Volume 21, issue 5 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Convexity of the extended K-energy and the large time behavior of the weak Calabi flow

Robert J Berman, Tamás Darvas and Chinh H Lu

Geometry & Topology 21 (2017) 2945–2988
Bibliography
1 L Ambrosio, N Gigli, G Savaré, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser (2008) MR2401600
2 T Aubin, Équations du type Monge–Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. 102 (1978) 63 MR494932
3 M Bačák, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013) 689 MR3047087
4 E Bedford, B A Taylor, The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math. 37 (1976) 1 MR0445006
5 E Bedford, B A Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982) 1 MR674165
6 E Bedford, B A Taylor, Fine topology, Šilov boundary, and (ddc)n, J. Funct. Anal. 72 (1987) 225 MR886812
7 R J Berman, A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kähler–Einstein metrics, Adv. Math. 248 (2013) 1254 MR3107540
8 R J Berman, B Berndtsson, Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics, preprint (2014) arXiv:1405.0401
9 R J Berman, S Boucksom, P Eyssidieux, V Guedj, A Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, preprint (2011) arXiv:1111.7158
10 R J Berman, S Boucksom, V Guedj, A Zeriahi, A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 179 MR3090260
11 R J Berman, T Darvas, C H Lu, Regularity of weak minimizers of the K-energy and applications to properness and K-stability, preprint (2016) arXiv:1602.03114
12 R J Berman, H Guenancia, Kähler–Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal. 24 (2014) 1683 MR3283927
13 B Berndtsson, The openness conjecture and complex Brunn–Minkowski inequalities, from: "Complex geometry and dynamics" (editors J E Fornæss, M Irgens, E F Wold), Abel Symposia 10, Springer (2015) 29
14 Z Błocki, On geodesics in the space of Kähler metrics, from: "Advances in geometric analysis" (editors S Janeczko, J Li, D H Phong), Adv. Lect. Math. 21, International Press (2012) 3 MR3077245
15 Z Błocki, S Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007) 2089 MR2299485
16 T Bloom, N Levenberg, Pluripotential energy, Potential Anal. 36 (2012) 155 MR2886457
17 S Boucksom, P Eyssidieux, V Guedj, A Zeriahi, Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010) 199 MR2746347
18 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) MR1744486
19 X Chen, On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices (2000) 607 MR1772078
20 X Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000) 189 MR1863016
21 X X Chen, A new parabolic flow in Kähler manifolds, Comm. Anal. Geom. 12 (2004) 837 MR2104078
22 X Chen, Space of Kähler metrics, IV : On the lower bound of the K-energy, preprint (2008) arXiv:0809.4081v2
23 X Chen, On the existence of constant scalar curvature Kähler metric : a new perspective, preprint (2015) arXiv:1506.06423
24 X X Chen, W Y He, On the Calabi flow, Amer. J. Math. 130 (2008) 539 MR2405167
25 X Chen, W He, The Calabi flow on toric Fano surfaces, Math. Res. Lett. 17 (2010) 231 MR2644371
26 X Chen, M Paun, Y Zeng, On deformation of extremal metrics, preprint (2015) arXiv:1506.01290
27 X Chen, S Sun, Calabi flow, geodesic rays, and uniqueness of constant scalar curvature Kähler metrics, Ann. of Math. 180 (2014) 407 MR3224716
28 P T Chruściel, Semi-global existence and convergence of solutions of the Robinson–Trautman (2–dimensional Calabi) equation, Comm. Math. Phys. 137 (1991) 289 MR1101689
29 T Darvas, The Mabuchi completion of the space of Kähler potentials, preprint (2015) arXiv:1401.7318v3
30 T Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015) 182 MR3406499
31 T Darvas, W He, Geodesic rays and Kähler–Ricci trajectories on Fano manifolds, Trans. Amer. Math. Soc. (2017)
32 T Darvas, Y A Rubinstein, Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc. 30 (2017) 347 MR3600039
33 E De Giorgi, New problems on minimizing movements, from: "Boundary value problems for partial differential equations and applications" (editors J L Lions, C Baiocchi), Res. Notes Appl. Math. 29, Masson (1993) 81 MR1260440
34 J P Demailly, Regularization of closed positive currents of type (1,1) by the flow of a Chern connection, from: "Contributions to complex analysis and analytic geometry" (editors H Skoda, J M Trépreau), Aspects Math. E26, Vieweg (1994) 105 MR1319346
35 A Dembo, O Zeitouni, Large deviations: techniques and applications, Jones and Bartlett (1993) MR1202429
36 R Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. 2016 (2016) 4728 MR3564626
37 S Dinew, Uniqueness in (X,ω), J. Funct. Anal. 256 (2009) 2113 MR2498760
38 S K Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 13 MR1736211
39 S K Donaldson, Conjectures in Kähler geometry, from: "Strings and geometry" (editors M Douglas, J Gauntlett, M Gross), Clay Math. Proc. 3, Amer. Math. Soc. (2004) 71 MR2103718
40 R Feng, H Huang, The global existence and convergence of the Calabi flow on nn + in, J. Funct. Anal. 263 (2012) 1129 MR2927407
41 J Fine, Constant scalar curvature Kähler metrics on fibred complex surfaces, J. Differential Geom. 68 (2004) 397 MR2144537
42 J Fine, Calabi flow and projective embeddings, J. Differential Geom. 84 (2010) 489 MR2669363
43 Q Guan, X Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. 182 (2015) 605 MR3418526
44 V Guedj, The metric completion of the Riemannian space of Kähler metrics, preprint (2014) arXiv:1401.7857
45 V Guedj, A Zeriahi, The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007) 442 MR2352488
46 V Guedj, A Zeriahi, Regularizing properties of the twisted Kähler–Ricci flow, preprint (2013) arXiv:1306.4089
47 V Guedj, A Zeriahi, Degenerate complex Monge–Ampère equations, 26, Eur. Math. Soc. (2017)
48 W He, On the convergence of the Calabi flow, Proc. Amer. Math. Soc. 143 (2015) 1273 MR3293741
49 H Huang, Convergence of the Calabi flow on toric varieties and related Kähler manifolds, J. Geom. Anal. 25 (2015) 1080 MR3319962
50 H Huang, K Zheng, Stability of the Calabi flow near an extremal metric, Ann. Sc. Norm. Super. Pisa Cl. Sci. 11 (2012) 167 MR2953047
51 W A Kirk, B Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008) 3689 MR2416076
52 S Kołodziej, The complex Monge–Ampère equation, Acta Math. 180 (1998) 69 MR1618325
53 S Kołodziej, Hölder continuity of solutions to the complex Monge–Ampère equation with the right-hand side in Lp : the case of compact Kähler manifolds, Math. Ann. 342 (2008) 379 MR2425147
54 H Li, B Wang, K Zheng, Regularity scales and convergence of the Calabi flow, preprint (2015) arXiv:1501.01851
55 T Mabuchi, Some symplectic geometry on compact Kähler manifolds, I, Osaka J. Math. 24 (1987) 227 MR909015
56 U F Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998) 199 MR1651416
57 E D Nezza, C H Lu, Uniqueness and short time regularity of the weak Kähler–Ricci flow, preprint (2014) arXiv:1411.7958
58 J Pook, Twisted Calabi flow on Riemann surfaces, Int. Math. Res. Not. 2016 (2016) 83 MR3514059
59 S Semmes, Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992) 495 MR1165352
60 J Stoppa, Twisted constant scalar curvature Kähler metrics and Kähler slope stability, J. Differential Geom. 83 (2009) 663 MR2581360
61 J Streets, Long time existence of minimizing movement solutions of Calabi flow, Adv. Math. 259 (2014) 688 MR3197669
62 J Streets, The consistency and convergence of K–energy minimizing movements, Trans. Amer. Math. Soc. 368 (2016) 5075 MR3456172
63 G Székelyhidi, Remark on the Calabi flow with bounded curvature, Univ. Iagel. Acta Math. 50 (2013) 107 MR3235006
64 G Székelyhidi, V Tosatti, Regularity of weak solutions of a complex Monge–Ampère equation, Anal. PDE 4 (2011) 369 MR2872120
65 V Tosatti, B Weinkove, The Calabi flow with small initial energy, Math. Res. Lett. 14 (2007) 1033 MR2357473
66 C Villani, Topics in optimal transportation, 58, Amer. Math. Soc. (2003) MR1964483