. For each stratum Sˇ in any of the spaces M n,
we can choose a quasi-isomorphism

C�.Sˇ /'R�
��.Sˇ ;DR/

where C�.Sˇ / is a bounded complex of finitely generated free modules, and such that

� for any decomposable stratum S˛ �Sˇ , we have an equality

C�.S˛/˝C�.Sˇ /D C�.S˛ �Sˇ /
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compatible with the quasi-isomorphism

R���.S˛;DR/˝R�
��.Sˇ ;DR/'R�

��.Sˇ �S˛;DR/I

� for S˛ � Sˇ , there is a map

C�.S˛/! C�.Sˇ /

compatible with the map

R���.S˛;DR/!R���.Sˇ ;DR/I

� if Sˇ �M n has �.ˇ/D p then CBM
�
.Sˇ ; R/ vanishes above degree dn� 2p ,

and Cd .M/ŠR .

It is immediate from Hypothesis 4.9 that such a complex C�.Sˇ / can be constructed
for each individual stratum, but we need the choices to satisfy various compatibilities.

Taking the lemma for granted for the moment, the idea will be to run nearly the
same proof, but instead of starting at the E1 page of the spectral sequence, we start
at E0 . Equivalently, we work directly on the level of the double complex comput-
ing R���.M n;DL�.R//, associated to our filtration of DL�.R/. The filtration on
DL�.R/ has its associated graded pieces quasi-isomorphic to sums of complexes of
the form zC���2.0; ˇ/˝.iˇ /�DR , where iˇ is the inclusion of a closed stratum, so the
columns of this double complex are of the form R���.M n; zC���2.0; ˇ/˝ .iˇ /�DR/.
Under our Lemma 4.18 we may (for all ˇ ) replace this with the totalization of the
double complex zC�C2.0; ˇ/˝ C�.Sˇ /. Then this collection of double complexes
becomes a twisted commutative algebra, and that we get a tca of spectral sequences:

Lemma 4.19 There exists a twisted commutative algebra of spectral sequences which
satisfies

E0pq.S/D
M

ˇ2PA.S/
�.ˇ/Dp

M
iCjDpCq�2

zCi .0; ˇ/˝Cj .Sˇ /;

and which converges to the twisted commutative algebra S 7!HBM
�
.FA.M; S/;R/.

If we consider the twisted commutative algebra in graded abelian groups given by

S 7!E�.S/I Ei .S/D
M

pCqDi

E0pq.S/;

then this tca will be generated by classes zCi .0; ˇ/˝ CBM
j .Sˇ ; R/ where ˇ ranges

over indecomposable elements of PA.n/. In particular, it satisfies the hypotheses of
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Lemma 4.3, for the same reason as the tca E considered in the previous subsection,
and the rest of the proof carries over without any changes.

Let us now argue that Lemma 4.18 is satisfied.

Proof of Lemma 4.18 First off, we replace each R���.Sˇ ;DR/ by a functorial free
resolution, and then apply the “wise” truncation functor ��.dn�2p/ . Let us call the
resulting complexes CBM

�
.Sˇ ; R/. Unfortunately, the truncation functor has the wrong

functoriality: there is for any chain complex C� a map C� ! ��nC� , but we need
a map in the opposite direction. However, the assumption that HBM

dn�2p
.Sˇ ; R/ is

projective and that R is a PID implies that CBM
dn�2p

.Sˇ ; R/ is itself free. In particular,
CBM
�
.Sˇ ; R/ is itself a free resolution, and the truncation map has a section. One

checks that any choice of section gives rise to a well-defined chain map CBM
�
.Sˇ ; R/!

CBM
�
.S˛; R/ for Sˇ � S˛ , making the assignment ˇ 7! CBM

�
.Sˇ ; R/ functorial.

To replace these complexes with ones that are finitely generated in each degree, we
work inductively, starting with M itself. If we have chosen complexes C�.Sˇ / �!�

CBM
�
.Sˇ ; R/ for all ˇ 2 PA.n/, n < N , then the condition that we have an “on-the-

nose” Künneth isomorphism determines our choice of C�.Sˇ / for all decomposable
strata ˇ 2 PA.N /. Now I claim that if we have compatible choices of C�.Sˇ / for
all ˇ in some order ideal I � PA.N /, and ˛ is any minimal element of PA.N / n I ,
then we can also choose C�.S˛/ compatibly (and thus the inductive procedure can be
continued). Indeed, consider the composition

colim
ˇ<˛

.C�.Sˇ //! colim
ˇ<˛

.CBM
�
.Sˇ ; R//! CBM

�
.S˛; R/:

We note that the colimit over a finite poset can be defined as the totalization of a
functorially defined chain complex, which is of finite rank in each degree if each
chain complex in the colimit is. By induction, the image of this composition is then
finitely generated in each degree, so we may choose a quasi-isomorphism C�.S˛/!

CBM
�
.S˛; R/ where C�.S˛/ is again finitely generated in each degree, such that the

image contains the image of colimˇ<˛.C�.Sˇ //. Then there is a factorization

colim
ˇ<˛

.C�.Sˇ //! C�.S˛/ �!
� CBM

�
.S˛; R/;

which proves the claim.
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