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On 5–manifolds with free fundamental group
and simple boundary links in S 5

MATTHIAS KRECK

YANG SU

We classify compact oriented 5–manifolds with free fundamental group and �2 a
torsion-free abelian group in terms of the second homotopy group considered as a
�1 –module, the cup product on the second cohomology of the universal covering,
and the second Stiefel–Whitney class of the universal covering. We apply this to the
classification of simple boundary links of 3–spheres in S5 . Using this we give a
complete algebraic picture of closed 5–manifolds with free fundamental group and
trivial second homology group.

57R65; 57R40

1 Introduction

There is a close relationship between classical links and closed 3–manifolds since all
3–manifolds are obtained by surgeries on links and Kirby calculus determines when
two links give the same 3–manifold. We consider a special case of such a relation
in dimension 5. The special condition on the side of links is that we only consider
simple boundary links L of a disjoint union of 3–spheres in S5 , which means that
the fundamental group of the complement is freely generated by the meridians of the
link components. As in dimension 3 we can perform surgery on the link L to obtain a
closed smooth manifold M.L/. It is easy to see that the fundamental group of M.L/

is a free group and H2.M.L/IZ/D 0. In addition, the second homotopy group is that
of the complement X of the link and this is torsion-free as an abelian group. One can
ask which 5–manifolds are obtained this way and for the classification of the links and
the determination of the fibers of the map from links to 5–manifolds given by surgery.

We answer this question by giving a classification of a more general class of closed
5–manifolds, namely we classify all 5–manifolds M with �1.M / a free group and
�2.M / torsion-free as an abelian group, in terms of an invariant we call generalized
Milnor pairing, since it is a generalization of the Milnor pairing for knots. We also
consider compact manifolds with boundary the disjoint union of copies of S1�S3 and
free fundamental group that is freely generated by the circles in the boundary, and, as
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before, �2.M / is torsion-free as an abelian group. We also define a topological version
of the generalized Milnor pairing, called topological generalized Milnor pairing, and
prove a corresponding result for topological manifolds.

A second well-known class of examples are fibered 5–manifolds M over the circle
with simply connected fiber. These are in the image of the surgery construction above
if and only if we have a fibered knot and H2.M IZ/ D 0. But in general fibered
5–manifolds over the circle have nontrivial second homology. Thus our more general
class of manifolds also occurs naturally. See Remark 1.4 and the appendix for more on
this class of manifolds.

To give a feeling for the generalized Milnor pairing, we define it in a special case,
where M is spin. Then it is represented by the triple�

�1.M /; �2.M /; bM W �2.M /� ��2.M /�!
�
H 1.B�1M IQŒ�1M �/

���
;

where bM is given by the cup product. For details we refer to Section 2. Now we
formulate our main result.

Theorem 1.1 Let M0 and M1 be two smooth (or topological), compact, oriented
5–manifolds with free fundamental group of rank n and torsion-free �2 , with empty
boundary or boundary consisting of n copies of S1 �S3 such that the circles in the
boundary generate �1.Mi/. Then there is an orientation-preserving diffeomorphism
(homeomorphism) between M0 and M1 if and only if there is an isomorphism between
their (topological) generalized Milnor pairings.

We actually prove a stronger result (Theorem 2.4) about the realization of isomorphisms
between the generalized Milnor pairings.

Levine [11] has classified 3–dimensional simple knots in S5 in terms of S –equivalence
classes of Seifert matrices and Liang [12] has extended this to higher-dimensional simple
boundary links in terms of l –equivalence classes of Seifert matrices. The general case
of 3–dimensional simple boundary links in S5 seems to be open. Our classification
result implies that Liang’s result extends to dimension 3. Also, by extending Liang’s
argument to higher dimension we can characterize the Seifert matrices occurring from
links. We call the corresponding conditions unimodularity conditions. Thus we obtain
a complete algebraic picture of simple boundary links in S5 .

Theorem 1.2 The l –equivalence classes of Seifert matrices of simple boundary links
of 3–spheres in S5 determine the isotopy type of the link. Moreover, the l –equivalence
classes of Seifert matrices give a bijection from the set of isotopy classes of simple
boundary links of 3–spheres in S5 to the set of l –equivalence classes of square integral
matrices D satisfying the unimodularity conditions.
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We would also like to give an algebraic picture of our closed 5–manifolds. In general
we don’t know which values the generalized Milnor pairing takes. But if we require
that H2.M IZ/D 0, these manifolds are all results of surgeries on links and we can
use the realization of the link invariants to give a complete answer.

Let D be an m�m integral matrix satisfying the unimodularity conditions; then there
is associated to D a ZŒFn�–module map 'D W .ZŒFn�/

m! .ZŒFn�/
m and a generalized

Milnor pairing�
Fn; coker'D ; bD W .coker'D/

�
� .coker'D/

�
!
�
H 1.BFnIQŒFn�/

���
We will give a detailed description of this in Section 4.

Theorem 1.3 There is a bijection between the diffeomorphism classes of closed
oriented 5–manifolds M with �1.M / a free group of rank n and H2.M IZ/ D 0,
and the isomorphism classes of generalized Milnor pairings .Fn; coker'D ; bD/ for all
matrices D (with various sizes m) fulfilling the unimodularity conditions.

We will give more details of the generalized Milnor paring in Section 2, and prove the
main classification theorem in Section 3. The discussion of 3–links and their relation
with 5–manifolds will be the contents of Section 4.

Remark 1.4 A special case of Theorem 2.4 is when �1.M / Š Z and �2.M / is a
finitely generated abelian group. In this case we can show that �2.M / is torsion-free
and the bilinear form on �2.M / is unimodular, w2. zM / is determined by the bilinear
form on �2.M /, and the realization problem of the invariants can be solved. This
gives a complete classification of closed 5–manifolds with �1 D Z and �2 a finitely
generated abelian group. As an application, this reproves the fibration theorems in
dimension 5 in the topological and smooth category given by Hsu [7], Weinberger [20]
and Shaneson [17], respectively. See more details in the appendix.

Remark 1.5 The notions of Borel manifolds and strongly Borel manifolds were coined
by Kreck and Lück [10, Definition 0.2]. A manifold M is called a Borel manifold if for
any homotopy equivalence f W N!M there exists a homeomorphism hW N!M such
that f and h induce the same map on the fundamental groups up to conjugation. It is
called strongly Borel if all homotopy equivalences are homotopic to a homeomorphism.
If M 5 is a closed oriented spin topological 5–manifold with free fundamental group and
torsion-free �2 , then it is Borel. Since for any homotopy equivalence f W N 5 '�!M 5 ,
f induces an isomorphism between the topological generalized Milnor pairings (in
this case the Kirby–Siebenmann invariant is determined by the bilinear form bM ; see
the proof of Theorem 2.4), the statement follows from Theorem 1.1. On the other
hand, for a closed oriented topological 5–manifold M 5 with free fundamental group,
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a computation of the topological structure set of M using the surgery exact sequence
gives S TOP.M 5/DH 2.M IZ=2/. Therefore, by [10, Theorem 1.1], M is strongly
Borel if and only if H2.M IZ=2/D 0.

One often hears the statement that the classification of high-dimensional manifolds is
completely understood. What people mean is that with the s–cobordism theorem one
has a criterion of when two manifolds are diffeomorphic and with surgery theory one
has a reduction of the problem of finding an s–cobordism to problems in homotopy
theory (unstable and stable) and algebra (surgery obstruction groups), and the analysis
of certain maps relating the homotopy theory and the algebra. But this doesn’t mean
that even for some very explicit manifolds, like for example complete intersections, the
procedure can be carried out successfully. Given the complications of the homotopy
groups of spheres, in higher dimensions the problems get harder and harder. But in
comparatively low dimensions (say up to 8) one has a chance, which doesn’t mean
that it is routine. Most results in that dimension range concern simply connected
manifolds. In this paper we make a first step towards a classification of 5–manifolds
with fundamental group the free group Fn . This class is particular interesting, since
such manifolds occur on the one hand as total spaces of bundles over the circle and
on the other hand as fundamental groups of links of 3–spheres in S5 . We classify
both in the smooth and topological category. It might be interesting to note that the
topological classification of 4–manifolds with fundamental group the free group Fn

is completely open for n > 1. The question of whether the group Fn is good in the
sense of Freedman and Quinn [6] is the key question for topological 4–manifolds. If
this is the case then one can use similar methods as in the present paper to attack the
classification of 4–manifolds with fundamental group Fn .

Acknowledgement Kreck would like to thank the Mathematical Institute of the Chi-
nese Academy of Sciences in Beijing and the Max-Planck-Institute for Mathematics
in Bonn for their support while this research was carried out. Su would like to thank
the Max-Planck Institute for Mathematics in Bonn for a research visit in August and
September, 2015. Both authors would like to thank the referee and the editor for their
suggestions to improve the paper.

Su was partially supported by NSFC11571343.

2 The generalized Milnor pairing and the statement of the
main theorem

Now we describe the generalized Milnor pairing which we use to classify our manifolds.
First we give the general algebraic definition. A generalized Milnor pairing is a
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quadruple .�1; �2; b; w2/ consisting of the following:

(1) �1 a free group of rank n; let ƒ D ZŒ�1� be the integral group ring and
ƒQ DQŒ�1� be the rational group ring.

(2) �2 a finitely generated ƒ–module, which is torsion-free as an abelian group.
(3) bW ��

2
���

2
! .H 1.B�1IƒQ//

� a symmetric ƒ–equivariant pairing, where �
stands for the Q–dual HomZ.�;Q/, and by ƒ–equivariant we mean that b is
a ƒ–module map under the diagonal action of ƒ on ��

2
���

2
and the natural

ƒ–module structure on .H 1.B�1IƒQ//
� .

(4) w2 2 Hom.�2;Z=2/.

An isomorphism .˛; ˇ/W .�1; �2; b; w2/! .� 0
1
; � 0

2
; b0; w0

2
/ between generalized Mil-

nor pairings consists of

(1) an isomorphism ˛W �1! � 0
1

;
(2) an isomorphism ˇW �2! � 0

2
, which is compatible with the ƒ– and ƒ0–module

structure and the pairings b and b0 , and maps w0
2

to w2 .

Let M 5 be a smooth closed oriented 5–manifold with �1.M / Š Fn and �2.M /

a torsion-free abelian group; we associate a generalized Milnor pairing '.M / D

.�1.M /; �2.M /; bM ; w2. zM // to M as follows. Let zM be the universal cover
of M . By Poincaré duality we have an isomorphism H4. zM IQ/DH4.M Iƒ/˝QŠ
H 1.M IƒQ/ and the latter group is isomorphic to H 1.B�1.M /IƒQ/, because M

has a CW–structure M '
W

n S1 _
W

S2 [ e3 [ � � � [19, Proposition 3.3]. Next we
use the Kronecker isomorphism to identify H 4. zM IQ/ with H4. zM IQ/

� , where
� stands for the Q–dual, and the isomorphism above to obtain an isomorphism
H 4. zM IQ/Š .H 1.B�1.M /IƒQ//

� . The cup product and this identification together
define a symmetric ƒ–equivariant form

H 2. zM IQ/�H 2. zM IQ/! .H 1.B�1M IƒQ//
�:

Using the Kronecker isomorphism and the Hurewicz isomorphism we obtain a sym-
metric ƒ–equivariant form

bM W �2.M /� ��2.M /�! .H 1.B�1M IƒQ//
�;

where � is again the vector space of homomorphisms to Q, We will discuss more
about this bilinear form in the beginning of Section 3.

To this we add the second Stiefel Whitney class

w2. zM / 2 Hom.H2. zM IZ/;Z=2/D Hom.�2.M /;Z=2/

to obtain our invariant and get the quadruple

'.M /D .�1.M /; �2.M /; bM ; w2. zM //I
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we call this the generalized Milnor pairing of M . The group of self-isomorphisms of
'.M / is denoted by Aut.'.M //.

Remark 2.1 In the case where only spin manifolds are concerned, w2. zM / is always 0,
and the generalized Milnor pairing is actually a triple '.M /D .�1.M /; �2.M /; bM /.
This is the case in Theorem 1.3.

Remark 2.2 It’s easy to see from the Leray–Serre spectral sequence of the fibration
zM

p
�!M !

W
n S1 that p�W H 2.M IZ=2/!H 2. zM IZ=2/ is injective. Therefore

w2.M / and w2. zM / determine each other.

We also classify a special case of compact oriented manifolds M with boundary which
is relevant for classifying links in S5 . The boundary has to be a disjoint union of
n copies of S1�S3 and we require that the circles in the boundary components generate
the fundamental group Fn of M . Here we replace H4. zM IQ/ by H4. zM ; @ zM IQ/
and we note that H 2. zM IQ/ŠH 2. zM ; @ zM IQ/, so that the definition of bM makes
sense. With this modification we can consider the quadruple defining '.M / as before.
But we have to observe that the identification of the fundamental groups of M and
M 0 is now given by an identification of the boundary components.

Remark 2.3 When X is the complement of a simple 3–knot, we have a bilinear
paring bW H 2. zX IQ/�H 2. zX IQ/!Q, which is the Milnor paring [15]; see also [13].

We also classify the corresponding topological manifolds. Here we add a fifth term to
our invariant, the Kirby–Siebenmann invariant

KS.M / 2H 4.M IZ=2/Š �1.M /=Œ�1.M /; �1.M /�˝Z=2:

We call the quintuple .�1.M /; �2.M /; bM ; w2. zM /;KS.M // the topological gener-
alized Milnor pairing of the topological manifold M . Of course in the definition of an
isomorphism .˛; ˇ/ between two topological generalized Milnor pairings we require
that the isomorphism ˛W �1.M /! �1.M

0/ respects the Kirby–Siebenmann invariant,
too.

Now we restate the classification theorem of the manifolds under consideration and
add the realization statement for induced maps.

Theorem 2.4 Let M0 and M1 be two smooth (or topological), closed, oriented
5–manifolds with free fundamental group of rank n and torsion-free �2 . Then M0

and M1 are oriented-diffeomorphic (-homeomorphic) if and only if their (topological)
generalized Milnor pairings are isomorphic. Any isomorphism between the (topological)
generalized Milnor parings can be realized by an orientation-preserving diffeomorphism
(homeomorphism) from M0 to M1 .

Geometry & Topology, Volume 21 (2017)



On 5–manifolds with free fundamental group and simple boundary links in S5 2995

If M0 and M1 are compact with boundary consisting of n copies of S1 � S3 such
that the circles in the boundary generate �1.Mi/, then M0 and M1 are oriented-
diffeomorphic (-homeomorphic) if and only if there exists an isomorphism .˛; ˇ/ be-
tween their (topological) generalized Milnor pairings, where ˛ is induced by identifying
the boundary components. Any such isomorphism can be realized by an orientation-
preserving diffeomorphism (homeomorphism).

The isomorphism ˛ above actually sends free generators xi of �1.M0/ to conjugates
of free generators x0i of �1.M1/, which are represented by different arcs in the interior
to a basepoint.

Remark 2.5 In the definition of the invariant '.M / we use the cup product on the
cohomology with rational coefficients. Usually one loses information when passing
from integral coefficients to rational coefficients. But in our situation the rational
cohomology contains essentially more information than the integral cohomology. This
can be illuminated by the following example.

Example Let

AD

�
2 0

3 1

�
I

then ACA0 (where A0 is the transpose of A) is unimodular and has signature 0.
Therefore by [11, Theorem 2] there is a simple 3–knot K � S5 with Seifert matrix
S –equivalent to A. The Alexander polynomial of K is �K .t/ D det.A � tA0/ D

2t2C 5t C 2. Let X be the complement of K ; then, by [4, Theorem 1.5], H2. zX /Š

Z
�

1
2

�
˚ Z

�
1
2

�
. Let M 5 be the result of surgery on K ; then �1.M / Š Z and

�2.M / Š H2. zM / Š H2. zX / Š ZŒ1=2�˚ Z
�

1
2

�
. We see that H 2. zM IZ/ D 0 but

H 2. zM IQ/ŠQ2 .

3 Proof of Theorem 2.4

Before giving the proof of the main theorem we first rephrase the bilinear form bM in
a more explicit form. Fix an identification �1.M /

Š
�!Fn and consider the classifying

map of the fundamental group f W M ! BFn D
Wn

iD1 S1
i . From the Leray–Serre

spectral sequence (with twisted coefficients, which we denote by an underline) of the fi-
bration zM!M!

Wn
iD1 S1

i , we get an isomorphism H5.M /!H1

�W
n S1IH4. zM /

�
.

Note that

H1

�_
n

S1
IH4. zM /

�
D Ker

�M
n

H4. zM /
d
�!H4. zM /

�
;

where d.x1; : : : ;xn/D
P

i.gi � 1/xi with g1; : : : ;gn the corresponding generators
of Fn . This leads to an injection H5.M / !

L
n H4. zM /. Denote the image of
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the fundamental class ŒM � by .�1; : : : ; �n/. Now denote by Ii.M / the symmetric
bilinear form H 2. zM IQ/�H 2. zM IQ/!Q given by Ii.˛; ˇ/D h˛[ˇ; �ii. From
the relation

P
i.gi � 1/�i D 0 we see that the bilinear forms satisfy the relationP

i Ii.˛; ˇ/D
P

i Ii.g
�
i ˛;g

�
i ˇ/.

Geometrically, we choose regular values qi 2 S1
i and let Fi D f

�1.qi/. Let E be
the complement of an open tubular neighborhood of

S
i Fi ; then E has boundary

@E D
S

i F˙i , where F˙i are the positive and negative boundary components of the
tubular neighborhood of Fi . We obtain zM by gluing infinitely many copies of E under
the deck transformation, ie zM D

S
g2Fn

Eg . Let M i !M be the Z–covering of
M corresponding to M !

Wn
iD1 S1

i ! S1
i ; then it’s easy to see that the Leray–Serre

spectral sequence of this covering gives an isomorphism H5.M /
Š
�!H4.M i/, with

ŒM � 7! ŒF�i �. Furthermore the commutative diagram

zM

!!

// M i

||

M

induces L
n H4. zM /

projection to the ith component
��

H5.M /

88

&&

H4. zM /i

��

H4.M i/

From this we see that each �i is represented by F�i in E � zM .

By [19, Proposition 3.3] we know that M has a CW–structure of the form M 'Wn
iD1 S1

i _
W

S2[ e3[ � � � . Therefore we have isomorphisms H4. zM /ŠH 1
c .
zM /Š

H 1
�W

n S1; ƒ
�
, where ƒ denotes the group ring ZŒFn�. Thus we have a surjec-

tion ƒn ! H4. zM /. Let ei be the standard basis of ƒn ; then ei is mapped to �i .
Therefore �1; : : : ; �n form a set of generators of the ƒ–module H4. zM /. For any
˛; ˇ 2 H 2. zM IQ/ and x 2 H4. zM /, we may assume that x D

P
i �i�i , with �i DP

g a
.i/
g �g 2ƒ. Then h˛[ˇ;xi D

˝
˛[ˇ;

P
i �i�i

˛
D
P

i;g a
.i/
g hg

�1˛[g�1ˇ; �ii DP
i;g a

.i/
g Ii.g

�1˛;g�1ˇ/. Thus we have shown:

Lemma 3.1 The sequence of bilinear forms .I1; : : : ; In/ contains the same informa-
tion as the bilinear pairing bM together with an identification of �1.M / with the free
group Fn .
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Next we relate the signature of forms Ii to the signatures of the fiber F4
i .

Lemma 3.2 The bilinear form Ii W H
2. zM IQ/�H 2. zM IQ/!Q has the same sig-

nature as the intersection form of F4
i .

Proof We use homology and cohomology with Q–coefficients.

Let E be the exterior of an open tubular neighborhood of
S

i Fi . Then the universal
cover zM is zM D

S
g2Fn

Eg , where each Eg is a copy of E . Since H2.Fi/ is finite-
dimensional, there exists a connected compact submanifold M0 �

zM which is a union
of finitely many of the Eg and Fi �M0 such that any x 2 Ker.H2.Fi/!H2. zM //

is in Ker.H2.Fi/!H2.M0//. Therefore

Ker.H2.Fi/!H2. zM //D Ker.H2.Fi/!H2.M0//:

Dually on cohomology, we have

Im.H 2. zM /!H 2.Fi//D Im.H 2.M0/!H 2.Fi//:

The boundary @M0 has a component F0 which is the image of Fi under a deck
transformation by g 2 �1.M /. There is a commutative diagram

H 2.M0/ //

%%

H 2.Fi/

g�

��

H 2.F0/

where g� is an isometry. So we have

H 2. zM /=rad.Ii/D Im.H 2. zM /!H 2.Fi//=rad

D Im.H 2.M0/!H 2.Fi//=rad

Š Im.H 2.M0/!H 2.F0//=rad:

Note that Ker.H2.@M0/!H2.M0// is a Lagrangian in H2.@M0/. Therefore

Ker.H2.F0/!H2.M0//D Ker.H2.@M0/!H2.M0//\H2.F0/

is isotropic. A standard argument in linear algebra shows that dually on cohomology,
Im.H 2.M0/!H 2.F0// has a complement which is isotropic. Let’s denote it by K ;
it generates a hyperbolic form H.K/ in H 2.F0/ and we have

Im.H 2.M0/!H 2.F0//=rad˚H.K/DH 2.F0/:

Therefore sign.Ii/D sign.H 2.F0//.
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The proof of Theorem 2.4 is based on modified surgery theory. We refer to [9] for
the details of this machinery for classifying manifolds. For the convenience of the
reader we summarize the basic concepts and the main theorem we apply. The basic
idea is to weaken the normal homotopy type, which is the first basic invariant of a
manifold M in classical surgery, to the normal k –type. This is roughly given by
the k –skeleton of M together with the restriction of the normal bundle. Since the
k –skeleton is not well-defined we pass to Postnikov towers instead or, better, Moore–
Postnikov decompositions. The normal bundle is equivalent to the normal Gauss map
�W M ! BO . The normal k –type is the k th stage of the Moore–Postnikov tower
of x� , which is a fibration pW Bk.M /! BO which is completely characterized by
the property that there is a lift x�W M ! Bk.M / of � which induces an isomorphism
on homotopy groups up to degree k and is surjective in degree k C 1. Note that if
k is larger than the dimension of M the normal k –type is equivalent to the normal
homotopy type, thus modified surgery generalizes classical surgery. Such a lift is called
a normal k –smoothing.

Given two normal k –smoothings .M; x�M / and .M 0; x�M 0/ in the same fibration Bk ,
the first step is to decide whether these normal k –smoothings are bordant. This means
that there is a coboundary W together with a lift of the normal Gauss map x�W (but this is
not highly connected). The main theorem of modified surgery is that if k� 1

2
dim M�1,

then there is a surgery obstruction in a monoid ldim MC1.�1.M /; w1.M //, from which
one can decide whether W is Bk –bordant to an s–cobordism.

Now we return to our situation of 5–manifolds. We will work with the normal 2–type
of M . Then the obstruction is actually in the classical Wall group L5.�1.M /; w1.M //.
We prepare the proof with a construction of the normal 2–type (cf [9, Proposition 2])
of a smooth manifold M (of arbitrary dimension), which might be of separate interest
elsewhere. Let uW M ! P be the second-stage Postnikov tower of M ; there are
unique cohomology classes wi 2H i.P IZ=2/ for i D 1; 2 such that u�.wi/Dwi.M /.
Let w1 �w2W P !K.Z=2; 1/�K.Z=2; 2/ be the classifying map of these classes,
and w1.EO/�w2.EO/W BO ! K.Z=2; 1/�K.Z=2; 2/ be the classifying map of
the universal Stiefel–Whitney classes. Consider the following pullback square:

B.�1.M /; �2.M /; k1; w1.M /; w2.M //
h

//

p

��

P

w1�w2

��

BO
w1.EO/�w2.EO/

// K.Z=2; 1/�K.Z=2; 2/

There is a lift x�W M ! B.�1.M /; �2.M /; k1; w1.M /; w2.M // of the normal Gauss
map �W M ! BO of M , which a 3–equivalence, and p is 3–coconnected. Thus we
have shown:

Geometry & Topology, Volume 21 (2017)



On 5–manifolds with free fundamental group and simple boundary links in S5 2999

Lemma 3.3 The fibration

pW B.�1.M /; �2.M /; k1; w1.M /; w2.M //! BO

is the normal 2–type of M . There is a corresponding construction in the topological
category, if one replaces BO by BTop.

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4 We begin with the smooth category. In our situation, the
second-stage Postnikov tower P of M is a fibration over

Wn
iD1 S1

i with fiber K D

K.�2.M /; 2/ and monodromy given by the �1.M /–module structure of �2.M /. We
denote the normal 2–type by pW B ! BO and recall that by the lemma above it is
determined by �1.M /, �2.M / as a ZŒ�1.M /�–module, and w2.M /.

Now we compute the bordism group �5.B;p/. Note that �5.B;p/D �
S
5
.M.p//.

We consider the fibration zB! B!
Wn

iD1 S1
i ; the Wang sequence of the generalized

homology theory �S
� is

� � � !�5. zB; zp/!�5.B;p/!
M

n

�4. zB; zp/! � � � ;

where zB is the pullback

zB //

zp

��

K

const�w2

��

BO // K.Z=2; 1/�K.Z=2; 2/

where w2 2 H 2.KIZ=2/ is the image of w2 2 H 2.P IZ=2/ under the injection
H 2.P IZ=2/! H 2.KIZ=2/. From this we have �n. zB; zp/ D �

spin
n .KI �/, where

the latter group is the bordism group of f W M ! K together with a spin struc-
ture on f ��˚ �M , where � is a complex line bundle over K such that w2.�/ D

w2 2H 2.KIZ=2/.

Now �2.M / is the direct limit of its finitely generated subgroups, and by assump-
tion �2.M / is a torsion-free abelian group, hence it is a direct limit of finitely gen-
erated free abelian groups lim

��!
G˛ . Therefore K is a direct limit of spaces K D

lim
��!

K.G˛; 2/. In general there is an Atiyah–Hirzebruch spectral sequence comput-
ing �

spin
n .X I �/ with E2 –terms Hp.X I�

spin
q /, and the differential d2 is dual to

Sq2
Cw2.�/ � ; see [18]. An easy computation with this spectral sequence shows that

�
spin
5
.K.G˛; 2/I �/D 0 for a finitely generated free abelian group G˛ , and henceforth

�
spin
5
.KI �/D lim

��!
�

spin
5
.K.G˛; 2/I �/D 0.
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Therefore we have an injection �5.B;p/!
L

n�
spin
4
.KI �/. There is a commutative

diagram

�5.B;p/ //

��

L
n�

spin
4
.KI �/

��

H5.P / //
L

n H4.K/

with the horizontal arrows injective and the vertical arrows the edge homomorphisms.
Following the definition of the boundary map in the Mayer–Vietoris sequence of the
bordism theory, we see that a bordism class Œf W M ! B� is mapped to

.Œh ıf W F1!K�; : : : ; Œh ıf W Fn!K�/ 2
M

n

�
spin
4
.KI �/;

where hW B! P is the map in the pullback square, � W P !
W

n S1 is the projection
map, and Fi D .� ı h ıf /�1.qi/ is the preimage of a regular value qi 2 S1

i . A direct
calculation with the Atiyah–Hirzebruch spectral sequence shows that a bordism class

Œ'W N 4
!K� 2�

spin
4
.K.G˛; 2/I �/

is determined by sign.N / and '�ŒN � 2 H4.K.G˛; 2//. Passing to the limit we see
that a bordism class Œ'W N 4 ! K� 2 �

spin
4
.KI �/ is determined by sign.N / and

'�ŒN � 2 H4.K/. Now H4.K/ D lim
��!

H4.K.G˛; 2// is a direct limit of free abelian
groups, hence is torsion-free, therefore '�ŒN � is determined by its image in H4.KIQ/,
which is further determined by the evaluation with elements in H 4.KIQ/. Note that
H 4.KIQ/ D H 4.K.�2.M /˝Q; 2/IQ/, where �2.M /˝Q is a Q–vector space.
From this it’s easy to see that the cup product map

H 2.KIQ/˝H 2.KIQ/
[
�!H 4.KIQ/

is surjective, therefore '�ŒN � 2 H4.KIQ/ is determined by h'�˛ [ '�ˇ; ŒN �i for
˛; ˇ 2H 2.KIQ/.

For a normal 2–smoothing x�W M ! B , let f W M x�
�!B

h
�!P be the composition;

we have a commutative diagram

zM

��

Qf
// K

��

M
f
// P

and f D Qf ı i W Fi !K for Fi �
zM . Notice that Qf �W H 2.KIQ/!H 2. zM IQ/ is

an isomorphism, therefore the evaluation hf �˛[f �ˇ; ŒFi �i D h Qf
�˛[ Qf �ˇ; i�ŒFi �i D

h Qf �˛[ Qf �ˇ; �ii is exactly the bilinear form Ii W H
2. zM IQ/˝H 2. zM IQ/!Q.
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By Lemma 3.2, sign.Fi/ equals the signature of the bilinear form Ii . This shows that
the bordism class ŒM; x�� is determined by the bilinear forms Ii for i D 1; : : : ; n.

Now, given two manifolds M and M 0 with isomorphic algebraic invariants and —
depending on an ordering of the boundary components in the bounded case — equal
boundary as in Theorem 2.4, they have the same normal 2–type .B;p/. We identify
the boundaries (one of the manifolds with opposite orientation) to obtain a closed
manifold and use the normal 2–smoothings x�W M !B and x�0W M 0!B to obtain an
element in �5.B;p/. We note here that we controlled the restriction of the normal
2–smoothings to the boundary by requiring that the identification of the boundary
components be compatible with the identification of the fundamental groups. By the
consideration above this is the zero element if our invariant ' agrees for M0 and M1

with the normal 2–smoothings chosen so that the invariants agree.

Let W be a B–null-bordism of the glued manifold, then there is an obstruction
�.W / 2 l6.Fn/. If this is elementary, then W is B–bordant rel boundary to an s–
cobordism [9, Theorem 3]. In our situation with �1.M /Š Fn , the Whitehead group
Wh.Fn/ D

L
Wh.Z/ D 0, and so we won’t have to consider the preferred bases.

Furthermore by the remark on [9, page 730] the obstruction sits in the ordinary L–
group L6.Fn/. This group is isomorphic to Z=2 and the obstruction is detected by the
Arf-invariant [2, Theorem 16]. Since there is a simply connected closed 6–manifold
with Arf-invariant 1 we can change W by disjoint sum with this, if necessary, to show
that �.W /D 0 2L6.Fn/. This implies that �.W / is elementary and finishes the proof
in the smooth case.

The proof of the topological case is similar, since the modified surgery method
also applies to topological manifolds (cf [9]). The only difference is that an ele-
ment Œ'W F4!K� 2�

TopSpin
4

.KI �/ is determined by the image of the fundamental
class '�ŒF � 2 H4.K/, the signature sign.F / and the Kirby–Siebenmann invariant
KS.F /. Each Fi has trivial normal bundle in M , therefore under the isomorphism
H 4.M IZ=2/

Š
�!

Ln
iD1 H 4.Fi IZ=2/, KS.M / is mapped to

.KS.F1/; : : : ;KS.Fn//:

The rest is the same as in the smooth case.

4 Proofs of Theorems 1.2 and 1.3

The Seifert matrix of a boundary link is defined as follows (cf [12]): choose Seifert
manifolds Fi of the link L; then there are linking forms

�ij W Hq.Fi/˝Hq.Fj /! Z; .˛; ˇ/ 7!L.z1; z2/;
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defined by linking numbers between z1 , representing ˛ , and z2 , representing iCˇ .
With respect to a basis of the torsion-free part of Hq.Fi/ the linking forms �ij are
represented by a matrix Aij ; then the Seifert matrix D D .Aij / of L is an integral
square matrix formed by the blocks Aij , and D is .�1/q –symmetric. Different choices
of Seifert manifolds will lead to different Seifert matrices, but they are related by a
sequence of “algebraic moves” and are l –equivalent. The l –equivalence class of the
Seifert matrix D is a well-defined invariant of L [12, Theorem 1].

Given a square integral matrix D D .Aij /, consisting of matrices blocks Aij , the
unimodularity condition of D requires that Aii CA0ii for i D 1; : : : ; n and DCD0

are unimodular. It’s shown in [12] that there is a boundary simple .2q�1/–link L

whose Seifert matrix is D D .Aij / when q � 3 [12, Theorem 1].

Given a link f W
Sn

iD1 S3 ,! S5 we note that up to isotopy there is a unique tubular
neighborhood U of Image.f /. We denote the complement of the interior of this
tubular neighborhood by Xf and use the tubular neighborhood to identify @Xf withS

n.S
1 �S3/.

If two links f W
Sn

iD1 S3 ,! S5 and f 0W
Sn

iD1 S3 ,! S5 are isotopic, the isotopy
extension theorem implies that the identification @Xf ! @Xf 0 extends to a diffeo-
morphism Xf ! Xf 0 . In turn, if there is an orientation-preserving diffeomorphism
gW Xf ! Xf 0 extending the identification on the boundary, then we can extend this
by the identification on the tubular neighborhoods to an orientation-preserving diffeo-
morphism ygW S5 ! S5 mapping the first link to the second. Now we use the fact
that �0.DiffC.S5// is isomorphic to the group of homotopy 6–spheres (using the
h–cobordism theorem and Cerf’s theorem [3] that pseudoisotopy implies isotopy) and
that the group of 6–dimensional homotopy spheres is trivial [8]. Thus the two links
are isotopic.

Now note that the link complement X has free fundamental group of rank n, generated
by the circles in the boundary components. Furthermore, from Farber [5, Theorem 5.7]
we know that �2 of the complement of a simple boundary link is torsion-free. Thus
Theorem 2.4 applies to complements of simple boundary 3–links in S5 .

The meridians give rise to an identification �1.Xf /
Š
�!Fn ; under this identification, by

the reinterpretation of the invariants in the beginning of Section 3, we have an invariant

 .Xf /D .�2.Xf /; bi W �2.Xf /
�
��2.Xf /

�
!Q; i D 1; : : : ; n/:

Here we consider �2.Xf / as an Fn –module and � stands for the Q–dual. The link
complementXf is a Spin–manifold, thus Theorem 2.4 implies that this invariant deter-
mines the oriented diffeomorphism type mod boundary, meaning that the identification
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on the boundary extends to an orientation-preserving diffeomorphism between the
whole manifolds. Thus we have proved the following:

Lemma 4.1 Two simple boundary 3–links f W
S

n S3 ,! S5 and f 0W
S

n S3 ,! S5

are isotopic if and only if under certain identifications of �1.Xf / and �1.Xf 0/ with Fn

coming from enumerating the link components,  .Xf / and  .Xf 0/ are isomorphic.

Proof of Theorem 1.2 By Lemma 4.1, to prove that the l –equivalence class of the
Seifert matrices determines the isotopy type of the link, we need to show that the
l –equivalence class of the Seifert matrices determines  .Xf /. Let Fi be Seifert
manifolds of a link given by an embedding f . Let Xf be the complement of the
tubular neighborhood of the link; then the universal cover zXf is obtained by gluing
infinitely many copies of Y via the deck transformation, where Y is obtained from Xf
by cutting up along the Seifert manifolds. We identify �1.Xf / with Fn by sending the
meridian (with the induced orientation from that of S5 and S3 ) of the i th component of
the link to the i th standard generator ti of Fn . The Mayer–Vietoris sequence computing
H2. zXf / is

nM
iD1

H2.Fi/˝Z ZŒFn�
'
�!H2.Y /˝Z ZŒFn�!H2. zXf /! 0;

where, under the basis of H2.Fi/ and the Alexander dual basis of H2.Y /, ' is given
by .Aij � tiA

0
ij /. Therefore the ZŒFn�–module H2. zXf / is determined by D D .Aij /.

Also we see that the map H2.Fi/! H2. zXf / is determined by D D .Aij /, hence
the dual map H 2. zXf IQ/!H 2.Fi IQ/. And the intersection form of Fi is given by
AiiCA0ii . It’s easy to see from the definition that the bilinear pairing bi is given by the
composition of H 2. zXf IQ/!H 2.Fi IQ/ with the intersection form on H 2.Fi IQ/.
Therefore the bilinear form bi is determined by the Seifert matrix D D .Aij /.

Given two simple boundary 3–links L0 and L1 , with l –equivalent Seifert matrices
D0 D .A

.0/
ij / and D1 D .A

.1/
ij /, then by [12, Lemma 1] we may choose Seifert

manifolds fF0
i g and fF1

i g of L0 and L1 , respectively, such that the corresponding
Seifert matrices are equal. Then, by the above discussion, L0 and L1 are equivalent.

Using a stabilization trick introduced by Levine in the case of knots, we can extend
the construction of links with given Seifert matrix in [12] to the case q D 2. The
construction goes as follows.

Firstly, by [11, Lemma 16] we may find embeddings F4
i �B5

i � S5 with @Fi D S3 a
simple 3–knot whose Seifert matrix Ai is S –equivalent to Aii . After stabilization by
connected sum with copies of S2�S2 , these Seifert manifolds F4

i are diffeomorphic to
connected sums of S2�S2 and the Kummer surface with a 4–ball B4 deleted. These
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smooth 4–manifolds all have a handle decomposition of the form FiDD4[h1[� � �[hk

where the hi are 2–handles (see eg [14]). Then by the same argument in the proof of
[12, Theorem 1] we can show that the new Seifert matrix D0 , which is l –equivalent
to D , is the Seifert matrix of a boundary simple 3–link L.

Now we describe the Milnor pairing associated to an m�m integral matrix DD .Aij /

satisfying the unimodularity conditions. Let 'D W .ZŒFn�/
m! .ZŒFn�/

m be the ZŒFn�–
module map given by the matrix .Aij � tiA

0
ij /. Assume the square matrix Aii has

dimension mi ; then Aii CA0ii defines a symmetric bilinear form Ii on Zmi . Let �i
be the composition

�i W Z
mi

L
jAij
���!

M
j

Zmj !

M
j

Zmj ˝Z ZŒFn�D .ZŒFn�/
m
! coker'D

The Q–dual of �i is ��i W .coker'D/
�!Qmi . Let C1D .ZŒFn�/

n d1
�!C0DZŒFn� be the

standard chain complex computing H�.BFnIZŒFn�/, fei j iD1; : : : ; ng be the standard
basis of .ZŒFn�/

n , fe�i j i D 1; : : : ; ng be the dual basis, and Œe�i � 2H 1.BFnIZŒFn�/

be the corresponding cohomology class. Then the bilinear form

bD W .coker'D/
�
� .coker'D/

�
! .H 1.BFnIQŒFn�//

�

is given by hbD.u; v/; Œe
�
i �i D Ii.�

�
i .u/; �

�
i .v//. (See Lemma 3.1.)

Proof of Theorem 1.3 There is a surjective map from the set of isotopy classes of
simple boundary n–components links L� S5 to the set of diffeomorphism classes of
smooth oriented closed 5–manifolds M 5 with free fundamental group of rank n and
H2.M IZ/D 0. This is given by surgery: given a link L, we may do surgery on L and
obtain a 5–manifold M with H2.M IZ/D 0. If L is simple boundary, then it’s easy
to see that �1.M / is isomorphic to Fn . The meridians of the link components form an
embedding

S
n S1 �M , and these circles generate �1.M /. On the other hand, given

such an M 5 we may choose an embedding
S

n S1 �M 5 such that the circle gener-
ate �1.M /. Then we do surgery on this embedding and obtain S5 ; the complementary
spheres

S
n S3 � S5 form a link L. Clearly this is a simple boundary link.

By comparing the definitions, we see that the generalized Milnor pairing '.M / of M

is the same as the generalized Milnor pairing  .Xf / of the link complement defined
before Lemma 4.1. In the proof of Theorem 1.2 we have shown how the generalized
Milnor pairing  .Xf / is determined by the Seifert matrix D D .Aij /. This is ex-
actly .Fn; coker'D ; bD/, which was described before the proof of Theorem 1.3. By
Theorem 1.2, all such matrices satisfying the unimodular conditions are realized by
simple boundary links. This finishes the proof.
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Appendix

In this appendix we show some basic properties of the class of manifolds mentioned
in Remark 1.4, ie oriented closed 5–manifolds M with �1.M /Š Z and �2.M / a
finitely generated abelian group.

Lemma A.1 Let M 5 be a 5–manifold with �1.M / D Z and �2.M / a finitely
generated abelian group; then all higher homotopy groups �i.M / for i � 2 are finitely
generated abelian groups.

Proof By Serre’s mod C theory [16], we only need to show that Hi. zM / for i � 3 are
finitely generated abelian groups. The only problem is H3. zM /. We have H3. zM /D

H3.M Iƒ/ Š H 2.M Iƒ/, where ƒ D ZŒZ� D ZŒt; t�1� is the group ring. By [19,
Proposition 3.3], the CW–structure of M has the form

M D S1
_

�_
S2
�
[ � � � :

Therefore the cellular chain complex C�.M Iƒ/ has the form

� � � ! C3
d
�!C2

0
�!C1! C0:

From the exact sequence C3
d
�!C2! coker d ! 0 we have the dual exact sequence

0 ! .coker d/� ! C �
2

d�
�! C �

3
, hence H 2.M Iƒ/ D ker d� D .coker d/� . Now

coker d DH2.M Iƒ/D�2.M / is a finitely generated abelian group; the proof is done
given the following lemma.

Lemma A.2 If a ƒ–module G is a finitely generated abelian group, then

Homƒ.G; ƒ/D 0:

Proof The torsion subgroup T is a sub-ƒ–module and the exact sequence

0! T !G!G=T ! 0

induces an exact sequence

0! Homƒ.G=T; ƒ/! Homƒ.G; ƒ/! Homƒ.T; ƒ/;

therefore Homƒ.G=T; ƒ/ Š Homƒ.G; ƒ/ since Homƒ.T; ƒ/ D 0. Therefore we
may assume that G is a finitely generated free abelian group.

Let x1; : : : ;xn be a basis of G ; a ƒ–module structure on G is given by A 2GLn.Z/,
which specifies the action of the generator t on the basis. A ƒ–homomorphism G!ƒ

is given by the images v1; : : : ; vn 2ƒ of x1; : : : ;xn . The n–tuple v D .v1; : : : ; vn/

should satisfy the equation .tI �A/v D 0. Clearly det.tI �A/¤ 0, thus the equation
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has no nonzero solution in the quotient field (ƒ is an integral domain), hence also has
no nonzero solution in ƒ. Therefore Homƒ.G; ƒ/D 0.

Now let M 5 be a closed orientable 5–manifold with �1.M / D Z and �2.M / a
finitely generated abelian group. Fix an orientation of M and a generator t of
�1.M /; these choices determine a generator (a fundamental class) �M 2H4. zM /DZ.
Then, on the finitely generated free abelian group H 2. zM /, a symmetric bilinear
form H 2. zM / � H 2. zM / ! Z is defined by .˛; ˇ/ 7! h˛ [ ˇ; �M i. By the fol-
lowing proposition, we see that this bilinear form is unimodular and �2.M / is a
free abelian group. Thus this bilinear form induces a symmetric bilinear form on
�2.M /D �2. zM /DH2. zM /DH 2. zM /� , denoted by I.M /.

Proposition A.3 Let M 5 be an orientable 5–manifold with �1.M /DZ and �2.M /

a finitely generated abelian group. Then we have the following:

(1) �2.M / is torsion-free.
(2) The symmetric bilinear form I.M / is unimodular; I.M / is even if and only if

w2.M /D 0.
(3) hp1.M /; �M i D 3 � sign.I.M //, where �M 2 H4. zM / is the generator deter-

mined by the orientation of M and the generator t of �1.M /.

Proof Consider M � CP2 . By Lemma A.1 and Browder and Levine’s fibration
theorem [1], we know that this manifold is a fiber bundle over S1 with simply connected
fiber F8 . Therefore zM �CP2 is homotopy equivalent to F .

(1) By the Künneth formula and Poincaré duality, we have

H 3. zM /ŠH 7. zM �CP2/ŠH 7.F /ŠH1.F /D 0:

This proves that tors�2.M /D tors H2. zM /D tors H 3. zM /D 0.

(2) On H 4. zM �CP2/ there is defined a symmetric bilinear form I.M �CP2/, which
is isometric to the tensor product of I.M / and the intersection form of CP2 plus a
hyperbolic form. On the other hand, the bilinear form I.M �CP2/ is isometric to
the intersection form of F , which is unimodular by Poincaré duality. Therefore the
bilinear form I.M / is unimodular.

From the discussion above we see that I.M / is even if and only if the Wu class v4.F /

is zero. The Wu classes and Stiefel–Whitney classes of M and F are related as follows.
Let i W F !M �CP2 be the inclusion of the fiber; then TF˚RD i�T .M �CP2/.
We have

w2.M /D v2.M /; w3.M /D Sq1w2.M /; w4.M /D w2.M /2;

v2.F /D w2.F /D i�.w2.M /Cw2.CP2//; w3.F /D Sq1w2.F /C v3.F /I
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on the other hand, w3.F /D i�w3.M /, from which we have

v3.F /D i�.Sq1w2.M /Cw3.M //:

By the Wu formula

w4.F /D v2.F /
2
CSq1v3.F /C v4.F /I

on the other hand,

w4.F /D i�.w4.M /Cw2.M /w2.CP2/Cw4.CP2//:

Comparing these two equations we have

v4.F /D i�.w2.M /w2.CP2//:

But H 3.F IZ2/ Š H 3. zM � CP2IZ2/ Š H 3. zM IZ2/ D 0 (the last identity is a
consequence of the fact that H2. zM / is free and H3. zM /D 0; see Lemma A.1). From
the Wang sequence we see that i�W H 4.M � CP2IZ2/ ! H 4.F IZ2/ is injective.
Thus v4.F /D 0 if and only if w2.M /D 0.

(3) Since I.M / and I.M �CP2/ differ by a hyperbolic form, we have

sign.I.M //D sign.I.M �CP2//D sign.F /D 1
45
h7p2.F /�p1.F /

2; ŒF �i;

where the last identity is the Hirzebruch index formula. Since F has trivial normal
bundle in M �CP2 , we have

p1.F /D i�p1.M �CP2/D i�.p1.M /Cp1.CP2//;

p2.F /D i�p2.M �CP2/D i�.p1.M /p1.CP2//:

A straightforward calculation shows that 3 sign.I.M //D hp1.M /; �M i.
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