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On the second homology group of the
Torelli subgroup of Aut.Fn/

MATTHEW DAY

ANDREW PUTMAN

Let IAn be the Torelli subgroup of Aut.Fn/ . We give an explicit finite set of genera-
tors for H2.IAn/ as a GLn.Z/–module. Corollaries include a version of surjective
representation stability for H2.IAn/ , the vanishing of the GLn.Z/–coinvariants of
H2.IAn/ , and the vanishing of the second rational homology group of the level `
congruence subgroup of Aut.Fn/ . Our generating set is derived from a new group
presentation for IAn which is infinite but which has a simple recursive form.

20E05, 20E36, 20F05, 20J06

1 Introduction

The Torelli subgroup of the automorphism group of a free group Fn on n letters,
denoted by IAn , is the kernel of the action of Aut.Fn/ on F ab

n Š Zn . The group of
automorphisms of Zn is GLn.Z/ and the resulting map Aut.Fn/! GLn.Z/ is easily
seen to be surjective, so we have a short exact sequence

1! IAn! Aut.Fn/! GLn.Z/! 1:

Though it has a large literature, the cohomology and combinatorial group theory of
IAn remain quite mysterious. Magnus [26] proved that IAn is finitely generated, and
thus that H1.IAn/ has finite rank. Krstić and McCool [24] later showed that IA3 is
not finitely presentable. This was improved by Bestvina, Bux and Margalit [4], who
showed that H2.IA3/ has infinite rank. However, for n� 4 it is not known whether or
not IAn is finitely presentable, or whether or not H2.IAn/ has finite rank.

Representation-theoretic finiteness It seems to be very difficult to determine whether
or not H2.IAn/ has finite rank, so it is natural to investigate weaker finiteness properties.
Since inner automorphisms act trivially on homology, the conjugation action of Aut.Fn/
on IAn induces an action of GLn.Z/ on Hk.IAn/. Church and Farb [12, Conjec-
ture 6.7] conjectured that Hk.IAn/ is finitely generated as a GLn.Z/–module. In other
words, they conjectured that there exists a finite subset of Hk.IAn/ whose GLn.Z/–
orbit spans Hk.IAn/. Our first main theorem verifies their conjecture for k D 2.
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Theorem A (generators for H2.IAn/) For all n � 2, there exists a finite subset of
H2.IAn/ whose GLn.Z/–orbit spans H2.IAn/.

Each element of our finite subset corresponds to a map of a surface into a classifying
space for IAn ; the genera of these surfaces range from 1 to 3. Table 1 below lists our
finite set of GLn.Z/–generators for H2.IAn/. This table expresses these generators
using specific “commutator relators” in IAn ; see below for how to translate these into
elements of H2.IAn/.

Remark 1.1 The special case nD 3 of Theorem A was proven in the unpublished
thesis of Owen Baker [2]. His proof uses a “Jacobian” map on outer space and is quite
different from our proof. It seems difficult to generalize his proof to higher n.

Surjective representation stability The generators for H2.IAn/ given in Theorem A
are explicit enough that they can be used to perform a number of interesting calculations.
The first verifies part of a conjecture of Church and Farb, which asserts that the
homology groups of IAn are “representation stable”. We begin with some background.
An increasing sequence

G1 �G2 �G3 � � � �

of groups is homologically stable if for all k � 1, the kth homology group of Gn is
independent of n for n� 0. Many sequences of groups are homologically stable; see
Hatcher and Wahl [21] for a bibliography. In particular, Hatcher and Vogtmann [20]
proved this for Aut.Fn/. However, it is known that IAn is not homologically stable;
indeed, even H1.IAn/ does not stabilize (see below).

Church and Farb [12] introduced a new form of homological stability for groups like
IAn whose homology groups possess natural group actions. For IAn , they conjectured
that for all k � 1, there exists some nk � 1 such that the following two properties hold
for all n� nk :

� Injective stability The map Hk.IAn/! Hk.IAnC1/ is injective.
� Surjective representation stability The map Hk.IAn/! Hk.IAnC1/ is sur-

jective “up to the action of GLnC1.Z/”; more precisely, the GLnC1.Z/–orbit
of its image spans Hk.IAnC1/.

Remark 1.2 In fact, they made this conjecture in [11] for the Torelli subgroup of
the mapping class group; however, they have informed us that they also conjecture it
for IAn .

Our generators for H2.IAn/ are “the same in each dimension” starting at nD 6, so we
are able to derive the following special case of Church and Farb’s conjecture:
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Theorem B (surjective representation stability for H2.IAn/) The GLnC1.Z/–orbit
of the image of the natural map H2.IAn/! H2.IAnC1/ spans H2.IAnC1/ for n� 6.

Remark 1.3 Boldsen and Hauge Dollerup [5] proved a theorem similar to Theorem B
for the rational second homology group of the Torelli subgroup of the mapping class
group. Their proof is different from ours; in particular, they were not able to prove an
analogue of Theorem A. It seems hard to use their techniques to prove Theorem B.
Similarly, our proof uses special properties of IAn and does not work for the Torelli
subgroup of the mapping class group.

Coinvariants Our tools do not allow us to easily distinguish different homology
classes; indeed, for all we know our generators for H2.IAn/ might be redundant. This
prevents us from proving injective stability for H2.IAn/. However, we still can prove
some interesting vanishing results. If G is a group and M is a G–module, then the
coinvariants of G acting on M , denoted by MG , are the largest quotient of M on which
G acts trivially. More precisely, MG DM=K with K D hm�g �m jg 2G; m 2M i.
We then have the following.

Theorem C (vanishing coinvariants) For n� 6, we have .H2.IAn//GLn.Z/ D 0.

Remark 1.4 Church and Farb [12, Conjecture 6.5] conjectured that the GLn.Z/–
invariants in Hk.IAnIQ/ are 0. For k D 1, this follows from the known computation
of H1.IAnIQ/; see below. Theorem C implies that this also holds for k D 2.

Linear congruence subgroups For ` � 2, the level ` congruence subgroup of
Aut.Fn/, denoted by Aut.Fn;`/, is the kernel of the natural map Aut.Fn/!GLn.Z=`/;
one should think of it as a “mod-`” version of IAn . It is natural to conjecture that for
all k � 1, there exists some nk � 1 such that Hk.Aut.Fn; `/IQ/Š Hk.Aut.Fn/IQ/
for n � nk ; an analogous theorem for congruence subgroups of GLn.Z/ is due to
Borel [7]. Galatius [19] proved that Hk.Aut.Fn/IQ/D 0 for n� 0, so this conjecture
really asserts that Hk.Aut.Fn; `/IQ/D 0 for n� 0. The case k D 1 of this is known.
Indeed, Satoh [31] calculated the abelianization of Aut.Fn; `/ for n� 3 and the answer
consisted entirely of torsion, so H1.Aut.Fn; `/IQ/D 0 for n� 3. Using Theorem A,
we will prove the case k D 2.

Theorem D (second homology of congruence subgroups) For `� 2 and n� 6, we
have H2.Aut.Fn; `/IQ/D 0.

The key to our proof is that Theorem A allows us to show that the image of H2.IAnIQ/
in H2.Aut.Fn; `/IQ/ vanishes; this allows us to derive Theorem D using standard
techniques.
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Remark 1.5 The second author proved an analogue of Theorem D for congruence
subgroups of the mapping class group in [30]. The techniques in [30] are different
from those in the present paper and it seems difficult to prove Theorem D via those
techniques.

Basic elements of Torelli We now wish to describe our generating set for H2.IAn/.
This requires introducing some basic elements of IAn . Let fx1; : : : ; xng be a free basis
for Fn . We then make the following definitions:

� For distinct 1� i; j � n, let Cxi ; xj 2 IAn be defined via the formulas

Cxi ; xj .xi /D xjxix
�1
j and Cxi ; xj .x`/D x` if `¤ i :

� For ˛; ˇ;  2f˙1g and distinct 1� i; j; k�n, let M
x˛
i
; Œx

ˇ

j
;x


k
�
2 IAn be defined

via the formulas

M
x˛
i
; Œx

ˇ

j
;x


k
�
.x˛i /D Œx

ˇ
j ; x



k
�x˛i and M

x˛
i
; Œx

ˇ

j
;x


k
�
.x`/D x` if `¤ i :

Observe that by definition

M
x�1
i
; Œx

ˇ

j
;x


k
�
.x�1i /D Œx

ˇ
j ; x



k
�x�1i and M

x�1
i
; Œx

ˇ

j
;x


k
�
.xi /D xi Œx

ˇ
j ; x



k
��1:

We call Cxi ; xj a conjugation move and M
x˛
i
; Œx

ˇ

j
;x


k
�

a commutator transvection.

Surfaces in a classifying space: our generators A commutator relator in IAn is a
formula of the form Œa1; b1� � � � Œag ; bg �D1 with ai ; bi 2 IAn . Given such a commutator
relator r , let †g be a genus g surface. There is a continuous map �W †g!K.IAn; 1/
that takes the standard basis for �1.†g/ to a1; b1; : : : ; ag ; bg 2 IAn . We obtain an
element hr D ��.Œ†g �/ 2 H2.IAn/. With this notation, the generators for H2.IAn/
given by Theorem A are the elements hr where r is one of the relators in Table 1.

The Johnson homomorphism To motivate our proof of Theorem A, we first recall
the computation of H1.IAn/, which is due independently to Farb [18], Kawazumi [23]
and Cohen and Pakianathan [14]. The basic tool is the Johnson homomorphism [22],
which was introduced in the context of the Torelli subgroup of the mapping class group
(though it also appears in earlier work of Andreadakis [1]). See Satoh [32] for a survey
of the IAn version of it. The Johnson homomorphism is a homomorphism

� W IAn! Hom
�
Zn;

V2Zn�
that arises from studying the action of IAn on the second nilpotent truncation of Fn .
It can be defined as follows. For z 2 Fn , let Œz� 2 Zn be the associated element of the
abelianization of Fn . Consider f 2 IAn . For x 2 Fn , we have f .x/ � x�1 2 ŒFn; Fn�.
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(H1) ŒCxa; xb ; Cxc ; xd �D 1, possibly with b D d .
(H2) ŒMx˛a ; Œx

ˇ

b
;x

c �;Mxı

d
; Œx�e ;x

�

f
�� D 1, possibly with fb; cg \ fe; f g ¤ ¿, or with

x˛a D x
�ı
d

as long as x˛a ¤ xıd , a … fe; f g and d … fb; cg.
(H3) ŒCxa; xb ;Mx


c ; Œx

ı
d
;x�e ��D 1,

possibly with b 2 fd; eg if c … fa; bg and a … fc; d; eg.

(H4) ŒC
ˇ
xc ; xbC

ˇ
xa; xb ; C

˛
xc ; xa

�D 1.

(H5) ŒC
�
xa; xc ; C

�ı
xa; xd

�ŒC
�ˇ
xa; xb ;Mx

ˇ

b
; Œx


c ;x

ı
d
�
�D 1.

(H6) ŒMx˛a ; Œx
ˇ

b
;x

c �;Mxı

d
; Œx˛a ;x

�
e ��ŒMxı

d
; Œx˛a ;x

�
e �;Mxı

d
; Œx


c ;x

ˇ

b
���

ŒMxı
d
; Œx


c ;x

ˇ

b
�; C
��
xd ; xe

�D 1, possibly with b D e or c D e .

(H7) ŒMx

c ; Œx

˛
a ;x

ı
d
�; C

ˇ
xa; xb �ŒC

�ı
xc ; xd

;M
x

c ; Œx

˛
a ;x

ˇ

b
�
�ŒM

x

c ; Œx

˛
a ;x

ˇ

b
�
;Mx


c ; Œx

˛
a ;x

ı
d
��D 1,

possibly with b D d .
(H8) ŒM

x˛a ; Œx
ˇ

b
;x

c �
; C ıxa; xdC

ı
xb; xd

C ıxc ; xd �D 1.

(H9) ŒC

xa; xcC


xb; xc ; C

ˇ
xa; xbC

ˇ
xc ; xb �ŒMx˛a ; Œx

ˇ

b
;x

c �
; C ˛xb; xaC

˛
xc ; xa

�D 1.

Table 1: The set of commutator relators whose associated elements of
H2.IAn/ generate it as a GLn.Z/–module. Distinct letters represent distinct
indices unless stated otherwise.

There is a natural surjection �W ŒFn; Fn�!
V2Zn satisfying �.Œa; b�/D Œa�^ Œb�; the

kernel of � is ŒFn; ŒFn; Fn��. We can then define a map z�f W Fn!
V2Zn via the formula

z�f .x/D �.f .x/ �x
�1/. One can check that z�f is a homomorphism. It factors through

a homomorphism �f W Z
n!

V2Zn . We can then define � W IAn! Hom
�
Zn;

V2Zn�
via the formula �.f /D �f . One can check that � is a homomorphism.

Generators and their images Define

SMA.n/DfCxi ; xj j1� i; j �n distinctg[fMxi ; Œxj ;xk� j1� i; j; k�n distinct; j <kg:

Magnus [26] proved that IAn is generated by SMA.n/; see Day and Putman [16] and
Bestvina, Bux and Margalit [4] for modern proofs. For distinct 1� i; j � n, the image
�.Cxi ; xj / 2 Hom.Zn;

V2Zn/ is the homomorphism defined via the formulas

Œxi � 7! Œxj �^ Œxi � and Œx`� 7! 0 if `¤ i :

Similarly, for distinct 1 � i; j; k � n with j < k , the image �.Mxi ; Œxj ;xk�/ in
Hom

�
Zn;

V2Zn� is the homomorphism defined via the formulas

Œxi � 7! Œxj �^ Œxk� and Œx`� 7! 0 if `¤ i :

The key observation is that these form a basis for Hom
�
Zn;

V2Zn�.
Geometry & Topology, Volume 21 (2017)
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The abelianization Let F.SMA.n// be the free group on SMA.n/ and let RMA.n/�

F.SMA.n// be a set of relations for IAn , so IAnD hSMA.n/ jRMA.n/i. Since � takes
SMA.n/ bijectively to a basis for the free abelian group Hom

�
Zn;

V2Zn�, we must
have RMA.n/� ŒF .SMA.n//; F.SMA.n//�. This immediately implies that H1.IAn/Š
Hom

�
Zn;

V2Zn�.
Hopf’s formula But even more is true. Recall that Hopf’s formula (see Brown [10])
says that if G is a group with a presentation G D hS jRi, then

H2.G/Š
hhRii \ ŒF .S/; F.S/�

ŒF .S/; hhRii�
I

here hhRii is the normal closure of R . The intersection in the numerator of this is usually
hard to calculate, so Hopf’s formula is not often useful for computation. However, by
what we have said it simplifies for IAn to

(1) H2.IAn/Š
hhRMA.n/ii

ŒF .SMA.n//; hhRMA.n/ii�
:

This isomorphism is very concrete: an element r 2 hhRMA.n/ii is a commutator relator,
and the associated element of H2.IAn/ is the homology class hr discussed above.

Summary and trouble For r2hhRMA.n/ii and z2F.SMA.n//, the element zrz�1r�1

lies in the denominator of (1), ŒF .SMA.n//; hhRMA.n/ii�. Hence hzrz�1Dhr . It follows
that H2.IAn/ is generated by the set fhr j r 2RMA.n/g. In other words, to calculate
generators for H2.IAn/, it is enough to find a presentation for IAn with SMA.n/ as
its generating set. However, this seems like a difficult problem (especially if, as we
suspect, IAn is not finitely presentable). Moreover, the GLn.Z/–action on H2.IAn/
has not yet appeared.

L–presentations To incorporate the GLn.Z/–action on H2.IAn/ into our presen-
tation for IAn , we use the notion of an L–presentation, which was introduced by
Bartholdi [3] (we use a slight simplification of his definition). An L–presentation for a
group G is a triple hS jR0 jEi, where S and R0 and E are as follows:

� S is a generating set for G .
� R0 � F.S/ is a set consisting of relations for G (not necessarily complete).
� E is a subset of End.F.S//.

This data must satisfy the following condition: Let M � End.F.S// be the monoid
generated by E . Define RD ff .r/ j f 2M; r 2R0g. Then we require G D hS jRi.
Each element of E descends to an element of End.G/; we call the resulting subset
zE � End.G/ the induced endomorphisms of our L–presentation. We say that our

L–presentation is finite if the sets S and R0 and E are all finite.
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In our examples, the induced endomorphisms of our L–presentations will actually be
automorphisms. Thus in our context one should think of an L–presentation as a group
presentation incorporating certain symmetries of a group. Here is an easy example:

Example Let S D fzi j i 2 Z=pg and R0 D fz20g. Let  W F.S/! F.S/ be the
homomorphism defined via the formula  .zi / D ziC1 . Then hS jR0 j f gi is an
L–presentation for the free product of p copies of Z=2.

A finite L–presentation for Torelli The conjugation action of Aut.Fn/ on IAn
gives an injection Aut.Fn/ ,! Aut.IAn/. If we could somehow construct a finite
L–presentation hSMA.n/ jR

0
MA.n/ jEMA.n/i for IAn whose set of induced endomor-

phisms generated
Aut.Fn/� Aut.IAn/� End.IAn/;

then Theorem A would immediately follow. Indeed, since the GLn.Z/–action on
H2.IAn/ is induced by the conjugation action of Aut.Fn/ on IAn , it would follow that
the GLn.Z/–orbit of the set fhr j r 2R0MA.n/g � H2.IAn/ spanned H2.IAn/.

Although we find the idea in the previous paragraph illuminating, we do not follow it
strictly. To make our L–presentation for IAn easier to comprehend, we will use the
following generating set, which is larger than SMA :

SIA.n/D fCxi ; xj j 1� i; j � n distinctg

[ fM
x˛
i
; Œx

ˇ

j
;x


k
�
j 1� i; j; k � n distinct; ˛; ˇ;  2 f˙1gg:

This has the advantage of making our relations and rewriting rules shorter, and making
their meaning easier to understand. It has the disadvantage of making the proof of
Theorem A less direct. Our theorem giving an L–presentation for IAn is as follows:

Theorem E (finite L–presentation for Torelli) For all n � 2, there exists a finite
L–presentation IAnDhSIA.n/ jR

0
IA.n/ jEIA.n/i whose set of induced endomorphisms

generates Aut.Fn/� Aut.IAn/� End.IAn/.

We note that our presentation is not a presentation in which all relators are commutators.
The formulas for the R0IA.n/ and EIA.n/ in our finite L–presentation are a little
complicated, so we postpone them until Section 2. The formulas in that section make it
clear that RIA.n/ does not lie in ŒF .SIA.n//; F.SIA.n//�. Therefore we cannot prove
Theorem A simply by interpreting the relators as homology classes. We must do
something more complicated to deduce that theorem from our presentation.

Remark 1.6 The relations in Table 1 are not sufficient for our L–presentation. Indeed,
they all lie in the commutator subgroup, but the generators SIA.n/ do not map to
linearly independent elements of the abelianization.
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Sketch of proof We close this introduction by briefly discussing how we prove
Theorem E. In particular, we explain why it is easier to verify an L–presentation
than a standard presentation. We remark that our proof is inspired by a recent paper [9]
of the second author together with Brendle and Margalit, which constructed generators
for the kernel of the Burau representation evaluated at �1.

Assume that we have guessed a finite L–presentation hSIA.n/ jR
0
IA.n/ jEIA.n/i for

IAn as in Theorem E (we found the one that we use by first throwing in all the relations
we could think of and then attempting the proof below; each time it failed it revealed
a relation that we had missed). Let Qn be the group presented by the purported L–
presentation. There is thus a surjection � W Qn! IAn , and the goal of our proof will
be to construct an inverse map �W IAn!Qn satisfying � ı� D id. This will involve
several steps.

Step 1 We decompose IAn in terms of stabilizers of conjugacy classes of primitive
elements of Fn .

For z 2 Fn , let ŒŒz�� denote the union of the conjugacy classes of z and z�1 . A
primitive element of Fn is an element that forms part of a free basis. Let C D
fŒŒz�� j z 2 Fn primitiveg. The set C forms the set of vertices of a simplicial complex
called the complex of partial bases, which is analogous to the complex of curves for
the mapping class group. Applying a theorem of the second author [29] to the action
of IAn on the complex of partial bases, we will obtain a decomposition

(2) IAn D �
c2C
.IAn/c=.some relations/I

here .IAn/c denotes the stabilizer in IAn of c . The unlisted relations play only a small
role in our proof and can be ignored at this point.

Step 2 We use induction to construct a partial inverse.

Fix some c02C . The stabilizer .IAn/c0 is very similar to IAn�1 ; in fact, it is connected
to IAn�1 by an exact sequence that is analogous to the Birman exact sequence for the
mapping class group. We construct this exact sequence in the companion paper [17],
which builds on our previous paper [15]. By analyzing this exact sequence and using
induction, we will construct a “partial inverse” �c0 W .IAn/c0 !Qn . We remark that
this step is where most of our relations arise — they actually are relations in the kernel
of the Birman exact sequence we construct in [15].

Step 3 We use the L–presentation to lift the conjugation action of Aut.Fn/ on IAn
to Qn .

Let zE be the induced endomorphisms of our L–presentation. We directly prove that
these endomorphisms actually give an action of Aut.Fn/ on Qn such that the projection
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map � W Qn! IAn is equivariant. This is the key place where we use properties of
L–presentations; in general, it is difficult to construct group actions on groups given by
generators and relations.

Step 4 We use our group action to construct the inverse.

The conjugation action of Aut.Fn/ on IAn transitively permutes the terms of (2). Using
our lifted action of Aut.Fn/ on Qn as a “guide”, we then “move” the partially defined
inverse �c0 around and construct � on the rest of IAn , completing the proof.

Remark 1.7 In [28], the second author constructed an infinite presentation of the
Torelli subgroup of the mapping class group. Though this used the same result [29]
that we quoted above, the details are quite different. One source of this difference is
that instead of an L–presentation with a finite generating set, the paper [28] constructed
an ordinary presentation with an infinite generating set.

Computer calculations At several places in this paper, we will need to verify large
numbers of equations in group presentations. Rather than displaying these equations
in the paper or leaving them as exercises, we use the GAP System to store and check
our equations mechanically. The code to verify these equations is in the file h2ia.g,
which is in an online supplement. We found the equations in this file by hand, and our
proof does not rely on a computer search. We will say more about this in Section 5,
where said calculations begin.

This is a good place to note that our results rely strongly on the authors’ earlier paper [17]
and the computer calculations from that paper. There we use a similar approach to
automatically verify identities and prove the existence of certain homomorphisms
between groups given by presentations. This is used in more than one place in the
present paper, but most crucially in Proposition 3.14. The computations from our earlier
paper are in a file iabes.g, which is available on the authors’ websites and on arXiv.

Outline We begin in Section 2 by giving a precise statement of the L–presentation
whose existence is asserted in Theorem E. Next, in Section 3 we discuss several tools
that are needed for the proof of Theorem E. The proof of Theorem E is in Section 4.
This proof depends on some combinatorial group theory calculations that are stated
in Sections 2 and 3 but whose proofs are postponed until Section 5. In Section 6, we
prove Theorem A. That section also shows how to derive Theorem B from Theorem A.
Finally, Theorems C and D are proven in Section 7.
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(R0) M�1x˛a ; Œx
ˇ

b
;x

c �
DMx˛a ; Œx


c ;x

ˇ

b
� .

(R1) ŒCxa; xb ; Cxc ; xd �D 1, possibly with b D d .
(R2) ŒMx˛a ; Œx

ˇ

b
;x

c �;Mxı

d
; Œx�e ;x

�

f
�� D 1, possibly with fb; cg \ fe; f g ¤ ¿, or with

x˛a D x
�ı
d

as long as x˛a ¤ xıd , a … fe; f g and d … fb; cg.
(R3) ŒCxa; xb ;Mx


c ; Œx

ı
d
;x�e ��D 1,

possibly with b 2 fd; eg if c … fa; bg and a … fc; d; eg.
(R4) ŒCxa; xbCxc ; xb ; Cxc ; xa �D 1.

(R5) C
ˇ
xa; xbMx˛a ; Œx

ˇ

b
;x

c �C
�ˇ
xa; xb DMx˛a ; Œx


c ;x
�ˇ

b
� .

(R6) Mx˛a ; Œx
ˇ

b
;x

c �Mx�˛a ; Œx

ˇ

b
;x

c � D ŒC

�
xa; xc ; C

�ˇ
xa; xb �.

(R7) ŒC
�ˇ
xa; xb ;Mx

ˇ

b
; Œx


c ;x

ı
d
��D ŒC

�ı
xa; xd

; C
�
xa; xc �.

(R8) Mx˛a ; Œx
ˇ

b
;x

c �Mxı

d
; Œx˛a ;x

�
e �Mx˛a ; Œx


c ;x

ˇ

b
� D

C��xd ; xeMxı
d
; Œx


c ;x

ˇ

b
�C
�

xı
d
; xe
Mxı

d
; Œx˛a ;x

�
e �Mxı

d
; Œx

ˇ

b
;x

c �; possibly with e 2 fb; cg.

(R9) C
ˇ
xa; xbMx


c ; Œx

˛
a ;x

ı
d
�C
�ˇ

xa; xb
D

C�ıxc ; xdMx

c ; Œx

˛
a ;x

ˇ

b
�C
ı
xc ; xd

Mx

c ; Œx

˛
a ;x

ı
d
�Mx


c ; Œx

ˇ

b
;x˛a �; possibly with b D d .

Table 2: Basic relations for the L–presentation of IAn . Distinct letters are
assumed to represent distinct indices unless stated otherwise. Let RIA.n/

denote the finite set of all relations from the above ten classes.

2 Our finite L–presentation

We now discuss the relations R0IA.n/ and endomorphisms EIA.n/ of our L–presentation.
Two calculations (Propositions 2.1 and 2.3) are postponed until Section 5.

Relations Our set R0IA.n/ of relations consists of the relations in Table 2. It is easy
to verify that these are all indeed relations:

Proposition 2.1 The relations R0IA.n/ all hold when interpreted in IAn .

The proof is computational and is postponed until Section 5. We remark that unlike
many of our computer calculations, it is not particularly difficult to verify by hand.

Since the relations are rather complicated we suggest to the reader that they not pay
too close attention to them on their first pass through the paper. The overall structure
of our proof (and, in fact, the majority of its details) can be understood without much
knowledge of our relations.

Remark 2.2 The relations in R0IA.n/ have reasonable intuitive interpretations. Re-
lations (R1)–(R3) state that generators acting only in different places commute with
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each other. Relation (R4) is a generalization of the fact that for nD 3, the conjugation
move Cx3; x1 conjugates the inner automorphism Cx1; x2Cx3; x2 back to itself (since
it fixes the conjugating element x2 ). Relation (R5) makes sense by looking at either
side of xa : on the right of x˛a , instances of x˙ˇ

b
cancel, but on the left side of x˛a ,

we get a conjugate of a basic commutator that is itself a basic commutator. Relation
(R6) states that conjugation by a commutator is the same as acting by a commutator of
conjugation moves. Relations (R7)–(R9) allow us to rewrite a conjugate of a generator
acting on a given element as a product of generators acting only on that same element
(xa , xd or xc as stated here, respectively). In this sense, these relations are like the
Steinberg relations from the presentation of GLn.Z/ in algebraic K–theory.

Generators for the automorphism group of a free group Before discussing our
endomorphisms EIA.n/, we first introduce a generating set for Aut.Fn/ that goes back
to work of Nielsen. For ˛ D˙1 and distinct 1� i; j � n, let Mx˛

i
; xj 2 Aut.Fn/ be

the transvection that takes x˛i to xjx˛i and fixes x` for ` ¤ i . Just like before, we
have

Mx�1
i
; xj
.x�1i /D xjx

�1
i and Mx�1

i
; xj
.xi /D xix

�1
j :

Next, for distinct 1 � i; j � n let Pi;j 2 Aut.Fn/ be the swap automorphism that
exchanges xi and xj while fixing x` for `¤ i; j . Finally, for 1� i�n let Ii 2Aut.Fn/
be the inversion automorphism that takes xi to x�1i and fixes x` for `¤ i . Define

SAut.n/D fM
ˇ

x˛
i
; xj
j 1� i; j � n distinct; ˛; ˇ 2 f˙1gg

[ fPi;j j 1� i; j � n distinctg[ fIi j 1� i � ng:

Observe that the set SAut.n/� Aut.Fn/ is closed under inversion.

Endomorphisms Below we will define a function � W SAut.n/ ! End.F.SIA.n///

with this key property: Let � W F.SIA.n//! IAn and �W F.SAut.n//! Aut.Fn/ be
the projections. Then for s 2 SAut.n/ and w 2 F.SIA.n//, we have

(3) �.�.s/.w//D �.s/�.w/�.s/�1 2 IAn :

Our set of endomorphisms will then be

EIA.n/D f�.s/ j s 2 SAut.n/g:

The relevance of the formula (3) is that we want the induced endomorphisms of our
IA–presentation of IAn to generate the image of Aut.Fn/ in Aut.IAn/ � End.IAn/
arising from the conjugation action of Aut.Fn/ on IAn .

Defining � To define an endomorphism �.s/W F.SIA.n//!F.SIA.n// for s2SAut.n/,
it is enough to say what �.s/ does to each element of SIA.n/. There are two cases:
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s 2 SI �.M
ˇ

x˛a ; xb
/.s/

Cxc ; xa .C ˛xc ; xaC
ˇ
xc ; xb

/˛

Cxa; xc Cxa; xcMx˛a ; Œx
�ˇ
b

;xc �

Cxb ; xc Cxb ; xcMx˛a ; Œx
�ˇ
b

;x�1c �

Cxb ; xa .C
ˇ
xa; xb

C ˛xb ; xa /
˛

M
x˛a ; Œx


c ;x

ı
d
�

C
ˇ
xa; xb

M
x˛a ; Œx


c ;x

ı
d
�
C
�ˇ
xa; xb

M
x

c ; Œx

˛
a ;x

ı
d
�

M
x

c ; Œx

ˇ
b
;xı
d
�
C
�ˇ
xc ; xb

M
x

c ; Œx

˛
a ;x

ı
d
�
C
ˇ
xc ; xb

M
x

c ; Œx
�˛
a ;xı

d
�

M
x

c ; Œx
�˛
a ;xı

d
�
C ˛xc ; xaMx


c ; Œx
�ˇ
b

;xı
d
�
C�˛xc ; xa

M
x
ˇ
b
; Œx

c ;x

ı
d
�

C
ˇ
xa; xb

M
x�˛a ; Œx


c ;x

ı
d
�
M
x
ˇ
b
; Œx

c ;x

ı
d
�
C
�ˇ
xa; xb

M
x
�ˇ
b

; Œx

c ;x

ı
d
�

M
x˛a ; Œx


c ;x

ı
d
�
M
x
�ˇ
b

; Œx

c ;x

ı
d
�

M
x˛a ; Œx

ˇ
b
;x

c �

C
ˇ
xa; xb

M
x˛a ; Œx

ˇ
b
;x

c �
C
�ˇ
xa; xb

M
x˛a ; Œx

�ˇ
b

;x

c �

C
ˇ
xa; xb

M
x˛a ; Œx

�ˇ
b

;x

c �
C
�ˇ
xa; xb

M
x
ˇ
b
; Œx˛a ;x


c �

C

xa; xcMx˛a ; Œx

�ˇ
b

;x

c �
C
�
xb ; xc

M
x
�ˇ
b

; Œx˛a ;x
�
c �

M
x
ˇ
b
; Œx�˛a ;x


c �

C
�ˇ
xc ; xb

C�˛xc ; xaMx
�ˇ
b

; Œx
�
c ;x˛a �

C

xb ; xc

M
x˛a ; Œx


c ;x
�ˇ
b

�
C
�
xa; xcC

˛
xc ; xa

C
ˇ
xc ; xb

M
x
�ˇ
b

; Œx˛a ;x

c �

C
�
xa; xcC

˛
xc ; xa

M
x
�ˇ
b

; Œx

c ;x
�˛
a �

C
ˇ

x

c ; xb

M
x˛a ; Œx


c ;x
�ˇ
b

�
C

xb ; xc

C
�ˇ
xc ; xb

C�˛xc ; xa

M
x
�ˇ
b

; Œx�˛a ;x

c �

C
�
xb ; xc

M
x˛a ; Œx

�ˇ
b

;x

c �
C
�ˇ
xc ; xb

M
x
�ˇ
b

; Œx�˛a ;x

c �
C�˛xc ; xaC


xa; xcC

˛
xc ; xa

C
ˇ
xc ; xb

M
x

c ; Œx

˛
a ;x

ˇ
b
�

C
ˇ
xa; xb

M
x

c ; Œx

˛
a ;x

ˇ
b
�
C
�ˇ
xa; xb

M
x

c ; Œx

˛
a ;x
�ˇ
b

�
M
x

c ; Œx

ˇ
b
;x˛a �

Table 3: Definition of �.M ˇ

x˛a ; xb
/ on the generators SIA.n/ . All indices in

each entry are assumed to be distinct. If no entry is listed for t 2 SIA.n/ or for
the generator representing t�1 (as in relation (R0)) then �.M ˇ

x˛a ; xb
/.t/D t .

� sDPi;j or sD Ii We then define �.s/ using the action of s on Fn via

�.s/.Cxa; xb /DCs.xa/; s.xb/ and �.s/.M
x˛a ; Œx

ˇ

b
;x

c �
/DM

s.x˛a /; Œs.x
ˇ

b
/;s.x


c /�
:

Here one should interpret Cx�1e ; xf
as Cxe; xf , Cxe; x�1f as C�1xe; xf and Cx�1e ; x�1

f

as C�1xe; xf .

� sDMx˛a ; xb In this case, we define �.s/ via the formulas in Table 3. These list
the cases where �.s/ does not fix a generator, except that, to avoid redundancy,
we do not always list both a commutator transvection and its inverse. Specifically,
if t DMx


c ; Œx

ı
d
;x�e �

, possibly with fc; d; eg\fa; bg ¤¿, and a formula is listed
for t 0 DMx


c ; Œx

�
e ;x

ı
d
� but not for t , then we define

�.s/.t/D �.s/.t 0/�1:
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If Table 3 lists no entry for t or t 0 , or the table lists no entry for t and t is a
conjugation move, then we define �.s/.t/D t .

These formulas were chosen to be as simple as possible, among formulas realizing (3).
Just like for the relations, we recommend not dwelling on these formulas during one’s
first read through this paper.

Proposition 2.3 The definition of � satisfies (3).

This proof uses a computer verification and is postponed until Section 5. Propositions 2.1
and 2.3 together imply that all of the extended relations from our L–presentation are
trivial in IAn . This means that the obvious map on generators (sending each generator
to the automorphism it names) extends to a well-defined homomorphism

hSIA.n/ jR
0
IA.n/ jEIA.n/i ! IAn :

3 Tools for the proof

In this section, we assemble the tools we will need to prove Theorem E. In Section 3.1,
we discuss a theorem of the second author that gives a sort of infinite presentation for
a group acting on a simplicial complex. In Section 3.2, we introduce the complex of
partial bases. In Section 3.3, we give generators for the IAn–stabilizers of simplices
in the complex of partial bases. In Section 3.4, we introduce an action of Aut.Fn/ on
the group given by our purported L–presentation for IAn . Finally, in Section 3.5 we
introduce a certain morphism between groups given by L–presentations.

Two results in this sections have computer-aided proofs which are postponed until
Section 5: Proposition 3.13 from Section 3.4 and Proposition 3.14 from Section 3.5.

3.1 Presentations from group actions

Consider a group G acting on a simplicial complex X . We say that G acts without
rotations if for all simplices � of X , the setwise and pointwise stabilizers of � coincide.
For a simplex � , denote by G� the stabilizer of � . Letting X .0/ denote the vertex set
of X , there is a homomorphism from the free product of vertex stabilizers

 W �
v2X.0/

Gv!G:

As notation, if g 2 G stabilizes a vertex v of X , then denote by gv the associated
element of

Gv < �
v2X.0/

Gv:

The map  is rarely injective. Two families of elements in its kernel are as follows:

Geometry & Topology, Volume 21 (2017)



2864 Matthew Day and Andrew Putman

� If e is an edge of X joining vertices v and v0 and if g2Ge , then gvg�1v0 2ker. /.
We call these the edge relators.

� If v;w 2X .0/ and g 2Gv and h 2Gw , then hwgvh�1w .hgh�1/�1
h.v/
2 ker. /.

We call these the conjugation relators.

The second author gave hypotheses under which these generate ker. /:

Theorem 3.1 [29] Consider a group G acting without rotations on a 1–connected
simplicial complex X . Assume that X=G is 2–connected. Then the kernel of the map
 described above is normally generated by the edge and conjugation relators.

3.2 The complex of partial bases

We now introduce the simplicial complex to which we will apply Theorem 3.1.
For z 2 Fn , let ŒŒz�� denote the union of the conjugacy classes of z and z�1 .

Definition 3.2 A partial basis for Fn is a set fz1; : : : ; zkg � Fn such that there exist
zkC1; : : : ; zn 2Fn with fz1; : : : ; zng a free basis for Fn . The complex of partial bases
for Fn , denoted by Bn , is the simplicial complex whose .k�1/–simplices are sets
fŒŒz1��; : : : ; ŒŒzk��g, where fz1; : : : ; zkg is a partial basis for Fn .

The group Aut.Fn/ acts on Bn , and we wish to apply Theorem 3.1 to the restriction of
this action to IAn . It is clear that IAn acts on Bn without rotations, so we must check
that Bn is 1–connected and that Bn= IAn is 2–connected.

We start by verifying that Bn is 1–connected.

Proposition 3.3 The simplicial complex Bn is 1–connected for n� 3.

Proof For z 2Fn , let ŒŒz��0 be the conjugacy class of z . Define B0n to be the simplicial
complex whose .k�1/–simplices are sets fŒŒz1��0; : : : ; ŒŒzk��0g, where fz1; : : : ; zkg is
a partial basis for Fn . In [16], the authors proved that B0n is 1–connected for n� 3.
There is a natural simplicial map �W B0n! Bn . Letting  0W .Bn/.0/! .B0n/.0/ be an
arbitrary map satisfying � ı 0 D id, it is clear that  0 extends to a simplicial map
 W Bn ! B0n satisfying � ı D id. This implies that � induces a surjection on all
homotopy groups, so Bn is 1–connected for n� 3.

It also follows from [16] that Bn= IAn is .n�2/–connected. In particular, it is 2–
connected for n � 4, and thus satisfies the conditions of Theorem 3.1 for n � 4.
However, we will need a complex that satisfies the conditions of Theorem 3.1 for nD 3
as well. We therefore attach cells to increase the connectivity.
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Definition 3.4 The augmented complex of partial bases for Fn , denoted by yBn , is the
simplicial complex whose .k�1/–simplices are as follows:

� Sets of the form fŒŒz1��; : : : ; ŒŒzk��g, where fz1; : : : ; zkg is a partial basis for Fn .
These will be called the standard simplices.

� Sets of the form fŒŒz1z2��; ŒŒz1��; ŒŒz2��; : : : ; ŒŒzk�1��g, where fz1; : : : ; zk�1g is a
partial basis for Fn . These will be called the additive simplices.

Remark 3.5 Since z1z2 and z2z1 are conjugate, the two additive simplices

fŒŒz1z2��; ŒŒz1��; ŒŒz2��; : : : ; ŒŒzk�1��g and fŒŒz2z1��; ŒŒz1��; ŒŒz2��; : : : ; ŒŒzk�1��g

of yBn are the same.

The group Aut.Fn/ (and hence IAn ) still acts on yBn . Since yBn is obtained from Bn
by adding simplices of dimension at least 2, it inherits the 1–connectivity of Bn for
n� 3 asserted in Proposition 3.3.

Proposition 3.6 The complex yBn is 1–connected for n� 3.

To help us understand the connectivity of yBn= IAn , we introduce the following complex.
For Ev 2 Zn , let .Ev/˙ denote the set fEv;�Evg.

Definition 3.7 A partial basis for Zn is a set fEv1; : : : ; Evkg � Zn such that there
exist EvkC1; : : : ; Evn 2 Zn with fEv1; : : : ; Evng a basis for Zn . The augmented complex
of lax partial bases for Zn , denoted by yBn.Z/, is the simplicial complex whose
.k�1/–simplices are as follows:

� Sets of the form f.Ev1/˙; : : : ; .Evk/˙g, where fEv1; : : : ; Evkg is a partial basis for
Zn . These will be called the standard simplices.

� Sets of the form f.Ev1CEv2/˙; .Ev1/˙; .Ev2/˙; : : : ; .Evk�1/˙g, where fEv1; : : : ; Evk�1g
is a partial basis for Zn . These will be called the additive simplices.

We then have the following lemma:

Lemma 3.8 We have yBn= IAn Š yBn.Z/ for n� 1.

For the proof of Lemma 3.8, we will need the following result of the authors. For
z 2 Fn , let Œz� 2 Zn be the associated element of the abelianization of Fn .

Lemma 3.9 [16, Lemma 5.3] Let fEv1; : : : ; Evng be a basis for Zn and let fz1; : : : ; zkg
be a partial basis for Fn such that Œzi � D Evi for 1 � i � k . Then there exist
zkC1; : : : ; zn 2 Fn with Œzi � D Evi for k C 1 � i � n such that fz1; : : : ; zng is a
basis for Fn .
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Proof of Lemma 3.8 The map .yBn/.0/! .yBn.Z//.0/ that takes ŒŒz�� to Œz� extends to
a simplicial map �W yBn! yBn.Z/. Since IAn acts without rotations on yBn , the quotient
yBn= IAn has a natural CW–complex structure whose k–cells are the IAn–orbits of the
k–cells of yBn (warning: though it will turn out that in this case it is, this CW–complex
structure need not be a simplicial complex structure; consider, for example, the action
of Z by translations on the standard triangulation of R whose vertices are Z). Since
� is IAn–invariant, it factors through a map x�W yBn= IAn! yBn.Z/. We will prove that
x� is an isomorphism of CW–complexes.

This requires checking two things. The first is that every simplex of yBn.Z/ is in the
image of � , which is an immediate consequence of Lemma 3.9. The second is that if
� and � 0 are simplices of yBn such that �.�/D �.� 0/, then there exists some f 2 IAn
such that f .�/D � 0 . It is clear that � and � 0 are either both standard simplices or
both additive simplices. Assume first that they are both standard simplices. We can
then write

� D fŒŒz1��; : : : ; ŒŒzk��g and � 0 D fŒŒz01��; : : : ; ŒŒz
0
k��g

as in the definition of standard simplices, with Œzi �D Œz0i � for 1� i � k . Set Evi D Œzi �D
Œz0i � for 1� i � k . The set fEv1; : : : ; Evkg is a partial basis for Zn , so we can extend it
to a basis fEv1; : : : ; Evng. Applying Lemma 3.9 twice, we can find zkC1; : : : ; zn 2 Fn
and z0

kC1
; : : : ; z0n 2 Fn such that Œzi �D Œz0i �D Evi for kC1� i � n and such that both

fz1; : : : ; zng and fz01; : : : ; z
0
ng are free bases for Fn . There then exists f 2 Aut.Fn/

such that f .zi /D z0i for 1� i � n. By construction, we have f 2 IAn and f .�/D � 0 .

It remains to deal with the case where � and � 0 are both simplices of additive type.
Write

� D fŒŒz1z2��; ŒŒz1��; ŒŒz2��; : : : ; ŒŒzk�1��g and � 0 D fŒŒz01z
0
2��; ŒŒz

0
1��; : : : ; ŒŒz

0
k�1��g

as in the definition of additive simplices. The unordered sets˚
.Œz1�C Œz2�/˙; .Œz1�/˙; .Œz2�/˙

	
and

˚
.Œz01�C Œz

0
2�/˙; .Œz

0
1�/˙; .Œz

0
2�/˙

	
are minimal nonempty subsets of �.�/D �.� 0/ such that the defining elements of Zn

are not linearly independent. It follows that as unordered sets we have

�
�
fŒŒz1z2��; ŒŒz1��; ŒŒz2��g

�
D �

�
fŒŒz01z

0
2��; ŒŒz

0
1��; ŒŒz

0
2��g
�
;

�
�
fŒŒz3��; : : : ; ŒŒzk�1��g

�
D �

�
fŒŒz03��; : : : ; ŒŒz

0
k�1��g

�
:

Reordering the zi and possibly replacing some of the zi by z�1i (which does not
change ŒŒzi ��), we can assume that Œzi �D Œz0i � for 3� i � k� 1.
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The next observation is that all of the following sets define the same additive simplex
(but with the vertices in a different order; all six possible orderings occur):

fŒŒz1z2��; ŒŒz1��; ŒŒz2��g; fŒŒz2z1��; ŒŒz2��; ŒŒz1��g; fŒŒz1��; ŒŒz1z2��; ŒŒz
�1
2 ��g;

fŒŒz�11 ��; ŒŒz2��; ŒŒz
�1
2 z�11 ��g; fŒŒz2��; ŒŒz2z1��; ŒŒz

�1
1 ��g; fŒŒz�12 ��; ŒŒz1��; ŒŒz

�1
1 z�12 ��g:

By reordering � and possibly changing some of our expressions for the elements in it
again, we can assume that

.Œz1�C Œz2�/˙ D .Œz
0
1�C Œz

0
2�/˙; .Œz1�/˙ D .Œz

0
1�/˙; .Œz2�/˙ D .Œz

0
2�/˙

and that Œzi �D Œz0i � for 3� i � k� 1.

The final observation is that either

.Œz1�; Œz2�/D .Œz
0
1�; Œz

0
2�/ or .Œz1�; Œz2�/D .�Œz

0
1�;�Œz

0
2�/I

the key point here is that changing the sign of one of fŒz1�; Œz2�g but not the other
changes .Œz1�C Œz2�/˙ . If the second possibility occurs, then replace z1 and z2 with
z�11 and z�12 , respectively; this does not change � . The upshot is that we now have
arranged for Œzi � D Œz0i � for all 1 � i � k � 1. By the same argument we used to
deal with standard simplices, there exists some f 2 IAn such that f .zi / D z0i for
1� i � k� 1. Since f .z1z2/D z01z

0
2 , we see that f .�/D � 0 , as desired.

The second author together with Church proved in [13] that yBn.Z/ is .n�1/–connected
for n� 1. We therefore deduce the following:

Proposition 3.10 The complex yBn= IAn is .n�1/–connected for n� 1.

3.3 Generators for simplex stabilizers

This section is devoted to the following proposition, which gives generators for the
stabilizers in IAn of simplices of Bn . Recall that SMA.n/ is Magnus’s generating set
for IAn discussed in the introduction.

Proposition 3.11 Fix 1 � k � n and define � D .IAn/ŒŒxn�kC1��;ŒŒxn�kC2��;:::;ŒŒxn�� .
Then � is generated by

SMA.n/\� D fCxa; xb j 1� a; b � n distinctg

[ fMxa; Œxb;xc� j 1� a � n� k; 1� b; c � n distinctg:

Proof The map Fn!Fn�k that quotients by the normal closure of fxn�kC1; : : : ; xng
induces a split surjection �W � ! IAn�k . Define Kn�k;k D ker.�/, so we have
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� DKn�k;k Ì IAn�k . As we said in the introduction, Magnus [26] proved that IAn�k
is generated by

(4) fCxa; xb j 1� a; b � n�k distinctg[fMxa; Œxb;xc� j 1� a; b; c � n�k distinctg:

The authors proved in [17, Theorem A] that Kn�k;k is generated by

(5) fCxa; xb j n� kC 1� a � n; 1� b � n distinctg

[ fCxa; xb j 1� a � n; n� kC 1� b � n distinctg

[ fMxa; Œxb;xc� j 1� a � n� k; n� k� 1� b � n; 1� c � n distinctg:

The union of (4) and (5) is the claimed generating set for � .

Remark 3.12 For z 2 Fn , define ŒŒz��0 to be the conjugacy class of z . In [17] we deal
with .IAn/ŒŒxn�kC1��0; ŒŒxn�kC2��0; ::: ; ŒŒxn��0 instead of .IAn/ŒŒxn�kC1��; ŒŒxn�kC2��; ::: ; ŒŒxn�� ;
however, since xi and x�1i have different images in F ab

n , these two stabilizer subgroups
are actually equal. There are also notational differences: the group denoted by Kn�k;k
here is denoted by KIA

n�k;k
in that paper.

3.4 The action of Aut.Fn/

Let Qn be the group with the L–presentation hSIA.n/ jR
0
IA.n/ jEIA.n/i discussed in

Section 2. By Propositions 2.1 and 2.3, there is a map � W Qn ! IAn . The group
Aut.Fn/ acts on IAn by conjugation. The goal of this section is to state Proposition 3.13
below, which asserts that this action can be lifted to Qn .

To state some important properties of this lifted action, we must introduce some notation.
First, let SAut.n/� Aut.Fn/ be the generating set discussed in Section 2. Recall that
EIA.n/�End.F.SIA.n/// is the image of a map � W SAut.n/!End.F.SIA.n///. There
is thus a map eW SAut.n/!End.Qn/ whose image is the set of induced endomorphisms
of our L–presentation. It will turn out that the image of e consists of automorphisms,
and these automorphisms generate the action of Aut.Fn/ on Qn .

Second, recall that fx1; : : : ; xng is a fixed free basis for Fn . Let

.SIA.n//ŒŒxn�� D fCxa; xb j 1� a; b � n distinctg

[ fM
x˛a ; Œx

ˇ

b
;x

c �
j 1� a; b; c � n distinct; ˛; ˇ;  2 f˙1g; a¤ ng:

This is exactly the subset of SIA.n/� IAn consisting of automorphisms that fix ŒŒxn��;
Proposition 3.11 (with kD1) implies that it generates the stabilizer subgroup .IAn/ŒŒxn�� .
Define .Qn/ŒŒxn�� be the subgroup of Qn generated by .SIA.n//ŒŒxn�� . We will then
require the stabilizer subgroup .Aut.Fn//ŒŒx�� to preserve the subgroup .Qn/ŒŒxn�� .

Our proposition is as follows:
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Proposition 3.13 For all n� 2, there is an action of Aut.Fn/ on Qn that satisfies the
following three properties:

(1) The action comes from the induced endomorphisms in the sense that, for
s 2 SIA.n/� Aut.Fn/ and q 2Qn , we have s � q D e.s/ � q .

(2) The restriction of the action to IAn induces the conjugation action of Qn on
itself in the sense that, for q; r 2Qn , we have �.r/ � q D rqr�1 .

(3) For � 2 .Aut.Fn//ŒŒxn�� and q 2 .Qn/ŒŒxn�� , we have � � q 2 .Qn/ŒŒxn�� .

The proof of Proposition 3.13 is a computation with generators and relations (mostly
done by computer), so we have postponed it until Section 5.

3.5 A homomorphism between L–presentations

There is a natural split surjection �W .IAn/ŒŒxn�� ! IAn�1 arising from the quotient
map Fn ! Fn�1 whoe kernel is the normal closure of xn . Let Kn�1;1 D ker.�/;
so we have a decomposition .IAn/ŒŒxn�� D Kn�1;1 Ì IAn�1 . Building on the Birman
exact sequence for Aut.Fn/ we constructed in [15], we constructed an L–presentation
for Kn�1;1 in [17, Theorem D] (Kn�1;1 is denoted by KIA

n�1;1 in that paper). This
L–presentation plays a crucial role in the inductive step of our proof, because it allows
us to obtain the following proposition:

Proposition 3.14 There is a homomorphism Kn�1;1 ! hSIA.n/ jR
0
IA.n/ jEIA.n/i

fitting into the following commuting triangle:

Kn�1;1 //
v�

))

hSIA.n/ jR
0
IA.n/ jEIA.n/i

����

IAn

Usually finding a homomorphism between groups given by presentations is simple:
one checks that the relations map to products of conjugates of relations. This is the
spirit of the proof of Proposition 3.14, but the substitution rules and extended relations
complicate the picture. Our proof of Proposition 3.14 is computer-assisted and is
postponed until Section 5.

4 Verification of our L–presentation

In this section, we prove Theorem E, which says that IAn has the finite L–presentation
hSIA.n/ jR

0
IA.n/ jEIA.n/i discussed in Section 2. Our proof is inspired by the proof

of the main theorem of [9]. We will make use of Propositions 2.1, 2.3, 3.13 and 3.14,
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which were all stated in previous sections and which will be proved (with the aid of a
computer) in Section 5.

Proof of Theorem E Let Qn be the group given by hSIA.n/ jR
0
IA.n/ jEIA.n/i. Ele-

ments of SIA.n/ play dual roles as elements of Qn and as elements of IAn , and during
our proof it will be important to distinguish them. Therefore, throughout this proof
elements Cxa; xb and Mx˛a ; Œx

ˇ

b
;x

c � will always lie in IAn ; the associated elements of

Qn will be denoted by Cxa; xb and M
x˛a ; Œx

ˇ

b
;x

c �

.

There is a natural projection map � W Qn! IAn . We will prove that � is an isomorphism
by induction on n. The base cases are nD 1 and nD 2. For nD 1, both IAn and
Qn are the trivial group, so there is nothing to prove. For n D 2, it is a classical
theorem of Nielsen [27] (see also [25, Proposition 4.5]) that IA2 is the group of inner
automorphisms of F2 , so IA2 is a free group on the generators Cx1; x2 and Cx2; x1 .
Our generating set for Q2 is fCx1; x2 ;Cx2; x1g, and for nD 2 the set of basic relations
R0IA.2/ is empty. Even though our set of substitution rules EIA.2/ is nonempty, it
follows that our full set of relations for Q2 is empty. So our presentation for Q2 is
hCx1; x2 ;Cx2; x1 j∅i, and the result is also true in this case.

Assume now that n� 3 and that the projection map Qn0! IAn0 is an isomorphism for
all 1� n0 < n. Since � is a surjection, to prove that � is an isomorphism it is enough
to construct a homomorphism �W IAn! Qn such that � ı� D id. Propositions 3.6
and 3.10 show that the action of IAn on yBn satisfies the conditions of Theorem 3.1, so

IAn Š
�
�

ŒŒz��2.yBn/.0/
.IAn/ŒŒz��

�
=R;

where R is the normal closure of the edge and conjugation relators. The construction
of � will have two steps. First, we will use the action of Aut.Fn/ on Qn provided by
Proposition 3.13 to construct a map

z�W �
ŒŒz��2.yBn/.0/

.IAn/ŒŒz��!Qn:

Second, we will show that z� takes the edge and conjugation relators to 1, and thus
induces a map �W IAn!Qn . We will close by verifying that � ı� D id.

Construction of z� To construct z� , we must construct a map

z�ŒŒz��W .IAn/ŒŒz��!Qn

for each vertex ŒŒz�� of yBn . Recalling that fx1; : : : ; xng is our fixed free basis for Fn ,
we begin with the vertex ŒŒxn��. In the following claim, we will use the notation
.SIA.n//ŒŒxn�� and .Qn/ŒŒxn�� introduced in Section 3.4.

Claim 1 The restriction of � to .Qn/ŒŒxn�� is an isomorphism onto .IAn/ŒŒxn�� .
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Proof Proposition 3.11 implies that natural map �j.Qn/ŒŒxn�� W .Qn/ŒŒxn��! .IAn/ŒŒxn��
is surjective, since the generators from that proposition (with k D 1) are in the image.

Our inductive hypothesis says that the map �jQn�1 W Qn�1! IAn�1 is an isomorphism.
Recall from Section 3.5 that .IAn/ŒŒxn�� D Kn�1;1 Ì IAn�1 , where the projection
.IAn/ŒŒxn��! IAn�1 is the one induced by the map Fn! Fn�1 that quotients out by
the normal closure of xn , and Kn�1;1 is the kernel of this projection. The composition

.Qn/ŒŒxn��! .IAn/ŒŒxn��! IAn�1
Š

�j�1Qn�1
���!Qn�1

is a well-defined homomorphism. It is a composition of surjective maps, and is therefore
surjective. We define Kn�1;1 to be the kernel of this composition of maps.

The restriction of � to Kn�1;1 has image in Kn�1;1 since the map .Qn/ŒŒxn��!Qn�1
factors through .IAn/ŒŒxn��! IAn�1 . Proposition 3.11 says that Kn�1;1 is generated
by the set

SK.n/ WD fCxn; xa ; Cxa; xn j 1� a < bg

[ fM
x˛a ; Œx

ˇ

b
;x

n �
;M

x˛a ; Œx

n ;x

ˇ

b
�
j 1� a; b < n distinct; ˛; ˇ;  2 f˙1gg:

Since these generators are contained in Kn�1;1 , the map Kn�1;1!Kn�1;1 is surjective.
Further, Proposition 3.14 gives us a left inverse to �jKn�1;1 . We conclude that �jKn�1;1
is an isomorphism Kn�1;1 Š Kn�1;1 . We note that existence of this isomorphism is
a deceptively difficult part of the proof, and it is the main consequence that we draw
from [17].

Summing up, we have a commutative diagram of short exact sequences as follows:

1 // Kn�1;1 //

Š

��

.Qn/ŒŒxn�� //

��

Qn�1 //

Š

��

1

1 // Kn�1;1 // .IAn/ŒŒxn�� // IAn�1 // 1

The five lemma therefore says that the projection map .Qn/ŒŒxn��! .IAn/ŒŒxn�� is an
isomorphism, as desired.

Claim 1 implies that we can define a map z�ŒŒxn��W .IAn/ŒŒxn��! Qn via the formula
z�ŒŒxn�� D .�j.Qn/ŒŒxn��/

�1 .

Now consider a general vertex ŒŒz�� of yBn . Here we will use the action of Aut.Fn/ on
Qn provided by Proposition 3.13. The group Aut.Fn/ acts transitively on the set of
primitive elements of Fn , so there exists some � 2 Aut.Fn/ such that �.xn/D z . We
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then define a map z�ŒŒz��W .IAn/ŒŒz��!Qn via the formula

z�ŒŒz��.�/D � � z�ŒŒxn��.�
�1��/ .� 2 .IAn/ŒŒz��/:

This appears to depend on the choice of � , but the following claim says that this choice
does not matter.

Claim 2 The map z�ŒŒz��.�/ does not depend on the choice of � .

Proof Assume that �1; �2 2 Aut.Fn/ both satisfy �i .xn/ D z , and consider some
� 2 .IAn/ŒŒz�� . Our goal is to prove that

(6) �1 � z�ŒŒxn��.�
�1
1 ��1/D �2 � z�ŒŒxn��.�

�1
2 ��2/:

Define �D ��11 �2 and ! D ��12 ��2 , so � 2 .Aut.Fn//ŒŒxn�� and ! 2 .IAn/ŒŒxn�� . We
will first prove that

(7) z�ŒŒxn��.�!�
�1/D � � z�ŒŒxn��.!/:

To see this, observe first that by construction both z�ŒŒxn��.�!�
�1/ and z�ŒŒxn��.!/ lie

in .Qn/ŒŒxn�� . The third part of Proposition 3.13 implies that � � z�ŒŒxn��.!/ also lies
in .Qn/ŒŒxn�� . Claim 1 says that �j.Qn/ŒŒxn�� is injective, so to prove (7), it is thus enough
to prove that z�ŒŒxn��.�!�

�1/ and � � z�ŒŒxn��.!/ have the same image under � . This
follows from the calculation

�.z�ŒŒxn��.�!�
�1//D �!��1 D ��.z�ŒŒxn��.!//�

�1
D �.� � z�ŒŒxn��.!//;

where the first two equalities follow from the fact that � ı z�ŒŒxn�� D id and the third
follows from the first conclusion of Proposition 3.13.

We now verify (6) as follows:

�1 � z�ŒŒxn��.�
�1
1 ��1/D �1 � z�ŒŒxn��.�!�

�1/D �1� � z�ŒŒxn��.!/D �2 � z�ŒŒxn��.�
�1
2 ��2/:

This completes the construction of z� .

Some naturality properties Before we study the edge and conjugation relators, we
first need to verify the following two naturality properties of z� . Starting now we will
use the notation which was introduced in Section 2: for a vertex ŒŒz�� of yBn and �2 IAn
satisfying �.ŒŒz��/D ŒŒz��, we will denote �, considered as an element of

.IAn/ŒŒz�� < �
ŒŒz��2.yBn/.0/

.IAn/ŒŒz��;

by �ŒŒz�� .

Claim 3 The following two identities hold:
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� Let 1� a; b� n be distinct and 1� i � n be arbitrary. Then z�..Cxa; xb /ŒŒxi ��/D
Cxa; xb .

� Let 1� a; b; c � n be distinct, let ˛; ˇ;  2 f˙1g be arbitrary, and let 1� i � n
be such that i ¤ a . Then z�..M

x˛a ; Œx
ˇ

b
;x

c �
/ŒŒxi ��/DM

x˛a ; Œx
ˇ

b
;x

c �

.

Proof The proofs of the two identities are similar; we will deal with the first and leave
the second to the reader. It is clear from the construction that z�..Cxa; xb /ŒŒxn��/DCxa; xb .
For 1� i < n, we have Pi;n.xn/D xi , and thus by definition we have

z�..Cxa; xb /ŒŒxi ��/D Pi;n � z�ŒŒxn��.P
�1
i;n Cxa; xbPi;n/D Pi;n � z�ŒŒxn��.CP�1

i;n
.xa/;P

�1
i;n
.xb/

/

D Pi;n �CP�1
i;n
.xa/;P

�1
i;n
.xb/
D Cxa; xb I

here the last equality follows from the first part of Proposition 3.13 and the definition
of the endomorphisms in Section 2.

Claim 4 Let ŒŒz�� be a vertex of yBn . Then for � 2 .IAn/ŒŒz�� we have �.z�ŒŒz��.�//D �.

Proof Pick � 2 Aut.Fn/ such that �.xn/D z . Then

�.z�ŒŒz��.�//D �.� � z�ŒŒxn��.�
�1��//D ��.z�ŒŒxn��.�

�1��//��1 D ���1����1 D �I

here the second equality uses the first part of Proposition 3.13.

The edge and conjugation relators We now check that z� takes the edge and conju-
gation relators to 1.

Claim 5 (edge relators) If e is an edge of yBn with endpoints ŒŒz�� and ŒŒz0�� and
� 2 .IAn/e , then z�.�ŒŒz����1ŒŒz0��/D 1.

Proof We first consider the special case where zDxn and z0Dxn�1 . Proposition 3.11,
with k D 2, states that .IAn/ŒŒxn�1��;ŒŒxn�� is generated by

(8) fCxa; xb j 1� a; b � n distinctg

[ fMxa; Œxb;xc� j 1� a; b; c � n distinct; a¤ n� 1; ng:

Claim 3 implies that for all elements ! in (8), we have z�.!ŒŒxn�1��/D z�.!ŒŒxn��/. It
follows that for all � 2 .IAn/ŒŒxn�1��;ŒŒxn�� we have z�.�ŒŒxn�1��/D z�.�ŒŒxn��/, as desired.

We now turn to general edges e with endpoints ŒŒz�� and ŒŒz0�� and � 2 .IAn/e .
There exists some � 2 Aut.Fn/ such that �.xn/ D z and �.xn�1/ D z0 , and hence
�Pn�1;n.xn/D z

0 . Setting �0 D ��1�� 2 .IAn/ŒŒxn�1��;ŒŒxn�� , we have

z�.�ŒŒz��/D � � z�ŒŒxn��.�
�1��/D � � z�ŒŒxn��.�

0/;

z�.�ŒŒz0��/D �Pn�1;n z�ŒŒxn��.P
�1
n�1;n�

�1��Pn�1;n/D � � z�ŒŒxn�1��.�
0/:
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By the previous paragraph, we have z�ŒŒxn��.�
0/ D z�ŒŒxn�1��.�

0/, so we conclude that
z�.�ŒŒz��/D z�.�ŒŒz0��/, as desired.

Claim 6 (conjugation relators) If ŒŒz�� and ŒŒz0�� are vertices of yBn and � 2 .IAn/ŒŒz��
and ! 2 .IAn/ŒŒz0�� , then z�.!ŒŒz0���ŒŒz��!�1ŒŒz0��.!�!

�1/ŒŒ!.z/��/D 1.

Proof Choose � 2 Aut.Fn/ such that �.xn/D z . We then have

z�.!ŒŒz0���ŒŒz��!
�1
ŒŒz0��/D

z�ŒŒz0��.!/z�ŒŒz��.�/z�ŒŒz0��.!/
�1
D �.z�ŒŒz0��.!// � z�ŒŒz��.�/

D ! � z�ŒŒz��.�/D !� � z�ŒŒxn��.�
�1��/

D !� � z�ŒŒxn��..!�/
�1!�!�1.!�//D z�..!�!�1/ŒŒ!.z/��/;

as desired. The second equality follows from the third part of Proposition 3.13, the third
equality follows from Claim 4, and the remainder of the equalities are straightforward
applications of the definitions.

Claims 5 and 6 imply that z� descends to a homomorphism �W IAn!Qn .

We have an inverse To complete the proof, it remains to prove the following:

Claim 7 We have � ı� D id.

Proof Claim 3 implies that this holds for the generators of Qn .

This completes the proof of Theorem E.

5 Computations for the L–presentation

This section contains the postponed proofs of Propositions 2.1, 2.3, 3.13 and 3.14.
These proofs are done with the aid of a computer. We will discuss our computational
framework in Section 5.1 and then prove the propositions in Sections 5.2–5.4.

We will use the following notation throughout the rest of the paper. Let SAut.n/
�

denote the free monoid on the set SAut.n/. In Section 2, we defined a function
� W SAut.n/! End.F.SIA.n///. This naturally extends to a function

� W SAut.n/
�
! End.F.SIA.n///:

5.1 Computational framework

As we discussed in the introduction, we use the GAP system to mechanically verify the
large number of equations we have to check. These verifications are in the file h2ia.g,
available as an online supplement.
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We use GAP’s built-in functionality to model Fn as a free group on the eight generators
xa, xb, xc, xd, xe, xf, xg and y. Since our computations never involve more than 8
variables, computations in this group suffice to show that our computations hold in
general.

Elements of the sets SAut.n/ and SIA.n/ are parametrized over basis elements from
Fn and their inverses, so we model these sets using lists. For example, we model the
generator Mxa; xb as the list ["M",xa,xb], Cy; xa as ["C",y,xa], and Mx�1a ; Œy;xc�

as ["Mc",xa^-1,y,xc]. We model Pa;b as ["P",xa,xb] and Ia as ["I",xa]. The
examples should make clear: the first entry in the list is a string key "M", "C", "Mc",
"P" or "I", indicating whether the list represents a transvection, conjugation move,
commutator transvection, swap or inversion. The parameters given as subscripts in the
generator are then the remaining elements of the list, in the same order.

GAP’s built-in free group functionality expects the basis elements to be variables,
not lists, so we do not use it to model SAut.n/

� and F.SIA.n//. We model inverses
of generators as follows: the inverse of ["M",xa,xb] is ["M",xa,xb^-1] and the
inverse of ["C",xa,xb] is ["C",xa,xb^-1], but the inverse of ["Mc",xa,xb,xc]
is ["Mc",xa,xc,xb]. Swaps and inversions are their own inverses. Technically, this
means that we are not really modeling SAut.n/

� and F.SIA.n//; instead we model
structures where the order relations for swaps and inversions and the relation (R0) for
inverting commutator transvections are built in. This is not a problem because our
verifications always show that certain formulas are trivial modulo our relations, and we
can always apply the (R0) and order relations as needed.

We model words in SAut.n/
� and F.SIA.n// as lists of generators and inverse genera-

tors. The empty word [] represents the trivial element. We wrote several functions in
h2ia.g that perform common tasks on words. The function pw takes any number of
words (reduced or not) as arguments and returns the freely reduced product of those
words in the given order, as a single word. The function iw inverts its input word and
the function cyw cyclically permutes its input word.

The function iarel outputs the relations R0IA.n/. We introduce some extra relations
for convenience. The function exiarel outputs these extra relations and the code
generating the list exiarelchecklist derives the extra relations from the basic
relations. The function theta takes in a word w in SAut.n/ and a word v in SIA.n/,
and returns �.w/.v/. In addition to the functions described here, we often define
simple macros for carrying out the verifications.

The function applyrels is particularly useful, because it inserts multiple relations
into a word. It takes two inputs: a starting word and a list of words with placement
indicators. The function recursively inserts the first word from the list in the starting
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word at the given position, reduces the word, and then calls itself with the new word as
the starting word and with the same list of insertions, with the first dropped.

For example, the following command appears in the justification of Proposition 3.13:

applyrels(
pw(

theta([["M",xa,xb],["M",xa,xb^-1]], [["Mc",xb,xa,xe]]),
[["Mc",xb,xe,xa]]

),
[

[6,iarel(5,[xa,xb,xe])],
[6,iw(exiarel(1,[xb^-1,xe,xa]))],
[2,iw(iarel(4,[xe,xa,xb]))],
[2,iarel(6,[xb^-1,xe^-1,xa])],
[2,iw(iarel(5,[xb,xe,xa]))]

]
)

This tells the GAP system to compute the effect of �.Mxa; xbM
�1
xa; xb

/ on Mxb; Œxa;xe� .
Then it multiplies this by Mxb; Œxe;xa� , the inverse of Mxb; Œxa;xe� . It then freely reduces
this word. The system inserts a version of (R5) after the sixth letter in this word, and
reduces the result to a new word. Then it inserts the inverse of one of the extra relations
after the sixth letter in the new word and reduces it. It continues with inserting relations
and reducing the resulting expressions, inserting instances of (R4), (R5) and (R6).
Since the entire expression evaluates to [], we have expressed

�.Mxa; xbM
�1
xa; xb

/.Mxb; Œxa;xe�/ �Mxb; Œxe;xa�

as a product of relations in Qn . In any example like this, an interested reader can
reproduce our reduction process by removing all the list entries from the second input
of the applyrels call, and then adding them back in one at a time, evaluating after
each one.

5.2 Verifying the map to IAn

First we prove Proposition 2.1, which states that our relations R0IA.n/ hold in IAn .

Proof of Proposition 2.1 The code generating the list verifyiarel generates exam-
ples of all the relations in R0IA.n/, with all allowable configurations of coincidences
between the subscripts on the generators. It converts each of these relations into
automorphisms of Fn and evaluates them on a basis for Fn , returning true if all basis
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elements are unchanged. We evaluate on a fixed finite-rank free group, but since the
basic relations involve at most six generators, those evaluations suffice to show the
result in general. Since verifyiarel evaluates to a list of true, this means that all
these relations are true.

Next we prove Proposition 2.3, which states that � acts by conjugation when evaluated
on generators (see (3)).

Proof of Proposition 2.3 The code generating the list thetavsconjaut goes through
all possible configurations for a pair of generators s from SAut.n/ and t from SIA.n/,
evaluates �.s/.t/ as a product of generators, and then evaluates both �.s/.t/ and sts�1

on a basis for Fn . It returns true when both have the same effect on all basis elements.
Since thetavsconjaut evaluates to a list of true, the proposition holds.

5.3 Verifying Proposition 3.13

Proof of Proposition 3.13 The action of Aut.Fn/ on Qn is given by our substitution
rule endomorphism map

� W SAut.n/! End.F.SIA.n///:

First of all, it is clear that for each s 2 SAut.n/, the element �.s/ defines an endomor-
phism of Qn . This is because the subgroup of F.SIA.n// normally generated by the
relations of Qn is invariant under �.s/ by the definition of Qn .

Next, we verify that �.s/ is an automorphism of Qn . If s is a swap or an inversion,
then it is clear from the definition of � that this is the case. In the code generating the
list thetainverselist, we compute �.s/.�.s�1/.t//t�1 for sDMxa; xb and for all
possible configurations of t relative to s . In each case, we reduce it to the trivial word
using relations for Qn . It is not hard to deduce that �.s/.�.s�1/.t// D t in Qn for
the remaining choices of s DM�1xa; xb , Mx�1a ; xb

and M�1
x�1a ; xb

, using the fact that it is
true for s DMxa; xb .

So this shows that � defines an action

F.SAut.n//! Aut.Qn/:

Now we need to verify that this action descends to an action of Aut.Fn/. To show this,
it is enough to show that for every relation r in a presentation for Aut.Fn/, we have

(9) �.r/.t/D t in Qn ;

for t taken from a generating set for Qn . To check this, we use the same version of
Nielsen’s presentation for Aut.Fn/ that we used in [17, Theorem 5.5]. The generators
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are the same set SAut.n/ we use here, and the relations fall into five classes (N1)–(N5).
Relations (N1) are sufficient for the subgroup generated by swaps and inversions, and
(N2) are relations indicating how to conjugate transvections by swaps and inversions.
It is an exercise to see that (9) holds for relations of class (N1) and (N2). Relations
(N3)–(N5) are more complicated relations. For each of these, we compute �.r/.t/t�1

on generators t (for t with enough configurations of subscripts to include a generating
set) and reduce the resulting expressions to 1 using relations from Qn . These com-
putations are given in the code generating the lists thetaN3list, thetaN4list and
thetaN5list. Since these evaluate to lists of the trivial word, this verifies (9). We
have shown that the action of an element of Aut.Fn/ on Qn does not depend on the
word in F.SAut.n// we use to represent it.

Since we have shown that � defines an action, now we can check the three properties
asserted in Proposition 3.13. We have already verified the first point (we took the
definition of the action to agree with it). To verify the second point, we need to check
that for w; s 2 SIA.n/, there is zw 2 F.SAut.n// representing w with

(10) �. zw/.s/D wsw�1 in Qn:

In fact, it is enough to verify this for w and s in a smaller generating set, and
the generating set that s is taken from may depend on w . In the code generating
thetaconjrellist, for each choice of w from SMA.n/, we lift w to zw2F.SAut.n//,
and for several configurations of subscripts in the generator s , we reduce the element
�. zw/.s/ws�1w�1 to the identity using relations from Qn . We use enough configu-
rations of subscripts in s to cover all cases for s in a generating set (a conjugate of
SMA.n/).

To check the third point, we use the generating set .SAut.n//ŒŒxn�� for .Aut.Fn//ŒŒxn��
mentioned in the proof of Proposition 3.11 above, namely

fMx˛a ; xb j 1� a � n� 1; 1� b � n; ˛ D˙1; a¤ bg

[ fPa;b j 1� a; b � n; a¤ b; a¤ ng

[ fIa j 1� a � ng[ fCxn; xa j 1� a � n� 1g:

We need to check that for each of these generators, there is w2F.SAut.n// representing
it with �.w/.s/ in .Qn/ŒŒxn�� (really, that �.w/.s/ is equal in Qn to an element of
.Qn/ŒŒxn�� ). This is clear from the definition of � for w a swap or inversion. It can
be verified for w DMx˛a ; xb by inspecting Table 3. For w representing Cxn; xa , the
fact that �.w/.s/ 2 .Qn/ŒŒxn�� follows from the second point in this proposition, since
Cxn; xa 2 IAn .
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5.4 Verifying Proposition 3.14

Here we prove Proposition 3.14. We recall the statement: Kn�1;1 is the kernel of
the natural map .IAn/ŒŒxn�� ! IAn�1 , and the proposition asserts that the inclusion
Kn�1;1 ,! IAn factors as the composition of a map Kn�1;1!Qn with the projection
Qn! IAn .

The proof uses the finite L–presentation for Kn�1;1 from [17]. We note that [17,
Theorem D] asserts the existence of such a presentation, and [17, Theorem 6.2] gives
the precise statement that we use in the computations. Since this L–presentation is in
fact a presentation for Kn�1;1 , we use the same notation for Kn�1;1 as a subset of IAn
and Kn�1;1 as the group given by this presentation.

We do not reproduce the L–presentation here, but instead we describe some of its
features. Its finite generating set is

SK.n/D fMx˛a ; Œx
�
n;x

ˇ

b
�
j 1� a; b � n� 1; a¤ b; ˛; ˇ; � 2 f1;�1gg

[ fCxn; xa j 1� a � n� 1g[ fCxa; xn j 1� a � n� 1g:

The substitution endomorphisms of the L–presentation for Kn�1;1 are indexed by a
finite generating set .SAut.n//ŒŒxn�� for .Aut.Fn//ŒŒxn�� . The endomorphisms themselves
are the image of a map

�W .SAut.n//ŒŒxn��! End.F.SK.n///:

Proof of Proposition 3.14 Since SK.n/ is a subset of SIA.n/, we map Kn�1;1 to
Qn by sending each generator to the generator of the same name. To verify that this
map on generators extends to a well-defined map of groups, we need to check that
each defining relation from Kn�1;1 maps to the trivial element of Qn . Since Kn�1;1
is given by a L–presentation, we proceed as follows:

(1) We check that each of the basic relations from Kn�1;1 maps to the trivial element
of Qn .

(2) We check that for s 2 .SAut.n//ŒŒxn�� and t 2 SK.n/, we have

�.s/.t/D �.s/.t/ in Qn;

where we use .SAut.n//ŒŒxn�� � SAut.n/ to plug s into � , and we interpret both
expressions in Qn using F.SK.n//� F.SIA.n//.

The first point is verified in the code generating the list kfromialist. The function
krel produces the basic relations from Kn�1;1 , and we reduce each relation to the
identity by applying relations from Qn . The second point is verified in the code
generating the list thetavsphlist. For each choice of pairs of generators, we reduce
the difference of � and � using relations from Qn .
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With these two points verified, one can easily check by induction that every extended
relation (starting with a basic relation, and applying any sequence of rewriting rules)
maps to the identity element in Qn .

6 Generators for H2.IAn/

In this section, we prove Theorem A, which asserts that there exists a finite subset
of H2.IAn/ whose GLn.Z/–orbit spans H2.IAn/. In fact, we gave an explicit list of
generators in Table 1; each generator is of the form hr for a commutator relation r . This
list is reproduced in Table 4, which also introduces the notation hi . � / 2 H2.IAn/ for
the associated elements of homology (this notation will be used during the calculations
in Section 7, though we will not use it in this section). The following theorem asserts
that this list is complete; it is a more precise form of Theorem A and will be the main
result of this section.

Theorem 6.1 Fix n � 2. Let SH .n/ be the set of commutator relators in Table 4.
Then the GLn.Z/–orbit of the set fhr j r 2 SH .n/g spans H2.IAn/.

Before proving Theorem 6.1, we will use it to derive Theorem B.

Proof of Theorem B Recall that this theorem asserts that for n� 6, the GLnC1.Z/–
orbit of the image of the natural map H2.IAn/! H2.IAnC1/ spans H2.IAnC1/. Let
SnC1 �GLnC1.Z/ be the subgroup consisting of permutation matrices. By inspecting
Table 4, it is clear that the SnC1–orbit of the image of fhr j r 2 SH .n/g �H2.IAn/ in
H2.IAnC1/ is fhr j r 2SH .nC1/g. This uses the fact that n� 6, since the commutator
relations in SH .n/ use generators involving at most six basis elements.

We now turn to the proof of Theorem 6.1. We start by introducing some notation. Let
F D F.SIA.n// and let R� F denote the full set of relations of IAn , so IAn D F=R .
Define CH2.IAn/ DR=ŒF;R�, and for r 2R denote by krk the associated element of
CH2.IAn/ . There is a natural map CH2.IAn/! F ab , and the starting point for our proof
is the following lemma. In it, recall from the beginning of Section 5 that SAut.n/

� is
the free monoid on the set SAut.n/.

Lemma 6.2 The group CH2.IAn/ is an abelian group which is generated by

fk�.w/.r/k j w 2 SAut.n/
� and r is one of the relations (R0)–(R9) from Table 2g:

Also, we have H2.IAn/D ker.CH2.IAn/! F ab/.

Proof The group CH2.IAn/ is abelian since ŒR;R�� ŒF;R�. For v 2 F and r 2 R ,
we have Œv; r� 2 ŒF;R�, so kvrv�1kD krk. The indicated generating set for CH2.IAn/
thus follows from Theorem E. As for the final statement of the lemma, we follow one
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of the standard proofs of Hopf’s formula [10]. The 5–term exact sequence in group
homology associated to the short exact sequence

0!R! F ! IAn! 0

is
H2.F /! H2.IAn/!R=ŒF;R�! H1.F /! H1.IAn/! 0:

Since F is free, we have H2.F /D 0, and the claim follows.

Our goal will be to take an element of CH2.IAn/ that happens to lie in H2.IAn/ and
rewrite it as a sum of elements of the form

(11) fk�.w/.r/k jw2SAut.n/
� and r is one of the relations (H1)–(H9) of Table 4g:

The relations (H1)–(H4) are the same as (R1)–(R4), and the relations (H5)–(H7) are the
same as (R6)–(R9). The troublesome relations are (R0), (R5) and (R6), none of which
lie in H2.IAn/. For r 2R , we have krk 2H2.IAn/ if and only if the exponent-sum of
each generator in SIA.n/ appearing in it is 0. For our problematic relations (R0), (R5)
and (R6), the exponent-sum of all the conjugations moves is already 0, so we will only
need to study the exponent-sums of the commutator transvections.

We begin with the following lemma, which will allow us to mostly ignore our rewriting
rules �. � /.

Lemma 6.3 Consider w 2 SAut.n/
� , and let r be a relation of the form (R0), (R5)

or (R6). Then k�.w/.r/k D hC h0 , where h and h0 are as follows:

� h 2 H2.IAn/ is a sum of elements from (11).

� h0 is a sum of elements of the form

fkrk j r is one of the relations (R0), (R5) and (R6) from Table 2g:

Proof We can use induction to reduce to the case where w D s 2 SAut.n/. The
proof now is a combinatorial group-theoretic calculation: we will show how to rewrite
�.s/.r/ as a product of relations of the desired form.

We start by dealing with the case where r is of the form (R0). Observe that

�.s/.M
x˛a ; Œx

ˇ

b
;x

c �
/ and �.s/.M

x˛a ; Œx

c ;x

ˇ

b
�
/�1

agree up to (R0), except in two cases. These are

�.M
ˇ

x˛a ; xb
/.M

x
�ˇ

b
; Œx


c ;x

ı
d
�
/DMx˛a ; Œx


c ;x

ı
d
�Mx

�ˇ

b
; Œx


c ;x

ı
d
�

�.M
ˇ

x˛a ; xb
/.M

x
ˇ

b
; Œx


c ;x

ı
d
�
/D C ˇxa; xbMx�˛a ; Œx


c ;x

ı
d
�Mx

ˇ

b
; Œx


c ;x

ı
d
�
C�ˇxa; xb :
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(H1) ŒC
ˇ
xa; xb ; C

ı
xc ; xd

�D 1; possibly with b D d .

(H2) ŒMx˛a ; Œx
ˇ

b
;x

c �;Mxı

d
; Œx�e ;x

�

f
��D1; possibly with fb; cg\fe; f g¤¿ or x˛a Dx

�ı
d

as long as x˛a ¤ xıd , a … fe; f g and d … fb; cg.

(H3) ŒC
ˇ
xa; xb ;Mx


c ; Œx

ı
d
;x�e ��D 1,

possibly with b 2 fd; eg if c … fa; bg and a … fc; d; eg.

(H4) ŒC
ˇ
xc ; xbC

ˇ
xa; xb ; C

˛
xc ; xa

�D 1:

(H5) ŒC
�
xa; xc ; C

�ı
xa; xd

�ŒC
�ˇ
xa; xb ;Mx

ˇ

b
; Œx


c ;x

ı
d
��D 1:

(H6) ŒMx˛a ; Œx
ˇ

b
;x

c �;Mxı

d
; Œx˛a ;x

�
e ��ŒMxı

d
; Œx˛a ;x

�
e �;Mxı

d
; Œx


c ;x

ˇ

b
���

ŒMxı
d
; Œx


c ;x

ˇ

b
�; C
��
xd ; xe

�D 1, possibly with b D e or c D e .

(H7) ŒMx

c ; Œx

˛
a ;x

ı
d
�; C

ˇ
xa; xb �ŒC

�ı
xc ; xd

;Mx

c ; Œx

˛
a ;x

ˇ

b
��ŒMx


c ; Œx

˛
a ;x

ˇ

b
�;Mx


c ; Œx

˛
a ;x

ı
d
��D 1,

possibly with b D d .
(H8) ŒMx˛a ; Œx

ˇ

b
;x

c �; C

ı
xa; xd

C ıxb; xdC
ı
xc ; xd

�D 1.

(H9) ŒC

xa; xcC


xb; xc ; C

ˇ
xa; xbC

ˇ
xc ; xb �ŒMx˛a ; Œx

ˇ

b
;x

c �; C

˛
xb; xa

C ˛xc ; xa �D 1.

Table 4: The set SH .n/ of basic commutator relators such that the GLn.Z/–
orbit of fhr j r 2 SH .n/g spans H2.IAn/ . Distinct letters are assumed to
represent distinct indices unless stated otherwise. We use the notation hi . � / ,
with inputs the appropriate x˛a , xˇ

b
, xc , xı

d
, x�e , x�

f
, for the elements in

H2.IAn/ , which we use later.

In the first case,

�.M
ˇ

x˛a ; xb
/.M

x
�ˇ

b
; Œxı

d
;x

c �
/�1 DM

x
�ˇ

b
; Œx


c ;x

ı
d
�
Mx˛a ; Œx


c ;x

ı
d
�:

In the second case,

�.M
ˇ

x˛a ; xb
/.M

x
ˇ

b
; Œxı

d
;x

c �
/�1 D C ˇxa; xbMx

ˇ

b
; Œx


c ;x

ı
d
�
Mx�˛a ; Œx


c ;x

ı
d
�C
�ˇ
xa; xb

:

In both cases, the two expressions differ by an application of (R2). This means that
�.s/ of an (R0) relation can always be written using (R0) and (R2) relations.

Next we explain the computations that prove the lemma for (R5) and (R6) relations.
These are in the list rewritetheta(R5)(R6). In these computations we reduce
�.s/.r/ to the trivial word where s 2 S˙1A and r is an (R5) or (R6) relation. These
reductions may use any of the basic relations for IAn , including (R5) and (R6) them-
selves, but notably may not use the images of (R5) and (R6) relations under � . We
may use the images of (R1)–(R4), (R7)–(R9), (H8) and (H9) under � .

Despite these restrictions, we may use the extra relations from exiarel in these
computations. Our relation exiarel(3,[xa,xb,xc,xd]) is (H8), and the relation
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exiarel(4,[xa,xb,xc,xd]) is equivalent to (H8) modulo the basic relations. Rela-
tion exiarel(7,[xa,xb,xc]) is (H9), and relation exiarel(6,[xa,xb,xc]) and
relation exiarel(8,[xa,xb,xc,xd]) are equivalent to (H9) modulo the basic rela-
tions. All the other exiarel relations can be derived without using images of (R5) or
(R6) under � . These facts can be verified by inspecting exiarelchecklist.

If s is a swap or an inversion move, then acting by �.s/ is always the same as
acting on the parameters of the relation by s in the obvious way. Therefore the list
rewritetheta(R5)(R6) only contains cases where s is a transvection.

We use several redundancies between different forms of the relations (R5) and (R6) to
reduce the number of computations. Inverting the parameter xˇ

b
in (R5) (as it appears

in Table 2) is the same as cyclically permuting the relation. Inverting the parameter
x˛a in (R6) is the same as applying a relation from (R2) to the original (R6) relation.
Swapping the roles of xˇ

b
and x


c in (R6) is the same as inverting and cyclically

permuting the original (R6) relation and applying a relation from (R2).

We use the identity

C�ˇxa; xb�.M
ˇ

x˛a ; xb
/.t/C ˇxa; xb D �.M

�ˇ

x�˛a ; xb
/.t/;

which holds in IAn for any t 2 IAn . This is a consequence of Proposition 3.13.
In particular, this means that we only need to consider one of �.M

x˛a ; x
ˇ

b

/.r/ and
�.M

x�˛a ; x
�ˇ

b

/.r/; if one is trivial then so is the other.

Since the computations in rewritetheta(R5)(R6) rewrite all configurations of
�.s/.r/ for r an (R5) or (R6) relation, up to these reductions, this proves the lemma.

The next lemma allows us to deal with certain combinations of (R5) and (R6) rela-
tions. The ordered triple of generators of Fn involved in a commutator transvection
Mx˛

i
; Œx

ˇ

j
;x


k
� is .xi ; xj ; xj /. There are eight commutator transvections involving a

given triple of generators.

Lemma 6.4 Fix distinct 1� a; b; c � n, and let w 2R\ ŒF; F � be a product of (R5)
and (R6) relations whose commutator transvections involve only .xa; xb; xc/, in order.
Then kwk can be written as a sum of elements of the form kvk with v an (H2) relation.

Proof Let F 0 be the subgroup of F generated by the eight commutator transvec-
tions involving .xa; xb; xc/ and the two conjugation moves fCxa; xb ; Cxa; xcg, and
let R0 � F 0 be the normal closure in F 0 of the (R5) and (R6) relations that can be
written as products of elements of F 0 . We thus have w 2R0\ ŒF 0; F 0�. Our first goal
is to better understand .R0 \ ŒF 0; F 0�/=ŒF 0; R0� and R0=ŒF 0; R0�. Consider the exact
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sequence of abelian groups

0!
R0\ ŒF 0; F 0�

ŒF 0; R0�
!

R0

ŒF 0; R0�
!

R0

R0\ ŒF 0; F 0�
! 0:

We find generators for the first group in the sequence by considering a related exact
sequence of free abelian groups.

Let v1; : : : ; v8 be the eight commutator transvections in SIA.n/ that only involve
.xa; xb; xc/, enumerated as in Table 5. Similarly, let r1; : : : ; r8 be the eight (R5) rela-
tions in F 0 and let r9; : : : ; r16 denote the eight (R6) relations lying in F 0 , enumerated
as in Table 5. Let A be the free abelian group freely generated by r1; : : : ; r16 , and
let B be the free abelian group freely generated by v1; : : : ; v8 . We consider the map
A! B that counts the exponent-sum of each commutator transvection generator. Let
C denote the kernel of this map and let B 0 denote the image.

name generator

v1 Mxa; Œxb;xc�

v2 Mx�1a ; Œxb;xc�

v3 Mxa; Œx
�1
b
;xc�

v4 Mx�1a ; Œx�1
b
;xc�

v5 Mxa; Œxb;x
�1
c �

v6 Mx�1a ; Œxb;x
�1
c �

v7 Mxa; Œx
�1
b
;x�1c �

v8 Mx�1a ; Œx�1
b
;x�1c �

name relation

r1 Cxa; xbMxa; Œxb;xc�C
�1
xa; xb

Mxa; Œx
�1
b
;xc�

r2 Cxa; xbMx�1a ; Œxb;xc�
C�1xa; xbMx�1a ; Œx�1

b
;xc�

r3 C�1xa; xcMxa; Œxb;xc�Cxa; xcMxa; Œxb;x
�1
c �

r4 C�1xa; xcMx�1a ; Œxb;xc�
Cxa; xcMx�1a ; Œxb;x

�1
c �

r5 C�1xa; xcMxa; Œx
�1
b
;xc�

Cxa; xcMxa; Œx
�1
b
;x�1c �

r6 C�1xa; xcMx�1a ; Œx�1
b
;xc�

Cxa; xcMx�1a ; Œx�1
b
;x�1c �

r7 Cxa; xbMxa; Œxb;x
�1
c �C

�1
xa; xb

Mxa; Œx
�1
b
;x�1c �

r8 Cxa; xbMx�1a ; Œxb;x
�1
c �C

�1
xa; xb

Mx�1a ; Œx�1
b
;x�1c �

r9 Mxa; Œxb;xc�Mx�1a ; Œxb;xc�
ŒC�1xa; xb ; C

�1
xa; xc

�

r10 Mxa; Œx
�1
b
;xc�

Mx�1a ; Œx�1
b
;xc�

ŒCxa; xb ; C
�1
xa; xc

�

r11 Mxa; Œxb;x
�1
c �Mx�1a ; Œxb;x

�1
c �ŒC

�1
xa; xb

; Cxa; xc �

r12 Mxa; Œx
�1
b
;x�1c �Mx�1a ; Œx�1

b
;x�1c �ŒCxa; xb ; Cxa; xc �

r13 Mx�1a ; Œxb;xc�
Mxa; Œxb;xc�ŒC

�1
xa; xb

; C�1xa; xc �

r14 Mx�1a ; Œx�1
b
;xc�

Mxa; Œx
�1
b
;xc�

ŒCxa; xb ; C
�1
xa; xc

�

r15 Mx�1a ; Œxb;x
�1
c �Mxa; Œxb;x

�1
c �ŒC

�1
xa; xb

; Cxa; xc �

r16 Mx�1a ; Œx�1
b
;x�1c �Mxa; Œx

�1
b
;x�1c �ŒCxa; xb ; Cxa; xc �

Table 5: Labels for the eight commutator transvections using xa , xb and xc
in order, and for the sixteen (R5) and (R6) relations using these commutator
transvections.
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Since R0 is normally generated by relations r1; : : : ; r16 , we know that R0=ŒF 0; R0� is
generated by the images of these relations. Thus there is a surjection A!R0=ŒF 0; R0�

that sends each basis element to the image of the relation with the same name. The group
B is a subgroup of F 0=ŒF 0; F 0�. The natural map R0=ŒF 0; R0�! F 0=ŒF 0; F 0� counts
exponent-sums of generators. Since the generators r1; : : : ; r16 all have zero exponent-
sum for conjugation move generators, we do not lose any information by counting only
commutator transvection generators in B . This means we have a commuting square

A //

��

B

��

R0=ŒF 0; R0� // F 0=ŒF 0; F 0�

The subgroup B 0 thus maps surjectively onto .R0ŒF 0; F 0�/=ŒF 0; F 0�, which is iso-
morphic to R0=.R0\ ŒF 0; F 0�/. Therefore we have a commuting diagram with exact
rows

0 // C //

��

A //

��

B 0 //

��

0

0 // .R0\ ŒF 0; F 0�/=ŒF 0; R0� // R0=ŒF 0; R0� // R0=.R0\ ŒF 0; F 0�/ // 0

The map B 0! F 0=ŒF 0; F 0� is injective, so B 0!R0=.R0\ ŒF 0; F 0�/ is also injective.
By construction, A!R0=ŒF 0; R0� is surjective. It follows from a simple diagram chase
that C ! .R0\ ŒF 0; F 0�/=ŒF 0; R0� is surjective.

The map A! B is given by the 8� 16 matrix0BBBBBBBBBBBB@

1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1

1CCCCCCCCCCCCA
A straightforward linear algebra computation shows that C , the kernel of this map, is
generated by the nine vectors

r1� r3� r5C r7; r2� r4� r6C r8; �r1� r2C r13C r14;

�r3� r4C r13C r15; r1C r2� r5� r6� r13C r12;

r9� r13; r10� r14; r11� r15; r12� r16:
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Since C surjects on .R0\ ŒF 0; F 0�/=ŒF 0; R0�, we know that .R0\ ŒF 0; F 0�/=ŒF 0; R0�
is generated by the images of these nine elements.

We will now describe calculations that show that each of the generators above is
equivalent modulo ŒF 0; R0� to an (H2) relation. In each case, we find representatives in
R0\ ŒF 0; F 0� of the image of the given element of C . Since we are working modulo
ŒF 0; R0� we may conjugate any ri in computing the representative. In reducing to an
(H2) relation, we may also apply any relation at all, as long as we apply its inverse
somewhere else.

The last four generators are easily equivalent to (H2) relations. We skip the second
kernel generator because its image is equal to the first after inverting xa , and we skip
the fourth because its image is equal to the third after swapping xb and xc . The three
computations in the list kernellist finish the lemma by showing that the first, third
and fifth generators are equivalent to (H2) relations.

Proof of Theorem 6.1 We must show that every element of CH2.IAn/ that happens
to lie in H2.IAn/ can be written as a sum of elements of

fk�.w/.r/k j w 2 SAut.n/
� and r is one of the relations (H1)–(H9) from Table 4g:

Combining Lemmas 6.2 and 6.3 with the fact that (R0) and (R5) and (R6) are the only
relations in our L–presentation for IAn that do not appear as one of the commutator
relations in Table 4, we see that it enough to deal with sums of elements of the set

fkrk j r is one of the relations (R0), (R5) and (R6)g:

So consider kwk 2 H2.IAn/ that can be written as

kwk D

mX
iD1

krik

with each ri either an (R0), (R5) or (R6) relation.

For any choice of distinct 1� a; b; c � n, we consider the commutator transvection
generators involving .xa; xb; xc/ or .xa; xc ; xb/, and the (R5), (R6) and (R0) relations
involving only these commutator transvections. We write

kwk D

nC.n�12 /X
iD1

kwik;

where each kwik is a sum of (R5), (R6) and (R0) relations involving only a single
choice of .xa; fxb; xcg/. To prove the theorem, it is enough to show that we can write
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each of the kwik as a sum of our generators for H2.IAn/. So we assume kwkD kwik
for some i ; this amounts to fixing a choice of .xa; fxb; xcg/ and assuming kwk is a
sum of (R0), (R5) and (R6) generators using only commutator transvections involving
this triple.

We call a commutator transvection Mx˛
i
; Œx

ˇ

j
;x


k
� positive if j < k , and negative other-

wise. Each (R5) or (R6) relation contains two positive commutator transvections (and no
negative ones), or two negative ones (and no positive ones). Suppose krik is an (R5) or
(R6) relation with negative generators, appearing in the sum defining kwk. By inserting
an (R0) relation and its inverse into ri , we replace both of the negative generators with
positive ones. Let r 0i denote the word we get by doing this to ri . Since we have added
and subtracted the same element in CH2.IAn/ , we have kr 0ikDkrik. Modifying an (R5)
or (R6) relation in this way gives us the inverse of an (R5) or (R6) relation involving
the same .xa; fxb; xcg/, up to cyclic permutation of the relation. So we interpret
this move as rewriting the sum defining kwk: we replace the relation krik with the
new relation kr 0ik, which is an (R5) or (R6) relation without negative commutator
transvections. We proceed to eliminate all the negative commutator transvections in
(R5) and (R6) relations in kwk this way.

Having done this, the only negative commutator transvections the sum defining kwk
appear in (R0) relations. Since kwk 2 H2.IAn/, the negative generators appear with
exponent-sum zero; so the (R0) relations appear in inverse pairs. This means that
we can simply rewrite the sum without any (R0) relations. So kwk is a sum of (R5)
and (R6) relations whose only commutator transvections are positive ones involving
.xa; fxb; xcg/. Then kwk satisfies the hypotheses of Lemma 6.4 and therefore is a
sum of (H2) generators.

7 Coinvariants and congruence subgroups

This section contains the proofs of Theorems C and D, which can be found in Section 7.2
and 7.3, respectively. Both of these proofs depend on calculations that are contained in
Section 7.1.

7.1 The action of GLn.Z/ on H2.IAn/

This section is devoted to understanding the action of GLn.Z/ on our generators
for H2.IAn/. The results in this section consist of long lists of equations that are
verified by a computer, so on their first pass a reader might want to skip to the
next two sections to see how they are used. For i D 1; : : : ; 9, we use the notation
hi .x

˛1
a1 ; : : : ; x

˛ki
aki
/2H2.IAn/ for the image in H2.IAn/ of the i th relation from SH .n/,
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with the given parameters, as specified in Table 4. Since the action of GLn.Z/ is induced
from the action of Aut.Fn/, we record the action of various Aut.Fn/ generators on
these generators.

The computations justifying Lemmas 7.2–7.6 are in the file h2ia.g. We use the Hopf
isomorphism H2.IAn/Š .R\ ŒF; F �/=ŒF;R�, where F D F.SIA.n// and R < F is
the group of relations of IAn . We justify these equations by performing computations
in R\ ŒF; F �� F . In each computation, we start with a word representing one side
of the equation and reduce to the trivial word using words representing the other side.
Since ŒF;R� is trivial, we may use any relations in inverse pairs, we may apply relations
from in any order, and we may cyclically permute relations.

We note some identities, which we leave as an exercise.

Lemma 7.1 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct unless otherwise noted.

(a) h1.x˛a ; x
ˇ

b
; x

c ; x

ı
b
/D�h1.x

˛
a ; x

ˇ

b
; x

c ; x
�ı
b
/, even if b D d .

(b) h3.x˛a ; x
ˇ

b
; x

c ; x

ı
b
; x�e/D�h3.x

˛
a ; x

ˇ

b
; x

c ; x

ı
b
; x��e /, even if b D e or c D e .

(c) h3.x˛a ; x
ˇ

b
; x

c ; x

ı
b
; x�e/D�h3.x

˛
a ; x


c ; x

ˇ

b
; xı
b
; x�e/, even if b D e or c D e .

We also need the following, which is not obvious.

Lemma 7.2 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct unless otherwise noted.

(a) h6.x˛a ; x
�
e ; x


c ; x

ı
d
; x�e/D

h6.x
˛
a ; x


c ; x
��
e ; xı

d
; x�e/� h7.x

˛
a ; x

�
e ; x

ı
d
; x�e/� h7.x

˛
a ; x
��
e ; xı

d
; x�e/.

(b) h6.x˛a ; x
ˇ

b
; x

c ; x

ı
d
; x�e/D�h6.x

˛
a ; x


c ; x

ˇ

b
; xı
d
; x�e/, even if b D e or c D e .

Proof Computations justifying these equations appear in the list lemma7pt2.

We proceed by expressing the action of many elementary matrices from GLn.Z/ on
our generators.

Lemma 7.3 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct unless otherwise noted.

(a) M �

x
ˇ

b
; xe
� h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h1.x

˛
a ; x

�
e ; x


c ; x

ı
d
/.

(b) M �

x
ˇ

b
; xe
� h1.x

˛
a ; x

�
e ; x


c ; x

ı
d
/D h1.x

˛
a ; x

�
e ; x


c ; x

ı
d
/.
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(c) M ı

x
ˇ

b
; xd
� h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h1.x

˛
a ; x

ı
d
; x

c ; x

ı
d
/.

(d) M��
x˛a ; xe

� h1.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/� h3.x

˛
a ; x

�
e ; x

ˇ

b
; x

c ; x

ı
d
/,

even if x�e D x
ı
d

.

(e) M��
xı
d
; xe
� h3.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x
�

f
/D

h3.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x
�

f
/�h2.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x�e ; x

�

f
/, even if fb; cg\fe; f g¤¿.

(f) M ı
x�˛a ; xd

� h2.x
˛
a ; x

ˇ

b
; x

c ; x
�ı
d
; x
�

f
; x�e/D

h2.x
˛
a ; x

ˇ

b
; x

c ; x
�ı
d
; x
�

f
; x�e/� h2.x

˛
a ; x

ˇ

b
; x

c ; x
�˛
a ; x�e ; x

�

f
/,

even if fb; cg\ fe; f g ¤¿.

Proof These computations appear in lemma7pt3. The equations where coincidences
are allowed are justified in several different computations.

Lemma 7.4 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct.

(a) M ˇ

xı
d
; xb
� h4.x

˛
a ; x

ı
d
; x

c /D h4.x

˛
a ; x

ı
d
; x

c /C h4.x

˛
a ; x

ˇ

b
; x

c /.

(b) M ˇ

xı
d
; xb
� h4.x

˛
a ; x

ˇ

b
; x

c /D h4.x

˛
a ; x

ˇ

b
; x

c /.

(c) M�
x
ˇ

b
; xc
� h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D

h1.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/� h3.x

ˇ

b
; xı
d
; x

c ; x

˛
a ; x


c /C

h5.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h4.x


c ; x

ı
d
; x˛a /.

(d) M �

xı
d
; xe
� h8.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D

h8.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h8.x

˛
a ; x

ˇ

b
; x

c ; x

�
e/C .(H1) generators/.

(e) M �

xı
d
; xe
� h8.x

˛
a ; x

ˇ

b
; x

c ; x

�
e/D h8.x

˛
a ; x

ˇ

b
; x

c ; x

�
e/.

Proof These computations appear in lemma7pt4.

Lemma 7.5 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct.

(a) M �

x
�

f
; xe
� h6.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x
�

f
/D

h6.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x
�

f
/C h6.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x�e/.

(b) M �

x
�

f
; xe
� h6.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x�e/D h6.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x�e/.
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(c) M��
x

c ; xe
� h7.x

˛
a ; x

ˇ

b
; x�e ; x

ı
d
/D

h7.x
˛
a ; x

ˇ

b
; x�e ; x

ı
d
/C h7.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h6.x

�
e ; x

ˇ

b
; x˛a ; x


c ; x

ı
d
/C

.(H1)–(H3) generators/.

(d) M��
x

c ; xe
� h7.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D

h7.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h2.x

�
c ; x��e ; x�ı

d
; x

c ; x

ˇ

b
; x˛a /.

(e) M ˇ

xı
d
; xb
� h7.x

˛
a ; x

ı
d
; x

c ; x

ı
d
/D

h7.x
˛
a ; x

ı
d
; x

c ; x

ı
d
/C h7.x

˛
a ; x

ˇ

b
; x

c ; x

ˇ

b
C

h7.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h7.x

˛
a ; x

ı
d
; x

c ; x

ˇ

b
/C .(H1) generators/.

(f) M ˇ

xı
d
; xb
� h7.x

˛
a ; x

ˇ

b
; x

c ; x

ˇ

b
/D h7.x

˛
a ; x

ˇ

b
; x

c ; x

ˇ

b
/.

(g) M ˇ

xı
d
; xb
� h7.x

˛
a ; x
�ı
d
; x

c ; x

ı
d
/D

h7.x
˛
a ; x
�ı
d
; x

c ; x

ı
d
/C h7.x

˛
a ; x
�ˇ

b
; x

c ; x

ˇ

b
/C

h7.x
˛
a ; x
�ı
d
; x

c ; x

ˇ

b
/� h7.x

˛
a ; x
�ˇ

b
; x

c ; x
�ı
d
/.

(h) M ˇ

xı
d
; xb
� h7.x

˛
a ; x
�ˇ

b
; x

c ; x

ˇ

b
/D h7.x

˛
a ; x
�ˇ

b
; x

c ; x

ˇ

b
/.

(i) M �

x
�

f
; xe
� h6.x

˛
a ; x

�

f
; x

c ; x

ı
d
; x
�

f
/D

h6.x
˛
a ; x

�

f
; x

c ; x

ı
d
; x
�

f
/� h7.x

˛
a ; x

�
e ; x

ı
d
; x
�

f
/� h7.x

˛
a ; x

�
e ; x

ı
d
; x�e/C

h6.x
˛
a ; x

�

f
; x

c ; x

ı
d
; x�e/� h7.x

˛
a ; x
��
e ; xı

d
; x
�

f
/� h7.x

˛
a ; x
��
e ; xı

d
; x�e/C

h6.x
˛
a ; x

�
e ; x


c ; x

ı
d
; x
�

f
/C h6.x

˛
a ; x

�
e ; x


c ; x

ı
d
; x�e/.

(j) M �

x
�

f
; xe
� h6.x

˛
a ; x

�
e ; x


c ; x

ı
d
; x�e/D h6.x

˛
a ; x

�
e ; x


c ; x

ı
d
; x�e/.

Proof These computations appear in lemma7pt5.

Lemma 7.6 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct.

(a) M ı

x
ˇ

b
; xd
� h9.x

˛
a ; x

ˇ

b
; x

c /D

h9.x
˛
a ; x

ˇ

b
; x

c /C h9.x

˛
a ; x

ı
d
; x

c /C .(H1)–(H5) generators/.

(b) M ı

x
ˇ

b
; xd
� h9.x

˛
a ; x

ı
d
; x

c /D h9.x

˛
a ; x

ı
d
; x

c /C .(H1)–(H6) generators/.

Proof These computations are contained in the list lemma7pt6, but they take some
explanation. We use the relations exiarel(5,[...]) frequently in these compu-
tations; these relations are always combinations of (H1) and (H4) relations. We
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use exiarel(7,[xa,xb,xc]) to represent h9.x˛a ; x
ˇ

b
; x

c /, but we also use other

relations in this computation. The relation exiarel(8,[xa,xb,xc,xd]) is an ex-
panded version of this relation that behaves better under this action. Its derivation in
exiarelchecklist shows that it differs from �h9.x˛a ; x

ˇ

b
; x

c / only by (H1), (H4)

and (H5) relations. We also use exiarel(6,[xa,xb,xc,xd]); this differs from
h9.x

˛
a ; x

ˇ

b
; x

c / by (H1) and (H4) relations, and an (R6) relation. This is apparent in

the derivation of exiarel(7,[xa,xb,xc]) in exiarelchecklist.

The computation justifying Lemma 7.6(a) shows directly that the image of the relation
exiarel(8,[xa,xb,xc,xd]) under [["M",xb,xd]] can be reduced to the trivial
word by applying

� exiarel(6,[xa,xd,xc]),
� iw(exiarel(7,[xa,xb,xc])),
� (H1)–(H5) relations (some in exiarel(5,[...]) relations),
� (R5) and (R6) relations, and
� elements from ŒF;R�, including inverse pairs of instances of exiarel(1,[...])

and exiarel(3,[...]).

Since we start and end with elements of R\ ŒF; F � in this computation, the use of
(R5) and (R6) (in one case inside exiarel(6,[xa,xb,xc,xd])) is inconsequential;
by Lemma 6.4 this can only change the outcome by (H2) relations. So this proves
Lemma 7.6(a).

The computation justifying Lemma 7.6(b) is similar, but uses an instance of the relation
exiarel(2,[...]). The derivation in exiarelchecklist shows that this relation
is a combination of (H2), (H5) and (H6) relations, and elements of ŒF;R�.

7.2 Coinvariants of H2.IAn/

In this section, we prove Theorem C, which asserts that for the GLn.Z/–coinvariants
of H2.IAn/ vanish for n� 6.

Proof of Theorem C We use the generators (H1)–(H9) from Table 4. To show that
the coinvariants H2.IAn/GLn.Z/ are trivial, we show that the coinvariance class of each
of these generators is trivial. The coinvariants are defined to be the largest quotient of
H2.IAn/ with a trivial induced action of GL.n;Z/. Since the action of GL.n;Z/ on
H�.IAn/ is induced by the action of Aut.Fn/ on IAn , this means that H2.IAn/GLn.Z/
is the quotient of H2.IAn/ by the subgroup generated by classes of the form f � r � r ,
where f 2 Aut.Fn/ and r 2 H2.IAn/. Elements of the form f � r � r are called
coboundaries.
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In fact, we have already shown in Lemmas 7.1–7.6 that the subgroup of H2.IAn/
generated by coboundaries contains our generators from Theorem 6.1. We show this
for each generator in the equations above as follows:

� (H1) in equations (a) and (c) of Lemma 7.3, also using an observation from
Lemma 7.1,

� (H2) in equations (e) and (f) of Lemma 7.3,
� (H3) in Lemma 7.3(d), also using an observation from Lemma 7.1,
� (H4) in Lemma 7.4(a),
� (H5) in Lemma 7.4(c),
� generic (H6) in Lemma 7.5(a),
� (H7) in equations (c), (e) and (g) of Lemma 7.5,
� the special cases of (H6) in Lemma 7.5(i), also using equations (a) and (b) of

Lemma 7.2,
� (H8) in Lemma 7.4(d) and
� (H9) in Lemma 7.6(a).

Each equation shows how to express the given generator as a sum of coboundaries and
generators previously expressed in terms of coboundaries:

Remark 7.7 The equations above assume that distinct subscripts label distinct ele-
ments. This means that Lemma 7.5(a) requires six basis elements. We do not know if
the generic (H6) generator (a five-parameter generator) can be expressed as a sum of
coboundaries without using a sixth basis element. Therefore we require n� 6 in the
statement and we do not know if the theorem holds for smaller n.

7.3 Second homology of congruence subgroups

In this section, we prove Theorem D, which asserts that H2.Aut.Fn; `/IQ/ D 0

for n � 6 and ` � 2. The key to this is the following lemma. Let GLn.Z; `/ be
the level-` congruence subgroup of GLn.Z/, that is, the kernel of the natural map
GLn.Z/! GLn.Z=`/.

Like in Theorem C, we require n� 6 because of Lemma 7.5(a). We do not know if
the result holds for smaller n.

Lemma 7.8 For n� 6 and `� 2 we have .H2.IAnIQ//GLn.Z;`/ D 0.

Proof Again we use our generators from Theorem 6.1. The universal coefficient theo-
rem implies that H2.IAnIQ/ is generated by the images of our generators from H2.IAn/.
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We have two approaches for showing that a generator has trivial image. The first is
the following: if f 2 Aut.Fn/ and r; s 2 H2.IAn/ with f � r � r D s and f � s D s in
.H2.IAnIQ//GLn.Z;`/ , then

f ` � r � r D `s in .H2.IAnIQ//GLn.Z;`/:

If further f ` lies in Aut.Fn; `/ then this shows that s is trivial in .H2.IAnIQ//GLn.Z;`/.

The second approach is simpler: if f 2Aut.Fn/ and r; s 2H2.IAn/ with f �r�r D s
and r D 0 in .H2.IAnIQ//GLn.Z;`/ , then of course, s D 0 in .H2.IAnIQ//GLn.Z;`/ .

We show the generators have trivial images as follows:

� generic (H1) using equations (a) and (b) of Lemma 7.3 by the first approach,

� special cases of (H1) using Lemma 7.3(c) by the second approach, and using
Lemma 7.1,

� (H3) by Lemma 7.3(d) using the second approach, and using Lemma 7.1,

� (H2) by equations (e) and (f) of Lemma 7.3, using the second approach,

� (H4) by equations (a) and (b) of Lemma 7.4, using the first approach,

� (H5) by Lemma 7.4(c), by the second approach,

� generic (H6) by equations (a) and (b) of Lemma 7.5, using the first approach,

� generic (H7) by equations (c) and (d) of Lemma 7.5, by the first approach,

� special cases of (H7) by equations (e) and (f), and by equations (g) and (h), of
Lemma 7.5, both by the first approach,

� one special case of (H6) by equations (i) and (j) of Lemma 7.5, by the first
approach,

� other special cases of (H6) using the first case and equations (a) and (b) of
Lemma 7.2,

� (H8) by equations (d) and (e) of Lemma 7.4 by the first approach and

� (H9) by equations (a) and (b) of Lemma 7.6 by the first approach.

Proof of Theorem D We examine the Hochschild–Serre spectral sequence associated
to the short exact sequence

(12) 1! IAn! Aut.Fn; `/! GLn.Z; `/! 1:

First, the Borel stability theorem [7] implies that H2.GLn.Z; `/IQ/D 0. Next, recall
from the introduction that H1.IAnIQ/Š Hom

�
Qn;

V2Qn
�
; the group GLn.Z/ acts

on this in the obvious way. Since Hom
�
Rn;

V2Rn� is an irreducible representation of
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the algebraic group SLn.R/, it follows from work of Borel [6, Proposition 3.2] that
H1.IAnIQ/ is an irreducible representation of GLn.Z; `/ (we remark that the above
reference is one of the steps in the original proof of the Borel density theorem; the
result can also be derived directly from the Borel density theorem). It thus follows from
the extension of the Borel stability theorem to nontrivial coefficient systems [8] that

H1.GLn.Z; `/IH1.IAnIQ//D 0:

Lemma 7.8 says that

H0.GLn.Z; `/IH2.IAnIQ//Š .H2.IAnIQ//GLn.Z;`/ D 0:

The pCqD 2 terms of the Hochschild–Serre spectral sequence associated to (12) thus
all vanish, so H2.Aut.Fn; `/IQ/D 0, as desired.
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