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Categorical cell decomposition of
quantized symplectic algebraic varieties
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We prove a new symplectic analogue of Kashiwara’s equivalence from D–module
theory. As a consequence, we establish a structure theory for module categories over
deformation-quantizations that mirrors, at a higher categorical level, the Białynicki-
Birula stratification of a variety with an action of the multiplicative group Gm . The
resulting categorical cell decomposition provides an algebrogeometric parallel to the
structure of Fukaya categories of Weinstein manifolds. From it, we derive concrete
consequences for invariants such as K–theory and Hochschild homology of module
categories of interest in geometric representation theory.

53D55; 14F05

1 Introduction

Since the 1970s, categories of (ordinary or twisted) D–modules on algebraic varieties
and stacks have become fundamental tools in geometric representation theory; see
Beı̆linson and Bernstein [3]. More recently, an emerging body of important work
in geometric representation theory relies on sheaves over deformation-quantizations
of symplectic algebraic varieties more general than the cotangent bundles whose
deformation-quantizations give rise to D–modules; see Bellamy and Kuwabara [5],
Bezrukavnikov and Kaledin [8], Bezrukavnikov and Losev [9], Braden, Proudfoot
and Webster [13], Dodd and Kremnitzer [18], Gordon and Losev [26], Kaledin [35],
Kashiwara and Rouquier [40] and McGerty and Nevins [53]. A sophisticated theory of
such quantizations now exists thanks to the efforts of many (see Bezrukavnikov and
Kaledin [7], D’Agnolo and Kashiwara [15], D’Agnolo and Polesello [16], D’Agnolo
and Schapira [17], Kashiwara [39], Kashiwara and Schapira [41; 42] and Nest and
Tsygan [60; 61] among many others).

The present paper establishes a structure theory for deformation-quantizations that
mirrors, at a higher categorical level, the fundamental Białynicki-Birula stratification
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of a variety with an action of the multiplicative group Gm and the corresponding
decomposition of its cohomology. In the most prominent examples, the resulting
categorical cell decomposition has many immediate and concrete consequences for
invariants such as K–theory and Hochschild homology; it also makes possible the
extension of powerful tools from D–module theory, such as the Koszul duality relating
D–modules to dg modules over the de Rham complex, to a more general symplectic
setting; see Bellamy, Dodd, McGerty and Nevins [4]. The structures that we identify
parallel those described for Fukaya–type categories in real symplectic geometry by
Nadler [55]. We derive these structures on module categories from a new symplectic
analogue of Kashiwara’s equivalence for D–modules.

In Section 1.1 we describe an enhancement of the Białynicki-Birula decomposition for
symplectic varieties with a nice Gm–action. Section 1.2 explains our categorical cell
decomposition for sheaves on the quantizations of such varieties; in Section 1.3, we lay
out the symplectic Kashiwara equivalence that underlies categorical cell decomposition.
Section 1.4 describes basic categorical consequences. Section 1.5 provides immediate
applications of this structure theory for module categories of deformation-quantizations.
Section 1.6 explores parallels with Fukaya categories.

1.1 Symplectic varieties with elliptic Gm–action

We work throughout the paper over C . Let X be a smooth, connected symplectic
algebraic variety with symplectic form ! .

Definition 1.1 A Gm–action on X is said to be elliptic if the following hold:

(1) Gm acts with positive weight on the symplectic form: m�t !D t
l! for some l >0.

(2) For every x 2 X, the limit limt!1 t � x exists in X.

We remark that if we assume that ! is rescaled by Gm with some weight l 2 Z, then
the existence of limits already implies that l � 0.

Write XGm D
`
Yi , a union of smooth connected components. For each i , let

Ci D
˚
p 2 X j lim

t!1
t �p 2 Yi

	
I

these subsets are the Morse-theoretic attracting loci for the elliptic Gm–action. Note
that XD

`
Ci by Definition 1.1(2).

Recall that if i W C ,! X is a smooth coisotropic subvariety, a coisotropic reduction
of C consists of a smooth symplectic variety .S; !S / and a morphism � W C ! S

for which !jC D ��!S . We establish a basic structural result for the decomposition
XD

`
Ci in Section 2:
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Theorem 1.2 (see Theorem 2.1) (1) Each Ci is a smooth, coisotropic subvariety
of X and a Gm–equivariant affine bundle over the fixed point set Yi .

(2) There exist symplectic manifolds .Si ; !i / with elliptic Gm–action and Gm–
equivariant coisotropic reductions �i W Ci ! Si .

Part (1) of the theorem is a symplectic refinement of the Białynicki-Birula stratification
[10] arising from a Gm–action. Our proof of assertion (2) relies on formal local normal
forms for symplectic varieties in the neighborhood of a coisotropic subvariety, which
we develop in Section 2.

We provide a refined description of the symplectic quotients Si and corresponding
Gm–equivariant affine fibrations Si ! Yi of Theorem 1.2. We need two definitions.
First, let Y be a smooth connected variety. A symplectic fibration over Y is a tuple
.E; �; f�;�g/, where �W E! Y is an affine bundle and f�;�g an OY –linear Poisson
bracket on E such that the restriction of f�;�g to each fiber of � is nondegenerate.
The symplectic fibration is said to be elliptic if Gm acts on E such that f�;�g is
homogeneous of negative weight, Y DEGm and all weights of Gm on the fibers of �
are negative.

Second, note that T �Y is naturally a group scheme over Y . Suppose pW B ! Y

is a smooth variety over Y equipped with a symplectic form !B . Suppose that B
is equipped with an action aW T �Y �Y B ! B of the group scheme T �Y over Y .
We say B ! Y is symplectically automorphic if, for any 1–form � on Y , we have
a.�;�/�!B D !B Cp

�d� . In the special case that B is a T �Y –torsor, B is thus a
twisted cotangent bundle in the sense of Beı̆linson and Bernstein [3].

Theorem 1.3 (see Theorem 2.21) Keep the notation of Theorem 1.2(2). Then, for
each i :

(1) The fibration Si ! Yi comes equipped with a free T �Yi –action making Si
symplectically automorphic over Yi .

(2) The quotient Ei WD Si=T �Yi inherits a Poisson structure, making Ei ! Yi into
an elliptic symplectic fibration.

Locally in the Zariski topology on Yi , we have Si ' T �Yi �Yi Ei as smooth varieties
with Gm–actions.

1.2 Categorical cell decomposition

We next turn to deformation-quantizations. Suppose that X is a smooth symplectic
variety with elliptic Gm–action. Let A be a Gm–equivariant deformation-quantization

Geometry & Topology, Volume 21 (2017)



2604 Gwyn Bellamy, Christopher Dodd, Kevin McGerty and Thomas Nevins

of OX ; this is a Gm–equivariant sheaf of flat CŒŒ„��–algebras, where Gm acts with
weight l on „, for which A=„A is isomorphic, as a sheaf of Gm–equivariant Poisson
algebras, to OX ; see Section 3.2 for more details. Let W DAŒ„�1�. There is a natural
analogue for W of coherent sheaves on X, the category of Gm–equivariant good
W–modules, denoted by W–good; see Section 3.3 for details.

Definition 1.4 The category of quasicoherent W–modules is

Qcoh.W/ WD Ind.W–good/:

For each subcollection of the coisotropic attracting loci Ci of Section 1.1 whose
union CK , with K � f1; : : : ; kg, is a closed subset of X, we let Qcoh.W/K denote
the full subcategory of Qcoh.W/ whose objects are supported on CK . By Lemma 2.3,
the loci Ci are naturally partially ordered. Refining to a total order, for each i there
are closed subsets CK�i D

S
j�i Cj and CK>i D

S
j>i Cj .

Theorem 1.5 (see Theorem 4.28 and Corollary 5.2)

(1) The category Qcoh.W/ is filtered by localizing subcategories Qcoh.W/K�i .

(2) Each subquotient Qcoh.W/K�i=Qcoh.W/K>i is equivalent to the category of
quasicoherent modules over a deformation-quantization of the symplectic quo-
tient Si .

Mirroring the structure of Si in Theorem 1.3, the category of Gm–equivariant quasi-
coherent modules over a deformation-quantization of Si is equivalent to the category
of modules for a specific type of algebra. We describe this relationship explicitly in
Sections 4.10 and 4.11, and in Theorem 1.8 below. In particular, in the special case
when Yi is an isolated fixed point, we obtain:

Corollary 1.6 Suppose the fixed point set XGm is finite. Then each subquotient

Qcoh.W/K�i=Qcoh.W/K>i

is equivalent to the category of modules over the Weyl algebra D.Ati / for ti D 1
2

dimSi .

The Weyl algebra D.Ati / is a quantization of the algebra of functions on an “alge-
braic cell” A2ti . Moreover, this category, although complicated, looks contractible
from the point of view of certain fundamental invariants, for example algebraic K–
theory and Hochschild/cyclic homology. Thus, we view the category D.Ati /–mod as
a “categorical algebraic cell”, parallel to the way that the category VectC of finite-
dimensional complex vector spaces is a categorical analogue of a topological cell. In
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particular, in the case when the fixed point set XGm is finite, we interpret the filtration
of Qcoh.W/ provided by Theorem 1.5 as providing a categorical cell decomposition
of Qcoh.W/. Building the category Qcoh.W/ from algebraic cells is thus a “bulk
analogue” of the process of building a quasihereditary category from “categorical
topological cells”, ie copies of VectC . In particular, to the extent that categories of
the form Qcoh.W/ undergird many representation-theoretic settings of intense recent
interest, our categorical cell decompositions are a basic structural feature of the “big”
geometric categories that arise in representation theory.

We expect Theorem 1.5 to have many consequences for Qcoh.W/ and related algebraic
categories from representation theory. One such application will appear in Bellamy,
Dodd, McGerty and Nevins [4]: a symplectic analogue of the Koszul duality, sometimes
called “D–�–duality”, between D–modules on a smooth variety X and dg modules
over the de Rham complex �X of X ; see Kapranov [38]. More precisely, the Koszul
duality of [38] generalizes to arbitrary coherent D–modules the Riemann–Hilbert
correspondence between regular holonomic D–modules and their associated de Rham
complexes, which are constructible complexes on X . Since �X sheafifies over X ,
embedded as the zero section of T �X , one can view this correspondence as a categorical
means of sheafifying the category of DX –modules over X . Such a sheafification is
tautologous in the D–module setting, but becomes less so in a general symplectic
setting. Namely, in [4], starting from a bionic symplectic variety — a symplectic variety
X with both an elliptic Gm–action and a commuting Hamiltonian Gm–action defining
a good Lagrangian skeleton ƒ of X — we will use Theorem 1.5 to establish a Koszul
duality between WX–modules and dg modules over an analogue of �X that “lives
on” ƒ. As a result, the bounded derived category Db.W–good/ naturally sheafifies
over ƒ.

We explain in Section 1.3 the main technical result that makes Theorem 1.5 possible,
namely, an analogue of Kashiwara’s equivalence. In Section 1.5 we derive several appli-
cations to the category Qcoh.W/. In Section 1.6 we describe parallels to the structure
of Fukaya categories in more detail, and indicate some future work in that direction.

1.3 Analogue of Kashiwara’s equivalence for deformation-quantizations

Theorem 1.5 is a consequence of a symplectic version of a fundamental phenomenon of
D–module theory, classically encoded in the following topological invariance property:

Kashiwara’s equivalence Suppose that C �X is a smooth closed subset of a smooth
variety X . Then the category Qcoh.DX /C of quasicoherent DX –modules supported
set-theoretically on C is equivalent to the category Qcoh.DC / of quasicoherent DC –
modules.
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Assume now that .X; !/ is a smooth, connected symplectic variety with elliptic Gm–
action. Let Y be a connected component of the fixed point set of X under Gm–action
and C the set of points in X limiting to Y under Gm . Assume that C is closed
in X. Let C ! S denote the symplectic quotient whose existence is assured by
Theorem 1.2(2). The subcategory of W–good consisting of objects supported on C is
W–goodC .

To the algebra W and the coisotropic subset C we associate a sheaf of algebras
WS on the symplectic quotient S . We define a natural coisotropic reduction functor
HW WX–goodC ! WS–good. The following provides an analogue of Kashiwara’s
equivalence for W–modules:

Theorem 1.7 (see Theorem 4.28 and Corollary 4.30)

(1) The functor HW WX–goodC !WS–good is an exact equivalence of categories.
It induces an exact equivalence HW Qcoh.WX/C ! Qcoh.WS /.

(2) The functor H preserves both holonomicity and regular holonomicity.

We also analyze the structure of WS more fully. More precisely, we prove that, on Y ,
there exists a sheaf of “generalized twisted differential operators” DS , a filtered OY –
algebra, whose completed Rees algebra sheafifies over S and gives exactly WS . We
obtain:

Theorem 1.8 (see Theorem 4.28 and Proposition 4.33)

(1) The functor H of coisotropic reduction, followed by taking Gm–finite vectors,
defines an equivalence

HW WX–goodC ��! coh.DS /:

Passing to ind-categories defines an equivalence HW Qcoh.W/C ! Qcoh.DS /.
(2) In particular, if Y consists of a single isolated Gm–fixed point, H defines an

equivalence
Qcoh.WX/C Š Qcoh.D.Ati //

for some ti .

We emphasize that the elliptic Gm–action is both essential to relate W–modules
to representation theory and an intrinsic part of the geometry behind Theorems 1.7
and 1.8: it is not simply a technical convenience to make the proofs work. As an
illustration, consider D–modules on A1 with singular support in the zero section,
ie local systems. The zero section is a conical coisotropic subvariety in T �A1 with
symplectic quotient a point. However, the category of all algebraic local systems on
A1 is not equivalent to the category VectC of finite-dimensional vector spaces, ie
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coherent D–modules on a point: such a statement is only true once one passes to
the subcategory of local systems regular at infinity. One can define a good notion of
regularity in the deformation-quantization setting; see D’Agnolo and Polesello [16];
and then a regular W–module supported on a coisotropic subvariety C will be in the
essential image of the corresponding functor quasi-inverse to H . In particular, passing
to regular objects yields a version of Theorem 1.7 as in [16], but at a cost too high for
our intended applications: the subcategory obtained is no longer described in terms of
support conditions, and correspondingly one loses control over what the subquotients
look like.

Theorem 1.7, on the other hand, imposes a natural geometric condition on the coisotropic
subvariety C : it must arise from the (algebrogeometric) Morse theory of the Gm–
action. With that condition satisfied, regularity can be replaced by the more natural
geometric support condition, thus yielding a precise structural result on Qcoh.W/.

1.4 Abelian and derived categories

Our main results and techniques also establish some basic properties of categories
of W–modules that are analogues of familiar assertions for categories of coherent or
quasicoherent sheaves.

1.4.1 Abelian categories As one example, let Z �XGm be a closed, connected and
smooth subvariety. Let C D fx 2 X j limt!1 t � x 2Zg be the attracting locus for Z ;
it is a smooth, locally closed subvariety of X. Assume that C is closed in X. The
complement to C in X is denoted by U and we write j W U ,! X for the embedding.

Theorem 1.9 (Theorem 3.27 and Corollary 3.28)
(1) The inclusion functor i�W Qcoh.W/C ! Qcoh.W/ realizes Qcoh.W/C as a

localizing subcategory of Qcoh.W/. In particular, i� admits a right adjoint i Š

such that the adjunction id! i Š ı i� is an isomorphism.
(2) The restriction functor j �W Qcoh.WX/! Qcoh.WU / induces equivalences

WX–good=WX–goodC 'WU –good and Qcoh.WX/=Qcoh.WX/C ' Qcoh.WU /:

In particular, j � admits a right adjoint j�W Qcoh.WU / ! Qcoh.WX/ with
j � ı j� ' id.

As corollaries of Theorem 1.9, we immediately get corresponding statements for both
the bounded and unbounded derived categories. Unfortunately, it is clear that neither j �

nor i� can admit left adjoints in general (see however Braden, Proudfoot and Webster
[13, Theorem 5.20] in a special case). However, we show in the forthcoming paper [4]
that the inclusions C i

,!X
j
 - U determine a full recollement pattern on the derived

category of holonomic W–modules.
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1.4.2 Derived categories and compact generation The categorical cell decompo-
sition of Qcoh.W/ extends to the derived level: the (unbounded) derived category
D.Qcoh.W// is filtered by DK�i .Qcoh.W//, the full localizing triangulated subcate-
gories of objects with cohomology supported on the closed subvarieties CK�i . The
associated minimal subquotients are given by

DK�i .Qcoh.W//=DK>i .Qcoh.W//'D.Qcoh.DSi //:

Since DSi is a sheaf of OYi –algebras of finite homological dimension, standard
arguments show that the triangulated category D.Qcoh.DSi // enjoys strong generation
properties. Namely, the category is compactly generated and the full subcategory
of compact objects is precisely the category of perfect complexes. Our symplectic
generalization of Kashiwara’s equivalence allows one to inductively show that these
properties lift to the categories DK.Qcoh.W//. In particular, if D.Qcoh.W//c denotes
the full subcategory of compact objects, then taking K to be all of f1; : : : ; kg we have:

Theorem 1.10 (see Corollaries 5.9 and 5.10) The derived category D.Qcoh.W// is
compactly generated and there is an equality

D.Qcoh.W//c D perf.W/DDb.W–good/

of full, triangulated subcategories of D.Qcoh.W//.

An analogous compact generation result was shown by Petit [63], though the category
of cohomologically complete deformation-quantization modules considered in [63] is
(in a precise sense) orthogonal to Qcoh.W/.

1.5 Applications to invariants

Theorem 1.5 yields immediate consequences for the structure of fundamental invariants
associated to the category of sheaves over a deformation-quantization of X. For
example:

Corollary 1.11 (see Section 5.3) Suppose XGm is finite of cardinality k . Choose
a refinement of the partial ordering of coisotropic attracting loci Ci of X to a total
ordering. Then the group K0.perf.W// comes equipped with a canonical k–step
filtration each subquotient of which is isomorphic to Z; in particular, K0.perf.W// is
free abelian of rank k .

In fact, using the fundamental properties of holonomic modules developed in the
sequel [4], one can show that there are natural isomorphisms

�nW Kn.C/˝ZK0.perf.W// ��!Kn.perf.W//

Geometry & Topology, Volume 21 (2017)
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for all n� 0. Similar results hold for the cyclic and Hochschild homology of the dg
enhancement Perf.W/.

Corollary 1.12 (see Section 5.2) Suppose XGm is finite of cardinality k . Let H�.X/
denote the Borel–Moore homology of X, with coefficients in C . There are isomor-
phisms of graded vector spaces

HH�.Perf.W//'H��dimX.X/; HC�.Perf.W//'H��dimX.X/˝CŒ��;

where � is assumed to have degree two.

In most situations, such as those that appear in representation theory, it is also possible
to calculate the Hochschild cohomology of Perf.W/. Namely, in Proposition 5.19 we
show:

Corollary 1.13 (see Section 5.2) Suppose XGm is finite of cardinality k . Then

HH�.Perf.W//DH�.X;C/:

Via derived localization — see McGerty and Nevins [53] — the above results allows one
to easily calculate the additive invariants HH� , HC� and HH� of many quantizations
of singular (affine) symplectic varieties that occur naturally in representation theory.
See Section 5.4 for a discussion and applications. For example, let � be a cyclic
group and Sn o� the wreath product group that acts as a symplectic reflection group
on C2n . The corresponding symplectic reflection algebra at t D 1 and parameter c is
denoted by Hc.Sn o�/. For the definition of the filtration F in the corollary below,
see Example 5.20.

Corollary 1.14 (see Proposition 5.21) Assume that c is spherical. Then

HH�.Hc.Sn o�//D HH2n��.Hc.Sn o�//D grF�.ZSn o�/;

as graded vector spaces.

One can deduce similar results for finite W–algebras associated to nilpotent elements
regular in a Levi, and quantizations of slices to Schubert varieties in affine Grassman-
nians. These examples are explained in more detail at the end of Section 5.3.

1.6 Relation to Fukaya categories of Weinstein manifolds

There are a close conceptual link and, conjecturally, a precise mathematical relationship
between the categories Qcoh.W/ that we study and the Fukaya categories of Weinstein
manifolds in real symplectic geometry. More precisely, a growing body of important
work in real symplectic geometry (by, among others, Abouzaid, Kontsevich, Nadler,
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Seidel, Soibelman, Tamarkin, Tsygan and Zaslow) establishes fundamental links be-
tween structures of microlocal sheaf theory and Fukaya categories. The exposition
of Nadler [55] sets the Fukaya theory of Weinstein manifolds squarely in a Morse-
theoretic context, by showing how to use integral transforms to realize brane categories
as glued from the homotopically simpler categories of branes living on coisotropic
cells. Theorem 1.5 provides an exact parallel to the structure described in [55]. One
difference worth noting is that our categories include objects with arbitrary coisotropic
support, not just Lagrangian support as in standard Fukaya theory: we provide such
gluing structure for an algebrogeometric “bulk” category of all coisotropic branes rather
just than the “thin” category of Lagrangian branes.

Expert opinion supports a direct relationship between the category Qcoh.W/ (or more
precisely the holonomic subcategory) and the structure of Fukaya categories described
in [55]. Namely, many examples of hyperkähler manifolds with S1–action fit our
paradigm and have affine hyperkähler rotations possessing the requirements described
in [55]. In such cases, it is natural to try to prove that the category of [55] is equivalent to
Qcoh.W/ for a particular choice of W by first proving cell-by-cell equivalences; next,
describing a classifying object for categories built from cells as in Theorem 1.5 and [55];
and, finally and most difficult, isolating a collection of properties that distinguish the
Fukaya category of [55] in the universal family and matching it to some Qcoh.W/. We
intend to return to this problem in future work.

1.7 Relation to other work on deformation-quantization

In recent years there has been much interest in the study of quantizations of certain
classes of symplectic algebraic varieties, going back at least as far as the work of
Kashiwara and Rouquier [40] on the Hilbert scheme of points in the plane mentioned
above. The class of varieties which has attracted the most interest is that of conical
symplectic resolutions. These are symplectic varieties Y with a Gm–action such that
the affinization map f W Y !X is birational and the resulting Gm–action on X has a
single attracting fixed point. Braden, Proudfoot and Webster [13] and Braden, Licata,
Proudfoot and Webster [12] give a systematic study of quantizations of these varieties,
and study in detail a class of holonomic modules in the spirit of the classical theory of
category O (see also the subsequent work of Losev [51]).

Clearly any such conic symplectic resolution is an elliptic symplectic variety, but the
class of elliptic symplectic varieties is strictly larger. For example, if † is a smooth
complete curve, then Y D Hilbn.T �†/, the Hilbert scheme of points of the cotangent
bundle of † is naturally a symplectic variety (studied by Nakajima [56], for example)
and it possess a natural elliptic Gm–action induced by the scaling action on the fibers
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of T �†. However, unless † D P1 , the symplectic variety Y is not a symplectic
resolution. Moreover, in this paper we seek to investigate the structure of the full
category of Gm–equivariant modules, rather than focusing on particular classes of
holonomic modules. Our forthcoming work [4] was partly inspired by the question of
which properties of the category of all (suitably equivariant) modules for a quantization
of X can be detected by small subcategories such as the geometric incarnations of
category O studied by Braden, Licata, Proudfoot and Webster [12]. That paper however,
as in the work of Braden, Proudfoot and Webster [13] mentioned above, requires Y to
carry the action of a higher-dimensional torus.

1.8 Outline of the paper

Section 2 describes some of the basic geometric properties of symplectic manifolds
equipped with an elliptic Gm–action. The basic properties of modules over deformation-
quantization algebras are recalled in Section 3. In Section 4 we describe a version
of quantum coisotropic reduction for equivariant DQ algebras and prove a version of
Kashiwara’s equivalence. This equivalence is used in Section 5 to study the derived
category D.Qcoh.W// and also calculate the additive invariants of W–good.

1.9 Conventions

Deformation-quantization algebras A, sheaves of DQ algebras A, W–algebras W
(global section case) and W (sheaf case), and their modules and equivariant modules
are defined in the body of the paper. For a (sheaf of) DQ algebra(s) A (resp. A)
with Gm–action, we always write .A;Gm/–mod for the category of finitely generated
equivariant modules (resp. .A;Gm/–coh for the category of coherent modules).

For a W–algebra W , we write W–good for the category of good W–modules. If T is
a torus acting on X and W is a T–equivariant W–algebra (where T acts on „ via a
character), we write .W;T/–good for the category of good T–equivariant W–modules,
or, if T is clear from context, just W–good. We write Qcoh.W/ and Qcoh.W;T/ for
the ind-categories of W–good and .W;T/–good, respectively.
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2 The geometry of symplectic varieties with
elliptic Gm–action

We assume throughout this section that .X; !/ is a smooth, connected symplectic,
quasiprojective variety with elliptic Gm–action. By symplectic manifold we mean a
smooth quasiprojective variety over C equipped with an algebraic symplectic form. In
this section, we describe some basic geometric consequences of the Gm–action.

2.1 A symplectic Białynicki-Birula decomposition

The connected components of the fixed point set of X under the Gm–action will be
denoted by Y1; : : : ; Yk . Each Yi is a smooth, closed subvariety of X. Recall that

Ci D
˚
x 2 X j lim

t!1
t � x 2 Yi

	
:

Then it follows that XD
Fk
iD1 Ci .

Let C a smooth, connected, locally closed coisotropic subvariety of X. A coisotropic
reduction of C is a smooth symplectic variety .S; !0/ together with a smooth morphism
� W C ! S such that !jC D ��!0 . A classical example of a coisotropic reduction
is given by X D T �X , Y � X a smooth, closed subvariety, C D .T �X/jY and
� W .T �X/jY ! T �Y the natural map.

Theorem 2.1 Suppose .X; !/ is a symplectic manifold with elliptic Gm–action.
Then:

(1) Each Ci is a smooth, coisotropic subvariety of X and an Gm–equivariant affine
bundle over the fixed point set Yi .

(2) There exist symplectic manifolds .Si ; !i / with elliptic Gm–action and Gm–
equivariant coisotropic reductions �i W Ci ! Si .

The proof of the first statement of Theorem 2.1 is given in Section 2.2. The proof of the
second statement of Theorem 2.1 is given in Section 2.3 after some preparatory work.

2.2 Proof of Theorem 2.1(1)

The proof of Theorem 2.1(1) is essentially a direct consequence of the Białynicki-Birula
decomposition together with some elementary weight arguments. However, we provide
details for completeness. The fact that each Ci is an Gm–equivariant affine bundle
over Yi follows directly from [10, Theorem 4.1].

With regard to Gm–representations, the following conventions will be used throughout
the paper. If V is a graded vector space then Vi denotes the subspace of degree i . Let
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V be a prorational Gm–module; that is, V is the limit of its Gm–equivariant rational
quotients. Then V rat D

L
i2Z Vi , the subspace of Gm–finite vectors, is a rational

Gm–module.

To show that each Ci is coisotropic, we first show that TpCi is a coisotropic subspace
of TpX at each point p 2 Yi . Indeed we claim that

(2-1) .TpCi /
?
D rad.!jCi /p D

M
j<�l

.TpCi /j :

To see this, let V D TpX and W D TpCi . Then V and W have weight space
decompositions V D

L
j Vj and W D

L
j Wj , where Wj D Vj for j � 0 and Wj D 0

for j > 0. If v 2 Va and w 2 Vb then

t l!.v;w/D .t �!/.v; w/D !.t�1 � v; t�1 �w/D t�a�b!.v;w/:

This implies that !.v;w/D 0 if l ¤�a�b and ! restricts to a nondegenerate pairing
Vj � V�l�j ! C . Therefore, if v 2 Vj \W ? then the equality !.v;w/D 0 for all
w 2W implies that V�j�l\W D 0, ie �j � l > 0 and hence j <�l . Hence Vj �W .
This implies that W ?DW<�l and (2-1) follows. Then the following lemma completes
the proof of Theorem 2.1(1):

Lemma 2.2 Let C be an attracting set in X and Y � C the set of fixed points. Then
C is coisotropic if and only if .TpC/? � TpC for all p 2 Y .

Proof Fix p 2 Y . There exists a Gm–stable affine open neighborhood U of p on
which the tangent bundle equivariantly trivializes, ie TXjU 'U �TpX. To see this, let
U0 be a Gm–stable affine open neighborhood of p and mCCŒU0� the maximal ideal
defining p . Choose a homogeneous lift x1; : : : ; x2n of a basis of m=m2 in CŒU0�. Then
there exists some affine open Gm–stable subset U � U0 such that fdx1; : : : ; dx2ng
is a basis of �1U as a CŒU �–module. Shrinking U if necessary, we may assume that
UGmDY \U . Under the corresponding identification TxX ��!TpX of tangent spaces,
TxC is mapped to TpC for all x 2 U \C . Write ! D

P
i<j fi;jdxi ^ dxj , thought

of as a family of skew-symmetric bilinear forms on the fixed vector space TpX.

If @i is dual to dxi , then as shown above TpC is spanned by all @i of degree � 0
and .TpC/?p is spanned by all @i of degree less than �l . By definition, U \ C
is the set of all points in U vanishing on all f 2 CŒU � of negative degree. Let
@i 2 .TpC/

?p and @j 2TpC . Then deg dxi >l and deg xj �0. Therefore degfi;j <0.
This implies that fi;j .x/ D 0 for all x 2 U \C and hence !x.@i ; @j / D 0, so that
.TpC/

?p � .TpC/
?x . Since dim.TpC/?p D dimX�dim.TpC/D dim.TpC/?x we

must have .TpC/?x D .TpC/?p and so the lemma follows.
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Define a relation on the coisotropic attracting loci Ci by Ci � Cj if Cj \Ci ¤∅.

Lemma 2.3 The relation Ci � Cj is antisymmetric; in particular, it defines a partial
order on the Białynicki-Birula strata.

Proof Equivariantly compactify X to a smooth projective Gm–variety X; see [14,
Theorem 5.1.25]. Since we assume that every point in X has a Gm–limit in X, a
point in x 2 X has its Gm–limit in the closed set @XD XXX if and only if x 2 @X;
in particular, @X is a union of BB strata of X. The relation on BB strata defined
above on X is a subset of the relation defined using the BB stratification of X (some
stratum closures may intersect at the boundary in x@ but not in X itself). Since the BB
stratification of X is filterable by [11], the conclusion follows.

2.3 Proof of Theorem 2.1(2): from global to local

We fix C to be one of the coisotropic strata (one of the Ci ) in X and let Y D CGm .
Note that if C D Ci then Lemma 2.3 shows that C�i D

S
j�i Cj is open in X and Ci

is closed in C�i . Since an open union of coisotropic cells in X inherits the structure
of an elliptic symplectic variety, we may thus assume without loss of generality that
C is closed in X. We first describe a canonical global construction of a morphism
� W C ! S . To show that this construction yields a coisotropic reduction is a local
computation, which we carry out in the next section, giving a local normal form for
the symplectic form on a formal neighborhood of C .

The global construction can be described as follows: Let �W C ! Y be the projection
map and I denote the sheaf of ideals in OX defining C . The quotient I=I2 is a
locally free OC –module. By Lemma 2.4 below, I is involutive. Therefore the Lie
algebroid L WD ��.I=I2/ acts on ��OC via Hamiltonian vector fields and we can
consider the sheaf H WDH 0.L; ��OC / of sections of ��OC that are invariant under
these Hamiltonian vector fields. The fact that the Poisson bracket has weight �l and
OY is concentrated in degree zero implies that L is actually an OY –Lie algebra and
H a sheaf of OY –algebras.

The embedding of H into ��OC defines a dominant map � W C ! S WD SpecY H of
schemes over Y . The final claim of Theorem 2.1 is that the map � is a coisotropic
reduction and, in particular, S is a symplectic manifold. Since both C and S are
affine over Y and the statement of the claim is local on S , it suffices to assume that
we are in the local situation of Section 2.4 below. Then the claim is a consequence of
Theorem 2.6; see the end of Section 2.4.
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2.4 Proof of Theorem 2.1(2): affine local case

In this section we prove that the construction described in Section 2.3 does indeed
give a coisotropic reduction. The idea is to show that, locally, there is a different
construction of � using the Gm–action on X. This construction clearly gives a
coisotropic reduction. Unfortunately, this construction doesn’t obviously lift to a global
construction. Therefore the main thrust of this section is to show that this second
construction agrees (locally) with the construction given in Section 2.3.

It follows from [10, Theorem 2.5] that, for each point y 2 Y , there is some affine open
neighborhood of y in Y such that the affine bundle �W C ! Y trivializes equivariantly.
Replacing Y by such an affine open subset, we assume that � is equivariantly trivial.
Moreover, we may assume that X is also affine (still equipped with a Gm–action). Set
RDCŒX�, a regular affine C–algebra with nondegenerate Poisson bracket f�;�g and
Gm–action such that f�;�g has weight �l . Let I be the ideal in R defining C .

Let lD I=I 2 . The Poisson bracket on R makes l into a Lie algebra which acts on R=I .
Let

H WDH 0.l; R=I /D .R=I /fI;�g

denote the “coisotropic reduction” of R with respect to I . The bracket f�;�g descends
to a bracket on H and R=I is a Poisson module for H . We set S D SpecH and
let � be the dominant map coming from the inclusion H ,! R=I . This is the local
version of the construction described in Section 2.3.

Lemma 2.4 The ideal I equals the ideal of R generated by all homogeneous elements
of negative degree and is involutive, ie fI; I g � I .

Proof Let J be the ideal of R generated by all homogeneous elements of negative
degree. The fact that f�;�g has degree �l implies that J is involutive. Moreover, the
set of zeros of I and J clearly coincide. Therefore the lemma is really asserting that J
is a radical ideal. If X were not smooth then this need not be true. Let DD SpecR=J .
Since the nonreduced locus is a closed, Gm–stable subscheme of D , it suffices to show
that the local ring OD;y is a domain for all Gm–fixed closed points of D . But in this
case, if m is the maximal ideal in R defining y , then T �yD is precisely the subspace
of m=m2 of nonnegative weights and D is locally cut out by homogeneous lifts of the
elements of m=m2 of negative degree. Since X is smooth at y , these elements form a
regular sequence and hence OD;y is reduced.

Now we give our alternative, local construction of � which we will use to verify the
morphism � is a coisotropic reduction. For the remainder of this section, let S denote
the affine variety such that CŒS��CŒC � is the subalgebra generated by all homogeneous
elements of degree at most l and let � denote the dominant morphism C ! S .
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Lemma 2.5 The variety S is symplectic and � is a coisotropic reduction of C .

Proof Fix some y 2 Y . First we establish that S is a smooth variety of dimension
dim.TyC/��l . By definition, there is an equivariant trivialization �W C ��!Y �V �Z ,
where V �TyC is the sum of all weight spaces with weight �l � i < 0 and Z the sum
of all weight spaces of weight < �l . Since � is equivariant and S defined in terms
of weights, ��.CŒS�/D CŒY � V � and � 0 ı ��1 corresponds to the projection map
onto Y �V . Thus, S is smooth of the stated dimension and � is a smooth morphism.

Since C is only coisotropic, the bracket on X does not restrict to a bracket on R=I .
However, as explained above, it does induce a bracket on H . Since CŒS� is generated by
homogeneous elements of degree at most l , and I is generated by elements of negative
degree, the algebra CŒS� is contained in H . Again, weight considerations imply that
it is Poisson closed. Thus, it inherits a bracket from X making � a Poisson morphism.

Finally we need to show that the Poisson structure on CŒS� is nondegenerate. Since
CŒS� is positively graded and smooth, it suffices to check the induced pairing

f�;�gy W T
�
y S �T

�
y S !C

is nondegenerate. As noted in the proof of Lemma 2.4, T �y C D .T
�
y X/=.T

�
y X/<0 .

Since CŒS� is generated by all elements of degree at most l in CŒC �, the space
.T �y X/�l=.T

�
y X/<0 is contained in T �y S . But these two spaces have the same dimen-

sion. Therefore they are equal. Since f�;�g has degree �l and is nondegenerate
on T �y X, the induced pairing

f�;�gy W .T
�
y X/�l=.T

�
y X/<0 � .T

�
y X/�l=.T

�
y X/<0!C

is nondegenerate.

As shown in the proof of Lemma 2.5, we have Poisson subalgebras CŒS��H of R=I
and the Poisson structure on CŒS� is nondegenerate. Therefore, to show that H is
also a regular affine algebra with nondegenerate Poisson bracket it suffices to show
that CŒS�DH . In order to do this, we shall need to investigate more closely the local
structure of the symplectic form. In particular, we shall need a Darboux–Weinstein-type
theorem to describe the behavior of the form near C �X. Since we are working in the
Zariski topology, we shall take the formal completion along C .

Shrinking Y further if necessary, we may assume that the normal bundle NX=C to
C in X is Gm–equivariantly trivial. Thus, we have a Gm–equivariant trivialization
Tot.NX=C /' C �Z

� . This implies that I=I 2 is a free R=I –module.

In these circumstances, [34, paragraphe III.1.1.10 et théorème III.1.2.3] imply that
we can choose (Gm–equivariantly) an identification of the formal neighborhood C
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of C in X with the formal neighborhood yNX=C of the zero section in NX=C . By
Lemma 2.5, C ' S � Z , where Z ' Am . It follows easily that there is a Gm–
equivariant isomorphism C' S � bT �Z , where bT �Z denotes the completion of T �Z
along the zero section; the corresponding ideal in CŒC�D yR is therefore the completion
of I , denoted by yI . Then � extends to a projection map S� bT �Z!S . The inclusion
S ,! C is denoted by �.

For an arbitrary morphism f W X !X 0 , there is a map �f W f ���X 0 !��X . Assume
X and X 0 are affine. If � is a closed k–form on X and x� its image in f ��kX 0 , then
�f .x�/ is closed in �kX . From X, the space C inherits a symplectic form ! of weight l .
Set !S D��.��.x!//, a closed 2–form on C. Our local normal form result states:

Theorem 2.6 Under the identification C ' S � bT �Z there is a Gm–equivariant
automorphism � of C, with �. yI /D yI , such that

(2-2) ��! D !can WD !S C

mX
iD1

dzi ^ dwi

with respect to some homogeneous bases z D z1; : : : ; zm and w D w1; : : : ; wm of
Z� �CŒZ� and Z �CŒŒZ���, respectively.

The proof of Theorem 2.6 will be given in Section 2.5.

Remark 2.7 We have deg zi > l , degwi < 0 and deg zi C degwi D l for all i .

Theorem 2.6 implies:

Corollary 2.8 We have NX=C ' .��Z�/˝ �l , where � D idW Gm ! Gm is the
fundamental character of Gm .

We can now complete the proof of Theorem 2.1. Recall from Section 2.4 that our goal
is to show that CŒS�DH as subalgebras of R=I .

The ring yR can be identified with functions on C. Under this identification, the ideal
yI D yRI is the ideal of functions vanishing on the zero section C and yR= yI D R=I .
Since I is involutive and yI D yRI , the ideal yI is involutive. By Theorem 2.6, there is an
automorphism �� of yR such that ��.ff; gg/D f��.f /; ��.g/gcan , where f�;�gcan

is the canonical Poisson bracket coming from the symplectic two-form (2-2). By
construction, ��. yI /D yI . Therefore, . yR= yI /f yI ;�g D . yR= yI /f yI ;�gcan . Since

yRD .R=I /ŒŒw1; : : : ; wm��D .CŒS�˝CŒz1; : : : ; zm�/ŒŒw1; : : : ; wm��

and yI is generated by w1; : : : ; wm , the embedding CŒS� ,! yR induces an isomor-
phism CŒS�' . yR= yI /f yI ;�g . Finally, the equality yI D yRI implies that . yR= yI /f yI ;�g D
.R=I /fI;�g DH .
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The following observation will be useful later:

Lemma 2.9 The projection �W C ! Y factors through � W C ! S .

Proof The algebra R=I is N –graded such that the quotient by the ideal generated
by all elements of strictly positive degree equals CŒY �; the proof of this last claim is
identical to the proof of Lemma 2.4, using the fact that C is smooth. On the other hand
we can also identify CŒY � with the degree zero part of R=I . Therefore, it suffices to
show that all sections of R=I of degree zero lie in T . To see this, notice that the Poisson
bracket on R has degree �l . Therefore, given f 2 .R=I /0 and g D

P
i gihi 2 I ,

where deg hi < 0 for all i , the element ff; gg D
P
i giff; hig C hiff; gig lies in I

because degff; hig< 0.

2.5 The proof of Theorem 2.6

The crucial tool in the proof of Theorem 2.6 is an algebraic version of the Darboux–
Weinstein theorem which is due to Knop [45, Theorem 5.1]. In our setup, Knop’s
theorem can be stated as:

Theorem 2.10 Let f�;�g! and f�;�g!can denote the Poisson brackets on yR asso-
ciated to the symplectic forms ! and !can , respectively. Denote their difference by
f�;�g� . If f yR; yRg� � yI , then there exists an automorphism � of C as described in
Theorem 2.6.

Knop’s proof of Theorem 2.10 is based on the proof by Guillemin and Sternberg of the
equivariant Darboux–Weinstein theorem [29], except that Knop works in the formal
algebraic setting.

In our case, it is not necessarily true that f yR; yRg� � yI . Instead, we construct an equi-
variant automorphism  of yR , such that  . yI /D yI and the difference of f�;�g �.!/
and f�;�g!can has the desired properties. In fact we prove the following:

Proposition 2.11 There exist homogeneous elements w1; : : : ; wm and z1; : : : ; zm
in yR and a graded subalgebra T of yR such that:

(1) T \ yI D 0 and the map yR ! R=I induces a graded algebra isomorphism
T !CŒS�.

(2) The elements w1; : : : ; wm generate yI .

(3) There is a Gm–equivariant isomorphism R=I 'CŒS�Œz1; : : : ; zm�

(4) With respect to the Poisson structure f�;�g D f�;�g! , we have fwi ; zj g D
ıij mod yI, fzi ; T g, fwi ; T g � yI and fzi ; zj g 2 yI for all i and j .
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Since the choice of such elements w1; : : : ; wm , z1; : : : ; zm clearly yield a Gm–equi-
variant automorphism of yR (which fixes yI and S ), one sees directly that this proposition
implies the existence of  as described above.

So we turn to the proof of Proposition 2.11. As in the proof of Lemma 2.9, we make
the identification CŒY �D .R=I /0 . We have S D Y �V and C D Y �V �Z , where
V and Z are as in Lemma 2.5. Let V �

l
be the l –weight subspace of V � .

Lemma 2.12 The Poisson bracket on CŒS� defines an isomorphism of CŒY �–modules

CŒY �˝V �l
��!Der.CŒY �/:

Proof That the map is well-defined and CŒY �–linear follows from degree consider-
ations. Lemma 2.5 implies that the Poisson bracket on CŒS� is nondegenerate. This
nondegeneracy implies that the above map is surjective. Since it is a surjective map
between two projective CŒY �–modules of the same rank, it is an isomorphism.

Choose an arbitrary point y 2 Y . Our strategy will be to complete at y and use the
Darboux theorem for a symplectic formal disc to control the behavior of the Poisson
bracket in some neighborhood of y . For the convenience of the reader we recall the
statement of the Darboux theorem in the presence of an elliptic Gm–action:

Theorem 2.13 Let yRy denote the completion of R at y . Then, in yRy , there is a regu-
lar sequence fu1; : : : ; un; v1; : : : ; vng of homogenous elements such that fui ; vj gD ıij
and fui ; uj g D 0D fvi ; vj g for all i and j .

The proof of the equivariant Darboux theorem is a slight modification of standard
arguments and we shall omit it. Since CŒY ��H , R=I is a Poisson CŒY �–module,
where CŒY � is equipped with the trivial Poisson bracket. Let K �R=I denote the set
of all elements k such that fCŒY �; kg D 0; it is a graded subalgebra of R=I .

Lemma 2.14 Multiplication defines an isomorphism CŒV�l �˝K
��!R=I .

Proof By Krull’s intersection theorem, we may consider R=I as a subalgebra of
yRy=I yRy , and hence of . yRy=I yRy/rat too. The ring yRy=I yRy is a Poisson module
over the ring yCŒY �y , where yCŒY �y is the completion of CŒY � at the point y . If
yK � yRy=I yRy and Krat � . yRy=I yRy/

rat are defined analogously to K , then it suffices
to show that CŒV�l �˝K

rat ��! . yRy=I yRy/
rat .

Reordering if necessary, we may suppose that fv1; : : : ; vmg are the elements of
Theorem 2.13 that have negative degree. They generate the ideal I yRy . There exist
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˛1; : : : ; ˛r , ˇ1; : : : ; ˇs such that f˛1; : : : ; ˛r ; ˇ1; : : : ; ˇsg�fu1; : : : ; un; vmC1; : : : ; vng,
CŒŒ˛1; : : : ; ˛r ��DCŒŒV�l �� and CŒŒˇ1; : : : ; ˇs��DCŒŒV>�l�Z��. In this case, it follows
from Theorem 2.13 that

yRy=I yRyD yCŒY �y y̋CŒŒ˛1; : : : ; ˛r ; ˇ1; : : : ; ˇs�� with yKD yCŒY �y y̋CŒŒˇ1; : : : ; ˇs��:

Hence, since deg˛i and deg ǰ > 0 for all i and j ,

(2-3) . yRy=I yRy/
rat
DCŒV�l �˝ yCŒY �y ˝CŒˇ1; : : : ; ˇs�:

Lemma 2.12 implies that we may fix a basis x1; : : : ; xr of V �
l
�CŒV�l � and regular

sequence y1; : : : ; yr in CŒY � such that dy1; : : : ; dyr are a basis of �1Y and fxi ; yj gD
ıij for all i and j . This, together with the identification (2-3), implies that Krat D
yCŒY �y ˝CŒˇ1; : : : ; ˇs� and CŒV�l �˝K

rat ��! . yRy=I yRy/
rat .

Now we begin constructing elements that satisfy the conditions of Proposition 2.11.
Since the statement of Proposition 2.11 is local, it suffices to replace X by some
sufficiently small affine neighborhood of y where the statement holds. We prove:

Lemma 2.15 There exists a Gm–equivariant identification C ' S � Z such that
fCŒY �;CŒZ�g D 0.

Proof Let CŒZ�DCŒz1; : : : ; zm�. We show that the elements zi can be modified so
that the lemma holds. If x1; : : : ; xr is the basis of V �

l
as in the proof of Lemma 2.14,

then that lemma implies that we may uniquely decompose

zi D
X
I2Nr

xI �p
.i/
I

for p.i/I 2 K . Since the xi have degree l > 0 it follows that degp.i/I < deg zi for
all I ¤ 0. Using this fact, it is straightforward to show by induction on degree that

CŒY �V>�l �Œz1; : : : ; zm�DCŒY �V>�l �Œp
.1/
0 ; : : : ; p

.m/
0 �;

which implies the lemma. Indeed if z1; : : : ; zk have the minimal possible degree then
degp.i/I < deg zi for I ¤ 0 implies that p.i/I 2CŒY �V>�l � and hence

CŒY �V>�l �Œz1; : : : ; zk�DCŒY �V>�l �Œp
.1/
0 ; : : : ; p

.k/
0 �:

The inductive step is entirely analogous.

Recall that the Lie algebra l D I=I 2 acts on R=I as well. Next, we consider the
action of l on CŒZ�. Recall that we have assumed that Y is small enough so that
we have a Gm–equivariant trivialization Tot.NX=C /Š C �Z

� . It follows that l is a
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free R=I –module of rank equal to dimZ . We now consider the action of l on CŒZ�
viewed as a subalgebra of R=I via the isomorphism constructed in Lemma 2.15:

Lemma 2.16 There exists a homogeneous subspace W � l such that lDR=I˝W as
an R=I –module and the action of l on R=I restricts to a nondegenerate, equivariant
pairing W �Z�!C .

Proof Let fz1; : : : ; zmg be the generators of CŒZ��R=I as in the proof of Lemma
2.15, viewed as elements of Z� . We must show that there is a homogeneous R=I –basis
of l dual to the zi with respect to the pairing induced by the Poisson bracket. Fix
fw1; : : : ; wmg some homogeneous R=I –basis. We will modify this basis by increasing
induction on degree in order to obtain the required dual basis.

For each integer �m< 0 the Poisson bracket induces a CŒY �–linear pairing between
the l�m , the .�m/th graded piece of l, and CŒZ�lCm . Let Z�

lCm
be C–span of

the zi of degree l Cm and let NlCm be the CŒY �–module it generates. Similarly,
let n�m � l�m be the CŒY �–module generated by the wj of degree �m. Since the
pairing induced by the Poisson bracket on the tangent space TyX at a closed point
y 2 Y is homogeneous and nondegenerate, it follows that the CŒY �–pairing between
NlCm and n�m is also nondegenerate. It follows that we may modify the wj in n�m
to be dual to the zj 2NlCm , that is, so that fwj ; zkg D ıj;k .

Thus we suppose by induction that for all d < �m the wj of degree �d are dual to
the zk of degree l C d and the pairings fwj ; zkg D 0 for wj and zk in degrees less
than �m and greater than l Cm, respectively, which are not paired. Note that for
sufficiently large m this holds vacuously. In degree �m, modify the wi to be dual
to the zk of degree l Cm as above. To complete the inductive step we must ensure
the new wi have trivial Poisson bracket with the zk of higher degree; modify the wi
according to the homogeneous substitution

wi 7! wi �
X

degwj<�m

fwi ; zj gwj :

Since the l–module structure on R=I is left R=I –linear, it follows from the inductive
hypothesis that for these new wi we have fwi ; zkg D 0 whenever deg zk > l Cm.
Moreover, these new wi are still linearly independent, as they remain dual to the zk of
degree l Cm, since fwj ; zkg D 0 for all wj of degree less than �m by consideration
of degree.

With these two lemmas in hand we may now give:

Proof of Proposition 2.11 If we denote by the same letter a homogeneous lift of the
space W of Lemma 2.16 to yI , then yRD .R=I /ŒŒW ��. In this way we regard W and
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Z� as subspaces of yR . Now, by Lemma 2.16 we may choose bases w1; : : : ; wm and
z1; : : : ; zm of W and Z� , respectively, so that conditions (2), (3) and the first condition
of (4) in Proposition 2.11 hold. It remains to ensure the conditions that fzi ; zj g belong
to yI and to find a suitable subalgebra T . For this we repeatedly use the substitution
strategy of Lemma 2.16: inductively define

z0i D zi �

i�1X
jD1

fzi ; z
0
j gwj for all i:

One checks directly that these elements Poisson commute with each other modulo yI
and, since z0i � zi 2 yI , we have that fz0i ;CŒY �g D 0 mod yI and fz0i ; wj g D ıij mod yI .
Finally, if V is as in Lemma 2.5, and we pick a basis x1; : : : ; xt of V � so that
CŒS�DCŒY �Œx1; : : : ; xt �, and set

x0i D xi �

mX
jD1

fz0j ; xigwj for all i

and let T be the algebra generated by CŒY � and the x0i . Then it follows easily
that fz0i ; T g D 0 mod yI and fwi ; T g D 0 mod yI (the latter from elementary degree
considerations) and thus the proposition is proved.

2.6 Special case of Theorem 2.1: isolated fixed points

Assume now that each fixed point component Yi of the elliptic Gm–action is a single
point fpig. In this case each Si is isomorphic to A2ti and there exists globally a splitting
Si ,! Ci

�i
��Si . Let .A2n; !can/ be the 2n–dimensional affine space equipped with

the constant symplectic form. We now check that in this case the symplectic reduction
is isomorphic to a linear symplectic form.

Proposition 2.17 Let .S; !S / be an affine symplectic manifold, isomorphic to A2n ,
equipped with an elliptic Gm–action with unique fixed point o 2 S . Then there exists
an isomorphism �W S !A2n and homogeneous algebraically independent generators
zD z1; : : : ; zn and wD w1; : : : ; wn of CŒS� such that

��! D dz1 ^ dw1C � � �C dzn ^ dwn:

Proof Take the completion at o 2 S . Then by the formal Darboux theorem we
may choose homogeneous generators fu1; : : : ; un; v1; : : : ; vng for which the Poisson
bracket associated to ! has standard form. We may view CŒS�� bCŒS� via the obvious
map, and so we are reduced to showing that the generators ui and vj are actually
elements of CŒS�. But the Gm–action naturally extends to bCŒS� , and since o is the
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unique fixed point, which is therefore the limit of every point in S , it follows that we
may describe CŒS� � bCŒS� as . bCŒS�/rat the elements for which the Gm–action is
locally finite. Clearly any homogeneous element is locally finite and so we are done.

Corollary 2.18 Suppose XGm is finite, of cardinality k . Then, for all i , there is a
coisotropic reduction �i W Ci ! .A2ti ; !can/.

2.7 Symplectic fibrations

In this subsection, we consider those symplectic manifolds equipped with an elliptic
Gm–action for which the set of Gm–fixed points is a connected variety. At one extreme,
we have cotangent bundles of a smooth variety, with Gm acting by rescaling the fibers;
at the other extreme one has symplectic fibrations, which are affine bundles such that
each fiber is a copy of affine symplectic space. We show that generally one gets a mix
of these two extremes.

Let Y be a smooth connected variety.

Definition 2.19 � A symplectic fibration over Y is a tuple .E; �; f�;�g/, where
�W E ! Y is an affine bundle and f�;�g an OY –linear Poisson bracket on
��OE such that the restriction of f�;�g to each fiber of � is nondegenerate.

� The symplectic fibration is said to be elliptic if Gm acts on E such that f�;�g
is homogeneous of negative weight, Y D EGm and all weights of Gm on the
fibers of � are negative.

If .E; �; !/ is an elliptic symplectic fibration then
�
��1.y/; f�;�gj��1.y/

�
is a sym-

plectic manifold for each y 2 Y .

Since T �Y is a vector bundle, it is naturally an abelian group scheme over the base Y .

Definition 2.20 Suppose pW B ! Y is a smooth variety over Y equipped with a
symplectic form !B . Suppose that B is equipped with an action aW T �Y �Y B! B

of the group scheme T �Y over Y . We say B! Y is symplectically automorphic if,
for any 1–form � on Y , we have

a.�;�/�!B D !B Cp
�d�:

As remarked in the introduction, if B is a T �Y –torsor, this reduces to the notion of
twisted cotangent bundle as in [3].

For the remainder of this section we assume that X is equipped with an elliptic Gm–
action such that the fixed point set Y of X is connected and hence every point of X
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has a limit in Y . By [10, Theorem 4.1], there is a smooth map �W X! Y , making
X an affine bundle over Y . We should like to show that such symplectic varieties
are symplectically automorphic varieties built from cotangent bundles and elliptic
symplectic fibrations.

Theorem 2.21 Let X be a smooth symplectic variety equipped with an elliptic Gm–
action such that the fixed point locus Y D XGm is connected. Then:

(1) The group scheme T �Y acts freely on X, making X ! Y symplectically
automorphic.

(2) The cotangent bundle T �Y embeds T �Y –equivariantly in X. Moreover, the
restriction of the symplectic form ! to T �Y � X equals the standard 2–form
on T �Y .

(3) The quotient E WD X=T �Y inherits a Poisson structure making the projection
E! Y an elliptic symplectic fibration.

The proof of Theorem 2.21 is similar to the proof of the local normal form Theorem 2.6;
however, we must also use the powerful Artin approximation theorem of [2]. For brevity,
we write OX for the algebra ��OX . Let K be the ideal in OX generated by .OX/0<i<l .

Lemma 2.22 The symplectic form on X restricts to a symplectic form on SpecYOX=K .
Moreover, SpecY OX=K' T �Y as smooth symplectic varieties.

Proof The OY –submodule .OX/�l of OX is preserved by the Poisson bracket. If
f 2 .OX/�l and g 2OY , then ff; gg 2OY . Thus, ff;�g defines a derivation of OY .
If f 2 .OX/<l then this derivation is zero. Hence, the Poisson bracket defines a
OY –linear map �W E ! ‚Y , where E D .OX/�l=.OX/<l . This is a map of Lie
algebroids:

Œ�.f /; �.g/�.h/D �.f /.�.g/.h//��.g/.�.f /.h//

D ff; fg; hgg� fg; ff; hgg

D �fh; ff; ggg� fg; fh; f gg� fg; ff; hgg

D �.ff; gg/.h/:

Since the Poisson bracket on X is nondegenerate, � is surjective. Locally trivializing
X'Y �V shows that E is locally free of rank dimV�l D dimY and OX=KDSym� E .
Therefore � is an isomorphism.

Lemma 2.23 The algebra OX is a comodule for Sym�‚Y .

Proof Recall that the comultiplication on the Hopf algebra Sym�‚Y is defined by
�.v/ D v˝ 1C 1˝ v for v 2 ‚Y . The algebra OX is generated by .OX/�l . We
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define �XW OX! OX˝OY Sym�‚Y by �X.f /D f ˝ 1C 1˝ xf for f 2 .OX/�l
and extending to OX using the fact that �X should be an algebra homomorphism. Here
xf denotes the image of f in OX=K' Sym�‚Y . Since OX is not freely generated

by .OX/�l , we need to show that this is well-defined.

Choose a local set x1; : : : ; xk , z1; : : : ; zr of homogeneous algebraically independent
generators of OX over OY such that 0 < deg xi < l and deg zj D l for all i and j .
The images xzi in Sym�‚Y of the zi form a basis of ‚Y . Then we define �0X by
�0X.f /D f ˝1C1˝

xf for f 2 fx1; : : : ; xk; z1; : : : ; zrg. This clearly defines a local
comodule structure on OX . We just need to show that it equals �X , ie it is independent
of the choice of local generators. Take f 2 .OX/�l , a homogeneous element. There
exist ai 2OY and some g such that f D

Pr
iD1 aizi Cg.x1; : : : ; xk/. Then

�0X.f /D

rX
iD1

ai�
0
X.zi /Cg.�

0
X.x1/; : : : ; �

0
X.xk//

D

rX
iD1

.aizi ˝ 1C 1˝ aixzi /Cg.x1˝ 1; : : : ; xk˝ 1/

D

� rX
iD1

aizi

�
˝ 1C 1˝

� rX
iD1

aizi

�
Cg.x1; : : : ; xk/˝ 1

D f ˝ 1C 1˝ xf D�X.f /:

Finally, to check that �X is compatible with the comultiplication on Sym�‚Y , it
suffices to do so locally, as above, where it is clear.

We denote by F the graded OY –subalgebra of OX generated by .OX/<l . Set E WD
SpecY F and let X=T �Y denote the spectrum of O�X

X . From the definition of �X

given in the proof of Lemma 2.23, the algebra F is contained in O�X

X . Thus, we have a
dominant map X=T �Y !E . Moreover, the local description of �X given in the proof
of Lemma 2.23 shows that X=T �Y is the space of T �Y –orbits in X and the map
X=T �Y !E is an isomorphism. Thus, parts (1) and (2) of Theorem 2.21, except for
the “symplectically automorphic” assertion of (1), are a consequence of Lemmas 2.22
and 2.23. For part (3) we need to show that the Poisson bracket on OX , restricted to F ,
makes E into a symplectic fibration. For this and the “symplectically automorphic”
assertion, we need a local normal form of the Poisson bracket on OX .

Proposition 2.24 Locally, in the étale topology on Y , there is a Gm–equivariant
isomorphism of Poisson algebras

OX 'OT �Y ˝CŒA2n�;

where the inherited Poisson bracket on CŒA2n� is the standard one.
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Proof Let rD dimY . Since the statement is local we assume that X'Y �V is affine,
where V is a Gm–module with strictly negative weights. The algebra R WDCŒX� is
isomorphic to CŒY �˝CŒV �. If x1; : : : ; x2n is a homogeneous basis of V �

<l
�CŒV � and

x2nC1; : : : ; x2nCr a basis of V �
l
�CŒV �, then CŒX�DCŒY �˝CŒx1; : : : ; x2nCr �. Con-

cretely, we wish to show that there exists an equivariant étale morphism pW U!Y such
that �.U; p�CŒX�/ is isomorphic to CŒU �Œx01; : : : ; x

0
2nCr �, where the fx0ig are graded

elements, with deg xi D deg x0i , and the Poisson bracket satisfies fx0i ; x
0
j gD ıiCj;2nC1 .

Assuming we have done this, weight considerations imply that

�.U; p�CŒX�/'CŒU �Œx02nC1; : : : ; x
0
2nCr �˝CŒA2n�

as Poisson algebras and Lemma 2.12 implies that CŒU �Œx02nC1; : : : ; x
0
2nCr �'CŒT �U �

as Poisson algebras.

Remark 2.25 Since this identification is compatible with the action of T �Y , the
“symplectically automorphic” assertion of Theorem 2.21(1) follows immediately from
the same assertion for T �Y itself.

Choose y 2 Y , and consider the algebra yRrat
y '

yCŒY �y ˝CŒV � of Gm–locally finite
sections of the completion of R at y . Let m denote the maximal ideal of .y; 0/ in yRrat

y .
The formal Darboux theorem, Theorem 2.13, implies that there exist homogeneous
elements u1; : : : ; u2nCr in yRrat

y such that fui ; uj g D ıiCj;2nC1 and their image in
m=m2D T �y Y �V

� is a basis of V � . With respect to our chosen basis, ui D
P
j gijxj

for some gij 2 yCŒY �y . This implies the relations

(2-4) ıiCj;2nC1 D fui ; uj g D
X
k;l

gikgjlfxk; xlg;

where the last equality follows from the fact that fxk; gij g D 0 for all i , j and k for
reasons of degree.

Since these relations are taking place in the finite, free CŒY �–module CŒY �˝CŒV ��l
we may consider (2-4) as defining a system of polynomial equations in the variables gij .
Then the formal Darboux theorem says that these equations have solutions in the
completion of Y at y . The Artin approximation theorem [2, Corollary 2.1] now assures
us of the existence of an étale neighborhood of y (ie an étale map pW U ! Y with a
chosen closed point x living above y ) in which the equations have a solution fg0ij g,
whose difference with the solution in yCŒY �y D yCŒU �x lies in n, the maximal ideal of
this local ring.

Now, we can base change the affine map X! Y to get an affine bundle XU ! U ;
furthermore, the induced map XU!X is étale since U!Y is. Therefore, the pullback
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of the Poisson bracket induces a Poisson bracket on p�CŒX�, which is homogeneous of
weight �l by construction. Thus the given solutions of these equations yield elements

x0i D
X

g0ijxj 2 p
�CŒX�

which satisfy the Poisson relations as in the conclusion of the proposition. Furthermore,
the choice of x0i implies that the determinant of the CŒU �–linear transformation xi 7!x0i
is nonzero at p�1.y/ (because this is true for yCŒY �y –linear transformation xi 7! ui ).
Thus, restricting to smaller neighborhoods if necessary, we may assume that the map
xi 7! x0i is invertible; this implies that the x0i are algebra generators of p�CŒX�
over CŒU �, which proves the proposition

Proposition 2.24 implies that E is a symplectic fibration. This proves Theorem 2.21.

Remark 2.26 It follows from [10, Theorem 2.2] that the equivariant closed embedding
T �Y ,! X of Theorem 2.21 is unique. We also note that Theorem 2.21 implies that if
dimXD 2 dimY then X' T �Y . Moreover, the proof of Theorem 2.21 shows that,
locally in the Zariski topology,

X' T �Y �Y E

as smooth varieties with Gm–actions, though not as Poisson varieties.

2.8 Reductions of coisotropic subvarieties

We can now give a generalization of Theorem 2.1. Fix a coisotropic stratum �W C ! Y

and let � W C!S be the coisotropic reduction of C given by Theorem 2.1. Let Y 0�Y
be a smooth, closed subvariety and set C 0 D ��1.Y 0/. The proof of Theorem 2.1(1)
shows that C 0 � C is coisotropic. Let I be the sheaf of ideals in OS vanishing on C 0 .
Since it is generated by elements in degree zero, it is an involutive ideal. Let �0W S!Y

be the projection map. We perform coisotropic reduction as before and set

(2-5) S 0 WD SpecY 0.�
0
�
OS=I/fI;�g;

a Poisson variety. Just as in the proof of Theorem 2.1, to show that S 0 is a coisotropic
reduction of C 0 , it suffices to do so locally on Y . Instead of considering the for-
mal neighborhood of Y in S , we pass to an étale local neighborhood. Thus, by
Proposition 2.24, we may assume that S ' T �Y �A2n . Then C 0 D .T �Y /jY 0 �A2n

and S 0 becomes the classical coisotropic reduction T �Y 0�A2n . Thus, we have shown:

Corollary 2.27 The space C 0 is coisotropic in X and there is a coisotropic reduction
� 0W C 0! S 0 .

In Section 4.10 the above coisotropic reduction will be quantized.
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3 Deformation-quantization modules

In this section, we recall the basic properties of DQ algebras and their modules. We
also prove an extension result, Theorem 3.27, which will play a key role in Section 5.

3.1 DQ algebras: affine setting

We begin by recalling the definition of a deformation-quantization algebra. Let
.R; f�;�g/ be a regular Poisson C–algebra.

Definition 3.1 A deformation-quantization of R is an „–flat and „–adically complete
CŒŒ„��–algebra A equipped with an isomorphism of Poisson algebras A=„AŠR . Here
A=„A is equipped with a Poisson bracket via

fxa; xbg D
�
1

„
Œa; b�

�
mod „A;

for arbitrary lifts a and b of xa and xb in A. The algebra A is a deformation-quantization
algebra or DQ algebra if it is a deformation-quantization of some regular Poisson
algebra R . An isomorphism of DQ algebras that are quantizations of the same Poisson
algebra R is a CŒŒ„��–algebra isomorphism such that the induced map on R is the
identity.

Lemma 3.2 Let A be a deformation-quantization algebra.

(1) A is a (left and right) Noetherian domain of finite global dimension.

(2) The Rees ring Rees„AD
L
n�0 „

nA is Noetherian.

(3) If M is a finitely generated A–module, then M is „–complete.

Proof Part (1) follows from the fact that the associated graded of A with respect
to the „–adic filtration is RŒ„�, which is a regular domain. Part (2) is shown in [48,
Lemma 2.4.2]. Part (3) is a consequence of the Artin–Rees lemma.

We also have the following well-known complete version of Nakayama’s lemma:

Lemma 3.3 Let M be a complete CŒŒ„��–module. If „M DM then M D 0.

3.2 Sheaves of DQ algebras

Let .X; f�;�g/ be a smooth Poisson variety. A sheaf of CŒŒ„��–modules A on X is
said to be „–flat if each stalk Ap is a flat CŒŒ„��–module. For each positive integer n,
let An DA=„nA. The „–adic completion of A is yAD lim

 ��n
An and A is said to be

„–adically complete if the canonical morphism A! yA is an isomorphism.
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Definition 3.4 A sheaf of CŒŒ„��–algebras A on X is said to be a deformation-
quantization algebra if it is „–flat and „–adically complete, equipped with an isomor-
phism of Poisson algebras A0 ŠOX .

If, moreover, the algebra A is equipped with a Gm–action that acts on „ 2 A with
weight l and the Poisson bracket on X has degree �l , then we replace A by AŒ„1=l �
and „ by „1=l , so that, without loss of generality t � „ D t„ and the Poisson bracket
on OX coming from A is defined by

fxa; xbg WD
1

„l
Œa; b� mod „A:

Remark 3.5 For a symplectic variety X with Gm–action and deformation-quantization
A we always assume that A is equivariant in the above sense.

In the algebraic setting, the existence and classification of sheaves of deformation-
quantization algebras is well understood. See [8; 49] for the equivariant setting. Assume
that X is affine and let RDCŒX�; let A be a deformation-quantization of R . For any
multiplicatively closed subset S of R , there is an associated microlocalization Q�S .A/
of A; the algebra Q�S .A/ is, by definition, a deformation-quantization of RS . Using
Gabriel filters, one can extend the notion of microlocalization to define a presheaf O�A of
algebras on X such that �.D.f /;O�A /DQ

�

f
.A/ for all f 2R . By [68, Theorem 4.2],

the presheaf O�A is a sheaf and the following proposition holds:

Proposition 3.6 Assume that X is affine. Then microlocalization defines an equiva-
lence between the category of DQ algebras quantizing R and sheaves of DQ algebras
on X.

3.3 Sheaves of DQ modules

In this section, we define those A–modules that will be studied in Sections 4 and 5.
First:

Lemma 3.7 If H 1.X;OX /D 0, then �.X;An/D �.X;A/=„n�.X;A/.

Proof Consider the short exact sequence 0!A � „
n

�!A!An! 0: Taking derived
global sections, it suffices to show that H 1.X;A/ D 0. Induction on n using the
exact sequence 0! „An�1! An! OX! 0 shows that H 1.X;OX / D 0 implies
H 1.X;An/D 0. Then [28, Proposition 13.3.1] implies that H 1.X;A/D 0.

Thus, write AD �.X;A/ and An D �.X;An/. If M is an An–module then, thinking
of An and M as constant sheaves on X, we define M� DAn˝AnM .
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Definition 3.8 An An–module Mn is quasicoherent if there exists an affine open
covering fUig of X such that MnjUi ' �.Ui ;Mn/

� . If, moreover, �.Ui ;An/ is a
finitely generated �.Ui ;Mn/–module for all i then Mn is said to be coherent.

As in the commutative case, we have:

Proposition 3.9 An An–module Mn is quasicoherent if and only if

MnjU ' �.U;Mn/
�

for all affine open subsets U of X.

Assume that X is affine and let AD �.X;A/. Let M be an A–module. We define
M� D lim

 ��n
.An ˝An M=„nM/. We remark that if fMng is an inverse system of

sheaves, then lim
 ��n

Mn is defined to be the sheaf U 7! lim
 ��n

�.U;Mn/; there is no
need to sheafify. In particular, �.X; lim

 ��n
Mn/D lim

 ��n
�.X;Mn/.

We may now define the two classes of modules that play a role in this paper:

Definition 3.10 Let M be an A–module.
(1) M is coherent if it is „–complete and each Mn is a coherent An–module.
(2) M is quasicoherent if it the union of its coherent A–submodules.

The category of all coherent (resp. quasicoherent) A–modules is denoted by A–coh
(resp. A–qcoh). The proof of the following is based on [1, Theorem 5.5]:

Proposition 3.11 Assume that X is affine. Then �.X;�/ defines an exact equivalence
between A–coh and the category A–mod of finitely generated A–modules, where
AD �.X;A/. A quasi-inverse is given by M 7!M� . Moreover, M� DA˝AM .

Proof As for any localization theorem, the proof has three parts. First, we show that
� is exact on A–coh. Then we show that �.X;M / is a finitely generated A–module,
for all M 2A–coh. Finally, we show that M is generated by its global sections.

Let Mn D �.X;Mn/ and M D �.X;M /. Since the An–module „n�1M=„nM is a
submodule of the coherent An–module Mn , it is coherent, and hence Proposition 3.9
implies that the cohomology groups H i .X; „n�1M=„nM / are zero for all i ¤ 0.
Therefore, we have surjective maps Mn ! Mn�1 ! � � � . Therefore, the inverse
system fMngn satisfies the Mittag-Leffler condition and hence [28, Proposition 13.3.1],
together with the fact that M is assumed to be complete, implies that H i .X;M /D 0

for all i ¤ 0.

Since Mn=„
nMnŠMn�1 , the fact that H 1.X;Mn/D 0 implies Mn=„

nMnDMn�1 .
Therefore, by [6, Lemma 3.2.2], the fact that each Mn is a finitely generated An–module
implies that M is a finitely generated A–module.

Geometry & Topology, Volume 21 (2017)



Categorical cell decomposition of quantized symplectic algebraic varieties 2631

The fact that � is exact implies that Mn DM=„
nM . Therefore, by Proposition 3.9,

M ' lim
 ��
n

Mn D lim
 ��
n

An˝AnMn D lim
 ��
n

An˝AnM=„
nM DM�:

Finally, to show that this is the same as A˝AM , let An ! Am ! M ! 0 be a
finite presentation of M . Since we have a natural map A˝AM !An˝AnM=„nM
for all n, there is a canonical morphism A˝AM ! M� . Then we get the usual
commutative diagram

A˝AAn //

��

A˝Am //

��

A˝AM //

��

0

.An/� // .Am/� // M� // 0

so the result follows from the five lemma and the fact that .Am/� D .A/m , which in
turn is a consequence of the fact that microlocalization is an additive functor.

Remark 3.12 It is clear that, under the identification of the proposition, if U � X

is an inclusion of affine opens, the restriction functor M 7!M jU is identified with
M 7!H 0.U;A/˝AM .

Corollary 3.13 Let M 2A–coh and U �X an affine open set. Then H i .U;M /D 0

for all i¤0 and M jU '�.U;M /�, where M is a finitely generated �.U;A/–module.

Lemma 3.14 Let M be an A–module. The following are equivalent:

(1) M is coherent.

(2) M is locally finitely presented.

(3) M is locally finitely generated.

Proof (1)D) (2) Let U be an affine open subset of X and M D �.U;M /. Then
M is finitely generated. Since A is Noetherian, it is actually finitely presented and
hence there is sequence An! Am!M ! 0. The functor � is an equivalence on
A–mod, hence we have AnjU !AmjU !M ! 0.

(2)D) (3) This is clear.

(3)D) (1) We have �W AmjU � M jU and hence Amn jU � MnjU . Thus, each
MnjU is coherent. The module ker� is a submodule of the coherent A–module
AmjU . Therefore the Artin–Rees lemma implies that the filtrations f„n ker�g and
f.ker�/ \ .„nAm/g are comparable. Hence lim

 ��

.1/.ker�/=Œ.ker�/ \ „n.Am/� D 0.
This implies that M is complete.
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Proposition 3.15 Suppose X is affine and that j W U ,!X is an open subset. Suppose
that M is a coherent AU –module. Then M is globally generated.

Proof First, let p 2 U be any point. Write Mm DM=„mM , and let M0Œp� denote
the fiber of M0 at p . We have that j�Mm is a quasicoherent A–module; thus, by
Proposition 3.11, j�Mm is the union of its globally generated subsheaves, hence is
itself globally generated. Thus �.Mm/!M0Œp� is surjective. Taking (inverse) limits
and applying [30, Theorem 4.5], we get that �.M /!M0Œp� is surjective. It follows
(by a standard argument) from Nakayama’s lemma that �.M /˝A!M0 is surjective.
Writing evW �.M /˝A!M for the evaluation map, we get that M D Im.ev/C„M ,
ie that M= Im.ev/D„ � .M= Im.ev//, and thus by Lemma 3.3 that ev is surjective.

We remark that, in the proof of Proposition 3.15, we use only quasicoherence of j�Mm

(and not of the naive sheaf-theoretic image j�M , which we expect is not quasicoherent
in general).

Corollary 3.16 Let X be an affine variety and U � X an open subset with comple-
ment C D XXU . Let A–cohC denote the subcategory of sheaves supported on C
(that is, the kernel of the restriction-to-U functor). Suppose that the induced functor
A–coh=A–cohC !AU –coh is full. Then A–coh!AU –coh is essentially surjective.

Proof By Proposition 3.15, objects of A–coh are globally generated; hence, given
M 2 A–coh, we may produce a presentation AIU

�
�!AJU ! M ! 0 with I and

J finite index sets. It suffices to prove that there are objects F1 , F0 2 A–coh, a
morphism z�W F1! F0 , and isomorphisms F1jU ŠAIU and F0jU ŠAJU that identify
z�jU with � : then M Š coker.z�/jU . But since AIU and AJU are in the essential image
of the functor A–coh=A–cohC !AU –coh, this follows immediately from the fullness
hypothesis.

Recall that a CŒŒ„��–module is flat if and only if it is torsion-free. The following is a
consequence of [71, Theorem 5.6]:

Lemma 3.17 Let M be a „–adically complete and „–flat A–module. Let U � X

be an affine open set. Then �.U;M / ' �.U;M0/ y̋ CŒŒ„�� as CŒŒ„��–modules, ie
�.U;M / is „–adically free.

Based on Lemma 3.17, a A–module M is said to be „–adically free if it is „–adically
complete and „–flat. At the other extreme, an A–module M is said to be „–torsion if,
for each p 2 X, there exists an affine open neighborhood U of p and N � 0 such
that „N ��.U;M /D 0. Since X is assumed to be quasicompact, this is equivalent to
requiring that „N �M D 0 for N � 0. We define A–cohtor be the full subcategory of
A–coh consisting of all „–torsion sheaves.
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3.4 Equivariant algebras and modules

Terminology 3.18 Let T be a torus, ie T is isomorphic to Gn
m for some n. We

recall that a representation M of T is prorational if it is the inverse limit of rational
T–modules. Fix a character � of T and let T act on CŒŒ„�� by t � „ D �.t/„.

Let .X; !/ be an affine symplectic variety with Gm–action. Assume that m�t !D�.t/!
for all t 2 T.

Definition 3.19 A complete CŒŒ„��–algebra A is said to be T–equivariant if A is a
prorational T–module such that g �.ab/D .g �a/.g �b/, and g �„D�.g/„. The algebra
A is a T–equivariant deformation-quantization of CŒX� if A comes equipped with a
T–equivariant isomorphism A=„AŠCŒX�.

A finitely generated A–module is said to be T–equivariant (or just equivariant) if it is
a prorational T–module such that the multiplication map A˝M !M is equivariant.

The category of all finitely generated, equivariant A–modules is denoted by .A;T/–mod

and the corresponding ind-category is .A;T/–Mod. The morphisms in these categories
are equivariant.

Proposition 3.20 .A;T/–mod and .A;T/–Mod are abelian categories.

Lemma 3.21 Let M 2 .A;T/–mod. Then there exists a finite-dimensional T–sub-
module V of M such that M D A �V .

Proof Nakayama’s lemma implies that if V is any subspace of M whose image in
M=„M generates M=„M , then V generates M . As noted in [26, Section 5.2.1], each
Mn is a rational T–module and M is the inverse of these T–modules. Since T is
reductive, we may fix T–equivariant splittings Mn DKn˚Mn�1 such that Kn is the
kernel of Mn�Mn�1 . This implies that M D

Q
nKn as a T–module. Hence, if we

choose a finite-dimensional T–submodule V 0 of K0DM=„M that generates M=„M
as an A0–module, then we can choose a T–module lift V of V 0 in M .

3.5 Equivariant DQ algebras and modules

We maintain Terminology 3.18.

Let .X; !/ be any smooth symplectic variety with T–action: assume m�t ! D �.t/!
for all t 2 T.

Definition 3.22 A deformation-quantization A of X is said to be T–equivariant if it
is equipped with the structure of a T–equivariant sheaf of algebras, with T acting on
CŒŒ„�� as in Terminology 3.18, so that the T–action on each An is rational.
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A coherent A–module M is T–equivariant if it comes equipped with a T–equivariant
structure making each Mn a T–rational An–module. The category of T–equivariant
coherent A–modules is .A;T/–coh.

Proposition 3.23 Assume that X is affine. Then �.X;�/ defines an exact equivalence
between .A;T/–coh and the category .A;T/–mod of finitely generated T–equivariant
A–modules, where AD �.X;A/. A quasi-inverse is given by M 7!M� . Moreover,
M� DA˝AM .

Proof This is immediate from Proposition 3.11.

3.6 Support

Let M be an A–module. Then Supp M denotes the sheaf-theoretic support of M , ie
it is the set of all points x 2 X such that Mx ¤ 0.

Lemma 3.24 Let M be a coherent A–module. Then Supp M D Supp M=„M . In
particular, it is a closed subvariety of X.

Proof Since both notions of support are local, we may assume that X is affine and
set M D �.X;M /, AD �.X;A/ and RD A=„A.

Claim 3.25 Let f 2R . Then �.D.f /;M /DQ
�

f
.M/.

Proof As noted in Section 3.2, it follows from [68, Theorem 4.2] that the claim is
true when M DA. Since M is finitely generated we may, by Lemma 3.14, fix a finite
presentation An! Am!M ! 0 of M . Then the claim follows from the fact that
Q
�

f
.�/ is exact on finitely generated A–modules and the five lemma applied to the

diagram:

Q
�

f
.An/ //

o
��

Q
�

f
.Am/ //

o
��

Q
�

f
.M/

��

// 0

�.D.f /;An/ // �.D.f /;Am/ // �.D.f /;M / // 0

This completes the proof of the claim.

For each f 2R , the short exact sequence 0!„M !M !M=„M ! 0 gives

0!Q
�

f
.„M/!Q

�

f
.M/!Q

�

f
.M=„M/! 0:

Therefore, Q�
f
.M=„M/ ¤ 0 implies that Q�

f
.M/ ¤ 0. On the other hand, if

Q
�

f
.M/¤ 0 then

Q
�

f
.„M/DQ

�

f
.A/˝A „M D „Q

�

f
.A/˝AM D „Q

�

f
.M/:
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Since Q�
f
.M/ is a finitely generated Q�f .A/–module and Q�

f
.A/ is „–adically com-

plete, Nakayama’s lemma implies that „Q�
f
.M/ is a proper submodule of Q�

f
.M/.

Thus, �.D.f /;M /¤ 0 if and only if �.D.f /;M=„M /¤ 0. The lemma follows.

3.7 W–algebras and good modules

Let A be a T–equivariant DQ algebra on X. Then W WDAŒ„�1� is a sheaf of C..„//–
algebras on X; it is the W–algebra associated to A. Base change defines a functor
.A;T/–coh! .W;T/–mod, M 7!M Œ„�1�. Let U � X be a T–stable open subset
and M be a WU –module. A lattice for M is a coherent AU –submodule M 0 of M

such that M 0Œ„�1�DM ; it is a T–lattice if it is a T–equivariant coherent module. The
category of all T–equivariant WU –modules that admit a (global) T–lattice is denoted
by .WU ;T/–good, and we refer to a module in this category as a good (T–equivariant)
WU –module. Recall that .AU ;T/–cohtor denotes the full subcategory of .AU ;T/–coh
consisting of all „–torsion sheaves.

Proposition 3.26 The category .AU ;T/–cohtor is a Serre subcategory of .AU ;T/–coh
and we have an equivalence of abelian categories

.AU ;T/–coh=.AU ;T/–cohtor ' .WU ;T/–good:

3.8 Restriction and quotient categories

Let X be a smooth symplectic manifold with Gm–action of positive weight. Let Z �
XGm be a closed, connected and smooth subvariety. Let C Dfx 2X j limt!1 t �x 2Zg

be the attracting locus for Z ; it is a smooth, locally closed subvariety of X.

Assume that C is closed in X. The complement to C in X is denoted by U and we
write j W U ,! X for the embedding. In this section we prove the following:

Theorem 3.27 Suppose that C � X is closed and let U D XXC . The functor j �

induces an equivalence

(3-1) WX–good=WX–goodC ��!WU –good:

Proof The remainder of this section is devoted to the proof of Theorem 3.27. First
we note an immediate corollary. The Ind-category of .W;T/–good is denoted by
Qcoh.W;T/, or Qcoh.W/ if T is understood from context; we call it (abusively) the
quasicoherent category. We say a quasicoherent object has support in a closed subset
K � X if one can write M D lim

��!
Mi where each Mi is good and has support in K .

We write Qcoh.W/K for the full subcategory whose objects have support in K .
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Recall (for example, from [41]) that a full subcategory of a Grothendieck category
is called localizing if it is closed under subobjects, quotients, extensions and small
inductive limits.

Corollary 3.28 Let C � X be a closed subset as above. The functor

j �W Qcoh.WX;T/! Qcoh.WU ;T/

is essentially surjective and induces an equivalence

Qcoh.WX;T/=Qcoh.WX;T/C ' Qcoh.WU /:

Moreover, j � admits a right adjoint.

Definition 3.29 We write

j�W Qcoh.WU /! Qcoh.WX/

to denote the right adjoint of j � , taking care to note that it need not be identified with
the sheaf-theoretic direct image.

Proof of Corollary 3.28 Essential surjectivity and equivalence are immediate from
the theorem. The existence of a right adjoint follows since the kernel of j � , ie the
subcategory of modules supported on U , is a localizing subcategory.

We begin the proof of Theorem 3.27. The main part of the proof will show that the
faithful functor WX–good=WX–goodC !WU –good is full.

We begin with a lemma that will allow us to reduce to affine statements.

Lemma 3.30 Suppose that Z � XGm is connected and closed, and that

C D
˚
x 2 X j lim

t!1
t � x 2Z

	
is closed in X. If U � X is an affine open subset of X for which Z \U ¤∅, then

C \U D
˚
x 2 U j lim

t!1
t � x 2Z \U

	
:

In particular, limt!1 t � x exists in U for every x 2 C \U .

Proof Note that Zı DZ \U is open in Z . Let

C ı D
˚
x 2 U j lim

t!1
t � x 2Zı

	
:

Then C ı is the preimage, under the projection morphism C !Z , of the dense open
set Zı ; hence C ı is dense in C . Suppose that f 2 CŒU � is a Gm–semi-invariant,
say f .t � x/ D t�df .x/ for all t 2 Gm , x 2 U . If x 2 C ı , then limt!0 t

df .x/ D

f .limt!1 t � x/, so if d < 0 then f .x/D 0. Thus any f 2CŒU � of negative weight
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vanishes on C ı and consequently (by density) vanishes on C \U . It follows that
CŒC \U � has nonnegative Gm–weights; since C \U is closed in U , hence affine,
we conclude that the Gm–action on C \U extends to an action of the monoid A1

on C \U , proving the lemma.

Returning to the proof of the theorem, we claim that, if we assume fullness of (3-1),
essential surjectivity follows from Corollary 3.16. Indeed, to prove essential surjec-
tivity, it suffices to replace X by any Gm–stable open subset of X that contains C .
Thus, choose a collection fXig of Gm–stable affine open subsets of X whose union
contains C . Then, by Lemma 3.30, C \Xi � Xi is a closed subset satisfying the
hypotheses of the theorem, and so the fullness assertion holds for restriction from Xi
to Ui DXi XC . Corollary 3.16 thus implies that for every coherent AUi –module Mi ,
there is a coherent AXi –module M i and an isomorphism M i jUi ŠMi . A standard
gluing argument then shows that every coherent AU –module extends to a coherent
A–module, proving essential surjectivity.

Thus, we return to the proof of fullness of (3-1). We note that taking a covering of X
by affine open Gm–stable sets, the sheaf property implies that the fullness statement is
local. Therefore we may assume that X is affine. Shrinking X if necessary, we may
assume that C D Z.f1; : : : ; fk/ is a complete intersection in X of codimension k ,
where each fi is homogeneous with respect to Gm . As in Lemma 3.30, if f 2O.X/ is
homogeneous of negative weight with respect to Gm , then f 2 I.C /. The fact that X
is affine implies that we can (and will) fix an identification ADOXŒŒ„�� of prorational
sheaves of CŒŒ„��–modules. Notice that for any Gm–stable affine open subset V of X,
the identification gives a canonical identification A.V /DO.V /ŒŒ„��. Given f 2O.X/,
let �.f / denote the corresponding section of A.X/ under this identification.

Let Wrat denote the CŒ„; „�1�–subalgebra of Gm–rational sections in �.X;WX/.
Given a Gm–equivariant W–module M , let Mrat denote the Wrat –submodule of all
rational sections. We say that a Wrat –module M is supported on C if, for each section
m 2M , there exists N � 0 such that �.fi /N �mD 0 for all i .

Lemma 3.31 Suppose X is affine.

(1) The functor M 7! �.X;M /rat is an equivalence of categories RW WX–good ��!
Wrat–mod.

(2) Under the equivalence of (1), M is supported on C (in the usual sense) if and
only if �.X;M /rat is supported on C (in the above sense).

Proof (1) This follows from Propositions 3.23 and 3.26 by a standard argument (see
the proof of Proposition 4.33).
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(2) If M0 is a coherent A–submodule of M such that M DM0Œ„
�1�, then M D

M0Œ„
�1�, where M D �.X;M /rat and M0 D �.X;M0/rat . Certainly, if m 2M0 and

�.fi /
N �mD 0 then f Ni � xmD 0 in M0=„M0 . Hence M is supported on C in the

usual sense.

We need to check the converse. So assume that M is supported on C in the usual
sense. Our assumptions on C imply that O.X/DCŒf1; : : : ; fk; x1; : : : ; xl �=I , where
deg xi � 0 and I is a homogeneous ideal. Hence CŒC �, a quotient of the algebra
CŒx1; : : : ; xl �, is nonnegatively graded. This implies that the finitely generated CŒX�–
module M0=„M0 has its grading bounded from below. Since „ has positive weight,
the same applies to M0 . Let m 2 M0 be a homogeneous section. If f Ni � xm D 0

in M0=„M0 , then �.fi /N �m 2 „M0 and hence �.fi /rN �m 2 „rM0 . On the other
hand, degfi � 0 and hence deg.�.fi /rN �m/D rN deg �.fi /Cdegm� deg.m/. This
implies that �.fi /rN �m D 0 for r , N � 0, since the weights of all homogeneous
elements in „rM0 will be greater than degm for r � 0.

Write U˛DXXZ.f˛/ and U˛0;:::;˛i DU˛0\� � �\U˛i . Given M 2WU –good, define
the complex

LC i .M /D
Y

˛0<���<˛i

�.U˛0;:::;˛i ;M /;

with the usual differential

d i W LC i .M /! LC iC1.M /; d i .f˛0;:::;˛i /˛0;:::;ˇ;:::;˛i D .�1/f˛0;:::;˛i jU˛0;:::;ˇ;:::;˛i
:

For M 2WU –good, we define F.M /D LC �.M /rat . There is a canonical transformation
R! F.�jU /, where we identify Wrat–Mod with complexes concentrated in degree
zero.

Lemma 3.32 Cone.R! F.�jU // defines an exact functor from WU –good to com-
plexes with terms in Wrat–Mod.

Proof The cone Cone.R ! F.�jU // is exact if and only if both R and F.�jU /
are exact. The functor R is exact by Lemma 3.31. Therefore it suffices to show that
the functor F defines an exact functor from WU –good to complexes with terms in
Wrat–Mod. The exactness of M 7! LC �.M / can be checked term by term. But it is
clear that M 7! LC i .M / is exact because the open set U˛0;:::;˛i is affine. Therefore, to
show that F is exact, it suffices to show that the functor WU˛0;:::;˛i

–good!Wrat–Mod,
M 7! �.U˛0;:::;˛i ;M /rat is an exact functor. Since U˛0;:::;˛i is affine, this follows
from Lemma 3.31(1).

Lemma 3.33 The cohomology of the cone D� D Cone.Wrat ! F.WU // is zero
outside degree k . The group Hk.D�/ is supported on C .
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Proof Notice that the differentials are CŒŒ„��–linear and preserve the lattice defined
by A. Therefore D� D D�0Œ„

�1� and flat base change implies that H i .D�/ D

H i .D�0/Œ„
�1�. Thus, it suffices to check that the corresponding statements hold for D�0 .

Write D�com for Cone.O.X/! LC �.OU //. Since we have an identification ADOX ŒŒ„��
of prorational sheaves, we have an identification of complexes D�0 D D

�

comŒŒ„�� and
hence H i .D�0/DH

i .D�com/ŒŒ„��, as prorational CŒŒ„��–modules. Since H i .D�com/D 0

for i ¤ 0, the first claim follows.

Claim 3.34 The space Hk.D�com/ is nonnegatively graded as a Gm–module.

Proof As in the proof of Lemma 3.31, CŒX�D Œf1; : : : ; fk; x1; : : : ; xl �=I for some
homogeneous ideal I . Then

Hk.D�com/DCŒX�f1���fk

.X
i

CŒX�
f1��� Ofi ���fk

is a quotient of CŒf1; : : : ; fk; x1; : : : ; xl �f1���fk=
P
iCŒf1; : : : ; fk; x1; : : : ; xl �f1��� Ofi ���fk

.
The latter clearly has the desired properties. This proves the claim.

We return to the proof of Lemma 3.33. To prove the second assertion of the lemma,
we may assume that m belongs to Hk.D�0/ and is rational. The image of m in
Hk.D�com/DH

k.D�0/=„H
k.D�0/ is torsion with respect to the fi . Therefore there

exists N such that �.fi /N � m 2 „Hk.D�0/ and hence �.fi /rN � m 2 „rHk.D�0/.
Claim 3.34 implies that the weight of every homogeneous element in Hk.D�0/ is
nonnegative. Thus, every homogeneous element in „rHk.D�0/ has degree at least r . On
the other hand degfi � 0 and hence deg.�.fi /N �m/DN deg �.fi /Cdegm� degm.
This implies that �.fi /N �mD 0 for N � 0.

Proposition 3.35 The cohomology of Cone.R.M /! F.M jU // is supported on C
for any M 2WX–good.

Proof Since WX–good has finite homological dimension, we prove the claim by
induction on projective dimension. Certainly Lemma 3.33 implies that the claim
holds for every summand of WN

X (for N finite). By Lemma 3.32, the functor
Cone.R ! F.�jU // is exact. Therefore the long exact sequence in cohomology
implies that if it holds for all modules of projective dimension i , then it also holds for
all modules of projective dimension i C 1.

Finally, we show that the faithful functor WX–good=WX–goodC !WU –good is also
full. This will complete the proof of Theorem 3.27. Thus, suppose M , N 2WX–good
and � 2 HomWU –good.M jU ;N jU /. Applying the functors R and F from above, we
get a diagram:
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R.M /

��

R.N /

��

H 0.F.M jU //
H0.F .�//

// H 0.F.N jU //

By Proposition 3.35, the vertical arrows have kernel and cokernel supported on C .
Letting N 0 be any finitely generated Wrat –submodule of H 0.F.N jU // that contains
the images of R.M / and R.N /, we get a diagram

R.M /
z�0
�!N 0 R.N /;

where R.N /! N 0 has kernel and cokernel supported on C . Applying R�1 , we
get a diagram of good WX–modules M

�0
�!N 0 N , where the support assertion

guarantees that N ! N 0 becomes an isomorphism in the quotient category. Thus,
�0 defines a morphism M !N in the quotient category, whose restriction to U is,
by construction, identified with � . This proves Theorem 3.27.

3.9 Holonomic modules

By Gabber’s theorem, the support of any good W–module has dimension at least
1
2

dimX. A good W–module is said to be holonomic if the dimension of its support is
exactly 1

2
dimX. The category of holonomic W–modules is denoted by W–hol. The

theory of characteristic cycles implies:

Lemma 3.36 Let M be a holonomic W–module. Then M has finite length.

A W–module M is said to be regular holonomic if there exists a lattice M 0 of M

such that the support of M 0=„M 0 is reduced. The category of regular holonomic
W–modules is denoted by W–reghol.

3.10 Equidimensionality of supports

In this subsection we note that the analogue of the Gabber–Kashiwara equidimension-
ality theorem holds for W–algebras. First, given a coherent A–module M , the sheafL
n�0 „

nM=„nC1M is a coherent OXŒ„�–module. Therefore, its support is a closed
subvariety of X�A1 , which we will denote by eSupp M .

Lemma 3.37 Let pW X�A1!X be the projection map. Then Supp M Dp. eSupp M /.

Proof Since M is coherent and support is a local property, we may assume that X
is affine and set M D �.X;M /, an AD �.X;A/–module. Both Supp and eSupp are
additive on short exact sequences, therefore the sequence 0!Mtor!M !Mtf! 0

implies that we may assume that M is either „–torsion or „–torsion-free. First, if
M is „–torsion-free, then M ' .M=„M/ y̋ CŒŒ„�� as a CŒŒ„��–module. This implies
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that eSuppM D SuppM �A1 . On the other hand, if M is „–torsion, then grM WDL
n�0 „

nM=„nC1M equals
LN
nD0 „

nM=„nC1M for some N . If I � .M=„M/D 0

for some I C CŒX�, then I � grM D 0. Since „NC1 grM D 0 too, this implies that
eSupp M D SuppM � f0g.

Let dimXD 2m. The analogue of the Gabber–Kashiwara theorem reads:

Theorem 3.38 Let M be a good W–module. Then there exists a unique filtration

0DDm�1.M /�Dm.M /�DmC1.M /� � � � �D2m.M /DM

such that SuppDi .M /=Di�1.M / is pure i –dimensional.

Proof We fix a lattice M 0 of M , it is a coherent torsion-free A–module. We will show
that the analogue of the above statement holds for M 0 , then set Di .M /DDi .M

0/

and check that Di .M / is independent of the choice of lattice. The uniqueness property
actually implies that the statement will hold globally on X if it holds locally, therefore
we may as well assume that X is affine and set M 0D�.X;M 0/. Since M is „–torsion-
free, the proof of Lemma 3.37 shows that eSuppM D SuppM �C . Then, noting this
fact, the required result is [24, Theorem V8, page 342].

Therefore, it suffices to show that Di .M / is independent of the choice of lattice. Let
M 00 be another choice of lattice and N � 0 such that „NM 00 �M 0 . As explained in
[24, Section 1], Di .M 0/ WDfm2M 0 jdim gr.A�m/� iC1g. Therefore, if m2Di .M 00/
then „Nm 2Di .M 0/, which implies that „NDi .M 00/�Di .M 0/. By symmetry, we
have „N

0

Di .M
0/�Di .M

00/ and hence Di .M 00/Œ„�1�DDi .M 0/Œ„�1�.

As a corollary of the theorem, we can strengthen our extension result. Again, let T be
a torus.

Corollary 3.39 Let U be a T–stable open subset of X whose complement is a union
of coisotropic cells and M a holonomic, T–equivariant WjU –module. Then, there
exists a holonomic, T–equivariant W–module M 0 such that M 0jU 'M . Moreover,
if M is simple then there exists a unique simple extension M 0 .

Proof Let N be a lattice of M . By Theorem 3.27, there exists a coherent T–
equivariant A–module N 0 such that N 0jU D N . Replacing N 0 by its torsion-
free quotient, we may assume that N 0 is torsion-free and set M 00 D N 0Œ„�1�.
Then, let M 0 DDm.M

00/, a holonomic submodule of M 00 . Since M is holonomic,
Dm.M / D M . The uniqueness of Dm.�/ implies that M 0jU D Dm.M

00/jU D

Dm.M
0jU /DM .

If M is assumed to be simple then there is some simple subquotient of M 0 whose
restriction to U is isomorphic to M . In order to show uniqueness of the extension, let
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M 1 and M 2 be two simple extensions of M . Denote by j the open embedding U ,!X

and by j� the right adjoint to j � whose existence is established in Corollary 3.28. Then
for each i D 1; 2 the canonical adjunction M i! j�M is an embedding because it is an
isomorphism over U (and hence nonzero) and M i is assumed to be simple. Therefore
M 1\M 2 is a A–submodule of M i whose restriction to U is M . Thus, M 1DM 2 .

Remark 3.40 Let M be a simple W–module or a primitive quotient of W . Then
Theorem 3.38 implies that the support of M is equidimensional. A proof of the
analogous result in the setting of localization via Z–algebras was recently given by
Gordon and Stafford [27].

4 Quantum coisotropic reduction

In this section we consider the process of quantum coisotropic reduction. Our main
result is that quantum coisotropic reduction can be used to prove an analogue of
Kashiwara’s equivalence for DQ modules supported on a coisotropic stratum. At the
end of the section we consider W–algebras on a symplectic manifold X with an elliptic
Gm–action such that Y DXGm is connected. We show that Qcoh.W/ is equivalent to
the category of quasicoherent sheaves for a sheaf of filtered OY –algebras quantizing X.
These filtered OY –algebras behave much like the sheaf of differential operators on Y .

Notation 4.1 Throughout the remainder of the paper, W–good and Qcoh.W/ will
denote the category of good, Gm–equivariant W–modules and the Ind-category of
good, Gm–equivariant W–modules, respectively. Moreover, all W–modules that we
consider will be assumed to be Gm–equivariant.

4.1 Quantum coisotropic reduction: local case

We maintain the notation and conventions of Sections 2 and 3.

Thus, let R be a regular affine C–algebra equipped with a Poisson structure f�;�g
making X D Spec.R/ into a smooth affine symplectic variety. We assume in addi-
tion that R comes equipped with a Gm–action for which the Poisson structure has
weight �l .

Let A be a deformation-quantization of R , equipped with an action of Gm that
preserves the central subalgebra CŒŒ„���A and has „ as a weight vector. The quotient
map �W A!R is equivariant. The fact that the Poisson bracket f�;�g on R is graded
of degree �l implies that „ has weight l . Let J be the left ideal generated by all
homogeneous elements in A of negative degree.
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As in Section 2.4 we have I D �.J /, the ideal in R generated by all homogeneous
elements of strictly negative degree. We write C D Spec.R=I /, a closed coisotropic
subvariety of X. We write Y DCGm , the Gm–fixed locus of the coisotropic subset C .
As in Section 2.4, we also assume that Y has been shrunk suitably so that the affine
bundle �W C ! Y of [10] splits equivariantly as

�W C ��!Y �V �Z;

where V is isomorphic to a vector space with Gm–weights lying in Œ�l;�1� and Z is
isomorphic to a vector space with Gm–weights less than �l .

Notation 4.2 Let yR denote the completion of R with respect to the ideal I , and yA
the completion of A with respect to the two-sided ideal K WD ��1.I /.

Lemma 4.3 Let yA be as above.

(1) The algebra yA is flat over A and Noetherian.

(2) If M is a finitely generated A–module then lim
 ��
.M=Kn �M/' yA˝AM .

(3) The algebra yA is „–adically free and yA=„ yA' yR .

(4) The algebra yA is an equivariant quantization of yR with the Poisson structure on
yR induced from the Poisson structure on R .

Lemma 4.3(1)–(2) have also been shown by Losev [48] using a different argument.

Proof Take u1 D „ and let u2; : : : be arbitrary lifts in A of a set of generators of I ;
these form a normalizing sequence of generators as defined in [52, Theorem 4.2.7],
and hence by that theorem the ideal K satisfies the Artin–Rees property in A. Then
the proofs of [21, Lemma 7.15 and Theorem 7.2b] apply also in the noncommutative
case to imply that yA is flat over A. The fact that yA is Noetherian follows from (3),
which implies that gr yA' yRŒ„�, a Noetherian ring.

Therefore we need to establish that yA=„ yA' yR and that yA is a complete, flat „–module.
By Lemma 3.2, and using the fact that inverse limits commute, we have

(4-1) yAD lim
1 n

A=Kn D lim
1 n

�
lim
1 s

.A=Kn/=„s.A=Kn/
�

D lim
1 s

�
lim
1 n

.A=Kn/=„s.A=Kn/
�
;

which implies that yA is „–adically complete. By (1), yA is A–flat, hence a fortiori it is
„–flat. Consider the short exact sequence

0!

�
„ACKn

Kn

�
n

! fA=Kngn!

�
A

„ACKn

�
n

! 0
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of inverse systems. Since .„ACKn/=Kn! .„ACKn�1/=Kn�1 is surjective, the
inverse system f.„ACKn/=Kngn satisfies the Mittag-Leffler condition. Therefore,
we have�

lim
1 n

A=Kn
�
=
�

lim
1 n

„.A=Kn/
�
D
�

lim
1 n

A=Kn
�
=
�

lim
1 n

.„ACKn/=Kn
�

D lim
1 n

A=.KnC„A/D lim
1 n

R=In;

where the final equality follows from the fact that „ 2K and hence .KnC„A/=„A
equals In .

The only thing left to show in order to conclude that yA is a quantization of yR is that the
Poisson bracket on yR coming from yA equals the Poisson bracket on yR coming from
the fact that it is a completion of R . To see this, we note the following well-known
properties of algebras:

Sublemma 4.4 (1) Suppose that A! B is a filtered homomorphism of almost-
commutative filtered algebras. Then the induced map gr.A/!gr.B/ is a Poisson
homomorphism.

(2) Suppose that �W R! S is a continuous homomorphism of topological algebras
and �.R/ is dense in S . Suppose R is equipped with a Poisson structure. Then
there is at most one continuous Poisson structure on S making � a Poisson
homomorphism.

Applying Sublemma 4.4(1) to A! yA shows that the Poisson structure on yR induced
from yA makes R! yR a Poisson homomorphism. Sublemma 4.4(2) then implies that
this Poisson structure must agree with the Poisson structure on yR induced from R .
Lemma 4.3(4) follows.

4.2 Quantizations of the formal neighborhood of C

The total space of the normal bundle NX=C has a canonical symplectic structure of
weight l . Choosing homogeneous bases z and w as in Theorem 2.6, the symplectic
form on NX=C is given by !S C

Pm
iD1 dzi ^ dwi . We denote by D the Moyal–Weyl

quantization of T �V , and by yD the Moyal–Weyl quantization of the ring of functions
yF on the formal neighborhood bT �V of V in T �V .

We write C for the formal neighborhood of C in NX=C ; recall that, as in Section 2.4,
this is equivariantly isomorphic (though noncanonically) to the formal neighborhood of
C in X. Let �1;cts

C D lim
 ��

�1Cn denote the sheaf of continuous one-forms on C, where
Cn is the nth infinitesimal neighborhood of C . Similarly, let ‚C and ‚cts

C denote
the sheaf of vector fields and continuous vector fields, respectively, on C. We denote
by … the bivector that defines the Poisson bracket on C. Then d D Œ…;�� defines
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a differential on
V�
‚C , where Œ�;�� is the Schouten bracket on polyvector fields.

The cohomology of
V�
‚C is the Poisson cohomology H�….C/ of C. The algebraic de

Rham complex of C is denoted by ��;cts
C .

Lemma 4.5 Let i W C! NX=C be the canonical morphism.

(1) Every derivation of yR is continuous, ie ‚C D‚
cts
C .

(2) �
1;cts
C '‚�C ' i

��NX=C
.

(3) The Poisson structure defines an isomorphism of complexes
V�
‚C '�

�;cts
C .

Proof Let ı 2 Der. yR/. From the definition of a derivation, yInC1 � ı�1. yIn/. Since
the translates of the powers of yI are a base of the topology, it follows that the preimage
of yIn is open in yR . Hence ı is continuous and ‚C D ‚cts

C . By [28, Proposition
20.7.15], the module �1;cts

C is coherent. This implies that the dual of �1;cts
C is the same

as the continuous dual of �1;cts
C . Hence, the isomorphism �

1;cts
C '‚�C follows from

[28, Equation (20.7.14.4)].

Let I be the ideal defining the zero section in NX=C and inW Cn!NX=C the canonical
morphism. For each n, there is a short exact sequence

(4-2) In=I2n dn
�! i�n�

1
NX=C

!�1Cn ! 0;

where dn. xf /D 1˝df . Let Nn denote the image of dn and notice that I �NnD 0 for
all n. This implies that I �N D 0, where N D lim

 ��n
Nn . But N is a submodule of the

free OC–module i��1NX=C
, implying that N D 0. Similarly, the map NnC1!Nn is

zero for all n because NnC1 is a submodule of annI.i
�
nC1�

1
NX=C

/, which is mapped
to zero under the map i�nC1�

1
NX=C
! i�n�

1
NX=C

. Thus, fNngn2N satisfies the Mittag-
Leffler condition and hence lim

 ��
.1/
n

Nn D 0. Therefore, (4-2) induces an isomorphism
i��1NX=C

! �
1;cts
C . Similarly, we have ‚C D i�‚NX=C

. Thus the nondegenerate
Poisson structure on NX=C defines an isomorphism

�
1;cts
C ' i��1NX=C

��! i�‚NX=C
'‚C:

The differential on the complex ��;cts
C is defined as in [30, Chapter I, Section 7]. Thus,

the fact that we have an isomorphism of complexes
V�
‚C '�

�;cts
C follows from the

corresponding isomorphism
V�
‚NX=C

'��NX=C
for NX=C due to Lichnerowicz (see

[20, Theorem 2.1.4]).

Remark 4.6 Unlike for vector fields, we have �1;cts
C ¤�1C : indeed, the latter is not

coherent over C.

As in Section 2.4 we let C ! S denote the coisotropic reduction of C ; as in loc.
cit. this projection has a section �W S ,! C . Let zW C ,! C be the embedding of the
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zero section and write j D z ı �W S ,! C for the composite embedding. This is a
closed immersion of formal Poisson schemes. Hence, restriction defines a morphism
j�1

�V�
‚C

�
!

V�
‚S . Similarly, functoriality of the de Rham complex implies that

we have a morphism j�1�
�;cts
C !��S . These form a commutative diagram:

(4-3)

j�1�
�;cts
C

��

�
// j�1

V�
‚C

��

��S
�

//
V�
‚S

Lemma 4.7 The morphism of complexes j�1��;cts
C !��S is a quasi-isomorphism.

Hence, the de Rham cohomology groups H 2
DR.C/ and H 2

DR.S/ are isomorphic.

Proof We factor j�1��;cts
C !��S as

��1.z�1�
�;cts
C /! ��1��C !��S :

Thus, it suffices to show that each of z�1��;cts
C !��C and ��1��C !��S is a quasi-

isomorphism. That the first is a quasi-isomorphism is [30, Chapter II, Proposition 1.1].
Since C D S � V and V ' Am is contractible, the second morphism is a quasi-
isomorphism.

Now we would like to use the above results to relate quantizations of C to quantizations
of S . To accomplish this, we shall use some results of Bezrukavnikov and Kaledin [8]
on period maps for quantizations. Their results are stated only for algebraic varieties,
but they apply without essential change to smooth formal schemes as well. Since the
results of this section are by now quite standard, and have also been summarized very
well in [49], where the details of compatibility with Gm–actions are also examined,
we shall content ourselves with a very terse recollection.

To describe the results of [8], we first recall the notion of a Harish-Chandra torsor on X

(see also [49, page 1227] for more details): suppose that G is a (proalgebraic) group
with Lie algebra g and that h is a Lie algebra such that g� h. Suppose further that h
is equipped with an action of G whose differential agrees with the adjoint action of
g on h. Then the pair .G; h/ is known as a Harish-Chandra pair. A Harish-Chandra
torsor for .G; h/ is a pair .M; �/, where M is a G–torsor on X and � is an h–valued
flat connection on M (the notions of torsor and flat connection are defined for (formal)
schemes exactly as they are in usual differential geometry).

A symplectic variety comes equipped with a canonical Harish-Chandra torsor, defined
as follows: Let A denote the algebra of functions on a symplectic formal disc. Then
the group of symplectomorphisms Aut.A/ of A is naturally a proalgebraic group.
Furthermore, the Lie algebra of Hamiltonian derivations of A, denoted by H, is a
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pro-Lie algebra and .Aut.A/;H/ is a Harish-Chandra pair. Then the Harish-Chandra
torsor Msymp.X/ is defined to be the pro-scheme parametrizing all maps Spec.A/!X

which preserve the symplectic form.

Now, let D denote the (unique) quantization of a 2n–dimensional formal disc over C .
Then the group of automorphisms Aut.D/ comes with a natural proalgebraic group
structure; similarly, the Lie algebra of derivations Der.D/ is naturally a pro-Lie algebra
making .Aut.D/;Der.D// a Harish-Chandra pair; we note that the map “reduction
mod „” gives a morphism of Harish-Chandra pairs .Aut.D/;Der.D//! .Aut.A/;H/.

Define
H 1

Msymp
.Aut.D/;Der.D//

to be the set of all isomorphism classes of .Aut.D/;Der.D//–torsors on X which are
liftings of Msymp , ie those torsors equipped with a reduction of structure group to
.Aut.A/;H/ such that the resulting .Aut.A/;H/–torsor is isomorphic to Msymp .

It is shown in [8, Section 3] that there is a natural bijection

LocW H 1
Msymp

.Aut.D/;Der.D// ��!Q.X/;

where the right-hand side denotes the set of all isomorphism classes of quantiza-
tions of X. This bijection respects the Gm–action on both sides, and hence it
can be checked that it induces a bijection between equivariant quantizations and
H 1

Msymp
.Aut.D/;Der.D//Gm .

Now the nonabelian cohomology group admits a natural “period map”

PerW H 1
Msymp

.Aut.D/;Der.D//!H 2
DR.X/ŒŒ„��;

which moreover restricts to give a map PerW H 1
Msymp

.Aut.D/;Der.D//Gm!H 2
DR.X/.

In good situations, such as when H i .X;OX/D 0 for i D 1, 2, this equivariant period
map is an isomorphism. We thus have the following classification:

Theorem 4.8 Let X be a smooth symplectic affine algebraic variety or formal scheme,
with an elliptic action of Gm (assumed to be prorational if X is formal). We let
QGm.X/ denote the set of isomorphism classes of Gm–equivariant quantizations of X.
Then there is a natural bijection

QGm.X/!H 2
DR.X/:

To relate quantizations of C to quantizations of S we may thus relate the corre-
sponding Harish-Chandra torsors: given a Harish-Chandra torsor on S and a Harish-
Chandra torsor on bT �V , the external product defines a new Harish-Chandra torsor
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on S � bT �V ' C. If we suppose that these Harish-Chandra torsors are liftings of
Msymp.S/ and Msymp. bT �V /, then under the map Loc, this external product of torsors
corresponds to taking a quantization B of S and associating to it the quantization
B ˝ yD on C. On the other hand, the map Per is constructed by associating, to a
Harish-Chandra torsor which is a lifting of Msymp , a certain canonical cohomology
class associated to the lifting. From this is follows that the map Q.S/Gm!Q.C/Gm

(given by B!B˝yD ) corresponds, under PerıLoc�1 , to the map H 2
DR.S/!H 2

DR.C/

associated to the inclusion S ! C. Since this has been shown to be an isomorphism
above, we have shown:

Proposition 4.9 Let yA be a Gm–equivariant quantization of C. Then there exist an
equivariant quantization B of S and an equivariant isomorphism  W yA ��!B y̋ yD of
deformation-quantization algebras.

A quantization A of X induces a quantization yA of C. In the following subsections
we use the isomorphism  given by the above proposition to show that the quantum
Hamiltonian reduction of A is isomorphic to B .

4.3 The completion of the ideal J

Recall the ideal J �A from Section 4.1. Let yJ D yA˝AJ . Lemma 4.3 implies that the
natural map yJ ! yA is an embedding. Let u be the m–dimensional subspace of A<0
spanned by a collection of homogeneous lifts of the wi 2 I and let J 0DAu. Since the
isomorphism  of Proposition 4.9 induces the identity on yR , the image  .u/ consists
of lifts of the wi to yD . We denote this space by u as well.

Lemma 4.10 We have J DJ 0 and hence  . yJ /DB y̋ .yDu/. Thus .A=J /=„ ��!R=I .

Proof Clearly we have J 0 � J . In order to get the opposite inclusion, let a 2 J be
any element; since J is generated by homogeneous elements, it suffices to assume a
is homogeneous. Recall that �W A!R is the projection. Since �.J /D I DRu, we
may write

a01 WD a�
X

aiyi 2 „A

for some homogenous elements faig, and we may select these elements so that
deg

P
aiyi D deg a < 0. But since deg „ D l , we have that a01 D „a1 for some

a1 of strictly smaller degree than a ; evidently a1 is again in J X J 0 . We may
repeat this process to find a02 D „a2 , etc. But now if we look at these equations in
the finitely generated left A–module N D J=J 0 , we see that we have a sequence
aD„a1D„

2a2D � � � . But this implies that
T
n�0 „

nN is nonzero, which contradicts
the fact that N is h–complete and hence separated.
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To see the last statement, note that the first statement shows that the image of the natural
map J=„! A=„ DR is precisely I . Then the statement follows from applying the
functor M !M=„ to the short exact sequence J ! A! A=J .

4.4 Identification of the formal quantum coisotropic reduction

We require the following result, which is [42, Lemmas 1.2.6 and 1.2.7]:

Lemma 4.11 Let L be a finitely generated, free A–module and N a submodule. ThenT1
iD1.N C„

iL/DN .

Proposition 4.12 The natural map A=J ! bA=J is an embedding. Hence, A=J is
„–flat.

Proof Note that Lemma 4.3 implies that the sequence 0! yJ ! yA! bA=J ! 0 is
exact, hence it suffices to show that yJ \AD J . Since the image of J in A=Kn equals
.J CKn/=Kn , we have

yJ \AD

1\
nD1

.J CKn/:

Claim 4.13 We have
T1
nD1.J CK

n/� J .

Proof Notice that K D JAC„A D J C„A because K=„A D .J C„A/=„A D I .
Consider the expansion of .J C„A/n . Since „ is central, a term of this expansion
containing i copies of „A equals „iJ n�iA. Multiplying JAC„AD J C„A on the
left by „iJ n�i�1 implies that

„
iJ n�iAC„iC1J n�i�1AD „iJ n�i C„iC1J n�i�1A:

Thus,

.J C„A/n D „nAC

n�1X
iD0

„
iJ n�i � „nACJ:

Since JC
T1
nD1 „

nA�JC„nA for all n, we have JC
T1
nD1 „

nA�
T1
nD1.JC„

nA/.
On the other hand, Lemma 4.11 says that

T1
nD1.J C„

nA/D J . This completes the
proof of Claim 4.13.

Returning to the proof of Proposition 4.12, the second assertion will now follow from
the fact that yA= yJ is „–flat. By Lemma 4.10,

(4-4) yA= yJ D B y̋ .yD=yDu/:

The Poincaré–Birkhoff–Witt property of yD implies that the right-hand side of (4-4) is
„–flat.
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Recall again that we have constructed a coisotropic reduction � W C ! S . Let B be
the quantization of the Poisson algebra T DCŒS� given by Proposition 4.9. We have
an identification T D .R=I /fI;�g such that the embedding .R=I /fI;�g ,!R=I is just
the comorphism �� .

Proposition 4.14 (1) The CŒŒ„��–algebra EndyD.yD=yDu/ is isomorphic to CŒŒ„�� and
Exti
yD
.yD=yDu; yD=yDu/ is a torsion CŒŒ„��–module for i > 0.

(2) We have an isomorphism of CŒŒ„��–algebras

End yA.
yA= yJ /opp ��!B

and Exti
yA
. yA= yJ ; yA= yJ / is „–torsion for all i > 0.

Proof (1) Recall that, as above, yD is the Moyal–Weyl quantization of the algebra
yF of functions on bT �V , the formal neighborhood of the zero section; u is a space

spanned by homogeneous lifts of generators of I=I 2 to yD . Under the identification
of yD with yF ŒŒ„��, we may assume that the elements w1; : : : ; wm of u are coordinate
functions on V � . Write L WD yD=yDu.

It is standard, for a cyclic left module S=P over a ring S , that EndS .S=P / Š
fq 2 S=P j Pq � P g; it is also standard that ff 2 D=Du j u � f D 0g Š CŒŒ„��
(and in any case this can be computed, by hand, inductively using the Moyal–Weyl
product).

Letting zi denote the dual coordinates on V as in Theorem 2.6, we get an identification

(4-5) yDŠCŒz1; : : : ; zm�ŒŒw1; : : : ; wm; „��;

with Moyal–Weyl product � satisfying

wi �wj D wiwj ; wi �f .z; w/D wi �f .z; w/C
„

2

@f

@zi
;

zi � zj D zizj ; f .z; w/�wi D wi �f .z; w/�
„

2

@f

@zi
:

It follows from Lemma 4.10 that the natural composite CŒz1; : : : ; zm�ŒŒ„�� ,! yD! L

is an isomorphism of vector spaces: via the vector space isomorphism of (4-5) and the
formulas above, we can write any element of yD as

P
I;j fI;j .z/ �w

I„j , and then
those terms with nonconstant wI vanish in L. Under this identification, for f .z/ 2L,
we have

(4-6) wi �f .z/D wi �f .z/�f .z/�wi D „
@f

@zi
:
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Let K.u/ Š
�V
�
.u/˝ Sym�.u/; d

�
denote the Koszul complex of C as a Sym.u/–

module, and let K.yD; u/D yD˝Sym�.u/K.u/; so K.yD; u/ is a finite free resolution of
L over yD . By adjunction,

Exti
yD.L;L/ŠH

i
�
HomSym.u/.K.u/; L/

�
ŠH i

�V
�
.u�/˝ yD=yDu

�
:

It is then evident from (4-6) that the identification CŒz1; : : : ; zm�ŒŒ„��! L intertwines
the Koszul differential and „ times the de Rham differential, thus yielding, when „ is
inverted,

H i
�V
�
.u�/˝ yD=yDu

�
Œ„�1�ŠH i

DR.Spec CŒz1; : : : ; zm�/..„//;

which proves the i > 0 part of (1).

(2) Again, we have

Exti
B y̋ yD

.B y̋L;B y̋L/ŠH i
�
HomB y̋ yD.B y̋K. yD; u/;B y̋L/

�
ŠH i

�V
�
.u�/˝B y̋L

�
;

where the last isomorphism follows by adjunction as before. Let dB denote the
Koszul differential on this completed tensor product and d the Koszul differential onV
�
.u�/˝L. The u–action commutes with all elements of B and B ŠCŒS�ŒŒ„�� as a

free CŒŒ„��–module. Thus, letting fsig denote a vector space basis of CŒS�, for any
element

P
si ˝ li of B y̋ L we get dB

�P
si ˝ li

�
D
P
sid.li /, and it follows that

ker.dB/D B y̋ ker.d/; Im.dB/D B y̋ Im.d/:
Thus,

Exti
B y̋ yD

.B y̋ L;B y̋ L/Š B y̋CŒŒ„��H
i
�V
�
.u�/˝L

�
Š B y̋CŒŒ„�� Exti

yD.L;L/;

reducing the assertions of (2) to (1).

4.5 Identification of the quantum coisotropic reduction

For any s > 0, let As D A=„sA and yAJ D lim
 ��n

A=J n . Even though J is only a left
ideal of A, we can form the Rees algebra ReesJ .A/D

L
n�0 J

n , with the obvious
multiplication. We shall abuse notation and denote by J the left ideal generated by the
image of J in As .

Lemma 4.15 (1) The inclusion J n � Kn induces an isomorphism of complete
topological algebras yAJ ��! yA.

(2) The Rees algebra ReesJ .As/ is (both left and right) Noetherian.

(3) Let M be a finitely generated A–module. Then yAJ ˝AM ' lim
 ��n

M=J nM .

Proof (1) Since ŒA;A� � „A, we have Kn � J n C „J n C � � � C „sJ n�s for all
s , n > 0. Therefore the filtrations fKngn and fJ ngn of As are comparable and the
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canonical morphism lim
 ��

As=J
n! lim

 ��
As=K

n is an isomorphism. Thus, commutativity
of limits implies that

lim
 ��
n

A=J n D lim
 ��
s

�
lim
 ��
n

As=J
n
�
! lim
 ��
s

�
lim
 ��
n

As=K
n
�
D lim
 ��
n

A=Kn

is an isomorphism.

(2) Since As is finitely generated and nilpotent, we may choose a finite-dimensional
vector subspace n of As which is bracket closed and generates As as an algebra;
enlarging n if necessary, we may suppose J \ n D n1 is a Lie subalgebra which
generates J as an ideal. Then n is a nilpotent Lie algebra, and we have a surjection
U.n/! As . Further, we have the subalgebra U.n1/; the image of its augmentation
ideal in As is J . Thus the claim is reduced to showing the following: let n1 � n

be nilpotent Lie algebras, and let a be the left ideal of U.n/ generated by n1 ; then
Reesa.U.n// is Noetherian. But this is a standard argument; see for instance [64].

(3) This is a noncommutative analogue of [21, Theorem 7.2]. If M 0 is a submodule
of M , then the argument given in the proof of [21, Lemma 7.15] shows that the claim
reduces to showing that the morphism

lim
 ��
s;n

M 0=.J nM 0C„sM 0/! lim
 ��
s;n

M 0=..J nM/\M 0C„sM 0/

is an isomorphism. This will be an isomorphism if, for each s , n � 1, there exist
N.s; n/, S.s; n/� 0 such that

.JNM/\M 0C„SM 0 � J nM 0C„sM 0:

By Lemma 3.2(2), the Rees algebra Rees„A.A/ is Noetherian. Therefore, there ex-
ists some s0 such that „iCs0M \M 0 � „iM 0 for all i � 1. The AsCs0 –module
M 0=.„sCs0M \M 0/ is a submodule of M=„sCs0M . Since we have shown in (2) that
the Rees algebra ReesJ .AsCs0/ is Noetherian, the usual Artin–Rees argument shows
that there exists some N � 0 such that

(4-7) .JN �M/\M 0C .„sCs0M \M 0/� J n �M 0C .„sCs0M \M 0/:

Since „sCs0M \M 0 � „sM 0 , the inclusion (4-7) implies that

.JN �M/\M 0C„sM 0 � J n �M 0C„sM 0;

as required.

Remark 4.16 One can check that the ring ReesJ .A/ is not in general Noetherian.

Theorem 4.17 (1) The CŒŒ„��–algebras EndA.A=J /opp and B are isomorphic.
Hence EndA.A=J /opp is a deformation-quantization of S .
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(2) The ext groups ExtiA.A=J;A=J / are „–torsion for all i > 0.

(3) A=J is a faithfully flat B –module.

Proof (1)–(2) Since yA= yJ D yA˝A .A=J / and yA is flat over A, adjunction says that
we have

Exti
yA
. yA= yJ ; yA= yJ /' ExtiA.A=J; yA= yJ / for all i � 0:

Since A=J is a finitely generated A–module, Lemmas 4.3 and 4.15 imply that yA= yJ D
yA˝A .A=J / is isomorphic to yAJ ˝A .A=J /. By Lemma 4.15, we have

yAJ ˝A .A=J /D lim
 ��
n

.A=J /

J n � .A=J /
D A=J:

Therefore, (1) and (2) follows from Proposition 4.14.

(3) By Proposition 4.12, A=J is „–flat, or equivalently „–torsion-free. Since it is
finitely generated over A, it is also „–complete. Therefore, [42, Corollary 1.5.7] says
that it is cohomologically complete. By 4.10, .A=J /=„.A=J / ' R=I and hence is
a free T –module. Thus, [42, Theorem 1.6.6] implies that A=J is a faithfully flat
B –module.

Let W D AŒ„�1�, a W–algebra. By base change, Theorem 4.17 implies:

Corollary 4.18 The algebra

EndW .W=J Œ„�1�; W=J Œ„�1�/opp ��!BŒ„�1�DWWS

is a W–algebra, and ExtiW .W=J Œ„
�1�; W=J Œ„�1�/D 0 for all i > 0.

4.6 Equivariant modules

We maintain the notation and assumptions of the prior subsections of Section 4. In
particular, XD Spec.R/ is a smooth affine symplectic variety with Gm–action and
with coisotropic subvariety C DSpec.R=I /, where I is generated by all homogeneous
elements of negative degree. Moreover, A is a deformation-quantization of R , and
W DAŒ„�1�. We have a symplectic quotient C ! S , also assumed affine, and B is a
deformation-quantization of CŒS�.

Definition 4.19 The full abelian subcategory of .A;Gm/–mod consisting of all mod-
ules supported on C is denoted by .A;Gm/–modC . The full abelian subcategory
of .W;Gm/–good consisting of good W–modules supported on C is denoted by
.W;Gm/–goodC .
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We define a filtration HiM on a finitely generated, equivariant A–module by letting
Hi .M=„nM/ be the direct sum

L
j�i .M=„

nM/j and HiM D lim
 ��n

Hi .M=„nM/:

Then „HiM �HiC1M . The filtration HiM need not be exhaustive.

Lemma 4.20 Let M 2 .A;Gm/–mod. Then SuppM �C if and only if HNM DM
for N � 0.

Proof If HNM DM , then HN .M=„M/DM=„M . This means that M=„M is a
graded R–module, with .M=„M/i D 0 for i � 0. This implies that Supp .M=„M/

is contained in C . Therefore, by Lemma 3.24, the support of M is contained in C .
Conversely, if SuppM � C then clearly the support of M=„M is contained in C too.
This implies that HN .M=„M/DM=„M for some N � 0. By induction on n, the
exact sequence

M=„M � „n
�!M=„nC1M !M=„nM ! 0

implies that HN .M=„nM/DM=„nM and hence HN .M/DM .

4.7 Quantum coisotropic reduction: affine case

We maintain the notation of Section 4.6. For a module MŒ„�1� 2 .W;Gm/–goodC ,
we denote by M a choice of lattice in .A;Gm/–modC . Recall that W D AŒ„�1� and
WS D BŒ„

�1�.

By Theorem 4.17, we can define an adjoint pair .H?;H/ of functors

HW .A;Gm/–modC�! �.B;Gm/–mod WH?

by
H.M/D HomA.A=J;M/ and H?.N /D A=J ˝B N:

The functors H and H? clearly preserve the subcategories of „–torsion modules, and
in particular by Proposition 3.26 they thus induce a well-defined adjoint pair of functors

(4-8) HW .W;Gm/–goodC�! �.WS ;Gm/–good WH?

for which

H.MŒ„�1�/D HomA.A=J;M/Œ„�1� and H?.N Œ„�1�/D .A=J ˝B N/Œ„
�1�:

Theorem 4.21 The functors H and H? of (4-8) are exact, mutually quasi-inverse
equivalences of abelian categories.

Proof Suppose M 2 .A;Gm/–modC . Let M rat D
L
i Mi be the subspace of Gm–

locally finite vectors. By Lemma 3.21, this space is nonzero if M is. Lemma 4.20
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implies that there exists N such that MN ¤ 0 but Mi D 0 for all i < N . Now
u �MN D 0 and hence:

H is left-exact on .A;Gm/–modC and .W;Gm/–goodC ,
and conservative on .A;Gm/–modC .

Remark 4.22 By Theorem 4.17(3), A=J is a faithfully flat B –module; thus H?.N /
is „–torsion-free if N is „–torsion-free. Similarly H.N / is „–torsion-free if N is,
by inspection.

Theorem 4.17(3) also implies:

H? is exact and conservative on .B;Gm/–mod and .WS ;Gm/–good.

Next, we show:

Claim 4.23 The adjunction
id!H ıH?

is an isomorphism of functors of .WS ;Gm/–good.

To prove the claim, we observe that the global dimensions of B and WS are finite, and
therefore we prove, by induction on the projective dimension of N 2 .B;Gm/–mod,
that:

(a) NŒ„�1�!H.H?.N Œ„�1�// is an isomorphism.

(b) ExtiA.A=J;H
?.N //Œ„�1�D 0 for all i > 0.

When N is a finitely generated projective B –module, the assertions are immediate from
Corollary 4.18. So we may assume that assertions (a) and (b) hold for all modules F
with projective dimension less than pdB N . Fix a presentation 0!F !Bk!N! 0,
so that the projective dimension of F is less than the projective dimension of N . Since
H? is exact we get an exact sequence

(4-9) 0!HıH?.F /!HıH?.Bk/!HıH?.N /!Ext1A.A=J;H
?.F //!� � � :

Inverting „ and using the inductive hypothesis that assertion (b) holds for F , we get a
short exact sequence

0!H ıH?.F /Œ„�1�!H ıH?.Bk/Œ„�1�!H ıH?.N /Œ„�1�! 0:

Assertion (a) for F and Bk then implies assertion (a) for N . Similarly, it fol-
lows, by continuing the exact sequence (4-9), from assertion (b) for Bk and F that
ExtiA.A=J;H

?.N //Œ„�1� D 0 for i � 1, ie assertion (b) holds for N as well. This
proves the inductive step, hence the claim.
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Finally, we need to show:

Claim 4.24 The adjunction
H? ıH! id

is an isomorphism of functors on .WS ;Gm/–good.

Suppose M �MŒ„�1� is a lattice. Taking kernels and cokernels gives

0!E!H? ıH.M/!M !E 0! 0:

Applying H and localizing gives

0!H.E/Œ„�1�!H ıH? ıH.M/Œ„�1� id
�!H.M/Œ„�1�!H.E 0/Œ„�1�! � � � :

This implies that H.E/Œ„�1�D 0 and hence H.E/ is „–torsion. But by Remark 4.22,
H?.H.M// is „–torsion-free, hence so is E , hence again by the remark so is H.E/;
this implies that H.E/D 0. But H is conservative, so E D 0. Thus, we have

0!H? ıH.M/!M !E 0! 0:

Again, applying H , localizing and using assertion (b) above to obtain that the extension
group Ext1A.A=J;H

? ıH.M//Œ„�1� is zero, we get an exact sequence

0!H.M/Œ„�1� id
�!H.M/Œ„�1�!H.E 0/Œ„�1�! 0:

This implies that H.E 0/D HomA.A=J;M/ is „–torsion. Let E 0tf denote the quotient
of E 0 by its „–torsion submodule. Using the exact sequence

0! HomA.A=J;E 0tor/! HomA.A=J;E 0/! HomA.A=J;E 0tf /! Ext1A.A=J;E
0
tor/

and that the left-hand and right-hand terms are „–torsion, together with Remark 4.22,
we conclude that H.E 0

tf
/�H.E 0

tf
/Œ„�1�DH.E 0/Œ„�1�D0. Since H is conservative,

E 0
tf
D 0, and thus E 0 is a torsion module. The claim follows. This completes the

proof of the theorem.

4.8 Quantum coisotropic reduction: global case

In this section, we fix a connected component Y of the fixed point set of X and let
C � X denote the set of points converging to Y under the elliptic Gm–action. We
assume that C is closed in X. Let WX–goodC denote the category of Gm–equivariant,
good WX–modules supported on C .

Lemma 4.25 There exists an affine Gm–stable open covering fUigi2I of X such that

C \Ui D
˚
x 2 Ui j lim

t!1
t � x 2 Y \Ui

	
for all i .
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Proof First choose a Gm–stable affine open covering fVig of XXC . Replacing X

by XXD , where D D XGm XY , we may assume that if limt!1 t � x exists then it
belongs to Y . Now take any collection of affine Gm–stable open subsets V 0j of X

such that (a) V 0j \ Y ¤ ∅ for all j , and (b)
S
j U
0
j \ Y D Y . Then Lemma 3.30

implies that fVig[ fV 0j g is the desired covering.

Let I �OX denote the ideal of C .

Lemma 4.26 There exists an „–flat quantization J of I .

Proof Let fUigi2I be a Gm–stable open cover of X satisfying the properties of
Lemma 4.25. It suffices to construct a sheaf Ji on each Ui , together with a natural
identification on over-laps Ui\Uj . If Ui\C D∅ then we set Ji DA. If Ui\C ¤∅,
then Ji is defined to be the coherent sheaf associated to the left ideal of �.Ui ;A/
generated by all homogeneous sections of negative degree. In each case, Ji is a subsheaf
of AjUi . Therefore, it suffices to show that Ji jUi\Uj D Jj jUi\Uj as subsheaves
of AjUi\Uj .

If Ui\C DUj\C D∅ there is nothing to prove. Therefore, we assume that Ui\C ¤∅.
If Ui \Uj \C D∅, let D.f /� Ui \Uj be any Gm–stable affine open subset that
is the complement of the vanishing set of f 2 �.Ui ;OUi /. Then C \D.f / D ∅,
ie if I � �.Ui ;OUi / is the ideal of C \ Ui then I Œf �1� D �.Ui ;OUi /Œf

�1�. It
follows that Q�

f
.J /DQ�

f
.A.Ui //D A.D.f //. The argument being symmetric in

i and j and applying to all Gm–stable affines in an open cover of Ui \Uj , we get
Ji jUi\Uj DAjUi\Uj D Jj jUi\Uj .

Finally, assume Ui \Uj \C ¤ ∅. Since Ui \Uj is affine, it suffices to show that
Ji jUi\Uj DJi;j , where Ji;j is the left ideal in Ai;j WDAjUi\Uj generated by negative
sections. Noting that Ji jUi\Uj is clearly contained in Ji;j , we have

0! K!Ai;j =.Ji jUi\Uj /!Ai;j =Ji;j ! 0:

By Proposition 4.12, Ai;j =Ji;j is „–flat, therefore tensoring by CŒŒ„��=.„/, and apply-
ing Lemma 2.4 we get

0! K0!OUi\Uj =.Ii jUi\Uj /!OUi\Uj =Ii;j ! 0:

But this is just the sequence 0!K0!OCi;j !OCi;j ! 0, where Ci;j DUi\Uj \C .
By Nakayama’s lemma, this implies that KD 0.

Let us recall that � W C ! S denotes the morphism of symplectic reduction. Since the
sheaf A=J is supported on C , we shall denote the sheaf restriction i�1.A=J / simply
by A=J . Under this convention, we have:
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Proposition 4.27 B D .��EndA.A=J //opp is a deformation-quantization of S .

Proof This is a local statement. Thus, the proposition follows from Corollary 4.18.

Let WS D BŒ„�1�; by Proposition 4.27, WS is a W–algebra on S . As we did in the
affine setting in Section 4.7, define an adjoint pair .H?;H/ of functors of DQ modules
by

(4-10) H.M 0/D ��HomA.A=J ;M 0/; H?.N 0/D ��1.A=J /˝��1B N 0:

As in the affine setting, these functors preserve „–torsion modules and thus descend to
an adjoint pair on the W–module categories defined by

(4-11)
H.M /D ��HomA.A=J ;M 0/Œ„�1�;

H?.N /D .��1.A=J /˝��1B N 0/Œ„�1�;

where M 0 and N 0 are choices of lattice in M and N , respectively.

Theorem 4.28 The adjoint functors .H?;H/ defined by (4-11) form a pair of exact,
mutually quasi-inverse equivalences of abelian categories:

HW WX–goodC�! �WS–good WH?

Proof It suffices to check locally that the canonical adjunctions id ! H ı H?

and H? ıH ! id are exact isomorphisms. Therefore the theorem follows from
Theorem 4.21.

4.9 Support

The support of modules is well behaved under the functor of quantum coisotropic
reduction.

Proposition 4.29 Let M 2WX–goodC and N 2WS–good. Then

Supp H.M /D �.Supp M /; Supp H?.N /D ��1.Supp N /:

Proof Since support is a local property, we may assume that S ,! C D S �V � S .
Let N be the global sections of a lattice for N . Since H is an equivalence it suffices to
show that Supp H?.N /D ��1.SuppN/ and �.��1.SuppN//D SuppN . As noted
in [42, Proposition 1.4.3],

gr„.A=J ˝B N/D .gr„A=J /˝
L
B0
.gr„N/:

Hence, using the fact that A=J is „–flat and H 0.gr„A=J / is free over B0 ,

Supp H?.N /D Supp gr„.A=J ˝B N/D V �Supp gr„.N /D V �SuppN:

From this, both claims are clear.
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We recall that a holonomic WX–module M is said to be regular if it admits a lattice M 0

such that the support of the OX–module M 0=„M 0 is reduced. Proposition 4.29 implies
that the functors H and H? preserve both holonomicity and regular holonomicity:

Corollary 4.30 The functor H restricts to equivalences

HW WX–holC ��!WS–hol; HW WX–regholC ��!WS–reghol:

Proof The first claim follows directly from Proposition 4.29.

For the second claim, we may assume given a regular lattice. Then it suffices to check
that applying either functor of DQ modules yields again a regular lattice; moreover,
this can be checked locally. We thus revert to the affine setting of Section 4.7. Suppose
first that M is an „–torsion-free A–module for which M=„M has reduced support.
We use the following variant of [53, Lemma 7.13], whose proof is identical:

Lemma 4.31 Let R be a Noetherian, flat CŒt �–algebra (in particular, CŒt � is central
in R). Suppose that M is an R–module of finite type and N � is a complex of CŒt �–flat
R–modules. Then, for any a 2C ,

CŒt �=.t � a/˝CŒt� HomR.M;N
�/Š HomR=.t�a/R.M=.t � a/M;N

�=.t � a/N �/:

By the lemma, HomA.A=J;M/˝CŒŒ„��CŒŒ„��=.„/Š HomR.R=I;M=„M/. The sup-
port of the last module is the scheme-theoretic intersection of C with Supp.M=„M/,
but since the latter is set-theoretically contained in C and is assumed to be reduced, this
intersection is reduced. Since CŒS��R=I , the annihilator of HomR.R=I;M=„M/

in CŒS� is thus also a radical ideal, as required.

Suppose, on the other hand, that N is a B–module with N=„N reduced; we must
show that A=J ˝N is also regular. For this we note the equivalence

.A=J ˝B N/=„
��! .A=J /=„˝B=„ .N=„/

��! .R=I /˝CŒS� .N=„/

which follows from standard base change identities. If we view the right-hand side as
a module over R=I , then it follows that

annR=I ..R=I /˝CŒS� .N=„//DR=I � annCŒS�.N=„/

and since the map T !R=I is (locally) an inclusion of polynomial rings, we have that
annCŒS�.N=„/ is reduced implies annR=I ..R=I /˝CŒS� .N=„// is reduced. Finally,
we have that the annihilator of .R=I /˝CŒS� .N=„/ as an R–module is the preimage
under R! R=I of the annihilator as an R=I –module. The result follows because
I �R is a generated by a regular sequence.
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4.10 Filtered quantizations

Using Theorem 4.28 we can reduce the study of equivariant modules supported on a
smooth, closed, coisotropic subvariety C � X to the situation where the set of fixed
points Y of our symplectic manifold X with elliptic Gm–action is connected. In this
section we study deformation-quantization algebras on such manifolds. Such algebras
are equivalent to filtered quantizations, which we now define.

Suppose X is a smooth symplectic variety with elliptic Gm–action and connected fixed
locus Y D XGm . Let �W X! Y be the projection. Recall that, as in Theorem 2.21,
the group scheme T �Y acts on X so that the quotient E D X=T �Y is an elliptic
symplectic fibration. In this section we write OX for the sheaf ��OX of algebras on Y .

Definition 4.32 A filtered quantization of X is a sheaf of quasicoherent OY –algebras
DX equipped with an algebra filtration DXD

S
i�0 FiDX by coherent OY –submodules

and an isomorphism

˛W grF DX
��!OX of OY –algebras

such that, for D 2 FiDX and D0 2 FjDX , ŒD;D0� 2 FiCj�lDX defines a Poisson
bracket on grF DX , making ˛ an isomorphism of Poisson algebras.

Proposition 4.33 The sheaf DX WD .��W/Gm is a filtered quantization of X. The
functor M 7! .��M /Gm defines an equivalence W–good ��!DX–mod.

Proof Let A be the DQ algebra on X such that W DAŒ„�1�. We note that since Gm

acts on A with positive weights, the sheaf of algebras zDX WD .��A/rat is a polynomial
quantization of X; ie zDX is a flat sheaf of CŒ„�–algebras satisfying zDX=„zDX 'OX ;
see [47] for a proof of this fact. From this it follows easily that zDX=.„ � 1/ '

.zDXŒh
�1�/Gm D DX . Furthermore, via this isomorphism DX inherits a filtration from

the grading on zDX , inducing an isomorphism zDX'Rees.DX/; see [47, Section 3.2] for
a detailed discussion. Summing up, we see that A can be recovered as the „–completion
of the algebra Rees.DX/.

Now, for any finitely generated DX–module N , we may choose a good filtration on N
and obtain the zDX–module Rees.N /. Completing at „ gives a A–module 3Rees.N / ,
and it is easy to see that the WX–module 3Rees.N /Œh�1� doesn’t depend on the choice
of good filtration on N . Now one checks directly that this is a well-defined functor
which is quasi-inverse to the one above.

When Y is a single point, X is isomorphic to A2n and a filtered quantization of X

is isomorphic to the Weyl algebra on An , equipped with a filtration whose pieces
are all finite-dimensional. In the other extreme, when 2 dimY D dimX, one gets a
sheaf of twisted differential operators (we refer the reader to [3] for basics on twisted
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differential operators, Lie and Picard algebroids). If 0! O! P ! ‚Y ! 0 is a
Picard algebroid on Y , then we denote by U.P/ the enveloping algebroid of the Picard
algebroid [3]. Since P is locally free as an OY –module, the algebra U.P/ is equipped
with a canonical filtration such that grU.P/' Sym�‚Y .

Lemma 4.34 When XD T �Y , DX is a sheaf of twisted differential operators on Y .

Proof We construct a Picard algebroid P on Y and show that DX is isomorphic, as a
filtered algebra, to the sheaf of twisted differential operators U.P/. The assumption
XD T �Y implies that FiDY DOY for 0� i < l and we have a short exact sequence

0!OY ! P �
�!‚Y ! 0;

where P D FlDX . Here �.D/.f /D ŒD; f � and P is closed under the commutator
bracket on DX . Therefore we get a filtered morphism U.P/! DX whose associated
graded morphism is just the identity on Sym�‚Y .

In fact, one can show that there is an equivalence of categories between twisted
differential operators on Y and Gm–equivariant deformation-quantizations of T �Y .

4.11 Refining Kashiwara’s equivalence

We continue to assume that X is a smooth symplectic variety with elliptic Gm–action
and that the set of Gm–fixed points Y in X is connected. Let Y 0 � Y be a closed,
smooth subvariety, i W Y 0 ,! Y the embedding and I the sheaf of ideals in OY defin-
ing Y 0. If C 0 D ��1.Y 0/, then Corollary 2.27 says that C 0 is coisotropic and admits a
reduction C 0! S 0 .

Proposition 4.35 The sheaf EndDX.DX=DXI/opp is a filtered quantization of S 0 .

In order to establish the above proposition we first consider the case where XD T �Y .
Let DX be a filtered quantization of X. By Lemma 4.34, DX ' U.P/ is a sheaf of
twisted differential operators on Y . The following is the analogue of Kashiwara’s
equivalence for twisted differential operators:

Lemma 4.36 Let P be a Picard algebroid on Y and DY DU.P/ the associated sheaf
of twisted differential operators.

(1) The sheaf P 0 associated to the presheaf fs 2 P=PI j ŒI; s� D 0g is a Picard
algebroid on Y 0 .

(2) The sheaf of twisted differential operators U.P 0/ associated to the Picard alge-
broid P 0 is isomorphic to EndDY .DY =DY I/opp .
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(3) The functor of Hamiltonian reduction

M 7!HomDY .DY =DY I;M /

defines an equivalence between the categories of quasicoherent DY –modules
supported on Y 0 and quasicoherent U.P 0/–modules.

Proof The proof is analogous to the untwisted case; therefore we only sketch the
proof. The main difference is that one must work in a formal neighborhood of each
point of Y 0 since Picard algebroids do not trivialize in the étale topology; see [3]. One
can check that P 0 is a sheaf of OY 0 –modules, which is coherent since P is a coherent
OY –module. The anchor map � W P ! ‚Y descends to a map � 0W P 0! ‚Y 0 such
that OY 0 is in the kernel of this map. To show that the sequence

0!OY 0 ! P 0 �
�!‚Y 0 ! 0

is exact, it suffices to consider the sequence as a sequence of OY –modules and check
exactness in a formal neighborhood of each point of Y 0 � Y . But then P trivializes
and the claim is clear. The other statements are analogously proved by reducing to the
untwisted case in the formal neighborhood of each point of Y 0 .

Proof of Proposition 4.35 Since each graded piece .OX/i is a locally free, finite-rank
OY –module, it follows by induction on i that each piece FiDX is locally free of finite
rank over OY . Therefore by vanishing of TorOY1 .OY 0 ;�/ the sequence

0! Fi�1=Fi�1I! Fi=FiI! .OX/i=.OX/iI! 0

is exact. Consequently, grF .DX=DXI/'OX=hIi and the fact that DX quantizes the
Poisson bracket on OX implies that we have an embedding

grF EndDX.DX=DXI/opp
D grF

�
fs 2 DX=DXI j ŒI; s�D 0g

�
,! ff 2OX=hIi j fI; f g D 0g DOS 0 ;

where the final identification is (2-5). Therefore it suffices to show that the embedding
is an isomorphism.

We will do this by étale base change. Let �W U ! Y be an étale map and let X0 D
U �Y X. Assume now that U is affine, and replacing Y by the image of U we
will assume that Y is too. Let AX be the sheaf of DQ algebras on X corresponding
to DX via Proposition 4.33. Then we have a CŒŒ„��–module isomorphism AX 'Q
n�0OX„

n . Since the multiplication in AX is given by polydifferential operators,
it uniquely extends to a multiplication structure on

Q
n�0OX0„

n , which by abuse
of notation we write as ��AX . This shows that filtered quantizations behave well
under étale base change. Shrinking U if necessary, Proposition 2.24, together with the
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Bezrukavnikov–Kaledin classification, implies that there is an equivariant isomorphism
��AX'AT �U y�D for some Gm–equivariant quantization AT �U of T �U . Inverting
„ and taking Gm–invariance as in Proposition 4.33, we get an isomorphism of filtered
algebras ��DX ' DT �U � D.A2n/, where D.A2n/ is the usual Weyl algebra (but
equipped with a particular filtration) and DT �U is a filtered quantization of T �U . Let
IU be the ideal in OU defining ��1.Y 0/ in U . Then, since � is flat,

��.DX=DXI/' .DT �U =DT �U IU /�D.An�j /:
Thus,

��EndDX.DX=DXI/opp
' EndDT�U .DT �U =DT �U IU /

opp�D.An�j /:

Lemma 4.34 says that DT �U is a sheaf of twisted differential operators on U . Hence, by
Lemma 4.36, EndDT�U .DT �U =DT �U IU /

opp is a sheaf of twisted differential operators
on ��1.Y 0/. This completes the proof of Proposition 4.35.

Now we may consider the category of coherent DX–modules supported on Y 0 , or
equivalently the category of good, Gm–equivariant WX–modules whose support is
contained in C 0 . Applying Lemma 4.36(3) and the étale local arguments of the proof
of Proposition 4.35, one gets that

HW DX–modY 0 ! DS 0–mod; M 7!HomDX.DX=DXI;M /;

is an equivalence. The arguments involved are analogous to the proof of Theorem 4.28
and are omitted.

4.12 Generalizing Kashiwara’s equivalence

Combining Theorem 4.28 with the above equivalence gives a direct generalization
of Kashiwara’s equivalence. Let X be an arbitrary symplectic manifold with ellip-
tic Gm–action, equipped with a Gm–equivariant DQ algebra AX . Fix a smooth,
closed, coisotropic attracting locus �W C ! Y and let � W C ! S be the coisotropic
reduction of C . Let Y 0 � Y be a smooth, closed subvariety and set C 0 D ��1.Y 0/.
Proposition 4.29 implies that the equivalence H of Theorem 4.28 restricts to an
equivalence between the category WX–goodC 0 of good WX–modules supported on C 0

and the category WS–good�.C 0/ of good WS –modules supported on �.C 0/. By the
Gm–equivariance of � , we have �.C 0/D z��1.Y 0/, where z�W S ! Y is the bundle
map. By Corollary 2.27, there exists a coisotropic reduction � 0W z��1.Y 0/! S 0 . As
we have argued above in terms of filtered quantizations, the category WS–good�.C 0/
is equivalent to the category WS 0–good of good WS 0 –modules. Thus, we have shown:

Theorem 4.37 The category WX–goodC 0 of Gm–equivariant good WX–modules
supported on C 0 is equivalent to the category of Gm–equivariant good WS 0 –modules.
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5 Categorical cell decomposition and applications

We use the generalized Kashiwara equivalence to show that Qcoh.W/ admits a categor-
ical cell decomposition. As a consequence we are able to calculate additive invariants
of this category.

In this section, open subsets U � X are always assumed to be Gm–stable.

5.1 Categorical cell decomposition

Recall from Lemma 2.3 that the closure relation on coisotropic strata is a partial
ordering. This provides a topology on the set S of indices of strata, so that a subset
K � S is closed if and only if i 2K implies that j 2K for all j � i .

Given a subset K � S , we let CK WD
S
i2K Ci . When K is closed, we let Qcoh.W/K

denote the full subcategory of Gm–equivariant objects whose support is contained in
the closed set CK � X. The open inclusion XXCK ,! X is denoted by jK .

The closed embedding CK ,!X is denoted by iK . For K�L�S closed, the inclusion
functor Qcoh.W/K ,! Qcoh.W/L is denoted by iK;L;� . We have:

Proposition 5.1 (1) The functors iK;L;� have right adjoints i ŠK;L D �K;L of
“submodule with support” such that the adjunction id ! i ŠK;L ı iK;L;� is an
isomorphism.

(2) The categories Qcoh.W/K provide a filtration of Qcoh.W/, indexed by the
collection of closed subsets K of S , by localizing subcategories.

(3) The quotient Qcoh.W/L=Qcoh.W/K is equivalent (via the canonical functor) to
Qcoh.WXXCK /LXK .

Proof Each module M in W–goodL has a unique maximal submodule MK supported
on CK . Then i ŠK;L.M /DMK defines a right adjoint to iK;L;� such that the adjunction
id! i ŠK;L ı iK;L;� is an isomorphism. Both functors are continuous and hence the
functors extend to Qcoh.W/.

Let U DXXK . It is clear that the subcategory W–goodK of W–goodL is a localizing
subcategory, from which (2) follows.

Part (3) follows from Corollary 3.28, though this is not immediate since CK is a
union of cells, and not a single cell. The proof is an easy induction on jKj. If
i 2 K is maximal, then let K 0 D K X fig. By induction, Qcoh.W/L=Qcoh.W/K0

is equivalent to Qcoh.WXXCK0 /LXK0 . Under this equivalence, the full subcategory
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Qcoh.W/K=Qcoh.W/K0 is sent to Qcoh.WXXCK0 /Ci . Corollary 3.28 now implies that
the quotient of Qcoh.WXXCK0 /LXK0 by Qcoh.WXXCK0 /Ci is canonically isomorphic
to Qcoh.WXXCK /LXK .

Corollary 5.2 The category Qcoh.W/ has a filtration by full, localizing subcategories
whose subquotients are of the form Qcoh.WSi / for various i 2 S .

Proof Fix i 2 S . Replacing S by fj j j � ig, we may assume that Ci is closed in X.
Then the corollary follows from Proposition 5.1 and Theorem 1.8.

Since the category Qcoh.W/K is a Grothendieck category, it contains enough injectives.
For K � L � S closed subsets, we let DK.Qcoh.W/L/ denote the full subcategory
of the unbounded derived category D.Qcoh.W/L/ consisting of those objects whose
cohomology sheaves lie in Qcoh.W/K . It is a consequence of Proposition 5.1 and [41,
Lemma 4.7] that jK;L defines an equivalence

(5-1) j �K;LW D.Qcoh.W/L/=DK.Qcoh.W/L/'D.Qcoh.W/LXK/:

Since Qcoh.W/L has enough injectives the left exact functor i ŠK;L can be derived to
an exact functor Ri ŠK;LW D.Qcoh.W/L/! D.Qcoh.W/K/ such that the adjunction
id!Ri ŠK;L ı iK;L;� is an isomorphism. We have:

Lemma 5.3 The functor iK;L;�W D.Qcoh.W/K/ ! DK.Qcoh.W/L/ is an equiva-
lence.

Proof The quasi-inverse to this functor is given by Ri ŠK;L . The already-noted isomor-
phism id!Ri ŠK;L ı iK;L;� gives that iK;L;� is fully faithful. For the other direction,
we note:

Claim 5.4 The adjunction iK;L;� ı Ri ŠK;L.M / ! M is an isomorphism for any
M 2DbK.Qcoh.W/L/.

Proof Let F D iK;L;� ıRi ŠK;L . The proof of the claim is essentially identical to the
proof of [32, Corollary 1.6.2], but we provide details for the reader’s convenience.
As usual, let l.M / denote the cohomological length of M 2 DbK.Qcoh.W/L/, ie
it is the difference maxfi j H i .M / ¤ 0g �minfj j H j .M / ¤ 0g. The claim will
follow by induction. If l.M /D 0, then we may assume without loss of generality that
M 2 Qcoh.W/K . In this case the claim follows from Theorem 4.28.

In general, we choose k 2 Z such that l.��kM / and l.�>kM / are strictly less
than l.M /. Applying F to the triangle ��kM !M ! �>kM

Œ1�
�! gives a commuta-

tive diagram:
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��kM //

˛
��

M //

ˇ
��

�>kM
Œ1�

//



��

F.��kM / // F.M / // F.�>kM /
Œ1�
//

Since ˛ and 
 are isomorphisms by induction, so too is ˇ .

Since iK;L;� is fully faithful and t –exact with respect to the standard t –structure,
it follows that Ri ŠK;L has finite cohomological dimension on DK.Qcoh.W/L/; and
thus that iK;L;�W Db.Qcoh.W/K/!DbK.Qcoh.W/L/ is an equivalence, with quasi-
inverse Ri ŠK;L . Now the unbounded case follows from the bounded by noting that both
functors are continuous.

Let T c be the full subcategory of compact objects in a triangulated or dg category T .

The full subcategory of D.Qcoh.W// consisting of all objects locally isomorphic to a
bounded complex of projective objects inside W–good (ie the perfect objects) is denoted
by perf.W/. To see that this is well behaved, we first note that perf.W/ is contained
in DbW–good.Qcoh.W//; this follows from the fact that any object in Qcoh.W/, being
a limit of good modules, is in W–good if and only if it is locally in W–good. Next,
we recall from [33, Lemma 2.6], that in fact Db.W–good/ ��!DbW–good.Qcoh.W//.
So we in fact have perf.W/�Db.W–good/.

Lemma 5.5 We have
perf.W/DDb.W–good/:

Moreover, when X is affine,

perf.W/DDb.W–good/DD.Qcoh.W//c :

Proof Since both perf.W/ and Db.W–good/ are locally defined full subcategories
of D.Qcoh.W//, the first statement follows from the second. So we suppose X is
affine. In this case, Proposition 3.11 says that the category A–mod is equivalent to
A–mod. Under this equivalence the full subcategory of „–torsion sheaves is sent to the
subcategory of „–torsion A–modules. The quotient of A–mod by this subcategory is
equivalent to W –mod. Hence, since the global section functor commutes with colimits,
Qcoh.W/ is equivalent to .W;Gm/–Mod. Hence D.Qcoh.W//'D..W;Gm/–Mod/.
As usual, the projective good objects in .W;Gm/–Mod are precisely the summands of
a finite graded free W modules. Since the category .W;Gm/–Mod has finite global
dimension and W is Noetherian, the claim is now standard.

Lemma 5.6 Let U be an open subset of X whose complement is a union of coisotropic
cells. Then, any perfect complex on U admits a perfect extension to X.
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Proof Write j W U ,! X. As noted above, perf.W/ D Db.W–good/. Therefore it
suffices to show that any bounded complex M � of good WU -modules can be extended
to a bounded complex of good W -modules. We shall construct this as a subcomplex of
j�M

� , where j� is the right adjoint to j � given by Corollary 3.28. Assume that M 0

is the first nonzero term. By Theorem 3.27, there exists a good extension N 0 , which
by adjunction maps naturally to j�M 0 . Since its image is again a coherent extension
of M 0 we may assume N 0 is a submodule of j�M 0 . Similarly we can find some
good submodule E 1 of j�M 1 that extends M 1 . Let N 1 be the sum inside j�M 1

of E 1 and the image of N 0 under the differential of j�M � . It is a good W -module
extending M 1 . Continuing in this fashion, the lemma is clear.

Lemma 5.7 Let U � X be open. Then the perfect complexes in D.Qcoh.WU // are
compact.

Proof By Lemma 5.5, we already know this when U is affine. In general, the result
follows from the argument given in [59, Example 1.13]. Namely, given a perfect
complex P , we consider the map of sheaves of C..„//–modulesM

i

RHom.P;Mi /!RHom
�

P;
M
i

Mi

�
:

This is an isomorphism since Lemma 5.5 implies that its restriction to every Gm–stable
affine open subset of U is an isomorphism. Then, since U is a Noetherian topological
space, Proposition III.2.9 of [31] impliesM
i

Hom.P;Mi /DH
0

�
X;
M
i

RHom.P;Mi /

�
��!H 0

�
X;RHom

�
P;

M
i

Mi

��
D Hom

�
P;

M
i

Mi

�
:

In the following, we let Si � S be a collection of subsets such that CSi D Ui is open
in X, Si � SiC1 and CSiC1 XCSi is a union of strata of the same dimension. We have
that CS0 D U0 is the open stratum, and that Sn D S for n� 0, so that Un D X.

Proposition 5.8 The triangulated category D.Qcoh.WUi // is compactly generated
for all i .

Proof Since every perfect complex is compact, it suffices to show that D.Qcoh.WUi //

is generated by its perfect complexes. The proof is by induction on i . When i D 0,
U0 is a single stratum and Proposition 4.33 implies that D.Qcoh.W//'D.Qcoh.DX//.
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Then we have the restriction and induction functors

D.Qcoh.DX//�D.Qcoh.XGm//:

We can argue in exactly the same way as in the case of D–modules — see [59, Example
1.14] — to see that this category is compactly (indeed, perfectly) generated.

Next, we assume that the theorem is known for Ui , and we set C D UiC1 X Ui ,
a union of closed strata in X. Then Theorem 4.28 together with Proposition 4.33
implies that D.Qcoh.WUiC1/C / is equivalent to the direct sum of the D.Qcoh.DSk //,
where the Sk are the coisotropic reductions of the strata in C . As above, these
categories are generated by their subcategories of perfect objects. Since the natural
functors D.Qcoh.DSk //!D.Qcoh.WUiC1/C / take good modules to good modules,
we see that D.Qcoh.WUiC1/C / is generated by perfect (and hence compact) objects
in D.Qcoh.WUiC1//.

Now we wish to show that D.Qcoh.W/UiC1/ is perfectly generated, given that both of
the categories D.Qcoh.WUiC1//C and D.Qcoh.WUi // are generated by their perfect
objects. Assume that M 2 D.Qcoh.WUiC1// is such that Hom.P;M / D 0 for all
perfect objects P in D.Qcoh.WUiC1//. In particular, Hom.P;M /D 0 for all perfect
objects P in D.Qcoh.WUiC1/C /. Thus, Lemma 1.7 of [58] says that M ' ji;�j

�
i M .

Since D.Qcoh.WUi // is perfectly generated, j �i M ¤ 0 implies that there is some
perfect object Q in D.Qcoh.WUi // such that Hom.Q; j �i M / ¤ 0. Take � ¤ 0 in
Hom.Q; j �i M /. By Lemma 5.6, there exists some perfect complex Q0 on UiC1
whose restriction to Ui equals Q . Then the composite Q0 ! ji;�Q ! ji;�j

�
i M

is nonzero since its restriction to U equals � , and we have a contradiction. Thus,
D.Qcoh.W/UiC1/ is perfectly, and hence compactly, generated, as claimed.

Corollary 5.9 Let K � L� S be closed subsets.
(1) The subcategory DK.Qcoh.W// of D.Qcoh.W// is generated by

DK.Qcoh.W//\D.Qcoh.W//c :

(2) Let U D XXCK . Then the exact functor

j �K;LW DL.Qcoh.W//!DLXK.Qcoh.WU //

admits a right adjoint

jK;L;�W DLXK.Qcoh.WU //!DL.Qcoh.W//:

Proof We first prove (1), by induction on jKj. We assume that S is totally ordered with
KDfi � kg. The case jKj D 1 has been done in Proposition 5.8. We define perfK.W/

to be the full subcategory of perf.W/ consisting of all complexes whose cohomology
is supported on CK . Since DK.Qcoh.W// is a full subcategory of D.Qcoh.W//, the
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objects in perfK.W/ are compact in DK.Qcoh.W//. Let K 0Dfi � k�1g, so that, by
induction, DK0.Qcoh.W// is generated by perfK0.W/. Since the objects in perfK0.W/

are compact in D.Qcoh.W//, Construction 1.6 of [58] says that there exist a right
adjoint jK0;� to j �K0 . Let M 2 DK.Qcoh.W// such that Hom.P;M / D 0 for all
P 2 perfK.W/. In particular, Hom.P;M / D 0 for all P 2 perfK0.W/ and hence
M D jK;�j

�
KM . Assume that there exists some Q 2 perfKXK0.WU / and nonzero

morphism �W Q! j �K0M . Just as in the proof of Proposition 5.8, this implies that
there is some Q0 2 perf.W/ and nonzero �0W Q0!M extending � . However, the
fact that X D U t CK0 and the cohomology of Q was assumed to be contained in
CK XCK0 �U implies that the cohomology of Q0 is supported on CK , ie Q0 belongs
to perfK.W/. Thus, we conclude that Hom.Q; j �K0M /D0 for all Q2perfKXK0.WU /.
Since CKXCK0 is a single closed stratum in U , Proposition 5.8 implies that j �K0M D 0
and hence perfK.W/ generates DK.Qcoh.W//.

Now we deduce part (2). By [58, Construction 1.6], a right adjoint jK;� to j �K exists.
The image of DLXK.Qcoh.WU // under jK;� is contained in DL.Qcoh.W// since
XDU tCK . Thus, jK;� restricted to DLXK.Qcoh.WU // is a right adjoint to j �K;L .

The proof of Proposition 5.8 shows that perf.W/ generates D.Qcoh.W//. Since
perf.W/ equals Db.W–good/ by Lemma 5.5, it is clear that perf.W/ is closed under
summands; the same is true of perfK.W/. Therefore [59, Theorem 2.1] implies:

Corollary 5.10 For any closed K � S , the compact objects in DK.Qcoh.W// are
precisely the perfect complexes, ie DK.Qcoh.W//c D perfK.W/.

5.2 Consequences: K –theory and Hochschild and cyclic cohomology

In this section we consider the case where X has only finitely many Gm–fixed
points. The fact that W–good admits an algebraic cell decomposition in this case
(see Definition 5.11) allows us to inductively calculate K0 , and the additive invariants
Hochschild and cyclic homology of perf.W/.

When X has isolated fixed points, the coisotropic strata Ci are affine spaces and their
coisotropic reductions Si are isomorphic as symplectic manifolds to T �Ati for some ti .
Moreover, Qcoh.WSi /' D.Ati /–Mod. For each i 2 S we can form the open subsets
�i D fj j j � ig and >i D fj j j > ig.

Definition 5.11 Let C be an abelian category with a collection of Serre subcategories
CK indexed by closed subsets K in a finite poset. We say that the CK form an algebraic
cell decomposition of C if each subquotient C�i=C<i is equivalent to the category of
modules over some Weyl algebra.
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By Corollary 5.2, W–good admits an algebraic cell decomposition. Let DG–catC
denote the category of all small C–linear dg categories and DG–vectC the dg derived
category of C–vector spaces. Let L denote a C–linear functor from DG–catC to
DG–vectC . We are interested in the case when L admits a localization formula. This
means that any short exact sequence of dg categories gives rise, in a natural way via L,
to an exact triangle in DG–vectC .

For any quantization W , we denote by Perf.W/ the dg category of perfect complexes
for W ; see [43, Section 4].

Moreover, we say that L is even if

H i
�
L.Perf.D.An///

�
D 0

for all n and all odd i .

Proposition 5.12 Suppose LW DG–cat! DG–vect is an even C–linear functor that
admits a localization formula. Then there is a (noncanonical) splitting

L.Perf.W//Š
M
i

L.Perf.D.Ati ///:

Proof By induction on k WD jSj, we may assume that the result is true for U DXXCK ,
where K D fkg. Lemma 5.3 together with (5-1) implies that we have a short exact
sequence

0!D.Qcoh.W/K/!D.Qcoh.W//!D.Qcoh.WU //! 0:

By Theorem 4.28, we may identify D.Qcoh.W/K/ with D.Qcoh.WS //, where S is
the coisotropic reduction of CK . This in turn can be identified with D.D.Atk /–Mod/.
By Lemma 5.6, the sequence

0! perf.D.Ank //! perf.W/! perf.WU /! 0

is exact. Since all functors involved lift to the dg level, we obtain an exact sequence

(5-2) 0! Perf.D.Ank //! Perf.W/! Perf.WU /! 0:

Applying L, we get a triangle

(5-3) L.Perf.D.Atk ///! L.Perf.W//! L.Perf.WU //! L.Perf.D.Atk ///Œ1�

and hence a long exact sequence in cohomology. Therefore, the fact that L is even
implies by induction that H i .L.Perf.W///D 0 for all odd i , and we have short exact
sequences of vector spaces

0!H 2i
�
L.Perf.D.Atk ///

�
!H 2i .L.Perf.W///!H 2i .L.Perf.WU ///! 0

for all i . The claim of the proposition follows.
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Next we prove Corollary 1.12. By [44, Theorem 1.5(c)], both Hochschild and cyclic
homology are localizing functors. Let � be a variable, given degree two. We recall
that the main theorem of [70] implies HH�.D.An//DC�2n . Furthermore, we have
HC�.D.An// D �2nCŒ��. In particular, HH� and HC� are even localizing functors.
Proposition 5.12 implies that the Hochschild and cyclic homology of Perf.W/ are
given by

HH�.Perf.W//D

kM
iD1

C�ti and HC�.Perf.W//D

kM
iD1

�tiCŒ��;

respectively. Therefore, in order to identify HH�.Perf.W// with H��dimX.X/ as
graded vector spaces, it suffices to show that

H�.X/D �
1
2

dimX
kM
iD1

C�ti :

This follows from the BB decomposition of X, noting that dimCi D
1
2

dimXC 2ti .

5.3 The Grothendieck group of Perf.W/

Finally, we turn to the proof of Corollary 1.11, which states that the Grothendieck
group K0.Perf.W// is a free Z–module of rank jSj. Again, the proof is by induction
on k D jSj. Using the Bernstein filtration on D.Ati /, Theorem 6.7 of [65] says that
we have identifications

Kj .D.Ati //DKj .PerfD.Ati //'Kj .C/ for all j;

where Kj .D.Ati // is the j th K–group of the exact category of finitely generated
projective D.Ati /–modules. The higher K–groups Kj .C/ for j � 1 of C have been
calculated by Suslin and are known to be divisible; see [62, Corollary 1.5]. Quillen’s
localization theorem [65, Theorem 5.5] says that the short exact sequence (5-2) induces
long exact sequences

(5-4) � � �!K1.Perf.WU //!K0.Perf.D.Atk //!K0.Perf.W//!K0.Perf.WU //!0:

Since a divisible group is an injective Z–module and the quotient of a divisible group
is divisible, the subsequence

0!K0.Perf.D.Atk //!K0.Perf.W//!K0.Perf.WU //! 0

is exact, and it follows by induction that K0.Perf.W// is free of rank k .

5.4 Hochschild cohomology

In many instances one can apply Van den Bergh’s duality theorem to calculate the
Hochschild cohomology of the category W–good. In this subsection, we assume that
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X is a symplectic resolution f W X!X , where X is an affine cone, ie X has a Gm–
action with a single attracting fixed point. Moreover, we assume that X arises as the
GIT quotient of a G–representation W , where G is a reductive algebraic group. Thus,
X D ��1.0/==�G for an appropriate character � of G , and X D Spec

�
CŒ��1.0/�

�
.

Note that in this case, Lemma 3.7 of [53] shows that Assumptions 3.2 of that paper
apply once we assume (as we shall) that the moment map is flat. Let U denote the
algebra of Gm–invariant global sections of WX .

Assumption 5.13 Suppose that f W X! X is a symplectic resolution obtained via
Hamiltonian reduction as above. Then, if gD Lie.G/ and zD .g=Œg; g�/� , we have a
natural “Duistermaat–Heckman” map z!H 2.X/. We assume this map is surjective.

Lemma 5.14 If X is a Nakajima quiver variety of type ADE, then Assumption 5.13
holds. Moreover, in general, for any Nakajima quiver variety, whenever the assump-
tion holds, the natural map z! H 2.X/ is an isomorphism and hence the family of
Hamiltonian reductions over z realizes the universal deformation of X.1

Proof In the ADE case, the Poincaré polynomial of the cohomology H�.X/ is known
by the work of Kodera and Naoi [46]. It follows readily that dimH 2.X/ D dim z,
and hence it suffices to check that the Duistermaat–Heckman map is injective. While
this can be checked directly in these cases, since the Duistermaat–Heckman map can
be realized as (a graded component of) a natural map from the center of a quiver
Hecke algebra to the cohomology of the quiver variety, it follows from a recent result
of Webster [69] that this map is always injective. This completes the proof of the
lemma.

Recall that for any c 2 z we may define the quantum Hamiltonian reduction of the
Weyl algebra associated to W . We denote this algebra by Uc .

Lemma 5.15 Let X be a conic symplectic resolution as above with a Gm–equivariant
quantization WX . Suppose that Assumption 5.13 holds for X. Then the filtered
quantization U of X associated to W is of the form Uc for some c 2 z.

Proof In [49] it is shown that, via the Bezrukavnikov–Kaledin noncommutative period
map, graded quantizations of X are parametrized by H 2.X;C/. Moreover, one can
show that, provided Assumption 5.13 holds, this period map for quantum Hamiltonian
reductions Uc for c 2 z is realized by the Duistermaat–Heckman map, up to a shift
corresponding to the canonical quantization. Since the Rees construction gives an
equivalence between filtered and graded quantizations, it follows from this that any

1Added in proof: If X is a Nakajima quiver variety, then the main theorem of the recent preprint [54]
implies that the canonical map z!H2.X/ is surjective.
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filtered quantization is of the form Uc for some c 2 z. As the Gm–invariant global
sections U of our quantization of X gives such a filtered quantization, it is thus of the
form Uc for some c 2 z.

For the rest of this section we fix c 2 z such that U Š Uc .

Lemma 5.16 Let W be a G–representation as above, and �W G!Gm . Then W ˚W
is a G �G–representation, and the .�; �/–unstable locus contains W �–un �W �–un .

Proof Let W �C� be the G–representation given by g.w; z/D .g.w/; �.g/ �z/. By
the Hilbert–Mumford criterion, a point x 2W is unstable if there is a one-parameter
subgroup �W Gm!G such that limt!0 �.t/.x; 1/D .0; 0/ for .x; 1/ 2W �C� , and
similarly for .x; y/ 2 W ˚W . Thus, if x and y are both in W �–un , destabilized
by one-parameter subgroups �1 and �2 , respectively, it is clear that .�1; �2/ gives a
one-parameter subgroup of G �G which destabilizes .x; y/, and we are done.

Lemma 5.17 Let cW g! C be a character of g for which the algebra U D Uc has
finite cohomological dimension. Then Uc is smooth; that is, U e has finite global
dimension.

Proof First note that since Uc is (left or right) Noetherian, its global dimension is its
Tor dimension, and hence it has finite global dimension if and only if U op

c has finite
global dimension. Moreover, it follows from the construction of the noncommutative
period map in [8] and the Duistermaat–Heckman theorem (see for example [49]) that
the algebra U op

c is isomorphic to U��c , where 1
2
� is the character corresponding to

the canonical quantum moment map, ie the quantum moment map which yields the
canonical quantization of X.

To see that U e D Uc ˝U
op
c Š Uc ˝U��c has finite global dimension, first note that

Uc ˝U��c Š �.X�X; EX;c � EX;��c/

or, in the notation of [53], .Mc �M��c/
G�G . Now, since X is smooth, Corollary 7.6

of [53] shows that Uc ˝ Uc�� has finite global dimension if and only if the pull-
back functor Lf � is cohomologically bounded. Explicitly, Lf � is the functor from
D.Uc˝Uc��–mod/ to DG;.c;��c/.A˝A–mod/ given by

N 7! �..Mc �M��c/˝
L
Uc˝U��c

N/; N 2D.Uc�U��c–mod/;

where � is the quotient functor given by the .�; �/–unstable locus.

Choose free Uc and U��c resolutions P � of Mc and Q� of M��c , respectively. By
[53, Corollary 7.6], each of �.P �/ and �.Q�/ has only finitely many cohomologies,
ie for each of P � and Q� , all but finitely many cohomologies have associated graded
supported in W �–un . Hence the resolution Tot.P � �Q�/ of Mc �M��c has all
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but finitely many cohomologies with associated graded supported in W �–un �W �–un .
Thus, using Lemma 5.16 it follows the cohomologies are .�; �/–unstably supported
after finitely many terms also. Thus Lf � is bounded and hence U e has finite global
dimension, as required.

Remark 5.18 In a number of examples, such as the Hilbert scheme of points in C2 or
the minimal resolution of C2=�l the cyclic quotient singularity, it is known explicitly
when the algebra Uc has finite global dimension; moreover it is shown in [13], building
on work of Kaledin, that the algebra Uc has finite global dimension for sufficiently
generic c .

Recall that an algebra U is said to have finite Hochschild dimension (or is smooth) if
U has a finite resolution when considered as a U e D U˝U opp –module.

Proposition 5.19 Assume that Uc has finite global dimension. Then

HH�.Perf.W//D HH�.Uc/DH�.X;C/:

Proof By [53, Lemma 3.14], the algebra Uc is Auslander Gorenstein with rigid
Auslander dualizing complex D� D Uc . By Lemma 5.17, the enveloping algebra U e

of Uc has finite global dimension, and hence Uc has finite Hochschild dimension,
thus we are able to apply Van den Bergh’s duality result [67, Theorem 1] to conclude
that HH�.Uc/D HHdimX��.Uc/. Since Uc has finite global dimension, Theorem 1.1
of [53] and Corollary 1.12 show that

HH�.Perf.W//D HH�.Uc/D HHdimX��.Uc/DHdimX��.X/;

where in the last equality we use the fact that the degrees in Borel–Moore homology
are twice those in Hochschild homology. On the other hand, Poincaré duality [14,
Equation (2.6.2)] says that HdimX��.X/DH

�.X/, and so the result follows.

Presumably one can also apply the results of [19] and [42, Section 2.5] to the category
Perf.W/ in order to express directly the Hochschild cohomology of that category in
terms of its Hochschild homology.

More generally, the proof of Proposition 5.19 shows that if X is a symplectic res-
olution f W X! X of an affine cone X , the number of Gm–fixed points on X is
finite, and Uc is a quantization of CŒX� such that derived localization holds and the
enveloping algebra U e has finite global dimension, then HH�.Uc/DH�.X;C/. We
conclude with a number of standard examples, arising from representation theory,
where Proposition 5.19, or the above more general statement, is applicable.
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Example 5.20 Let � be a cyclic group and Sn o � the wreath product group that
acts as a symplectic reflection group on C2n . The corresponding symplectic reflection
algebra at t D 1 and parameter c is denoted by Hc.Sn o �/. Define an increasing
filtration F�.CŒSn o��/ on the group algebra of Sn o� by letting Fi .CŒSn o��/ for
i � 0 be the subspace spanned by all elements g 2 Sn o� such that rk.1� g/ � k ,
where 1�g is thought of as an endomorphism of C2n . This is an algebra filtration and
restricts to a filtration F�.ZSn o�/ on the center of the group algebra. The following
result, which was proved for generic c in [22, Theorem 1.8] for generic c , follows
easily from the results of this paper.

Proposition 5.21 Assume that c is spherical. Then

HH�.Hc.Sn o�//D HH2n��.Hc.Sn o�//D grF� .ZSn o�/;

as graded vector spaces.

In [22], it is shown that the identification HH�.Hc.Sn o �// D grF� .ZSn o �/ is as
graded algebras.

Example 5.22 Let G be a connected, semisimple, complex Lie group and g its Lie
algebra. Fix a Cartan subalgebra h of g and let W be the Weyl group of G . Let N
denote the nilpotent cone in g. The Springer resolution of N is � W T �B!N , where
B is the flag variety. We fix e 2N . Associated to e is a Slodowy slice e 2 S � g. The
intersection S0 WD S \N is a conic symplectic singularity, and the restriction of �
defines a symplectic resolution zS0 WD ��1.S0/! S0 . Quantizations of S0 are given
by finite W–algebras, which we denote by A�.e/ to avoid confusion with our notation
for DQ algebras. Here � 2 h� . Notice that B\ zS0 is the Springer fiber Be of e .

Let l� g be a minimal Levi subalgebra containing e . Recall that the element e is said
to be of standard Levi type if it is regular in l (this is independent of the choice of l).
In type A, every nilpotent element is of standard Levi type.

Proposition 5.23 Let e be of standard Levi type and � 2 h� regular. Then

HH�.A�.e//'H
�.Be/:

Proof If e is of standard Levi type then it follows from [23, Proposition 1] that there
is a one-parameter subgroup H �G acting on zS0 such that zSH0 is finite. Since this
action is Hamiltonian, we may assume by twisting that the elliptic action of Gm on zS0
has only finitely many fixed points.

Therefore it suffices to check that, when � is dominant regular, localization holds
(ie there is a DQ algebra W� on zS0 such that A�.e/–mod ' W�–good) and the
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enveloping algebra of A�.e/ has finite global dimension. This is well known so we
give the appropriate references. The statement about localization follows from [18,
Theorem 6.5] or [25, Theorem 6.3.2], and the fact that the enveloping algebra of A�.e/
has finite global dimension is a consequence of [25, Proposition 6.5.1] and the fact
that the abelian category W–good has finite global dimension for any DQ algebra W
on zS0 � zS0 .

In particular, when e D 0, we have S D g and hence S \N DN and zS0 D T �B . In
this case A�.e/ is a primitive central quotient of the enveloping algebra U.g/ and our
result recovers a result of Soergel [66], who also used localization (but coupled with
the Riemann–Hilbert correspondence).

Example 5.24 Let M.r; n/ be a framed moduli space of torsion-free sheaves on P2

with rank r and second Chern character c2 D n. Specifically, M.r; n/ parametrizes
isomorphism classes of pairs .E; �/ such that:

(1) The sheaf E is torsion-free of rank r and hc2.E/; ŒP2�i D n.

(2) The sheaf E is locally free in a neighborhood of `1 , with fixed isomorphism
�W Ej`1

��!O˚r
`1

.

Here `1DfŒ0 W z1 W z2�2P2g is the line at infinity. The space M.r; n/ is isomorphic to
the quiver variety associated to the framed Jordan quiver, with dimension vector .r; n/;
see [57]. Let M reg

0 .r; n/ be the open subset of locally free sheaves. The space M.r; n/
is a symplectic resolution of M0.r; n/, where the latter is the Uhlenbeck partial com-
pactification of M reg

0 .r; n/. Quantizations Ac.r; n/, for c 2C , of M0.r; n/ have been
studied in [50].

Proposition 5.25 Assume that c is not of the form s=m, where 1 < m < n and
�rm < s < 0. Then

HH�.Ac.r; n//DH�.M.n; r/;C/:

Proof This follows from Proposition 5.19 and [50, Theorem 1.1], once one knows
that M.r; n/ has finitely many fixed points under Gm . But this follows from [57,
Theorem 3.7], which shows that there is a natural torus T acting by Hamiltonian
automorphisms on M.r; n/ such that the set M.r; n/T is finite.

The above proposition implies that the graded dimension of HH�.Ac.r; n// has a
concise expression in terms of r –multipartitions of n; see [57, Theorem 3.8].
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Example 5.26 Our final example is slices in affine Grassmannians. We follow [36; 37].
Let G be a complex semisimple Lie group and GrD G..t�1//=GŒt � its thick affine
Grassmannian. For any given pair of dominant coweights � � �, we have Schubert
subvarieties Gr� and Gr� of Gr such that Gr� � Gr� . The intersection Gr�� WD
Gr�\Gr� , with Gr� an orbit for the first congruence subgroup G1ŒŒt�1�� of GŒŒt�1��,
is called the Lusztig slice. It is a finite-dimensional affine conic symplectic singularity.
If � is a sum of miniscule coweights, then it is shown in [37, Theorem 2.9] that
Gr�� admits a symplectic resolution �Gr�� , given by closed convolution of Schubert
varieties associated to miniscule weights. If T � G is a maximal torus, then T acts
Hamiltonian on both �Gr�� and Gr�� such that the resolution morphism is equivariant.
It has been shown in [36, Lemma 4.4] that . �Gr��/T is finite. Therefore, one can twist
the elliptic action of Gm on �Gr�� so that it has only finitely many fixed points. Thus,
Proposition 5.19 implies that if U is a quantization of CŒGr��� such that U e has finite
global dimension and derived localization hold, then

HH�.U /'H�. �Gr
�

�;C/:

Conjecturally, any such quantization is given by a quotient Y �
�
.c/ of a shifted Yan-

gian Y � ; see [37, Conjecture 4.11].
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