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Smooth Kuranishi atlases with isotropy

DusA McDUFF
KATRIN WEHRHEIM

Kuranishi structures were introduced in the 1990s by Fukaya and Ono for the purpose
of assigning a virtual cycle to moduli spaces of pseudoholomorphic curves that
cannot be regularized by geometric methods. Their core idea was to build such a
cycle by patching local finite-dimensional reductions, given by smooth sections that
are equivariant under a finite isotropy group.

Building on our notions of topological Kuranishi atlases and perturbation construc-
tions in the case of trivial isotropy, we develop a theory of Kuranishi atlases and
cobordisms that transparently resolves the challenges posed by nontrivial isotropy.
We assign to a cobordism class of weak Kuranishi atlases both a virtual moduli cycle
(a cobordism class of weighted branched manifolds) and a virtual fundamental class
(a Cech homology class).

53D35, 53D45, 54B15, 57R17, 57R95

1 Introduction

1.1 Overview

This is the third in a series [13; 14] of papers that construct a fundamental class
for compact spaces X that are modeled locally by the zero sets of smooth sections
si: U; — E; in finite rank bundles over finite-dimensional manifolds. While these
obstruction bundles have fixed index, they may have varying rank, and thus an ambient
space | Uj/~ naively constructed from the ambient manifolds of the local zero
sets s 1(0) modulo transition data is lacking all topological controls (Hausdorffness,
local compactness, in fact existence) that are needed for a perturbative construction
[X]:=U(si +vi)71(0)/~ of the fundamental class. Moreover, most interesting cases
involve nontrivial isotropy groups that are captured in the local charts as finite symmetry
groups I'; of the sections s;, so that X is locally modeled by the quotients s;~ L)/ T;.

Pioneered by Fukaya et al [6; 3], this problem has been considered by symplectic
topologists since the 1990s as a tool for “counting curves”, ie assigning homological
information to moduli spaces of pseudoholomorphic curves, such as the Gromov—Witten
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moduli spaces (in which isotropy arises from components that are multiply covered).
In the case of trivial isotropy, a comprehensive solution was developed in [13; 14] by
introducing notions of Kuranishi atlases, which on the one hand can in practice be
constructed from moduli spaces, and on the other hand have sufficient compatibility
between the local models for the construction of a virtual fundamental class. This paper
extends these techniques to the case of nontrivial isotropy, proving the following result.

Theorem A Let K be an oriented, d—dimensional, additive, smooth weak Kuranishi
atlas on a compact metrizable space X . Then K determines

¢ avirtual moduli cycle (VMC) as cobordism class of weighted branched mani-
folds,

e avirtual fundamental class (VFC) [X ]",Cir € ﬁd (X; Q) in Cech homology,

both of which depend only on the cobordism class of K.

A more precise statement that also applies when K is a cobordism from an atlas
K% on X° to an atlas K! on X! is given in Theorem 3.3.5. Notice further that the
VMC contains more information than the VFC since cobordism classes of weighted
branched manifolds contain more information than just their fundamental class; for
example, Pontryagin numbers are invariants of weighted branched cobordism by [11,
Remark 4.7].

The guiding idea of a Kuranishi atlas X is to start with a family of basic charts
(K;)i=1....N » where each basic chart

K; = (Ui, Ei, Ty, s, Yi)

is a tuple consisting of a domain Uj;, an obstruction space E;, a group I';, a section
si: Ui — Ej, and a footprint map ¥;: s, 1(0) — X inducing a homeomorphism
from s;” 10) /T onto the “footprint”, an open subset F; C X such that (F;);=1,.. N
covers X. The compatibility of these charts then involves transition charts K; =
(Ur, E7,T7,s1,¢7) of the same type as the basic charts, but with I C {1,..., N}
such that Fy := ();c; Fi # @. Finally, the basic and transition charts are related
by coordinate changes from K; to Kj whenever I C J. This gives rise to an
“étale-like” category By whose space of objects is | |; Uy, and whose morphisms are
determined by the local group actions and the coordinate changes. The category By
is not a groupoid since some morphisms (those relating the different charts) are not
invertible. On the other hand, its spaces of objects and morphisms are very closely
controlled, which enables us to carry out various geometric constructions, in particular
the construction of perturbations, very explicitly. The realization |KC| of By (the space
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of objects modulo the equivalence relation generated by the morphisms) is much larger
than X, though it does contain a homeomorphic image of X formed from the zero
sets of the local sections sy. As in [14], the class [X ]V,Clr is constructed from the zero
sets of suitable perturbations si + v of the basic section s = (s7) of K.

Even if X is an orbifold so that no obstruction spaces are needed, our formulations
are new.! Rather than being given by inclusions U; D Uy <> Uy as in the case with
trivial isotropy, our notion of coordinate changes in the presence of isotropy involves
equivariant covering maps 0y : ((7”, 'y)— Uy, T7) C (Ur,T'7), where 1711 isa
suitable subset of the domain U; and UI g — Uyy is aprincipal 'y /'y -bundle. As
the following result from [11, Proposition 3.3] shows, every orbifold has a structure of
this kind.

Proposition Every compact orbifold Y has an orbifold atlas K with trivial obstruction
spaces whose associated groupoid Gy is an orbifold structure on Y . Moreover, there is
a bijective correspondence between commensurability classes of such Kuranishi atlases
and Morita equivalence classes of ep groupoids.

To apply the above theory to moduli spaces X that arise in geometric examples, one
needs to develop methods for constructing Kuranishi atlases on such X . Some parts
of this construction were detailed in the 2012 preprint [12], and now appear in [14].
They will be extended in [10] to include multiply covered curves (and hence nontrivial
isotropy) as well as nodal curves. Both McDuff [10] and Pardon [16] outline the
needed construction for moduli spaces of closed stable maps, though neither approach
is sufficient to give the smooth charts whose existence is assumed in the current paper.
In [10] we will combine the same setup with an implicit function theorem from polyfold
theory (see Hofer, Wysocki and Zehnder [7]) to obtain compatible choices of smooth
structures near nodal curves. An alternative approach is to extend the VMC/VFC
construction to less smooth sections. In fact, Castellano [2] proves a gluing theorem
for Gromov—Witten moduli spaces that allows the construction of stratified smooth
Kuranishi atlases with C!—differentiability across strata, to which our construction
applies with minor modifications. He moreover shows that the resulting genus zero
Gromov—Witten invariants satisfy the standard axioms.

1.2 Outline of the construction

This paper contains all relevant definitions and a fair amount of review so that it can
be read independently of the previous papers in this series. This outline will also be

10ur construction was outlined in [9]. In [16], Pardon independently takes a similar approach to
handling the isotropy groups.
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rather brief since the earlier papers give extensive explanation and justification for our
approach:

- The first part of [14] is a general discussion of different approaches to regularizing
moduli spaces —eg as VMC/VFC — and explains important analytic background.

- The paper [13] starts with an overview of the topological challenges that need
to be addressed in constructing a VMC/VEC, and then proves the basic topological
results needed to show that a filtered weak Kuranishi atlas determines a tame Kuranishi
atlas /C, well-defined up to cobordism, whose realization || is Hausdorff, contains a
homeomorphic copy of the moduli space X, and can be equipped with a metric that is
compatible with local charts (but generally induces a different topology on |K|).

- The second part of [14] carries out the full construction of the VMC as the zero set
of a suitable perturbation of the canonical section sx in the case of trivial isotropy.

We now discuss the main steps in the construction below in more detail, highlighting
the new features needed to deal with nontrivial isotropy.

e In order to simplify the abstract discussion, we decided to give a rather narrow
definition of a Kuranishi atlas /. Thus the domains of both the basic and transition
charts are group quotients (U, I'7), and the coordinate changes are determined by
rather special equivariant covering maps (U 17-T7) = (Urs,T'1). The basic theory
is set up in Section 2.1; see in particular Definition 2.1.4 and Lemma 2.1.5. If there
were a need, one could no doubt replace these group quotients by more general étale
groupoids and use more general covering maps and obstruction bundles, at the expense
of revisiting the construction of perturbations.

e Smooth atlases and coordinate changes are defined in Sections 2.2 and 2.3. Though
in general the definitions are similar to those in the case with trivial isotropy, there is
an important difference in the notion of coordinate change: when I C J this is now
given by a covering map from an appropriate submanifold Uy of the domain of the
higher dimensional domain Uy onto an open subset Uy of the lower dimensional
domain Uy . If the isotropy groups are trivial, this map is a diffeomorphism with inverse
equal to the coordinate changes ¢7y: Uy — Uy considered in [13; 14]. Another small
difference is that we build in the notion of additivity since at least some version of this
is needed for the taming construction discussed below. (In some situations, for example
when considering products, this formulation is too rigid; for appropriate generalizations
see [10].)

e An important feature of our definitions is that the quotients Uy := Uy /Iy fit
together to form an intermediate atlas, which Lemma 2.3.4 shows to be a filtered
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topological atlas in the sense of [13]. In particular it has an associated category By
with space of objects the orbifold Objg, :=| |; Uy, and identical realization || = |K].

e One difficulty in constructing a VFC for a given moduli space X is that in practice
one cannot usually construct an atlas on X . Instead one constructs a weak atlas,
which is like an atlas except that one has less control of the domains of the charts and
coordinate changes; cf the various cocycle conditions discussed in Definition 2.2.12 and
Lemma 2.2.13. But a weak atlas does not even define a category, let alone one whose
realization |Bx| =: |K| has good topological properties. For example, we would like
|KC| to be Hausdorff and (in order to make local constructions possible) for the projection
nie: Up — |K| to be a homeomorphism to its image. Theorem 2.5.3 summarizes the
main topological facts about /C that are needed for subsequent constructions. We
achieve these via shrinking and taming. Our definitions were designed so that all
the topological constructions of [13], such as the taming, cobordism and reduction
constructions, apply to the intermediate atlas K and then lift to IC because the quotient
maps Uy — U7 are proper. However, we do need to take some care with the proof of
the linearity properties of the projection pr: |Ex| — |Bx].

e Another important part of Theorem 2.5.3 is the claim that any two tame shrinkings
of a weak atlas K are concordant, ie cobordant over [0, 1] x X, which is required to
show independence of the VMC/VFC from the choice of shrinking. In Section 2.4 we
give the precise definition of a cobordism atlas. This is an immediate generalization of
the notion of cobordism in [13; 14], and the relevant proofs generalize easily.

e Given a weak atlas, the taming procedure gives us two categories By and Ex with
a projection functor pr: Ex — B and section functor si: Bx — Ex. However, even
when the isotropy is trivial, the category has too many morphisms (ie the chart domains
overlap too much) for us to be able to construct a perturbation v: Bx — Ei that is
transverse to 0 (written sxc+v M 0). We therefore pass to a full subcategory By|y of By
with objects V := | |V that does support suitable perturbations v: By|y— Exly.
This subcategory Bj|y is called a reduction of K; cf Definition 3.2.1. Constructing it
is akin to passing from the covering of a triangulated space by the stars of its vertices
to the covering by the stars of its first barycentric subdivision. Again this construction
can be done at the level of the intermediate category, so that the methods of [13]
immediately give us the required reductions.

e In the presence of nontrivial isotropy, we may still not be able to construct a
transverse perturbation v: By |y— Ex|y as a functor, since local perturbations vy are
required to be 'y —equivariant. In general, this can be resolved by using multivalued
perturbations. Our setup allows for a simplified approach: we define perturbations
v = (v1)1ez, to be families of maps that are compatible with the covering maps pry
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but need not be I'y —equivariant. We show in Section 3.2 that this construction inherits
enough equivariance to yield an étale category that represents the zero set of the
perturbed section si|y + v, assuming that this is transverse to 0. The remaining
morphisms are then added back in at the expense of weighting functions, which give the
perturbed zero set the structure of a weighted branched manifold. More precisely, we
construct the perturbed zero set in Theorem 3.2.8 as the Hausdorff realization |Z" |y
of an étale (but nonproper) category Z" whose space of objects has one component
Z1 = (stly, +v)~1(0) for each I € Ty, and whose branching locus and weighting
function are explicitly determined by the reduction V and the isotropy groups.

e For the convenience of the reader we prove the needed results about weighted
branched manifolds and cobordisms in the appendix. Moreover, the short paper [11]
explains the construction of ZV in the orbifold case. This is much simpler, since the
obstruction spaces, and hence also the sections si, v are zero.

e Moreover, we must ensure that the perturbed zero sets are compact and unique up
to cobordism. As we show in Proposition 3.3.3 the rather intricate construction in [14]
carries through in the current situation without essential change.

e In Section 3.1 we extend the notion of orientation to atlases with nontrivial isotropy.
As in [14], we define the orientation line bundle of X in two equivalent ways, showing
in Proposition 3.1.13 that the bundle detsx (with local bundles (detsy)ez, ) is iso-
morphic to Ax (with local bundles (A" Ur @ (A™*E1)*)jez,. ). Most of the needed
proofs can again be quoted directly from [14]. Lemma 3.1.14 explains how these
bundles are used to orient local zero sets of sections.

e The final step is to build the homology class [X ]",Cir € ﬁd (X:Q) from the zero set
(sx|y +v)~1(0). Many of the details here are again the same as in [14]. In particular,
we build a geometric representative |Z Y|y for this class that maps to the precompact
“neighborhood”? V| = J; mx (V) C |K| of ue(X) = |sic!(0)], and then define [X ]}
by taking an appropriate inverse limit in rational Cech homology.
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2 In fact, 1xc(X) does not have a compact neighborhood in |K|; we should think of [V| as the closest
we can come to such a neighborhood.
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2 Smooth Kuranishi atlases with isotropy

In this section we extend the notions of smooth Kuranishi charts and transition data
introduced in [14] to nontrivial isotropy and then discuss cobordisms and taming. The
main result is Theorem 2.5.3.

Throughout this section we fix X to be a compact metrizable space. The main change
from [14] is that the domains of the charts are no longer smooth manifolds, but rather
group quotients. We begin by setting up notation for the latter. As in [14, Remark 5.1.2]
we assume all manifolds are smooth and second countable.

2.1 Group quotients

Definition 2.1.1 A group quotient is a pair (U, I') consisting of a smooth manifold U
and a finite group I' together with a smooth action I' x U — U . We will denote the
quotient space by

U:=U/T,

giving it the quotient topology, and write 7: U — U for the associated projection.
Moreover, we denote the stabilizer of each x € U by

I":={yel|yx=x}CTl.
We could consider a group quotient as a topological category with space of objects U
and morphisms U x I', but in the interest of simplicity will often avoid doing this.
Both the basic and transition charts of Kuranishi atlases will be group quotients, related

by coordinate changes that are composites of the following kinds of maps.

Definition 2.1.2 Let (U,T"), (U’,T) be group quotients. A group embedding
(¢.¢"): (U.T) - (U".T)

is a smooth embedding ¢: U — U’ that is equivariant with respect to an injective group
homomorphism ¢T: I' — I'” and induces an injection ¢$:U—->U " on the quotient
spaces. We call a group embedding equidimensional if dimU = dim U’ .

In a Kuranishi atlas we often consider embeddings (¢, ¢'): (U,T') — (U’,T') where
dimU <dimU’ and ¢T: ' — IV :=T is the identity map. On the other hand, group
quotients of the same dimension are usually related either by restriction or by coverings
as follows.
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Definition 2.1.3 Let (U,I") be a group quotient and ¥V C U an open subset. Then
the restriction of (U,T') to V is the group quotient (x~1(V),T).

Note that the inclusion 7~ !(V) — U induces an equidimensional group embedding
(771(V),T) — (U,T) that covers the inclusion ¥V — U . The third kind of map that
occurs in a coordinate change is a group covering. This notion is less routine; notice in
particular the requirement in (ii) that ker p! act freely. Further, the two domains Uu,.u
will necessarily have the same dimension since they are related by a regular covering p.

Definition 2.1.4 Let (U,T") be a group quotient. A group covering of (U,T') is a
tuple (U, T, p, p'') consisting of

(i) a surjective group homomorphism p!': -T,
(ii) a group quotient (17 , f‘), where ker p! acts freely,
(iii) aregular covering p: U — U that is the quotient map U—>U / ker pI' composed

with a diffeomorphism U /kerpl' = U that is equivariant with respect to the
induced I = im(p") action on both spaces.

Thus p: U—U is equivariant with respect to pl : [>T and o' acts transitively on
the fibers of p. We denote by p: U — U the induced map on quotients.

Next, we establish some basic properties of group quotients, in particular the fact that
coverings induce homeomorphisms between the quotients. Here and subsequently we
denote a precompact inclusion by V C U.

Lemma 2.1.5 Let (U,T") be a group quotient.

(i) The projection w: U — U is open, closed and proper. In particular, any pre-
compact set P = U has precompact preimage =~ '(P) C U, Moreover, U is a
separable, locally compact metric space.

(ii) Every point x € U has a neighborhood Uy that is invariant under I'* and is such
that inclusion Uy < U induces a homeomorphism from Uy /T'* to n(Uy). In
particular, the inclusion (Uy, T'*) — (771 ((Uy)), T) is a group embedding.

@iii) If (l7, T, p. p') is a group covering of (U, T), then p: ﬁ — U is a homeomor-
phism and p¥ induces isomorphisms between the stabilizers TY — T'P() for all
yeU.

Proof Let W C U be open. Then 7~ (z(W)) = Uyer yW is open since each yW
is the preimage, under the continuous action of y~!, of the open set W . Hence, by
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definition of the quotient topology, (W) is open. This shows that 7 is open. The
same argument applied to the complement of a closed set shows that 7 is closed.

To see that 7 is proper, consider a compact set V' C U . Given any open cover (Uy)geca
of 771(V), choose for each x € 7! (V) an element ay € A such that x € Uy, . Then
for each x € V define
Wy= () 7(Us)CU.
xex—1(x)

These are open sets since 7' (x) is finite and the map 7 is open, and they cover
the compact set V. So we may choose a finite subcover (W, )i=1,..,n of V. Then
(Ua, ) xen—1{x,,...x,} 1s & finite subcover of 7~ Y(V). This shows that preimages of
compact sets are compact, ie 7 is proper.

To see that preimages of precompact sets P C U are precompact, it suffices to note that
the continuity of 7 gives 7—1(P) C #~!(P), so that 7—1(P) is compact because it is
a closed subset of 7~ 1(P), which is compact as preimage of the compact set P C U .

To finish the proof of (i) we must show that U is a separable, locally compact metric
space. But U inherits these properties from U by [15, Exercise 31.7] which applies
to closed continuous surjective maps 7: X — Y such that 7~!(y) is compact for all
yevy.

To prove (ii), first choose any open neighborhood Vyx C U of x that is disjoint from its
images under the elements of " \ T'*, and then set

Then U, is open since I'* is finite and each yVy is open. Moreover, Uy is invariant
under I'*, and has the property that its intersection with each I"—orbit is either empty or
is a T'*—orbit. Thus the restriction of 7 to U, is simply the quotient by the I'* action,
so that U, /T'* — 7(Uy) is the identity.

To prove the first claim in (iii), note that I' acts on the partial quotient U /ker pl
via its identification with im p!" = =T /ker p! to induce a homeomorphism U / I~
(U /kerpl')/T". Now p is this identification composed with the homeomorphlsm
(U/kerp')/T — U/T induced by the I'—equivariant diffeomorphism U/kerpl =~ U.

As for the statement about stabilizers notice that we have T'” N (ker pT') = id, because
ker pU' acts freely. Thus p |Fy is mJectlve It takes Values in T'* for x := p(y) by the
equivariance of p with respect to p! . To see that p |I‘ [V >T¥is  surjective, fix
an element § € I'*. By surjectivity of o' T'— ' we can choose a lift §e (P 71(5).
Since p(Sy) =p (S)p(y) = 8x = p(y) and the fibers of p are ker p! orbits, there is a
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unique y € ker pI such that ygy =y, and hence yge . Since pf (yg) =pl (g) =4,
this shows that the induced map on stabilizers I'” — I'* is surjective and hence an
isomorphism. a

Remark 2.1.6 In order to make our presentation more accessible we have chosen to
require that the domains of our Kuranishi charts are explicit group quotients (U, T").
Instead we could have worked with étale proper groupoids G with the additional
property that the realization map Obj; — Objg /~, that identifies two objects if and
only if there is a morphism between them, is proper. This extra properness assumption
is proved for group quotients in Lemma 2.1.5(1). We will see below that this properness
allows us to deduce results about a Kuranishi atlas K from results of [13] applied to
the intermediate atlas & in which the charts have domains U = U/ T . <

2.2 Kuranishi charts and coordinate changes

We begin by generalizing the notion of smooth Kuranishi chart (with trivial isotropy)
from [14] to the case of nontrivial finite isotropy.

Remark 2.2.1 To simplify language, we will not add the specifications “smooth” ,
“nontrivial isotropy” or “additive” to Kuranishi charts, coordinate changes, and atlases
in this paper. Hence a Kuranishi atlas in this paper is a generalization (allowing
nontrivial isotropy) of the notion of smooth additive Kuranishi atlas in [14]. We will
see that it induces a filtered topological Kuranishi atlas in the sense of [13], given
by the “intermediate charts and coordinate changes” introduced in Definition 2.2.3
and Remark 2.2.11 below. So in this paper we will take “intermediate” to include the
specification “topological”. &

Definition 2.2.2 A Kuranishi chart for X is a tuple K = (U, E, I, s, {) consisting of

e the domain U, which is a smooth finite-dimensional manifold;
¢ a finite-dimensional vector space E called the obstruction space;
¢ afinite isotropy group I" with a smooth action on U and a linear action on FE;
¢ asmooth I'-equivariant function s: U — FE, called the section;
e acontinuous map ¥: s~ 1(0) — X that induces a homeomorphism
y:s ' (0):=5""0)/T > F
with open image F C X, called the footprint of the chart.
The dimension of K is dim(K) :=dimU —dim E.
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In order to extend topological constructions from [13] to the case of nontrivial isotropy,
we will also consider the following notion of intermediate Kuranishi charts which have
trivial isotropy but less smooth structure.

Definition 2.2.3 We associate to each Kuranishi chart K = (U, E, T, s, ) the inter-
mediate chart K := (U, E, s, ¥) consisting of

o the intermediate domain U := U/ T,

o the intermediate obstruction “bundle”, whose total space E := U x E is the
quotient by the diagonal action of I', with the projection map pr: E — U,
I'(u,e) — I'u, and zero section 0: U — E, I'u — I'(u, 0);

o the intermediate section s: U — E induced by s =idy xs: U - U x E;

e the intermediate footprint map r: s~ 1(im0) — X induced by ¥: s71(0) — X.

We write w: U — U for the projection from the Kuranishi domain. Moreover if a
chart Ky = (Uyr, E7, 1, s, ¢¥r) has the label I, then K; = (QI’EIéI»%I) and
nr: Uy — Uy denote the corresponding intermediate chart and projection.

The intermediate charts and coordinate changes of a Kuranishi atlas (with isotropy)
will form a topological Kuranishi atlas (without isotropy). For the charts, the following
is a direct consequence of Lemma 2.1.5.

Lemma 2.2.4 The intermediate chart K is a topological chart in the sense of [13,
Definition 2.1.3]. In other words,

e the intermediate domain U is a separable, locally compact metric space;

e the intermediate obstruction “bundle” pr: E — U is a continuous map between
separable, locally compact metric spaces, so that the zero section 0: U — E is a
continuous map with pro0 = idy ;

e the intermediate section s: U — E is a continuous map with pros = idy ;

* the intermediate footprint map s 1(0) — X is a homeomorphism onto the
footprint ¥ (s~1(0)) = F, which is an open subset of X .

Remark 2.2.5 (i) The intermediate bundle pr: E — U is an orbibundle and hence
has more structure than a general topological chart. In particular, it has a natural zero
section 0: U — E. Hence, when working with labeled charts K ;, we will usually
simply denote the projection and zero section by pr and O rather than pr;, 0y .

(i1)) We will find that many results from [13], in particular the taming constructions,
carry over to nontrivial isotropy via the intermediate charts, since precompact subsets
of U lift to precompact subsets of U by Lemma 2.1.5(i). An important exception is
the construction of perturbations which must be done on the smooth spaces U. <
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Next, as in [13; 14], compatibility of Kuranishi charts will require restrictions and
embeddings to common transition charts.

Definition 2.2.6 Let K = (U, E, T, s, ¥) be a Kuranishi chart and F’ C F an open
subset of its footprint. A restriction of K to F’ is a Kuranishi chart of the form

K'=K|y:=U"E.T.s'=slu.¥'=¥|g-19) with U :=7"1(U")
given by a choice of open subset U’ C U such that U’ N y_l(F) = y_l(F/).

We call U’ the domain of the restriction.

Note that the restriction K’ in the above definition has footprint y/(s'~1(0)) = F’,
and its domain group quotient (U’, T") is the restriction of (U,T") to U’ in the sense of
Definition 2.1.3. Moreover, because the restriction of a chart is determined by a subset
of the intermediate domain U, we can in the following use the existence result in [13]
for restrictions of topological charts to obtain restrictions of charts with isotropy. Here
we use the notation [ to denote a precompact inclusion and we write cly (V) for the
closure of a subset V' C V in the relative topology of V.

Lemma 2.2.7 Let K be a Kuranishi chart. Then for any open subset F' C F
there is a restriction K’ to F' with domain U’ such that U’ := n~1(U’) satisfies
cly (U Ns~1(0) = v~ (cly (F’)). Moreover, if F' T F is precompact, then U’ _ U
can be chosen precompact so that U' = U .

Proof By [13, Lemma 2.1.6] applied to the intermediate chart K, there is a sub-
set U" C U that defines a restriction of this topological chart, and in particular
satisfies U’ Ns~1(0) = ¢! (F’), with the additional property cly (U’) Ns~1(0) =
¥~ (clx (F’)). Further, we may assume that U’ is precompact in U if F' C F. Then
U'=n"1 (U’) is the required domain. It inherits precompactness by Lemma 2.1.5(i).
Further, the same lemma shows that 7~ (cly (U’)) = cly (U’). Hence applying 7~}
to the identity cly (U’) Ns~1(0) = ¥~ !(clx (F’)) implies that cly (U’) Ns~1(0) =

Y (elx (F1). m

Most definitions in [14] extend, as the previous ones, with only minor changes to the
case of nontrivial isotropy. However, the notion of smooth coordinate change [14,
Definition 5.2.2] needs to be generalized significantly to include a covering map. For
simplicity we will formulate the definition in the situation that is relevant to additive
Kuranishi atlases.®> That is, we suppose that a finite set of basic Kuranishi charts
(Ki)ieq1,...,Ny is given so that foreach / C {1,..., N} with Fj :=();c; F; # @ we
have another Kuranishi chart K; with

3 While additivity was introduced as separate property in [12], it is both so crucial and natural that
below in Section 2.3 we will define the notion of Kuranishi atlas to be automatically additive.
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- isotropy group I'y :=[];¢; I,

- obstruction space Ey :=[[;c; E; on which I'; acts with the product action,

- footprint Fy :=(\;¢; Fi-
Then for I C J we have the natural splitting I'y = I'; x I'j\; with induced inclusion
't — I'rx{id} C 'y and projection pFJ: 'y — T’y withkernel '\ ;. (Here we include
the case I=J, interpreting 'y := {id}.) Moreover, we have the natural inclusion

&51 J: Er — Ej, which is equivariant with respect to the inclusion I'y < Iy and such
that the complement of this inclusion I'\; acts trivially on the image ¢75(E;) C Ey.

Definition 2.2.8 Given I C J C{l,..., N} let K; and K; be Kuranishi charts as
above with F7 D Fj. A smooth coordinate change ®j; from Kj to Kj consists of

 achoice of domain Uyy C Uy such that Ky|y,, is a restriction of Ky to Fy,

 the splitting I'y = I'y x I'y\; as above, and the induced inclusion I'; < T';
and projection p?J: ry -1y,

e a ['y-invariant submanifold 171 J C Uy on which I'y\; acts freely, and the
induced I'y —equivariant inclusion ¢;;: Uyy — Uy,

e a group covering (Uzs, Ty, pry. ,o}}) of the group quotient (U, I'y), where
Uy :=n;'(Uy) CUr,

¢ the linear equivariant injection $1 J: E7 — Ej as above,

such that the inclusions 51 7, $1 J and covering pyy intertwine the sections and footprint
maps,

(2.2.1) syopry =ryospoprs onlpy,
Yyobrs =vroprs ons71(0)N Ty = pr} (s71(0)).
Moreover, we denote sy :=S70pr7J: U 17 — E71 and require the index condition:
(i) The embedding $1 J: (71 7 <> Uy identifies the kernels:
du$11 (kerdysyy) = kerdau(u)SJ YueUy.
(i) The linear embedding <}51 7. E7 — Ej identifies the cokernels:
Er =im(dysyy) ® Cu,; = Ej =im(dg, ,)57) @ ¢rs(Cu) Yuelyy.

The subset Uy C U7y is called the domain of the coordinate change, while U, 17 CUy
is its lifted domain.
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Recall that we have dim l71] = dim Uy since pys: U” — Uy is a regular covering.
Moreover, pyy identifies the kernels and images of dsy; and dsy, in other words

(2.2.2)  dypry(kerdysyy) =kerd,, ,q)sr, im(dysyy) =im(d,, ,w)s1) C Eg.

Hence the index condition is equivalent to kernels and cokernels of d, , ,)s7 and dysy
being identified by the coordinate change. As in [14, Lemma 5.2.5] it is also equivalent
to the tangent bundle condition

22.3)  dg, 0057 T3,,00Ur /Gt (Tulrp) => Ey[ér7(Er) YueUyy.

This also shows that any two charts that are related by a coordinate change have the
same dimension. To keep our language similar to that in [14], we denote a coordinate
change by Oy = (511, $IJ, p17): Krlu,,— K. However, since the linear map <]3”
is fixed by our conventions, the coordinate change o) 77 1s in fact determined by a group
covering ((71],I‘J,p1],plrj) of (nl_l((_]”), I'7), where Uyy C Uy is a choice of
domain for which U7y N Yl_l(FI) = %I_I(FJ).

Remark 2.2.9 (i) In the case of trivial isotropy and with trivial covgring prj =: ¢1_J1 ,
this definition is the notion of coordinate change in [14] with Ury = ¢;5 (U[ J)-
Because Uyy C Uy is open, the index condition together with the condition that U 17
is a submanifold of Uy implies that Ury is an open subset of s Jl(E 7).

(i) The following diagram of group embeddings and group coverings is associated to
each coordinate change:

(@1.7.id
(Ur7.Ty) % Uy.Ty)

(2.24) j (01705 ))

(Ur.Ty) =— (Ugy.Ty)

(iii) Since p Py U 17 — Uy is a homeomorphism by Lemma 2.1.5(iii), each coordi-
nate change (¢77, ¢1J p17): Krlu,,— K, induces an injective map

b= ¢~’1J°'OIJ Uy = Uy

on the domain of the intermediate chart. In fact there is an induced coordinate
change ) ®;7: K|y, ,— K between the intermediate charts, given by the bundle map
1y Uiy x Ef — UJ x E j which is induced by the multivalued map (¢”op”)x¢”
and thus covers ¢ 17° Jl ) b, This is a topological coordinate change in the sense
of [13, Definition 2.2. 1] This means in particular that the map

®ry: Uy x Er = Eyly,,:=pr7 ' (Urs) - E,

Geometry & Topology, Volume 21 (2017)



Smooth Kuranishi atlases with isotropy 2739

is a topological embedding (ie homeomorphism to its image) that satisfies the following:

e Itis a bundle map, ie we have pr; O&)]J = ¢” opry |pr 1, ,) foratopological
embeddmg ¢ :Uypy — Uy, and it is linear in the sense that 0y o ¢
CIDIJ o07lu,, » Where 07 denotes the zero section O7: Uy — E; in the chart KI

¢ It intertwines the sections and footprints maps, ie
— & — 1
sjo¢,, =205y, ‘EU@I—I(FmF,)—%J oY,

However, i) 77 has more smooth structure than a general topological coordinate change
since ¢ I: Urj — U j preserves the orbifold structure and ®;; is a map of orbibun-
dles.

(iv) Conversely, suppose we are given a topological coordinate change P ;7. Ki—Kj
with domain Ujy. Then any coordinate change from K; to Kj that induces d>1 J
is determined by the I'y—invariant set U1 Ji=7] (¢ (U 77)) and a choice of I'y—
equivariant homeomorphism between U1 7/ Ta and U1 Ji=n; YUry). If we can
choose this homeomorphism to be smooth, then we obtain a smooth coordinate change
K; — Kj with domain U7y provided that the index condition is satisfied, which is a
condition on the relation between the set U, 77 and the section sy. When constructing
coordinate changes in the Gromov—Witten setting in [10], we will see that there is
a natural choice of this diffeomorphism since the covering maps pys are given by
forgetting certain added marked points. Further, the index condition is automatically
satisfied in this setting.

(v) Because U 77 1s defined to be a subset of Uy, it is sometimes convenient to think
of an element ¥ € U, 77 as an element in Uy, omitting the notation for the inclusion
map ¢yy: Ury — Uy. <&

The next step is to consider restrictions and composites of coordinate changes. Re-
strictions exist analogously to [14, Lemma 5.2.6]: for I C J, given a coordinate
change &)”' K;|u,,— K and restrictions K; = K1|U/ and K} = KJ|U/ whose
footprlnts F;N F} have nonempty intersection, there is an 1nduced restricted coordmate

change <I>1J|U/ : I|Q/”—> K/, for any open subset U, C Uy, satisfying the
conditions
(2.2.5) UrycUrng,, L', L_J’”mg;l(O):y;l(F;mF}).

However, coordinate changes now do not directly compose due to the coverings involved.
The induced coordinate changes on the intermediate charts still compose directly, but
the analog of [14, Lemma 5.2.7] is the following.
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Lemma 2.2.10 Let I C J C K (so that automatically Fr O Fjy D Fk ) and suppose
that ®ry: K; — Kj and ®jx: Kj — Kk are coordinate changes with domains U jy
and U jk respectively. Then:

(i) The domain Ujjg :=Ujr; N gﬁl_} (U k) C Uy defines a restriction Ky|y, .
of K; to Fk.

(ii) The compos1te PIJK ‘= PIJ © PJK: Uy — Upjg = Ty YWUysk) is de-
fined on Upjg = JrKl((ngK ) ¢”)(U”K)) via the natural identification of
ij(UIJK) C Uy with a subset of Uy . Together with the natural projection
pIK I'x — I'r with kernel I'g\ y, which factors pIK = ,o” opJK, this forms

a group covering (Urjx. Tk, prsk. prg) of (Ursk.Tr).

(iii) The inclusion ¢1 JK: U[ 7k — Uk, taken together with the natural inclusion
¢rx: E; — Ex (which factors ¢jx = ¢y o Py ) and pyjk , satisfies (2.2.1)
and the index condition with respect to the indices I, K .

Hence this defines a composite coordinate change
Dk 0 Dry =Pk = (17K b1k PIIK)

from Kj to Kx with domain Uy k.

Proof The corresponding statement for the induced coordinate changes for the inter-
mediate charts is proved in [13, Lemma 2.2.5]. Thus claim (i) follows from part (i) of
[13, Lemma 2.2.5].

To see that pyyx in (ii) is well defined, we need to verlfy that p JK(U[ JK) C U1 7,
or (due to equivariance) equlvalently o, K(U 17K) C U 17 - For that purpose we drop
the natural identifications ¢ U I ] — U j from the notation so that the intermediate
coordinate changes are ¢ Uiy — Q 77 C U and the inclusion follows

from

b1, =0P1y
0, Orig) =p, (@, 00, YU Mg, (Uk))
= (P, 9, ) U1 NU k)

=UrsNU k.

Next, observe that composites of group covering maps are also group covering maps.
In partlcular since '\ s acts freely on U; JK C U sk and I'j\; acts freely on the
quotient U 17K/ T\ (because it is identified I'y —equlvarlantly with a subset of U, 17)s
the group I'g\; = '\ s x I'j\1 acts freely on Urjk.

Geometry & Topology, Volume 21 (2017)



Smooth Kuranishi atlases with isotropy 2741

To prove (iii), first observe that (2.2.1) holds for the index pair /K because it holds for
IJ and JK:

sk oprk = ¢k 0550 pIKlg,
= gk o ($r7 o510 p1) 0 pIklg, .
= $1K 051 0 pIIK on Uy k.
YK o Prix = Vo psk
= VY71 0p1J°PIK
= VY1 0 pIJK onsg' (0)NUpyk.

Finally, it is easiest to check the index condition in the form given in (2.2.3), ie we
need to establish isomorphisms for all u € Urjg,

226)  dg, 0K T3, 000Uk /ubrix (TuUrix) => Ex/$1x(Er).

Here and below we will suppress the natural embedding 51 JK: 171 Jk — Uk from
the notation, hence identifying eg u € Uik with 51 sk () € Ug. With that, the
quotient on the left is naturally identified with the normal fiber T,,Ug /Ty, U, 17K to the
submanifold 171 7k of Uk . Next, l71 JK 1s by construction a submanifold of U JK »
which in turn is a submanifold of Uk, hence this normal fiber is isomorphic to the
direct sum of the normal fiber of U, 77K In U JK together with that of U Jk in Uk,

TuUk/TuUrsx = TyUk/TuUsk ® TuUsk /Ty Ur k.

By the index condition for o) JK , the map dy, sk restricted to the first summand in-
duces an isomorphism Tu Uk /Ty U JKk — Eg/ ) Jr(Ey). C0n51der1ng the second
summand, recall that on UJK we have sk = 55 0 pjk, where pjk: U_]K —Ujg is
a local diffeomorphism onto an open subset of Uy . It maps U; JK top JK(U[ JK) =
U[J NUjk so that with v := ,oJK(u) the map d,pyg induces an isomorphism
Ty UJK/T U[JK = T, Ujy/Ty U[J Thus the restriction of d,sg to the second
summand induces the isomorphism

dysy odypyk: TuUsk /TuUrjx => TyUys /ToUry => Ej/®ry(Er).

where the second isomorphism results from the index condition for ) 17 - Putting this
all together, d,,sg induces an isomorphism from T, Ug /T, Uy jx to

Ex/®ix(Ej)® Ej/®r;(Er) = Ex/®rx(Eq),

where in the last step we used the fact that ) Jk. Ej — Eg is the natural inclusion.
This establishes the isomorphism (2.2.6) and thus completes the proof. |
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Remark 2.2.11 The composition &51 Jk: Ki — Kk induces a coordinate change
513 17k: K7 — K g on the intermediate charts. This agrees with the composition of the
intermediate coordinate changes <1> 17, @ Jk as defined for topological charts in [13,
Lemma 2.2.5]. <&

Next, the cocycle conditions from [13, Definition 2.3.2] have direct generalizations.

Definition 2.2.12 Let K, for « = I, J, K be Kuranishi charts with / C J C K, and
let ®up: Koly,,— Kg for (o, B) € {(I,J),(J, K), (I, K)} be coordinate changes.
We say that this triple ®;5, ®jx, g satisfies the

e weak cocycle condition if o JK © 1) 1J =~ ) 7k are equal on the overlap, in the
sense that

(2.2.7) prk = pryopsk on Urg Np Uy NUsk);

e cocycle condition if ) JKOéS 17 C ) 1K, 1¢e ) 1k extends the composed coordinate
change in the sense that (2.2.7) holds and

(22.8) UryNe;;(Usk) CUrk:

e strong cocycle condition if o) JK © ) 1J = ) 1k are equal as coordinate changes,
that is if (2.2.7) holds and

(22.9) UrsN¢;,Usk) =Urk.

We stated these last two conditions on the level of the intermediate category because, as
we now show, they imply corresponding identities on the level of the Kuranishi atlas.

Lemma 2.2.13 (i) Condition (2.2.7) implies

¢ =b,°0,, onUikNUrN¢, (Ujk));

(i) The cocycle condition (2.2.8) implies that

pix = prsopsx  on py(Ury NUsk) C Urk.

(iii) The strong cocycle condition (2.2.9) implies that
PIK = PIJOPJK On P}}g(ﬁu NUyk) = Urk.
Proof By definition, Pop O T = Ta © Pap when « C B, so condition (2.2.7) implies

P =P, 0P, o0 wk(Urk N pyx U1y NUk)).
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The identity gi)a 5= B;[; from Remark 2.2.9(iii) then implies ¢ K= ¢ 7k ° ¢ ;7 on

P, & Uik Mok (T11NU k) = 71 (prx (T N 7 (T1y N Usk)))
= 71 (p1x (Urk) N p1y 0 prx (07 (Urs NUsk)))
= 77 (Ui N prs (U1 NUsk))
=UikNW Np,,Usk))
=Uix N (U N, U k),

where the second equality uses pyx = prj © pjx on 1711( N p;}((ﬁU NUyjk), and
the last uses Py = g_bI_Jl This proves (i).

Using in addition the identities Uyg = ;! (Ugp) and 17[,3 = JTﬂ_l ((Paﬂ (Ugp)), the
cocycle condition (2.2.8) implies the inclusion claimed in (ii),
Pk U1 N Usk) = (g0 psx) " (¢, ,(U1s) NU jk)
=(p,, 0P, °7K) " (¢,,Ur))NU k)
= (o, o7K) ' UrrNg;;WUik)) C ng' (px (U1K))

The proof of (iii) is the same, with the strong cocycle condition implying equality in
the second to last step. O

2.3 Kuranishi atlases

With the notions of Kuranishi charts and coordinate changes with nontrivial isotropy
in place, we can now directly extend the notion of smooth Kuranishi atlas from [14,
Definition 6.1.3]. For comparison with the notions of smooth and topological Kuranishi
atlas from [13; 14], see Remark 2.2.1.

Definition 2.3.1 A (weak) Kuranishi atlas of dimension d on a compact metrizable
space X is a tuple

K= (K1, ®1s)1,7ez,1C7

consisting of a covering family of basic charts (K;);=1,.. ~ of dimension d and
transition data (Ky)|s|>2, (®17)1<cy for (K;)i=1,..,n, Where:

e A covering family of basic charts for X is a finite collection (K;);=1,. n of
Kuranishi charts for X whose footprints cover X = U1N=1 F;.

e Transition data for a covering family (K;);—=1,..
charts (Kj) ez, |s|>2 and coordinate changes (@)1, sez,,1cs as follows:

N 1s a collection of Kuranishi
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(i) Zx denotes the set of subsets / C {1,..., N} for which the intersection of
footprints is nonempty,
Fr:=(\Fi #2.
iel

(i) For each J € Zx with |J| > 2, K is a Kuranishi chart for X with
footprint Fy = ();cy Fi, group I'y =[] jes I'j, and obstruction space
Ej=]];esEj. Further, for one element sets J = {i } we denote Ky;;:= K.

(iii) &DU =(pr17, pFJ, qASIJ) is a coordinate change K; — Ky forevery I, J € Iy
with I ¢ J, v/i\/here pFJ: I'y — I'y is the natural projection Hje] Iy —
[lies Ti and ¢ry: E; — Ej is the natural inclusion [[;¢; £ — [[;es E; -

For a weak atlas we require that the weak cocycle condition in Definition 2.2.12 hold
for every triple 1, J, K € Tg with I € J € K, while for an atlas the cocycle condition
must hold for all such triples.

Remark 2.3.2 Note that we have built additivity in the sense of [14, Definition 6.1.5]
into the above definitions. Namely, the natural embeddings ¢;;: E; — Ej = ]_[4e 1E¢
for each I € T induce the identity isomorphism

(2.3.1) [1i: [1E = Er=]]Ee

iel iel Lel

and for /I C J the linear map $I 7. E; — Ej is the induced inclusion [[;c; E; —
[lics Ei. Further, each group I'y is the product [[;c; I'; and we use the natural
projections pfj: I'y — I'7 in the group covering maps of the coordinate changes.
Hence, when I C J C K the projections pl. and linear inclusions ¢A>.. are automatically
compatible:

T T T "o " i
Pk = Pryj°PJK> b1k = Pjk 0PIy

So when I C J we will almost always write E; C E j for the subspace éﬁ\] J(E)CEy,
and similarly we have a natural identification of I'y with I'y X I'y\y. &

Remark 2.3.3 Although it seems that many interdependent choices are needed in
order to construct a Kuranishi atlas, this is somewhat deceptive. For example, in
the Gromov—Witten case considered in [10] (see also [10]), the geometric choices
involved in the construction of a family of basic charts (K;);=1,.. n essentially induce
the transition data as well. Namely, each basic chart K; is constructed by adding
a certain tuple w; of marked points to the domains of the stable maps ( f, z), given
by the preimages of a fixed hypersurface of M in a fixed set of disjoint disks. The
group I'; acts by permuting these disks, which has a rather nontrivial effect when
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viewing the chart in a local slice, in which the first three marked points are fixed.
However, the transition charts Kj are constructed very similarly: Elements of the
domain Uy consist of stable maps ( f,z) together with |J| sets of added tuples of
marked points (;);e, each lying in an appropriate set of disks and mapping to certain
hypersurfaces. Each factor I'; of the group I'y acts by permuting the components of
the j™ set of disks, leaving the others alone. Moreover, the covering map Ury — Up
simply forgets the extra tuples (w;);e\s. Thus it is immediate from the construction
that the group I'y\; acts freely on the subset Ury of Uy, and that the covering map
is equivariant in the appropriate sense. Further, when I C J C K the compatibility
condition pyjx = prj o psx holds whenever both sides are defined.

Furthermore, the stabilization process explained in [10] (see also [13, Remark 6.1.6])
allows us to directly work with products of obstruction spaces Ej :=[[;<; E;; there is
no need for a transversality requirement such as Sum Condition II” in [13, Section 4.3].
In fact, already each E; is a product of the form E; = HyeFi (Eoi)y, on which T}
acts by permutation of the |I';| copies of a vector space Eg;. Therefore, just as in the
case with no isotropy, once given the geometric choices that determine the basic charts,
we naturally obtain an additive weak Kuranishi atlas in which the only new choices
are those of the domains U; = Uy and Uy of the transition charts and coordinate
changes which are required to intersect the zero set gl_l (0) in %I_l (Fy). Note that
there is no simple hierarchy by which one could organize these choices to automatically
fulfill the cocycle condition. Hence concrete constructions will usually only satisfy
a weak cocycle condition. However, we show below that any weak (automatically
additive) atlas can be “tamed” so that it satisfies the strong cocycle condition, and hence
in particular gives a Kuranishi atlas. <

Given a (weak) atlas K = (K7, ) 1J)1,J ez, IS J » We define the associated intermediate
atlas K:= (K, <i> 1J)1,J ez, 1<J to consist of the intermediate charts and coordinate
changes. The next lemma shows that the intermediate atlas is a (weak) topological atlas
in the sense of [13, Definition 3.1.1], and that it is filtered in the sense that there are
closedsets E; ; CE; :=Uy x E; foreach I C J that satisfy the following conditions
(cf [13, Definition 3.1.3]):

1) E;;=E; and E;; =imO0y forall J € Zx;

(i) Pykpr;'Usk)NE;) =Ex N pr,}l(im@m) for all 1,J, K € Ix with
1 CJCK;

>iv) img)” is an open subset of 5}1@”) forall 1,J € Zx with I € J.
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Lemma 2.3.4 Let K be a weak Kuranishi atlas. Then the intermediate atlas K is a
filtered weak topological Kuranishi atlas, with filtration E; ; := Uy x ¢15(Ey), using
the conventions Eg := {0} and ¢ :=idg, .

Proof Lemma 2.2.4 and Remark 2.2.9(iii) assert that /C consists of topological Ku-
ranishi charts and coordinate changes. The intermediate basic charts cover X since
they have the same footprints as the basic charts of X, and this also implies that
the intermediate transition charts have the prescribed footprints. Moreover, the weak
cocycle condition for I transfers to C by Lemma 2.2.13(i), and the same holds for the
cocycle condition since its definition (2.2.8) is in terms of the intermediate domains.

Next, to see that E;; defines a filtration on K, we need a mild generalization of
[14, Lemma 6.3.1]. First note that Uy X$IJ(E1) C UjyxEy is closed since Uy x
<$U(E1) C UjyxEj is closed and the projection Uy x Ey — Uy x Ej is a closed
map by Lemma 2.1.5(i). The filtration property (i) above holds by definition, and
property (iii) holds because additivity implies

é17(Er) 0 ¢us(En) = ¢anmys(Ernm).

Moreover, because ) JK = QJK X $ JK , property (ii) follows by quotienting the next
identity by the group I'g,
Ok (Usk x ¢1s(Ep)) = im sk x ¢y (b1 (E))

= im sk x ¢rx (Er)

= (Uk x 1k (Ep)) N (im ¢k x Eg).
Finally, to check property (iv) we first apply [14, Lemma 5.2.5] to the embedding
¢17: Ury — Uy, which satisfies the index condition, ie identifies kernel and cokernel
of dsy and dsy (the latter being pulled back with the covering pyy). It implies that

im ¢y is an open subset of s;l (E7). This openness is preserved in the ["; quotient,
since Lemma 2.1.5 applies to the projection

s7HEN) = s7(ED/Ty=s;"(Us x Er) =57 (E;),

which maps im ¢7; to im¢”. |

If K is a Kuranishi atlas, then the topological atlas KC also satisfies the cocycle conditions,
and hence by [13, Lemma 2.3.7] there is an intermediate domain category By with
objects Objp, . := | [; ez, U1 equal to the disjoint union of the intermediate domains,
and morphisms
Morp, := |_| Urs
1cJ
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given by the intermediate coordinate changes ¢ : Urj — Uy, where the identity
maps ¢ ¢, on Uy = Uy are included. Thus the source and target maps are

sxt: Upy — UrxUy CObjg, xObjp,, (I,x) = ((I,x),(J,¢,,(x))).

The following gives the analogous categorical interpretation for the Kuranishi atlas
itself.

Definition 2.3.5 Given a Kuranishi atlas X we define its domain category By to
consist of the space of objects

Objp, = |_| Uy ={,x)|1 €Ix,x U}
IeTx

and the space of morphisms

Morp, = |_| Uy xTr={U,J,y,y) | I CJ,yeUy,yely}.
1,Jele, ICT

Here we denote 1711 :=Uy for I =J,andfor I C J use the lifted domain l71] CcUy of
the restriction Ky|y,, to F; thatis part of the coordinate change ®7;: K;|y,,— K.
Source and target of these morphisms are given by

(2.3.2) (1,J,y,y) € Morg, ((I.y " prs (). (J. 15 (»))),

where we denote 51 ; = id. Composition? is defined by

(I.J.y.y)o(J.K.2.8) == (I K.2=¢ ¢ ($sk (2)). P}, (6)y)
whenever 81 p k(z) = 51]()’)-

The obstruction category Ei is defined in complete analogy to By to consist of the
spaces of objects Objg, := L1, ez Ur x Er and morphisms
Morg, = |_| ﬁ[]XE]XF[,
ICJ, 1,JeTx

with source and target maps
(I’ va,ev )/) = (17 V_IPIJ(Y)» V_le)» (I» Jay’e? V) = (J7$IJ(y)’$IJ(e))’

4Note that we write compositions in the categorical ordering here. Recall that 5 JK: U 7K — Uk isthe
canonical inclusion of the subset ﬁJK C Uk . We then identify z = &;I_K (&S}K (2)), since composability
of the morphisms implies z € p7; (U 17 NUyk) and the cocycle condition ensures that p7 K(U 17NUsK)
is contained in U 1K » where both are considered as subsets of Uk .
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and composition defined by

(I,J,y.e,y)0(J. K.z, £.8) := (I, K, o1 ($sk (2)), f: prs(5)7)

forany I CJ C K and (y,e,y) € Ury x Ef x T, (z, f,8) € Usx x Ey x 'y such
that pj ; (81)psx(2) = drs(y) and §7' f =ee.

Lemma 2.3.6 If K is a Kuranishi atlas, then the categories By, Ex are well defined.

Proof We must check that the composition of morphisms in By is well defined, has
identities, and is associative; the proof for Ey is analogous We begin by checking
that z = d)l K(¢ sk (2)) lies in the lifted domain U1 x of <I>1K For that purpose
we drop the natural inclusions ¢** from the notation and note that the composition
(I,J,y,y)o(J, K, z, ) is defined only when the target of (1, J, y, y) equals the source
of (J,K,z,8);ie when y =81 psx(z). So the cocycle condition in Lemma 2.2.13(ii)
implies that z € ,o;}< (6y) is contained in p;}((ﬁu NUjk) C Urk, as claimed. This
means that (/, K, z, p; 7(8)y) is a well-defined morphism of By. Its source is

(1 V) o1k (@) =y o1,8)  ors (8y) =y ors (),

which coincides with the source of (/, J, y,y) as required. Finally, the target of the
composed morphism, z = ¢k (651_% (¢sx (z)) coincides with the target ¢k (z) of
(J, K, z,8). This shows that composition is well defined. The identity morphisms
are given by (/, I, x,id) for all x € Uyy := Uy . To check associativity we consider
I C J C K C L and suppose that the three morphisms (/,J,y,y), (J, K, z,§),
(K, L,w, o) are composable. Then we have

(I.J,y.7)0((J.K,2,8) o (K, L,w,0)) = (I,J,y,y) o (J, L, w, ply ()8)
= (I.L.w. pr; (g (@)8)y).
and associativity follows from comparing this expression with
(I, J,y,y)0(J,K,2,8)) o (K, L, w,0) = (I,K,z,p};(8)y) o (K, L, w,0)

This completes the proof. O

For the rest of this subsection we will make the standing assumption that IC is a
Kuranishi atlas, ie satisfies the cocycle condition (not just the weak cocycle condition).
Given the categorical interpretation of domains and obstruction spaces of Kuranishi
charts, we can now express the bundles, sections and footprint maps as functors:
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e The obstruction category E is a bundle over By in the sense that there is a
functor pry: Ex — By that is given on objects and morphisms by projection
(I,x,e)—>({,x)and (I,J,y,e,y)—(,J,y,y).

e The sections s7 induce a smooth section of this bundle, ie a functor si: Bx — Ex
which acts smoothly on the spaces of objects and morphisms, and whose compos-
ite with the projection pry-: Ex — B is the identity. More precisely, sg is given
by (I,x) — (I,x,s7(x)) on objects and by (I,J,y,y) — (I, J,y,s1(¥),y)
on morphisms.

¢ The zero sections also fit together to give a functor Ox: Bx — Ex given by
(I,x)~ (I, x,0) onobjectsand by (I, J,y,y)— (I,J,y,0,y) on morphisms.

¢ The footprint maps 17 induce a surjective functor

Vi SEI(O) = |_| 51_1(0) - X

IeTx

to the category X with object space X and trivial morphism spaces. It is given by

(I,x)— ¥ (x) onobjectsand by (I, J,y,y)+— ide @Grr ) = idy, (=10, ()
on morphisms.

As in [13] we denote by || (resp. |K|) the realization of the category By (resp. By).
This is the topological space obtained as the quotient of the object space by the
equivalence relation generated by the morphisms. The next lemma fits the quotient
maps niic: Objg,. — K|, (I, x) = [[,x] and mrx: Objp,. — K|, (I, x) = [I, x] into
a commutative diagram that will allow us to identify the realizations |K| = |K]| as
topological spaces.

Lemma 2.3.7 If K is a Kuranishi atlas, then there is a functor px: Bx — By that is
given on objects by the quotient maps Uy — Uy, x +> x, and on morphisms by the
group coverings pyj together with a quotient,

Uy xTr = Uy, (L J,y,y) e (I J, prs(y)).

It induces a homeomorphism |px|: |K| — |K| between the realizations that fits into a
commutative diagram:

. 1Y .
Objp, —> Objp,

ln)c ln’c
lok |

K| ——— IK|

Proof To see that px is a functor, recall that (y, y) € UpyxTy represents a morphism

from y~p;s(y) to y € Uy. On the other hand, p7(y) :EIJ(Z) € Uy represents a
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morphism from p;; (y) =y 1 prs(y) to 25” (prs(y)) =y, which shows compatibility
of px with source and target maps. Compatibility with composition as in (2.3.2) follows

from BIK@ = 9”(1) when y = BJK(g).
Next, any functor such as pi induces a map |px| between the realizations that is defined
exactly by the above commutative diagram. The map |pi| is surjective because the

functor px is surjective on the level of objects. It is injective because px is surjective
on the level of morphisms.

To check that |px| is open and continuous note that |pox|(U) = V is equivalent to
p,gl(n,gl(U)) = JTEI(V). Since pyx is continuous and open by Lemma 2.1.5(i), and
IK|, |K| are equipped with the quotient topologies, the openness of U C |K|, T L),
T 1(V) and V C |K| are all equivalent. This proves that |px| is a homeomorphism. O

Remark 2.3.8 (i) If K is a Kuranishi atlas with trivial isotropy groups I'7 = {id}, then
the intermediate atlas /C has the exact same object space and naturally diffeomorphic
morphism spaces, only the direction of the maps in the coordinate changes are reversed
from pyy: U” —UryCcUrto ? —p” Urjg— U]] C Uy . In this special case,
K is a Kuranishi atlas in the sense of [14], and Lemma 2.3.7 identifies the atlases and
their realizations.

(i) In general, the spaces of objects and morphisms of the intermediate category are
orbifolds, and there is at most one morphism between any pair of objects. However, just
as in the case of trivial isotropy, we do not attempt to make this category into a groupoid
by formally inverting the morphisms and then adding all resulting composites, since
doing so would in general give components of the morphism space without orbifold
structure; cf [14, Remark 6.1.8]. This objection does not apply if all the obstruction
spaces are trivial. It is shown in [10; 11] that every such atlas can be completed to a
groupoid without changing its realization. <

In complete analogy to Lemma 2.3.7, the obstruction categories Ex and Ex of the
Kuranishi atlas X and the intermediate atlas /C also fit into a commutative diagram that
identifies their realizations | Ex| = | Ex|. Moreover, these two diagrams also intertwine
the section functors sx, sk and their realizations:

<% Objg, —%~ Obj,, —> Obj, <—— Objp X —

(2.33) lmc lnE,C l”E;c lmc
sk lsk|

lox| K lok |
K| |Ex| |Ex| K|

There are analogous diagrams for the projection functors pry., pry and zero sections O
and Oy, which identify the induced maps between the realizations as stated below.
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Lemma 2.3.9 Let K be a Kuranishi atlas.
(1) The functors pryc: Ex — By, pri: E — B induce the same continuous map
Iprcl: |Ex| — [K],

which we call the obstruction bundle of K, although its fibers generally do not
have the structure of a vector space.

(ii) The zero sections Ox: Bx — Ex, Ox: Bx — Ex as well as the section functors
si: Bx — Ex, sg: Bx — Ex induce the same continuous maps

0k | = |0g|: [K] = [Exl, lsx| = |scl: IK] = |Exl.

which are sections in the sense that |pry| o [Ox| = idj| = |pric| o |sk].

(iii) There is a natural homeomorphism from the realization of the subcategory sgl 0)
to the zero set of |sx|, with the relative topology induced from |K|,

5" ()] = 5 (0)/~ = Jsic| 7110k ]) == {1, 6] | Isicl ([, x))=[0x|([1, x]D)} C IK].

Proof The induced maps on the realizations are identified by commutative diagrams
such as (2.3.3). The continuity and other identities are proven exactly as in [14,
Lemma 6.1.10] for the case of trivial isotropy. a

Next, we extend the notion of metrizability to Kuranishi atlases with nontrivial isotropy.
In the case of trivial isotropy, recall from [14, Definition 6.1.14] that an admissible
metric is a bounded metric d on the set |KC| such that for each I € Zy the pullback
metric dy := (nx|y,)*d on Ur induces the given topology on the manifold Uj.
However, in the presence of isotropy, it makes no sense to try to pull this metric back
to U since the pullback of a metric by a noninjective map is no longer a metric.
Instead, we use the fact that the realizations || = |K| of the Kuranishi atlas and its
intermediate atlas are canonically identified, which allows us to work with admissible
metrics on ||, which is the realization of a topological Kuranishi atlas [ with trivial
isotropy and given metrizable topologies on the domains Uy = Uy /Ty .

Definition 2.3.10 Let K be a Kuranishi atlas. Then an admissible metric on |K| = |K|
is a bounded metric on this set (not necessarily compatible with the topology of the
realization) such that for each I € Zx the pullback metric d; := (nk|y,;)*d on Uj
induces the given quotient topology on Uy = Uy /Ty.

A metric Kuranishi atlas is a pair (K, d) consisting of a Kuranishi atlas K together
with a choice of admissible metric d on |K]|.
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We finish this subsection with two comparisons of our notion of Kuranishi atlas: on the
one hand with orbifolds, and on the other hand with Kuranishi structures.

Example 2.3.11 If the obstruction spaces are trivial, ie £y = {0} for all /, then the
two categories By, Ex are equal, and their realization is an orbifold. A first nontrivial
example is a “football” X = S2 with two basic Kuranishi charts

(U1,T1 =Z2,v1), Uz, T2 =2Z3,Y2),

covering neighborhoods yi(g i) C S? of the northern (resp. southern) hemisphere
with isotropy of order 2 (resp. 3) at the north (resp. south) pole. We may moreover
assume that the overlap ¥ | Unny 2(l_] 2) = A is an annulus around the equator.
The restrictions of the basic charts to A C X are (A1, Z3) and (A3, Z3), where both
Ai =y 1(A) are annuli, but the freely acting isotropy groups are different. There is
no functor between these restrictions because the coverings A1 — A and A, — A are
incompatible. However, they both have functors (ie coordinate changes) to a common
free covering, namely the pullback defined by the diagram

Ui, — A

l lm

2

Ay — ACX

ie Upp :={(x,y) € A1 X Az | w1 (x)=m2(y)} with group T'1p:=T1 x Ty =7, xZ3.
The corresponding footprint map y12: Ui — A is the 6—fold covering of the annulus,
and the coordinate changes from (U;, I';, ¥;)|4 to (U12, 12, ¥12) are the coverings
(7,-,12 := U2 — A; =:U; 12 in the diagram. Therefore the category By in this example
has index set Zxc = {1,2, 12}, objects the disjoint union | |;<, Ur, and morphisms

(|_|U1xrl)u( || quri),

VESINS i=1,2

where for i = 1,2 the elements in U, x I'; represent the morphisms from U; to Ujs,.

This simple construction does not work for arbitrary orbifolds since the (set-theoretic)
pullback Uy, considered above will not be a smooth manifold if any point in 1 (U;) N
Y2 (U,) has nontrivial stabilizer. However, we show in [11, Proposition 3.3] that the
construction can be generalized to show that every orbifold has a Kuranishi atlas with
trivial obstruction spaces. <

Remark 2.3.12 (relation to Kuranishi structures) A Kuranishi structure in the sense
of [3, Appendix A] and [4] consists of a Kuranishi chart K, at every point p € X
and coordinate changes Ky|y,,— Kp whenever ¢ € Fj, that satisfy a suitable weak
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cocycle condition. Much as in the case of Kuranishi atlases with trivial isotropy (see [14,
Remark 6.1.16]), a weak Kuranishi atlas in the sense of Definition 2.3.1 induces a
Kuranishi structure. Indeed, given a covering family of basic charts (K;);=1,.. y with
footprints F;, we may choose a family of compact subsets C; C F; that also cover X .
Then we use the transition data (K7, [ 77) and weak cocycle conditions to obtain a
Kuranishi structure as follows:

e Forany p € X, we define K, := Kj, |y, to be a restriction of Kj,, where
Iy :=={i| p€Ci} and U, C Uy, is an open subset such that the footprint

Fp:= i, (s;p1 0)NUy)

is a neighborhood of p and contained in (), I, F; \Ui¢ 1, C; . Here we use a more gen-
eral notion of restriction than Definition 2.2.6, in that we allow for a domain U, that s in-
variant only under a subgroup I'p, C I'7, such that the induced map U, /T, — Uy, /Ty,
is a homeomorphism to its image. More precisely, to satisfy the minimality requirements
of [3, Appendix A1.1], we choose a lift x, € 771 (p) N Ulp sset Ip =17 7 1o be its
stabilizer in I'7,, and take the domain U, C Uy, to be a I *” _invariant nelghborhood
of x,, which exists with the required topological properties by Lemma 2.1.5(ii).

e For g € F, we have I; C I, since by construction F,, N C; = & for i & I.
So we obtain a coordinate change® &)qp: K, — K, from a suitable restriction of
&516, 1, toa Fg ¢ —invariant neighborhood Uy, C U, of xg4. More precisely, we choose
Ugp C Uy small enough so that the projection e, 1, Up N UL, 1, — Uy, 1, has a
continuous section over Uq p - Writing Uq p for its image we thus obtain an embedding
bgp = pIq 2 Ugp — qu cU,n U1q1p Since the projection py, 7, induces an
1somorphlsm on stabilizer subgroups by Lemma 2.1.5(iii), this is equivariant with
respect to a suitable injective homomorphism /4,: I'; — I', and induces an injection

Pap: Ugp:=Ugp/Tqg = Up:=Up/Tp.

By construction of U, — Uy, above, the map Uy, = Uyp/ Ty — Uy, = Uy, /T,
is a homeomorphism to its image, and similarly for p. Thus we can 1dent1fy $4p With
a suitable restriction of the map ¢ ; underlylng the coordinate change ;7 .1, in the
given Kuranishi atlas. The Coordlnate change qu p» = (Ugp. $,p) is then given by the
domain Uy, and the restriction of ¢ 1,1, © UgpCUy.

Further, the weak cocycle condition for K implies the compatibility condition required
by [3], namely for all triples p,q,r € X with g € F), and

-1
r€Yq(Ugp Nsy (0)) C Fy N Fp,
5 While [3] denotes this coordinate change by dpq, we will write &qu for consistency with our

notation ®;5: Ky — K.
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the equality ?qp o ?rq = gﬁrp holds on the common domain gi)r_ql (Ugp)NU,;p of the
maps in this equation.

 This atlas satisfies the effectivity condition required by [3] only if the action of T,
on U, is locally effective in the sense that s;l (0) has a I', —invariant open neighborhood
that is disjoint from the interior of the fixed point set Fix(y) C U, foreach y € I', \ {id}.

With this construction, we lose the distinction between basic charts and transition charts,
and also in general can no longer recover the original transition charts with their group
actions from the Kuranishi structure. Indeed, [4] works with a “good coordinate system”
(an analog of our notion of reduction in Definition 3.2.1) that is defined on the orbifold
level, ie on the level of the intermediate category. Notice also that the construction of
a Kuranishi structure given for example in [4] essentially follows the above outline,
and in particular starts with a finite covering family of basic charts and uses transition
charts much like ours, though they are more localized and are not required to cover
the full footprint F;. However, the properties of these charts are never explicitly
formulated. Indeed our work started by trying to understand precisely this point in
their construction. Though it is not clear how relevant the extra information contained
in a Kuranishi atlas is to the question of how to define Gromov—Witten invariants for
closed curves, it might prove useful in other situations, for example in the case of
orbifold Gromov—Witten invariants, or in the recent work of Fukaya et al [5], where the
authors consider a process that rebuilds a Kuranishi structure from a coordinate system.
Further, our categorical formulation makes it very easy to give an explicit description
and construction for sections as in Definition 3.2.4. <&

2.4 Kuranishi cobordisms and concordance

This section extends the notions of cobordism and concordance developed in [13,
Section 4] and [14, Section 6.2] to the case of smooth Kuranishi atlases with nontrivial
isotropy. It is a straightforward generalization that can be skipped until precise concor-
dance notions are needed in the proof of Theorem 2.5.3. We begin by summarizing the
topological cobordism notions from [13, Section 4.1].

A collared cobordism (Y, L?/, L%,) is a separable, locally compact, metrizable space Y
together with disjoint (possibly empty) closed subsets 3°Y, 3'Y C Y and equipped
with collared neighborhoods

9:00,e)x Y% > ¥, i (1—g 1]x3V' -,

for some ¢ > 0. The latter are homeomorphisms onto disjoint open neighborhoods of
0Y C Y, extending the inclusions (§ («, -): 3*Y < Y for « =0, 1. We call %Y
and 0'Y the boundary components of (Y, L()),, L%,). The main example is the frivial
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cobordism Y = [0, 1] x X with the natural inclusions (§: A% x X — [0, 1] x X', where

we denote
A2:=[0,e) and A}:=(1—e1], forO<e< 3.

Next, a subset F C Y is collared if there is 0 < § < ¢ such that for « = 0, 1 we have
(2.4.1) FNim(i§) # @ < F NG (A5 x0%Y) = 1§ (A5 x 3*F),
where the intersections with the boundary components 0% F := F N d*Y may be empty.

In the notion of Kuranishi cobordism, we will require all charts and coordinate changes
to be of product form in sufficiently small collars, as follows.

Definition 2.4.1 Let (Y, L()),, L%,) be a compact collared cobordism.

e Given a Kuranishi chart K¢ = (U%, E¥, T'%, s%, %) for 0*Y and an open subset
A C [0, 1], the product chart for [0, 1] x 0*Y with footprint A x F¢ is

Ax K% :=(AxU% E% T% s%oprye, idg xy%),
where I'* acts trivially on the first factor of A x U%* and prye: AXU% — U is the

evident projection.

e Given a coordinate change 39}“ 7= (<;~S?‘ 7 (,iA)}" 7:077): Ki — K§ between Kuranishi
charts for 9*Y with lifted domain U}, and open subsets A7, Ay C [0, 1], the product
coordinate change (A N Ay) x Kf — Ay x K§ is

ida,na, XYy 1 (da,na, @8y, b1y =@y, ida;na, Xp%s)
with the lifted domain (A7 N Ay) x US,.
e A Kuranishi chart with collared boundary for (Y, Lg’,, l%,) is given by a tuple
K = (U, E,T,s,v) asin Definition 2.2.2, with the following collar form requirements:

(1) The footprint F C Y is collared with at least one nonempty boundary 0% F .

(i) The domain is a collared cobordism (U, L(l)], L%]) whose boundary components
d%U are nonempty if and only if 0% F' 7 &. It is smooth in the sense that U is a
manifold with boundary 0U = 9°U U9'U and the 1f; are tubular neighborhood
diffeomorphisms.

(iii) If 0*F # & then there is a restriction of K to the boundary 3*Y ; that is,
a Kuranishi chart 0K = (0*U%, E, T, s%, %) for d*Y, with the isotropy
group I" and obstruction space E of K and footprint 0% F, and an embedding
of the product chart AY x 9*K into K for some ¢ > 0, in the sense that the
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boundary embedding (f; is I'—equivariant and the following diagrams commute:

I ¢
A2 x U LU (id 4o x5*)71(0) ——= s71(0)
Sa°Praaul ls id 4o XWL ll,,
idg L%

E E A% x 32y Y

e Let K;, Kj be Kuranishi charts for (Y, t(}, L%,) such that only K or both K7, Ky
have collared boundary. A coordinate change with collared boundary P 77: K — Kj
with domain Uy satisfies the conditions in Definition 2.2.8, with the following collar
form requirements:

(i) The lifted domain U, 77 C Uy, as well as Uyy C Uy, are collared subsets.

(i) If FyNd*Y # @ then F; Nd*Y # & and there is a restriction of &DIJ to the
boundary d*Y ; that is, a coordinate change 0*®yy: 0 K — 0% K; such that
the restriction of ®7; to

Ury ﬂt?]l(Ag x 0*Ur)

pulls back via the collar inclusions ¢ U, s v, to the product coordinate change
idge x 0% ; J for some ¢ > 0. In particular we have

(L%]J)_ (UIJ) N (Ag x d%Uy) = Ag X 8“(71],
)" (Ury) N (A x 0% Up) = A? x 9*Uy.

(iii) If FyNo*Y =@ but F;Na*Y # &, then Ury C Uy is collared with 0%*Uyy = &
As a consequence we have Uyy N L‘;‘]] (A2 x 0°Ur) = @ for some ¢ > 0.

Definition 2.4.2 A (weak) Kuranishi cobordism on a compact collared cobordism
(Y, L?/, L%;) isatuple K = (Ky, ®1y)1,7ez, of basic charts and transition data as in
Definition 2.3.1, with the following collar form requirements:

e The charts of K are either Kuranishi charts with collared boundary or standard
Kuranishi charts whose footprints are precompactly contained in ¥\ (0°Y Ud'Y).

¢ The coordinate changes ) 77. K — K are either standard coordinate changes
on Y \ (0°Y U3'Y) between pairs of standard charts, or coordinate changes
with collared boundary between pairs of charts, of which at least the first has
collared boundary.

We say that K has uniform collar width § > 0 if all domains and coordinate changes
have the required collar form over intervals A% of length & > §.
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Remark 2.4.3 Let K be a (weak) Kuranishi cobordism on (Y, L?,, t%,).

(i) K induces by restriction (weak) Kuranishi atlases 0% on the boundary compo-
nents %Y for ¢ = 0, 1 with

¢ basic charts 9% K; given by restriction of basic charts of K with F; Nd*Y # &;
e index set Zygay = {I € Ix | F1 N3*Y # @};
e transition charts 0% K; given by restriction of transition charts of ;

¢ coordinate changes 0% ; J given by restriction of coordinate changes of .

(i1) The charts and coordinate changes of K induce intermediate charts and coordinate
changes as in Definition 2.2.3 and Remark 2.2.9(iii). These fit together to form a filtered
(weak) topological cobordism K in the sense of [13, Definitions 4.1.12] by a direct
generalization of Lemma 2.3.4. Its boundary restrictions are the intermediate Kuranishi
atlases 0% K = 9“K induced by the boundary restrictions 9%KC.

(iii) Asin [13, Remark 4.1.11] we can think of the virtual neighborhood |K| as a
collared cobordism with boundary components 9°|K| 2 |d°K| and 9! |K| = |d' K|, with
the exception that |KC| is usually not locally compact or metrizable. More precisely, if
K has collar width ¢ > 0, then the inclusions L‘["]I: Ag x Up — Uy induce topological
embeddings

(e 10,8) X [3OK > |K, tfr (1 =&, 1] x |31 K| > |K]|
to open neighborhoods of the closed subsets

1K = | ] g, Gy xUP)/~ C K o

1 €Tyo i

With this language in hand, one obtains cobordism relations between (weak) Kuranishi
atlases in complete analogy with [13, Definition 4.1.8] and [14, Definition 6.2.10]. For
the uniqueness results in this paper, the more important notion is the following. Here
we use the notion of tameness, a refinement of the strong cocycle condition that is
formalized in Definition 2.5.1 below.

Definition 2.4.4 Two (weak/tame) Kuranishi atlases X£°, K! on the same com-
pact metrizable space X are said to be (weakly/tamely) concordant if there exists
a (weak/tame) Kuranishi cobordism /C on the trivial cobordism Y = [0, 1] x X whose
boundary restrictions are 3°A = K and 'K = K. More precisely, there are injections
1%: Txe —> Tc for @ = 0, 1 such that im (¥ = Zjax and we have

K}X = H“Kla(l), EI\)?J = 8“&)La(1)tau) VI,J € Iga.
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Moreover, two metric Kuranishi atlases (K°, do), (K, d1) are called metric concordant
if they are concordant as above with K a Kuranishi cobordism whose realization
|K| = |K| supports an admissible, e—collared metric d in the sense of [13, Defini-
tion 4.2.1] for the intermediate cobordism atlas K such that d |jo )= dy for =0, 1.

2.5 Tameness and shrinkings

As in the case of trivial isotropy, we must adjust the Kuranishi atlas in order for its
realization |K| to have good topological properties; for example, so that it is Hausdorff
and has “enough” compact subsets. We essentially already dealt with these problems
in [13] by
¢ introducing notions of tameness and preshrunk shrinking for topological Kuran-
ishi atlases, which ensure the desired topological properties of the realization;

e constructing tame shrinkings of filtered weak topological Kuranishi atlases;

e proving that tame shrinkings are unique up to tame concordance.

In order to apply these results to smooth Kuranishi atlases with nontrivial isotropy,
recall first that we built additivity into the notion of Kuranishi atlas, and showed in
Lemma 2.3.4 that the resulting intermediate atlases are naturally filtered by

(Egy:=Us x¢r(ED)icy.

The same holds for Kuranishi cobordisms by Remark 2.4.3(ii). We can thus extend the
notions of tameness to the case of nontrivial isotropy by working at the level of the
intermediate category.

Definition 2.5.1 A weak Kuranishi atlas or cobordism is fame if its intermediate atlas
is tame in the sense of [13, Definition 3.1.10]; that is, for all I, J, K € Ty we have

(2.5.1) UrpnNUrk =Uruuk) vICJ. K,
(2.5.2) ¢,,Urk) =UskNsy' Erxg) VIicJCK.

Here we allow equalities between 7, J and K using the notation Uy := Uy and
¢ = Idy, .

Similarly, a shrinking of a Kuranishi atlas or cobordism will arise exactly from a
shrinking (U C Uy)jez, of the intermediate atlas in the sense of [13, Definition 3.3.2].
Recall that shrinkings of cobordisms are necessarily given by collared subsets U} C U .

Definition 2.5.2 Let K = (K, ) 1J)1,J ey, 1<J be a weak Kuranishi atlas or cobor-
dism. Then a weak Kuranishi atlas or cobordism K’ = (K, ®},)1,jez,,,1cy is a
shrinking of IC if:
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(i) The footprint cover (F/);—1.... n is a shrinking of the cover (F;);=1... n; thatis,
P iJi=1,.., g
F/ C F; are precompact open subsets such that X = J;_; _n F; and Fj :=
(ier F/ is nonempty whenever Fy is, so that the index sets Zxs = Zx agree.

.....

(i1) For each I € Zx the chart K 1/ is the restriction of Kj to a precompact domain
U’ C Uy as in Definition 2.2.6.

(iii) Foreach I,J € Zx with I & J the coordinate change EI\)/I 7 1s the restriction of
®;; to the open subset U’ ; := ?I_Jl (U’;) N U7 as in Equation (2.2.5).

A tame shrinking of K is a shrinking that is tame in the sense of Definition 2.5.1.
Finally, a preshrunk tame shrinking of K is a tame shrinking K that is obtained as a
shrinking of a tame shrinking K’ of K.

With this language in place, we can directly generalize [14, Theorem 6.3.9]. Recall here
that by [13, Example 2.4.5] the quotient topology on |K| is never metrizable except in
the most trivial cases. In fact, for any point x € m\ Uy where dimUy <dim Uy,
the projection mic(x) does not have a countable neighborhood basis in |/C| with respect
to the quotient topology. So an admissible metric will almost always induce a different
topology on |K|, which we will make no use of in the following statement.

Theorem 2.5.3 (i) Any weak Kuranishi atlas or cobordism K has a preshrunk
tame shrinking K’ .

(ii) For any tame Kuranishi atlas or cobordism K', the realizations |K'| and |Ex|
are Hausdorff in the quotient topology, and for each I € Iy the projection maps
nx: Uy — |K'| and wg,.,: Up x E; — |Ex| are homeomorphisms onto their
images.

(iii) For any preshrunk tame shrinking K’ as in (i), there exists an admissible metric
on the set |[K'|. If K is a cobordism, then the metric can also be taken to be
collared.

(iv) Any two metric preshrunk tame shrinkings of a weak Kuranishi atlas are metric
tame concordant.

Proof Since tameness, shrinking and admissible metrics are all defined on the level
of intermediate atlases, and we are only concerned with homeomorphism properties of
the intermediate projections, in the case of Kuranishi atlases we can simply quote [13,
Proposition 3.3.5] for (i), [13, Proposition 3.1.13] for (ii), and [13, Proposition 3.3.8]
for (iii). Moreover, [13, Proposition 4.2.3] proves (iv), as well as (i) and (iii) for
Kuranishi cobordisms, and (ii) for cobordisms is established in [13, Lemma 4.1.15]. O
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3 From Kuranishi atlases to the virtual fundamental class

In this section, Section 3.1 discusses orientations, Section 3.2 establishes the notions
of reductions and perturbations. The main result here is Theorem 3.2.8, which shows
that the zero set of a suitable perturbation si + v of the canonical section s has
the structure of a compact weighted branched manifold. The construction of such
perturbations is deferred to Proposition 3.3.3, and is followed by the construction of
the VMC and VFC in Theorem 3.3.5.

3.1 Orientations

This section extends the theory of orientations of weak Kuranishi atlases from [14,
Section 8.1] to the case with nontrivial isotropy. Since we use the method of determinant
bundles, we first need to generalize the notions of vector bundles and isomorphisms.

Definition 3.1.1 A vector bundle A = (Aj, 5}5)1 Jer, overa weak Kuranishi atlas K
consists of local bundles and compatible transition maps as follows:

e For each I € Zx, a vector bundle A; — Uy with an action of I';y on Ay that
covers the given action on Uy .

e For each I € J, a I'yj—equivariant map $IAJ p}"J(A1|U,J)~—> Al that is a
linear isomorphism on each fiber and covers the embedding ¢7;: Uy — Uy.
Here I'y = I’y x I'j\1 acts on p7;(As|u,,) — Urs by the pullback action
of I'y together with the natural identification of the fibers of p7;(Arlu,,) along
I j\s—orbits in Uy .

e Foreach I & J & K, we have the weak cocycle condition

bk = D7k 0 P7x (1y) on prk(brs(Ur) N Uk
A section of a vector bundle A over K is a collection of smooth I';—equivariant

sections 0 = (o7: Uy — Ap)jez, that are compatible with the pullbacks py, and
bundle maps ¢{\J in the sense that there are commutative diagrams for each 7 < J':

~A
P1J
AI|U1] hp[](A”U[J) _) Ay
01] pr(UI)T TUJ
pPIJ $1J

Ury Urs

Definition 3.1.2 If A =(Ay, ¢1J)1 Jez, 1sabundleover £ and A C [0, 1] an interval,
then the product bundle A x A over A x K is the tuple (A x Ay, idg ><¢”)1 JeTx -
Here and in the following we denote by A x A; — A x Uy the pullback bundle of
A7 — Uy under the projection pry,: Ax U — Uj.
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Definition 3.1.3 A vector bundle over a weak Kuranishi cobordism K is a collection
A=(Ay, 511\1) I.JeT, of vector bundles and bundle maps as in Definition 3.1.1, together
with a choice of isomorphism from its collar restriction to a product bundle. More
precisely, this requires for & = 0, 1 the choice of a restricted vector bundle

A,
Alpare= (A] = 0%Ur, 1) 1,7 eTyerc

over %K, and, for some ¢ > 0 less than the collar width of K, a choice of lifts of the
embeddings (§ for I € Tyuy to I'7—equivariant bundle isomorphisms

~ANa, qa a
Ly 'AEXAI _>A1|imt‘["

such that, with A := A2 and p* 7% 1= p¥,; 0T o (ids x(p,)), the following
diagrams commute:

~A.o x~A.a
tr I
Ax A Atlim Ax(p7 ) (ATloeu,,) — p7; (A 1le axdev, )
| | 0| 2
I TA,ot
Ax U —=im@ C Uy Ax A ! AJlime

A section of a vector bundle A over a Kuranishi cobordism as above is a compatible
collection (o7: Uy — Ay)jez, of equivariant sections as in Definition 3.1.1 that in
addition are of product form in the collar. That is, we require that for each « =0, 1
there is a restricted section o|gaxc= (07: 0aUr — A{)1ezya). Of Algaic such that for
¢ > 0 sufficiently small, (TIA’O‘)*GI = idge xof'.

In the above definition we implicitly work with an isomorphism (TIA o )IeZyo, that sat-
isfies all but the product structure requirements of the following notion of isomorphism
on Kuranishi cobordisms.

Definition 3.1.4 An isomorphism W: A — A’ between vector bundles over K is a
collection (Wy: A — A/I) 1ez,. of I'r—equivariant bundle isomorphisms covering the
identity on Uj that intertwine the transition maps, ie qE;\J’ opr; (W) =Wjyo q~5;\J |l7”
forall I & J.

If IC is a Kuranishi cobordism then we additionally require W to be of product form in
the collar. That is, we require that for each = 0, 1 there is a restricted isomorphism
o= (V¥ AY > N D)rezpa, from Algag to A'|geic such that for & > 0 sufficiently
small we have (T’I)A’“ o (idg x¥¥) = ¥y oTIA’“ on AY x0*Uy.

Note that although the compatibility conditions are the same, the canonical section
sk = (s7: Ur — Er)rez,. of a Kuranishi atlas does not form a section of a vector

Geometry € Topology, Volume 21 (2017)



2762 Dusa McDuff and Katrin Wehrheim

bundle since the obstruction spaces Ej are in general not of the same dimension, hence
no bundle isomorphisms QZIAJ as above exist. Nevertheless, we will see that there is a
natural bundle associated with the section sx, namely its determinant line bundle, and
that this line bundle is isomorphic to a bundle constructed by combining the determinant
lines of the obstruction spaces Ej and the domains Uy .

Remark 3.1.5 If A is a bundle over a Kuranishi atlas K (rather than a weak atlas),
then it is straightforward to verify that the union | |; A7 of the local bundles form
the objects of a category with projection to the Kuranishi category By. We did not
formulate the above definitions in this language since orientations in applications to
moduli spaces (eg Gromov—Witten as in [10]) will usually be constructed on a weak
Kuranishi atlas, which does not form a category. &

Here and in the following we will exclusively work with finite-dimensional vector
spaces. First recall that the determinant line of a vector space V' is its maximal exterior
power A"V = ASMV 7 with A%0) ;= R. More generally, the determinant line of
a linear map D: V — W is defined to be

(3.1.1) det(D) := A™ ker D ® (A™(W/im D))*.

In order to construct isomorphisms between determinant lines, we will need to fix
various conventions, in particular pertaining to the ordering of factors in their domains
and targets. We begin by noting that every isomorphism F: Y — Z between finite-
dimensional vector spaces induces an isomorphism

(3.1.2) Ap: A™XY S5 AMXZ 0y A Ay F(r) A A F(vg).
For example, the fact that y o sy := sy oy: Uy — Ej forall y € 'y, implies that
(3.1.3) YA = Adyy ® (A1) det(dysy) — det(dyxsy)

is an isomorphism, where [y]: E;/imdys; — Ej/imdyxs; is the induced map.
Further, if / € J and X € Uy is such that pyj(X) = x, then because

sropry =:spy: Uy — Ey.
the derivative dzpyy: kerdsyy — kerds; induces an isomorphism
Ndszpr, @ Ara: det(dxgsyy) — det(dxsy)
and composition with pullback by py; defines an isomorphism

(3.1.4) Prj(X): det(dgsrs) — pyy(detdysy).
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Further, it follows from the index condition in Definition 2.2.8 that with y := 51 7 (%),
the map

(3.1.5) Ay (X) = Ngog,, ® (Mg, 1-1)*: det(dgsry) — det(dysy)

is an isomorphism, induced by the isomorphisms d$1 J: kerdsyy — kerdsy and
[qASI Jl: Er/imds; — Ej/imdsy. We can therefore define the determinant bundle
det(sic) of a Kuranishi atlas. A second, isomorphic, determinant line bundle det(K)
with fibers A™*T, Ur ® (A™* Ey)* will be constructed in Proposition 3.1.13.

Definition 3.1.6 The determinant line bundle of a weak Kuranishi atlas (or cobordism)
KC is the vector bundle det(sx) given by the line bundles

det(dsy) == (] det(dys;) > Uy forall I € Ik,

xeUy
with I'; actions given by the isomorphisms ys of (3.1.3), and the isomorphisms
¢;\J(55) :=A77(X)o Pry(¥)"!in (3.1.4) and (3.1.5) for I € J and X € Uy .

To show that det(sx) is well defined, in particular that X — Ajjy(X) is smooth, we
introduce some further natural® isomorphisms and fix various ordering conventions.
e For any subspace V' C V the splitting isomorphism

(3.1.6) A"V = APV @ ATV V)

is given by completing a basis vy, ..., vx of V' to abasis vy,..., v, of ¥V and mapping
VIA AV > (V1A AVE) @ ([Vg+1] A= Alvn]).

e For each isomorphism F: Y =5 Z the contraction isomorphism
(3.1.7) cpi AMY ® (A™*Z)* =5 R,

is given by the map (1 A+ AYp) @ni=>n(F(y1) A=A F(yr)).

e For any space V we use the duality isomorphism

(3.1.8) AP S (AP pE A AV B (U A Ag),
which corresponds to the natural pairing

~

n
A"V Q@ A"V = R, (VA AU) QML AANy) — l_[n,-(v,-)
i=1
6 Here a “natural” isomorphism is one that is functorial, ie it commutes with the action on both sides
induced by a vector space isomorphism.
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via the general identification
(3.1.9) Hom(A4 ® B,R) => Hom(B, A*), H > (b H(- ®b)),

which in the case of line bundles A, B maps 1 # 0 to a nonzero homomorphism, ie an
isomorphism. Next, we combine the above isomorphisms to obtain a more elaborate
contraction isomorphism.

Lemma 3.1.7 [14, Lemma 8.1.7] Every linear map F: V — W together with an
isomorphism ¢: K — ker F' induces an isomorphism

(3.1.10) ¢l AMY @ (AMXW)* S5 AMK @ (AN (W/F(V)))*
given by
(WIA AU B (WA - Awm)* > (@ W) A AT W) ® (Wil A- A Wim—n+£])*,

where v1, ..., vy is a basis for V with span(vy,...,vr) =ker F, and wy, ..., Wy, is
a basis for W whose last n — k vectors are Wy,—p+; = F(v;) fori =k +1,...,n.

In particular, for every linear map D: V — W we may pick ¢ as the inclusion
K =ker D — V to obtain an isomorphism

~

Cp: AN @ (AT IW)* =5 det(D).

Remark 3.1.8 If F is equivariant with respect to actions of the group I" on V and W,
and we equip K with the induced I" action so that ¢ is also equivariant, then the above
isomorphism C‘f, is equivariant with respect to the action of I' on A™*V ® (A™*W)*
given by the maps Ay ® (A,-1)* on A"V ® (A" W)* and by the corresponding
maps Ay ® (A,-1)* on AM*K @ (A"™(W/F(V)))*, with Apyy asin (3.1.3). <

With this notation in hand, we can now prove one of the main results of this section.

Proposition 3.1.9 For any weak Kuranishi atlas, det(sx) is a well-defined line bundle
over K. Further, if K is a weak Kuranishi cobordism, then det(sx) can be given product
form on the collar of K with restrictions det(si )|y« = det(sgax) for @ =0, 1. The
required bundle isomorphisms from the product AY x det(sye ) to the collar restriction
(t¥)* det(sx) are given in (3.1.12).

Proof We use the same local trivializations of det(dsy) as in the proof of the analo-
gous result [14, Proposition 8.1.8] for trivial isotropy, and must check that these are
compatible with the isotropy group actions and coordinate changes. We will begin by
defining these trivializations, referring to [14] for many details of proofs.
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Let xo € Uy, and denote its stabilizer subgroup in I'; by I‘;CO. Take a subspace of Ef
that covers the cokernel of dy,sy, sweep it out to obtain a F;CO —invariant subspace
E’ C Ey, then choose an isomorphism RY = E’ and equip R" with the pullback action
of Ffo denoted (y,v) — ¥ -x, v. The resulting equivariant map Rj: RN, I';CO) —
(Ey, Ffo) covers the cokernel of d,s; for all x in some neighborhood O of xg.

Thus dxs; @ Ry is surjective for x € O, and as in [14, Equation 8.1.9] we may define
a trivialization of det(ds;)|o by

(B.1.11)  Tr: A™ ker(dys; @ Ry) —> det(dysy).
VA AVp > (V1 A AvE) ® ([Rr(e)] A= A[Rp(en—n+1)D™,

where v; = (v;, r;) is a basis of ker(dys; ® Ry) C T Uy X RY such that vy, ..., Vg
span kerd,s; (and hence r; =---=r;r =0), and ey, ..., ey is a positively ordered
normalized basis of RY (that is, e A--- Aey = 1 € R = A™RN) such that
Ri(en—n+i)=dyxsy(v;) fori =k+1,...,n. Inparticular, the last n —k vectors span
imdysyNim Ry C Ey, and thus the first N —n+k vectors [Ry(e1)], ..., [Rr(en—n+k)]
span the cokernel E7/imdysy =im Ry /imd,s;Nim Ry . In [14, Proposition 8.1.8] we
prove that these trivializations do not depend on the choice of injection Ry: RY — Ej.
In other words, if Rj: RN" — Ej is another I’y —equivariant injection that also maps
onto the cokernel of dy, sy, then there is a bundle isomorphism

W: A" ker(dsy @ Rr)|o — A" ker(ds; @ R})|o

which is necessarily I'7 —equivariant and such that YA“I = 7A“I/ oW. Thus det(dsy) is a
smooth line bundle over U; for each I € Z.

It remains to check that the action y € I'; on
det(dsy) = A" (kerds;) ® A" (E;/imdsy)*

is smooth. We prove this by choosing suitable trivializations near x¢ and yxo and
then lifting the action of y to a smooth action on the domains ker(ds; & Rj) of the
trivializations. To this end, first consider the trivialization Ty x defined near xo € Uy
by a I';°—equivariant injection R;: (RN, I'7%) — (E7,T7°), and for y € Iy the

associated trivialization Ty yx defined near yxo € Uy by

Ry :=yoR;: RN, TV) — (E;, T)™),

where (RV, I'7°) denotes RY with the I';%—action §: v > § -5, v, and RN, ;™)
denotes RY with the '/ —action

8 v 8 yrg v i=y 1y o v,
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which is well defined since conjugation by y defines an isomorphism cy: F}’xo — F;CO,
8+ y~18'y. Then R} =yoRyis F}’xo —equivariant because when §’ € F}’xo,

R} (8 yxov) = Rp(y ™18y xo v) = YRI(y '8y -5 )
=y(y~'8'y)R1(v)
=yy '8'yR1(v) = 8'yR1 (v) = § o R (v),
where the fourth equality holds because the full group I'; acts on E;. Thus the diagram

.
@®N, rx0) B9 (g, proy
L(id,c;l) l(y,c;l)

(R’ ,id)
(RN, 17%0) 210 (B TY¥0)

commutes; in other words, the action of the element y € I'y on Ej lifts to the identity
map of RY. Hence the definition (3.1.11) of the maps Ty x implies that the following
diagram commutes:

Ty«
A" (ker(dxs7 @ Ry)) I det dysy

LAdeEBidRN JAdxy®(A[V_1])*

Tryx

A (ker(dyxs; ® RY)) ZIVL et dyxst
Since the map Ad,y@idyy s sSmooth, so is YA := Aq,y ® (A[,—17)*. Thus det(ds)
is a I'7 —equivariant smooth line bundle over Uj for each I € Zx.

Next note that because I'j\; acts freely on Ury, the stabilizer subgroup F§° of a
point Xp € pI_Jl (xo) is taken isomorphically to F;CO by the projection ,o}}: ry—rIy.
For simplicity we will identify these groups. Since s75: Uyy — E7 is the composite
sy o prJ, we may therefore trivialize the bundle det(dzsys) near Xp € pl_} (x0) by
using the same injection R7: RY — Ej, now considered as a F}CO —equivariant map.
Since the diagram

Trx
A" (ker(dzsyy @ Ry)) —— detdzsyy

L Apyy@idg § l Appy ®(Aig)™

~

Tl.x
AMX (ker(dys7 @ R7)) —— detdysy

commutes, the isomorphism Py (X): detdzsyy — detd,sy of (3.1.4) is smooth. More-
over the equivariance of the covering map pys: (Ury,'y)— (Urs, ') and the identity
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Syopry =SIj: UI J — Er 1mp1y that it is equivariant. Therefore, to complete the
proof that the transition maps ¢ 7y are smooth, we must check that the map

IN\]_](}) = Adfau X (A[(z”]_l)*i det(dzsry) — det(dySJ)

in (3.1.5) is equlvarlant and smooth. Its equivariance follows from the equivariance of
its constituent maps ¢1 7 and ¢1 7. To see that it is smooth, it suffices to show that the
compos1te Arj(x):= A1y (o7 7 !(x)) is smooth in some neighborhood O of xo € Uyy,
where p; J : 0 — Uy is a local inverse for the covering map pys. But if we define
b1y (x):=drs (P77 (x)): O > Uy, then A1y (x) = Ad,p,, ® (Agg,,1-1)" is identical
to the map of the same name in [14, Equation 8.1.11], so that smoothness follows
by the Claim proved as part of [14, Proposition 5.1.8]. This completes the proof that
det(sx) is a vector bundle over K.

In the case of a weak Kuranishi cobordism X, Proposition 8.1.8 in [14] also con-
structs smooth bundle isomorphisms from the collar restrictions to the product bundles
AY x det(sgaic) of the form

(3.1.12) TIA *(t,x):= (Ad(,,x)a‘;‘O/\l)(X’(AidE,)*: A xdet(dxs7) — det(dlz;c(x,t)SI),

where Ap: A" kerdys? — AT(R x kerdys7) is given by 7+ 1 A 5. These are
equivariant because they are induced by the equivariant map (¥, and are compatible
with the coordinate changes because the collar embeddings 1§ are. a

We next use the determinant bundle det(sx) to define the notion of an orientation of a
Kuranishi atlas.

Definition 3.1.10 A weak Kuranishi atlas or Kuranishi cobordism K is orientable
if there exists a nonvanishing section o of the bundle det(sx), ie with 01_1(0) =
for all I € Zxc. An orientation of K is a choice of nonvanishing section o of det(sx).
An oriented Kuranishi atlas or cobordism is a pair (K, o) consisting of a Kuranishi
atlas or cobordism and an orientation o of .

For an oriented Kuranishi cobordism (K, ¢) the induced orientation of the bound-
ary 3*K for @ = 0, 1 is the orientation of d*K

%0 := (((T;\’a)_l coy OL?)‘{a}XB“UI)IGIaaK

given by the isomorphism (TIA *)g €Tya, 1N (3.1.12) between a collar neighborhood of
the boundary in K and the product Kuranishi atlas AY x %K, followed by restriction
to the boundary 0%/C = 0%(A% x 0*K), where we identify {a} x 0*Ur = 0*Uy .
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With that, we say that two oriented weak Kuranishi atlases (K°,0°) and (K!,01) are
oriented cobordant if there exists a weak Kuranishi cobordism & from K° to ! and
a section o of det(sk) such that 0% = ¢ for @ =0, 1.

Remark 3.1.11 Here we have defined the induced orientation on the boundary 0*/C of
a cobordism so that it is completed to an orientation of the collar by adding the positive
unit vector 1 along AY C R rather than the more usual outward normal vector. In
particular, by [14, Equation (8.1.12)], 11, ..., 7, is a positively ordered basis for Tx U}
exactly if 1,71,..., 7, is a positively ordered basis for Ty (A4S x Uy'). <

Lemma 3.1.12 Let (K, 0) be an oriented weak Kuranishi atlas or cobordism.
(i) The orientation o induces a canonical orientation o |/:= (o7 |U;) Iez,, oneach
shrinking K' of K with domains (U; C Ur)jez,., -

(i1) In the case of a Kuranishi cobordism IC, the restrictions to boundary and shrinking
commute; that is, (0 |x/)|gaxr= (0 |gex)|gex -

(ii1) In the case of a weak Kuranishi atlas K, the orientation o on K induces an
orientation o'%1 on [0, 1] x K, which induces the given orientation 3% =&
of the boundaries 0*([0, 1] xK) =K fora =0, 1.

Proof See the proof of [14, Lemma 8.1.11]. O

As in [14], in order to orient the zero sets of a perturbed section sx + v we will work
with a “more universal” determinant bundle det(XC) over K that is constructed from
the determinant bundles of the zero sections in each chart. Since the zero section Ox
does not satisfy the index condition, we need to construct different transition maps
for det(K), which will now depend on the section sx. For this purpose, we again use
contraction isomorphisms from Lemma 3.1.7.

On the one hand, this provides families of isomorphisms
(3.1.13) Capsy: A" T, U7 @ (A™™Ep)* =5 det(dysy;) for x € Uy,

which, by Remark 3.1.8, are equivariant with the respect to the action of y € I'y on
A"*TUr @ (A™ Ep)* given by

G.L14) Pp = Adyy ® (A,—1)*: A" T U @ (™™ Ep)*
N AmaxTyx UI ® (AdeEI)*

and the corresponding action on det(d,sy) in Equation (3.1.3).
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On the other hand, recall that the tangent bundle condition (2.2.3) implies that dsy
restricts to an isomorphism

Ty Uy /dzdrs (TxUry) => Ej/1s(Er)
for y = ¢77(X).” Therefore, if we choose a I'y —equivariant smooth normal bundle
Nij = U Nij,y CT,Uy
yeimgs

to the submanifold im 551 J C Uy, then the subspaces dysy(Nyy,y) form a smooth
family of subspaces of E; that are complements to $1 J(E7). Hence, if we write
Py, (v): Ej —dysj(Nypg,y) C Ey for the smooth family of projections with kernel
¢17(Er), we obtain a smooth family of linear maps

Fz:=pry,,(y)odysy: TyUy — E; fory = b17(X),
with images im Fz = dys7(Nyy,y), and also isomorphisms to their kernel

¢z :=dzdrs: TgUrs => ker Fz =T, (im¢;5) C T, Uy.
By Lemma 3.1.7 these induce isomorphisms

CP: ATy Uy ® (A" E)* =5 A™ U1y ® (A" (E;/im F))*.

drs(x

We may combine this with the isomorphism Ama"ngﬁ 17 — py 7 (AT, Ur) induced
by dzpry, where x := pry(X), and the dual of the isomorphism

A"(Ey/dysy(N1y,y)) = A" E;

induced via (3.1.2) by prJ]\;” (y)o $”: E;r — Ej/dysj(Nypy,y), to obtain for each
X € Ury an isomorphism

(3.1.15) €y (R): A" T, U; @ (A" Ef)* =5 pF (A" T, Ur) ® (A" Ep)*
with
yi=¢r5(X), x:=prj(x),

given by the composite of Qﬁ‘g with the map

(Adzpr,) ® (A ) AT Uy ® (A™(E;/ im Fx))*

(ry, , ()odrs)~!
— p7 s (N™TUp) ® (A" Ep)*.
7 Here and subsequently, we will distinguish between the manifold U, 77 and its image im $I JyinUy,

denoting points of Uy by X, with y = ¢ (x) € Uy and x = py; (%) € Uz .
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Proposition 3.1.13 (i) Let K be a weak Kuranishi atlas. Then there is a well-
defined line bundle det(K) over K given by the line bundles

A} = A" TU; @ (A™™Ep)* — U; for I € Iy,
with group actions as in (3.1.14) and the transition maps
5—1. K K
¢y pry (AT luy,) — AJ|im$,,

from (3.1.15) for I < J . In particular, the latter isomorphisms are independent
of the choice of normal bundle Ny .

Furthermore, the contractions Cgg,: A’IC — det(dsy) from (3.1.13) define an
isomorphism W** := (C4s; ) 1ez,. from det(KC) to det(sk).

(ii) If K is a weak Kuranishi cobordism, then the determinant bundle det(K) defined
as in (i) can be given a product structure on the collar so that its boundary
restrictions are det(K)|gax = det(d*K) forax =0, 1.

Further, the isomorphism V5% det(K) — det(sx) defined as in (i) has product
structure on the collar with restrictions W5K |ga o= W¥3x foro =0, 1.

Proof To begin, note that each AI’C = A™*TU; @ (A™* E})* is a smooth line bundle
over Uy, since it inherits local trivializations from the tangent bundle TU; — Uy.
Moreover the action of I'; on Uy x Ej induces a smooth action on AI’C given by
(3.1.14) that covers its action on Uy. Thus AI’C — Uy is a smooth I'yj—equivariant
bundle. We showed in [14, Proposition 8.1.12] that the isomorphisms €4 s, from
(3.1.13) are smooth in this trivialization, where det(dsy) is trivialized via the maps YA}, X
as in Proposition 3.1.9. Since €g4s, is equivariant, we can define preliminary transition
maps

(B.1.16) ¢y :=C5 o Ary0pf (Cas)): pfy(ATlu,) > A for I ©J ey

by the transition maps (3.1.5) of det(sx), the isomorphisms (3.1.13) and the pullback
by prs. These define a line bundle

K. K TA
A™ = (A1’¢IJ)I,JGI;<

since the weak cocycle condition follows directly from that for the A1y . Moreover,
this automatically makes the family of bundle isomorphisms ol = (Eds ;)T an
isomorphism from A* to det(sx). It remains to see that AX = det(K) and WX = Wex
ie we claim equality of transition maps $IAJ = EI_JI . This also shows that &I_Jl and thus
det(K) is independent of the choice of normal bundle Nj; in (3.1.15).
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So to finish the proof of (i), it suffices to establish the following commuting diagram at
afixed X € Uyy with x = pyy(X), y = ¢15(X):

CCl)cS
AT, Uy @ (A™Ep)* ! det(dysy)
pry T p1J T
,07] (Q:deI )
G.1.17) P} (AP T Up) ® (A" Ep)* p1.(det(dxsr))
Ers(® T l A
€dySJ
AT, Uy @ (A" Ej)* det(dysy)

However, the composition y +— pyj o EI J (51_11 (X)) of the left-hand vertical maps
is precisely the map denoted by y — €;;(x) in [14, Equation (8.1.15)], while, as
in the proof of Proposition 3.1.9 above, the right-hand vertical maps combine to
Arg(x) = A(,OI_J1 (x)): det(dysy) — det(dysy), where pI_Jl is a local inverse to pys .
Therefore the desired result follows from the commutativity of the diagram
€dxs
AT, Uy @ (A" Ep)* — > det(dysy)
€ry(x) T l Ags(x)
Q:dy sy
AT, Uy ® (N"XEj)* —— det(dysy)

which is established in [14, Proposition 8.1.12].

For part (ii) the same arguments apply to define a bundle det(K) and isomorphism W*<,
The required product structure on a collar follows as in [14]. a

We end this section by explaining how orientations of a Kuranishi atlas induce compat-
ible orientations on local zero sets of transverse sections.

Lemma 3.1.14 Let (K,0) be a d—dimensional oriented, tame Kuranishi atlas or
cobordism, and for some I € Iy let f: W — E be a smooth section over an open
subset W C Uy that is transverse to 0.
(i) The zero set Zy := f~1(0) C Uy inherits the structure of a smooth oriented
d—dimensional submanitold.
(i) The action of any y € I't on Uy induces an orientation-preserving ditfeomor-
phism Zy — Z,,, ¢ to the zero set of y f: y(W) — Ef, x vy~ 1(x)).
(iii) Suppose further that f(W) C $HI (Eg), Wy :=WnUy; # @ and pHI'ﬁ"m
is injective for some H C I. Then pgy induces an orientation-preserving
diffeomorphism Zy — Z,,,,« ¢ to the zero set of pgr* f: pgr(W) — Eg,
X = iy (f (g ().
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(iv) If K is a cobordism, suppose in addition that Ky is a chart that intersects
the boundary d*KC, with W = (§ (A7 x W¥) for some W* C d*W, and
f(§ (@, x)) = f*(x) for some transverse section f%: W% — Ey. Then the
atlas (0*/C, 0%0) induces an oriented smooth structure on Zso C W* by (i),
Zy C Uy is a submanifold with boundary and j :=t;(«, ) is a diffeomorphism
Zyo — 0Zy that preserves (resp. reverses) orientations when a =1 (resp. a =0).

Proof Except for (ii) these local claims follow directly from the corresponding parts
of the proof of [14, Proposition 8.1.13]. For (iii) note that the injectivity assumption
allows us to write pgr*f = ¢5;; f for an embedding ¢g;: pHI(WHI) — W . Before
we can prove (ii), recall that the orientation on Z¢ is induced from the orientation of
the Kuranishi atlas/cobordism o7: Uy — det(dsy) via the isomorphisms for z € Z¢,

AT, Zr = N™ kerd, f = A" kerd; f @ R = det(d; f),
¢y, r: det(d; f) = A"T, Uy @ (A™ Ep)*,
Ca,s,: det(dzsy) > A" T, Ur ® (A™XEp)*.

Now to prove that y € I'; acts by an orientation-preserving diffeomorphism, note
that a smooth group action always acts by diffeomorphisms. Restriction to Zy of
the action by y € I'; thus yields a diffeomorphism to its image, which is easily
seen to be the zero set of yxf. To show that this diffeomorphism is compati-
ble with the induced orientations at z € Zy and yz € Z, ., we begin by noting
that the action of y is Ag.y: A" T Zr — A™T,;Z,4r. On the other hand,
the orientations o7(z) and o7(yz) are by assumption intertwined by the isomor-
phism A4,y ® (A[y_l])*: detd,s; — detdy sy, and by Proposition 3.1.13(i) this
implies that their pullbacks to A™*T,U; ® (A™*Ej)* for x = z, yz are intertwined
by A4,y ® (A,—1)*. Thus it remains to prove that the following diagram commutes:

Ty

AT, Uy ®@ (AMXEp)* —— A" ker(d, ) @ R = A™T, Z ;

Adzy®(Ay71)* Ay, y ®idr

dyz (v*f)
— >

¢
AT, U @ (A™™Ep)* A" ker(dyz(y * f)) @ R = A" Ty, Z, 4 ¢
By Lemma 3.1.7, €4_ 7 is given by (V1 A++-AVz) @ (W1 A+ AWm)™ > VA=AV,
where v1,...,v, is any basis for T,U; whose first k elements span kerd; f, and
w1, ..., Wy, is a basis for Ey, and similarly for Qd,,z (y+f)- Therefore, if we denote
v :=d;y(v;) and w} :=ywy, wefind that (A, —1)* (W1 A+ Awm)* = (WA -Awp,)*
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and thus the diagram commutes as required:

oy i) (Dzy ® (A=) (V1 A+ AVn) ® (W1 A+ Awm)™))
= Cq(yr ) (VLA A V) @ (W A+ Awy,)™)
=V A A
=Aq.y (V1 A== Avg)

= Ad,y (Ca, (V1 A A V) ® (Wi A Awm)¥)). ]

3.2 Perturbed zero sets

With Theorem 2.5.3 providing existence and uniqueness of tame shrinkings, the second
part of the proof of Theorem A is the construction of the VMC/VFEC from the zero sets
of suitable perturbations sx + v of the canonical section sx of a tame Kuranishi atlas
or cobordism. In this section, we describe a suitable class of perturbations v, and prove
that the corresponding perturbed zero sets are compact weighted branched manifolds, a
notion from [8] that we review in the appendix. The existence and uniqueness of such
perturbations will be established in Section 3.3, as part of the perturbative construction
of VMC and VFC. The main work is done by the setup in this section, which will put us
into a situation in which the construction of perturbations and the resulting VMC/VFC
can essentially be copied from [14]. Since the construction of perturbations requires
tameness and the notion of weighted branched manifolds requires an orientation in [8],
we will —unless otherwise stated — work with an oriented tame Kuranishi atlas or
cobordism /.

As in the case of trivial isotropy, one cannot in general find transverse perturbations
s7 +vy MO that are also compatible with the coordinate changes [ 77 - Instead, we will
construct perturbations over the following notion of a reduced atlas that still covers X
but generally does not form a Kuranishi atlas.

Definition 3.2.1 [13, Definition 5.1.2] A (cobordism) reduction of a tame Kuranishi
atlas or cobordism K is an open subset V =|_|; 7, V1 CObjp,., ie a tuple of (possibly
empty) open subsets V; C Uy satisfying the following conditions:

G Vi = n;l(y ;) for each I € I, ie Vj is pulled back from the intermediate
category and so is I'y—invariant.

(i) V7 C U forall I €I, andif V7 # @ then V7 Ns71(0) # 2.
(i) If me(V))Nax(Vy)# @ then I CJ or J C 1.
(iv) The zero set (X) = |sxc|~1(0) is contained in (V) = Ulel—}CJTK(V]).

If K is a cobordism, we require in addition that V is collared in the following sense:
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(v) Foreach o € {0,1} and I € Tjoxc C Zx, there exists an & > 0 and a subset
0%Vy C 0*Uy such that 3*Vy # @ if and only if V7 N WI_I(B“FI) # &, and

)N (V) N (A% X 8%Up) = A x 9%V
We call 0%V :=| |; €T,0, 0%V C Objg qux the boundary restriction of V to 9 IC.

Remark 3.2.2 (i) The notion of (cobordism) reduction is equivalent to saying
that V := UIEIK Vi CObjp, is the lift Vy := 711_1 (V) of a (cobordism) reduction
V=|lrez, V1 CObjg, of the intermediate Kuranishi atlas/cobordism. Thus existence
and uniqueness of reductions is proven in [13, Theorem 5.1.6].

(i) The restrictions 0%V of a cobordism reduction V of a Kuranishi cobordism K
are reductions of the restricted Kuranishi atlases d*K for « = 0, 1. In particular,
condition (ii) holds because part (v) of Definition 3.2.1 implies that if 0*V; # @
then 0%V N 1//1_1(8“ Fr) # @. Note that condition (v) also implies that V; C Uy is a
collared subset in the sense of (2.4.1). <o

Given a reduction V, we define the reduced domain category B |y and the reduced
obstruction category Ex|y to be the full subcategories of Bx and Ex with objects
Llser. Vi and | |;e7, Vi x Ef respectively, and denote by si|y: Bi|y— Ex|y the
section given by restriction of sx. Now one might hope to find transverse perturbation
functors sx|y 4+ v: Bix|y— Ex|y by iteratively constructing vy: V7 — Ej asin [14],
where compatibility with the morphisms can be ensured by working along the partial
order < on Zx, using the separation property (iii) of a reduction. However, we also have
to ensure compatibility with the morphisms given by the action of nontrivial isotropy
groups ['7. Depending on their action, we might not even be able to even find a I'y—
equivariant perturbation vy in a single chart such that s; +vy 0. In general, this can be
resolved by using multivalued perturbations such as in the perturbative construction of
the Euler class of an orbibundle, explained for example in [6] as motivation for perturba-
tions in Kuranishi structures. We could also formulate our perturbation scheme in these
terms, but due to the particularly simple setup — notably additivity I';=[];c; I; of the
isotropy groups — we can construct the “multivalued perturbations” as single-valued
section functors v: B;C|},F—> E ;C|},F over a pruned domain category Bic|\, which
is obtained in Lemma 3.2.3 from the reduced domain category Bj|y by forgetting
sufficiently many morphisms to obtain trivial isotropy. It is to this category that the
iterative perturbation scheme of [14] will be applied in Section 3.3 to obtain a suitable
class of transverse perturbations v. Once a zero set is cut out transversely from By |1\jl“’
we will then show in Theorem 3.2.8 that adding some of the isotropy morphisms
back in — at the expense of adding weights to corresponding branches of the solution
set— yields the structure of a weighted branched manifold on the Hausdorff quotient
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of the perturbed solution set ‘(5K|},F+v)_1 (O)! C !B ;g|}}F } . This perturbed solution set
is not a subset of the virtual neighborhood ||, but its Hausdorff quotient supports a
fundamental class by Proposition A.7, and the inclusion ¢¥: (sx |\\,F +v)~1(0) — Obj Br
induces a continuous map |¢”|x: }(5;C|1\,F+v)_1(0)‘ 4, — IK| that will represent the
virtual fundamental cycle of K.

We will describe the pruned categories in terms of the sets
Vig:=Vinprt (Vi) =VyNac (me(V)) € Upy.

Note that 171 J is invariant under the action of 'y, and is an open subset of the closed
submanifold Uyy = s;l (Er) of Vj, where the last equality holds by the tameness
condition (2.5.2). Furtherif F C I C J,

B2 Vynpr(Ver) = Vg 0Vey = Vi N (re(Ve) N (V) C Ury.

In fact, the second equality above holds for any pair of subsets F, I C J. However,
because V is a reduction, the intersection is empty unless F and [ are nested, ie either
F C1I or I CF. Finally, the group I'y\  acts freely on U F1 (by Definition 2.2.8 for a
coordinate change), and hence also on Ver.If I = F we define I'nr =Ty :={id}.

Lemma 3.2.3 Let V be a (cobordism) reduction of a tame Kuranishi atlas or cobor-
dism IC. Then there are well-defined categories — the pruned domain category B |},F
and the pruned obstruction category E |})F — obtained from By and Ex as follows:

* Object spaces are given by restriction to the reduction V = | |; 7 Vi C Objg, :

Objp, \r o= |_| Vi CObjg,. Objp \r:= |_| Vi x Ef C Objg, .
IeTx VESIAS

e Morphism spaces are open subsets of Morg, and Morg, respectively, with

components
Mor = Mor Vi, Vy), Mor = Mor Vi, Vi),
Bily' |_| By (V1 V) Exly’ I_l By (V- V)
1,J €T 1,J €l

given by Mor__ (Vy,Vy) = @ unless I C J, in which case the morphisms are
given in terms of the open subsets Vyj := VN pl_}(VI) Cc Uy as

Morg, \F (V1. Vi) = Vs x {id} c Ury x T1 = Morg, (Ur, Uy),
MOI‘EM}}F(V], Vi):= 171] x Ep x{id} C U]J x Ey xI't =Morg, (Ur,Uy).

e All structure maps (source, target, identity, and composition) are given by restric-
tion of the respective structure maps of By and Ex in Definition 2.3.5.
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These pruned categories are nonsingular in the sense that there is at most one morphism
between any two objects. Moreover, the projection and section functors pry: Ex — Bx
and sx: Bx — Ex restrict to well-defined functors pry |1\,F: B,d},r — E;C|)\/F and
sc\: B\ — Exc|\ with pric W osc [\ = idg -

Proof Recall that (7, J, y,id) € Morg,|\I' has source (1, p”(~y)) and target (J, y)
(where, as in Lemma 2.3.6, we suppress mention of the inclusion ¢y ). Now morphisms
are closed under composition because the strong cocycle condition guarantees that
P17 © pJK = prk, with identical domains whenever I C J C K. Moreover, the
category is nonsingular because source and target determine the morphism uniquely.
Similar arguments apply to E ;C|1\,F. Finally, the projection and section functors of K
act trivially on the isotropy groups 'y, and thus restrict to well-defined functors when
we drop these. a

The following combines Definitions 7.2.1, 7.2.5, 7.2.6 and 7.2.9 from [14].

Definition 3.2.4 A (cobordism) perturbation of K is a smooth functor
r r
Vi BICl]\) — E’C|\\2

between the pruned domain and obstruction categories of some (cobordism) reduction V
of K, such that pry |},F ov =1idp,\".

That is, v = (v7)7ez,. is given by a family of smooth maps vy: V; — Ej that are
compatible with coordinate changes in the sense that for all 7/ & J we have
(3.2.2) vily,, = ¢1J 0] oprrly,, on Vig =Vynpp (Vo).

If K is a Kuranishi cobordism we require in addition that v has product form in a
collar neighborhood of the boundary. That is, for « = 0,1 and I € Zxe C Zx there is
an ¢ >0 and a map v{: 3*V; — Ej such that

vr (1§ (2. x)) =vi(x) Vxed*Vy, teAl.
We say that a (cobordism) perturbation v is

* admissible if we have d,v;(TyVy) Cim qg” forall I £ J and y € VIJ;
e transverse if sy|y, +vr: Vi — Ej is transverse to 0 for each / € Zx;

e precompact if there is a precompact open subset C — V which itself is a (cobor-
dism) reduction, such that

(3.2.3) mc( U (s1|V,+v1)_1(0)) C 1k (C).

I €T
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Remark 3.2.5 Although mc: Objgz . — [K]| is not induced by a functor on B;d})r, we
will work with mx: | |; ez, Ur — |K| as continuous map, in particular for the notion
of precompactness. As in the case of trivial isotropy, we do not have a nicely controlled
cover of sets Uy N (x(C)) for C C || Ur. However, because C = |C; CV =
Ll Vr || Uy are lifts of reductions of |K| as in Remark 3.2.2, the morphisms between
Vj and C are better understood, yielding

G324 Vinm(me(©) = Vm( U esmcarv J p,?,(CH)).
H>J HSJ

Indeed, by the reduction property, mxc(Vy) only intersects nx(Cg) for H D J or
H C J. The morphisms between Vjy and Cg are then given by pygp and I'y in the
first case, or pgy and 'y in the second, and the isotropy groups are absorbed by the
equivariance ['ypyg (Cg) = psjg(TgCy) and fact that Ty Cy = Cy = n;ll((_?H).
As aresult, we can write (3.2.3) in terms of the covering maps (o77)1,s ez, » Without
explicit reference to the isotropy groups I'y, as

325 (ylv,+v)TO € | prn€) U | gy (€Ca) VIeTe. O
H>J HSJ

Definition 3.2.6 Given a (cobordism) perturbation v, the perturbed zero set |Z"| is
defined to be the realization of the full subcategory ZV of B,C|1\,F with object space

r -1 — .
(sch +v) 7@ = || Gsly,+v)7'(0) € Objg

I1e€Tx

given by the local zero sets Zj := (sy|y, +v7)~1(0). That is, we equip

L 71)/~

1€

127 = el 4+ 0)" )] = (

with the quotient topology generated by the morphisms of By |},F . Moreover, we denote
by (¥: Z¥ — By the functor induced by the inclusion (5;C|1\,F+v)_1 (0) - Objg, and
corresponding inclusion of morphism spaces (to a generally not full subcategory), with
resulting continuous map

(3.2.6) |V 127 ] — K.
Remark 3.2.7 If v: By |1\,F — Ex |1\,F is a cobordism perturbation of a tame Kuranishi
cobordism K, then each restriction v|gey:= (V§)1ez« for  =0,1 forms a pertur-

bation of the Kuranishi atlas 0% K with respect to the boundary restriction 9%V of the
reduction.
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If in addition v is admissible/transverse/precompact, then so are the restrictions v|gay.
Moreover, in the case of transversality each perturbed section s7 |y, +vy: Vi — Ej for
I € Tyoxe UZyix C I is transverse to 0 as a map on a domain with boundary; ie the
kernel of its differential is transverse to the boundary

vy = || §da}xa®vp). &

a=0,1

Theorem 3.2.8 Let (K, o) be an oriented tame Kuranishi atlas/cobordism of dimen-
sion d and let v be an admissible, transverse, precompact (cobordism) perturbation
of K with respect to nested (cobordism) reductions C C V C Objp, .. Tlhen Z?V can be
completed to a compact, d—dimensional wnb (cobordism) groupoid Z" , in the sense
of Definition A.4, with the same realization |Z Y| =|Z"|. In addition,

A (p):= Ty ¥z e Z | nu(z]) = p}, forpe|Zi|x,

defines a weighting function AV: |ZV|y — Q7 on the Hausdorff quotient of the
perturbed zero set | Z"V |y . Together, these give (| VA |#, AY) the structure of a compact,
d—dimensional weighted branched manifold/cobordism, in the sense of Definition A.5.
It defines a cycle in |C| in the sense that the map | |y: |Z" | — |K| induced by (3.2.6)
has image in |C|.

Moreover, if K is a Kuranishi cobordism and the boundary restrictions of v are denoted
> . . 10 0 5l 1

V¥ := v|gay, then (ZY, AV) has oriented boundaries (ZV", A¥") and (ZV", AV"), and

the cycle |i¥ |y | ZV | — |C| restricts on the boundaries to |:*" |y: |ZV" |3 — |0%C].

We begin the proof of Theorem 3.2.8 by explaining the structure of the groupoid com-
pletion Z" . Note that the compatibility condition (3.2.2) implies partial equivariance
of the perturbation: vy (ay) = vy(y) for y € Viy,a € [ y\7. This fact is reflected in
the structure of the morphisms in the groupoid Z", which contain this action of T I\I
on 171J N Zj as part of the morphism space Mor, Zy.Zy).

Lemma 3.2.9 Let v be any (cobordism) perturbation of a tame d—dimensional Kuran-
ishi atlas/cobordism K.

(i) There is a unique nonsingular groupoid Z" with the same objects and realization
as Z". Its morphism space for I C J is given by

MOI‘ZV(ZI, Zjy) = U (ZJHV]JQVF])XF[\F - ijIJXF[ = MOI‘BK(U[, Uy).
o#FCI
(i1) If v is admissible and transverse, then the subsets Z j N 171 J C Zj are open for
all I C J and the groupoid 7" is étale and has dimension d . Further, Z" is
oriented if in addition K is oriented.
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(ii1) If K is an oriented tame Kuranishi cobordism and v is admissible and transverse,
then ZV satisfies all conditions given in the appendix for being an étale, oriented,
cobordism groupoid, except possibly that of compactness.

Proof First note that there is at most one nonsingular groupoid with the same objects
and realization as Z", since any such groupoid has a unique morphism (7, x) — (J, y)
whenever (1, x) ~ (J,y), where ~ is the equivalence relation on Obj . generated by
Morzv . To prove existence of such a groupoid, we show below that when I C J,

(a) eachelementin Morz, (Z1, Z ) is uniquely determined by its source and target;

(b) if there is a morphism (/, J, y, @) € Mor,(Zy, Z ;) with source (/, x) and
target (J, y), then (I,x) ~ (J,y);

(c) the set of morphisms | J; Mor;, (Z1, Z y) together with their inverses (which
are uniquely defined by (a)) is closed under composition.

Parts (a) and (c) show that there is a nonsingular groupoid ZV with the given mor-
phisms. Moreover, since the equivalence relation ~ is generated by the morphisms
(I,J,y,id) € Morzv(Zy,Zy) CMor,(Z1,Zy), (c) shows that if (1, x) ~ (J, y)

where I C J, then Mor, ((1, x), (J, y)) # . Together with (b) this implies that VA
has realization |Z"”].

To prove (a) we must check that given x e Uy, y € Z; N 171 J, where I C J, there is
at most one element « € I'y such that

« x=alpy(»);
e thereis F C I suchthata € I')\f and y € 171:101711.

But if @; and ap are two such elements, corresponding to F; and F», then ocl_lozz

fixes the point p7y(y). On the other hand, because the set of F' such that y € Vey
is nested, we can suppose that F; C F,. Then pr;(y) € VF,1 and Oll_lotz €l'nF-
Since I'y\ f, acts freely on VF, 1, this implies that a; = a2 as required.

To prove (b), observe that if / C J and Morzv ((1, x), (J, y)) # @ then there is F C [
and a € I'7\ p such that x = a~Yp77(y), which implies that
pr1(x) =prr(a " prs(y) = pri(prs(»)) = pri(y).

Hence, the composite (F, I, x,id)o(/, J, y, @) is well defined and equal to (F, J, y,id).
Therefore (F, prr(x))~(I,x) and (F, prr(x))=(F, prs(y)) ~(J,y), which gives
(I,x) ~ (J,y) since ~ is an equivalence relation.

Finally, to prove (c), it is convenient to consider two special kinds of morphisms:
morphisms denoted 4 with I = J , and morphisms denoted 8 with 7 € J and o =id
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that therefore belong to Morzv . We first observe that every morphism (/, J, y, &) in
Morzv(Zy, Zj) can be written in two ways as a composite of morphisms of types (A)
and (B). More precisely, the identity ,u‘l‘l o uf = Mf o /,L‘24 holds, where /,LlA, ,uf are

the morphisms in the following diagram:
B

(L.a™ prs () —2= (J.a"1y)
(3.2.7) l i j pd
(I.p1s () ——= (J.y)

Therefore these morphisms 4, u® and their inverses generate Mor 7v - The commu-
tativity of the above diagram also shows that we can interchange their order: ie every
morphism of the form ,u‘l‘l o p,f" can also be written as uf ) ,u‘24, which we abbreviate
below as the identity M‘l“ o ,uf = Mf o M‘z‘l.

Next let us consider the other composites. Morphisms of type (A) with fixed F C I are
closed under composition since they are given by the action of I'y\ g . Moreover, two
morphisms of this type corresponding to different subgroups Fp, F» can be composed
only if the sets i (Vr), nxc(VE,), mxc(VF,) intersect. Hence the sets Fp, I, are nested,
either Fy C F, or F» C Fy, and in either case the composite is another morphism
of this type. The situation for morphisms of type (B) is more complicated (which is
precisely why we needed to add the morphisms of type (A) to obtain a groupoid). We
have:

o uBopl =pB:ieif I CJ C K and y = pyk(z) then the following identity
holds (this statement includes the claim that the left-hand composite is well defined):

(I,J,y,id)o(J,K,z,id) = (I, K, z,id) € Mor 3, ((1, p1k (2)), (K, 2)).
o ) ousd =ptoud or=ptowd)

- IfICcJCKandpry(y')=prix(y) =prsopsk(y),then pyx(y) and y’ lie
in the same I y\ y —orbit so that y’ = a lpsx(y) for some o € L j\r,and

(Z, J,y/,id)_1 o(l,K,y,idy=(J,J,pjx(y),a)o(J, K, y,id)
e Mory, (1@~ psx (7)), (K, y).
- IfIcKcCJ andthereare y' € ViyNZy, y € Vig N Zg with
prs(v") = prx(oxs (V") = p1x (y) € Z1,
then there is f € T'g\y such that y = B px s (') = pxs(By') € Zk, and
(I,J,y,id)"Yo(I,K,y,id)=(J,J,.8y .B)o(K,J,BYy id)!
& Morz, (/. ), (K. 7).
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e One can check similarly that if ,uf =(1,J,y,id) and /,LZB = (K, J, y,id) then

B B1 ,u,Ao;,Lg if I CK,
pro(uz) " = By\-1
n o(,u )y itKCl.

Combining these identities with /1,114 o Mf; = ,uf o M‘z‘l and its inverse, we see that
if I C J, every composite morphism Z 1 — Zj — Zk can be written in the form
pBoudif I C K, and in the form pufl o (uB)=' = (uB)='opd if K C I. This
completes the proof of (¢) and hence of part (i) of the lemma.

The claims in (ii) are proved by applying Lemma 3.1.14 with f: W — Ej given
by s; +vy: Vi — Ejp. Since sy + vy M 0, Lemma 3.1.14(i) shows that Z; is a
manifold, while the admissibility of v implies that the hypothesis of Lemma 3.1.14(iii)
holds on I7H 1 so that the subset Z; N I7H 7 of Zj is open and pg; induces a local
diffeomorphism from Zj; N I7H 1to Zg Npy 1(I7H 7). Further, by the compatibility
condition (3.2.2) we can identify with the zero set of pg7*(s;+vy) =sg +pmr*(s7).
Since the maps pys together with their inverses generate the structure maps in ZV, this
shows that this groupoid is étale. Moreover, if K is oriented, then Lemma 3.1.14(ii)—(iii)
also implies that the structure maps in ZV are orientation-preserving.

Finally, (iii) holds by Lemma 3.1.14(iv). O

In order to show that Z" represents a weighted branched manifold, we must understand
its maximal Hausdorff quotient |Z Y|y as defined in Lemma A.2. The morphisms in a
nonsingular groupoid G correspond bijectively to the equivalence relation ~g on Objg
where x ~g y if and only if Morg (x, y) # @. A necessary condition for the quotient
|G| :=O0bjg / ~¢ to be Hausdorft is that this equivalence relation be given by a closed
subset of Objg x Objg ; in other words, we need the map s x¢: Morg — Objg x Objq
that takes a morphism to its source and target to have closed image. The following
lemma shows that in the special case of the groupoid Z" this necessary condition is
also sufficient.

Lemma 3.2.10 Let v be an admissible, transverse, (cobordism) perturbation of a tame
Kuranishi atlas/cobordism K. Then:

(1) Let Z Y be the group01d obtained from Z" by closing the relation ~ on Objzv .
Then we have that Z;_’l is nonsingular and |Z Y| is Hausdorff. Further, we can
identify |Z | with the maximal Hausdorff quotient |Z |% in such a way that
the canonical quotient map |Z | — |Z" |y = |Z;i| is induced by the functor
LH: 7V - Z;_)[ .
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(i1) Foreach I € Iy, the projection
. N Zv
Ty Ob]Z7U1 — |Z;|
takes Zj onto a subset of |Z | that is open with respect to the quotient topology.

This topology on |Z | is metrizable.

(i) If x € Z;y and p = 75 (x)e|Z |, then {x’ €Zr|ny (I x")=p} is the

(I'y\F, ) —orbit of x, so

ZU

#ixeZy|ngy (I.x)=p; =Inrl.

where Fy = min{F : Z; Ncl(Vpy) ﬂn%i (p)#2t=min{F:pemny,(ZF)}.
H H

Proof We use the notation in Lemma 3.2.9. The components of Mor, (Z1,Zy)
consisting of morphisms of type (B) are taken by sx7: Mor, (21, Zj) > ZixZ; C
Obj 3, x Obj, to the set of pairs

{17 (). ) |y e ZynVigNad (Vi) C Zr x 2y,

where we simplify notation by writing y instead of (J, y), and similarly for the source.
If (p717(Vn), ¥n) = (Xso, Yoo) € Z1 X Zj is a convergent sequence of such points
with limit (Xeo, Yoo) € Z7 X Zj, then yoo € Zj N (71] since y, € Zjy N 171] C (71]
and Uy is closed in Uy, which implies that p7 (Vo) is defined. We then must have
Xoo = p1J(Voo) by the continuity of pyy. Thus

Yoo €PTHZINZy Cpr}(VI)NVy = V7.

Hence yoo € Zj N V]J so that (1, J, yso,1d) € Mor 5
of this set of morphisms is closed in Z; x Z .

7v(Z1,Z ). Therefore the graph

However the set of morphisms of type (A) from Z; — Zj is not closed in general;
instead it has closure®

Mory, (Z1. Z1) = | J{U.Ly.a) |y €cl(VFr1)N Z1, @ €Tp\F}.
F<I

Notice that, as in the proof of Lemma 3.2.9(i), this set Mor 5 Zv (Zy, Zy) is invariant
under compositions (and inverses) because the intersection properties of the sets in a
reduction apply to their closures: n;C(V_Fl) Nax(Vr,) #@ = F1 C Fyor F, C Fy.
Next, observe that because pyj: U1 J — Uyy is alocal diffeomorphism, the map pys
induces a local diffeomorphism from Viyn cl(VF J)NZyinto Ury N CI(VF NZy.

8 While we usually denote the closure of a set A by A, for sets such as 171 7 that involve a tilde we will
write cl(V7y).
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Similarly, because cl(Vp J) C Upy whenever F C J, the group I'y\r acts freely
on cl(Vgy), and, if F C I, commutes with the action of p;; as in diagram (3.2.7).
Therefore the closure of Mor, (Zr, Zy) when I C J is given as follows:

(3.2.8) Mors; l,(Z[ Zy)= U (ZJﬂV]JﬂCl(VFJ))XF[\F
Fcl
={(.J.y,0)|IFCI, a €T \F
SUChthatyECI(VFJ)DI;[JHZJ}.

The arguments in Lemma 3.2.10 apply to show that this set of morphisms, together with
inverses, are closed under composition and are uniquely determined by their source and
target. Thus Z‘i is a nonsingular groupoid. Its realization |Z‘i| is Hausdorff as it is the
quotient of the separable, locally compact metric space Obj zZy by a relation with closed
graph; see [1, Chapter I, Section 10, Example 19] or [13, Lemma 3.2.4]. Moreover, the
space |Z | can be identified with the maximal Hausdorff quotient of |Z Y| because
any continuous map from Objzv / ~ to a Hausdorff space ¥ must factor through
the closure of the relation ~ induced by the morphisms in ZV, and hence descends
to |Z |. This proves (i).

To see that 75 (Z 7) is open in |Z | we must show that each intersection
Zj ﬂT[A (7TZU Z1))

is open. Since 75, (Z1) N Tz (Zj)# @ onlyif I C J or J C I, it suffices to
H
consider these two cases. Now

Z.lﬂﬂ" (nZU(ZI))

consists of all elements in Z; that are targets of morphisms with source in Zj.
Therefore if I C J, then

Zy ﬂﬂA (JTZU(ZI)) =Z;NVy,

which is open by Lemma 3.2.9(i). On the other hand, if J C I then because the set
oy1(Vyr) is I'y—invariant, we have

Zynn, (7TZV (ZD)=Z50psr(Vip).

which is open by Lemma 3.2.9(ii). Thus 73 zZy (Z1) is open. It follows that the quotient
topology on |Z Y| has a countable basis because each Z; does. We also have that
|Z | is regular. Indeed, by [15, Lemma 31.1], we only need to check that each point
pE |Z Y| with neighborhood W C |Z Y| has a smaller neighborhood Wy C W such that
Wi C W, and this is an immediate consequence of the regularity and local compactness

Geometry € Topology, Volume 21 (2017)



2784 Dusa McDuff and Katrin Wehrheim

of the sets Z; and the openness of the sets 75 Zy (Z1). Therefore |Z | is metrizable
by the Urysohn metrization theorem. This proves (ii).

To prove (iii), note first that for each x € Z; the subsets F' € Zx such that x € CI(VF I)
are nested and hence have a minimal element Fy. The precompactness of V; in Uy
implies that x € cl(I7F 1) C U F,.1 so that its grbit under I'y\ g, is free. Moreover,
because Fy C F for every F for which x € cl(VFy), this orbit I'7\ g, (x) contains the
targets of all the morphisms in MorZy with source (I, x). This proves the formula

ICnrl=#xeZ|ny,(I,x)=p}.
H

It remains to check that F,, which we defined as
min{F : Z; Nel(Vpr) N ﬂ:}) (p) # 2},
also equals Fy :=min{F :pen, (ZF)} But if

Znel(Ve) N 7TA1 (p) #2

there is a sequence of elements x; € Zy N Ve with limit xo € nAl (p), implying by
the continuity of 775, that, with xk := pr1(xr), the sequence
H

nZ;i(xl/c) = niﬁ(xk)
converges to p. Hence p € w5, (ZF), which implies F. ' C Fx. Conversely, if
H
ens,(Z)) Nz, (ZF),
penzgy(Z)Nnzy(ZF)
then since Tz (Zy) is open in |Z?‘i| there is a sequence pj of elements in
niﬁ(zl)ﬂni;i(zF)

that converges to p € nzy (Z1)- By (3.2.1), this lifts to a sequence xj € 171:1 cZy,
and the sequence of images mC(LZu (xg)) in [V| C |K]| converges to |LZ,, |(p), where
Zv is as in (ii). But the composite

JT;COLZ]Q. Vi—->ac(Vi) =V /Ty

simply quotients out by the action of I'; on V. Since the projection V — Vj /T’y is
proper by Lemma 2.1.5(i), the sequence (x;) must have a convergent subsequence
with limit x, € V7. But then by uniqueness of limits in the Hausdorft space |27‘i|,
nzy (X¥00) = limg 00 nzy (xx) = p. Therefore

Xoo € cl(VEr) N3k (p).
Z’H

Hence by the minimality of F, we must have Fyx C F).. This completes the proof. O
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Proof of Theorem 3.2.8 Let us first consider the case when v is an admissible,
transverse, precompact perturbation of an oriented tame Kuranishi atlas }C with respect
to nested reductions C C V € Objg, . Then Lemma 3.2.9 shows that Z¥ can be
completed to an oriented, nonsmgular étale groupoid Z" . Moreover, by Lemma 3.2.10
the maximal Hausdorff quotient |Z" | can be identified with the realization |Z | of
the group01d Z Y. To complete the proof of the first part of the theorem it remains to
show that |Z | is compact, and that (Z Y, AY) has the structure of a wnb groupoid as
in Definition A.4.

Because |27‘i| is metrizable by Lemma 3.2.9(ii), it suffices to prove that |Z‘i| is
sequentially compact. Further, we saw in (3.2.5) that the precompactness condition
for v can be written without explicit mention of the isotropy groups I';. Hence the
proof of the sequential compactness of the zero set given in [13, Theorem 5.2.2] carries
through, without change, to the current situation.

We next check that the weighting function A" is well defined, and compatible with a
local branching structure as required by Definition A.4. To see that it is well defined,
suppose that p € nzy Zp)n nzy (Zj). As usual we may suppose that I C J, so that
p=nzy (y) for some y € Viy C Zj. Let the minimal set F such that pE Tz (ZF)
be denoted by Fp. Then there are |I'j\F,| distinct elements in Z; that map to p.
Hence A(p) = |T'j\F,|/|T's|, and we must check that this agrees with the calculation
provided by replacing J by /. Butif x = p;s(y), then because F, C I does not
dependon I,J wehave FJ\FP = FI\FPXFJ\I . Hence IFJ\FP|/|FJ| = |F[\Fp|/|F[|
Thus AV is well defined.

Finally we describe the local branches at p € |Z |. Given p € |Z |, choose a minimal
I such that p € nzy (Z1), and a minimal F, C I such that p € nzy (ZF,). Then
Fp, CI,andthereis x € Z; ﬂcl(VF 7) such that p = nzy (x). As nzy (Zy) is open
in |Z,‘_’[| we may choose an open neighborhood N C 75 Zy (Z 7)of p whose closure N
is disjoint from all sets nZzy (ZF) with F C F,. We saw in Lemma 3.2.10(iii) that
ZrnN (nzu) L(p) = I'nr, (x) Hence, by shrlnklng N further if necessary, we may
suppose that there is an precompact open neighborhood B, of x in Zj such that

UyGFI\Fp T[Z,,‘_’t (VBX) =N
o the closure B, in Z is disjoint from its images under the action of I'nr,-

Then choose the local branches to be the disjoint subsets (yBx)yer NFp of Zy, each
with weight 1/|T'7|. Notice that

329 |J vBx=27; Ny, (N) and U vB=2s NaL(N).
vel'nr, yETI\Fp
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Here, the first claim holds because, by the minimality of F;, and the choice of By,
B,Ncl(Vp))#9 = F,CF,

so that the only morphisms in 27?[ with source in Uyepl\Fp ¥ By and target in Z; are
given by the action of an element in I'\ f, and hence also have target in this set. The
second claim holds similarly.

We must check that the three conditions in Definition A.4 hold.

e The covering property states that

(x5,) ") = U Bl C 12|,
vel'nrp,

If this were false there would be a point y € Z; for some J such that there is a
morphism in Z" from (J y) to a point (I, x") € yBy for some Y€ ['7\F, , but there
is no such morphlsm in ZV . By construction, the morphisms in Z Y from Z LJ o Z
are composites of morphisms of type (B) from Z; to Zf (Wthh lie in Z” ) with
morphisms in the closure of Morzv(Zy, Zy). Therefore it suffices to consider the
case J =1,and y ¢ Uyepl\Fp y Bx. But (3.2.9) implies that the only elements of
Mor, (Zy, Zy) with target in yByx must have source in some set aBy . Therefore
such y does not exist.

e For local regularity, we must check that for each y the projection zZy yB x—>|2 i
is a homeomorphism onto a relatively closed subset of N . But (3.2.9) implies that this
map extends to an injective, continuous map f with compact domain y B, . Hence
f is a homeomorphism onto its image because compact subsets of the Hausdorff
space |2,‘i| are closed. Further, 7 z (yBx)=NnN nzy (yBy) is closed in N because
it is the intersection of a compact set with N .

e Finally, note that A¥ equals the branching function specified in Definition A.4;
indeed, the number of branches through g € N is just the number of preimages of
g €N in UyeFl\Fp ¥y Bx, and we saw in Lemma 3.2.10(iii) that this is |7\ g, |, where
Fyq O Fp is the minimal set F such that ¢ € 72y (ZF).

This completes the proof that (2 v A") is acompact wnb groupoid. It has a fundamental
class by Proposition A.7, and hence defines a cycle in C as claimed.

The same arguments apply when K is a Kuranishi cobordism. In particular, |Z | is
compact so that, by Lemma 3.2.9(iii), (Z v, A") is a wnb cobordism groupoid, and the
boundary restrictions have the required properties by Lemma 3.1.14(iv). |

We end this section by some elementary examples of this construction: the fundamental
class and the Euler class of an orbifold represented by Kuranishi atlases.
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Example 3.2.11 Consider the orbifold case, ie a Kuranishi atlas /C on X with trivial
obstruction spaces so that s, and v are identically zero and (: X — |K| is a homeo-
morphism. In this case the zero set Z should represent the fundamental class of the
oriented orbifold. We suppose that X = M/ T is the quotient of a compact oriented
smooth manifold M by the action of a finite group I', and that /C is the atlas with a
single chart with domain M and E = {0}. Then Z = |Bx|\l is the category with
objects M and only identity morphisms, because there are no pairs I, J € Zx such that
& # 1 < J. Therefore Z = Zy has realization |Zy| = M and the weighting function
A: M — Q is given by A(x) = 1/|I'|. If the action of T is effective on every open
subset of M, then the pushforward of A by 1z, : M — X, which is defined by

(z,)sAp) == Y A®X),
x€(z,) 71 (p)
takes the value 1 at every smooth point (ie point with trivial stabilizer) of the orb-
ifold M/T'. On the other hand, if I" acts by the identity so that the action is totally
noneffective, then tz, : M =5 X is the identity map and the weighting function
X — QT takes the constant value 1/|T|.

Note that if we construct a fundamental class on | Z |3, by the method of Proposition A.7
then our choice of weights gives a class that is consistent with standard conventions. For
example, in dimension d = 0 the branched manifold Z = |Z |4 is a finite collection
of points {pi,..., pr}, one for each equivalence class in Obj,, where the point
pi corresponding to an equivalence class with stabilizer TV has weight 1/|T"/|. If
each point is positively oriented, then the “number of elements” in |Z |3 is the sum
Zf-;l 1/|T%|, which gives the Euler characteristic of the groupoid; cf [17]. Other more
substantive examples such as that of the football of Example 2.3.11 are discussed in
[11, Example 4.6].

Example 3.2.12 Examples of Kuranishi atlases with nontrivial obstruction spaces can
be seen in the calculation of the Euler class of the tangent bundle of S? and of the
football orbifold using Kuranishi atlases.

(i) To build a Kuranishi atlas that models TS2, cover S2 by two discs Dy, D>
whose intersection D1 N Dy =: D13 =: A is an annulus, and for i = 1,2 define
K; .= (U; :=D;, E; :=C, s; :=0, ¥; :=1id). For i = 1,2 choose trivializations
ti: Di x C — TS?|p,, (x,e) > 7i x(e) and then define the transition chart

K12 := (U2 CE1 xExx A, E1 X E2, 512 =Prg,xg,» Y12 = PTgloxoxA4),

where
Uz :={(e1,e2,x) | x € A, t1,x(e1) + 12,x(e2) = 0}.
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The coordinate changes {I}i,12 are given by taking U; 12 = A and v¥; 12(x) = (0,0, x).
To justify this choice of Kuranishi atlas note that one can construct a commutative
diagram

|Ex| — TS?

|

|Bx| —— §?
that restricts over U1 X E15 to the map
((e1.€2.x).€}.€5) > T1x(e1 +€}) + 12, x(e2 + €5) € TS?|4.
This construction is generalized to other (orbi)bundles in [10].

Next, in order to calculate the Euler class we identify A with [0, 1] x S! and consider
the corresponding trivialization TS?|4 = AxR; xRg, where € [0,1] and 6 € S are
coordinates. Then for i = 1, 2 there is a section v;: U; — E; with one transverse zero
such that 7; »(v; (x)) = (x,1,0) € TS?|4 for x € A. (Take suitably modified versions
of the sections v(z) = z and va(z) = —z, where D; C C.)

Choose a reduction of the footprint covering with Vi, = (g, 1 —¢) x S for some ¢ €
(0, %) and so that V1’12 = (O, O)X(8, %]XSI C Uy, and V2’12 = (O, O)X (%, 1—8)XS1 ,
and choose a cutoff function 8: [0, 1] — [0, 1] that equals 1 in [O, %] and O in [%, 1].

Then the map vi,: Vip — E1 X E5 given by

viz(er, ez, x) = (B(x)v1(x), (1= B(x)v2(x)) € E1 x Ez

defines an admissible perturbation section that restricts to v; on V; 12 C (0,0) x A for
i =1,2. Moreover s15 4+ v12 does not vanish at any point (e, ez, x) € Vi, because
the equation 71 x(e1) + 72,x(e2) = 0 together with

0=11,x(e1) + B(X)(1,0) = 12,5 (e2) + (1 = B(x))(1,0) € x x R; x Ry € TS?|4

imply that the vector (1, 0) is zero, a contradiction. Hence the perturbed zero set ZV
consists of two points, each with weight one.

(i) It is easy to adjust this example to the tangent bundle of the “football” discussed
in Example 2.3.11. In this case, the zero of the section s; + v; would count with
weight 1/|T;| so that the Euler class is % + % For further details of this and other
related examples see [10, Section 5].
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3.3 Construction of the virtual moduli cycle and fundamental class

The next step in the Kuranishi regularization Theorem A is to construct admissible,
transverse, precompact perturbations v that are unique up to interpolation by admis-
sible, transverse, precompact cobordism perturbations. This — quite complicated —
construction is developed in complete detail in [14] in such a way that it applies directly
to our present setting, in which the Kuranishi atlas IC has nontrivial isotropy groups,
but the reduced and pruned category B;d]\,r is nonsingular, ie the remaining isotropy
groups act freely. While we defer most of the proofs to [14], we will give full technical
statements of the existence and uniqueness of perturbations, so that our constructions
of VMC/VFC can be compared directly to other approaches, without reference to [14].
Based on this, Definition 3.3.4 and Theorem 3.3.5 then define the virtual moduli cycle
(VMC) as a cobordism class of closed oriented weighted branched manifolds and
construct the virtual fundamental class (VFC) as Cech homology class.

For the construction of (cobordism) perturbations we will consider a metric tame
Kuranishi atlas (or cobordism) (X, d). That is, we fix the following data:

e [ is a tame Kuranishi atlas on a compact metrizable space X in the sense of
Definitions 2.3.1 and 2.5.1, or it is a tame Kuranishi cobordism on a compact
collared cobordism Y in the sense of Definitions 2.4.2 and 2.5.1.

e d is an admissible metric on |K| in the sense of Definition 2.3.10.

e If (K,d) is a metric, tame Kuranishi cobordism on Y, then the boundary
restrictions (K%, d%) := (0%KC, d||p«x|) are metric, tame Kuranishi atlases on
%Y for @ =0, 1.

For easy reference we list some consequences of this setting and notation conventions.
¢ The associated intermediate Kuranishi atlas /C is a tame topological Kuranishi
atlas (resp. cobordism) by Lemma 2.3.4 (resp. Remark 2.4.3(ii)), which has the

same realization || = |K|, equipped with the quotient topology.

e d is a bounded metric on the set |X| such that for each I/ € Zx the pullback
metric d; := (ng|y,;)*d on Uy induces the quotient topology on the interme-
diate domain U; = Uy/I's. By construction, these also induce 'y —invariant
pseudometrics dj := (7x|y,)*d = n;d on the Kuranishi domains Uy of K.
Moreover, [13, Lemma 3.1.8] shows that these (pseudo)metrics are compatible
with coordinate changes. We denote the §—balls around subsets Q C |K|, RC U
and S C Uy for 6 > 0 by, respectively,

Bs(Q) :=1{w € |K]||3q € QO such that d(w, q) < 4},
BSI(R) :={xeUy|3r e Rsuchthatd;(x,r) <§},
ESI(S) :={y € Uy | 3s € S such that d;y (y, s) < 6},
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and note that balls in the pseudometric are I'yj—invariant preimages of balls
inUy,

33D B{(S)=n7"(Bf(S) and Bs(mc(S)) = Bs(mx(S)).

e  While the metric topology on |X| is generally not compatible with the quotient
topology, we know from [13, Lemma 3.1.8] that the identity map |K| — (||, d)
is continuous, and thus |K| is a Hausdorftf topology in which the metric §—balls
are open, and thus neighborhoods.

Given this setting, our goal is to construct admissible, precompact, transverse (cobor-
dism) perturbations of the section 5;C|\\,F over a pruned domain category B ,C|1\,F; see
Definition 3.2.4 and Lemma 3.2.3. For that purpose we will also need to fix nested
(cobordism) reductions C — V of K. These induce the following crucial data, on
which the iterative construction of perturbations depends. The claims here are all
consequences of [13, Theorem 5.1.6(iii)] and [14, Lemma 7.3.4, Proposition 7.3.10]
applied to K together with (3.3.1) and properness of the projections n;: Uy — Uy
established in Lemma 2.1.5(1).

e Given a reduction V of K, there exists 8y € (0, %] such that for any 6 < 6y,

BL(vC U VI eIy,
Bos(mc(VI)) N Bas(nc(Vy) #@ = ICJorJCl.

This gives rise to a continuum of nested reductions Vy C --- VIkN C Vlk/ - C VIO
for k" > k' > 0, which for k > 0 are given by

vE=BL, (v =r'(YHcU with VE:=BL, (V).

e For suitable £ > 0, the iteration will construct vy by extension of the pull-
backs py vy, which are defined for 7 < J on N}‘I = V}‘ N nEl(nK(VIk)),
also given as

Nfr=Vinpr (Vi) == (N5 with N% =VEng (Vinum.

¢ We need to make a choice of equivariant norms on the obstruction spaces as
follows. For each basic chart i € {I,..., N} we choose a I'; —invariant norm
| -1l on E;. Then the I'y—invariant norm on Ej for each J € Z is given by

> disle)

ieJ

lell ==

’:=r_r.1eajx||e,~|| Ve = E pis(ei) € Ey.
l
ieJ
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While the sections sy: Uy — E only induce continuous maps s;: Uy — Ey /Ty
to the quotient of obstruction spaces, equivariance of the norms guarantees that
the norm of sections descends to a continuous function ||s;||: Ur — [0, c0)
given by x > ||s7(y)| for any y € JTI_I(X). These functions provide (rather
nontransverse) topological Kuranishi charts over the intermediate domain with
the same footprint: ¥ ; Mmaps Is;I71(0) = sI_1 (0)/ I'; homeomorphically to F7 .

Given equivariant norms | - ||, nested reductions C =V and 0 < § < §y,, we have

Je -4

. By ~ = JI-1
o(V.C.[-],6) = min mf{ s ()|l ‘x e v\ (c, ulJB (v 4))}
r I1SJ

- - ~ 3
aW.C.|-|.8) = JmlIn inf{||s1(x)|| ‘x € VJ‘J|+1 \ (CJ U U B’ (Nyllh‘))},
€lx
1ST

- S (& 71-3
:Jnélzn mf{||§1||(y)‘yey|J|\(QJU UBJ (lj“ 4))}
K

n 1
171-4
1SJ 2

>0,

where Mt = 2_k+%(1 —2_%)8 and
Cr:=Jpix(Cx) = 77" (Cy)., with Cj:= | ¢,x(Cx)
K>J K>J
is a set containing s;l(O) = n;1(||§J 171(0)).

In the case of a metric tame Kuranishi cobordism (/C, d) with equivariant norms
|l - || and nested cobordism reductions C C V, let &€ > 0 be the smallest of the
collar widths of I, d, C and V. Then for 0 < § < min{e, )}, we obtain positive
numbers

Mri+4

et (V,C, |- [1,8) := min({o’ (V. C, | - |, §)} U {o 8%V, 8%C, 0%|| - || ) | « = 0, 1}).

Here 0%||-|| denotes the collection of equivariant norms on Ey for I € Ty CZx.

The constants 6y, and o(V,C, | - ||, §) defined here will control the permitted support
and norm of the perturbation v for a Kuranishi atlas. In particular, §,, measures the
separation between the components V7 # Vj of the reduction V, while o (V,C, || - ||, 6)
measures the minimal norm of 5;C|},F on the complement of an open neighborhood of

the set L(x(C)), in which all perturbed zero sets will need to be contained. We

will construct perturbations v = (vy: Vi — E)rez, by an iteration which constructs

and controls each vy over the larger set VI|I . Here the domains are determined by
a choice of 0 < § < 8y, and we ensure that the perturbed zero sets are contained in
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71,21 (7 (C)) by bounding the perturbations ||v7| <o by some 0 <o <a(V,C, ||-||,8).
In order to prove uniqueness of the VMC, we moreover have to interpolate between
any two such perturbations. This requires the adjusted bound o.(V,C, || - ||, ) on

the norm of cobordism perturbations for the following reason. The construction of a
cobordism perturbation with prescribed boundary values is achieved by an iteration
on the domains VIII|+1 instead of Vlll| , which guarantees that the boundary values —
which got constructed in iterations over 9% VI|I| —are given on sufficiently large
boundary collars. In view of this, it is also necessary to keep track of the refined
properties arising from the iterative construction of a perturbation by the following
notion of (V,C, || - ||, 8, o)—adapted, as well as a stronger notion which guarantees

extensions to Kuranishi concordances.

Definition 3.3.1 Given nested reductions C  V of a metric tame Kuranishi atlas
(K,d), a choice of equivariant norms || - || on the obstruction spaces, and constants

0<d<dpand 0 <o <a(WV,C,|-|,8), we say that a perturbation v of 5;¢|1\,F is

WV.C, || - |I, 8, 0)—adapted if the sections v;: Vi — Ej extend to sections over VIII|

(also denoted vy ) so that the following conditions hold for every k = 1,..., M :=
maxyerz, |/|:

(a) The perturbations are compatible in the sense that for H < I with || <k,

VI gt (Vi vk = PHI © VH © PHT | =1 (ykyqpk-
(b) The perturbed sections are transverse; that is, (s7 |Vlk +vy) MO foreach |I]| <k.

(c) The perturbations are strongly admissible; that is, forall H €/ and || <k we
have vy (B! (NFy)) C ¢ur(En).

(d) The perturbed zero sets are controlled by i ((sI |Vlk +v7)7 ! (O)) C 7 (C) for
1] <k.

e) The perturbations are small; that is, SUPcpk lvi(x)|| <o for [I| <k.
Also, we say that a perturbation v is strongly (V,C)—adapted ifitisa (V,C, | -|,8,0)-

adapted perturbation of s;gl\\)r for some choice of equivariant norms || - | and constants
0 < § < 8y, and using the product metric on [0, 1] x |K| we have

0 <0 <0wl([0, 1] xV, [0, 1] xC, || - ||, )
=min{o(V,C. |- [.8).¢’([0, 1] xV, [0, 1] xC, || - ||. )},
Remark 3.3.2 (i) Adapted perturbations are automatically admissible, precompact

and transverse in the sense of Definition 3.2.4. Indeed, these properties are guaranteed
by the inclusions V; C Vlk and the fact that strong admissibility vy (x) € im ¢y for
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X € B\?{kl(NIkH) for II:I c Ilimglies adznissibility imdyvy Cim $HI for y € Vi =
Vi ﬂp;II(VH) cV; mpI_J(VI )= Nry-

(i) The admissibility condition is crucial for the transfer of transversality as follows.
Let v be an admissible perturbation, and let z € V7 and w € V; so that wi(z) =
mi(w) € |K]. Then z is a transverse zero of s7|y, +vy if and only if w is a transverse
zeroof syly,+vs.

Indeed, by the reduction property we can assume without loss of generality that / C J
and thus z = pyy(w). Since pyy is a regular covering, we can pick a local inverse ¢y J
so that w = ¢7s(z). Then the proof of [14, Lemma 7.2.4] directly applies, using the
index condition in terms of ¢y .

(iii) Any (V,C, ||-|l, 8, 0)—adapted perturbation for fixed V, C, ||-||, § and sufficiently
small o > 0 is in fact strongly adapted. Indeed, given the product structure of all sets and
maps involved in the definition of o/, we can rewrite the condition on ¢ > 0 in the defini-
tion of strong adaptivity as o < ||sy(x)] forall x € VJk \ (61 U UIgJ l?,{k_% (N}‘I_%)),

J €Ixand k e {|J|,|J]|+1}. &

By the above remark, the following in particular proves the existence of admissible,
precompact, transverse perturbations as well as strongly adapted perturbations.

Proposition 3.3.3 (i) Let (K,d) be a metric tame Kuranishi atlas with nested
reductions C C V and equivariant norms || - || on the obstruction spaces. Then
forany 0 <§ <6y and 0 <o <a(WV,C, |- ||,9), there existsa (V,C, || - ||, 8,0)—
adapted perturbation v of 5;¢|1\,F.

(i) Let (K, d) be a metric tame Kuranishi cobordism with nested cobordism reduc-
tions C C V, equivariant norms || - || on the obstruction spaces, and minimal collar
width ¢ > 0 of (K, d) and the reductions C,V. Then, given 0 < § < min{e, 8y},
0 <0 <08, V,C), and perturbations v* of 53a,<|3£v for « = 0,1 that are
(0%V, 0%C, 8, o) —adapted, there exists an admissible, precompact, transverse
cobordism perturbation v of s\l with mxc((scc|)¥ + v)71(0)) C 7 (C) and
V|gay=1v* fora =0, 1.

(iii) In the case of a product cobordism [0, 1] x K with product metric and nested

product reductions [0, 1] x C [0, 1] x V, (ii) holds for 0 < § < 8[g,11x Without
restriction from the collar width.

Proof As explained in [14, Remark 7.3.2], the iterative constructions in [14, Proposi-

tions 7.3.7 and 7.3.10] generalize directly to our setup based on the pruned domain
category B;C|]\,F. We indicated the necessary adjustments in a series of footnotes in the
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proofs of [14]. Beyond the above setting and notations, this requires the following two
systematic changes.

Firstly, all relationships between (or definitions/constructions of) subsets of Objz =
Urez, Ur in [14] should be replaced by two statements: one for subsets of Objg =
U; €T U7 in the intermediate atlas IC, and one for subsets in the pruned domain
category B;g|]\,F with Bs replaced by §3. These two statements will always be
equivalent via the projection my. Statements can then be checked by working in
the intermediate category, but they will be applied on the level of the pruned domain
category. Here it is crucial to know that the projections wy: Uy — U are continuous
(by definition of the quotient topology) and proper by Lemma 2.1.5().

Secondly, our goal of constructing a precompact, transverse, admissible (cobordism)
perturbation v: B |y, — Ex|y is essentially the same as that of Definitions 7.2.1, 7.2.5
and 7.2.6 in [14]. Writing it in terms of the maps v = (v;: V7 — Ey)jez, , the only
difference is that the compatibility conditions in [14, Equation (7.2.1)],

vily,, =brroviodrf|y,, on Nip:=VyiN¢ry (Vi NUry)
forall I € J, are replaced by
VJ‘f/‘” = $IJ ovy 0P1J|I7]J on 171_] =V ﬂpl_}(VI),
and the precompactness conditions in [14, Equation (7.2.5)],
(sslv, +v) 71 0) € | 7€) U | ¢ms(Cr)
H>J HSJ
for all J € Zx, are replaced by (3.2.5) above,
Gslv,+v)™ ) ¢ | psr€Cr) U | pgY(Ch).
H>J HSJ

Here our setup guarantees that pys: Vig > Vin prs(Vy) C Uyy is aregular covering
(ie local diffeomorphism with fibers given by the free action of a finite group I'j\; =
I'y/T';) analogous to q’)I_Jl: Nrj— Vi ﬂq&;}(V;) C Uy in [14], which is a regular
covering with trivial fibers. Thus to adapt the proofs of [14] one should replace ¢
with pI_Jl and identify Nyj = V]J. O

Finally, we make the additional choice of an orientation of the Kuranishi atlases or
cobordisms in the sense of Definition 3.1.10 to prove Theorem A from the introduction.

Definition 3.3.4 Let (X', o) be an oriented weak Kuranishi atlas of dimension D on a
compact, metrizable space X . Then its virtual moduli cycle 2% :=[(|Z"|, A)] is the
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cobordism class of weighted branched manifolds (without boundary) of dimension D
given by the choices of a preshrunk tame shrinking Ky, of K, an admissible metric
on ||, nested reductions C C V of Ky, and a strongly (V, C)—adapted perturbation v.

Moreover, the virtual fundamental class

(XT3 := |y, |+ (im[1*¥]) € Hp (X: Q)
is constructed as follows:

e Choose a preshrunk tame shrinking Kg, of K, an admissible metric on |Kg,| and a
nested sequence of open sets Wy11 C Wi C (|Kan|. d) with (gey Wk = |5,Eslh 0)].
(These exist by Theorem 2.5.3, and taking for instance Wy = B L (|5E51h (0)].) Then
equip K, with the orientation induced from K by Lemma 3.1.12.

e For each k € N choose a (Vk, Cr)—adapted perturbation v; of B}Cshl})}: for some
nested reductions Cx C Vi with i, (Cx) C Wg. (These exist by Remark 3.2.2 and
Proposition 3.3.3.)

e Denote by [|t"¢|y] € Hp (Wg:; Q) the Cech homology classes induced by the maps
K g (127 30, A™F) > Wi C (IKal. d),

take their inverse limit under pushforward with the inclusions Wg41 <> Wy, and
finally take the pushforward under the homeomorphism |Yc,, | = L,E:h: |5,gslh O)—X
from Lemma 2.3.9(iii).

Note here that every weighted branched manifold (Y, Ay) has a fundamental class
[Y] € H;y(Y); Q) by Proposition A.7. This was constructed in [8] as an element of
rational singular homology, and by the discussion after [13, Remark 8.2.4] gives a well-
defined element in rational Cech homology. Thus the above construction makes sense.
Further, Lemma 2.3.9(iii) identifies the quotient topology on |5,Eslh (0)| with the relative
topology induced by the embedding |5,€Slh (0)| = |Ksn|. The latter is also identified
with the metric topology given by restriction of d, due to the nesting uniqueness of
Hausdorff topologies and the fact that the identity map |K| — (|]K|, d) is continuous;
see [13, Lemma 3.1.8, Remark 3.1.15]. Hence there is no ambiguity of topologies in

vir

the isomorphism explained in [14, Remark 8.2.4] and used in the definition of [X ]},

Hp(Isc' (0)]: Q) => lim Hp (Wg: Q).

Finally, we can prove our main theorem: the VMC/VFEC are well defined and are
invariants of the oriented weak Kuranishi cobordism class. The proof uses the same
line of argument as [14, Theorems 8.2.2 and 8.2.5], just replacing manifolds with
weighted branched manifolds. We summarize and unify these arguments here for ease
of reference.
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Theorem 3.3.5 (i) The virtual moduli cycle Z K and the virtual fundamental
class [X ]V,Cir are well defined and independent of the cobordism class of oriented
weak Kuranishi atlases on a fixed compact, metrizable space X .

(i) Let K be an oriented weak Kuranishi cobordism, and choose strongly adapted
perturbations v¥ in the definition of 2K = [(|ZV%|,, A¥)] for a = 0, 1.
Then the perturbed zero sets (|Z”O|H, A”O) ~ (|Z"1|H, A"l) are cobordant as
weighted branched manifolds, and thus Z K = zd'K

(iii) Let K be an oriented weak Kuranishi cobordism of dimension D + 1 on a com-
pact, metrizable collared cobordism (Y, t?,, L%;). Then the virtual fundamental

classes [8“Y](Y;§ o = [0'Y ‘5‘{ « of the boundary restrictions are homologous in Y,

()« ([0°Y T30 ) = (1)« (0" YT, ) € Hp(Y: Q).

Proof First note that all the necessary choices of data exist, as noted in Definition 3.3.4.
Given such choices, Step 1 below constructs a representative of the virtual moduli
cycle, and Step 5 constructs the virtual fundamental class. To prove independence of
those choices in (i), we use transitivity of the cobordism relation for compact weighted
branched manifolds to prove increasing independence of choices in Steps 1-5. Parts (ii)
and (iii) are then proven in Step 6. In the following, all Kuranishi atlases will be of
dimension D, and all cobordisms of dimension D + 1.

Step 1 Fix an oriented, metric, tame Kuranishi atlas (IC, d), nested reductions C C_ V),
equivariant norms |||, and constants 8,0 such that 0 < § < 6y and 0 < 0 <
0re1([0, 1] x V, [0, 1] X C, || - ||, ). Then each (V,C, |- |, §, 0)—adapted perturbation v
induces a D —dimensional weighted branched manifold Z¥ := (|Z" |y, A") and a
cycle |1”|y: Z¥ — |C|, whose respective cobordism class and Cech homology class
[It¥|n] € I-VID(|C|; Q) are independent of the choice of v.

The regularity of the perturbed zero sets is proven in Theorem 3.2.8. To prove in-
dependence of the choice of v, we consider two (V,C, |- ||, §, 0)—adapted perturba-
tions 1% and v!. Then Proposition 3.3.3(iii) provides an admissible, precompact,
transverse cobordism perturbation v°! of 5[0,1]xKl}g 175,, With boundary restrictions
01 1y =v¥ for & = 0, 1. Moreover, by Lemma 3.1.12(iii) the orientation of K in-
duces an orientation of [0, 1]x C, whose restriction to the boundaries 0% ([0, 1]xK) =K
equals the given orientation on . Now Theorem 3.2.8 implies that Z:= (| Z v [, A”Ol)
is a cobordism from 9°Z = (|Z"0|, A”O) to 012 = (|Z“1 [, A”l) and induces a cycle
|L"0] |%: £ — [0,1] x |C|. Finally, the boundary restrictions of this cycle prove the
equality [|Lv0|7.,5] = [|Lvl|7.,5] in Hp(|C|; Q); see [14, Equation (8.2.6)] for the detailed
homological argument.
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Step 2 Fix an oriented, metric, tame Kuranishi atlas (KC, d) and nested reductions
C C V. Then the cobordism class of Z", as well as [|t¥|] € Hp (|C|; Q), are indepen-
dent of the choice of strongly (V, C)—adapted perturbation v .

To prove this we consider two strongly (V, C)—adapted perturbations v¥® for @ =0, 1.

Thus v* is (V,C, |- ||%, 6%, 0%)—adapted for some choices of equivariant norms || - ||*
and constants 0 < §% < §y, and 0 < 0% < 0. ([0, 1] x V, [0, 1] X C, || - ||%, 8%). We note
that § := max(8°,8!) < 8y = 8[0,1]xv» pick equivariant norms | - || on K such that
II-1|* < -] for @ =0,1, and choose

o <min{o®, o', 0 ([0, 1] x V, [0, 1] xC, || - ||. §)}.

Then Proposition 3.3.3(iii) provides an admissible, precompact, transverse cobordism
perturbation v°! of 5[0,1]X;q[\ofl]xv, whose restrictions V% := V01|{a}xv fora=0,1
are (V,C, | - |.8,0)—adapted perturbations of 5;C|)\/r. Since we have that 6% < §,
10 gaprll® < 100 gyl < 0 and 0 < 0% < 0y ([0. 1] x V. 0. 1] x C. ] - . 8%).
they are also (V,C, || - ||, §%, 0%)—adapted. Then, as in Step 1, the perturbed zero set
of vO! is a cobordism from 2% to 2%' and the induced cycle in [0, 1] X |C| shows
(17 15 = [17] in Hp(IC); Q).

Moreover, for fixed o € {0, 1} both the restriction V* = V01|{a}xv and the given
perturbation v* are (V,C, | - |, §%, 0%)—adapted, so that Step 1 provides cobordisms
2V~ 2% and identities [|t*"|x] = [|:""|x] in Hp(|C|; Q). By transitivity of the
c9bordism relation this proves ZV ~ Z¥ as claimed, and also [|L"0|7.[] = [|L"1 l%] €
Hp(|C: Q).

Step 3 For a fixed oriented, metric, tame Kuranishi atlas (KC, d), the oriented cobor-
dism class A% of weighted branched manifolds Z" is independent of the choice of
strongly adapted perturbation v. Moreover, given any open neighborhood W C (|K|, d)
of |s:1(0)], the class A)(/lvc’d) = [|t”|5: 2° — W] € Hp(W; Q) is independent of the
choice of strongly (V, C)—adapted perturbation v for nested reductions C C V with
m(C) CW.

To prove this we consider two strongly (V¥,C%)—adapted perturbations v¥ with re-
spect to nested reductions C* C V¥ with wx(C) C W, equivariant norms || - ||* and
admissible metrics d® for « = 0,1. Remark 3.2.2 provides a nested cobordism
reduction C C V of [0, 1] x £ with d*C = C%, 0%V = V¥ and m[g, 1]x¢ C [0, 1] x W.
Now pick equivariant norms | -|| on K such that ||-||* < ||| for « = 0,1, and
choose 0 < § < 8y smaller than the collar width of d, V, and C. Then, for any
0<o0 <owe(V,C, | -|,8), Proposition 3.3.3(ii) provides an admissible, precompact,
transverse cobordism perturbation pOl of 5[0,1]xK [T whose boundary restrictions

7% 1= 10| gay, for & = 0,1 are (V*,C%, |||, 8, 0)—adapted perturbations of sx| 5.
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As before, 2""" is an oriented cobordism from 2" to Z%' and induces a cycle
in [0, 1] x W that shows [|L;0|H] = [|Lgl |x] in Hp(W;Q). Moreover, we can pick
0 < 0e1([0, 1] x V[0, 1] x C%, || - |%,8) for @ = 0, 1, so that each v°1|ey, is also
strongly (V*, C%)—adapted. Then the claim follows by transitivity as in Step 2.

Step4 Let (K, d) be an oriented, metric, tame Kuranishi atlas, and let Wy, C (|K|,d)
be a nested sequence of open sets with (e Wk = |5,E1 (0)| as in Definition 3.3.4.
Then the Cech homology class

1 ’Cad ] - .
A®D = lim 4D € Hp (s (0)]; Q)
is well defined and independent of the choice of nested sequence Wy )geN -

The pushforward Hp Wk41: Q) — Hp (Wk: Q) by the inclusion Zg 4 1: Wg41 — Wk
maps A%k +)1 [[¢¥6+1]4] to Al kd since any strongly adapted perturbation vy
with respect to nested reductions Cx1 T Vg1 With mxc(Ck41) C Wi+ can also be
used as strongly adapted perturbation for A(’C 4) _This shows that the homology classes
A(’C 4) form an inverse system and thus have a well-defined inverse limit. To see that
thlS 11m1t is independent of the choice of nested sequence, note that the intersection
Wy = W,? N W,i of any two such sequences (W¢)ken is another nested sequence
of open sets with () ey Wk = |5,€1 (0)|. Now choose a sequence of strongly adapted
perturbations v with respect to nested reductions Cr T Vi with mc(Cr) C Wy, then
these also fit the requirements for the larger open sets W7 and hence the inclusions
Wy < W¢ push [|i%F[y] € Hp (Wy; Q) forward to [|%¢|3] € Hp(W)'; Q). Hence,
by the definition of the inverse limit, we have equality

. ,d . ,d . ,d Y — .

lim A" = tim A3 =1im AT € Hp (Isc! )] Q).
Step 5 Given an oriented weak Kuranishi atlas K, the cobordism class Z* := AKn.d)
of weighted branched manifolds in Step 3 and the pullback [X ]Vlr : |1ﬂ;¢sh|*A(’C’d ) e

Hp (X ; Q) of the Cech homology classes in Step 4 are independent of the choice of
tame shrinking Kg, of K and admissible metric d on |Kgp|.

Here the pushforward under |, | is well defined since this is a homeomorphism by
Lemma 2.3.9(iii). Given different choices (K ,d®) of metric tame shrinkings of
and strongly adapted perturbations v¥ and (V})ken) that define AKG-d%)  zv and

AUSAD) = lim[|*F 5] € Hp (Isic& (0)]: Q)

respectively, we can apply Step 6 below to the cobordism [0, 1] x K to obtain a weighted
branched cobordism from 2*° to 2" and the identity

L ([X]V”)—I ([X]V”)EHD([O 1]xX:Q)
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with the natural boundary embeddings /%: X — {«a} x X C [0, 1] x X =Y. Further,
19 =1} Hp (X;Q) — Hp ([0,1] x X; Q) are the same isomorphisms, because the
two maps /°, I are both homotopy equivalences and homotopic to each other. Hence
we obtain the identity [X ]VKE =X ]gh in Hp(X;Q), which proves Step 5.

Step 6 Let K be an oriented weak Kuranishi cobordism over a compact collared
cobordism Y . For o = 0,1 fix choices of preshrunk tame shrinkings K of %/,
and admissible metrics d* on |0%K|. Then, for any choice of strongly adapted pertur-
bations v* on K , there is a weighted branched cobordism 2! from 2"° to 2"
Moreover, the VFCs of the boundary components push forward by the embeddings
1§ {a} x %Y — Y to the same Cech homology class in Y ,

(P35, = (p)«([8'YI3T,) € Hp(Y: Q).
First, use Theorem 2.5.3 to find a preshrunk tame shrinking Cg, of K with 0%/Cgp, = K,
and an admissible metric d on |Kg,| with boundary restrictions d|jgex = d*. If
we equip [Cg, with the orientation induced by C, then by Lemma 3.1.12 the induced
boundary orientation on 3%y, = K§ agrees with that induced by shrinking from 9%C.

Next, Remark 3.2.2 provides nested cobordism reductions C C V of g, and we may
choose equivariant norms || - || on Kg,. Then Proposition 3.3.3 with

o= min{orel(V, CoAl- 1,6, aril%)nfrel([o’ 1] x 3%V, [0, 1] x a*C, 3| - |, 8)}

. . . . T
yields an admissible, precompact, transverse cobordism perturbation 10! of sx, }, ,

whose restrictions 7% := v |4ay, for a = 0, 1 are (3%V, 3°C, 3%|| - ||, §, 0')—adapted
perturbations of sy« |£\3£V. In particular, these are strongly adapted by the choice of o,
and 2" is a cobordism from Z5o to Zy1 . Invariance of the VMC under oriented weak
Kuranishi cobordism then follows from Step 3 by transitivity of weighted branched
cobordism.

To prove the identity between VFCs, we first construct a sequence of nested cobordism
reductions C  V of Ky, by

Co:=CNm W) CV  with Wy := B1 (1, (Y)) C [Kanl.

in addition discarding components C; N V7 that have empty intersection with 51_1 (0).
With that, Proposition 3.3.3 provides admissible, precompact, transverse cobordism
perturbations vg with |(sk,, I},F +vz)"1(0)| € Wy, and with boundary restrictions
VY = v |gey that are strongly adapted perturbations of (Kg,d*) for « =0, 1. Svince
these boundary restrictions satisfy the requirements of Step 4, they define the Cech
homology classes A®&-4%) = lim [V 5] € I—VID(|5E%1 0)]; Q).

On the other hand, pushforward with the topological embeddings J*: (|KS |, d%) —
(|Kshl. d) also yields Cech homology classes J& [|¢€ |5,] that form two inverse systems
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in Hp(|Ks|; Q). Now the cycles (Y*: |Z¥¢| — W given by Theorem 3.2.8 give
rise to identities Jf[|L"l(c) l] = J} [|L"llc |%] in Hp (Wy; Q), and taking the inverse limit,
which commutes with pushforward, we obtain J? (Li£1[|t"l(<) lu) = J} (LiLnHt"/l l%])
in Hp (|5,ES1h (0)]; Q). Further pushforward with |y, | turns this into an equality in
Hp(Y;Q). Finally, we use the identities

|¥ical o JOC'LK%(aay) = LO}? o |Wl€§fl|
to obtain, in Hp(Y;Q),

(Wil 0 J)wim [1P8]) = () (1 e (im [F])) = () [0V 1%

This proves Step 6 since the left-hand side was shown to be independent of « =0, 1. O

Appendix: Groupoids and weighted branched manifolds

The purpose of this appendix is to review the definition and properties of weighted
branched manifolds from [8], and slightly generalize these notions to a cobordism
theory. This will be based on the following language of groupoids.

An étale groupoid G is a small category whose sets of objects Obj; and morphisms
Morg are equipped with the structure of a smooth manifold of a fixed finite dimension
such that

¢ all morphisms are invertible;
e all structural maps® are local diffeomorphisms.
All groupoids considered in this appendix are étale. Moreover, a groupoid is called
e proper if the source and target map s x t: Morg — Objg x Objg is proper
(ie preimages of compact sets are compact);
e nonsingular if there is at most one morphism between any two of its objects;

e oriented if its spaces of objects and morphisms are oriented manifolds and if all
structural maps preserve these orientations;

e d-dimensional if Objg and Morg are d—dimensional manifolds;

e compact if its realization |G| is compact.

9 The structure maps of a category are source and target maps s, ¢: Morg — Obj¢ , identity map
id: Objg — Morg , and composition map comp: Morg ¢ Xs Morg — Morg . If source and target are
local diffeomorphisms, then the fiber product in the domain of composition is transverse and hence inherits
a smooth structure. A groupoid has the additional structure map inv: Morg — Morg given by the unique
inverses.
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Etale proper groupoids are often called ep groupoids. It is well known that in the
current finite-dimensional context the properness assumption is equivalent to the con-
dition that the realization |G| is Hausdorff.!® Here the realization |G| of G is the
quotient of the space of objects by the equivalence relation given by the morphisms,
ie x ~y <= Morg(x,y) # . It is equipped with the quotient topology, and the
natural projection is denoted wg: Objg; — |G|. In general, the realization |G| of
an ep groupoid is an orbifold. It is a manifold if the groupoid is nonsingular, and an
orientation of the groupoid induces an orientation of |G|.

Two kinds of groupoids appear in this paper: Theorem 3.2.8 shows that the zero set of a
transverse section defines a wnb groupoid (which is étale but generally not proper, and
equipped with an additional weighting function; see Definition A.4). On the other hand,
each Kuranishi chart K; comprises two ep groupoids Gy, r,) and G, xE,,r;)>
which arise from group quotients as follows.

Example A.1 (i) A group quotient (U, I") in the sense of Definition 2.1.1 defines
an ep groupoid G,y with Objg = U, Morg = U xT', (s xt)(u,y) = (u,yu),
id(u) = (u,id), comp((u, y), (yu,8)) = (u,8y), inv(u, y) = (u, y~1), and realization
|G|=U/T = U. In particular, properness is proven in Lemma 2.1.5(i). This groupoid
is nonsingular if and only if the action of I" is free. It is oriented if U is oriented and
the action of each y € I preserves the orientation.

(i) The category By defined by a Kuranishi atlas with trivial obstruction spaces on
a compact space X is not a groupoid, because when I C J the morphisms from Uy
to Uy are not invertible. However, it is shown in [10] that Bx may be completed to
an ep groupoid with the same realization (namely, X itself) by adding appropriate
inverses and composites to its set of morphisms. &

When we take restrictions of Kuranishi charts in the sense of Definition 2.2.6, this is
reflected in the associated groupoids by an analogous notion:

e If G is an étale groupoid and V C |G| is open, we define the restriction G|y
to be the full subcategory of G with objects 7 Lw).

To discuss the theory of Kuranishi cobordisms in terms of groupoids, we need the
following notions. Here we use the notation A2 := [0,¢) and A} := (1 —¢,1] for
neighborhoods of 0, 1 € [0, 1] of size € > 0 as in [13].

e If G is a groupoid and A C R is an interval we define the product groupoid
A x G to be the groupoid with objects A x Objg and morphisms A x Morg,
and with all structural maps given by products with id4 .

10T see that proper groupoids have Hausdorff realization one can argue that the equivalence relation
has closed graph and then use [1, Chapter I, Section 10, Exercise 19] or [13, Lemma 3.2.4].
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e A cobordism groupoid is a triple (G, LOG , té) consisting of a compact proper
groupoid G and collaring functors (g: A7 x 3*G — G for a = 0, 1. Here
G is required to be “étale with boundary” in the sense that its object and
morphism spaces are manifolds with boundary. Moreover, these boundaries form
a strictly full'! subcategory dG of G that splits, 3(Objg) = Objgog LU Objyi g »
d(Morg ) = Morgog LI Moryi  , into the disjoint union of two ep groupoids 3°G
and 9' G . Finally, the functors (%: A% x %G — G are defined for some & > 0
and required to be tubular neighborhood diffeomorphisms on both the sets of
objects and morphisms. In particular, (g, (@, -) is the identification between 9% G
and the full subcategories formed by the boundary components of G .

e An oriented cobordism groupoid is a cobordism groupoid (G, L%,LIG) such
that both G and its boundary groupoids d°G,d'G are oriented. Moreover
the collaring functors are required to consist of orientation-preserving maps
1 AF xObjya g — Objg and (§;: AF x Morgeg — Morg for @ =0, 1, where
products are oriented as in Remark 3.1.11.

Lemma A.2 Any topological space Y has a unique maximal Hausdorff quotient Y,
that is, a quotient of Y which is Hausdorff and satisfies the universal property:
any continuous map from Y to a Hausdorff space factors through the quotient map
Ty Y—)YH .

Proof To construct the maximal Hausdorff quotient let A be the set of all equivalence
relations ~ on Y for which the quotient topology on Y/~ is Hausdorff. This is
a set since every relation ~ on Y is represented by a subset of Y x Y. Then the
space Y4 :=[]_c4 Y/~ is a product of Hausdorff spaces, hence Hausdorff. The map
7:Y - Y4, y—[].cqly]~ is continuous by the definition of quotient topologies.
Now the image Yy := w(Y) C Y4 with the relative topology is Hausdorff, and 7
induces a continuous surjection g Y — Yy.

To check that my: Y — Yy, satisfies the universal property, consider a continuous map
f:Y — Z to a Hausdorff space Z. This induces an equivalence relation ~¢ on Y
given by x ~¢ y <= f(x) = f(y), whose quotient space Y/~ we equip with the
quotient topology. Then f: Y — Z factors as

Y Ly~ Lz,

where t¢: [y] = f(y) is continuous by definition of the quotient topology. Since 5 is
also injective, this implies that Y/~ is Hausdorff. Therefore, ¥/~ is one of the

11 A subcategory is strictly full if it contains all morphisms that have source or target in its objects.
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factors of Y4, sothat f: Y — Z factors as the following sequence of continuous maps
2 pry Lr
Y—H>YH—>Y/~f—>Z,
where pry denotes the restriction to Y3 of the projection from Y4 to its factor ¥/~ .

To see that Yy, is in fact a quotient of Y, we will identify Y3, = 7 (Y) with the quotient
Y/ ~5 that is induced by the surjection my: Y — Y. In this case the injection
tx: Y/~z— Y4 is in fact a continuous bijection by continuity and surjectivity of 4.
In particular, this implies that Y/~ is Hausdorff, so that we have a continuous map
pr,: Yy — Y /~5 by restriction of the projection Y4 — Y/~ as above. It is inverse
to t; because for [y] € Y/~ , we have

Prr (t ([Y]D) = pra (3 (y)) = pry (- x [y] x---) = [y].

This identifies Y5 = Y/~ as topological spaces and thus finishes the proof that a
topological space Y with the above properties exists.

To prove uniqueness, consider another Hausdorff quotient pr: ¥ — Y/~ that satisfies
the universal property. Then pr factors,

Y 25 v, Sy~

and by the universal property my: Y — Yy factors,
pr b

Y =Y/~ =Yy

Then a is surjective since pr is. Moreover, a is injective, because otherwise there
would be two points y1, y2 € Y with my(y1) # 7wy (y2) but pr(vy) = a(w(y1)) =

a(m(y2)) = pr(y2), so that w(y1) = b(pr(y1)) = b(pr(y2)) = 7(y2), a contradiction.
A similar argument shows that b is bijective. Moreover, the composite b~ 1a: Yy, — Yy

has the property that b~'a o 3 = 4. Since 74 is surjective this implies b~'a = id,
and similarly a~'b = id. Finally, note that because both Y, and ¥/~ have the quotient
topology, a and b are continuous, and hence homeomorphisms. a

In the following we write |G| for the realization Objg /~ of an étale groupoid G,
and |G |y for its maximal Hausdorff quotient. We denote the natural maps by

nG: Objg = |G|, 7lg)  1G| — |Glw, 7§ :=ng ong: Objg — |Gly.

Moreover, for U C Objg we write |[U|:=mng(U) C |G| and |U|y :=ny(U) C|G|y.
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Lemma A.3 Let G be an étale groupoid.

(i) Any smooth functor F: G— G’ induces a continuous map | F |3: |G |—|G’|%.

(ii) If A C R is any interval, we may identify |A x G| with A X |G|, and |A X G |y
with A x |G |y . More precisely, there are commutative diagrams

Obj 4~ 4 % Objg Ax G| —aPel 6
”AxGl lidA XTG nﬁxGl Lid,q x”l%l
AX G| lpr4|X[pre | Ax |G| 1A% Gy Ipralaxlpre lu Ax |Gy

where the horizontal maps are homeomorphisms. Here pry: Ax G — A and
prg: A x G — G are the two projection functors from the product groupoid to
its factors and A is the groupoid with objects A and only identity morphisms so
that A= |A|=|A|x.

F
Proof Any smooth functor F: G — G’ induces a continuous map |G |u>|G/ |. Then
by Lemma A.2 applied to |G|, the composite

618 16122 6

factors uniquely through the quotient map |G| |G |H The resulting continuous
map |F|x: |G|y — |G'|% is uniquely determined by ”|G’| |F|=|Flxy °”|G|' This
proves (i).

To prove (ii), first consider the diagram on the left. The bottom horizontal map is
bijective because Morgxg = A X Morg, and continuous by definition of the product
topology. Finally, it is a homeomorphism because A is locally compact; cf [15,
Exercise 29.11]. In the diagram on the right we define the bottom horizontal arrow
using the product of the maps induced as in (i) by the two functors pr4 and prg . Hence
it is continuous. Since the diagram commutes and we have already seen that the top
horizontal map is a homeomorphism, it remains to check this for the bottom map. But
this holds because the uniqueness property of the maximal Hausdorff quotient implies
that for any homeomorphlsm ¢: Y — Y’, the umque continuous map ¢y: Yy — Y3,
such that Y g y' 2, Y], equals Y—>YH RALN Y/, must be a homeomorphism. O

The smooth structure on a weighted branched manifold will be given by a homeomor-
phism to the realization of an étale groupoid with the following weighting structure.

Definition A.4 [8, Definition 3.2] A weighted nonsingular branched groupoid (or
wnb groupoid for short) of dimension d is a pair (G, A) consisting of an oriented,
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nonsingular, étale groupoid G of dimension d, together with a rational weighting
function A: |G|y — QT := Q N (0,00) that satisfies the following compatibility
conditions. For each p € |G|y there is an open neighborhood N C |G|y of p, a

collection Uy, ..., U, of disjoint open subsets of (JTZ’;‘)_1 (N) C Objg (called local
branches), and a set of positive rational weights my, ..., m, such that the following
properties hold:

Covering (nﬁél)_l(N)z|U1|U---U|Ug|C|G|.

Local regularity For each i = 1,...,¢ the projection n}|y;: Ui — |G|y is a

homeomorphism onto a relatively closed subset of N .

Weighting For all ¢ € N, the number A(g) is the sum of the weights of the local
branches whose image contains ¢g:

A(g) = Z mi.

i:q€|Ui|n
A wnb cobordism groupoid is a tuple (G, L% , LIG, A) in which (G, Loc, LlG) is an ori-
ented, nonsingular, étale cobordism groupoid of dimension d, and A: |G|y — QT
is a weighting function as above with the additional property that A and the local
branches Uy, ..., U, are of product form in the collars.

In particular, this means that each boundary groupoid d* G is equipped with a weighting
function A% as above such that the following diagram commutes:

g |7—L
A% X [32G |y |G |y
idAg XAal/ Al/
id
Qt 1 Q+

where [ | 5, 1s induced by the collaring functor G AZ x0°G — G and we identify
|AY x 0%G |y with AY x |0%*G |y as in Lemma A.3 with orientation as specified in
Definition 3.1.10.

Now we can formulate the notions of weighted branched manifold and cobordism.

Definition A.5 A weighted branched manifold/cobordism of dimension d is a pair
(Z, A7) consisting of a topological space Z together with a function Az: Z — Q™
and an equivalence class!? of wnb (cobordism) d—dimensional groupoids (G, Ag)
and homeomorphisms f: |G|y — Z that induce the function Az = Ag o f L.

12 The precise notion of equivalence is given in [8, Definition 3.12]. In particular it ensures that the
induced function Az := Ag o f~! and the dimension of Objg is the same for equivalent structures
(G,Ag, f). Moreover, if (G, l%, L};) is a cobordism groupoid, then the images f(|0%*G|y):=0*Z C Z
of the two boundary components are well defined.
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For a weighted branched cobordism (Z, Az, [G, t% ,L };, Ag. f]), the induced bound-
ary components 0*Z .= f(|t(é |x(]0*G |H)) C Z for ¢ =0, 1 are equipped with the
weighted branched manifold structures [(0%*G, AG), fljaeG |, -

The underlying space Z of a weighted branched manifold or cobordism is always
Hausdorff due to the homeomorphism Z = |G|y to a Hausdorff quotient. Moreover,
since cobordism groupoids are compact by definition, the underlying space Z of a
weighted branched cobordism is always compact.

It is shown in [8, Proposition 3.5] that the weighting function A: |G |y — (0, 00) is
locally constant on the complement of the branch locus Br(G) C |G |3 . (This is defined
to be the set of points in |G |y over which |7r||HG|: |G| — |G |4 is not injective, and is
closed and nowhere dense.) Further, every point in |G |# \ Br(G) has a neighborhood
that is homeomorphic via Jrfél to an open subset in a local branch and so has the
structure of a smooth oriented manifold.

Example A.6 (i) Any compact oriented smooth manifold/cobordism may be consid-
ered as a weighted branched manifold/cobordism with weighting function Az =1 and
empty branch locus.

(i) A compact weighted branched manifold of dimension 0 also necessarily has
empty branch locus and consists of a finite set of points {p1,..., pr}, each with a
positive rational weight m(p;) € Q" and orientation o(p;) € {&}. Any representing
groupoid G has as object space Obj¢; a set with the discrete topology, which is equipped
with an orientation function o: Obj; — {#£}. The morphism space Morg is also a
discrete set and, because we assume that G is oriented, defines an equivalence relation
on Objg; such that x ~ y => o(x) = o(y). Moreover, because |G| is Hausdorff, we
can identify |G| = |G|y and hence conclude that Obj¢; consists of precisely k classes
of points that are equivalent under Morg and project to py,..., pr in Z = |G|y.

(iii) For the prototypical example of a 1-dimensional weighted branched cobordism
(G|, N), take Obj(G) = I LU I’ equal to two copies of the interval 1 = I’ = [0, 1],
with nonidentity morphisms from x € I to x € I’ for x € [O, %) and their inverses,
where we suppose that [ is oriented in the standard way. Then the realization and its
Hausdorff quotient are

|G| :[ul//{(l,x)w(l',x) if and only if x € [0, %)}

|Gy =T UI'/{(I,x)~ (I',x) if and only if x € [0, 1]},

and the branch locus is a single point Br(G) = {[I %] = [I’, %]} C |G | The choice
of weights m, m’ > 0 on the two local branches I and I’ determines the weighting
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function A: |G|y — (0,00) as

o 1
A([I,x])={m+m ifxe 0.5,
m if xe(i,l],

/A 1

N {m,+m ifx e 0.3,
m if x€(3.1].

For example, giving each branch 7, I’ the weight m = m’ = %, together with an
appropriate choice of collar functors (g, yields a weighted branched cobordism
(IG 3. 1% 1. A) with [3°G |, = {[1,0] = [I’,0]}, which is a single point with
weight 1, and |01 G |, ={[I,1],[I’, 1]}, which consists of two points with weight 1, all
with positive orientation because as explained in Remark 3.1.11, the induced orientation
on the boundary 0*G of a cobordism is completed to an orientation of the collar by
adding as the first component the positive unit vector along AY .

Another choice of collar functors for the same weighted groupoid (G, A) might give
rise to a different partition of the boundary into incoming d°G and outgoing 3' G , for
example yielding a weighted branched cobordism with |0°G |, = {[I,0]=[I",0],[I, 1]}
consisting of two points with weights and orientations (1, 4+) and (%, —) , and with
|0'G |3, = {[I’, 1]} consisting of one point with weight (%, +).

(iv) In the situation of Theorem 3.2.8, the nonsingular étale groupoid ZV with
Obj,, = (sx|y+v)~1(0) has a maximal Hausdorff quotient |Z Yx = |27‘i| that,
as we show in Lemma 3.2.10, is given by the realization of the groupoid Z; obtained
as in (iii) above by closing the set of morphisms Mor, C Obj, x Obj 3, . Therefore,
in this case we can give a completely explicit description of |Z |3 and its weighting
function A z; see the proof of Theorem 3.2.8. o

The following is a version of some parts of [8, Proposition 3.25], which more generally
defines a notion of integration over weighted branched manifolds and cobordisms.

Proposition A.7 Any compact d—dimensional weighted branched manifold (Y, Ay)
induces a fundamental class [Y] € H;(Y;Q), and any d—dimensional weighted
branched cobordism (Z, A z) with boundary 0Z :=3° ZUd' Z induces a fundamental
class [Z] € H;(Z,0Z;Q), whose image under the boundary map

9: Hy(Z,0Z:Q) > Hy—1(0Z: Q) = Hy—1(3°Z; Q) + Hy—1(3' Z: Q)
is 8[7] = [9' Z] - [8°Z].

Proof If (Y, Ay) has a weighted branched manifold structure (G, Ag) with well-
behaved (eg piecewise smooth) branch locus, then one can triangulate |G|y = Y
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so that the branch locus lies in the codimension 1 skeleton. We may then define a
singular cycle on Y by using the local weights m; to assign a rational weight to each
top-dimensional simplex. As explained in Remark 3.1.11, in the case of a cobordism Z
the induced orientation on the boundary component 9% Z is completed to the orientation
of the collar by adding the unit positive vector along the collar as the first component.
In the case of d°Z this yields an orientation of d°Z that is the opposite of the standard
way of orienting a boundary component by adding the outward pointing normal, a fact
that is reflected in the minus sign in the formula d[Z] = [0! Z] — [0°Z]. For more
details and the general case, see [8]. O
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