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On the Fano variety of linear spaces contained in
two odd-dimensional quadrics

CAROLINA ARAUJO

CINZIA CASAGRANDE

We describe the geometry of the 2m–dimensional Fano manifold G parametrizing
.m�1/–planes in a smooth complete intersection Z of two quadric hypersurfaces
in the complex projective space P2mC2 for m� 1 . We show that there are exactly
22mC2 distinct isomorphisms in codimension one between G and the blow-up of P2m

at 2mC 3 general points, parametrized by the 22mC2 distinct m–planes contained
in Z , and describe these rational maps explicitly. We also describe the cones of nef,
movable and effective divisors of G , as well as their dual cones of curves. Finally,
we determine the automorphism group of G .

These results generalize to arbitrary even dimension the classical description of
quartic del Pezzo surfaces (mD 1).

14E30, 14J45; 14M15, 14N20, 14E05

1 Introduction

In this paper we describe the geometry of the 2m–dimensional Fano manifold G.2m/

parametrizing .m�1/–planes in a smooth complete intersection of two quadric hyper-
surfaces in the complex projective space P2mC2 for m�1. The case mD1 is classical:

1.1 The surface SDG.2/ is itself a smooth complete intersection of two quadric hyper-
surfaces in P4 , and hence a quartic del Pezzo surface. It is well-known that �.S/D 6,
and that the cone of effective curves of S is generated by the classes of its 16 lines.
These 16 lines have a very special incidence relation: each line intersects properly
exactly 5 lines. The del Pezzo surface S can also be described as the blow-up of P2 at
5 points in general linear position. In fact, there are 16 different ways to realize S as
this blow-up: For every line `�S , there is a birational morphism �`W S!P2 , unique
up to projective transformation of P2 , contracting the 5 lines incident to ` to points
p`1; : : : ; p

`
5 2 P2 in general linear position. The image of ` under �` is the unique

conic through the pi , and the image of the other 10 lines are the 10 lines through 2
of the pi . Moreover, for any two lines `; `0 � S , the sets of points fp`1; : : : ; p

`
5g and

fp`
0

1 ; : : : ; p
`0

5 g are related by a projective transformation of P2 .
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The automorphism group Aut.S/ of S is also well understood (see for instance
Dolgachev [12, Section 8.6.4]). In order to describe it, we view Pic.S/ with the
intersection product as a unimodular lattice. Its primitive sublattice K?S is a D5–
lattice. We denote by W.D5/ the Weyl group of automorphisms of this lattice. For any
� 2 Aut.S/, the induced isomorphism ��W Pic.S/! Pic.S/ preserves the intersection
product and fixes KS . This yields an inclusion of groups Aut.S/ ,! W.D5/ Š

.Z=2Z/4 ÌS5 , whose image contains the normal subgroup .Z=2Z/4 . Moreover, if S
is general, then Aut.S/Š .Z=2Z/4 .

We will show that the picture described in Section 1.1 above generalizes to arbitrary
even dimension. We start by fixing some notation. Let m be a positive integer, set
nD 2m and fix nC 3 distinct points in P1 , up to order and projective equivalence,

.�1 W 1/; : : : ; .�nC3 W 1/ 2 P1:

With this fixed data, we introduce the two main characters of this paper, G.n/ and X .n/ :

1.2 (G.n/ ) Let Z.n/ be a smooth complete intersection of the two quadric hypersur-
faces in PnC2

Q1 W

nC3X
iD1

x2i D 0 and Q2 W

nC3X
iD1

�ix
2
i D 0:

(Up to projective transformation of PnC2 , any smooth complete intersection of two
quadric hypersurfaces can be written in this way; see Section 2.) Then consider the
subvariety G.n/ of the Grassmannian Gr.m� 1;PnC2/ parametrizing .m�1/–planes
contained in Z.n/ . It is well known that G.n/ is a smooth n–dimensional Fano variety
with Picard number �.G.n//D nC 4 (see Section 3 and references therein).

1.3 (X .n/ ) Fix a Veronese embedding �nW P1 ,!Pn , and set pi D �n..�i W 1//2Pn .
The points p1; : : : ; pnC3 are in general linear position. (In fact, this gives a natural
correspondence between sets of nC3 distinct points in P1 , up to projective equivalence,
and nC 3 points in general linear position in Pn , up to projective equivalence.) Let
X .n/ be the blow-up of Pn at the points p1; : : : ; pnC3 .

Our starting point is the following:

1.4 Theorem (Bauer [3], Casagrande [8]) The varieties G.n/ and X .n/ are isomor-
phic in codimension 1.

The proof of Theorem 1.4 makes use of moduli spaces of parabolic vector bundles.
By [8], G.n/ is isomorphic to the moduli space M.n/ of stable rank 2 parabolic vector
bundles on .P1; .�1 W 1/; : : : ; .�nC3 W 1// of degree zero and weights

�
1
2
; : : : ; 1

2

�
. On

the other hand, by [3] (see also Mukai [22, Theorem 12.56]), X .n/ is isomorphic to the
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moduli space of stable rank 2 parabolic vector bundles on .P1; .�1 W 1/; : : : ; .�nC3 W 1//
of degree zero and weights

�
1
n
; : : : ; 1

n

�
, which is isomorphic to M.n/ in codimension 1.

This proof, however, does not give much information about the possible isomorphisms
in codimension 1 between G.n/ and X .n/ . We call an isomorphism in codimen-
sion 1 a pseudoisomorphism. In this paper we describe explicitly the birational maps
G.n/ Ü Pn inducing a pseudoisomorphism G.n/ Ü X .n/ . As we shall see, up to
automorphism of Pn , there are exactly 2nC2 distinct such birational maps, parametrized
by the 2nC2 linear copies of Pm contained in Z.n/ . In order to state this precisely,
we need to recall some facts about Z.n/ (see Section 2 and references therein).

The set Fm.Z.n// of m–planes in Z.n/ has cardinality 2nC2 . For each iD1; : : : ; nC3,
consider the involution �i W Z

.n/ ! Z.n/ switching the sign of the coordinate xi .
The group generated by these involutions is isomorphic to .Z=2Z/nC2 , and acts
on Fm.Z.n// freely and transitively. For every subset I � f1; : : : ; nC 3g, we set
�I WD

Q
i2I �i D

Q
j2Ic �j . For every M 2 Fm.Z.n// and I � f1; : : : ; nC 3g with

jI j � mC 1, we have dim.M \ �I .M// D m� jI j. Consider the incidence variety
I WD f.ŒL�; p/ 2G.n/ �Z.n/ j p 2 Lg and the associated diagram:

I
�

}}

e

!!

G.n/ Z.n/

We show that for every m–plane M 2 Fm.Z.n//, EM WD ��.e�.M// is the class
of a unique prime divisor on G.n/ , which we denote by the same symbol (see
Proposition 5.5).

Now we can state our main result. See Theorem 5.7 for more details, including explicit
descriptions of the linear systems on G.n/ defining the birational maps G.n/ Ü Pn .

1.5 Theorem (Theorem 5.7 and Corollary 5.8) Let M 2 Fm.Z.n//, in the nota-
tion above. Up to a unique permutation of the pi , there is a unique birational map
�M W G

.n/ Ü Pn , inducing a pseudoisomorphism G.n/ ÜX .n/ , with the following
properties:

� The image of EM under �M is Secm�1.C /, the .m�1/st secant variety of the
unique rational normal curve C through p1; : : : ; pnC3 in Pn .

� The map �M contracts E�i .M/ to the point pi 2 Pn .
� For each I � f1; : : : ; nC 3g of even cardinality jI j � n, the image of E�I .M/

under �M is the join of hpi ii2I and Secs�1.C /, where s D 1
2
.n� jI j/.

Moreover, any pseudoisomorphism between G.n/ and any blow-up zX of Pn at nC 3
points is of this form. In particular, zX ŠX .n/ .
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As immediate corollaries of Theorem 1.5, we obtain the following:

1.6 Corollary Let P1;P2 � Pn be subsets of nC 3 distinct points and let XPi
be

the blow-up of Pn along Pi for i D 1; 2. Assume that the points in P1 are in general
linear position. Then the following are equivalent:

(i) XP1
ŠXP2

.

(ii) XP1
and XP2

are pseudoisomorphic.

(iii) P1 and P2 are projectively equivalent (as unordered sets).

1.7 Corollary Let Si D f.�i1 W 1/; : : : ; .�
i
nC3 W 1/g � P1 for i D 1; 2 be subsets of

nC 3 distinct points. For each i 2 f1; 2g, let ZSi
� PnC2 be the smooth complete

intersection of the two quadrics

Q1 W

nC3X
jD1

x2j D 0 and Qi2 W

nC3X
jD1

�ijx
2
j D 0;

and let GSi
be the variety of .m�1/–planes contained in ZSi

. Then the following are
equivalent:

(i) GS1
ŠGS2

.

(ii) GS1
and GS2

are pseudoisomorphic.

(iii) S1 and S2 are projectively equivalent (as unordered sets).

Notice that Corollary 1.6 is a classical result, originally due to Coble (see Dolgachev and
Ortland [14]). See also Biswas, Holla and Kumar [4] for a result related to Corollary 1.7,
in terms of moduli spaces of rank 2 parabolic vector bundles on P1 .

To prove Theorem 1.5, we determine the nef cone of G.n/ explicitly, and then compare
it with the Mori chamber decomposition of the effective cone of X .n/ described by
Mukai [23]. This decomposition encodes the nef cones of all varieties pseudoisomorphic
to X .n/ . In order to determine the cone of effective curves and the nef cone of G.n/ ,
we generalize to arbitrary dimension a construction of Borcea [6] in dimension nD 4.
We define isomorphisms

H 2n�2.G.n/;Z/
˛
�!Hn.Z.n/;Z/

ˇ
�!H 2.G.n/;Z/

such that ˇ.M/ D EM and ˛�1.M/ is the class of a line on the dual m–plane
M � �G.n/ for every M 2 Fm.Z.n//. These isomorphisms are dual with respect to
the intersection products, ie x � ˇ.y/ D ˛.x/ � y for every x 2H 2n�2.G.n/;Z/ and
y 2 Hn.Z.n/;Z/. They allow us to describe explicitly special cones of curves and
divisors on G.n/ :
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1.8 Theorem (Theorem 5.1 and Proposition 5.5) Let E �Hn.Z;R/ be the polyhe-
dral cone generated by the classes fM gM2Fm.Z/ , and denote by E_ �Hn.Z;R/ its
dual cone. Then E_ � E , and the cones of nef and effective divisors of G.n/ and their
dual cones of effective and moving curves satisfy

Nef.G.n//D ˇ.E_/� ˇ.E/D Eff.G.n//;

Mov1.G.n//D ˛�1.E_/� ˛�1.E/D NE.G.n//:

We give a geometric description of the extremal rays and facets of these cones, and the
associated contractions in Section 6. In Proposition 6.6 and its following subsection, we
also describe the cone Mov1.G.n// of movable divisors of G.n/ , and give a geometric
description of the curves corresponding to its facets.

We end this paper by determining the automorphism group of the Fano variety G.n/ ,
generalizing the description of the automorphism group of a quartic del Pezzo surface in
Section 1.1. In what follows, we write W.DnC3/ for the Weyl group of automorphisms
of a DnC3–lattice, and we denote by the same symbol the involution of G.n/ induced
by the involution �i of Z.n/ .

1.9 Proposition (Proposition 7.1) There is an inclusion of groups

Aut.G.n// ,!W.DnC3/Š .Z=2Z/
nC2 ÌSnC3;

whose image contains the normal subgroup .Z=2Z/nC2 generated by the involutions
�i of G.n/ .

Moreover, if the points .�1 W 1/; : : : ; .�nC3 W 1/ 2 P1 are general, then Aut.G.n//Š
.Z=2Z/nC2 .

This paper is organized as follows. Section 2 is dedicated to smooth complete intersec-
tions Z � PnC2 for nD 2m of two quadric hypersurfaces in even-dimensional projec-
tive spaces. In particular, we investigate the set Fm.Z/ of m–planes in Z , and the cone
it spans in Hn.Z;R/. In Section 3, we address the Fano variety G of .m�1/–planes
in Z . We construct the isomorphisms H 2n�2.G;Z/ ˛

�!Hn.Z;Z/
ˇ
�!H 2.G;Z/,

and determine some extremal rays of the cone of effective curves of G . In Section 4, we
consider the blow-up X of Pn at nC 3 points in general linear position. We describe
the Mori chamber decomposition of Eff.X/, following Mukai [23] and Bauer [3].
From this we can write the nef cone of G in terms of a natural basis for N 1.X/. In
Section 5, we put together the results from the previous sections to prove Theorem 1.5.
In Section 6, we study cones of curves and divisors in G , giving a geometric description
of their facets and extremal rays. In Section 7, we describe the automorphism group of
the Fano variety G .
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Notation and conventions We always work over the field C of complex numbers.

Given a subvariety Z � Pn and a nonnegative integer d < n, we denote by Fd .Z/
the closed subset of the Grassmannian Gr.d;Pn/ parametrizing d –planes contained
in Z .

Acknowledgements We thank Ana-Maria Castravet, Alex Massarenti, Elisa Post-
inghel and the referee for useful comments and discussions.

Araujo was partially supported by CNPq and Faperj Research Fellowships and an ICTP
Simons Associateship. This work started during Araujo’s visit to Università di Torino;
the authors are grateful to INdAM (Istituto Nazionale di Alta Matematica) for the
support for this visit.

2 Smooth complete intersections of two quadrics

In this section we describe the geometry of smooth complete intersections of two
quadric hypersurfaces in even dimensional complex projective spaces. Many of the
results are well known and can be found in Reid [25, Chapter 3] or Borcea [6, Section 1],
to which we refer for details and proofs. See also the recent paper by Dolgachev and
Duncan [13] for a study of these complete intersections over a field of characteristic 2.

Let n D 2m � 2 be an even integer, and let Z D Q1 \Q2 � PnC2 be a smooth
complete intersection of two quadric hypersurfaces. Up to a projective transformation
of PnC2 , we can assume that the quadrics have equations

(2.1) Q1 W

nC3X
iD1

x2i D 0; Q2 W

nC3X
iD1

�ix
2
i D 0;

with �i ¤ �j if i ¤ j . Thus Z is determined by nC 3 distinct points

.�1 W 1/; : : : ; .�nC3 W 1/ 2 P1:

Acting on these points by permutations and projective automorphisms of P1 yields
projectively isomorphic varieties Z � PnC2 .

2.2 (involutions and double covers) For each i D 1; : : : ; nC3, let �i W Z!Z be the
involution switching the sign of the coordinate xi . Then �1; : : : ; �nC3 commute and
have the unique relation �1 � � � �nC3D IdZ , so they generate a subgroup W 0 of Aut.Z/
isomorphic to .Z=2Z/nC2 . For every subset I �f1; : : : ; nC3g, we set �I WD

Q
i2I �i .

Notice that �I D �Ic .
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For each i D 1; : : : ; nC3, the projection from the i th coordinate point in PnC2 yields
a double cover �i W Z!Qn , where Qn�PnC1 is the smooth quadric having equationP
j¤i .�j � �i /x

2
j D 0 for projective coordinates .x1 W � � � W Oxi W � � � W xnC3/ in PnC1 .

The involution associated to this double cover is �i .

2.3 (the set of m–planes in Z ) Consider the set Fm.Z/ of m–planes in Z . It is a
finite set with cardinality 2nC2 . The group W 0 generated by the involutions �i acts
on Fm.Z/ freely and transitively.

For every M 2 Fm.Z/ and I � f1; : : : ; nC 3g with jI j �mC 1, we have

(2.4) dim.M \ �I .M//Dm� jI j:

2.5 For each i D 1; : : : ; nC 3, the double cover �i W Z!Qn induces a map

Fm.Z/! Fm.Qn/:

Recall that Fm.Qn/ has two connected components T ' and T  , and that two
m–planes ƒ;ƒ0 � Qn belong to the same connected component if and only if
dim.ƒ\ƒ0/ � m mod 2 (see for instance Reid [25, Theorem 1.2(b)] or Harris [17,
Theorem 22.14]).

Let M 2 Fm.Z/. We have �i .�i .M// D �i .M/. On the other hand, if j is in
f1; : : : ; nC 3g X fig, then M and �j .M/ intersect in codimension one, by (2.4), and
the same holds for �i .M/ and �i .�j .M//. Therefore �i .M/ and �i .�j .M// belong
to different connected components of Fm.Qn/. In general, if I � f1; : : : ; nC 3g does
not contain i , then �i .M/ and �i .�I .M// belong to the same connected component
of Fm.Qn/ if and only if jI j is even. This shows that the image of Fm.Z/ in Fm.Qn/
consists of 2nC1 points, half in each connected component.

2.6 (the cohomology group Hn.Z;Z/) The cohomology group Hn.Z;Z/ is iso-
morphic to ZnC4 , and is generated over Z by the classes of the m–planes in Z .
Moreover Hn.Z;Z/ is a unimodular lattice with respect to the intersection form.

For every M 2 Fm.Z/ we denote by the same symbol M the corresponding funda-
mental class in Hn.Z;Z/. We denote by � 2Hn.Z;Z/ the class of a codimension-m
linear section of Z � PnC2 , so that

�2 D 4 and � �M D 1 for every M 2 Fm.Z/:

The sublattice �? (namely the primitive part Hn.Z;Z/0 ) is a DnC3–lattice. We
denote by W.DnC3/ its Weyl group of automorphisms, which is generated by the
reflections in the roots of �? . It is the full group of automorphisms of the triple
.Hn.Z;Z/; � ; �/, and it is isomorphic to .Z=2Z/nC2 ÌSnC3 .
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The group W 0 Š .Z=2Z/nC2 generated by the involutions �i acts naturally and
faithfully on Hn.Z;Z/. We still denote by �I the involution of Hn.Z;Z/ induced
by �I W Z!Z . So we view W 0 as a subgroup of W.DnC3/. It is a normal subgroup
with quotient W.DnC3/=W 0 isomorphic to the symmetric group SnC3 .

For every M 2 Fm.Z/ and i; j 2 f1; : : : ; nC 3g with i ¤ j , we have

(2.7) �DM C �i .M/C �j .M/C �ij .M/:

2.8 Notation Fix M0 2 Fm.Z/. For every i D 1; : : : ; nC 3, we set Mi WD �i .M0/.
More generally, for every subset I � f1; : : : ; nC 3g, we set MI WD �I .M0/. Notice
again that MI DMIc . We also set

(2.9) "i WDM0CMi �
1
2
� 2Hn.Z;R/ for every i D 1; : : : ; nC 3:

Then f�; "1; : : : ; "nC3g is an orthogonal basis for Hn.Z;R/, which is useful for
computations. We have

(2.10) �2 D 4 and "2i D .�1/
m for every i D 1; : : : ; nC 3:

In particular, the intersection form on Hn.Z;R/ is positive definite when n� 0mod 4,
and has signature .1; nC 3/ when n� 2 mod 4. Notice that this basis depends on the
choice of M0 .

Let G0 � W.DnC3/ be the stabilizer of M0 . Then G0 Š SnC3 and G0 acts by
(the same) permutations both on fM1; : : : ;MnC3g and on f"1; : : : ; "nC3g. We have
W.DnC3/DW

0ÌG0 . Moreover, for every I � f1; : : : ; nC3g of even cardinality, we
have

(2.11) �I ."i /D

�
"i if i … I;
�"i if i 2 I:

Thus we see the usual action of W.DnC3/ on the linear span of "1; : : : ; "nC3 by
permutation and even sign changes of "1; : : : ; "nC3 (see for instance Humphreys [19,
Section 12.1]).

We collect some identities in Hn.Z;R/ that we will use in later computations.

MI D
1

4
�C

.�1/jI j

2

�X
j…I

"j �
X
i2I

"i

�
for every I � f1; : : : ; nC 3g;(2.12)

MI D
1

nC1

�
.nC 2� jI j/

�
1

2
��

X
i2I

Mi

�
C .jI j � 1/

X
j2I

c

Mj

�
(2.13)

for every I � f1; : : : ; nC 3g with even cardinality,
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"i D
1

2.nC1/
��

1

nC1

nC3X
jD1

Mj CMi for every i D 1; : : : ; nC 3:(2.14)

Our next goal is to describe the polyhedral cone E in Hn.Z;R/ generated by the classes
of m–planes in Z . As we shall see below, this is a cone over a .nC3/–dimensional
demihypercube. Before we start discussing the cone E , we gather some results about
demihypercubes.

2.15 (the demihypercube) Let N � 4 be an integer. Write .˛1; : : : ; ˛N / for co-
ordinates in RN . The vertices of the hypercube

�
�
1
2
; 1
2

�N
� RN are the points of

the form vI D ..vI /1; : : : ; .vI /N /, where I � f1; : : : ; N g, .vI /i D 1
2

if i 2 I , and
.vI /i D�

1
2

otherwise. The parity of the vertex vI is the parity of jI j. For each subset
I � f1; : : : ; N g, define the degree 1 polynomial in the ˛i

(2.16) HI WD
X
j…I

�
1
2
C j̨

�
C

X
i2I

�
1
2
�˛i

�
:

Notice that, for any two subsets I; J � f1; : : : ; N g,

(2.17) HI .vJ /D #.I XJ /C #.J X I /

is the graph distance of vI and vJ in the skeleton of the hypercube
�
�
1
2
; 1
2

�N .

The demihypercube is the polytope ��
�
�
1
2
; 1
2

�N generated by the odd vertices of
the hypercube. The polytope � has 2N�1C 2N facets (see for instance Green [15,
Lemma 2.3]). More precisely, the polytope � is defined in a minimal way by the set
of inequalities

(2.18) �D

�
�
1
2
� ˛i �

1
2
; i 2 f1; : : : ; N g;

HI � 1; jI j even.

Notice that the facets of � supported on the hyperplanes
�
˛i D˙

1
2

�
are isomorphic to

the .N�1/–dimensional demihypercube. In particular, they are not simplicial. On the
other hand, the facet supported on the hyperplane .HI D 1/ for jI j even is the .N�1/–
dimensional simplex generated by the N vertices of

�
�
1
2
; 1
2

�
N at graph distance 1

to vI .

The demihypercube can also be described as a weight polytope of the root system of
type DN ; see Green [16, Example 8.5.13].

Now we go back to Hn.Z;R/ and consider the convex rational polyhedral cone

E WD Cone.M/M2Fm.Z/ �H
n.Z;R/:
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It is the cone over the .nC3/–dimensional polytope

E0 D Conv.M/M2Fm.Z/

obtained by intersecting E with the affine hyperplane H WD f
 j 
 � �D 1g. Note that
the Weyl group W.DnC3/ preserves E , H and E0 .

We fix M02Fm.Z/ and consider the orthogonal basis f�; "1; : : : ; "nC3g for Hn.Z;R/
introduced in (2.9). Then 1

4
� 2 H and f"1; : : : ; "nC3g is a basis for �? , so that�

1
4
�; f"1; : : : ; "nC3g

�
induces affine coordinates

(2.19) .˛1; : : : ; ˛nC3/

on the hyperplane HŠRnC3 . With these coordinates, 1
4
� is identified with the origin

and, by (2.12), for every I � f1; : : : ; nC 3g with jI j even, MI is identified with vIc .
Thus the polytope E0 is identified with the demihypercube � described in Section 2.15,
and E with the cone over �.

2.20 Example (the surface case) When n D 2, Z � P4 is a smooth quartic del
Pezzo surface (see Section 1.1). The cone E �H 2.Z;R/, generated by the classes of
the 16 lines in Z , is the cone of effective curves of Z . In this case the polytope E0 is a
5–dimensional demihypercube, and coincides with the 5–dimensional Gosset polytope
(see Dolgachev [12, Sections 8.2.5 and 8.2.6]). In higher dimensions, demihypercubes
and Gosset polytopes are different polytopes.

Let us explicitly describe the facets of E , or equivalently the generators of the dual cone
E_ � Hn.Z;R/. Let .y; x1; : : : ; xnC3/ be the coordinates on Hn.Z;R/ Š RnC4

induced by the basis f�; "1; : : : ; "nC3g. It follows from (2.18) that the cone E is defined
in a minimal way by the set of inequalities

(2.21) E D

8<:
2yC xi � 0; i 2 f1; : : : ; nC 3g;

2y � xi � 0; i 2 f1; : : : ; nC 3g;

2.nC 1/yC
P
j…I

xj �
P
i2I

xi � 0; I � f1; : : : ; nC 3g even.

This is equivalent to saying that the dual cone E_�Hn.Z;R/ is the convex polyhedral
cone generated by the classes

(2.22)
�1
2
�C "i and 1

2
�� "i ; i 2 f1; : : : ; nC 3g;

1
2
.nC 1/�C .�1/m

P
j…I

"j � .�1/
m
P
i2I

"i ; I � f1; : : : ; nC 3g; jI j even.

2.23 Remark Using (2.7), (2.9) and (2.12), we can write the generators (2.22) of E_

in terms of � and the MI :
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8̂<̂
:
1
2
�C "i DM0CMi ;

1
2
�� "i DMj CMij for any j ¤ i;
1
2
.nC 1/�C .�1/m

P
j…I

"j � .�1/
m
P
i2I

"i D 2
��
1
2
.mC 1/

˘
�C .�1/mMI

�
:

Note in particular that E_ � E .

For I � f1; : : : ; nC 3g X fig, it follows from (2.10) and (2.12) that

(2.24)

�
1
2
�C "i

�
�MI D

�
1 if jI j �m mod 2;
0 otherwise,�

1
2
�� "i

�
�MI D

�
0 if jI j �m mod 2;
1 otherwise.

This describes the generators of the (nonsimplicial) facets of E , corresponding to the
extremal rays of E_ generated by 1

2
�˙ "i .

For each M 2 Fm.Z/, set

ıM WD
�
1
2
.mC 1/

˘
�C .�1/mM:

The facet of the cone E corresponding to the extremal ray of E_ generated by ıM is
simplicial, and given by

Cone.�i .M//i2f1;:::;nC3g:

Indeed, for I � f1; : : : ; nC 3g with jI j odd, one computes, using (2.12),

ıM � �I .M/D 1
2
.jI j � 1/:

Let .z; t1; : : : ; tnC3/ be the coordinates induced by the basis f�;M1; : : : ;MnC3g

on Hn.Z;R/. In the sequel we need equations for E_ in these coordinates. Let
I � f1; : : : ; nC 3g be such that jI j �m mod 2. Using (2.12), one computes�

z�C

nC3X
iD1

tiMi

�
�MI D 2zC .jI j �m/

nC3X
iD1

ti � 2
X
i2I

ti :

So we get the following:

2.25 Lemma An element z�C
PnC3
iD1 tiMi is in E_ if and only if

(2.26) 2zC .jI j �m/

nC3X
iD1

ti � 2
X
i2I

ti � 0

for every I � f1; : : : ; nC 3g such that jI j �m mod 2.
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We conclude this section with the following elementary description of the symmetry
group of the cone E :

2.27 Lemma Let f W Hn.Z;R/! Hn.Z;R/ be a linear map. The following are
equivalent:

(i) f .E/D E and f .x/ � �D x � � for every x 2Hn.Z;R/.

(ii) f .E_/D E_ and f .�/D �.

(iii) f 2W.DnC3/.

Proof The implications (iii)D) (i) and (iii)D) (ii) are clear.

We prove (i)D) (iii). Let f be an endomorphism of Hn.Z;R/ satisfying .i/. Then
f permutes the vertices of E0 , and hence f .Fm.Z//D Fm.Z/.

Recall Notation 2.8; let M02Fm.Z/. By Remark 2.23, ıM0
D
�
1
2
.mC1/

˘
�C.�1/mM0

generates an extremal ray of E_ , and the corresponding facet of E is simplicial, given
by

Cone.M1; : : : ;MnC3/:

Then f .Cone.M1; : : : ;MnC3// must be another simplicial facet of E , of the form

Cone.�1.MI /; : : : ; �nC3.MI //D �I .Cone.M1; : : : ;MnC3//

for some I �f1; : : : ; nC3g. By composing f with the involution �I 2W.DnC3/, we
may assume that f fixes the facet Cone.M1; : : : ;MnC3/ of E . In particular, f induces
a permutation on the set fM1; : : : ;MnC3g. Let ! 2W.DnC3/ be the element in the
stabilizer of M0 inducing the same permutation as f on the set fM1; : : : ;MnC3g.
Then, by composing f with !�1 , we may assume that f fixes each of M1; : : : ;MnC3 .

We also have f .Fm.Z/X fM1; : : : ;MnC3g/D Fm.Z/X fM1; : : : ;MnC3g, therefore
f must fix the point

v WD
X

M2Fm.Z/XfM1;:::;MnC3g

M:

Since ıM0
� v > 0, v is not contained in the linear span of M1; : : : ;MnC3 (see

Remark 2.23). This implies that f D IdHn.Z;R/ 2W.DnC3/.

Finally we prove (ii)D) (iii). Let f be an endomorphism of Hn.Z;R/ satisfying (ii).
Then the dual map g WD f t W Hn.Z;R/! Hn.Z;R/ satisfies (i), hence, by what
precedes, g2W.DnC3/. In particular g is orthogonal, and f DgtDg�12W.DnC3/.
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3 The Fano variety G of .m�1/–planes in Q1\Q2� P 2mC2

Let n D 2m � 2 be an even integer, and let Z D Q1 \Q2 � PnC2 be a smooth
complete intersection of two quadric hypersurfaces as in (2.1). In this section we
consider the variety G of .m�1/–planes in Z :

G WD Fm�1.Z/D fŒL� 2 Gr.m� 1;PnC2/ j L�Zg:

This is a smooth n–dimensional Fano variety that has been much studied. In particular,
it is known that Pic.G/ Š H 2.G;Z/ Š ZnC4 , N 1.G/ Š H 2.G;R/ and �KG is
the restriction of O.1/ on Gr.m � 1;PnC2/ (see Reid [25, Theorem 2.6], Borcea
[5, Theorem 4.1 and Remark 4.3] and Jiang [20, Proposition 3.2]). Moreover G is
rational, hence H 2n�2.G;Z/ is torsion-free (Artin and Mumford [2, Proposition 1])
and generated by fundamental classes of one-cycles (Soulé and Voisin [26, Lemma 1]).
Thus we also have H 2n�2.G;Z/Š ZnC4 and N1.G/ŠH 2n�2.G;R/.

For each M 2 Fm.Z/ we set

(3.1) M � WD fŒL� 2G j L�M g:

It is an m–plane in G (under the Plücker embedding). Let `M 2H 2n�2.G;Z/ be the
class of a line in M � . By (2.4), for every M; M 0 2 Fm.Z/ we have

M �\ .M 0/� ¤∅ () M 0 D �i .M/ for some i D 1; : : : ; nC 3;

and M �\ �i .M/� is the point ŒM \ �i .M/� 2G .

3.2 (the fibrations 'i and  i on G ) We define 2.nC3/ fibrations on G , generalizing
a construction by Borcea in the case nD 4 [6, Section 3]. For each i D 1; : : : ; nC 3,
the double cover �i W Z!Qn introduced in Section 2.2 induces a map

…i W G! Fm�1.Qn/:

Each .m�1/–plane in Qn is contained in exactly one m–plane of each of the two
families T ' and T  of m–planes in Qn (see for instance Harris [17, Theorem 22.14]).
This yields two morphisms

Fm�1.Qn/! T ' � Gr.m;PnC1/ and Fm�1.Qn/! T  � Gr.m;PnC1/:

By composing them with …i W G! Fm�1.Qn/, we get two distinct morphisms

x'i ; x i W G! Gr.m;PnC1/

such that x'i .G/� T ' and x i .G/� T  . Let

G
'i
�!Y'i

! x'i .G/ and G
 i
�!Y i

! x i .G/

be the Stein factorizations of x'i and x i , respectively.
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3.3 Lemma The morphism 'i W G! Y'i
has general fiber P1 , and has exactly 2n

singular fibers, each isomorphic to a union of two copies of Pm meeting transversally
at one point. More precisely, the singular fibers of 'i are of the form M �[ �i .M/� ,
with M 2 Fm.Z/ such that Œ�i .M/� 2 T ' . An analogous statement holds for  i .

As a consequence, the cone NE.'i / is the convex cone generated by the classes `M for
M 2 Fm.Z/ such that Œ�i .M/� 2 T ' , and similarly for NE. i /.

Proof For simplicity we assume in the proof that m� 2 and n� 4, the case nD 2
being classical.

Let Œƒ� 2 T ' � Gr.m;PnC1/, and let ƒ0 � PnC2 be the .mC1/–plane through the
i th coordinate point that projects onto ƒ� PnC1 . Then ƒ0 is contained in a singular
quadric of the pencil of quadrics through Z , so that ƒ0 \Z D ƒ0 \Q1 is an m–
dimensional quadric in ƒ0 . Hence Œƒ� 2 x'i .G/ if and only if ƒ0 \Z contains an
.m�1/–plane. This happens if and only if the quadric ƒ0\Z has rank at most 4.

If the m–dimensional quadric ƒ0\Z has rank 4, then it is the join of an .m�3/–plane
with a smooth quadric surface Š P1 �P1 . So it contains two distinct 1–dimensional
families of .m�1/–planes, each parametrized by P1 . Therefore x'�1i .Œƒ�/ is the
disjoint union of two copies of P1 , and this yields two smooth fibers of 'i , each
isomorphic to P1 .

If ƒ0\Z has rank 3, then it is the join of an .m�2/–plane with a plane conic. So it
contains a one-dimensional family of .m�1/–planes, parametrized by the conic. Thus
in this case x'�1i .Œƒ�/red Š P1 , and this yields a fiber of 'i with reduced structure
isomorphic to P1 .

If ƒ0\Z has rank 2, then it is the union of two m–planes intersecting in codimension
one, both projecting onto ƒ. Thus there exists M 2 Fm.Z/ such that ƒD �i .M/,
ƒ0\Z DM [�i .M/ and x'�1i .Œƒ�/DM �[�i .M/� . It follows from (2.4) that M �

and �i .M/� intersect in one point.

Finally, if ƒ0\Z has rank 1, then set-theoretically we should have ƒ0\Z DM for
some M 2 Fm.Z/, and hence x'�1i .Œ�i .M/�/DM � , which is impossible because we
have already seen that x'�1i .Œ�i .M/�/DM �[ �i .M/� .

Now set

U WD Y'i
X
˚
'i .M

�
[ �i .M/�/ jM 2 Fm.Z/ and Œ�i .M/� 2 T '

	
:

We have shown that 'i has one-dimensional fibers over U , and since G is Fano, 'i is
a conic bundle over U . A general singular fiber should be reduced with two irreducible
components. Since there are no such fibers, 'i is smooth over U .
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In Section 6.5 we will characterize the varieties Y'i
and Y i

.

Fix M0 2 Fm.Z/ such that Œ�i .M0/� 2 T
 , and follow Notation 2.8. It follows from

Section 2.5 that, for every I � f1; : : : ; nC 3g such that i … I ,

Œ�i .MI /� 2

�
T ' if jI j is odd,
T  if jI j is even.

So we get the following corollary of Lemma 3.3:

3.4 Corollary We have

NE.'i /D Cone.`MI
/jI jodd; i…I and NE. i /D Cone.`MI

/jI jeven; i…I :

The general fiber of 'i has class `Mj
C`Mij

for j ¤ i , and the general fiber of  i has
class `M0

C `Mi
.

3.5 (the isomorphisms between H 2n�2.G;Z/, Hn.Z;Z/ and H 2.G;Z/) Recall
that, by Poincaré duality, the intersection product gives a perfect pairing

H 2.G;Z/�H 2n�2.G;Z/! Z:

We will define natural isomorphisms H 2n�2.G;Z/ Š Hn.Z;Z/ and H 2.G;Z/ Š
Hn.Z;Z/, which behave well with respect to the intersection products. This construc-
tion is due to Borcea in the case nD 4 [6, Section 2]. Throughout this section, we use
the same notation as in Section 2.

Consider the incidence variety

I WD f.ŒL�; p/ 2G �Z j p 2 Lg

and the associated diagram:
I

�

��

e

��

G Z

The morphism � is a Pm�1–bundle, hence I is smooth, irreducible, of dimension 3m�
1D 3

2
n� 1. Consider the morphisms given by pull-backs and Gysin homomorphisms

˛ WDe� ı�
�
W H 2n�2.G;Z/

��
�!H 2n�2.I;Z/ e��!Hn.Z;Z/;

ˇ WD�� ı e
�
W Hn.Z;Z/

e�
�!Hn.I;Z/ ���!H 2.G;Z/;

so that we have

(3.6) H 2n�2.G;Z/ ˛
�!Hn.Z;Z/

ˇ
�!H 2.G;Z/:
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Note that ˛.`M /DM for every M 2 Fm.Z/. We set EM WD ˇ.M/ 2H 2.G;Z/ for
every M 2 Fm.Z/.

3.7 Proposition [6, Proposition 2.2] Both ˛ and ˇ are isomorphisms, and they are
dual to each other with respect to the intersection products. Namely,

x �ˇ.y/D ˛.x/ �y for every x 2H 2n�2.G;Z/ and y 2Hn.Z;Z/:

Proof Since ˛.`M /DM and the classes fM gM2Fm.Z/ generate Hn.Z;Z/, the ho-
momorphism ˛ is surjective. Then ˛ must be an isomorphism, because H 2n�2.G;Z/
and Hn.Z;Z/ are free of the same rank.

It follows from properties of Poincaré duality that ˛t D .e� ı��/t D .��/t ı .e�/t D
�� ı e

� D ˇ , so ˛ is the transpose homomorphism of ˇ . It follows that ˇ must be an
isomorphism too.

3.8 Corollary We have ˇ.�/D�KG .

Proof Using Proposition 3.7, for every M 2 Fm.Z/ we have

1D � �M D � �˛.`M /D ˇ.�/ � `M D�KG � `M :

Since ˛ is an isomorphism, and the classes fM gM2Fm.Z/ generate Hn.Z;Z/, the
classes f`M gM2Fm.Z/ generate H 2n�2.G;Z/. This yields the statement.

Consider the involution �I W Z!Z for I � f1; : : : ; nC 3g defined in Section 2.2. It
induces an involution of G , which we denote by the same symbol,

�I W G!G; ŒL� 7! Œ�I .L/�:

Therefore the group W 0 Š .Z=2Z/nC2 generated by the involutions �i acts on G ,
H 2.G;Z/ and H 2n�2.G;Z/. It also acts on the incidence variety I in such a way
that both morphisms � and e are W 0–equivariant. It follows that the isomorphisms ˛
and ˇ are W 0–equivariant.

3.9 Proposition For every M 2 Fm.Z/, `M generates an extremal ray of NE.G/.

Proof Fix M0 2Fm.Z/ and i 2 f1; : : : ; nC3g such that Œ�i .M0/� 2 T
 , and follow

Notation 2.8. By Corollary 3.4, we have

˛.NE.'i //D Cone.MI /jI jodd; i…I and ˛.NE. i //D Cone.MI /jI jeven; i…I :

By (2.24), these are facets of the cone E � Hn.Z;R/, whose extremal rays are
generated by the classes M D ˛.`M / contained in these facets. Thus, for every
M 2Fm.Z/ the class `M generates an extremal ray of either NE.'i / or NE. i /, and
hence of NE.G/.
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4 The blow-up X of P n at nC 3 points

Let n � 3 be an integer. Unless otherwise stated, in this section we do not assume
that n is even. Let P D fp1; : : : ; pnC3g � Pn be a set of distinct points in general
linear position, and denote by C the unique rational normal curve in Pn through
these points. Let X DXP be the blow-up of Pn at p1; : : : ; pnC3 . Notice that acting
on P D fp1; : : : ; pnC3g by permutations and projective automorphisms of Pn yields
isomorphic varieties XP . The variety X and its birational geometry have been widely
studied. We refer the reader to Dolgachev [10], Bauer [3], Mukai [21; 23], Castravet and
Tevelev [9], Araujo and Massarenti [1] and Brambilla, Dumitrescu and Postinghel [7].

We have Pic.X/ŠH 2.X;Z/ and N 1.X/ŠH 2.X;R/. We denote by H the pullback
to X of the hyperplane class in Pn , and by Ei the exceptional divisor over the point pi
(as well as its class in H 2.X;Z/).

4.1 (special subvarieties of X ) Given a subset I � f1; : : : ; nC3g, with jI j D d � n,
and an integer 0� s � 1

2
.n� d/, we consider the join

Join.hpi ii2I ;Secs�1.C //� Pn:

(Here we write Seck.C / for the subvariety of Pn obtained as the closure of the
union of all k–planes spanned by kC 1 general points of C for k � 0; in particular
Sec0.C /D C . We also set Sec�1.C /D∅.)

This join has dimension equal to dC2s�1. We denote by JI;s�X the strict transform
of Join.hpi ii2I ;Secs�1.C //. When d C 2s D n (so that jI cj D nC 3� 3D 2sC 3
is odd) we denote the divisor JI;s and its class in H 2.X;Z/ by EI ; in particular, for
nD 2m even, E∅D J∅;m is the strict transform of Secm�1.C /. For I D figc , we set
EI D Ei . For every I � f1; : : : ; nC 3g with jI cj D 2sC 3 odd and s � 0, we have
the following identity in H 2.X;Z/:

(4.2) EI D .sC 1/H � .sC 1/
X
i2I

Ei � s
X
j…I

Ej :

By Castravet and Tevelev [9, Theorem 1.2], each EI generates an extremal ray of
Eff.X/, and all extremal rays are of this form. Moreover, by [9, Theorem 1.3] and
Mukai [23], X is a Mori dream space (MDS for short). We refer to Hu and Keel [18]
for the definition and basic properties of MDSs. Here we only recall an important
feature of a MDS, the Mori chamber decomposition of its effective cone.

4.3 (the Mori chamber decomposition) Let Y be a projective, normal and Q–factorial
MDS. The effective cone Eff.Y / admits a fan structure, called Mori chamber decom-
position and denoted by MCD.Y /, which can be described as follows (see Hu and
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Keel [18, Proposition 1.11(2)] and Okawa [24, Section 2.2]). There are finitely many
birational contractions (ie birational maps whose inverses do not contract any divisor)
from Y to projective, normal and Q–factorial MDSs, denoted by gi W Y Ü Yi . The
set Exc.gi / of classes of exceptional prime divisors of gi has cardinality �.Y /��.Yi /.
The maximal cones Ci of the fan MCD.Y / are of the form:

Ci D Cone
�
g�i .Nef.Yi //;Exc.gi /

�
:

By abuse of notation, we often write Nef.Yi /� Eff.Y / for g�i .Nef.Yi //� Eff.Y /. If
Exc.gi /D∅, then we say that gi W Y Ü Yi is a small Q–factorial modification of Y .
The movable cone Mov.Y / of Y is the union

Mov.Y /D
[

Exc.gi /D∅

Ci :

An arbitrary cone � 2MCD.Y / is of the form

� D Cone
�
f �.Nef.W //; E

�
;

where f W Y ÜW is a dominant rational map to a normal projective variety, which
factors as Y giÜ Yi

fi
�!W for some i , where fi W Yi ! W is the contraction of an

extremal face of Nef.Yi /, and E � Exc.gi /.

Given an effective divisor D on Y , its class in N 1.Y / lies in the relative interior of
some cone in MCD.Y /, say Cone

�
f �.Nef.W //; E

�
. The map f W Y ÜW coincides

with the map 'jmDj for m� 1 divisible enough. In this case, we write YD for the
variety W .

Now we go back to X . Our next goal is to describe the Mori chamber decomposition
of Eff.X/, following Mukai [23] and Bauer [3] (see also Araujo and Massarenti [1,
Section 3]).

Let us consider the coordinates .y; x1; : : : ; xnC3/ in H 2.X;R/ induced by the basis
.H;E1; : : : ; EnC3/, and consider the affine hyperplane

HD
�
.nC 1/yC

X
xi D 1

�
�H 2.X;R/:

It contains all the generators EI of Eff.X/ described above, as well as 1
4
.�KX /.

We now observe that the convex hull of the EI in H is a demihypercube. To see this,
we need suitable coordinates in H . For i D 1; : : : ; nC 3, set

(4.4) z"i WD
1

2

�
H �

X
j¤i

Ej CEi

�
:
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Then fz"1; : : : ; z"nC3g is a basis for the linear subspace ..nC 1/yC
P
xi D 0/, so that�

1
4
.�KX /; fz"1; : : : ; z"nC3g

�
induces affine coordinates .˛1; : : : ; ˛nC3/ in HŠRnC3 .

The radial projection

H 2.X;R/X
�
.nC 1/yC

X
xi D 0

�
!H

is given in coordinates by

(4.5) ˛i D
yC xi

.nC 1/yC
P
xi
�
1

2
for i D 1; : : : ; nC 3:

In the coordinates ˛i , 14.�KX / is identified with the origin, and EI with vIc , with
the notation introduced in Section 2.15. Thus Eff.X/ \ H is identified with the
demihypercube ��RnC3 described in Section 2.15,

�D

�
�
1
2
� ˛i �

1
2
; i 2 f1; : : : ; N g;

HI � 1; jI j even.

Recall the degree 1 polynomials HI introduced in (2.16), and consider the hyperplane
arrangement

(4.6) .HI D k/I�f1;:::;nC3g; k2N; 2�k�.nC3/=2; jI j6�k mod2 :

It defines a subdivision of � in polytopes, and a fan structure on Eff.X/, given by
the cones over these polytopes. By Mukai [23] and Bauer [3], this fan coincides with
MCD.X/. Moreover, one has the following description of the wall crossings (see [23,
Propositions 2 and 3] and also [3, Section 2]):

(1) The intersection of Mov.X/ with the hyperplane H is given by

�Mov DMov.X/\HD
�
�
1
2
� ˛i �

1
2
; i 2 f1; : : : ; nC 3g;

HI � 2; jI j odd.

(2) All small Q–factorial modifications of X are smooth.

(3) Let C be a maximal cone of MCD.X/, contained in Mov.X/, corresponding to a
small Q–factorial modification zX of X. Let � � @C be a wall such that � � @Mov.X/,
and let f W zX ! Y be the corresponding elementary contraction. Then � \H��Mov

is supported on a hyperplane of one of the following forms:

(a)
�
˛i D�

1
2

�
or
�
˛i D

1
2

�
.

(b) .HI D 2/, with jI j odd.

In case (a), f W zX ! Y is a P1–bundle. In case (b), f W zX ! Y is the blow-up of
a smooth point, and the exceptional divisor of f is the strict transform in zX of the
divisor EIc �X .
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(4) Let C and C0 be two maximal cones of MCD.X/, contained in Mov.X/ and
having a common facet. Let f W X Ü zX and f 0W X Ü zX 0 be the corresponding
small Q–factorial modifications of X . The intersections of these cones with H are
separated in � by a hyperplane of the form .HI D k/, with 3 � k � 1

2
.nC 3/ and

jI j 6� k mod 2. Suppose that C \H � .HI � k/ and C0 \H � .HI � k/. Then the
birational map f 0 ıf �1W zX Ü zX 0 flips a Pk�2 into a PnC1�k .

4.7 Remark It is possible to give a more precise description of the flipping locus
Pk�2 � zX (or PnC1�k � zX 0 ) in the situation described under (4) above (see [3,
Proposition 2.6(iv) and Theorem 2.9]): Consider the nef cone of X and its section
with H ,

�Nef D Nef.X/\HD
�
Hfig � 2; i 2 f1; : : : ; nC 3g;

Hfi;j g � 3; i; j 2 f1; : : : ; nC 3g; i ¤ j:

Suppose that �Nef � .HI � k/. Then the Pk�2 � zX flipped by f 0 ıf �1 is the strict
transform in zX of the special variety JI;s �X , where s D 1

2
.k� jI j � 1/� 0.

Suppose that �Nef � .HI � k/. Then the PnC1�k � zX 0 flipped by f ı .f 0/�1 is the
strict transform in zX 0 of the special variety JIc ;s0 �X , where s0D 1

2
.jI j�k�1/� 0.

4.8 Remark Recall from Section 2.15 the description of the facets of �. Each of
the 2.nC 3/ facets of � supported on the hyperplanes

�
˛i D˙

1
2

�
intersects �Mov

along a facet, while the other facets of �, supported on the hyperplanes .HI D 1/ for
jI j even, are disjoint from �Mov . Let us describe the rational maps associated to the
facets of �Mov supported on the hyperplanes

�
˛i D˙

1
2

�
.

Fix i 2 f1; : : : ; nC 3g and let Pi � Pn�1 be the image of the set P X fpig under the
projection �pi

W Pn Ü Pn�1 from pi . Let Y D .XPi
/n�1 be the blow-up of Pn�1

at the nC 2 points in Pi .

There is a small Q–factorial modification X Ü Xi and a P1–bundle Xi ! Y

extending �pi
(see [23, Example 1]). Let �i W X Ü Y be the composite map. The

general fiber of �i is the strict transform in X of a general line in Pn through pi .
The hyperplane .�i /�H 2.Y;R/ has equation y C xi D 0. Using (4.5), we see that
.�i /

�H 2.Y;R/\H is the hyperplane
�
˛i D�

1
2

�
. Thus the cone .�i /� Eff.Y / is the

cone over the polytope �\
�
˛iD�

1
2

�
, which is an .nC2/–dimensional demihypercube.

Similarly, there is a map � 0i W X Ü Y whose general fiber is the strict transform in
X of a general rational normal curve through the points p� for � ¤ i . Indeed, fix
j ¤ i and let 'W Pn Ü Pn be the standard Cremona transformation centered at the
points p� for � ¤ i; j . This map sends rational normal curves through the points
p� for � ¤ i to lines through '.pj /. There is an automorphism of Pn fixing p�
for � ¤ i; j , sending pj to '.pi / and sending pi to '.pj / (see Remark 7.2). By

Geometry & Topology, Volume 21 (2017)



On the Fano variety of linear spaces contained in two odd-dimensional quadrics 3029

composing ' with the projection from '.pj /, we obtain a rational map � 0pi
W Pn Ü Y

whose general fiber is a general rational normal curve through the points p� for �¤ i .
This yields a P1–bundle X 0i ! Y on a small Q–factorial modification of X , and the
desired map � 0i W X Ü Y . As before, one checks that .�i /� Eff.Y / is the cone over
the demihypercube �\

�
˛i D

1
2

�
.

The center of the polytopes �Mov and � is the origin x0 2RnC3 , which corresponds
to 1

4
.�KX /. In particular, the divisor �KX is movable. We want to describe the Fano

model XnFano WDX�KX
.

If n is odd, then x0 is a vertex in the subdivision of � and is contained in the intersection
of the hyperplanes �

HI D
1
2
.nC 3/

�
jI j6�.nC3/=2 mod2 :

Thus �KX lies in a one-dimensional cone of the fan MCD.X/, contained in the interior
of Mov.X/. Therefore XnFano is non-Q–factorial and has Picard number 1.

For the remainder of this section, we assume that nD 2m� 2 is even. Then x0 lies in
the interior of a maximal polytope in the subdivision of �Mov , namely the polytope
defined by

(4.9) �Fano D .HI �mC 1/jI j�m mod2 :

Then XnFano is a small Q–factorial modification of X , it is a smooth Fano manifold,
and Nef.XnFano/� Eff.X/ is the cone over the polytope �Fano .

4.10 Remark By Theorem 1.4, when P is the image of f.�1 W1/; : : : ; .�nC3 W1/g�P1

under a Veronese embedding P1 ,! Pn , X is pseudoisomorphic to the Fano variety
G addressed in Section 3. This implies that XnFano is isomorphic to G .

4.11 Using the properties of MDSs, and the description of MCD.X/ above, we can
deduce many properties of XnFano :

� The Mori cone NE.XnFano/ admits exactly 2nC2 extremal rays, whose corre-
sponding contractions all contract a Pm to a point.

� The variety XnFano admits 2.nC3/ distinct (nontrivial) contractions of fiber type.
Indeed, the points in @�Mov\�Fano are those of the form ˛ D .˛1; : : : ; ˛nC3/,
where ˛i D�12 or 1

2
for some fixed i , and j̨ D 0 for j ¤ i . These points all

lie in @�. We denote the corresponding contractions by �i and �0i , respectively.

4.12 Lemma The morphisms �i and �0i are generic P1–bundles over .XPi
/n�1Fano ,

where Pi � Pn�1 is as in Remark 4.8. The general fiber of �i is the strict transform in
XnFano of a general line in Pn through pi . The general fiber of �0i is the strict transform
in XnFano of a general rational normal curve in Pn through P X fpig.
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Proof Let ˛ D .˛1; : : : ; ˛nC3/, where ˛i D�12 and j̨ D 0 for j ¤ i , and consider
the corresponding fibration �i W XnFano!XD , where D is an effective divisor such that
R�0ŒD�\HD ˛ .

Consider the map �i W X Ü Y WD .XPi
/n�1 introduced in Remark 4.8, and recall that

.�i /
� Eff.Y / is the cone over the .nC2/–dimensional demihypercube �\

�
˛i D�

1
2

�
.

The center of this demihypercube is ˛ , hence D is a positive multiple of .�i /�.�KY /.
So the image XD of �i is precisely the Fano model .XPi

/n�1Fano of Y .

A similar argument shows the statement for �0i .

4.13 Let .z; t1; : : : ; tnC3/ be new coordinates in H 2.X;R/, induced by the basis
f�KX ; E1; : : : ; EnC3g. These are related to .y; x1; : : : ; xnC3/ by y D z.nC 1/ and
xi D ti�.n�1/z . Using the defining inequalities for �Fano in (4.9), and the expression
for the radial projection onto H in (4.5), we conclude that Nef.XnFano/�H

2.X;R/ is
defined by the inequalities

(4.14) 2zC .jI j �m/

nC3X
iD1

ti � 2
X
i2I

ti � 0

for every I � f1; : : : ; nC 3g such that jI j �m mod 2.

4.15 We end this section by describing the birational map X ÜXnFano . First notice
that to go from the interior of the polytope �Nef D Nef.X/ \H to the interior of
the polytope �Fano D Nef.XnFano/\H , we must cross the wall .HI D k/ for every
I � f1; : : : ; nC 3g and 3� k �mC 1 such that jI j 6� k mod 2 and jI j � k� 1. By
Remark 4.7 and [3, Theorem 2.9], we conclude that the rational map X Ü XnFano
factors as

X DX0
'1
// X1

'2
// X2 // � � �

'm�1
// Xm�1 DX

n
Fano;

where each 'i W Xi�1ÜXi flips the strict transforms in Xi�1 of all special subvarieties
JI;s � X of dimension i . These strict transforms are disjoint in Xi�1 and each
isomorphic to P i . The flipped locus on Xi is a disjoint union of copies of Pn�1�i ,
one for each JI;s of dimension i . Notice that in general the map 'i is not the flip of a
small contraction: it is a pseudoisomorphism that can be factored as a sequence of flips.

In particular, we can describe the 2nC2 copies of Pm in XnFano corresponding to
the 2nC2 extremal rays of NE.XnFano/. These are the strict transforms of the special
subvarieties JI;s �X of dimension m, and the flipped locus of the flips of the strict
transforms of the special subvarieties JI;s � X of dimension m � 1. These are,
respectively,
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mC1X
dD0

d 6�m mod 2

�nC3
d

�
for m–dimensional JI;s ,

mX
dD0

d�m mod 2

�nC3
d

�
for .m�1/–dimensional JI;s .

We can also describe the strict transforms in XnFano of the divisors Pn�1 Š Ei � X
under the rational map X ÜXnFano . There are nC3 special points q1; : : : ; qnC3�Ei :
qj is the intersection of Ei with the strict transform of the line through pi and pj
when j ¤ i , and qi is the intersection of Ei with the strict transform of C . The points
qi all lie in a rational normal curve C 0 of degree n� 1 in Ei Š Pn�1 . Given a subset
I � f1; : : : ; nC3g, with jI j � n�1, and an integer 0� s � 1

2
.n�1�jI j/, we denote

by J iI;s the join Join.hqj ij2I ;Secs�1.C 0//�Ei . One can check that

Ei \JI;s D

8̂<̂
:
J i
IXfig;s

if i 2 I;
∅ if i … I and s D 0;
J i
I[fig;s�1

if i … I and s � 1:

Therefore, the strict transform of Ei under '1 is the blow-up of Pn�1 at the points
q1; : : : ; qnC3 . For 2� j �m�1, the restriction of 'j to the strict transform of Ei in
Xj�1 flips the strict transforms of every J iI;s of dimension j � 1.

4.16 When n D 4, the birational map '1W X D X0 Ü X1 D X4Fano flips Jfij g;0
(strict transform of the line pipj � P4 ) for 1� i; j � 7, and J∅;1 (strict transform of
C � P4 ); this yields 22 among the 64 special copies of P2 in X4Fano , corresponding
to the 64 extremal rays of NE.X4Fano/. The remaining ones are the strict transforms of
the 7 surfaces Join.hpi i; C / and of the 35 planes hpi ; pj ; phi in P4 .

Notice in particular that Ei �X does not contain any special subvariety JI;s , while
the strict transform of Ei in X4Fano contains 7 special copies of P2 , namely the flipped
loci of the flips of Jfij g;0 for j ¤ i and of J∅;1 .

5 Pseudoisomorphisms between G and X

Let m be a positive integer, and set nD 2m. Fix nC 3 distinct points

.�1 W 1/; : : : ; .�nC3 W 1/ 2 P1;

and let p1; : : : ; pnC3 2 Pn be their images under a Veronese embedding P1 ,! Pn .
Let Z , G and X be the varieties introduced in Sections 2, 3 and 4. We follow the
notation introduced in those sections. In this section we determine the nef cone of G ,
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and then we prove Theorem 1.5, which follows from Theorem 5.7 and Corollary 5.8.
Our aim is to identify the line bundles on G whose linear systems define rational maps
G Ü Pn inducing a pseudoisomorphism G ÜX . This is achieved by combining
the description of Nef.G/�H 2.G;R/ given by Theorem 5.1 and the description of
Nef.XnFano/�H

2.X;R/ in terms of the basis f�KX ; E1; : : : ; EnC3g for H 2.X;R/,
which was obtained from the Mori chamber decomposition of Eff.X/ in Section 4.

We first describe the cones Nef.G/ and NE.G/. For nD 4, this was proved by Borcea
[6, Theorem 4.3].

5.1 Theorem Let the notation be as above. Then

NE.G/D Cone.`M /M2Fm.G/ D ˛
�1.E/ and Nef.G/D ˇ.E_/:

Proof By Proposition 3.9, the class `M generates an extremal ray of NE.G/ for
every M 2 Fm.G/. This yields 2nC2 distinct extremal rays of NE.G/. On the other
hand, G ŠXFano by Remark 4.10, and NE.XFano/ has precisely 2nC2 extremal rays,
as explained in Section 4.11. So we have

NE.G/D Cone.`M /M2Fm.G/ D ˛
�1.E/:

The equality Nef.G/D ˇ.E_/ follows from the duality between Nef.G/ and NE.G/
and from Proposition 3.7.

Similarly, we will show in Proposition 5.5 that Eff.G/ D ˇ.E/ and Mov1.G/ D
˛�1.E_/. So the cones NE.G/ and Eff.G/ are isomorphic under ˇ ı˛ , and the same
holds for Mov1.G/ and Nef.G/.

Recall from Section 3 that EM D ˇ.M/ 2H 2.G;Z/ for every M 2Fm.Z/. For each
M 2 Fm.Z/, consider the linear map

hM W H
2.X;R/!H 2.G;R/

defined by

hM .�KX /D�KG and hM .Ei /DE�i .M/ for every i D 1; : : : ; nC 3:

One can check that hM respects the integral points, namely that it is induced by
an isomorphism H 2.X;Z/ ! H 2.G;Z/, and that h�I .M/ D �I ı hM for every
I � f1; : : : ; nC 3g.

We also set

(5.2) QhM WD ˇ
�1
ı hM W H

2.X;R/!Hn.Z;R/;

so that QhM .�KX /D � and QhM .Ei /D �i .M/ for every i D 1; : : : ; nC 3.
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5.3 Lemma For every M 2 Fm.Z/ and I � f1; : : : ; nC 3g of even cardinality, we
have

hM .EI /DE�I .M/; hM .Eff.X//D ˇ.E/; hM .Nef.XFano//D Nef.G/:

Proof Let I � f1; : : : ; nC 3g be such that jI j D n� 2s is even with s � 0. We can
rewrite (4.2) as

EI D
1

nC1

�
.sC 1/.�KX /� 2.sC 1/

X
i2I

Ei C .n� 1� 2s/
X
j2I

c

Ej

�
:

It follows from (2.13) that QhM .EI /D �I .M/, and hence hM .EI /D E�I .M/ . This
implies that hM .Eff.X//D ˇ.E/.

By comparing (4.14) and (2.26), we see that QhM .Nef.XnFano// D E_ . Therefore
hM .Nef.XnFano//D ˇ.E

_/D Nef.G/ by Theorem 5.1.

5.4 Proposition Let �W G ÜX be a pseudoisomorphism, and consider the induced
linear map

��W H 2.X;R/!H 2.G;R/:

Then, up to a unique permutation of E1; : : : ; EnC3�X , there is a unique M 2Fm.Z/
such that �� D hM .

Proof We have ��.�KX /D�KG , and hence ��.Nef.XnFano//D Nef.G/.

Recall Notation 2.8; fix M02Fm.Z/. Consider ��ı.hM0
/�1W H 2.G;R/!H 2.G;R/.

By Lemma 5.3, this map fixes �KG and sends Nef.G/ to itself. Using the iso-
morphism ˇW Hn.Z;R/ ! H 2.G;R/ and Theorem 5.1, we obtain a linear map
f W Hn.Z;R/!Hn.Z;R/ such that f .�/D � and f .E_/D E_ :

H 2.X;R/
hM0

xx

��

&&

H 2.G;R/
��ı.hM0

/�1

// H 2.G;R/

Hn.Z;R/

ˇ

OO

f
// Hn.Z;R/

ˇ

OO

By Lemma 2.27, we have f 2W.DnC3/.

Consider the stabilizer G0 �W.DnC3/ of M0 , and recall that W.DnC3/DW 0 ÌG0
and G0 Š SnC3 . Thus there are uniquely defined ! 2 G0 , �I 2 W 0 and � 2 SnC3
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such that f D �I ı ! and !.Mi / DM�.i/ for every i D 1; : : : ; nC 3. Since ˇ is
W 0–equivariant, this means that

��.Ei /D ˇ.f .Mi //D ˇ.��.i/.MI //D ��.i/.ˇ.MI //D ��.i/.EMI
/

for every i D 1; : : : ; nC 3. Apply the permutation ��1 to E1; : : : ; EnC3 �X . After
this reordering, we get f D �I 2W 0 and �� D �I ı hM0

D hMI
.

From now on we order the divisors E1; : : : ; EnC3�X , and correspondingly the points
p1; : : : ; pnC3 2 Pn , as in Proposition 5.4. At this point we can determine the cone of
effective divisors and the cone of moving curves of G .

5.5 Proposition For every M 2 Fm.Z/, there is a unique effective divisor in G with
class EM 2H 2.G;Z/. This is a fixed prime divisor, which we still denote by EM �G .
We have

Eff.G/D ˇ.E/D Cone.EM /M2Fm.Z/ and Mov1.G/D ˛�1.E_/:

Proof By Theorem 1.4, there exists a pseudoisomorphism �W GÜX . By Proposition
5.4 there exists M 2 Fm.Z/ such that �� D hM . In particular, for every I �

f1; : : : ; n C 3g with jI j even, we have ��.EI / D E�I .M/ by Lemma 5.3. Thus
the strict transform in G of EI � X is a fixed prime divisor, and it is the unique
effective divisor with class E�I .M/ . It also follows from Lemma 5.3 that

Eff.G/D �� Eff.X/D ˇ.E/D Cone.EM /M2Fm.Z/:

The equality Mov1.G/D ˛�1.E_/ follows from the duality Mov1.G/D Eff.G/_ and
from Proposition 3.7.

For each M 2 Fm.Z/, we set

(5.6) HM WD hM .H/D
1

nC1

�
�KG C .n� 1/

nC3X
iD1

E�i .M/

�
Dm.�KG/� .n� 1/EM 2H

2.G;Z/;

where the last equality follows from (2.13) (taking M DM0 and I D∅), using the
isomorphism ˇW Hn.Z;R/!H 2.G;R/.

5.7 Theorem For every M 2 Fm.Z/, the divisor class HM is movable, and its
complete linear system defines a birational map

�M W G Ü Pn;
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with exceptional divisors E�1.M/; : : : ; E�nC3.M/ , inducing a pseudoisomorphism

�M W G ÜX

whose induced map ��M W H
2.X;R/!H 2.G;R/ coincides with hM .

For every I � f1; : : : ; nC 3g, ��I .M/ D �M ı �I and ��I .M/ D �M ı �I .

Proof By Theorem 1.4, there exists a pseudoisomorphism �W G ÜX. Let the map
�W G Ü Pn be the composition of � with the blow-up morphism X ! Pn .

By Proposition 5.4, there exists M0 2 Fm.Z/ such that �� D hM0
. This implies

that ��.OPn.1// D HM0
. Hence the class HM0

is movable, and H 0.G;HM0
/ Š

H 0.Pn;OPn.1//. This proves the first statement for M DM0 , with �M0
D � and

�M0
D � .

Let I � f1; : : : ; nC 3g. We use Notation 2.8. The automorphism �I W G! G fixes
�KG and maps EM0

to EMI
, hence it maps HM0

to HMI
. This yields the first

statement for M DMI , with �MI
D � ı �I and �MI

D � ı �I .

The last statement is clear.

5.8 Corollary Let zX be any blow-up of Pn at nC3 points. If zX is pseudoisomorphic
to G , then zX is isomorphic to X .

Proof Let z�W G Ü zX be a pseudoisomorphism, and let z�W G Ü Pn be the compo-
sition of z� with the blow-up morphism zX! Pn . Then z� has nC3 exceptional prime
divisors, whose classes must generate a simplicial facet of Eff.G/. By Proposition 5.5
and the description of the facets of E in Remark 2.23, every simplicial facet of Eff.G/
is generated by E�1.M/; : : : ; E�nC3.M/ for some M 2 Fm.Z/. Since each E�i .M/ is
unique in its linear system, z�W GÜ Pn and �M W GÜ Pn have the same exceptional
divisors. This means that z� and �M coincide up to a projective transformation of Pn ,
and therefore zX ŠX .

5.9 Remark (comparing the intersection product in Hn.Z;Z/ with Dolgachev’s
pairing on H 2.X;Z/) In [10], Dolgachev defined a nondegenerate symmetric bilinear
form . ; / on H 2.X;Z/, by imposing that the basis H;E1; : : : ; EnC3 is orthogonal,

.H;H/D n� 1 and .Ei ; Ei /D�1 for all i D 1; : : : ; nC 3:

This pairing has signature .1; n C 3/, and .�KX ;�KX / D 4.n � 1/. Consider
z"i 2H

2.X;R/, defined in (4.4),

z"i WD
1

2

�
H �

X
j¤i

Ej CEi

�
for i D 1; : : : ; nC 3:
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Then we have

.�KX ; z"i /D 0 and .z"i ; z"j /D�ıij for every i; j D 1; : : : ; nC 3;

thus �KX ; z"1; : : : ; z"nC3 is another orthogonal basis for H 2.X;R/.

Fix M0 2 Fm.Z/, and consider the orthogonal basis �; "1; : : : ; "nC3 for Hn.Z;R/
introduced in (2.9). Recall that �2 D 4 and "2i D .�1/

m for every i D 1; : : : ; nC 3.
Consider the isomorphism introduced in (5.2),

QhM0
W H 2.X;R/!Hn.Z;R/:

From (5.6) and (2.14) we have QhM0
.z"i /D "i for every i D 1; : : : ; nC3. Therefore QhM0

maps an orthogonal basis for Dolgachev’s pairing in H 2.X;R/ to an orthogonal basis
for the intersection product in Hn.Z;R/. In particular, QhM0

sends the DnC3–lattice
.�KX /

?�H 2.X;Z/ to the DnC3–lattice �?�Hn.Z;Z/, and the restriction of QhM0

to these lattices is an isometry up to the sign .�1/m�1 . (Notice that QhM0
is globally

an isometry if and only if nD 2.) This also shows that QhM0
is W.DnC3/–equivariant.

6 Cones of curves and divisors in G

Let the setup be as in Section 5. Recall that in Section 4 we considered the cones

Nef.XnFano/�Mov1.X/� Eff.X/�H 2.X;R/;

the affine hyperplane H�H 2.X;R/ containing all the EI , and the polytopes given
by the intersections of these cones with H ,

�Fano ��Mov ���HŠRnC3:

From the linear inequalities defining these polytopes in RnC3 and the expression
(4.5) of the radial projection onto H , one can write explicitly the linear inequalities
defining the cones Nef.XnFano/ Š Nef.G/, Mov1.X/ Š Mov1.G/ and Eff.X/ Š
Eff.G/ with respect to the basis H;E1; : : : ; EnC3 of H 2.X;R/. Inequalities defining
Mov1.X/ and Eff.X/ were obtained in a different way by Brambilla, Dumitrescu and
Postinghel [7]. In this section, we reinterpret the facets and extremal rays of these
cones in terms of special divisors and curves in G .

Recall from Section 2 that E �Hn.Z;R/ is the cone over the demihypercube � with
vertices fM gM2Fm.Z/ . Its dual cone E_ � E has 2.nC 3/C 2nC2 extremal rays,
generated by the classes˚
M C �i .M/ jM 2 Fm.Z/; i 2 f1; : : : ; nC 3g

	
[
˚
ıM D

�
1
2
.mC 1/

˘
�C .�1/mM

	
M2Fm.Z/

:
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For a fixed i 2 f1; : : : ; nC 3g, there are two distinct classes M C �i .M/ as M varies
in Fm.Z/, and they form an orbit for the action of W 0 on Hn.Z;Z/. The stabilizer
of this orbit is the subgroup Gi WD f�I j i … I and jI j is eveng. The group W 0 acts
transitively and freely on the set fıM gM2Fm.Z/ . The facet of E corresponding to each
extremal ray of E_ was described in Remark 2.23:

– .M C �i .M//? \ E is the cone over the .nC2/–dimensional demihypercube
with vertices

˚
�I .M/ j I � f1; : : : ; nC 3g X fig; jI j 6�m mod 2

	
.

– .ıM /
?\E is a simplicial cone generated by the classes �i .M/, i 2f1; : : : ; nC3g.

Now we turn to cones of curves and divisors in G . We showed in Theorem 5.1 and
Proposition 5.5 that

Nef.G/D ˇ.E_/� ˇ.E/D Eff.G/;

Mov1.G/D ˛�1.E_/� ˛�1.E/D NE.G/:

We give a geometric description of the facets and extremal rays of these cones in terms
of special divisors and curves in G .

6.1 (Eff.G/) The cone Eff.G/ has 2nC2 extremal rays, generated by the classes
fEM gM2Fm.Z/ . Each EM is a fixed prime divisor. The group W 0 � Aut.G/ acts
transitively and freely on the set fEM gM2Fm.Z/ . In particular, all these divisors are
isomorphic, and they can be described as a small modification of the blow-up of Pn�1

at nC 3 points contained in a rational normal curve (see Section 4.15 for a precise
description).

6.2 (the divisor EM when n D 4) Set n D 4; in this case EM is isomorphic to
the blow-up of P3 at 7 points contained in a rational normal curve. To describe
geometrically EM inside G , consider the closed subset

fŒL� 2G j L\M ¤∅g:

Then this locus is not equidimensional, and EM is its unique divisorial component.

Indeed, let us consider again the incidence diagram

I
�

��

e

��

G Z

as in 3.5, so that dim ID5, � is a P1–bundle and fŒL�2G jL\M ¤∅gD�.e�1.M//.
For the purposes of this subsection only, it is better to denote by ŒM � 2H 4.Z;Z/ the
fundamental class of the plane M �Z .
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It is not difficult to see that e is flat, so that e�1.M/ is equidimensional of dimension 3,
and e�.ŒM �/D Œe�1.M/� 2H 4.I;Z/. Then ˇ.ŒM�/D ��e

�.ŒM �/D Œ��.e
�1.M//�.

By Proposition 5.5, we have EM D ��.e�1.M//, so that EM is the unique divisorial
component of �.e�1.M//.

Now let us consider the planes M �; �1.M/�; : : : ; �7.M/� �G (see (3.1)); they are
all contained in �.e�1.M//.

Let i 2 f1; : : : ; 7g. Recall that `�i .M/� �i .M/� is a line and that `�i .M/D˛.�i .M//.
By Proposition 3.7, using for instance (2.12), we have

EM � `�i .M/ DM � �i .M/D�1;

so that �i .M/� � EM . On the other hand EM contains only 7 planes .M 0/� (see
Section 4.16), therefore M � cannot be contained in EM . This shows that M � is a
2–dimensional irreducible component of �.e�1.M//.

6.3 (NE.G/) The cone NE.G/ has 2nC2 extremal rays, generated by the classes
f`M gM2Fm.Z/ , on which W 0 � Aut.G/ acts transitively. The contraction of the
extremal ray generated by `M contracts M � Š Pm to a point.

Fix M 2Fm.Z/ and consider the pseudoisomorphism �M W GÜX from Theorem 5.7.
This fixes an identification of G with XnFano , which identifies each divisor E�I .M/�G

with the strict transform of the divisor EI �X . Let I � f1; : : : ; nC 3g be such that
jI j �mC 1. It follows from the discussion in Section 4.15 that

– If jI j 6� m mod 2, then .�I .M//� � G is the strict transform of JI;s � X ,
where s D 1

2
.mC 1� jI j/.

– If jI j � m mod 2, then .�I .M//� � G is the flipped locus of the flip of the
strict transform of JI;s �X , where s D 1

2
.m� jI j/.

In particular, we see that .M 0/� � EM if and only if M 0 D �I .M/ for some
I � f1; : : : ; nC 3g with jI j �m� 1 and jI j 6�m mod 2.

6.4 (Nef.G/) The cone Nef.G/ has 2nC2C 2.nC 3/ extremal rays, generated by
the classes

fDM D ˇ.ıM /gM2Fm.Z/[
˚
EM CE�i .M/ jM 2 Fm.Z/; i D 1; : : : ; nC 3

	
:

For fixed i , the morphisms associated to the extremal rays generated by EM CE�i .M/

and E�j .M/ C E�ij .M/ for j ¤ i are the generic P1–bundles 'i W G ! Y'i
and

 i W G! Y i
described in Lemma 3.3. The morphism associated to the extremal ray

generated by DM is the composition of the (disjoint) small contractions of �i .M/��G

to a point for i D 1; : : : ; nC 3.
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6.5 (Mov1.G/) The cone Mov1.G/ has 2.nC 3/C 2nC2 extremal rays, generated
by the curve classes

f`M C `�i .M/ jM 2 Fm.Z/; i D 1; : : : ; nC 3g[ fdM jM 2 Fm.Z/g;

where
dM WD ˛

�1.ıM /D
�
1
2
.mC 1/

˘
˛�1.�/C .�1/m`M 2N1.G/:

For a fixed i 2f1; : : : ; nC3g, there are two distinct classes `MC`�i .M/ as M varies in
Fm.Z/, and they form an orbit for the action of W 0 on N1.G/. By Corollary 3.4, these
are the classes of the fibers of the generic P1–bundles 'i W G! Y'i

and  i W G! Y i
.

Under the identification G Š XnFano induced by a pseudoisomorphism G Ü X ,
these correspond to the generic P1–bundles �i ; �0i W X

n
Fano! .XPi

/n�1Fano described in
Lemma 4.12. In particular, we see that Y'i

Š Y i
Š .XPi

/n�1Fano .

As for the class dM , using Proposition 3.7 and Remark 2.23, one computes

�KG � dM D � � ıM D nC 1;

E�i .M/ � dM D �i .M/ � ıM D 0 for every i D 1; : : : ; nC 3:

Therefore dM is the class of the strict transform in G of a general line in Pn under
the map �M W G Ü Pn .

In order to complete the picture, next we describe equations for the movable cone
Mov1.G/ �H 2.G;R/ and give a geometric description of the extremal rays of the
dual cone Mov1.G/_ � N1.G/. We do this for n � 4, since when n D 2 we have
Mov1.G/D Nef.G/ and Mov1.G/_ D NE.G/.

6.6 Proposition Suppose n� 4. The cone Mov1.G/_�N1.G/ has 2nC2C2.nC3/
extremal rays, generated by the classes

feM jM 2 Fm.Z/g[ f`M C `�i .M/ jM 2 Fm.Z/; i D 1; : : : ; nC 3g;

where eM WD
�
1
2
.m/

˘
˛�1.�/C .�1/m�1`M .

Proof Recall from Section 4 that the intersection of Mov1.X/ with the affine hyper-
plane H�H 2.X;R/ is given by

�Mov D

�
�
1
2
� ˛i �

1
2
; i 2 f1; : : : ; nC 3g;

HI � 2; jI j odd.

So Mov1.G/D ˇ.M/, where M is the cone over �Mov , now viewed as a polytope
in the hyperplane f
 j 
 � �D 1g �Hn.Z;R/.
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Notice that the facet .HI D 2/\�Mov of �Mov is the convex hull of the vertices vJ
such that #.I XJ /C#.J XI /D 2. This follows from (2.17). In the same way as done
in Section 2 for E , one can use the linear inequalities defining �Mov to compute the
linear inequalities defining M, or equivalently the generators of the dual cone M_ .
These are˚

M C �i .M/ jM 2 Fm.Z/; i 2 f1; : : : ; nC 3g
	
[f�M gM2Fm.Z/;

where �M D
�
m
2

˘
�C .�1/m�1M (notice that eM D ˛.�M /). Indeed, one can check

using (2.12) that

(6.7) �M � �ij .M/D 0 for all i ¤ j:

By the duality properties of ˛ and ˇ , we have Mov1.G/_D ˛�1.M_/, and the result
follows.

6.8 The classes `M C `�i .M/ were described in Section 6.5 above. Now we want to
describe the classes eM .

Given M 2Fm.Z/ and i 2 f1; : : : ; nC3g, set M0D �i .M/, and follow Notation 2.8,
so that M DMi . Consider the pseudoisomorphism �M0

W G ÜX from Theorem 5.7,
and note that the divisor EM � G is the strict transform of the divisor Ei � X
under �M0

. By (6.7) above, we have that

EMj
� eM D 0 for all j ¤ i:

Similarly one computes that EM � eM D�1. We conclude that eM is the class of the
strict transform under ��1M0

of a general line in Ei Š Pn�1 .

6.9 Remark Set c WD ˛�1.�/ 2N1.G/. We have

�KG � c D 4 and EM � c D 1 for every M 2 Fm.Z/:

The class c is fixed by the action of W.DnC3/ and sits in the interior of the cone
Mov1.G/� NE.G/. Let M 2 Fm.Z/ and consider the rational map �M W G Ü Pn

from Theorem 5.7. Then c is the class of the strict transform via ��1M of an elliptic
curve of degree nC 1 in Pn through p1; : : : ; pnC3 . There is a 4–dimensional family
of such curves (see Dolgachev [11]).

6.10 Remark Brambilla, Dumitrescu and Postinghel [7] describe the effective cone
Eff1.X/�H 2.X;R/ by 3 sets of linear inequalities .An/, .Bn/ and .Cn;t /. Similarly,
the movable cone Mov1.X/�H 2.X;R/ is described by 3 sets of linear inequalities
.An/, .Bn/ and .Dn;t / (see [7, Theorems 5.1 and 5.3]). These are related to the

Geometry & Topology, Volume 21 (2017)



On the Fano variety of linear spaces contained in two odd-dimensional quadrics 3041

extremal rays of Mov1.G/ and Mov1.G/_ described in Section 6.5 and 6.8 as follows.
A divisor class D 2H 2.G;R/ satisfies the inequalities .An/ and .Bn/ if and only if

D � .`M C `�i .M//� 0 for every M 2 Fm.Z/ and i D 1; : : : ; nC 3:

It satisfies the inequalities .Cn;t / if and only if

D � dM � 0 for every M 2 Fm.Z/:

Finally, it satisfies the inequalities .Dn;t / if and only if

D � eM � 0 for every M 2 Fm.Z/:

6.11 (MCD.G/) Consider the subdivision in polytopes of the demihypercube ��
H � Hn.Z;R/ given by the hyperplane arrangement (4.6). By taking the cones
over these polytopes and using the isomorphism ˇW Hn.Z;R/ ! H 2.G;R/, this
subdivision yields the fan MCD.G/.

Fix M0 2 Fm.Z/ and consider the orthogonal basis "1; : : : ; "nC3 of �? �Hn.Z;R/
introduced in (2.9) and the affine coordinates ˛1; : : : ; ˛nC3 in the hyperplane H WD
f
 j 
 � �D 1g described in (2.19). The group W 0 fixes H and �, thus it acts linearly
in the coordinates ˛i . More precisely it follows from (2.11) that, if I � f1; : : : ; nC3g
has even cardinality, then �I .˛1; : : : ; ˛nC3/D .˛01; : : : ; ˛

0
nC3/ with

˛0i D

�
˛i if i … I;
�˛i if i 2 I:

The group W 0 fixes both � and �Mov , while the 2nC2 polytopes �I .�Nef/ are all
distinct. The corresponding cones in MCD.G/ are ��MI

.Nef.X//D ��I .�
�
M0
.Nef.X//.

7 The automorphism group of G

Let the setup be as in Section 5. In this section we describe the automorphism group
of the Fano variety G , generalizing the description of the automorphism group of a
quartic del Pezzo surface in Section 1.1.

7.1 Proposition There are inclusion of groups

.Z=2Z/nC2 ŠW 0 � Aut.G/�W.DnC3/Š .Z=2Z/nC2 ÌSnC3:

Moreover, if the points .�1 W 1/; : : : ; .�nC3 W 1/2P1 are general, then Aut.G/DW 0Š
.Z=2Z/nC2 .

Notice that in the general case we also have Aut.Z/DW 0 (see Reid [25, Lemma 3.1]),
so that Z and G have the same automorphism group.
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Proof Clearly we have W 0 � Aut.G/.

For any � 2Aut.G/, the induced isomorphism ��W H 2.G;R/!H 2.G;R/ preserves
�KG and Eff.G/. As in the proof of Proposition 5.4, one shows that �� 2W.DnC3/.
This yields a group homomorphism

Aut.G/!W.DnC3/:

Fix M0 2 Fm.Z/. Consider the stabilizer G0 of M0 in W.DnC3/, and recall that
W.DnC3/DW

0ÌG0 Š .Z=2Z/nC2ÌSnC3 . So, given � 2Aut.G/, there are unique
elements ! 2G0 and �I 2W 0 such that ��D! ı�I . Set Q� WD �I ı� 2Aut.G/. Then
Q�� D �� ı �I D ! , so Q�� fixes EM0

, and hence it also fixes HM0
.

Consider the rational map �M0
W G Ü Pn induced by HM0

, which contracts the
divisors EM1

; : : : ; EMnC3
to the points p1; : : : ; pnC3 (see Theorem 5.7). Then

Q��.��M0
.OPn.1///D ��M0

.OPn.1//DHM0
, so �M0

and �M0
ı Q� differ by a projective

transformation f 2 Aut.Pn/ preserving the set of points fp1; : : : ; pnC3g:

G
Q�
//

�M0

��

G

�M0

��

Pn
f
// Pn

In particular, if the points p1; : : : ; pnC3 are general, then f D IdPn , and so � D �I .

Suppose that ��D IdH2.G;R/ . Then Q�D� and f must fix each pi . Since p1; : : : ; pnC3
are in general linear position, this implies that f D IdPn , and hence � D Q� D IdG .
This shows that the homomorphism Aut.G/! W.DnC3/ is injective, yielding the
statement.

Every automorphism of X is induced by a projective transformation of Pn preserving
the set fp1; : : : ; pnC3g. This in turns corresponds to a projective transformation of
P1 preserving the set of points f.�1 W 1/; : : : ; .�nC3 W 1/g � P1 . In particular, if
�1; : : : ; �nC3 are general, then Aut.X/D fIdXg.

For any projective variety Y , we denote by Bir0.Y / the group of pseudoautomorphisms
of Y . These are birational maps Y Ü Y which are isomorphisms in codimension
one.

Since X and G are pseudoisomorphic, we have Bir0.X/ Š Bir0.G/. On the other
hand, since G is a Fano manifold, we have Bir0.G/DAut.G/. Indeed if � 2Bir0.G/,
then ��.�KG/D�KG . Since � is an isomorphism in codimension one and �KG is
ample, � must be regular, and similarly for ��1 .
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7.2 Remark (explicit description of pseudoautomorphisms of X ) The action of W 0

on X by pseudoautomorphisms is described by Dolgachev in [11, Sections 4.4–4.6].
Up to a projective transformation, we may assume that p1; : : : ; pnC1 are the coordinate
points, pnC2 D .1 W � � � W 1/ and pnC3 D .a0 W � � � W anC3/. Since no nC1 of the points
lie on a hyperplane, all the aj are nonzero.

Consider the standard Cremona map centered at p1; : : : ; pnC1 ,

sW .z0 W � � � W zn/ 7!
�
1

z0
W � � � W

1

zn

�
:

It is regular at pnC2 and pnC3 , which map to itself and .1=a0 W � � � W 1=an/, respectively.
The projective transformation

r W .z0 W � � � W zn/ 7! .a0z0 W � � � W anzn/

fixes p1; : : : ; pnC1 , maps pnC2 to pnC3 , and maps .1=a0 W � � � W 1=an/ to pnC2 . So
the composition

fnC2;nC3 D r ı sW P
n Ü Pn

induces a pseudoautomorphism !nC2;nC3W X ÜX .

Similarly, for every i; j 2 f1; : : : ; n C 3g with i < j , we can define a birational
involution fij W Pn Ü Pn , which is not regular only at fp1; : : : ; pnC3g X fpi ; pj g
and exchanges pi and pj . This induces a pseudoautomorphism !ij W X ÜX .

One can check that !�ij acts on H 2.X;Z/ as follows:

!�ij .�KX /D�KX ; !�ij .Ei /DEj ; !�ij .Ej /DEi

!�ij .H/D nH � .n� 1/

� nC1X
hD1

Eh�Ei �Ej

�

!�ij .Er/DH �

nC3X
hD1

EhCEi CEj CEr

D
1

nC1
.�KX /�

2

nC1

nC3X
hD1

EhCEi CEj CEr for r ¤ i; j:

Consider the isomorphism QhM0
W H 2.X;R/! Hn.Z;R/ defined in (5.2), and the

corresponding action of !�ij on Hn.Z;R/. We have

!�ij .�/D � and !�ij ."r/D

�
�"r if r D i; j;
"r if r ¤ i; j:
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(The latter can be checked using (2.14).) Hence !�ij D �ij and !ij is the pseudoauto-
morphism of X induced by �ij 2W 0 . In particular, the pseudoautomorphism of X
induced by �1 2W 0 is !23!45 � � �!nC2;nC3 , and so on.
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