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The nonuniqueness of the tangent cones at infinity
of Ricci-flat manifolds

KoTA HATTORI

Colding and Minicozzi established the uniqueness of the tangent cones at infinity of
Ricci-flat manifolds with Euclidean volume growth where at least one tangent cone at
infinity has a smooth cross section. In this paper, we raise an example of a Ricci-flat
manifold implying that the assumption for the volume growth in the above result is
essential. More precisely, we construct a complete Ricci-flat manifold of dimension 4
with non-Euclidean volume growth that has infinitely many tangent cones at infinity
where one of them has a smooth cross section.

53C23

1 Introduction

For a complete Riemannian manifold (X, g) with nonnegative Ricci curvature, it is
shown by Gromov’s compactness theorem that if one takes a sequence

ay>a;>--->a;>--->0

such that lim; o0 @; = 0, then there is a subsequence {a;(;y}; such that (X, a;j)g, p)
converges to a pointed metric space (Y, d,q) as j — oo in the sense of the pointed
Gromov—Hausdorff topology; see Gromov [9; 10]. The limit (Y, d, q) is called the
tangent cone at infinity of (X, g). In general, the pointed Gromov—Hausdorff limit
might depend on the choice of {a;}; or its subsequences.

The tangent cone at infinity is said to be unique if the isometry classes of the limits are
independent of the choice of {a;} and its subsequences, and Colding and Minicozzi
showed the next uniqueness theorem under the given assumptions.

Theorem 1.1 [6] Let (X, g) be a Ricci-flat manifold with Euclidean volume growth,
and suppose that one of the tangent cones at infinity has a smooth cross section. Then

the tangent cone at infinity of (X, g) is unique.

Among the assumptions in Theorem 1.1, the Ricci-flat condition is essential since
there are several examples of complete Riemannian manifolds with nonnegative Ricci
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curvature and Euclidean volume growth where one of the tangent cones at infinity has
smooth cross section, but the tangent cone at infinity is not unique; see Perelman [12]
and Colding and Naber [7].

Here, let T (X, g) be the set of all of the isometry classes of the tangent cones at infinity
of (X, g). In this paper, an isometry between pointed metric spaces means a bijective
map preserving the metrics and the base points. It is known that 7 (X, g) is closed
with respect to the pointed Gromov—Hausdorff topology, and has the natural continuous
R *-action defined by the rescaling of metrics. The uniqueness of the tangent cone at
infinity means that 7 (X, g) consists of only one point.

In this paper, we show that the assumption for the volume growth in Theorem 1.1 is
essential. More precisely, we obtain the next main result.

Theorem 1.2 There is a complete Ricci-flat manifold (X, g) of dimension 4 such
that T(X, g) is homeomorphic to S'. Moreover, the Rt —action on T (X, g) fixes
(R3,dg°,0), (R3, ho,0) and (R3, hy,0), where hy = Z?zl(dfi)z is the Euclidean
metric, d§° is the completion of the Riemannian metric

/°° dx I
o 1&—(x%,0,0) °

hi = (1/]¢)hg, and R acts freely on
T(X’ g)\{(R3’ d(()>o’ O)v (R3v h()v O)v (R3v hl’ O)}
Here, { = ({1, &, L3) is the Cartesian coordinate on R3.

Here, we mention more about the metric spaces appearing in Theorem 1.2. For
0=<S8 < T =< o0, denote by dg the metric on R* induced by the Riemannian metric

/T dx
—'hO
S |§_(XOL,O,O)|

For (X, g) in Theorem 1.2, we show that 7(X, g) contains {(R3, dOT, 0): T eRt},
{(R?,d,0):S €RT} and {(R?, ho+ 6h1,0):0 € RT}. Here, we can check easily
that dg and dg° are homothetic to d, Uand d 77, respectively. We can show that

(R*,dy ,0) — (R*,d3°,0), (R*,dg,0) ——> (R, 11,0),
(R3, d§°,0) (R3 ho. 0), (R3, dg°,0) (R3 dse,0),
(R3, h0+9h1,0) (]R3 h1,0),  (R3 ho+60hy, 0) (R3 ho, 0).
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Both (R3, /1¢) and (R3, /1) can be regarded as the Riemannian cones with respect to the
dilation ¢ +> A¢ on R3. Although the dilation also pulls back dg° to 1@/ gee,
(R3, dg°) does not become the metric cone with respect to this dilation since / =
{(¢,0,0) € R3 : ¢t > 0} is not a ray. In fact, any open intervals contained in / have
infinite length with respect to d°.

In general, tangent cones at infinity of complete Riemannian manifolds with nonnegative
Ricci curvature and Euclidean volume growth are metric cones; see Cheeger and
Colding [4]. In our case, it is shown in Section 9 that (R3, dgo, 0) never becomes the
metric cone of any metric space.

The Ricci-flat manifold (X, g) appearing in Theorem 1.2 is one of the hyper-Kihler
manifolds of type Ao, constructed by Anderson, Kronheimer and LeBrun in [1]
applying Gibbons—Hawking ansatz, and by Goto in [8] as hyper-Kihler quotients.
Combining Theorems 1.1 and 1.2, we can see that the volume growth of (X, g) should
not be Euclidean. In fact, the author [11] has computed the volume growth of the
hyper-Kzhler manifolds of type A~ and showed that they are always greater than
cubic growth and less than Euclidean growth. To construct (X, g), we “mix” the
hyper-Kihler manifold of type Ao whose volume growth is r¢ for some 3 < a < 4,
and R* equipped with the standard hyper-Kihler structure. Unfortunately, the author
could not compute the volume growth of (X, g) in Theorem 1.2 explicitly.

In this paper, we can show that many metric spaces may arise as the Gromov—Hausdorff
limit of hyper-K&hler manifolds of type Ao. Let

IeBL(RT):= {J C R* : J is a Borel set of nonzero Lebesgue measure},

and denote by d; the metric on R3 induced by the Riemannian metric

dx
k.
/1|c—(xa,o,0>| 0

Then we have the following result.

Theorem 1.3 There is a complete Ricci-flat manifold (X, g) of dimension 4 such that
T(X, g) contains
{(R3,d;,0): I € By(RT)}/isometry.

Since dg° and dOT are contained in 7 (X, g) in the above theorem, their limits /¢ and
(1/|¢])hq are also contained in 7 (X, g). The author does not know whether any other
metric spaces are contained in 7 (X, g).

Theorems 1.2 and 1.3 are shown along the following process. The aforementioned
hyper-Kihler manifolds are constructed from infinitely countable subsets A in R3
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such that ) ; cx 1/(1 +|A]) < co. We denote such a manifold by (X, go) and fix
the base point p € X. From the construction, (X, ga) has a natural S!-action
preserving g o and the hyper-Kihler structure; then we obtain a hyper-Kéhler moment
map a: X — R3 such that ua(p) = 0, which is a surjective map whose generic
fibers are S!. There is a unique distance function d, on R? such that pup is a
submetry. Here, submetries are the generalizations of Riemannian submersions to the
category of metric spaces. For a > 0, we can see agp = g4 ; hence by taking a; > 0
such that lim; o a; = 0, we obtain a sequence of submetries jiq;A: X — R3. Now,
assume that {(R?, dj, »,0)}; converges to a metric space (R?, doo, 0) for some doo in
the pointed Gromov-Hausdorff topology, and the diameters of fibers of (4, o converge
to 0 in some sense. Then we can show that (R3, do, 0) is the Gromov—Hausdorff
limit of {(X, g4,A, p)}i. We raise a concrete example of A and sequences {a;};, then
obtain several limit spaces. Among them, it is shown in Section 9 that (R?3, dg°) is
not a polar space in the sense of Cheeger and Colding [5].

This paper is organized as follows. We review the construction of hyper-Kéhler mani-
folds of type Ao and the hyper-Kdhler moment map jtp in Section 2. Then we review
the notion of submetry in Section 3, and the notion of Gromov—Hausdorff topology
in Section 4. In Section 5, we construct a submetry p, from (X, g,a) to (R3,d,)
by using 1t and dilation, where d, is the metric induced by the Riemannian metric
®,(8)hg. Here, ®, is a positive valued harmonic function determined by A and
some constants. Then we see that the convergence of {(X, g4;A)}i can be reduced
to the convergence of {(R?, d,,)};. In Sections 6 and 7, we raise concrete examples
of A and fix a > 0, and then we estimate the difference of ®, and another positive
valued harmonic function ®, which induces the metric doy on R3. In Section 8, we
observe some examples by applying the results in Sections 6 and 7, and then we show
Theorems 1.2 and 1.3. In Section 9, we prove that (R3, dg®) is not a polar space.

Acknowledgments The author would like to thank Professor Shouhei Honda who in-
vited the author to this attractive topic, and also for advice on this paper. The author also
would like to thank the referee for careful reading and several useful comments. Thanks
to these, the author could make the main results much stronger. The author was sup-
ported by Grant-in-Aid for Young Scientists (B) Grant Number 16K17598. The author
was partially supported by JSPS Core-to-Core Program, “Foundation of a Global Re-
search Cooperative Center in Mathematics focused on Number Theory and Geometry”.

2 Hyper-Kihler manifolds of type A4,

Here we review briefly the construction of hyper-Kéhler manifolds of type Aeo,
along [1].
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The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds 2687

Let A C R? be a countably infinite subset satisfying the convergence condition

1
Z1+|)\|<°°’

ALEA

and take a positive valued harmonic function ®, over R*\ A defined by

®a)i= Y

LEA

Then *d®, € Q2(R3\A) is a closed 2—form, where * is the Hodge star operator
of the Euclidean metric. We have an integrable cohomology class [1/(4m) * d®p] €
H?*(R3\A,Z), which is equal to the 1% Chern class of a principal S!-bundle p =
pua: X* > R3\A. Forevery A € A, we can take a sufficiently small open ball B C R?
centered at A which does not contain any other elementsin A. Then pu: u~'(B\{A}) —
B\{A} is isomorphic to the Hopf fibration 11o: R*\{0} — R3\{0} as principal S!—
bundles; hence there exists a C*° 4-manifold X and an open embedding X* C X,
and j can be extended to an S!—fibration

1= (11, pa, pu3): X —> R

Moreover, we may write X\X* = {p; : A € A} and u(p;) = A. Next we take an
S!_connection I' € Q1(X*) on X* — R3*\ A, whose curvature form is given by
#*d®, . Then T is uniquely determined up to an exact 1—form on R3\A. Now, we
obtain a Riemannian metric

3
ga = (u*@p) T2+ Dp Y (dui)?
i=1
on X*, which can be extended to a smooth Riemannian metric g5 over X by taking I’

appropriately.

Theorem 2.1 [1] Let (X, ga) be as above. Then it is a complete hyper-Kéhler
(hence Ricci-flat) metric of dimension 4.

Since S! acts on (X, ga) isometrically, it is easy to check that
p: (X, ga) = (RP\A, Dy - ho)

is a Riemannian submersion, where /1 is the Euclidean metric on R3.
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Next we consider the rescaling of (X, ga). For @ > 0, put aA :={al e R*: L € A}.
Then it is easy to see

1 1
o, = - g E———— Y I e}
A©) AEGA T—an AEGA iz ¢ Al@9)

and j1apa = app; hence p)\ Pup = a_l,uj\ ® 5 holds. Thus we have

3
8aN = (/L;:Aq)aA)_IFZ + /'LZACDaA Z(d/'LaA,i)2
i=1
3
=a(ui®a) ' T +ap ®p > (dpa)® = aga.

i=1
3 Submetry

Throughout this paper, the distance between x and y in a metric space (X, d) is
denoted by d(x, y). If it is clear which metric is used, we often write |xy| = d(x, y)

The map p: X — R3 appearing in the previous section is not a Riemannian submersion
since du degenerates on X \X* and ®, - /g is not defined on the whole of R3.
However, we can regard p as a submetry, which is a notion introduced in [3].

Definition 3.1 [3] Let X, Y be metric spaces and u: X — Y a map which is not
necessarily continuous. Then p is said to be a submetry if u(D(p,r)) = D(u(p),r)
for every p € X and r > 0, where D(p, r) is the closed ball of radius r centered at p.

Any proper Riemannian submersions between smooth Riemannian manifolds are known
to be submetries. Conversely, a submetry between smooth complete Riemannian
manifolds becomes a C!! Riemannian submersion [2].

Now we go back to the setting in Section 2. Denote by d the metric on R3 defined as
the completion of the Riemannian distance induced from ® 4 -iq. Since u: (X™*, gp) —
(R3\A, @4 - hp) is a Riemannian submersion, we have the following proposition.

Proposition 3.2 Let (X, ga) be a hyper-Kihler manifold of type As,. The map
w: (X,dg,)— (R? dp) is a submetry, where dg, is the Riemannian distance induced
from g A . Moreover, for any po € it~ (qo), we have

da(qo.q1) =  inf  dg,(po,p1).
pren—l(q1)

Geometry & Topology, Volume 21 (2017)
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4 The Gromov-Hausdorff convergence

In this section, we discuss the pointed Gromov—Hausdorff convergence of a sequence
of pointed metric spaces equipped with submetries. First we review the definition
of pointed Gromov—Hausdorff convergence of pointed metric spaces. Denote by
B(p,r) = Bx(p,r) the open ball of radius r centered at p in a metric space X .

Definition 4.1 Let (X, p) and (X’, p’) be pointed metric spaces, and let r and ¢ be
positive real numbers. Then f: B(p,r) — X' is said to be an (r, &)—isometry from
(X, p) to (X', p/) if

M fp=r,

2) ||xy| — |f(x)f(y)|‘ < ¢ holds for any x, y € B(p,r), and

(3) B(f(B(p.r)),e) contains B(p',r —¢).
Definition 4.2 Let {(X;, pi)}; be a sequence of pointed metric spaces. Then we
say {(Xi, pi)}i converges to a metric space (X, p) in the pointed Gromov—Hausdorff

topology, or {(X;, pi)}i<8>(X, p), if for any r,e > 0 there exists a positive integer
N(r.¢) such that an (r, e)—isometry from (X;, p;) to (X, p) exists for every / > N, 4.

For metric spaces X', Y, amap u: X —Y and g €Y, define §4,,(r) e R>oU{oo} by

Sq.u(r) = sup diam(u~ () = sup  |xx’|.
yeB(q.r) ye€B(q,r)
x,x'ep~1(y)

Proposition 4.3 Let (X, p) and (Y, q) be pointed metric spaces equipped with sub-
metries p: X — Y satisfying p(p) = ¢q, and let (Yo, goo) be another pointed metric
space. Assume that 64,,(r) < oo and we have an (r,$)—isometry from (Y, q) to
(Yoo, qoo) - Then there exists an (r, §+84,,,) —isometry from (X, p) to (Yoo, qoo)-

Proof There is an (r, §)—isometry f from (Y, ¢q) to (Yoo, ¢oo). It is easy to check that
the composition f := fou isan (r, 5464, ,)—isometry from (X, p) to (Yoo, go0). O

S Tangent cones at infinity

Let (X, d) be a metric space and {a;}; a decreasing sequence of positive numbers
converging to 0. If (Y, g) is the pointed Gromov-Hausdorff limit of {(X,a;d, p)}i,
then it is called an tangent cone at infinity of X . It is clear that the limit does not
depend on p € X, but may depend on the choice of the sequence {a;};.

In this paper, we are considering the tangent cones at infinity of (X, dg, ). In Section 2,
we have seen that /adg, = dg,, for a > 0; hence pugn: (X, /adg,) — (R3,dyp)

Geometry & Topology, Volume 21 (2017)



2690 Kota Hattori

is a submetry. By taking N € R and the dilation I: R3 — R3 defined by Iy ({) :=
(1/N)¢, we have another submetry

ta = IN" o pan: (X, Vadg,) > (R*,dy := In*dap).

Here, In*d,p is the completion of the Riemannian distance of

1 1 1
IN"(®an -ho) = IN"Pan - 5r5ho = NPNan - 5r5ho = 57 PNan - ho-
Thus we obtain d,, which is the completion of the Riemannian metric ®, - 2o, where
1
q)a = WQNGA-

In other words, d, is given by

(1) da(x,y) = inf  [,(y),
y €Path(x,y)

where Path(x, y) is the set of smooth paths in R? joining x, y € R3, and

151
@) la(y) = /t OO Y (0] de.

By the definition of g, , one can see that the diameter of the fiber MXI (¢) is given by

7//®A(£). Accordingly, the diameter of u;({) is given by 7/(N /®4(2)).

For a metric doo on R3 and constants r, 8,8’ > 0, we introduce the next assumptions.
(A1) The identity map idgs: (R3,dg, 0) — (R, doo, 0) is an (r, §)—isometry.

T
(A2) sup ———— <4
¢€By, (0,r) N/ Pq(8)

Then we obtain the next proposition by Proposition 4.3.
Proposition 5.1 Let (X, ga) and ju, be as above, p € X satisfy ua(p) =0 and dso

be a metric on R3. If (A1) and (A2) are satisfied for given constants r,§,8' > 0, then
Wq is an (r,§4-8")—isometry from (X, agp, p) to (R3, dwo, 0).

6 Construction

Fix a > 1, and let
A :={(k*,0,0): k € Z>¢}.

Take an increasing sequence of integers 0 < Ko < K1 < Ky <---.
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In this paper, many constants will appear, and they may depend on « or {K,}. However,
we do not mind the dependence on these parameters. Put

o0
Aop :={(k*.0,0) € A* : Koy <k < Kppy1}. A= Aoy
n=0

Since A C A%, we can see that ) 3. 1/(1 +|A|) < co; accordingly, we obtain a
hyper-Kihler manifold (X, ga).

From now on, we fix a >0, n € N and P > 0, then put N =g~ 1/ (+e) p1/(1+a) gpq
_ L _ L
Pa(§) = 7 ONar®) = Xy pw=ai]
LEA
Let [ :={(¢,0,0) € R?:¢ > 0}, and put
K(R, D) := {; €R’:[¢| <R, inf s —y|= D}.
ye

Here, inf)¢; [§ — y| is given by

Vitcl? if tr >0,

inf [ —y| =
yellz V| {|§| if & <0

for { = ((r. ¢c) €eR3=R@C. For 0<S < T < 0o, define a positive valued function
®T . :R3\l >R by

T dx
T A
s.p () “/S C= P(x.0.0)]

Throughout this section, we put

_ Kon _ aﬁPﬁKzn, T, = Kaon+t1
N N

Proposition 6.1 For any ¢ € K(R, D), we have

1 —1
Sy =alta PTHa Ky, 1.

- W 2 2 T+a
()= <I>§mp(;)' <~5 = 6(?) i

n=0

Proof Since
Aoy ={(k*,0,0): Koy <k < Kans1}

we have
Kapy1—1
> e = i 1
N|C—PN %A\ N|¢—PN~%(k*,0,0)|"
AEA, k=K>,
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Then we obtain

i =
N|§—PN~%A| Kop/N 10— P(x%,0,0)| /)|~ ND

AEA,

The above inequality holds since the function x + 1/|¢ — P(x%, 0, 0)| has at most one
critical point, and for all { € K(R, D),
1 1 1

SUD 1E P (x@,0,0)] Aok [T=P(x#.0,0)]

Next we obtain the lower estimate of ®, as follows.

Proposition 6.2 We have

Tn  dx 1
T, .
4) g p(0) = (/ TP a) mln{ﬂ,l},
) D,(0) > (Z/T —2(aP_1)141ra) min{i 1)
1+P o | |’ 9’
- 12w [¢lw
6 (DT" < P« o ,

S S—ot-i—l b L
GIEEPR X P(é)_ﬁ ifSnoz(ﬁ) :

n=no

(8) > Smp(g)<—° if { € K(R, D).

n=0

Proof First of all, one can see

Tn  dx 1 T dx
S (k= el 14+ Px«
" Sy 81+ Px® 78] Js, 14 Px

T, Tn dx Tn dx
Doz |
ns Sy |§| + an S, 1+ an

if |¢] < 1. Next we have

if [¢|>1, and

oo Kopt1-—1

® @)—Z 2 N(|§|+PN afew)”

=0 k=K,,
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and a similar argument to the proof of Proposition 6.1 gives

s Kzril 1 /T” dx <
N(l+PN=k®) Jg, [E|+ Px*) |~

k=K>;,

2
Ni¢l”

Combining these inequalities, one has the second assertion if |{| > 1. If |{| < I, then

oo Kopt1—1

ZGEDIEDY N(1+PN afay’

n=0 k=K,

and by a similar argument, we obtain the assertion.

Next we consider (6). If 1 > (2|¢]/P) /2, then

(9) /oo dx < /OO 2dx — 2 t—ot+1
¢ =P (x%,0,0)] " J, Px* Pla—1)

holds. Hence one can see

o dx
ZCD PR, ZC)—/O |t — P(x%,0,0)]

Q=

/(2}5) dx /°° dx
= +
o PG 0.0)] gt t- PG 0.0)]

_QE/PE 2 (2|§|)3v @t
= el Ple-D

1
20¢])a 2|¢)e 1
_ p- (( 1)« Jr(IZI) )
1¢cl a—1 [ic|
The statement (7) follows from (9), and (8) is obvious. O

T T dx
ASP:= B
> S 1+ Px«

By Proposition 6.2, we have the following.

Put

Proposition 6.3 Let ®, be as above. Then forevery R > 1,

3
|
N[—

S

|§|<RN\/<D( ( )l+a(n:0ASns 2<P)
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7 Distance

. . . T,
In the previous section, we estimated ‘C[)a >, SZ, P| on K(R, D).

In this section, we introduce more general positive functions ¢ and @, and induced
metrics d and ds on R3, respectively. What we hope to show in this section is that
if we fix a very large R > 1 and assume that supg (g, p)|® — Poo| < &/ D holds for a
very small ¢ and every D < 1, then the identity map of R? becomes an (r, §)—isometry
from (R3,d,0) to (R3,dw,0) for a large r and a small §. Here, we explain the
difficulty in showing it.

We hope to show that supg (g, p) |d —dco| is small forevery R>1and 0 < D <1. By
the estimate of supg (g py |®—Pool, it is easy to see that supg (g p) R, D —doo,R,D|
is small, where dg p (resp. deo,g,p) is the Riemannian distance of the Riemannian
metric ®/1o|g(r,p) (resp. Poolio| k (R, D))- However, dg p may notequal d in general
since the geodesic of @/ joining two points in K(R, D) might leave K(R, D). To
see that supg (g, py |[dr,p — d| is sufficiently small, we have to observe that a path
joining two points in K(R, D) which leaves K(R, D) can be replaced by a shorter
path included in K(R, D).

In this section, we consider positive valued functions ®, ®o, € C®(R3\1) satisfying
the following conditions for given constants R > 1, m, &, Cyp, C; > 0 and « > 0:

1

(A3) |P(8) = Poo(§)] = Dm and  [®(0) ~ P (§)] = —
hold for any D <1 and ¢ € K(R, D).

(A4) Along the decomposition R? =R @& C, put ¢{ = ({r,{c) € R@ C. Then

(LR, e"%¢c) = ®(¢r. o). (LR, {c) < PR, LE)
Doo (LR, ¢'92c) = Poollr. T, Doo (R, L) < PoollR, {E)
hold for any e € S', if |¢c| > 1l

(A5) min{®(¢), Poo(¢)} > {C0/|§| if [¢] > 1,

if ) < 1.
(A6) Forany u > 1 and ¢ € R3\I with |¢| <u,
Cru*
Sl

Remark 7.1 Let ® = &, and &, = @g p be as in Section 6. Then they satisfy
(A4), and also satisfy (A3), (AS) and (A6) for appropriate constants &, Cy and Cy
given by Propositions 6.1 and 6.2.

Poo(§) =

Geometry & Topology, Volume 21 (2017)
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From now on, let ®, &, satisfy (A3)—(A6) for constants R, &, Cy, C1, k. Denote by
d, dso the metrics on R3 induced by ®-h, s -h, and by /, [ the lengths of paths
with respect to d, d, respectively.

7.1 Estimates (1)

Let B(u) :={, €R3:|¢| <u} and Path(u, x, y) be the set of smooth paths in B(u)
joining x, y € B(u); then put

du(x,y)=_ inf  I(y), doou(x,y) = inf = le(y)
y €Path(u,x,y) y €Path(u,x,y)

By the definition, d(x, y) < d,(x,y) and doo(X, y) < doo,u(x, y) always hold. How-
ever, the opposite inequality may not hold since the minimizing geodesic y joining
X,y € B(u) may leave B(u). The goal of this subsection is to show dpwy(x,y) <
d(x,y) and deg p@u) (X, y) < doo(x, y) for a sufficiently large p(u).

Proposition 7L Suppose ® and @, satisty (A3)—~(A6). Let D, and D, , be the
diameters of B(t) with respect to d and d,, respectively, where 0 < u < u’. De-
fine Doy and Doy in the same way. Then the inequality

2/ Co(+/1¢] = 1) < min{d (0, ¢), deo (0, £)}
holds for all ¢ € R3, and
d(0,8) < Dy < Dyyy < o', doo(0.8) < Doy < Do < Cou®’

hold for all £ e R3 and u > 1 with |{| <u < R, where C, is the constant depending
only on Cy and k¥’ = %(1 +K).

Proof First we show the first inequality. Let y: [a, b] — R3 be a smooth path such
that y(a) = 0 and y(b) = ¢. We may suppose |{| > 1 since it is obviously satisfied
when |¢| < 1. Then there is s € [a, b] such that |y(s)| =1 and |y(¢)| > 1 for any
t € [s, b]. Then by the assumption (A5), one can see

b b b CO
Iy) = / JOGO) Y ()] di / SOOIyl dt > / \/% W

Since we have |y’| > |y|’, we obtain, for all ¢ € R? with |¢|>1,

I(y) > ? [Go "dt > 2,/Cy bd\/_d>z\/F\/—1
0= [ dr=2G [ L Vild= 2GR,
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By the definition, d(0,¢) < D, < Dy, g, < D, g, always hold for any u < Ry < R;

and ¢ € R3 with |¢| < u. Next we estimate D), , from the above. For every ¢, we will
prepare the piecewise smooth paths y; in B(u) joining 0 and ¢ as described below.
Then we will have an upper bound

Dy <2 sup I(ye).
teB()

Here we define y; as follows. We have the isometric S ! _action on R? with respect
to d and de by (A4). By supposing y,ior = e 9)/;, it suffices to consider y¢ in the
case of { =r(sins,—coss,0), where r >0 and — <5 < 7. Let

Yelio,11(@) := (0, —rt,0),
Velp,2)() == r(sin(s(t — 1)), — cos(s(r — 1)), 0).

Since ¢ € K(R, |¢c|) holds, (A3) gives | () — Poo ()| < C1/|¢c], and (A6) gives
Do () < C1u*/|¢c|. Then we can see

1
o) = [ VB0 gl
1 1
s/o r\/|<1>(y;>—<1>oo<y;>|dz+fo o) di
1 1 K
5/ r\/&dt+/ r‘lclu dt
0 rt 0 rt
<2/Cru+2/CLu" .

Simultaneously, we also have

2 2
1l an = [ V800 = Baalrpll i + [ 171V iBoalre)
1 1
C Crur
5/ Flsly —— dt+/ rls)y — 2 gy
0 r|cos st| 0 r|cos st|
Is|
1
< 1+k -
</Ciu+ /Ciu /(),/Cosldz.

Here, f(;r v/ 1/costdt is finite. Since u > 1 and « > 0, we may suppose that
max{/u, Vu'T*} = 41 T% By combining these estimates and putting

_ R /
Cy = (2+/() mdl) Ci,

we have the assertion. We also obtain the estimate of Do 4, by the above argument. O
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Proposition 7.3 Suppose ®, O, satisfy (A3)—(A6), and for t > 0, let
p(r) ;= max{r — 1, (1 + C3t<")2},

where C3 =3C,/(2+/Cy) and C is the constant in Proposition 7.2. Then d () (x,y) =
d(x,y) and dog p(u) (X, y) = doo(x, y) forany x,y € B(u) and 1 <u < R.

Proof By the definition, d(x, y) < d,,)(x, y) always holds. We assume d(x, y) <
dpwy(x,y) for some x, y € B(u). Then there is a smooth y: [a, b] — R3 joining x
and y such that d(x, y) <I(y) <d,)(x, y), which implies the existence of ¢ € [a, b]
satisfying |y (¢)| = p(u). Then one can see

I(y) 2 1(¥l[a,c)) = d(0,y(c)) —d(0,y(a))
> 2y/Co(V/p(u) = 1)~ Duu
>2 Co(\/m— 1) — Cou¥’
> 2C,u*’
by Proposition 7.2. On the other hand, we have
dpy(X, ¥) = Dy puy < Du < Cou®’
by Proposition 7.2. Therefore, we obtain
2C2u"/ <Il(y) <dpu(x,y) < Czu"/,

a contradiction. We can show doo(X, ) = dog o) (X, ») in the same way. a

7.2 Estimates (2)

In this subsection, let y: [a, 5] = B(u) be a smooth path joining x, y € R3\L(D),
where
L(D):={teR3:|tc| < D}.

Now, we are going to show that if y is a minimizing geodesic joining x and y, then
it never approaches the axis {(¢,0,0) € R3 : # € R}. To show this, if the given y
invades L(D), then we modify y and construct the new path ¢, to not invade L(D).

Lemma 7.4 Suppose ®, O satisfy (Ad). Let y = (yr.yc): [a,b] > R} =R @ C
be a smooth path satistying |yc(a)| = |yc ()| = D and |yc(¢)| < D forany t € [a, b].
Define Py: [a,b] — R3 by

Py (1) == (yr (1), yc(a)).
Then [(Py) < I(y) and loo(Py) < loo(y) hold.
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Proof Since ®(y (7)) > ®(P)(¢)) holds by the second inequality of (A4), and
V' 1> =lyvel> + lvel* = e l> = 1P,

holds, we can deduce
b b
1) = [ JOGO) 1y ()] dr > / OB, 0) |PL()|di = 1(Py). O

Let y: [a,b] — R? be a smooth path joining x, y € R3\L(D), and assume that
lyc(@)| = |yc(d’)| = D and that y((¢’, b)) is contained in L (D) for some a <a’ <
b’ < b. Then define a new path T'(y, [a, b']): [a,b] = R3 by connecting

Vliaal  Pylwor € VI

Here, by choosing e’ 0 appropriately, I'(y, [@’, b']) is continuous and piecewise smooth.
By Lemma 7.4, the length of T'(y, [a’, b']) is not longer than that of y since S '-rotation
preserves d and d .

Put J :=y~1(L(D))N(a,b). Since J is open in (a, b), it is decomposed into disjoint
open intervals
qeQ

for some ag, by € [a, b] and countable set Q. If g € Q, then |yc(aq)| = |yc(by)| =D
holds. Then we have y; := I'(y, [aq, bq]) for a fixed ¢ € Q; moreover, we obtain
v2 := I'(y1.[aq, bg]) for another ¢’ € Q, and repeating this process for all ¢ € Q
we finally obtain the piecewise smooth path ¢: [a, b] — R? such that c(a) = y(a),
c(b) = eiey(b) for some ¢% and

I(e) =1(y),  loo(c) = loo(y).

Here, we have to modify ¢ so that the terminal points of both paths coincide. Put
b:=sup{t €[a, b]:|yc (t)| = D}. Then define a path 7 by connecting Cl[a,p1 and ¥ |[5,5]-
Here, to connect ¢(b) and y(b), we add the path gy [0, 60p] — IL(D) defined by
cg,(t) = ey (b). Then by (A6), we obtain

I(cgy) < VCi(1+u)VD and Iso(cg,) < v/Cruk /D

if |y (h)| <u < R. Hence we have the following proposition.

Proposition 7.5 Let D <1 and 1 <u < R, and let x, y,y,¥ be as above. If the
image of y is contained in B(u), then we have

1) —1(y) < VO +u)VD,  loo(P) —loo(y) < /Cru*~/D.
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Proposition 7.6 Let x, y, v,y be as above. If the image of y is contained in B(u),
then the image of  is contained in B(u + D)\ L(D).

Proof It is obvious by the construction that the image of  is contained in R3\ L (D).
Since S!-action preserves B(u), and

2 2 2 Dyc()\|? 2 2
|Py|” <|y|”+ D=, YR(?), <lyI*+D
lye (1)

hold, we have the assertion. O

7.3 Estimates (3)
Let
Path(u, D, x, y) := {y € Path(x, y) : Im(y) C K(u, D)},

d X,y) = inf (),
u,D( y) y €Path(u,D,x,y) )

doo,u,D(xJ/) = inf loo()/)'
y €Path(u,D,x,y)

for x,y € K(u, D). By the definition, d(x, y) < d, p(x, y) always holds. In this
subsection, we consider the opposite estimate.

Lemma7.7 Let(:=((r, Dic/|Cc]|) if ¢c #0, and £ := (¢r, D) if tc =0. Suppose
D, O, satisfy (A3)—(A6),and 1 <u < R.
(1) f¢e L(D)NB(u—1)and 0 < D <1, then
du(£,8) <23/C1(1+u) D, doou((,0) < 2/Cru*D.
() If{e L(D)NKu—1,D) and 0 < D < 1, then

du.p (& 0) <2/ CL(1+u€)D,  dooup(8,§) <24/CrusD.

Proof Let y(¢) = ((R, IE(C) for t € [|¢c|/ D, 1]. Then y is joining ¢ and E, and the
image of y is contained in B(u — 1+ D) C B(u). Then by (A3) and (A6), we have
O(y(t)) <Ci(1+u")/(D). Then we have

dy(8,8) < 1(y) =2/Ci(1 +u<)D.

Moreover, if { € K(u — 1, D), then the image of y is contained in K(u, D); therefore,

du,p (&, 0) <1(y) <2y/Ci (1 +u*)D.

The estimates for doo,u (. E) and deo,u,p (8, E) follow in the same way. a
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Proposition 7.8 Suppose @, o, satisty (A3)—~(A6) and let p be as in Proposition 7.3.
If p(u+1)+ 1 < R, then

o+ 1)+1,0(x, ) —d(x, y)| < Ew)VD,
|doo,put1)+1,0 (%> ¥) = doo(x, Y)| < oo (u)V/D
hold for any x,y € K(u, D) and 0 < D <1, where
E(u) = C (1 + (pu+ 1)+ D) +8/Cr(1 + (u + 1)<) + 2,
Eso(u) := /Cr(p(u + 1)+ 1)* +8/Cy (u + 1)< 4 2.

Proof Since d(x,y) < d,u+1)+1,p(x,y) always holds, it suffices to show that
dput1y+1,0(x, ¥) —d(x,y) <E)vV/D. Let x,y € K(u, D) and 0 < D < 1. By
the assumption p(u 4+ 1) + 1 < R and the definition of p, we have that u + 1 < R.
Define X € R? as in Lemma 7.7 if x € L(D), and X := x if x ¢ L(D). Define 9
in the same way. Then we can see X,y € B(u + 1)\L(D) and dy41,p(x.X) <
2\/C1 (14 (u + 1)¥)D by Lemma 7.7; consequently, we obtain

(10) dys1,p(x, %) +dyt1,p(».9) <4/C1(1 + (u+ 1)¥)D.

For any y € Path(X, ), we construct F(y) € Path(p(u + 1) + 1, D, X, ») as follows.
By Proposition 7.3, we can see

I(y)zd(X.)) = dpus1)(X.)) =

inf l(c)
c€Path(p(u+1),x,y)
Accordingly, we can take ¢ € Path(p(u + 1), x, y) such that I(c¢) < I(y) + v/D.
Then we can apply the argument in Section 7.2 to X,y and ¢ so that we obtain a
piecewise smooth path ¢ whose image is contained in B(p(u + 1) + 1)\ L(D), hence
in K(p(u + 1)+ 1, D). Then we have

1]'1€minfl((?) —1(c) < VC1(1 + (p(u+ 1) + 1)¥)D

by Proposition 7.5. Therefore, there is a sufficiently large &, which may depend on n
and D, such that /(€) —/(c) < /C1(1+ (p(u + 1) + 1)¥)D + +/D. Put F(y) =¢.
Then we can see

I(F(y))—=1(y) <I(F(y) —1(c) +1(c) = I(y)
<G+ (pu+1)+1))D++D+~D
= (VCi1(1+ (p(u + 1) + 1)¥) +2)V/D.
Thus we obtain F(y) € Path(p(u+1)+1, D, X, y) for every y € Path(X, ») such that
(1n IF) = 1(y) = (VCi (1 + (plu + 1) + 1)) +2)V/D.
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By taking the infimum of (11) for all y € Path(X, y), we obtain
(12 dpur1y+1,0(E ) <d®. D)+ (Vi (1 + (pu + 1)+ D¥) +2)/D.
Since p(u + 1) > u + 1, we have

|dpu+1)+1,0(X. ¥) — dp@s1y+1,0 (X V| < dpus1)+1,0 (X, X) + dpus1)+1,0(. ¥)
<dy+1,0(X,x) +dy+1,0(3,»)
<4/Ci(1+ u+1)%)D,
ld(X,9)—d(x,y)| <d(& x)+d(3,y)
<duy+1,p(X,x) +dy+1,0(), )
<4yCi(1+ u+1)¥)D

by (10); hence

dp+1)+1,0(X. ¥) < dpu+1)+1,0(%. P) +4y/C1 (1 + (u + 1)¥) D,
d®.9) <d(x,y)+4y/Ci(1+ (u+ H¥)D

hold. By combining these inequalities with (12), we obtain
dpw+1)+1,0(x. y) =d(x. y) + E@)VD.

The second inequality can be shown in the same way. a

7.4 From (A3)—(A6) to (A1) and (A2)
Proposition 7.9 Suppose that O, O, satisfy (A3)—~(A6), and let y: [a, b] — K(u, D)
and 1 <u < R. Then

1) = Lo )] =\ [ G oo )

Proof Since /(y) = fab VO(y () |y’ (t)| dt, one can see

b
11(y) = leo(¥)| = / VI®(y) = Poo ()] 7| dt

b
-/ \/|<b(y>—¢oo(y>|m|y,|dt

Do (y)

b
< / emaxilvl oGy Iy (o)) di

CoD™
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by (A3) and (AS5). Since we have assumed |y| <u and u > 1, we have

1) = Lo =\ G foo (- 0

Proposition 7.10 Suppose that ® and $o, satisfy (A3), (AS) and (A6). Then

i, (¥, ) = o0 (¥ )| = | T oo, D (. )

holds forall 1 <u < R.

Proof Put § = \/W . Then Proposition 7.9 gives

(13) (I=8)loo(y) = l(y) = (1 +8)loo(y).

Then by taking the infimum of (13) for all y € Path(u, D, x, ), we can see
(1=8)doou,p(x,y) < dnu,p(x,y) = (1 +8)doou,p(x, )

forall u > 0. O

Proposition 7.11 Suppose that ®, &, satisfy (A3)—(A6) and u < 1. Let u® =
p(u+2)+1=<R. Then forall x,y € B(u), we have

|d(x, y) —doo(x. )|

<26y/Ci(1+ R)D +4vVD + | Cglgm (C2R* +(9y/C1 R +2)V/D).
0

Proof Put u") = p(u+1)+1 andlet x, y € K(u, D). Then u(!) < R. By combining

Propositions 7.8 and 7.10, we have

|d(x7y) _dOO(x’y)| = |d(X,J’) _du(l),D(x’y)| + |du(1),D(xvy) _doo,u(l),D(x’yN
Fldoo(x.y) =dog yv p(X.)]

u
<5(u)f+soo<u)f+\/c St oo, p(x.7)

<26u)vVD+ (doo(x ¥) +&oo(u)V/ D).

C Dm
By Proposition 7.2, Do,y < Cou*’ holds if u > 1; consequently, doo(x, y) is not

more than C,u*". Therefore, for all x, y € K(u, D), we obtain

|d(x, y) — doo(x, )| < 26(u)~/D + (Czu "+ oo () VD).

CD'”
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Next we consider the case of x € B(u), but x € K(u, D). Inthis case, x € B(u)NL(D)
holds, hence we can apply Lemma 7.7. Let X be as in Lemma 7.7. Then we can see

d(x,X) <2/Ci(1 4 (u+1)<)D,

and X is contained in K(u + 1, D). Here we suppose that y is also contained in
B(u) N L(D) and follow the same procedure. If y is in K(u, D), then suppose y = y
in the following discussion. Now we have

|d(x, p) —d(X, D) <d(x,%) +d(p, 7) <4y/Ci(1+ (u+1))D.
Hence we can see
|d(x.y) —doo(x.y)]
<8V (1 +u+ D) D+]d(X.7) —doo(.7)]

= 8y/C I+ @+ DD+ 2%+ DVD+\ o

(Ca (4 1)+ £oo (u + 1)V D).

Since &(u) is monotonically increasing and u + 2 < u® < R holds, we have
Eu+1)<9yCi(1+ R¥)+2, &Exo(u+1)<9yCiR¥K+2. O

Corollary 7.12 Suppose that ® and ®, satisfy (A3)—(A6) and that ¢ < 1, and let
u® := p(u+2) + 1 < R. Then there exists a constant C independent of any other
constants such that, for all x, y € B(u),

_1 .
1d(x, ) — doo (6, )| < C(1+ v/Cr)(1 + C; Z) RIS 200,

Proof In Proposition 7.11, let D = &!'/(0+m < 1 Ag described in the proof of
Proposition 7.2, C, is linearly dependent on +/C;. Then assertion follows by using
R >1, ¢ <1 and unifying constants. a

Proposition 7.13 Suppose that ®({) > A/|¢| holds for some A > 0 and all { with
¢ <1,andlet u(r) := (1+ %A_l/zr)z. Then B(0,r) C B(u(r)) holds for all r > 0,
where B(0,r) is the metric ball with respect to d .

Proof Let ¢ € B(0,r). Then by the same argument as in the proof of the first inequality
of Proposition 7.2, we have

WA -1) 2d(0.9) <.
which gives |{| < (1 + %A_l/zr)2 =u(r). a
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Proposition 7.14 Suppose that ®, O, satisty (A3)—(A6), and suppose ¢ < 1. Then
the identity map of R3 is an (r, §)—isometry from (R3,d,0) to (R3,dw,0), where
r,8 > 0 are defined by

_1 p
pu(r)+2)+1=R, §=C(1+/C)(+C, 2) RIS gz
Proof Let x,y € B(0,r). Then x, y € B(u(r)); hence

_1 p
(14) 1d(x, ¥) — doo(x, )| < C(1 + Y/C)(1 + C; )R 5 g2

holds. Next we show Boo(0,7 —8) C B(B(0,r),8). If x € Boo(0,7 — &), then
x € B(u(r)) holds; therefore, (14) gives

_1 P
d(0,%) < doo(0, x) + C(1 + Cr)(1 + Cy 2) R+ 5 gm0

_1 «
<r—8+C+ Y1 +Cy 3R 5 ermHm =7,

which implies Boo (0,7 —38) C B(0,r). O
By Propositions 7.13 and 6.3, the following estimate is obtained.

Proposition 7.15 Let ®, be as in Section 6 and assume y_, =, g —2q"/0+0) 50,
Then supgepo,r) 1/(N +/®@a({)) is not more than

(a/P)TH (1 N
Tn 4 Ty
Il L —2@/py e\ 2y AT,

r

_2(a/P)THa )
Combining Propositions 7.14 and 7.15, we obtain the following theorem.

Theorem 7.16 Let a;, Pi,n; > 0, lim; o0 a; = 0 and lim; o0 nj — 00. Put Sj p;
and T; »; as in Section 6. Suppose that there are constants ¢ = ¢;(R), Co, Cy, kK, m
forall R > 1 such that ® = ®,, and O, satisfy (A3)—(A6). If

. . aj Ti n;
1 i(R)= lim — =0, 1 f A
Jm ei(R) = Im 5 o Z

i—00 Si RO

and Cy, Cy, k,m are independent of i, R, then

{(X.aign. p)}i —— PR (R3 deo, 0).
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Proof Fix r > 0 and 6 > 0 arbitrarily. Put R(r) = p(u(r)+2)+1,and let C >0
be the constant in Corollary 7.12. By the assumption, there exists i (7, §) > 0 such that

1

C(1+ VO +Cy IR()  Eei(R(r) 2T < L5

holds for all i >i(r, ). Then by Proposition 7.14, idgs is an (r, %5)—is0metry from
(R3, dg;,0) to (R3, da..,0). By Proposition 7.15, we can take i’(r,8) > i(r,§) such
that supse o,y 1/ (N v/ Pa(d)) < %5 for all i > i’(r,8). Then Proposition 5.1 gives
the assertion. O

8 Convergence

In this section, we consider the convergence of {(X,a;ga)}i, where A is as defined in
Section 6, and {a;}; is a sequence with a; > 0 and lim; .« @;, applying Theorem 7.16.
To apply them, we have to estimate constants &, Cy, C; in (A3)—(A6) uniformly with
respect to i € N, and show that ¢ — 0 as i — oo. In Section 8.1, we consider the
uniform estimate for the case of P = 1, which is the simplest case. In Sections 8.2
and 8.3, we suppose P is depending on some parameters. Then we apply them to show
Theorems 1.2 and 1.3 in Sections 8.4 and 8.5.

Put Sy, :=a/0+O K, and T, , :=a'/OFDK,, | . We take a subsequence
{Kny < Kpy <Kp, <} C{Ko<Kj <Ky <---}.

We are now going to consider the convergence (in several cases according to the rate
of the convergence of {«;};) or the divergence of {Kp},.

From now on, we put

r dx T dx
T T _ T._ 4T __
0=28,0= [ g Ab=abi [

8.1 Convergence (1)
Fixa>0,nand 0 <S5 <T <oo,and put P =1.

Proposition 8.1 Let R >1 and D < 1. There exists a constant C, > 0 depending
only on « such that
Catn

D

| (0) — L (0)| <

holds for any ¢ € K(R, D), where

e, Kon Kan+t2 et —a+1 —a+1
8a’n:al+a+ Sa’n+ Ta’n +|Sa’n_S|+|Tan —T |
Kan K2n+1 ’
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Proof By combining Proposition 6.1, (7) and (8), we have

1 —a+1
Ta.n 2aT+a T, n—1 2S n+1
[Ba(§)— @frn ()] = 2 4 Sl g S

if Syne1 > (2/¢])/*. Here |¢] < R, and

L Krpto
Sant1 =are Kypiy = Tan,
Koyt
L Kan—1
Ta,n—l =alte Ky, 1 = Sa,n-
K2n

On the other hand, we can see

—a+1 —a+1
Tan T |Sa,n—S| 2|Ta,r? -T |
(Ohe - o < .
@50 (©) = @ ()] = = 4 T
Thus we obtain the assertion. O

Now, we put ® = @y, Poo = P, and suppose a, [Sa,n — S| and |T, 21— T+
are sufficiently small. Then the constants in (A3)—(A6) can be taken uniformly as
1
_ 1.7 _a2a _ _1

Co_zAS’ C]——a_l, Wl—l, K_O(‘
Then by Proposition 8.1, if lim,— .o K»,+1/(2n) = oo, then we have &4, — 0 as
a—0,n—>00,|S4,—S|—0and |T, ¥T!—T~**!| - 0. Hence by Theorem 7.16,
we have the next results.

Theorem 8.2 Let (X, gp) be as in Section 6 and suppose limy oo Kopt1/Kop =00.
Assume that {a;}; C R* and
{Kny < Kpy <Kpy, <} C{Ko< Ky <Kp<--+}

satisty

1

1
: T+ _ : T+ _
lim a; 7 Ky, =8 >0, lim a; " Ky, 41 =T <00, S<T.
1—>00 1I—>00

Then {(X,anga, p)in 8> (R3, dg, 0), where dg is the metric induced by <I>§ -hy.

8.2 Convergence (2)

Let (X,dy,p), (Y,dy,q) be pointed metric spaces and suppose limy,— o0 dn = 0.
Assume that {(X,andy, p)}n < (Y,dy.q). It is easy to check that we have
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{(X, sandy, p)in 8> (Y, sdy, q) for any s > 0. Moreover, if {anmin,meN satisfies
limy, 00 an,m = 0 for every m, and

GH GH
(X, anmdx, p)in —> Ym.dy,,.qm). {(Ym.dy,,.qm)im — (Y. dy.q)
hold for every m, then by the diagonal argument one can show there exists a subset
{an,m(n)}n C {an,m}n,m such that hmn_mo an’m(n) =0 and
GH
{(X. anmmydx. p)in — (Y. dy.q).

Now, let 7 (X, d) be the set of isometry classes of tangent cones at infinity of (X, d).
From the above argument, one can see that 7 (X, d) is closed with respect to the pointed
Gromov—-Hausdorff topology, and if (Y, d’) € T(X, d), then its rescaling (Y, ad’) is
also contained in 7(X,d).

From Section 8.1, (R3,d g ,0) may appear as the tangent cone at infinity of some
(X, gp), where A is as in Section 6.

Leto>0,0<S <T <ooand I,: { — o' be the dilation. Then we have

=1 Vi /
I (@5 ho) = P& ©%,(0)ho = D%, p(O)ho,

where

(15 S'=PiFas, T'=pPiFaT, S"=Paiins, T"=paaroT.
Hence if (R3,d§,0) € T(X,ga), then {(R3, a’(‘f’g,O)}oeRJr is also contained in
T(X,gn).

Fix a constant 6 > 0, put P1/(+®) = g/§—a+1 _T—a+1 > 0, and let S’, T’ be
defined by (15).

Proposition 8.3 Let R > 1. There is a constant C > 0 depending only on « such that

< CR
92(04 1)~ g3ga/§—a+1 _T—a+l

holds for any ¢ € K(R, D) if §S%~/S—e+1 _T—a+l > o R,

50—

Proof Let S” and T” be defined by (15). Note that

4
- (T dx

T’ - w0 M
(I)S/’P(;)_P s7 |§—(x°‘,0,0)|'
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By the assumption, we have P1/(0+®) @ — gga/g—a+1 _ T—a+1>2R: then we see

/T// dx /T// dx

s 16— (x%,0,0)] noX®
LTS B NN
- " |§'—(x“,0,0)| x¢

</T” 2x¥[¢] + |¢]?
= Jsr 1= (@ 0.0)[x# (£ — (x%.0,0)] + x)

T T 2
8R 4R
5/ ——dx —I—/ dx

" _X,'2a 4 x30‘
2 ptss
8RPoz( == (5-201 _p=2at1) 4 4 R Paifa) &= (S_MH _ T—3a+1)
200 — 1 3a—1 ’

Since we have

1

T —a+1 1

/ dx _ pPetio (s—et! _ ety _ P
i a—1 02(a—1)

we obtain
’ 1
5P~ Gaa )
=3
< SRPT+a (§™201 _p2etly 4R?PTFa (§7detl _pdatly
20— 1 30 —

Using the assumption 2R < P1/(1+@) g% onee more, we have

1

s.r O gag
-3
SRP T+« 2Rp1
< (§~20+1 _p—2a+1ly 4 (S 2041 _ gap—3a+l)
20— 1 30 —1
_ 3a—1
< o3¢, rs—5 1 =G/D)

(1—(S/T)e-1)2

Now, put f(x) := (1 —x31)/((1 — x*1)3/2) for 0 < x < 1. Then there exists
a constant C., > 0 such that f(x) < C.(1 —x*~1)~!/2 holds for all 0 < x < 1.
Consequently, by replacing C,, larger if necessary, we can see

CaR

P(é) 92(a nHl— 93505\/5 —a+1 _T—at+l -
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Proposition 8.4 Suppose 0S*+/S—@+1 —T—e+1 > 2R for R > 1. Then

) | - zlly
e e R R R ]

holds for any { = (¢{g, {c) € R®* =R @ C with |{| < R.

Proof We have 1 < S7%x¥ for all x > S, then we can see

T

1 dx
AL » = P_1+a/
’ S

1
S—Ux® 4 PT+a xo

. 1 /T dx
PTHa (S~ 4 PTHa) Js X©
1 S—OH-I _T—OH-I

- 1 1
PTHa S=%(1 + S* PT+a) o=

Since we have

SepTHe = gy/S—at+l _T—a+1 >R > 1,

we obtain
S —a+1 _T +1 1

AT, ‘
S 2(a—1)P1+aS —a SaP1+a 292(()(—1)

Next we consider the upper estimate of &, P(Z ). Take ¢ such that || < R; then we
have 2|¢| < P1/(1+@) §¢ by the assumption. Then one can see

(I)T/’,P(é-)fp— = PT+

PH%ozx“ a—1
2y
S -1 - DIgcl

H/T 2dx 2 (STt et
S

Proposition 8.5 Let ® = CD? p and o =1/ (0%(a — 1)). Then there exists C > 0
such that ®, O, satisfy (A3)—«(A6) for R > 1, and

_ CR Co — 1
T p3ge/§—etl _T—at1’ 07 202(a—1)’
1 1 C . .

C = 02 max{a_l, 2}, =1, k=1

if 0S¥/ S—et+l —_T—a+1 >R,
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Proof It is obvious that (A4) holds. Proposition 8.4 gives (A5) for Cy =1/(20%(a—1))
if we take HS¥v/S—e¢+1 —T—a+1 >2R (A6) holds for C; = 1/(6%(a — 1)) since
L1 g g
=1 " —1|§| a—1[ic]
Combining §S*+/S—@+1 — T—a+1 > 2 R and Proposition 8.3, we can see that & <
C/(20%). O

Now, Propositions 7.14 and 8.5 with § = 1 give the following theorem.

Theorem 8.6 Let {S;}; and {T;}; be sequences such that 0 < S; < T; < oo and
lim; 00 S/ S9! — 779+ = o0, Then {(R?, d;",O)},— converges to (R3, hg, 0)
in the pointed Gromov—Hausdorff topology.

Next put P1/0+®) — 9|7 — S| for 0<S <7 and # >0, and let S’, T’ be as in (15).
Then we can show the following similarly to Proposition 8.9.

Proposition 8.7 Let D > 1. Forall { € K(R, D), we have

_ 146791 —5)

‘q’ @)= 9|§|‘_0D (T =5).

Proof Let S” and 7" be defined by (15). The first inequality is obviously shown by
dDT, p)= 1/(6D) and 1/|¢| < 1/D. The second inequality follows from

/T// dx _/T//d_x
s E— G 0.0l Js 1

</T” 20%¢] + X2
50 = (.0, 0181 (1€ — (. 0.0)] + 18 ™

Pa (Tt — gotly P%(TZOH-I _ g2ty

<Co 3

—(S/D)* 1 +0(T =S T(1—(S/T)***1)

1 11
= Cpf'TaTet (T — §)! o 3

By the similar argument to Proposition 8.3, we can replace either 1 — (S/T)**! or
1—(S/T)?>**! by 1 —S/T; hence we obtain the assertion. a

Geometry & Topology, Volume 21 (2017)



The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds 2711

Proposition 8.8 Forany { = ((g.{c) e R?* =R & C,
1 ’ 1

AL ol Jlo) < }
A 0(1+0T*(T—-S))" s,p(r. 6c) = 1Cc]
Proof One can see
, _1 (T dx
AS,P =P l+0(/ 2 /
’ S 14 PiHaxe +P1+aT“

T pa(l4 PTHET®)
B 1
01 +0T*(T —S))’

We can also obtain T_g
T’ - 1
g p0) = — ~ el .
P+ ||

Combining Propositions 8.7 and 8.8, the next proposition is obtained.
Proposition 8.9 Let & = &L, p and oo (§) = 1/(0[¢]). Then @, Doy satisfy (A3)—-

(A6) for R > 1, and

1
0(1+0T*(T—S8))’

Ci== m =13, k=20

e=(1+0T%T —S)TUT —S), Co=

forany 0 < S <T.
By Propositions 7.14 and 8.9 for 8 = 1, we have the next result.

Theorem 8.10 Let {S;}; and {T;}; be a sequence such that 0 < S; < T; and
lim; o0 7| T; — Si| = 0. Then {(R®,dg’,0)}; converges to (R, (1/|¢])ho.0) in
the pointed Gromov—Hausdorff topology.

8.3 Convergence (3)

Here, we fix @ > 0 and 7, and suppose that 7, , = al/(l"“")Kan is sufficiently
small and that S, 41 = all (1+°‘)K2,,+2 is sufficiently large. Fix P and 6 such that

_1 — —
T = 0(T o= San) = /S0~ T, 04

Put ) = p~V/U+®S, ;and T/ = p~1/0AFT, )
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Proposition 8.11 Let R > 1 and D < 1, and let P be as above. Assume that
pl/@lte)g, o> (2R)"/®. Then there exists a constant Cy > 0 depending only

on « such that
Coega,n

D )
forany { € K(R, D), where ¢, 5, is the constant defined by

[®a(0) - @3 O -0 (0] =

—a+1
1+ Kzp—1 Kops

~ 0(Kant1 — Kan) Kz_,fle — Kz_:‘:; '

Ea,n

Proof By Proposition 6.1, (7) and (8), we have

1 =1 —a+1
T, 2(a/P)THe + PTHa T, 2Sa n+2
L A s — + :

et D PTe(a—1)

if pl/@+edg > (2R)"/*. Since we have

(5™ = s
P O(Kant+1— Kan)

=L Kaon—1
PiteT, 1= )
’ 0(Kant+1— Kap)
—a+1 —a—+1
Sa,n+2 _ K2n+4
2 T p—a+l —a+1’
Pita Kotz = Kouis

we have the assertion. O

Here, the assumption Pl/(“(1+°‘))Sa,n+2 > (2R)"/ can be replaced by

K2n+4 * o o

—a+1 —a+1

(K Sa,n—H \/Sa,n+1 o Ta,n—H Z2R.
2n+2

T/
p and QDS'7+1 p- 1f we put

We can apply Propositions 8.3 and 8.7 to QDT’,;
ns n+1°

1
_ _ _ Tre — —a+1 —a+1
S=Son+t1, T=Tapt1, 0=1 Plte = \/Sa,n+1 — Ty ni

in Proposition 8.3, then we have

q)Tr;-‘rl 1 < CR
S/ P 11—
n+1 o= S« g—atl _ p—atl
a,n+1 a,n+1 a,n+1
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for any ¢ € K(R, D) if S”‘n+1\/Sa Zi_ll -7, }‘;‘Ill > 2R. If we put

S = Sa,n, T = Ta,nv PH%O‘ = Q(Ta,n - Sa,n)

in Proposition 8.7, then we have

1 2
—_— < —
‘QSL emm-eD’
T, 1 1 +9T£in(Ta,n_Sa,n)
‘(DSV/“P I = D3 T;:n(Ta,n —Sa,n)-

Now, we put ® = &,, & =1/(a—1) +1/(8]¢]). Combining the above arguments
and Proposition 8.11, we can describe ¢, C; in (A3) explicitly with m = 3. Moreover,
by Propositions 8.3, 8.7, 8.4 and 8.8, we obtain Cy, C; in (AS) and (A6), and « = 1.
Fix a constant 4 > 0, suppose that

—1 “atl_ p-atl
<0=<4, Sgn+1\/Sa;xz+l_Tal?+122R

and take P as above. Then we can take these constants in (A3)—(A6) being only de-

pendingon o, A and R, if ean, S, 5y, (S, z_tll -T :j_rll) 1/2 and T2y (Tan—San)

are sufficiently small. Therefore, we obtain the followmg result.

Theorem 8.12 Let (X, ga) be as in Section 6, take a subsequence
{Kny < Kny <Ky, <} C{Ko< Ky <Ky <---},

and suppose

Koo K—Ol+1
(16) Jim ( il —a+12n +4—a+1 ) _o
i—oo\ Koy +1— Kap, Koty — Koty

If a sequence {a;}; C R™T satisfies

S~ a+1 —a+1
a;.ni+1 " a, ni+1

lim =0>0,
I—00 Tai ST Sal M
at+l —a+1 : o _ _
ll_l)m S i +1(Sa ,ni+1 a, n,+1) 2 11—1>n;o Tai,ni(Tai,ni Sﬂi,ni) =0

then {(X, aiga, p)}n <> (R (1/(@=1)+1/(81¢))ho, 0).
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Next we estimate ®,; — 1/( — 1) in the same situation, as § — co. We have

_1 =1 =1 1
< 2(a/P)T+e + PTHa Tap—1+ Pite (Tan—Sa,n) n 2Sa Z-—:-_Z

@ _@ n+1 P‘ <
Snar D PTa (a—1)
—a+1
- %( 1+ Koy 1 n Konta )
0(Kany1 —Kan) 6 K@H— Koot

Applying Propositions 8.3 and 8.4 with 6 = 1 and (5), we have
1

’q)a_oc—l
—a+1
<ﬁ( 1+ Kop—q 1 K s
— D\OK -K 0 a1 _p—atl | +1_ p—a+1
( 2ntl 2n) K2n+2 K2”+3 an+1\/Saz+l Taftt-f-l
a =

(A Z:’P 9(K2n+21—K2n))mm{|§| }
(@

IV

2 )mm{ }
20—1) 0(Kznt1—Kan) 1l
if D<1, R>1 and |¢| < R. Therefore, we can take Cy, C1, k and m in (A3)—(A6)

depending only on @ and R if ¢ — 0, where ® = &, and &, = 1/(e — 1). Hence
we have the following theorem.

Theorem 8.13 Let (X, ga) be as in Section 6 and suppose { Ky, }; satisfies (16). If a
sequence {a;}; C R satisfies
—a+1 —a+1
\/Sai(,xni-i-l - Taiﬁii‘i‘l g—atl

lim —S =oo, lim S, % (S
1—00 al S ai,n; i—>00

at+1 S
a; ni—l—l_Ta n+1) 2 =0,

then {(X, aiga, p)in <> (R?, ho, 0).
By the similar argument, we have the following.

Theorem 8.14 Let (X, gp) be as in Section 6 and suppose { Ky, }; satisties (16). If a
sequence {a;}; C RY satisfies

—a+1 _ p—a+l
\/Sai,ni+1 Tai,n~+1

lim =0,
=00 al M Sat SN
o —ot-i—l . —(¥+1 2 : o _ _
Jim Saimi+1Sami+1 ™ Tagm+1) = lm T p, Tai.n; = Saz.n) =0,

then {(X,a;iga, p)}n <> (R, (1/[¢])ho, 0).
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Proof Put

1
—_— . _ —a+1 —a+1
PTG = Ty —Sam) = 0/S, 211~ T, %4

S)=PTiaS,; T/ =PeT,,.
An argument similar to (7) gives
, —a+1 _ —a+1
(I)Tn+l ©) < 2((Spg)” (1))
Sy P27 = Pa—1)

if P(S)_)®> 2R, which is equivalent to 6S% | \/Sa-gjl‘ — T, %+ >2R. Then
an argument similar to Proposition 8.11 gives

T/ < C&Emn 2
|a(Q) =) p(O)] < D ' (@-1d

for any ¢ € K(R, D), where g4, is the constant defined by

—a+1

N 1+ Kzp—1 Konta
an = _ —a+1 —a+1y’
Kont1=Kan 02K, — Ko t)

Moreover, Proposition 8.7 with 6 = 1 gives
T, 1 2
n - < =

o - = L+ TanTan = San)
sp:P'2) el = D3

Then we can see |®, — 1/[¢|| < /D> for some ¢ > 0 if D <1 and ¢ € K(R, D).
Here, ¢ goes to 0 as

T2 w(Tan— San)-

o —a+1 —a+1 o
ean—0, 000, S, \S;AH T4 S0 and T8, (Tan—San)—0.

Since one can take Cy, C1, m, k in (A3)—(A6) depending only on « if ¢ is sufficiently
small, by Proposition 8.8 with 6 = 1 and (5), we obtain the result. a

8.4 Example (1)

Let A be as in Section 6. Moreover, we take an increasing sequence { K}, such that

= Q.

In this situation, we observe which pointed metric spaces can be contained in 7 (X, ga)
and prove Theorem 1.2.
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Take S > 0 and put ¢; := K3; 1—egl+e  Then we have al/(1+a)K =S and
lim; a 1/(IJF‘)‘)K +1=00. Hence Theorem 8.2 implies (X, a;g 5, p) 8> (R3, dg°,0).
Slmllarly, if we take a; = KzlJrl T+ for T > 0, then we obtain (R3, OT, 0) as the
pointed Gromov—Hausdorff limit.

Next we fix § >0 and put a; =0~ K 2_12+1 K _“‘;1 Then one can check that the assump-

tions of Theorem 8.12 are satisfied; hence one obtains (R 3, (1/(a—1)+ 1/(6 |§‘|))h0, O)
as the pointed Gromov—Hausdorff limit. By taking the limit # — 0 or § — oo, we
obtain (R3, /19,0) or (R3, (1/|¢])ho,0) as the pointed Gromov—Hausdorff limit. In
fact, we obtain the next result.

Theorem 8.15 Let A,{K,}, satisfy limy,—oo K,/K,—1 = 00. Then T(X,gp) is
equal to the closure of

((R3,5d%,0) s > 0} U {(R3,5d,0): 5> 0} U {( (l+m)h0, ):s>0}

with respect to the Gromov—Hausdorff topology. Moreover, we have
lim (R3,5d,0) = lim (R3,s( )ho, ) — (R3, h, 0),
5500 50 ]

lim (R?, 53, 0) = lim (R, 5(1+:).0) = (R, -Lho,0),
Sy do. 0= g (RS e
: 3 o0 _ 1 3 1 _ 3 joo
sh_IR)(R ,8dj ,0)—s1_1)n;o(R ,8dy,0) =(R?,d°,0).
Proof We have already shown that the pointed metric spaces in the above list are

contained in 7 (X, ga). Accordingly, what we have to show is that any other pointed
metric spaces may not arise as the tangent cone at infinity of (X, ga).

Suppose that a sequence {a;}; C RT is given such that (X, a;ga. p) <> (Y. d.q) as
i — oo. It suffices to show that (Y, d, ¢) is one of the metric spaces in the list.

First of all, we may assume that for any large M > 0, there exists i (M) such that
1
{a; Ky eRT :neN}n[M~" M|

is empty for any i > i(M). If not, there is an M > 0 and a map i + n; such that
M~! <q}/0+) K, < M holds for infinitely many 7 . Then by taking a subsequence
{ai; } C{ai}i, we may suppose that M~ < al/(1+“)K2n < M holds for any j or
that M1 < al/ (H"")Kzn +1 =< M holds for any j. If the former case holds, then
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by replacing with a subsequence, we may suppose

1
lim a7 Ka,, = S € [M™1, M],

i—00
1 K
. . 2n;+1
lim /™ Kyp;41 = S lim —""— = o0,
i—o00 i—o00 2n;

and we can apply Theorem 8.2; hence we obtain (Y, d, ¢q) = (R3, dgo, 0). If the latter
case holds, then we have (Y, d, q) = (R3, dOT, 0) for some 7 > 0.

We may suppose that there exists /; € N for each i such that lim;_ o al-l/ (+a) g ;=0
and lim; — o a}/(l""") K, +1 =00 hold. If {i € N :/; is even} is an infinite set, then we
can apply Theorem 8.2 again and obtain (Y, d,q) = (R3, dg®,0). Therefore, replacing
with a subsequence, we may suppose

1

1 _1
lim ;" Koy, 41 =0, lim a; 7 Kyp, 42 = 00.
1—>00 1—>00

Now, we have

—a+1
—a+1 __ p—a+l S 1 2 _ > 1
\/Sa,n+1 Ta,n—H - 2Sa,n+1’ Tan—San= 2Tas”

holds for sufficiently large n. Hence if

11—« 1—a

2 2

Sai,n,'—i-l aj,n;i+1

0 < liminf < limsup ———— < 00,
1—00 a;.,n; i—00 ai;,n;

then Theorem 8.12 can be applied to this situation by taking a subsequence. Then we
obtain (Y, d, q) = (R3, (14+6/[¢|)hg, 0) for some 6 > 0. Hence the remaining cases are

1—a 1—a
S 2 2
. a;,ni+1 . a;,n;i+1
lim ———=0 or lim ———— =o0.
I—00 Tai SN i—00 Tai SN

In both of the cases, we can apply Theorems 8.13 or 8.14, and then obtain (Y, d, q) =
(R3, 1o, 0) or (R?, (1/[¢])ho. 0). m

One can also see that there are no nontrivial isometries between two pointed metric
spaces appearing in the list of Theorem 8.15. Here, an isometry of pointed metric
spaces means a bijective morphism preserving the metrics and the base points.

Obviously, there is no isometry between (R3,/¢,0) and (R3, (1/]¢|)h,0). In the
next section, we will show that (R3, dg°,0) is isometric to neither (R3, ho,0) nor

(R*, (1/1¢1)ho. 0).
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metric tangent cone at 0 tangent cone at oo
% ho d°
T
d 4 Lho
dy° dy° dg®
ho ho ho
|z|h° |z|h° rho

Table 1: Tangent cones (0 < S, 7,60 < c0)

Then Table 1 implies that nontrivial isometries may exist between
(R*,d,0) and (R*d¥,0) for S # S,
(R3,dl,0) and (R?,dl",0) for T #T,

(R3,( |§|)ho,) and (R3,( |§|)ho,) for 6 6.

Suppose (R3, ,0) is isometric to (R3, d° 57, 0) for some S # S’. Then the topolog-
ical space

{(R?,dP,0): S eR}

with respect to pointed Gromov—Hausdorff topology is homeomorphic to S or 1-point;
hence it is compact. Then its closure is itself; therefore (R?, /g, 0) is isometric to some
(R3, dg°,0), which is a contradiction by Table 1. Similarly, we can show that there are
no isometries between (R3, dOT, 0) and (R3, dOT/, 0), or between (R3, (1+6/|¢|)hg, 0)
and (R3, (14 0/[¢])ho,0).

8.5 Example (2)

Next we suppose that { K}, satisfies

K K
lim —2 =00, —22tl_pg>

n—>00 Kop—1 Kon
Take S > 0 and put a, := K5,!7¥S'T®. Then we have al/(1+“)K2 = S and
a,ll/(l"'“)Kz,,H = BS. Hence Theorem 8.2 implies that (X, anga, p) <> (R3, dﬂS)

By arguing similarly to the proof of Theorem 8.15, we obtain the following.
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Theorem 8.16 Let A, {K,}, satisfy

) K, . Kop
lim " =00, lim i=,3>1.
n—o00 K2n—1 n—00 KZn

Then T (X, gp) is equal to the closure of

{(R3,sd{3,0):s >0} U {(R3,s(1 + |é—l)ho,O) 18> 0}

with respect to the Gromov—Hausdorff topology. Moreover, we have

. 3 9B oy 1 3 1 (3
lim (R, 5df,0) = hm(R ,s(1+ m)ho,o) — (R3, ho, 0),

s—0
lim (R, sdf, 0) = tim (R 5(1+ ﬁ)o) = (»*, ého,o).

By a similar argument to Section 8.4, we can see t/hat (R3, d gS, 0) is isometric to
neither (R3, /9, 0), (R3, (1/[¢[)o,0) nor (R3,d5%" 0) for S"# S.

8.6 Example (3)

For I C R*, denote by d; the metric on R? induced by

/ dx I
el 1= (x2,0,0)] "

Denote by B4+ (R™) the set consisting of all Borel subsets of R™ of nonzero Lebesgue
measure. In this subsection, we show the next theorem.

Theorem 8.17 There is a sequence {K,}, such that T (X, ga) contains
{(R®,d;,0): I € By (R")}/isometry.

Proof Put

Op :={I C R" : I is nonempty and open},
k

Oy := {U(Sl, 1) C

i=1

R+, S17TIGQ7 1§k<00,
T0< S <T; <Sj41 <00}’

Then one can see O C Oy C B+(R™T). Since O; is countable, we can label the open
sets in O; as follows:

km
Or={I.12.13,...}, Im= U(Sm,l’Tm,l)-
=1
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Now we fix a bijection F: N — N x N and write F(q) = (i(g),m(q)). Define Ly >0
inductively by

— i@+ . Tn@ Lo:=1.

L : )
A Sm(q),l

Then we can define 0 < Ky < K; < --- such that

S T,
(Ko< K <-}= {L m(q)’l,Lq m(@). ;1§l§km(q),q=o,1,...}.

qu(q),l Sm(g).1
First we show that (R3, dr,,.0) € T(X,gn) forevery I, € O;. Fix m. Forany i € N,
we can take a unique ¢ such that i(¢) =i and m(g) = m. Put a}/(l"'“) = L;lSm,l ;
then we have

% Sml = Tm,l

+o 5 14+
a, " “Lg——=3S a, "L = .
q m,l> q m,l
Sml ! Sml

Note that Ly > 2’(‘1)+’(q+1)L implies Lq — oo as i — 0o, hence a; — 0 as
i — 00. Here, we put ® = @, and Py = Zl’"l CIDS""’ By applying Proposition 6.1
and (4)—(8) with P = 1, the constants appearing in (A3) (A6) are given by

1 21 (a— l)lT—Ot-i-l 1 km T
_ JE —i m,km _ m.,l
e =241 42T 4 Co=5 ) A
=1
1
Qo
Ci = ¢ , m=1, K=l
a—1 o

if we suppose ¢ is sufficiently small. One can see ¢ — 0 as i — 0o, so we obtain
{(Xv aigA, p)}l%(R?” dlm’ O)

Next we show that (R, d7,0) € T(X,ga) for any I € Oy. To show it, we apply
Vitali’s covering theorem. Fix I € Oy and put Z := {(a,b) € O¢ :[a,b] C I}. Then T
is a Vitali cover of [; hence there exists {J,},en C Z such that

Jn# T ifn#n', (1\|_| ) 0,

neN

where m is the Lebesgue measure. Put J,, := LI%—; Jx- Since Ju € O1 holds, we
have (R3,dfn,0) €T(X,ga). If we put

dx
®s6)= /er T— (0.0

then we can see

1 (O) <1>1(z)|<m('\‘]”)»o as 11— 0o,
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and we can take the constants in (A3)-(A6) independent of n by using Proposition 6.2.
Therefore, we obtain {(R?, dj 0)}, S (R3, dy,0).

Finally, let I € B4 (R™). Since the Lebesgue measure is the Radon measure, there
exists U, C O for any n such that I C U and m(U) <m(I) + 1/n. Then we have
|®7(8) — Py, (§)| < 1/(nD), and thus {(R3,dUn,O)}nG—H>(R3,dI,O) by a similar
argument. Here, the positivity of n2([1) is necessary since, by (4), Cy in (AS) is given by

/ dx
> 0. O
1 1+x“

By Theorem 8.17, we can see that (R?, /¢, 0) and (R?, (1/]¢|)h¢, 0) are also contained
in B4 (R™). The author does not know whether any other metric spaces may appear
as the tangent cone at infinity of (X, ga) or not.

9 On the geometry of the limit spaces

In this section, we study the geometry of (R3, dg®) and conclude that there is no isom-
etry between (R3,d(§’°) and (R3, /1¢), nor between (R3,d(§’°) and (R3, (1/]|¢)ho).

Proposition 9.1 (R3, (1/|¢|)ho) is the Riemannian cone S* x RT, where the Rie-
mannian metric on S? is the homogeneous one whose area is equal to 7 .

Proof Put ¢ = ({1,82,83)# 0 and r = \/Clz + §§ + C%, and let gg> be the standard

Riemannian metric on S? with constant curvature and volume 47 . Then by putting
R :=2./r, we have

é—lho — %((dr)z +12gg2) = (dR)* + R?- %. 0

Next we review the notion of polar spaces, introduced by Cheeger and Colding in [5],
and then we show that the metric space (R3, dg®) is never a polar space.

Let Y be a metric space, and suppose that there is a tangent cone Y), at y € Y. Then we
can consider tangent cones at any points in Y),. The tangent cones obtained by repeating
this process are called iterated tangent cones of Y. A point x in a length-space X
is called a pole if there is a ray y: [0,00) — X and ¢ > 0 for any x # x such that
y(0) = x and y(¢) = x. Here, the ray y: [0, 00) — X is a continuous curve such that
the length of y |, 1 is equal to |y (to)y (t1)].

Definition 9.2 [5] The metric space Y is called a polar space if all of the base points
of the iterated tangent cones of Y are poles.
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For example, let C(X) be a metric cone of a metric space X . Then every y defined by
y(t) = (x,t) € X xRT = C(X) is a ray; hence the base points of any metric cones
are poles. Now, since (R3, (1/]¢[)ho) is a Riemannian cone of a smooth compact
Riemannian manifold, then all of the iterated tangent cones are (R3, (1/|¢])ho) itself
or (R3, ho). Consequently, we can conclude that (R3, (1/[¢])h¢) is polar. Obviously,
(R3, hg) is also polar. We can also see in the similar way that (R3, (1 + 8/|¢|)hg) is
polar. On the other hand, we can show the next proposition.

Proposition 9.3 The origin 0 € R3 is not a pole of the metric space (R3, dg°). In
particular, (R3, d%°) is neither a polar space nor a metric cone of any metric spaces.

Proof First of all we show that 0 € R3 is not a pole with respect to dg°. Put
p:=(1,0,0) € R3, and suppose that there is a ray y: [0, 0o) — R such that y(0) =0
and y(t9) = p for some ¢y > 0. Then we have

dg°(y (s0), v (s1)) = f 1\/ ¢ (y () [y ()] dt

for any 0 < sy < s;. For § > 0, let
Ag = {Z eR: |y(c(t)| 25}.

Then there is a sufficiently small § such that A5 N (0,2y) # @ and Ag N (¢y, 0) # .
This is because the length of y|; becomes infinity for any small interval 7 C R if
not. Since A is closed and does not contain #y, we can take a connected component
(ag,ay) of R\ As containing ty. Then we can see that |yc (ag)| = |yc(a1)| =6 and
lyc(¢)| < § for any ¢ € (ag,ay). Now define y: [0,a;] — X by

S() {(m(t),ei"yc(t)), 0<1<a,,
()= "
e'GPyI[ao,al](t)’ ag<t<a,

where 6 is defined by ¢/?yc(ag) = yc(a;). Recall that Py|[a0,al] is already defined
in Lemma 7.4. Then by applying Lemma 7.4, we can see that the length of ¥ is strictly
less than the length of y|[o4,]; therefore, y is not a ray, which is a contradiction.
Hence 0 € R3 is not a pole.

Now we can check that the RT—action on R*® defined by scalar multiplication is
homothetic with respect to d°; thus the tangent cone of (R3, dg°) at 0 is itself.
Consequently, (R3, dg®) is not a polar space.

Suppose that (R3, dg®) is the metric cone of some metric space X ; then the origin 0
is nothing but the base point of the metric cone. Since the base point of the metric cone
is always a pole, we have a contradiction. a
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Corollary 9.4 There is no isometry between (R3, dg°) and (R3, hg), nor between
(R?,dg°) and (R?, (1/[¢])ho).
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