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Kato–Nakayama spaces, infinite root stacks and
the profinite homotopy type of log schemes
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For a log scheme locally of finite type over C , a natural candidate for its profinite
homotopy type is the profinite completion of its Kato–Nakayama space. Alternatively,
one may consider the profinite homotopy type of the underlying topological stack of
its infinite root stack. Finally, for a log scheme not necessarily over C , another natural
candidate is the profinite étale homotopy type of its infinite root stack. We prove that,
for a fine saturated log scheme locally of finite type over C , these three notions agree.
In particular, we construct a comparison map from the Kato–Nakayama space to the
underlying topological stack of the infinite root stack, and prove that it induces an
equivalence on profinite completions. In light of these results, we define the profinite
homotopy type of a general fine saturated log scheme as the profinite étale homotopy
type of its infinite root stack.

14F35, 55U35; 55P60

1 Introduction

Log schemes are an enlargement of the category of schemes due to Fontaine, Illusie
and Kato; see Kato [27]. The resulting variant of algebraic geometry, “logarithmic
geometry”, has applications in a variety of contexts ranging from moduli theory to
arithmetic and enumerative geometry (see Abramovich, Chen, Gillam, Huang, Olsson,
Satriano and Sun [1] for a recent survey).

In the past years there have been several attempts to capture the “log” aspect of these
objects and translate it into a more familiar terrain. In the complex analytic case, Kato
and Nakayama [28] introduced a topological space Xlog (where X is a log analytic
space), which may be interpreted as the “underlying topological space” of X , and
over which, in some cases, one can write a comparison between logarithmic de Rham
cohomology and ordinary singular cohomology. In a different direction, for a log
scheme X , Kato introduced two sites, the Kummer-flat site XKfl and the Kummer-étale
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site XKet , that are analogous to the small fppf and étale site of a scheme, and were
used later by Hagihara [19] and Nizioł [35] to study the K–theory of log schemes.

Recently, the fourth author together with Vistoli [48] introduced and studied a third
incarnation of the “log” aspect of a log structure, namely the infinite root stack 1

p
X ,

and used it to reinterpret Kato’s Kummer sites and link them to parabolic sheaves
on X . This stack is defined as the limit of an inverse system of algebraic stacks,
1
p
X D lim

 ��n

n
p
X , parametrizing nth roots of the log structure of X .

The infinite root stack can be thought of as an “algebraic incarnation” of the Kato–
Nakayama space: if X is a log scheme locally of finite type over C , both Xlog and
1
p
X have a map to X . The fiber of Xlog!Xan over a point x 2Xan is homeomorphic

to .S1/r , where r is the rank of the log structure at x . For all n, the reduced fiber of
n
p
X ! X over the corresponding closed point of X is equivalent to the classifying

stack B.Z=nZ/r (for the same r ). Regarding the infinite root stack not as the limit
lim
 ��n

n
p
X , but instead as the diagram of stacks

n 7!
n
p
X;

ie as a pro-object or “formal limit”, yields then that the reduced fiber of 1
p
X !X is

the diagram of stacks
n 7! B.Z=nZ/r ;

which regarded as a pro-object is simply B yZr' bBZr , the profinite completion of .S1/r.

In this paper we formalize this analogy and prove a comparison result between the
profinite completions of Xlog and 1

p
X for a fine saturated log scheme X locally of

finite type over C . Furthermore, we put this result in a wider circle of ideas, centered
around the concept of the profinite homotopy type of a log scheme.

Our approach relies in a crucial way on a careful reworking of the foundations of the
theory of topological stacks and profinite completions within the framework of 1–
categories; see Lurie [31]. This allows us to have greater technical control than earlier
and more limited treatments, and plays an important role in the proof of our main result.
In the second half of the paper we construct a comparison map between Xlog and 1

p
X

and show that it is induces an equivalence between their profinite completions. The
proof involves an analysis of the local geometry of log schemes, and a local-to-global
argument which reduces the statement to a local computation. Next, we review the
main ideas in the paper in greater detail.

1.1 Topological stacks and profinite completions of homotopy types

The first ingredient that we need in order to compare Xlog and 1
p
X is the notion of

a topological stack (see Noohi [36]) associated with an algebraic stack. This is an
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extension of the analytification functor defined on schemes and algebraic spaces, which
equips algebraic stacks with a topological counterpart, and allows one, for example,
to talk about their homotopy type. Given an algebraic stack X locally of finite type
over C , let us denote by Xtop its “underlying topological stack”. This formalism allows
us to carry (infinite root stack) over 1

p
X to the topological world, where Xlog lives.

The second ingredient we need is a functorial way of associating to a topological stack
its homotopy type. Although this is in principle accomplished by Noohi [37] and Coyne
and Noohi [14], the construction is a bit complicated and it is difficult to notice the nice
formal properties this functor has from the construction. We instead construct a functor
…1 associating to a topological stack X its fundamental 1–groupoid. The source
of this functor is a suitable 1–category of higher stacks on topological spaces, and
the target is the 1–category S of spaces. Using the language and machinery of 1–
categories makes the construction and functoriality of …1 entirely transparent; it is the
unique colimit-preserving functor which sends each space T to its weak homotopy type.

The third ingredient we need is a way of associating to a space its profinite completion.
Combining this with the functor …1 gives a way of associating to a topological
stack a profinite homotopy type. The notion of profinite completion of homotopy
types is originally due to Artin and Mazur [5]. Profinite homotopy types have since
played many important roles in mathematics, perhaps most famously in relation to
the Adams conjecture from algebraic topology; see Friedlander [16], Quillen [42]
and Sullivan [47]. A more modern exposition using model categories is given by
Isaksen [25] and Quick [40; 41]; however, the notion of profinite completion is a bit
complicated in this framework. Finally, Lurie [32] briefly introduces an 1–categorical
model for profinite homotopy types, which has recently been shown to be equivalent to
Quick’s model by Barnea, Harpaz and Horel [6] (and also to a special case of Isaksen’s).
The advantage of Lurie’s framework is that the definition of profinite spaces and the
notion of profinite completion become very simple. A � –finite space is a space X
with finitely many connected components, and finitely many homotopy groups, all of
whom are finite, and a profinite space is simply a pro-object in the 1–category of
� –finite spaces. The profinite completion functor

�. � /W S! Prof.S/

from the 1–category of spaces to the 1–category of profinite spaces preserves
colimits, and composing this functor with …1 gives a colimit-preserving functor �…1
which assigns to a topological stack its profinite homotopy type. This property is used
in an essential way in the proof of our main theorem. Using this machinery, we are
able to derive some nontrivial properties of profinite spaces that are used in a crucial
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way to prove our main result; in particular we show that profinite spaces can be glued
along hypercovers (Lemma 6.1).

1.2 The comparison map and the equivalence of profinite completions

Our main result states:

Theorem (see Theorem 6.4) Let X be a fine saturated log scheme locally of finite
type over C . Then there is a canonical map of pro-topological stacks

ˆX W Xlog!
1
p
X top

that induces an equivalence upon profinite completion,�…1.Xlog/
�
�! �…1.1pX top/:

This theorem makes precise the idea that the infinite root stack is an algebraic incarnation
of the Kato–Nakayama space, and that it completely captures the “profinite homotopy
type” (à la Artin–Mazur) of the corresponding log scheme.

The construction of the comparison map ˆX is first performed étale locally on X ,
where there is a global chart for the log structure, and then globalized by descent. The
local construction uses the quotient stack description of the root stacks, that reduces
the problem of finding a map to constructing a (topological) torsor on Xlog with an
equivariant map to a certain space.

This permits the construction of ˆX as a canonical morphism of pro-topological stacks
over Xan :

Xlog
ˆX

//

�log
!!

1
p
X top

�1
{{

Xan

The jump patterns of the fibers of �log and �1 reflect the way in which the rank of
the log structure varies over Xan . More formally, the log structure defines a canonical
stratification on Xan called the rank stratification, which makes Xlog and 1

p
X top

into stratified fibrations. After profinite completion, the fibers of �log and �1 on
each stratum become equivalent; indeed they are equivalent respectively to real tori of
dimension n and to the (pro-)classifying stacks B yZn . The fact that the fibers of �log and
�1 are profinite homotopy equivalent was in fact our initial intuition as to why the main
result should be true. Extracting from this fiberwise statement a proof that ˆX induces
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an equivalence of profinite homotopy types requires a local-to-global argument that
makes full use of the 1–categorical framework developed in the first half of the paper.

The Kato–Nakayama space models the topology of log schemes, but its applicability is
limited to schemes over the complex numbers. Our results suggest that the infinite root
stack encodes all the topological information of log schemes (or at least its profinite
completion) in a way that is exempt from this limitation. More precisely, if X is a
log scheme locally of finite type over C , there are three natural candidates for its
“profinite homotopy type”: the profinite completion of the Kato–Nakayama space Xlog ,
the profinite étale homotopy type of 1

p
X and the profinite completion of the (pro-

)topological stack 1
p
X top . Theorems 6.4 and 7.2 (the latter proven by Carchedi [11])

imply that these three constructions give the same result. This justifies the definition of
the profinite homotopy type for a log scheme X , even outside of the complex case, as
the profinite étale homotopy type of its infinite root stack 1

p
X .

Another possible approach to this would be to define the homotopy type of a log scheme
via Kato’s Kummer-étale topos. As proved by Talpo and Vistoli [48, Section 6.2], this
topos is equivalent to an appropriately defined small étale topos of the infinite root
stack. It is not immediate, however, to link the resulting profinite homotopy type and
the one that we define in the present paper. We plan to address this point in future work.

We believe that our results hold in the framework of log analytic spaces as well. Even
though root stacks of those have not been considered anywhere yet, the construction
and results about them that we use in the present paper should carry through without
difficulty, using some notion of “analytic stacks” instead of algebraic ones.

In recent unpublished work, Howell and Vologodsky give a definition of the motive
of a log scheme inside Voevodsky’s triangulated category of motives. Based on our
results we expect that infinite root stacks should provide an alternative encoding of the
motive of log schemes, or a profinite approximation of it. It is an interesting question
to explore possible connections between these two viewpoints.

Description of content

The paper is structured as follows.

In the first two sections we develop the framework necessary to associate profinite
homotopy types to (pro-)algebraic and topological stacks. Along the way, in Section 3.4
we prove an interesting result (Theorem 3.25) which expresses the homotopy type of the
Kato–Nakayama space of a log scheme as the classifying space of a natural category.
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As a first step towards the main theorem, we construct in Section 4 (Proposition 4.1) a
canonical map of pro-topological stacks

(1) ˆX W Xlog!
1
p
X top

by exploiting the local quotient stack presentations of the root stacks n
p
X , and gluing

the resulting maps.

Section 5 contains results about the topology of the Kato–Nakayama space and the
topological infinite root stack that we use in an essential way in the proof of our main
result.

In Section 6, we give the proof of Theorem 6.4: we show that the canonical map (1)
induces an equivalence after profinite completion. The proof is based on a local-to-
global analysis: we use a suitable hypercover U � of Xan constructed in Section 5 to
reduce the question to the restriction of the map ˆX to each element of this hypercover.
We then use the results about the topology of the Kato–Nakayama space and the
topological infinite root stack proven in the same section to reduce to showing that the
map induces a profinite homotopy equivalence along fibers. This concludes the proof.

Finally, in Section 7 we make some remarks about the definition of the profinite
homotopy type of a general log scheme.

In the appendix, we gather definitions and facts that we use throughout the paper about
log schemes, the analytification functor, the Kato–Nakayama space, root stacks, and
topological stacks. In particular, in Appendix A.6, we carefully construct the “rank
stratification” of X (and Xan ), over which the characteristic monoid M of the log
structure is locally constant.

Notations and conventions We will always work over a field k , which will almost
always be the complex numbers C . In particular all our log schemes will be fine and
saturated, and locally of finite type over C , unless otherwise stated.

If P is a monoid we denote by P gp the associated group. Our monoids will typically
be integral, finitely generated, saturated and sharp (hence torsion-free). A monoid P
with these properties has a distinguished “generating set”, consisting of all its indecom-
posable elements. This gives a presentation of any such monoid P through generators
and relations.

If F is a sheaf of sets on the small étale site of a scheme, its “stalks” will always be
stalks on geometric points.

By an 1–category, we mean a quasicategory or inner-Kan complex. These are a
model for .1; 1/–categories. We will follow very closely the notational conventions
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and terminology from Lurie [31], and refer the reader to the index and notational
index in [31]. One slight deviation from the notational conventions just mentioned
that will be made is that, for C and D objects of an 1–category C , we will denote
by HomC .C;D/ the space of morphisms from C to D in C , rather than using the
notation MapC .C;D/, in order to highlight the analogy with classical category theory.
A very brief heuristic introduction to 1–categories can be found in Appendix A of
Carchedi [12]. See also Groth [18].

Acknowledgements All of the authors would like to thank their respective home
institutions for their support.

We are also happy to thank Kai Behrend, Thomas Goodwillie, Marc Hoyois, Jacob
Lurie, Thomas Nikolaus, Behrang Noohi, Gereon Quick, Angelo Vistoli and Kirsten
Wickelgren for useful conversations.

We are grateful to the anonymous referee for a careful reading and useful comments,
in particular for pointing out the short proof of Proposition 4.4.

2 Profinite homotopy types

In this section we will introduce the 1–categorical model for profinite spaces that we
will use in this article. This 1–category is introduced in [32, Section 3.6]; a profinite
space will succinctly be a pro-object in the 1–category of � –finite spaces. This
notion is equivalent to the notion of profinite space introduced by Quick [40; 41] (see
[6]), but the machinery and language of 1–categories is much more convenient to
work with. Most importantly, the notion of profinite completion becomes completely
transparent in this set up, and it is left adjoint to the canonical inclusion of profinite
spaces into pro-spaces, and hence in particular preserves all colimits. We use this fact
in an essential way in the proof of our main result, and we do not know how to prove
the analogous fact about profinite completion in any other formalism.

We start first by reviewing the notion of ind-objects and pro-objects.

We will interchangeably use the notation S and Gpd1 for the 1–category of spaces,
and the 1–category of 1–groupoids. These two 1–categories are one and the same,
and we will use the different notations solely to emphasize in what way we are viewing
the objects.

Recall that for D a small category, the category of ind-objects is essentially the category
obtained from D by freely adjoining formal filtered colimits. This construction carries
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over for 1–categories. Moreover, if D is an essentially small 1–category, the
1–category of ind-objects in D , Ind.D/, admits a canonical functor

j W D! Ind.D/

satisfying the following universal property:

For every 1–category E which admits small filtered colimits, composition with j
induces an equivalence of 1–categories

Funfilt.Ind.D/; E /! Fun.D ; E /;

where Funfilt.Ind.D/; E / denotes the 1–category of all functors Ind.D/! E which
preserve filtered colimits.

A more concrete description of the 1–category Ind.D/ is as follows. First, recall the
following proposition:

Proposition 2.1 [31, Corollary 5.3.5.4] Denote by Psh1.D/ the 1–category of
1–presheaves on D , that is, the functor category

Fun.Dop;Gpd1/:

Let D be an essentially small1–category and let F W Dop!Gpd1 be an1–presheaf.
Then the following conditions are equivalent:

(i) In the right fibration Z
D

F ! D

classified by F ,
R

D F is a filtered 1–category.

(ii) There exists a small filtered 1–category J and a functor

f W J! D

such that F is the colimit of the composite

J
f
�!D

y
,�! Psh1.D/

(where y denotes the Yoneda embedding),

and, if D has finite colimits, (i) and (ii) are equivalent to

(iii) F is left exact (ie preserves finite limits).
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The1–category Ind.D/ may be described as the full subcategory of Psh1.D/ satisfy-
ing the equivalent conditions (i) and (ii) (or (iii) if D has finite colimits). In particular,
this implies that j is full and faithful, since it is a restriction of the Yoneda embedding.
In a nutshell Psh1.D/ is the 1–category obtained from D by freely adjoining formal
colimits, and (ii) above states that Ind.D/ is the full subcategory thereof on those
formal colimits of objects in D which are filtered colimits.

The notion of a pro-object is dual to that of an ind-object; it is a formal cofiltered limit.
By definition, the 1–category of pro-objects of an essentially small 1–category D is

Pro.D/ ..D Ind.Dop/op:

If D has small limits, we see that Pro.D/ can be described as the full subcategory of
Fun.D ;Gpd1/

op on those functors

F W D! Gpd1

such that F preserves finite limits. Since this definition makes sense even when D is
not essentially small, we make the following definition, due to Lurie:

Definition 2.2 If E is any accessible1–category with finite limits, then we define the
1–category of pro-objects of E , Pro.E /, to be the full subcategory of Fun.E ;Gpd1/

op

on those functors F W E ! Gpd1 which are accessible and preserve finite limits.

Remark 2.3 If E is any accessible 1–category and E is an object of E , then the
functor

Hom.E; � /W E ! Gpd1

corepresented by E is accessible and preserves all limits. This induces a fully faithful
functor

E
j
,�! Pro.E /:

The functor j satisfies the following universal property:

If D is any 1–category admitting small cofiltered limits, then composition with j
induces an equivalence of 1–categories

(2) Funcofilt.Pro.E /;D/! Fun.E ;D/;

where Funcofilt.Pro.E /;D/ is the full subcategory of Fun.Pro.E /;D/ spanned by those
functors which preserve small cofiltered limits; see [32, Proposition 3.1.6].

Remark 2.4 If C is any (not necessarily accessible) 1–category, there always exists
an 1–category Pro.C / satisfying the universal property (2). This is a special case of
[31, Proposition 5.3.6.2].
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Remark 2.5 Let E be any accessible 1–category which is not necessarily essentially
small. Let U be the Grothendieck universe of small sets and let V be a Grothendieck
universe such that U2V, so that we may regard V as the Grothendieck universe of large
sets. Let bGpd1 denote the 1–category of 1–groupoids in the universe V. By the
proof of [32, Proposition 3.1.6], it follows that the essential image of the composition

Pro.E / ,! Fun.E ;Gpd1/
op ,! Fun.E ; bGpd1/op

consists of those functors F W E ! bGpd1 for which there exists a small filtered
1–category J and a functor

f W J! E op

such that F is the colimit of the composite

J
f
�! E op ,! Fun.E ; bGpd1/:

Remark 2.6 In light of Remark 2.5, any object X of Pro.E /, for E an accessible
1–category, can be written as a cofiltered limit of a diagram of the form

F W I! E
j
,�! Pro.E /;

or, in more informal notation,
X D lim

i2I

Xi :

Unwinding the definitions, we see that if Y D limj2J Yj is another such object of
Pro.E /, then the usual formula for the morphism space holds:

HomPro.E /.X; Y /' lim
j2J

colim
i2I

HomE .Xi ; Yj /:

Now suppose that E has a terminal object 1. Then

HomPro.E /.X; j.1//' colim
i2I

HomE .Xi ; 1/:

Notice that each space HomE .Xi ; 1/ is contractible since 1 is terminal, and, since
.�2/–truncated objects (ie terminal objects) are closed under filtered colimits in S by
[31, Corollary 5.5.7.4], it follows that HomPro.E /.X; j.1// itself is a contractible space,
and hence we conclude that j.1/ is a terminal object.

Example 2.7 Let E D S be the 1–category of spaces. Then the 1–category of
pro-spaces, Pro.S/, can be identified with the opposite category of functors F W S! S

such that F is accessible and left exact. Notice that any space X gives rise to a
pro-space

Hom.X; � /W S! S
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which moreover preserves all limits. Moreover if F W S! S is any functor which pre-
serves all limits, then by the Adjoint Functor theorem for 1–categories [31, Corollary
5.5.2.9], F must have a right adjoint G , and is moreover accessible by [31, Proposition
5.4.7.7]. This then implies that

Hom.G.�/; X/' Hom.�; F .X//' F.X/:

Hence F ' j.G.�//. We conclude that the essential image of

j W S ,! Pro.S/

is precisely those 1–functors S! S which preserve all small limits.

Proposition 2.8 The functor

T W Pro.S/
Hom.j.�/; � /
������! S

is right adjoint to the canonical inclusion j W S! Pro.S/.

Proof By Remark 2.5, we may identify Pro.S/op with a subcategory of the 1–
category Fun.S; bGpd1/ of large 1–copresheaves, and since limits commute with
limits, this subcategory is stable under small limits. Note that this implies that Pro.S/
is cocomplete. Since the Yoneda embedding into large 1–presheaves

Sop y
,�!bPsh1.S/

preserves small limits, it follows that

j W S ,! Pro.S/

preserves small colimits. Since S' Psh1.1/, where 1 is the terminal 1–category,
and since Pro.S/ is cocomplete, one has by [31, Theorem 5.1.5.6] that j ' Lany1

.t/,
where y1 is the Yoneda embedding 1! S and t W 1! Pro.S/ is the functor picking
out the object j.�/. It follows immediately from the Yoneda lemma that Hom.j.�/; � /
is right adjoint to Lany1

.t/.

Remark 2.9 Let P W S! S be a pro-space. By [31, Proposition 5.4.6.6], since P is
accessible it follows that the associated left fibrationZ

S

P

is accessible, and hence has a small cofinal subcategory

r W CP ,!

Z
S

P;
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and P may be identified with the limit of the composite

CP
r
,�!

Z
S

P
�P
�! S

j
,�! Pro.S/:

We claim that
T .P /' lim�P ı r:

Indeed,
T .P /D Hom.j.�/; P /

' Hom.j.�/; lim j ı�P ı r/

' lim Hom.j.�/; j ı�P ı r/

' lim Hom.�; �P ı r/

' lim�P ı r:

By the same proof, if one has P presented as a cofiltered limit P D lim j.X˛/ of
spaces, then T .P /' limX˛ . In fact, this holds more generally, by the next proposition.

Proposition 2.10 Let C be an accessible 1–category which admits small filtered
limits. Then the canonical inclusion

j W C ,! Pro.C /

has a right adjoint T and if F W I! C is a cofiltered diagram corresponding to an
object in Pro.C /, then T .F /D limF .

Proof By Remark 2.5, composition with

j W C ,! Pro.C /

induces an equivalence of 1–categories

Funcofilt.Pro.C /;C /! Fun.C ;C /;

so we can find a functor T W Pro.C /! C and an equivalence

�W idC
�
�!T ı j:

Let Z be an arbitrary object of Pro.C /; then we can write Z D limi2I j.Xi /. First
note that since � is an equivalence and T preserves cofiltered limits (by definition),
we have that for such a Z ,

T .Z/' lim
i2I

Xi :
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This shows that T has the desired properties on pro-objects. Let us now show that T
is a right adjoint to j . Let C be an object of C ; then we have

HomC .D; T .Z//' HomC .D; lim
i2I

Xi /' lim
i2I

HomC .D;Xi /;

and since j is fully faithful, we have for each i

HomC .D;Xi /' HomProf.C /.j.D/; j.Xi //:

It follows then that

HomC .D; T .Z//' lim
i2I

HomProf.C /.j.D/; j.Xi //

' HomProf.C /.j.D/; lim
i2I

j.Xi //

D HomProf.C /.j.D/;Z/:

Definition 2.11 A space X in S is � –finite if all of its homotopy groups are finite,
it has only finitely many nontrivial homotopy groups, and finitely many connected
components.

Definition 2.12 Let Sfc denote the full subcategory of the 1–category S on the � –
finite spaces. Sfc is essentially small and idempotent complete (and hence accessible).
The 1–category of profinite spaces is defined to be the 1–category

Prof.S/ ..D Pro.Sfc/:

Proposition 2.13 Let V be a � –finite space. Note that V is n–truncated for some n,
since it has only finitely many homotopy groups. The associated profinite space j.V /
is also n–truncated.

Proof Let X D limi2IXi be a profinite space. Then, by Remark 2.6, we have that

HomProf.S/.X; j.V //' colim
i2I

HomSfc.Xi ; V /:

Each space HomSfc.Xi ; V / is n–truncated since V is, and n–truncated spaces are stable
under filtered colimits by [31, Corollary 5.5.7.4], so it follows that HomProf.S/.X; j.V //

is also n–truncated.

Remark 2.14 The assignment C 7! Pro.C / is functorial among accessible 1–
categories with finite limits. Given a functor f W C ! D , the composite

C
f
�!D

j
,�! Pro.D/
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corresponds to an object of the 1–category Fun.C ;Pro.D//, which by Remark 2.3 is
equivalent to the 1–category Funcofilt.Pro.C /;Pro.D//. Hence, one gets an induced
functor

Pro.f /W Pro.C /! Pro.D/

which preserves cofiltered limits. Moreover, Pro.f / is fully faithful if f is. If f
happens to be accessible and left exact, then there is an induced functor in the opposite
direction, given by

f �W Pro.D/! Pro.C /; .D
F
�!Gpd1/ 7! .C

f
�!D

F
�!Gpd1/;

and f � is left adjoint to Pro.f /. See [32, Remark 3.1.7] (but note there is a typo,
since f � is in fact a left adjoint, not a right adjoint).

Example 2.15 The canonical inclusion i W Sfc ,! S induces a fully faithful embedding

Pro.i/W Prof.S/ ,! Pro.S/

of profinite spaces into pro-spaces. Moreover, i is accessible and preserves finite limits,
hence the above functor has a left adjoint

i�W Pro.S/! Prof.S/:

This functor sends a pro-space P to its profinite completion.

Definition 2.16 We denote by �. � / the composite

S
j
,�! Pro.S/ i�

�! Prof.S/

and call it the profinite completion functor. Concretely, if X is a space in S, then yX
corresponds to the composite

Sfc i
,�! S

Hom.X; � /
�����! S:

This functor has a right adjoint given by the composite

Prof.S/
Pro.i/
,��!Pro.S/ T

�! S:

We will denote this right adjoint simply by U .

Remark 2.17 We will sometimes abuse notation and denote the profinite completion
of a pro-space Y also by yY rather than i�Y , when no confusion will arise.
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2.1 The relationship with profinite groups

In this subsection, we will touch briefly upon the relationship between profinite groups
and profinite spaces. Recall the notion of profinite completion of a group. A profinite
group is a pro-object in the category of finite groups. Equivalently, a profinite group is
a group object in profinite sets; see [32, Proposition 3.2.12].

Denote by i W FinGp ,! Gp the fully faithful inclusion of the category of finite groups
into the category of groups. The composite

Gp ,! Pro.Gp/ i�
�! Pro.FinGp/' Gp.Pro.FinSet//

is the functor assigning to a group its profinite completion. We also denote this functor
by �. � / when no confusion will arise. Recall that the profinite completion of a group
has a classical concrete description as follows: Let G be a group, then its profinite
completion is the limit limN j.G=N/, where N ranges over all the finite index normal
subgroups of G . Similarly, denote by iabW FinAbGp ,!AbGp the fully faithful inclusion
of the category of finite abelian groups into the category of abelian groups. By the
analogous construction to the above, there is an induced profinite completion functor

�. � /abW AbGp! Pro.FinAbGp/:

It can be described classically by the same formula as in the nonabelian case. If

�W AbGp ,! Gp

is the canonical inclusion of abelian groups into groups, it follows that the following
diagram commutes up to canonical natural equivalence:

AbGp
�. � /ab

//

�

��

Pro.FinAbGp/

Pro.�/
��

Gp
�. � /

// Pro.FinGp/

By [32, Proposition 3.2.14], there is a canonical equivalence of categories

Pro.FinAbGp/' AbGp.Pro.FinSet//

between the category of pro-objects in finite abelian groups and the category of abelian
group objects in profinite sets. Thus, in particular, finite coproducts (direct sums) in
Pro.FinAbGp/ coincide with finite products. Since �. � /ab is a left adjoint, it preserves
direct sums, and by Remark 2.14, Pro.�/ is a right adjoint (since � preserves finite
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limits), so Pro.�/ preserves products. It follows that the composite�. � / ı�W AbGp! Pro.FinGp/

preserves finite products.

Corollary 2.18 Let k be a nonnegative integer. Then there is a canonical isomorphism
of profinite groups cZk Š yZk :
We now note a recent result which compares the 1–categorical model for profinite
spaces just presented with the model categorical approach developed by Quick [40; 41]:

Theorem 2.19 [6, Corollary 7.4.6] The1–category associated to the model category
presented in [40; 41] is equivalent to Prof.S/.

The details of Quick’s model category need not concern us here, but we cite the above
theorem in order to freely use results of [40; 41] about profinite spaces.

Proposition 2.20 Let k be a nonnegative integer. There is a canonical equivalence of
profinite spaces

1
B.Zk/ ' B.yZk/:

Proof Since Zk is a finitely generated free abelian group, it is good in the sense of
Serre [45]. It follows from [41, Proposition 3.6] and Theorem 2.19 that the canonical
map

1
B.Zk/! B.

cZk /
is an equivalence of profinite spaces. The result now follows from Corollary 2.18.

The following lemma will be used in an essential way several times in this paper:

Lemma 2.21 Let f W �! C be a cosimplicial diagram and suppose that C is an
.nC1; 1/–category, ie an1–category whose mapping spaces are all n–truncated. Then,
provided both limits exist, the canonical map

limf ! lim.f j��n/

is an equivalence.
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Proof Let C be an arbitrary .1; nC1/–category. Notice that for any diagram
f W �! C and any object C of C , we have

Hom
�
C; lim

k2�

f .k/
�
' lim
k2�

Hom.C; f .k//;

and since C is an .1; nC1/–category, each Hom.C; f .k// is an n–truncated space.
Therefore the general case follows from the case when C is the full subcategory S�n

of S on the n–truncated spaces. By [31, Theorem 4.2.4.1], to prove the lemma for the
special case C D S�n , it suffices to prove the corresponding statement about homotopy
limits in the Quillen model structure on the category of compactly generated spaces CG,
since the associated 1–category is S.

Suppose that
X�W �! CG

is a cosimplicial space which is fibrant with respect to the projective model structure on
Fun.�;CG/ (with respect to the Quillen model structure on CG), ie the diagram X�

consists entirely of Serre fibrations. Then the homotopy limit of X� may be computed
as Tot.X/, and moreover, Tot.X/ can be written as the (homotopy) limit of a tower of
fibrations

� � � ! Tot.X/k! Tot.X/k�1! � � � ! Tot.X/1! Tot.X/0 DX;

where each Tot.X/k is a model for the homotopy limit of X j��k
. Moreover, the

(homotopy) fiber of each map

Tot.X/k! Tot.X/k�1

is homotopy equivalent to the k–fold loop space �k.M kX�/, where

M kX� D lim
ŒkC1��Œj �

j�k

Xj

is the kth matching object of X� (see eg the introduction of [33]).

Now let us assume that each Xk is n–truncated. Then, as X� is fibrant, the diagram
involved in the limit above consists entirely of fibrations, so the limit is a homotopy
limit, hence each matching object is also n–truncated (since n–truncated objects are
stable under limits in S by [31, Proposition 5.5.6.5]). It follows then that each homotopy
fiber

Tot.X/k! Tot.X/k�1

is weakly contractible for k > n, and hence the natural map

holimX� D Tot.X/! Tot.X/n D holimX�j��n

is a weak homotopy equivalence.
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Proposition 2.22 Let limi2IGi be a pro-object in the category of finite groups, or,
equivalently, a group object in Pro.FinSet/. Consider the profinite space

B
�
lim
i

Gi
�

..D colim
�
: : : lim

i

Gi � lim
i

Gi
!
!
! lim

i

Gi � �
�
;

where the colimit is computed in Prof.S/ and � denotes the terminal profinite space. In
more detail, the diagram whose colimit is being taken is the simplicial diagram which
is the Čech nerve of the unique map limi Gi !� in Prof.S/. Consider for each i the
object in S

B.Gi /
..D colim

�
: : : Gi �Gi

!
!
! Gi � �

�
;

ie the colimit in S of the Čech nerve of Gi . Then these spaces assemble into a profinite
space limi B.Gi /, and we have a canonical equivalence

B
�
lim
i

Gi
�
' lim

i

B.Gi /

in Prof.S/.

Proof It suffices to prove that for each � –finite space V we have an equivalence

HomProf.S/
�
B
�
lim
i

Gi
�
; j.V /

�
' HomProf.S/

�
lim
i

B.Gi /; j.V /
�
:

Recall that, by Proposition 2.13, j.V / is n–truncated for some n. As such, we have

HomProf.S/
�
B
�
lim
i

Gi
�
; j.V /

�
' HomProf.S/

�
colim
�op

N
�
lim
i

Gi
�
; j.V /

�
' lim

�

HomProf.S/
�
N
�
lim
i

Gi
�
; j.V /

�
' lim
��n

HomProf.S/
�
N
�
lim
i

Gi
�
; j.V /

�
;

that last equivalence following from Lemma 2.21. Expanding this out we get

lim
��n

�
HomProf.S/.1; j.V //� HomProf.S/

�
lim
i

Gi ; j.V /
�

!
!
! HomProf.S/

��
lim
i

Gi
�2
; j.V /

�
: : :HomProf.S/

��
lim
i

Gi
�n
; j.V /

��
which is equivalent to

lim
��n

�
HomS.�; V /� colim

i

HomS.Gi ; j.V //

!
!
! colim

i

HomS.G
2
i ; j.V // : : : colim

i

HomS.G
n
i ; j.V //

�
and since by [31, Proposition 5.3.3.3] finite limits commute with filtered colimits in S,
we get

colim
i

lim
��n

ŒHomS.�; V /� HomS.Gi ; V /
!
!
! HomS.G

2
i ; j.V // : : :HomS.G

n
i ; V /�:
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Now, since j.V / is n–truncated by Proposition 2.13, it follows from Lemma 2.21 that
we can rewrite this as

colim
i

lim
�

�
HomS.�; V /� HomS.Gi ; V /

!
!
! HomS.G

2
i ; j.V // : : :HomS.G

n
i ; V / : : :

�
;

which is equivalent to

colim
i

HomS

�
colim
�op

N.Gi /; V
�
' colim

i

HomS.B.Gi /; V /

' HomProf.S/
�
lim
i

B.Gi /; j.V /
�
:

3 The homotopy type of topological stacks

In this section we use the formalism of 1–categories to produce two important con-
structions necessary for our paper. Firstly, we extend the construction of analytification,
which sends a complex variety to its set of closed points, equipped with the analytic
topology, to a colimit-preserving functor

. � /topW Sh1.AffLFT
C ; Ket/!HypSh1.TopC/

from the 1–category of 1–sheaves over the étale site of affine schemes of finite type
over C to the 1–category of hypersheaves over an appropriate topological site. This
functor, in particular, sends an Artin stack locally of finite type over C to its underlying
topological stack in the sense of Noohi [36]. Using this functor, one associates to the
infinite root stack 1

p
X of a log scheme a pro-topological stack 1

p
X top . In Section 4,

we produce a map

(3) Xlog!
1
p
X top

from the Kato–Nakayama space to the underlying (pro-)topological stack of the infinite
root stack. The main result of the paper is that this map is a profinite homotopy
equivalence, but to make sense of such a statement, one first needs to associate to each
of these objects a (pro-)homotopy type, in a functorial way. To achieve this, the second
construction we produce is a colimit-preserving functor

…1W HypSh1.TopC/! S

which sends every topological space X to its underlying homotopy type, and sends
every topological stack to its homotopy type in the sense of Noohi [37]. Using this
construction and the map (3), one has an induced map in Pro.S/,

…1.Xlog/!…1.
1
p
X top/;
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which we prove in Section 6 becomes an equivalence after applying the profinite
completion functor, ie the map (3) is a profinite homotopy equivalence.

3.1 The underlying topological stack of an algebraic stack

Let Top be the category of topological spaces and let TopsC denote the full subcategory
of Top of all contractible and locally contractible spaces which are homeomorphic to
a subspace of Rn for some n. Note that TopsC is essentially small. Denote by TopC

the following subcategory of topological spaces:

� A topological space T is in TopC if T has an open cover .U˛ ,! T /˛ such
that each U˛ is an object of TopsC .

We use the subscript C to highlight the fact that TopC will serve as the target of the
analytification functor from the category of algebraic spaces over C . Note that the
objects of TopC are closed under taking open subspaces. As such, it makes sense to
equip TopC with the Grothendieck topology generated by open covers. Denote by
HypSh1.TopC/ the 1–topos of hypersheaves on TopC , ie the hypercompletion of
the 1–topos of 1–sheaves. There is also a natural structure of a Grothendieck site
on TopsC as follows:

� Let T be a space in TopsC . A covering family of T consists of an open cover
.U˛ ,! T / such that each U˛ is in TopsC .

Note that every open cover of T can be refined by such a cover. We denote the
associated 1–topos of hypersheaves by HypSh1.TopsC/. By the comparison lemma
of [3, Exposé III], we have that restriction along the canonical inclusion

TopsC ,! TopC

induces an equivalence between their respective categories of sheaves of sets. It then
follows from [26, Theorem 5; 31, Proposition 6.5.2.14 ] that this lifts to an equivalence

HypSh1.TopC/
�
�!HypSh1.TopsC/;

and in particular, HypSh1.TopC/ is an 1–topos (which is not a priori clear for sites
which are not essentially small).

Denote by AffLFT
C the category of affine schemes of finite type over C . Note that it is

a small category with finite limits. Denote by

. � /anW AffLFT
C ! Top

the functor associating to such an affine scheme its space of C–points, equipped with
the analytic topology. The above functor preserves finite limits, and is the restriction
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of a functor defined for all algebraic spaces locally of finite type over C ; see [49,
page 12]. Note also that if V is a scheme which is separated and locally of finite type,
then Van is locally (over any affine) a triangulated space by [30], so in particular Van is
locally contractible. Also observe that Van is locally cut-out of Cn by polynomials, so
it follows that Van is in TopC . Consequently . � /an restricts to a functor

. � /anW AffLFT
C ! TopC;

which preserves finite limits.

Note that the category AffLFT
C can be equipped with the Grothendieck topology gener-

ated by étale covering families. Denote the associated 1–topos of 1–sheaves on this
site by Sh1.AffLFT

C ; Ket/.

The following theorem is an extension of [36, Proposition 20.2]:

Theorem 3.1 The functor

. � /anW AffLFT
C ! TopC

lifts to a left exact colimit-preserving functor

. � /topW Sh1.AffLFT
C ; Ket/!HypSh1.TopC/:

Proof Note that the image under . � /an of an étale map is a local homeomorphism.
Also note that if

S ! T

is a local homeomorphism and T is in TopC , so is S . Furthermore, since the inclusion
of any open subspace of a topological space is a local homeomorphism, and since any
cover by local homeomorphisms can be refined by a cover by open subspaces, it follows
that open covers and local homeomorphisms generate the same Grothendieck topology
on TopC . It follows that any 1–sheaf on TopC , so in particular any hypersheaf,
satisfies descent with respect to covers by local homeomorphisms. The result now
follows from [31, Proposition 6.2.3.20].

Remark 3.2 Denote by Y the Yoneda embedding

Y W TopC ,!HypSh1.TopC/

and denote by y the Yoneda embedding

yW AffLFT
C ,! Sh1.AffLFT

C ; Ket/:

Explicitly, . � /top is the left Kan extension of Y ı . � /an along y ,

Lany ŒY ı . � /an�W Sh1.AffLFT
C ; Ket/!HypSh1.TopC/;
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or more concretely, it is the unique colimit-preserving functor such that for a repre-
sentable y.X/, ie an affine scheme,

y.X/top Š Y.Xan/:

By the proof of Theorem 3.1, we see that given any hypersheaf F on TopC , the functor

F ı . � /an

is an 1–sheaf on .AffLFT
C ; Ket/, ie we have a well-defined functor

. � /�anW HypSh1.TopC/! Sh1.AffLFT
C ; Ket/:

Proposition 3.3 The functor . � /top is left adjoint to . � /�an .

Proof Since . � /top is colimit-preserving, it follows from [31, Corollary 5.5.2.9] that
it has a right adjoint. Let us denote the right adjoint by R . By the Yoneda lemma, we
have that if F is a hypersheaf F on TopC , then R.F / is the 1–sheaf on .AffLFT

C ; Ket/
such that, if X is an affine scheme,

R.F /.X/'Hom.y.X/;R.F //'Hom..y.X//top; F /'Hom.Y.Xan/; F /'F.Xan/:

Remark 3.4 The adjoint pair . � /top a . � /
�
an assembles into a geometric morphism of

1–topoi
f W HypSh1.TopC/! Sh1.AffLFT

C ; Ket/;

with direct image functor
f� D . � /

�
an

and inverse image functor
f � D . � /top:

Lemma 3.5 Let AlgSpLFT
C denote the category of algebraic spaces locally of finite

type over C . Equip AlgSpLFT
C with the étale topology. Then restriction along the

canonical inclusion
AffLFT

C ,! AlgSpLFT
C

induces an equivalence of 1–categories

Sh1.AlgSpLFT
C ; Ket/ ��! Sh1.AffLFT

C ; Ket/:

Proof The inclusion satisfies the conditions of the comparison lemma of [3, Exposé III],
so we have an induced equivalence

Sh.AlgSpLFT
C ; Ket/ ��! Sh.AffLFT

C ; Ket/
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between sheaves of sets. Since both sites have finite limits, the result now follows from
[31, Proposition 6.4.5.4].

Proposition 3.6 Let X be any algebraic space locally of finite type over C . Then
Xtop ŠXan .

Proof Let U be the Grothendieck universe of small sets and let V be the Grothendieck
universe of large sets with U 2 V. Denote by bGpd1 the 1–category of large 1–
groupoids, and denote by 2HypSh1.TopC/ the 1–category of hypersheaves on TopC

with values in bGpd1 , and similarly let bSh1.AlgSpLFT
C ; Ket/ denote the 1–category

of sheaves on the étale site of algebraic spaces with values in bGpd1 . Then by the same
proof as Theorem 3.1, by left Kan extension there is a V–small colimit-preserving
functor

LW bSh1.AlgSpLFT
C ; Ket/!2HypSh1.TopC/

such that, for all representable sheaves y.P / on .AlgSpLFT
C ; Ket/,

L.y.P //Š Y.Pan/:

By [31, Remark 6.3.5.17], both inclusions

HypSh1.TopC/ ,!
2HypSh1.TopC/

and
Sh1.AffLFT

C ; Ket/ ,! bSh1.AffLFT
C ; Ket/

preserve U–small colimits. Hence both composites

Sh1.AffLFT
C ; Ket/ ,! bSh1.AffLFT

C ; Ket/' bSh1.AlgSpLFT
C ; Ket/ L

�!2HypSh1.TopC/

and
Sh1.AffLFT

C ; Ket/ . � /top
���!HypSh1.TopC/ ,!

2HypSh1.TopC/

are U–small colimit-preserving, and agree up to equivalence on every representable
y.X/, for X an affine scheme. It follows from [31, Theorem 5.1.5.6] that both
compositions must in fact be equivalent. However, the inclusion

Sh1.AffLFT
C ; Ket/ ,! bSh1.AffLFT

C ; Ket/' bSh1.AlgSpLFT
C ; Ket/

carries an algebraic space P to its representable sheaf y.P /. The result follows.

The next lemma follows immediately from the fact that . � /top preserves finite limits.

Lemma 3.7 Let G be a groupoid object in sheaves of sets on the étale site .AffLFT
C ; Ket/.

Then applying . � /top levelwise produces a groupoid object in sheaves of sets on TopC ,
denoted by Gtop . Moreover, if the original groupoid G is a groupoid object in algebraic
spaces, then Gtop is degreewise representable, ie a topological groupoid.
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Proposition 3.8 Let G be a groupoid object in sheaves of sets on the étale site
.AffLFT

C ; Ket/. Denote by ŒG� its associated stack of torsors, and denote by ŒGtop� the
stack of groupoids on TopC associated to Gtop , ie the stack on TopC of principal
Gtop –bundles. Then ŒG�top ' ŒGtop�.

Proof The stack ŒG� is the stackification of the presheaf of groupoids zy.G/ which
sends an affine scheme X to the groupoid G.X/. Denote by N.G/ the simplicial
presheaf which is the nerve of this presheaf of groupoids. Consider the diagram

�op N.G/
���!Psh.AffLFT

C ; Set/ ,! Psh.AffLFT
C ;Gpd1/:

We claim that the colimit of the above functor is zy.G/. Since colimits are computed
objectwise, it suffices to show that if H is any discrete groupoid, then N.H/ is the
homotopy colimit of the diagram

�op N.H/
���! Set ,! Set�

op
;

which follows easily from the well-known fact that the homotopy colimit of a simplicial
diagram of simplicial sets can be computed by taking the diagonal. It follows then that
ŒG� is the colimit of the diagram

�op N.G/
���!Sh.AffLFT

C ; Ket/ ,! Sh1.AffLFT
C ; Ket/;

since 1–sheafification preserves colimits, as it is a left adjoint. By the same argument,
we have that ŒGtop� is the colimit of the diagram

�op N.Gtop/
���!Sh.TopC/ ,! Sh1.TopC/:

Notice that for all n we have

N.Gtop/n D .N.G/n/top:

The result now follows from the fact that . � /top preserves colimits.

Definition 3.9 A topological stack is a stack on TopC of the form ŒG� for G a groupoid
object in TopC . Denote the associated .2; 1/–category of topological stacks by TopSt.

Remark 3.10 In the literature, typically there is no restriction on a topological stack
to come from a topological groupoid which is locally contractible, and such a stack is
represented by its functor of points on the Grothendieck site of all topological spaces.
However, the .2; 1/–category of topological stacks in the sense we defined above
embeds fully faithfully into the larger .2; 1/–category of all topological stacks in the
classical sense.
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Corollary 3.11 The functor

. � /topW Sh1.AffLFT
C ; Ket/!HypSh1.TopC/

restricts to a left exact functor

. � /top W AlgStLFT
C ! TopSt

from Artin stacks locally of finite type over C to topological stacks.

Up to the identification mentioned in Remark 3.10, the construction in the above
corollary agrees with that of Noohi in [36, Section 20].

3.2 The fundamental infinity-groupoid of a stack

The following proposition will allow us to talk about homotopy types of topological
stacks:

Proposition 3.12 There is a colimit-preserving functor

xLW HypSh1.TopsC/! S

sending every representable sheaf y.T / for T in TopsC to its weak homotopy type.

Proof The proof is essentially the same as [12, Proposition 3.1]. By Lemma 3.1
in [12], there is a functor

TopsC ,! Top h
�! S

assigning to each space T its associated weak homotopy type. Denote this functor by � .
Since TopsC is essentially small, by left Kan extension there is a colimit-preserving
functor

LanY � W Psh1.TopsC/! S

sending every representable presheaf Y.T / to the underlying weak homotopy type
of T . It follows from the Yoneda lemma that this functor has a right adjoint R� which
sends an 1–groupoid Z to the 1–presheaf

R�.Z/W T 7! Hom.�.T /;Z/:

We claim that R�.Z/ is a hypersheaf. To see this, it suffices to observe that if

U �W �op
! TopsC=T
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is a hypercover of T with respect to the coverage of contractible open coverings, then
the colimit of the composite

�op U �
�!TopsC=T ! TopsC

�
�! S

is �.T /, which follows from [15, Theorem 1.3]. We thus have that Lany � and R�
restrict to an adjunction

xL a�

between HypSh1.TopsC/ and S, so in particular, xL preserves colimits.

Corollary 3.13 Let G be an 1–groupoid. Denote by �.G/ the constant presheaf
on TopsC . Then �.G/ is a hypersheaf.

Proof Following the proof of the above theorem, we have that R�.G/ is a hypersheaf.
Moreover, for each space T in TopsC , we have that

R�.G/.T /' Hom.Y.T /; R�.G//' Hom.xL.Y.T //;G/' Hom.�;G/' G;

since each such T is in fact contractible.

Remark 3.14 The 1–category S of spaces is the terminal 1–topos. In particular,
if C is any 1–category equipped with a Grothendieck topology, then the unique
geometric morphism

Sh1.C /! S

has as direct image functor the global sections functor

�W Sh1.C /! S

defined by �.F /DHom.1; F /, which is the same as F.1/ if C has a terminal object.
The inverse image functor is given by

�W S! Sh1.C /

and it sends an 1–groupoid G to the sheafification of the constant presheaf with
value G. Similarly, the unique geometric morphism

HypSh1.C /! S

has its direct image functor � given by the same construction as for 1–sheaves, and
the inverse image functor � assigns an 1–groupoid G the hypersheafification of
the constant presheaf with values G. In either case we have � a � . In particular,
Corollary 3.13 implies that for the 1–topos HypSh1.TopsC/ we have a triple of
adjunctions

xL a� a �:
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Although we will not prove it here, there is in fact a further right adjoint to �, coDisc`�,
and moreover the quadruple

xL a� a � a coDisc

exhibits HypSh1.TopsC/ as a cohesive 1–topos in the sense of [44].

Proposition 3.15 The composite

HypSh1.TopC/
�
�!HypSh1.TopsC/

xL
�! S

is colimit-preserving and sends a representable sheaf Y.X/ for X in TopC to its
underlying weak homotopy type.

Proof By [12, Lemma 3.1], there is a functor

TopC ,! Top h
�! S

assigning to each space X its associated weak homotopy type. Denote this functor
by …. By exactly the same proof as Proposition 3.12, by using that TopC is V–small,
with V the Grothendieck universe of large sets, we construct a colimit-preserving
functor

LW 2HypSh1.TopC/!
yS;

where yS is the 1–category of large spaces (or large 1–groupoids), which sends every
representable sheaf Y.X/ to its underlying weak homotopy type. The rest of the proof
is analogous to that of Proposition 3.6.

Definition 3.16 We denote the composite from Proposition 3.15 by

…1W HypSh1.TopC/! S:

For F a hypersheaf on TopC , we call …1.F / its fundamental 1–groupoid.

Remark 3.17 In light of Remark 3.14, we have that …1 a�a � , where � is global
sections, and � assigns an 1–groupoid G the hypersheafification of the constant
presheaf with value G. In particular, we have a formula for �.G/, namely, if X is a
space in TopC ,

�.G/.X/' Hom.…1.X/;G/;

that is, the space of maps from the homotopy type of X to G.

The following proposition may be seen as an extension of the results of [37]:
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Proposition 3.18 Let G be a groupoid object in TopC and denote by ŒG� denote the
associated stack of groupoids on TopC , ie the stack of principal G–bundles. Then
…1.ŒG�/ has the same weak homotopy type as

BGD kN.G/k;

the fat geometric realization of the simplicial space arising as the topologically enriched
nerve of G.

Proof We know that ŒG� is the colimit in HypSh1.TopC/ of the diagram

�op N.G/
���!TopC

Y
,�!HypSh1.TopC/

(as in the proof of Proposition 3.8). The result now follows from Proposition 3.15 and
[12, Lemma 3.3]

Lemma 3.19 Let F be a hypersheaf on TopsC . Then xL.F / is the colimit of F , ie the
colimit of the diagram

F W .TopsC/
op
! S:

Proof By the proof of Proposition 3.12, xL factors as the composition

HypSh1.TopsC/ ,! Psh1.TopsC/
LanY �
����! SD Gpd1 :

Note however that every space in TopsC is contractible, so the canonical morphism
�! t to the terminal functor

t W TopsC! Gpd1

(ie the functor with constant value the one-point set) is an equivalence, and hence
LanY � is left adjoint to the constant functor t� which sends an 1–groupoid G to
the constant presheaf with value G. Since Psh1.TopsC/D Fun..TopsC/

op;Gpd1/, the
result now follows from the universal property of colim. � /.

Corollary 3.20 Let F be a hypersheaf on TopC . Then …1.F / is the colimit
of F jTops

C
.

3.3 The profinite homotopy type of a (pro-)stack

Let us define the profinite version of the homotopy type of a stack.

Definition 3.21 We denote the composite

HypSh1.TopC/
…1
���! S

�. � /
�! Prof.S/

by �…1 . For F a hypersheaf on TopC , we call �…1.F / its profinite fundamental
1–groupoid or simply its profinite homotopy type.
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Let us extend the constructions of this section to pro-objects. Note that the functor

. � /topW Sh1.AffLFT
C ; Ket/!HypSh1.TopC/

extends to a functor on pro-objects, which by abuse of notation we will denote by the
same symbol,

. � /topW Pro.Sh1.AffLFT
C ; Ket//! Pro.HypSh1.TopC//:

We will now describe how to define the profinite homotopy type of a pro-object in
HypSh1.TopC/. First, we may extend the profinite fundamental 1–groupoid functor
on HypSh1.TopC/ to pro-objects. This can be achieved easily by the universal
property of Pro.HypSh1.TopC//. Indeed, consider the functor

�…1W HypSh1.TopC/! Prof.S/

and denote its unique cofiltered limit-preserving extension, by abuse of notation, again
by �…1W Pro.HypSh1.TopC//! Prof.S/:

Unwinding the definitions, we see that if limi2I Yi is a pro-object in hypersheaves
on TopC , then its profinite homotopy type is

�…1�lim
i2I

Yi
�
D lim
i2I

�…1.Yi /:
3.4 The homotopy type of Kato–Nakayama spaces

In this subsection, we will give a formula expressing the homotopy type of the Kato–
Nakayama space of a log scheme in terms of algebro-geometric data. We first start by
reviewing a functorial approach to Kato–Nakayama spaces which is due to Kato, Illusie
and Nakayama. Let .X;M; ˛/ be a log scheme, and let Xan be the analytification
of X , which is an object of TopC .

Consider the slice category TopC=Xan . If .T p
�!Xan/ is an object in TopC=Xan , one

can pullback M to T and take the sectionwise group completion. In this way we
obtain a sheaf of abelian groups on T , which we denote by p�M gp . Note that p�M gp

contains p�O�X as a subsheaf of abelian groups.

Let G be any abelian topological group. If T is a topological space, we denote GT
the sheaf on T of continuous maps to G equipped with the group structure coming
from addition in G . Note that we have f �.GS /DGT .
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Definition 3.22 We denote by Flog the presheaf of sets on TopC=Xan that is defined
on objects by the following assignment:

.T
p
�!Xan/

7!

�
morphisms of sheaves sW p�M gp

! S1T such that s.f /D
f

jf j
for f 2 O�X

�
:

Theorem 3.23 [23, Section 1.2] The presheaf Flog is represented by Xlog .

Since Xlog is an object of TopC , the functor Flog completely determines Xlog . More-
over, we can use this functorial description to give an expression for the homotopy type
of Xlog , as we will now show.

Definition 3.24 Denote by CKN.X/ the following category: the objects consist of
triples .T; p; s/ where

� T is a topological space in TopsC ,
� pW T !Xan is a continuous map,
� and s is a morphism of sheaves of abelian groups

sW p�M gp
! S1T

such that s.f /D f=jf j for f 2 O�X .

The morphisms .T; p; s/ ! .S; q; r/ are continuous maps f W T ! S such that
f �.r/D s .

Theorem 3.25 Let X be a log scheme. The weak homotopy type of the Kato–
Nakayama space is that of BCKN.X/.

Proof The reader may notice that CKN.X/ is simply the Grothendieck constructionZ
Tops

C

.FlogjTops
C=Xan/:

Notice also that
TopsC=Xan! TopsC

is the Grothendieck construction of Y.Xan/jTops
C

(where Y denotes the Yoneda em-
bedding) ie the corresponding fibered category. Now, there is a canonical equivalence
of categories

Sh.TopsC=Xan/' Sh.TopsC/=Y.Xan/jTops
C
;

and it follows that
R

Tops
C
.FlogjTops

C=Xan/ is equivalent to the Grothendieck construction
of Y.Xlog/. We have from Proposition 3.15 that …1.Y.Xlog// is the weak homotopy
type of Xlog . The result now follows from Corollary 3.20 and [12, Corollary 3.2].
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Corollary 3.26 Let X be a log scheme. The profinite homotopy type of its Kato–
Nakayama space Xlog is that of the profinite completion of BCKN.X/.

4 Construction of the map

In all that follows X will be a fine and saturated log scheme over C that is locally of
finite type. See the appendix for a condensed introduction to the main concepts and
notations that we will use in this section. Our goal is to prove the following proposition:

Proposition 4.1 There is a canonical morphism of pro-topological stacks

ˆX W Xlog! .
1
p
X/top:

Later (Section 6) we will show that this map induces a weak equivalence of profinite
homotopy types. The proof of Proposition 4.1 will take up the rest of this section.

Our strategy will be to construct the morphism ˆX étale locally on X , where the log
structure has a Kato chart, and then to show that the locally defined morphisms glue
together to give a global one.

Step 1 (local case) First let us assume that X ! Spec CŒP � is a Kato chart for X ,
where P is a fine saturated sharp monoid. In this case everything is very explicit:
as explained in Appendix A.4, there is an isomorphism n

p
X ' ŒXn=�n.P /�, where

Xn DX �Spec CŒP � Spec C
�
1
n
P
�
, the group �n.P / is the Cartier dual of the cokernel

of P gp! 1
n
P gp , and the action on Xn is induced by the natural one on Spec C

�
1
n
P
�
.

By following Noohi’s construction (see Proposition A.19) we see that n
p
X top is

canonically isomorphic to the quotient Œ.Xn/an=�n.P /an�, where �n.P /an Š .Z=n/r .
Note that the finite morphism Spec C

�
1
n
P
�
! Spec CŒP � is étale on the open torus

Spec CŒP gp�� Spec CŒP �, and ramified exactly on the complement.

Now let us construct a morphism of topological stacks Xlog!
n
p
X top . By the quotient

stack description of the target, this is equivalent to giving a �n.P /an –torsor (ie principal
bundle) on Xlog , together with a �n.P /an –equivariant map to .Xn/an .

Let us look at a couple of examples first.

Example 4.2 Let X be the standard log point Spec C with log structure given by
N˚C�! C sending .n; a/ to 0n � a . Then Xlog Š S

1 , and n
p
X top ' B.Z=n/. In

this case the morphism S1 ! B.Z=n/ corresponds to the .Z=n/–torsor S1 ! S1

defined by z 7! zn .

Example 4.3 Let X be A1 with the divisorial log structure at the origin. Then XlogŠ

R�0 �S1 and n
p
X top ' ŒC=.Z=n/�, where the morphism ŒC=.Z=n/�! .A1/an DC

is induced by z 7! zn , and Z=n acts by roots of unity.
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In this case the map R�0 � S1 ! ŒC=.Z=n/� corresponds to the .Z=n/–torsor
R�0 � S1 ! R�0 � S1 defined by .a; b/ 7! .an; bn/ and the equivariant map
R�0 �S1!C given by .a; b/ 7! a � b .

Note that the map R�0�S1!R�0�S1 coincides with z 7! zn outside of the “origin”
f0g �S1 , and this is étale even on the algebraic side. Over the “origin”, it is precisely
the presence of the S1 introduced by the Kato–Nakayama construction that allows the
map to be a .Z=n/–torsor. This is what happens in general (see also [28, Lemma 2.2]).

Proposition 4.4 Consider the map �logW .Xn/log ! Xlog induced by the morphism
of log schemes �W Xn! X . The map �log is a �n.P /an –torsor, and the projection
.Xn/log! .Xn/an is a �n.P /an –equivariant map.

Note (see Definition A.9) that if P is a monoid, C.P / will denote the log analytic
space .Spec CŒP �/an with the induced natural log structure.

Proof The action of �n.P / on Spec C
�
1
n
P
�

induces an action on Xn , and the map
Xn!X is invariant. Consequently we have an induced action of �n.P /an on .Xn/log ,
and the map �logW .Xn/log!Xlog is invariant.

Moreover, since taking . � /log commutes with strict base change (see Proposition A.12),
we have a cartesian diagram

.Xn/log //

�log

��

C
�
1
n
P
�

log

�P;log

��

Xlog // C.P /log

and because the action of �n.P /an on .Xn/log comes from the one on C
�
1
n
P
�

log , it
suffices to prove the statement for the right-hand column.

Similarly, in order to verify that .Xn/log ! .Xn/an is �n.P /an –equivariant we are
reduced to checking that C

�
1
n
P
�

log!C
�
1
n
P
�

is �n.P /an –equivariant.

Now note that �n.P /an is precisely the kernel of Hom
�
1
n
P; S1

�
! Hom.P; S1/, so

the action of �n.P /an on Hom
�
1
n
P; S1

�
is free and transitive. It is also not hard to

check that there are local sections (note that Hom.P; S1/D Hom.P gp; S1/Š .S1/k

non-canonically), so the map is a �n.P /an –torsor.

Furthermore, �P;logW C
�
1
n
P
�

log!C.P /log is the restriction map

Hom
�
1

n
P;R�0 �S

1
�
! Hom.P;R�0 �S1/;
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and this is the product of the two maps Hom
�
1
n
P;R�0

�
! Hom.P;R�0/ (which is a

homeomorphism) and Hom
�
1
n
P; S1

�
!Hom.P; S1/. The action of �n.P /an is trivial

on the factor Hom
�
1
n
P;R�0

�
and the one given by the aforementioned inclusion as a

subgroup on the factor Hom
�
1
n
P; S1

�
. Consequently, �P;log is a �n.P /an –torsor for

the natural action, as required.

The map C
�
1
n
P
�

log!C
�
1
n
P
�

coincides with the map

Hom
�
1

n
P;R�0 �S

1
�
! Hom

�
1

n
P;C

�
induced by the natural map R�0 �S1!C , and thus it is manifestly Hom

�
1
n
P; S1

�
–

equivariant, and in particular �n.P /an –equivariant.

This proposition gives a morphism of pro-topological stacks ˆn;P W Xlog!
n
p
X top . It

is clear from the construction that if njm, then the diagram

Xlog
ˆm;P

//

ˆn;P ""

m
p
X top

��
n
p
X top

is 2–commutative, so we obtain a morphism .ˆX /P W Xlog! .
1
p
X/top of pro-topo-

logical stacks.

Step 2 (compatibility of the local constructions) Let us extend this local construction
to a global one. The idea is of course to use descent and glue the local constructions,
and intuitively, one would expect that these local maps patch together to define a
global one without incident. However, writing down all the necessary 2–categorical
coherences gets pretty technical quickly, and it is much cleaner to use the machinery
of 1–categories.

We will need some preliminary lemmas and constructions.

Lemma 4.5 Let X be a fine saturated log scheme over a field k with two Kato charts
X ! Spec kŒP � and X ! Spec kŒQ� for the log structure. Then for every geometric
point x of X , after passing to an étale neighborhood of x , there is a third chart
X ! Spec kŒR� with maps of monoids P !R and Q!R inducing a commutative
diagram

Spec kŒP �

X //

..

00

Spec kŒR�

33

++

Spec kŒQ�
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Proof We can take RDM x . There is a chart with monoid R in an étale neighborhood
of x by Proposition A.6, and we have maps P ! R and Q ! R that induce a
commutative diagram as in the statement, possibly after further localization.

Now let us define a category I of étale open subsets of X with a global chart: objects are
triples .�W U!X;P; f / where �W U!X is étale, P is a fine saturated sharp monoid
and f W U ! Spec CŒP � is a chart for the log structure on U (pulled back via � ).

A morphism .�W U !X;P; f /! . W V !X;Q; g/ is given by a (necessarily étale)
map U ! V over X and a morphism Q! P such that the diagram

U
f
//

��

Spec CŒP �

��

V
g
// Spec CŒQ�

is commutative.

We have two (lax) functors . � /log and .n
p
� /topW I! TopSt=Xan , as follows: for each

A D .�W U ! X;P; f / 2 I we get, via strict pullback through the chart morphism,
a local model for the Kato–Nakayama space XAlog (over U ) and one for the nth root
stack n

p
XAtop . We set Alog D X

A
log and n

p
Atop D

n
p
XAtop . The maps to Xan are given

by the composites of the projections to Uan and the local homeomorphism Uan!Xan .
The action of these two functors on morphisms is clear.

The construction in the local case (ie Step 1 above) gives an assignment, for each A2 I,
of a morphism of topological stacks ˛nAW Alog!

n
p
Atop .

Lemma 4.6 The family .˛nA/ gives a lax natural transformation

˛nW . � /log) .n
p
� /top;

in the sense of [20, Appendix A].

Proof By translating the definition, in the present case this means the following: if
aW A D .�W U ! X;P; f /! . W V ! X;Q; g/ D B is a morphism in I, then the
diagram

Alog
˛n

A
//

��

n
p
Atop

��

˛n.a/

v~

Blog
˛n

B

// n
p
B top

2–commutes, and the 2–cells ˛n.a/ satisfy a compatibility condition.
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This follows from the fact that the morphism aD .U!V;Q!P / gives a commutative
diagram

.Un/log //

yy

��

.Un/an

zz

.Vn/log //

��

.Vn/an

XAlog

zz

XBlog

between the two objects corresponding to the functors ˛nA and ˛nB . This gives a
canonical natural transformation that makes the diagram

XAlog

��

˛n
A

// Œ.Un/an=�n.P /an�D
n
p
X
A

top

��

˛n.a/
px

XBlog

˛n
B

// Œ.Vn/an=�n.Q/an�D
n
p
X
B

top

2–commutative, and this is the required diagram.

Now if C D .�W W !X;R; h/ is a third object of I with a morphism bW B!C in I,
then the fact that the diagram

.Un/log .Un/an

.Vn/log .Vn/an

.Wn/log .Wn/an

XAlog

XBlog

XClog

commutes implies that the composite of the two 2–cells ˛n.b/ and ˛n.a/ is equal
to ˛n.b ı a/.

Geometry & Topology, Volume 21 (2017)



3128 David Carchedi, Sarah Scherotzke, Nicolò Sibilla and Mattia Talpo

By composition with the natural functor

TopSt=Xan ,!HypSh1.TopC/=Xan

to hypersheaves on TopC (see Section 3) and by abuse of notation we get a natural
transformation of functors of 1–categories:

I HypSh1.TopC/=Xan

. � /log

**

n
p
� top

44
˛n

��

Step 3 (the global case) We will now use the natural transformation ˛n above to
construct a global map

ˆX W Xlog!
n
p
X:

We will first need a crucial lemma:

Lemma 4.7 Let �W I!HypSh1.TopC/ be the functor .�W U ! X;P; f / 7! Uan .
Then the canonical map colim �!Xan is an equivalence.

Before proving the above lemma, we will show how we may use this lemma to produce
the global morphism we seek. The key idea is the following basic fact about 1–topoi:

Proposition 4.8 (colimits are universal) Let colimi2I Ai ! B be a morphism in an
1–topos E, and let C ! B be another morphism. Then the canonical map

colim
i2I

.C �B Ai /! C �B colim
i2I

Ai

is an equivalence.

The above fact is standard and is an immediate consequence of the fact that any
1–topos is locally cartesian closed.

Let us now see how we may complete the construction. Suppose we know that the
canonical map colim �!Xan is an equivalence. We can write this informally as

colim
.�WU!X;P;f /

Uan
�
�!Xan:

Consider the morphism Xlog!Xan . Then since colimits are universal we have that
the following is a pullback diagram:
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colim.�WU!X;P;f / Uan �Xan Xlog //

��

Xlog

��

colim.�WU!X;P;f / Uan
�

// Xan

It follows that the top map
colim

.�WU!X;P;f /

Uan �Xan Xlog!Xlog

is also an equivalence. However, notice that we have a canonical identification

Uan �Xan Xlog Š Ulog;

hence
Xlog ' colim

.�WU!X;P;f /

Ulog D colim. � /log:

By a completely analogous argument, one sees that
n
p
X top ' colim

.�WU!X;P;f /

n
p
U top D colim n

p
� top:

For each n, the global map is then defined to be

colim˛nW colim. � /log! colim n
p
� top:

Just as in the local case, one easily sees that the maps

colim˛nW Xlog!
n
p
X top

assemble into a morphism of pro-objects

ˆX W Xlog!
1
p
X top:

It is immediate from the construction that this map agrees locally with the map con-
structed in Step 1. In the next sections we will prove that ˆX induces an equivalence
of profinite spaces.

To finish the proof of the existence of the above map, it suffices to prove Lemma 4.7.
Without further ado, we present the proof below.

Proof of Lemma 4.7 Equip I with the following Grothendieck topology: a collection
of morphisms

..�i W Ui !X;Pi ; fi /! .�W U !X;P; f //i

will be a covering family if the induced family

.Ui ! U/i

Geometry & Topology, Volume 21 (2017)



3130 David Carchedi, Sarah Scherotzke, Nicolò Sibilla and Mattia Talpo

is an étale covering family. Note that there is a canonical morphism of sites

F W I!XKet

from I to the small étale site of X . Moreover, by Lemma 4.5, one easily checks that
F satisfies the conditions of the comparison lemma of [29, page 151], so the induced
geometric morphism of topoi

Sh.I/! Sh.XKet/

is an equivalence. It then follows from [26, Theorem 5; 31, Proposition 6.5.2.14] that
the induced geometric morphism between the respective 1–topoi of hypersheaves

HypSh1.I/!HypSh1.XKet/

is an equivalence. By Remark 3.4, the analytification functor is the inverse image part
of a geometric morphism

f W HypSh1.TopC/! Sh1.AffLFT
C ; Ket/:

By [31, Proposition 6.5.2.13], there is an induced geometric morphism

zf W HypSh1.TopC/!HypSh1.AffLFT
C ; Ket/:

By left Kan extension of the canonical functor

XKet!HypSh1.AffLFT
C ; Ket/=X

which sends each étale open U !X to itself, one produces a colimit-preserving functor

!W HypSh1.XKet/!HypSh1.AffLFT
C ; Ket/=X:

Consider the composite

HypSh1.I/'HypSh1.XKet/
!
�!HypSh1.AffLFT

C ; Ket/=X !HypSh1.AffLFT
C ; Ket/

zf �
�!HypSh1.TopC/;

where HypSh1.AffLFT
C ; Ket/=X ! HypSh1.AffLFT

C ; Ket/ is the canonical projection.
Denote the composite by ‚. The functor ‚ is colimit-preserving as it is the composite
of colimit-preserving functors, and, unwinding definitions, one sees that the composite

I
y
�!HypSh1.I/

‚
�!HypSh1.TopC/

is canonically equivalent to �. It follows that there is a canonical equivalence

colim �'‚.colimy/:
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But y is strongly generating, so by the proof of [10, Lemma 5.3.5] the colimit of y is
the terminal object. Unwinding the definitions, one sees that the terminal object gets
sent to Xan by ‚. This completes the proof.

5 The topology of log schemes

This section contains preliminaries about some topological properties of fine saturated
log schemes locally of finite type over C , the Kato–Nakayama space and the root stacks.

5.1 Stratified fibrations

The following proposition is a consequence of the material in Appendix A.6.

Recall that if X is a fine saturated log scheme locally of finite type over C , there is a
stratification RD fRngn2N of X , the rank stratification (Definition A.25), given by
Rn D fx 2X j rankZM

gp
xx � ng.

Proposition 5.1 The Kato–Nakayama space Xlog , the topological root stacks m
p
X top

and the topological infinite root stack 1
p
X top are stratified fibrations over Xan with re-

spect to the stratification R, ie they are fibrations over the strata .Sn/anD .RnnRnC1/an

of the stratification Ran .

Proof All constructions are compatible with arbitrary base change along strict mor-
phisms, so

Xlogj.Sn/an Š .Sn/log;

m
p
X jSn

'
m
p
Sn;

where m can be 1 and Sn has the log structure pulled back from X . It suffices then
to show that the two maps .Sn/log ! .Sn/an and .m

p
Sn/top ! .Sn/an are fibrations

over Sn .

Let us cover .Sn/an with open subsets over which the sheaf M is constant, and recall
that by definition of Sn it will have rank n. We can choose such opens so that we have
a cartesian diagram

.Sn/log //

��

.Spec kŒP �/log

��

.Sn/an // .Spec kŒP �/an

over each of them, where the bottom horizontal arrow sends everything to the vertex vP
(as in the proof of Proposition A.27). It follows that .Sn/log Š .S

1/n � .Sn/an , and
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that the map .Sn/log! .Sn/an is identified with the projection. The factor .S1/n is
the fiber of the map .Spec kŒP �/log! .Spec kŒP �/an over the point vP .

The analogous diagram

.m
p
Sn/top //

��

m
p

Spec kŒP �top

��

.Sn/an // .Spec kŒP �/an

shows the same conclusion for root stacks. In this case we get an isomorphism

.
m
p
Sn/top ' X� .Sn/an;

where X is the fiber of the map m
p

Spec kŒP �top!.Spec kŒP �/an over the vertex vP .

We need a similar (local) statement for groupoid presentations of the root stacks.

Take x 2X , and an open étale neighborhood U !X of x where there is a global chart
U ! Spec CŒP � for the log structure, where P is fine, saturated and sharp. Then we
have a quotient stack presentation for the topological nth root stack n

p
U top' .

n
p
X jU /top

for every n (see the discussion preceding Proposition A.18). Let us denote by G.n/
the simplicial topological space associated with this quotient presentation. There
are compatible maps G.m/! G.n/ whenever njm, and the whole system gives a
(simplicial) presentation for the topological infinite root stack 1

p
U top .

Explicitly, the simplicial space G.n/ is obtained from the action of �n.P / on the
scheme Un D U �Spec CŒP � Spec C

�
1
n
P
�

(see the local description of the root stacks
in Appendix A.4), so that

G.n/k Š .Un ��n.P /� � � � ��n.P //an;

where there are k copies of �n.P / and the map G.n/k!Uan is the composite of the
projection to .Un/an followed by the map .Un/an! Uan .

Proposition 5.2 Every x 2 Uan has arbitrarily small neighborhoods over which, for
every n and k , the map G.n/k!Uan is a product over Uan\.Sr/an , where x 2 .Sr/an .

In particular, for every n and k the topological space G.n/k is a stratified fibration
over Uan .

Proof Note first of all that since the map U ! Spec CŒP � is strict, the rank stratifica-
tion of Spec CŒP � with its natural log structure is pulled back to the rank stratification
of U , in the obvious sense.
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Moreover, from the cartesian diagram

.Un/an //

��

C
�
1
n
P
�

��

Uan // C.P /

and from the fact that G.n/k! Uan is the projection

G.n/k Š .Un ��n.P /� � � � ��n.P //an! .Un/an

followed by .Un/an! Uan , we see that it suffices to prove that the map

� W C
�
1

n
P
�
D

�
Spec C

h
1

n
P
i�

an
!C.P /D .Spec CŒP �/an

is a stratified fibration. The proof will show that for a stratum S we can find an open
subset V �C.P / such that the map � is a product over V \S for every n.

Let us pick � 2C.P /DHom.P;C/, and call p1; : : : ; pl the (finitely many) indecom-
posable elements of P (see [38, Proposition 2.1.2]). Assume (by reordering) that the
first h of those get sent to 0 by � , and the last ones are sent to nonzero complex numbers.
Call r the rank of the group associated to the quotient P=hpi j i D hC 1; : : : ; li (ie
the rank of the log structure of C.P / at � ).

The stratum of the rank stratification of C.P / to which � belongs will then be Sr ,
the set of points of C.P / where the log structure has rank exactly equal to r . It is
clear that � actually belongs to the open subset S� of Sr consisting of the morphisms
 2 Hom.P;C/ such that  .pi /D 0 for 1� i � h and  .pi /¤ 0 for h < i � l .

Note also that the same condition on images of indecomposables of 1
n
P will determine

a subset S 0� � C
�
1
n
P
�
D Hom

�
1
n
P;C

�
(of those morphisms such that the image of

pi=n is zero exactly when 1 � i � h) that a moment’s reflection will show to be
exactly the preimage ��1.S�/. Let us check that we can choose a neighborhood of �
in C.P / over which the restriction of � W ��1.S�/! S� is a product.

For each i D hC 1; : : : ; l let us choose a small open disk Di around �.pi / in C that
does not contain the origin, and for i D 1; : : : ; h let Di be a small open disk around
the origin. These define an open neighborhood W of � in C.P /, made up of those
functions  such that  .pi / 2Di for every i .

Let us also choose an nth root n
p
�.pi / of the nonzero complex number �.pi / for

i D hC 1; : : : ; l . There are a finite number of such choices, and there is a subset of
those choices for which the homomorphism 1

n
P ! C given by pi=n 7! n

p
�.pi / is

well-defined (note that this assignment might not give a well-defined homomorphism
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due to the relations among the indecomposable elements of the monoid P ). Let us call
A this set of “good” choices.

Any element of A determines for each iDhC1; : : : ; l an nth root function n
p
�i defined

on the small disk Di . Let us define a map W \S�! ��1.W \S�/� Hom
�
1
n
P;C

�
by sending  to the morphism defined by pi=n 7!

n
p
 .pi /i . This is a section

of the projection ��1.W \ S�/! W \ S� , and one can check that this induces a
homeomorphism W \S� �AŠ �

�1.W \S�/, where A is viewed as a discrete set.
We leave the details to the reader.

These arguments are uniform in n 2N , so the open subset W that we identified will
work for any n.

5.2 A system of open neighborhoods for Xan

In this subsection we will prove the following crucial lemma:

Lemma 5.3 For all x 2Xan there exists a fundamental system of contractible analytic
open neighborhoods Ux of x with global charts f W U ! .Spec CŒP �/an for U 2 Ux
such that

(1) the map f sends x into the vertex of .Spec CŒP �/an (ie the maximal ideal
generated by all nonzero elements of P ), and

(2) the maps
.Xlog/x!XlogjU

and
.G.n/i /x! .G.n/i /jU

are weak homotopy equivalences, where fG.n/gn2N is the family of topological
groupoid presentations for the topological nth root stack coming from the chart f ,
as in Proposition 5.2.

First of all we review some standard facts on triangulations and open covers. Let M be
a topological space equipped with a triangulation T . Denote by VT the set of vertices
of T . If f is a simplex of T , we denote by s.f / the union of the relative interiors of
the simplices of T that contain f . We call s.f / the star of f . Note that s.f / is a
contractible open subset of M . If v is a vertex of T , we set Uv ..D s.v/. The star of
a simplex f is naturally stratified by the simplices containing f : the strata are the
relative interiors of the simplices containing f .

We say that a subspace of Rn is a cone if it is invariant under the action of R>0 by
rescaling. We say that a cone is linear if it can be expressed as an intersection of finitely
many linear spaces and linear half-spaces.
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Lemma 5.4 Let v be in VT . Then there exists an N 2 N such that Uv can be
embedded as a linear cone in RN . Further we can choose this embedding in such a
way that s.f /� Uv is mapped to a linear subcone for all simplices f containing v .

Proof Let v1; : : : ; vN be the one-dimensional simplices that contain v and let
e1; : : : ; eN be the standard basis of RN . If I is a subset of f1; : : : ; N g we write

OI
..D

n P
i2I

˛iei j ˛i � 0
o
�RN :

Every simplex � containing v determines a subset I� of f1; : : : ; N g in the following
way: i belongs to I� if and only if � contains vi . We obtain an embedding of Uv
into RN by considering a piecewise linear homeomorphism

Uv '
[
v2�

OI�
:

This embedding has all the properties claimed by the lemma.

Lemma 5.5 Let x be in M , and let f be the lowest dimensional simplex such that x
belongs to f . Then there exists a system of open neighborhoods Ux of x such that all
U in Ux have the following properties:

(1) U is contractible.

(2) U does not intersect simplices of T that do not contain f .

Proof Let v be a vertex incident to f . By Lemma 5.4 the open neighborhood Uv can
be embedded as a linear cone in Rn in such a way that s.f /� Uv is a linear subcone.
Equip Rn with a Euclidean metric. Then Ux can be obtained by intersecting s.f /
with a system of open neighborhoods given by open balls in Rn centered at x .

Next we turn to the log scheme X . Let x be in Xan . Since we are interested in
constructing a system of open neighborhoods for x we can assume, by étale localizing
around x , that

� X is affine, and
� we have a global chart f WX!Spec CŒP �, where P DM x (see Proposition A.6),

which sends x to the vertex of Spec CŒP �.

The fact that X is affine is key in order to produce triangulations, which we do in
Lemma 5.6.

By Lemma A.23 the log structure determines a stratification RX of X .

Lemma 5.6 There exists a triangulation TX of X that refines RX .
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Proof The existence of triangulations refining stratifications of affine schemes goes
back to Lojasiewicz [30]. See also Shiota’s work [46] for a more recent reference.

By Lemma 5.5, the triangulation TX gives us a system of open neighborhoods Ux of x
in Xan satisfying the two properties stated there. We claim that Ux has all the properties
required by Lemma 5.3. Note that, since we assumed without loss of generality that X
is affine and has a global chart to Spec CŒP � sending x to the vertex of Spec CŒP �,
we only need to prove that property .2/ holds. We do this next.

The following lemma was proved in [43]:

Lemma 5.7 [43, Lemma 3.25] Let W1 and W2 be locally compact and locally
contractible Hausdorff spaces. Let pW W1!W2 be a continuous map, and let K2�W2
be a closed deformation retract. Suppose that the restriction p�1.W2 nK2/!W2 nK2
is homeomorphic to the projection from a product F � .W2 nK2/!W2 nK2 . Then
K1

..D p�1.K2/ is a deformation retract of W1 .

We will actually need a slight variant of Lemma 5.7. Assume that W2nK2 decomposes
as a finite disjoint union of m components, which we denote by .W2 nK2/i ,

W2 nK2 D

m[
iD1

.W2 nK2/i :

Then the claim still holds if the restriction p�1.W2nK2/!W2nK2 is homeomorphic
to the projection from a disjoint union of products

m[
iD1

Fi � .W2 nK2/i !

m[
iD1

.W2 nK2/i :

This stronger statement is proved exactly as Lemma 5.7, and, in fact, follows from it
through an induction on the number of connected components of W2 nK2 .

We conclude the proof of Lemma 5.3 by showing that the following proposition holds:

Proposition 5.8 For all U in Ux , each of the maps

.Xlog/x!XlogjU ; .G.n/i /x! .G.n/i /jU

is a weak homotopy equivalence, where fG.n/gn2N is the family of topological
groupoid presentations for the topological nth root stack coming from the chart f .

Proof The proof is the same for both Xlog and G.n/i . The argument relies exclusively
on the fact that Xlog and G.n/i give stratified fibrations on Xan with respect to the
stratification RX . To avoid repetition, we prove the statement only for Xlog but the
argument remains valid if we substitute G.n/i in all occurrences of Xlog .
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Let f be the lowest-dimensional simplex of TX such that x lies on f . Recall from the
proof of Lemma 5.5 that, in order to define Ux , we pick a vertex v of the triangulation
TX that is incident to f . By construction, U is an open subset of Uv . Thus U carries
a stratification which is obtained by restricting to it the stratification on Uv by the
simplices containing v .

For all k 2N , denote by Uk �U the k–skeleton of U : that is, Uk is the union of the
strata of dimension less than or equal to k . Note that Uk is empty if k < dim.f / and
is contractible if dim.f / � k . Further, Uk is a strong deformation retract of Uk0 if
dim.f /� k � k0 . Indeed both Uk and Uk0 are CW complexes (up to compactifying),
and any contractible subcomplex of a contractible CW complex is a strong deformation
retract, see eg [34, Lemma 1.6].

We prove next that if dim.f /� k� 1, the map

XlogjUk�1
!XlogjUk

is a deformation retract. Note that Uk n Uk�1 is equal to the disjoint union of k–
dimensional strata. That is, Uk n Uk�1 can be written as a disjoint union of m
components,

Uk nUk�1 D

m[
iD1

.Uk nUk�1/i :

The restriction of the map XlogjU !XanjU to each stratum of U is a principal bundle.
Indeed, the stratification on U is finer that the restriction to U of RX . Further, it
is a trivializable principal bundle, since the strata are paracompact Hausdorff and
contractible.

Thus the restriction
XlogjUknUk�1

! Uk nUk�1

is homeomorphic to a projection from a disjoint union of products

XlogjUknUk�1
'

m[
iD1

Fi � .Uk nUk�1/i !

m[
iD1

.Uk nUk�1/i :

We have showed that the map Uk�1 ! Uk is a deformation retract. We apply
Lemma 5.7, or rather the variant that was discussed immediately after the statement of
Lemma 5.7, (note that Xlog is locally compact Hausdorff and locally contractible by
Proposition A.13), and deduce that the map

XlogjUk�1
!XlogjUk

is also a deformation retract, as we claimed.
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There exists an N 2 N such that UN D U . By applying recursively the retractions
that we have constructed in the previous paragraph, we obtain a deformation retract

XlogjUdim.f /
!XlogjU :

By property .2/ of Lemma 5.5, Udim.f / is connected. Further, it is contractible and
paracompact, and thus XlogjUdim.f /

is homeomorphic to a product F �Udim.f / . This
implies that there are homotopy equivalences

.Xlog/jx ' F � fxg
�,�!F �Udim.f / 'XlogjUdim.f /

;

and this concludes the proof.

6 The equivalence

At last, in this section we will prove the main result of this paper, namely that there is
an equivalence �…1.ˆX /W �…1.Xlog/! �…1.1pX top/

of profinite spaces, where �…1 is the “profinite homotopy type” functor defined in
Section 3.3 and ˆX is the morphism of pro-topological stacks constructed in Section 4.

The main idea is to use the basis of open subsets constructed in Lemma 5.3 to produce a
suitable hypercover of Xan and to use this to reduce to checking that one has a profinite
homotopy equivalence along fibers. First, we will need a few more technical lemmas.

The following lemma makes precise in what way one can glue profinite spaces together
using hypercovers:

Lemma 6.1 Let X be a hypersheaf in HypSh1.TopC/. Let I be a cofiltered 1–
category and let

f�W I!HypSh1.TopC/=X

be an I–indexed pro-system with associated pro-object limi2I.fi W Yi ! X/. Let

U �W �op
!HypSh1.TopC/=X

be a hypercover of X. For each i , denote by f �i U
� the pullback of the hyper-

cover U � to a hypercover of Yi . Consider the underlying pro-object limi2I Yi in
HypSh1.TopC/. Then there is a canonical equivalence of profinite spaces�…1�lim

i2I

Yi
�
' colim
n2�op

��…1�lim
i2I

f �i U
n
��
;

where �…1W Pro.HypSh1.TopC//! Prof.S/

is the functor constructed in Section 3.3.
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Proof It suffices to show that for every � –finite space V there is a canonical equiva-
lence

HomProf.S/
�
colim
n2�op

��…1�lim
i2I

f �i U
n
��
; j.V /

�
' HomProf.S/

��…1�lim
i2I

Yi
�
; j.V /

�
which is natural in V . We have that

HomProf.S/
�
colim
n2�op

��…1�lim
i2I

f �i U
n
��
; j.V /

�
' lim
n2�

�
colim
i2Iop

HomS.…1f
�
i U

n; V /
�
:

Notice that V is k–truncated for some k , and hence so is j.V / by Proposition 2.13.
Since filtered colimits of k–truncated spaces are k–truncated, it follows that, for all n,

colim
i2Iop

HomS.…1f
�
i U

n; V /

is k–truncated. By Lemma 2.21, it then follows that

HomProf.S/
�
colim
n2�op

��…1�lim
i2I

f �i U
n
��
; j.V /

�
' lim
n2��k

�
colim
i2Iop

HomS.…1f
�
i U

n; V /
�
:

By using that filtered colimits commute with finite limits, we then have that this is in
turn equivalent to

colim
i2Iop

�
lim

n2��k

HomS.…1f
�
i U

n; V /
�
:

Again by Lemma 2.21 this is equivalent to

colim
i2Iop

�
lim
n2�

HomS.…1f
�
i U

n; V /
�
:

Finally, we have the following string of natural equivalences:

colim
i2Iop

�
lim
n2�

HomS.…1f
�
i U

n; V /
�
' colim

i2Iop
HomS

�
colim
n2�op

…1f
�
i U

n; V
�

' colim
i2Iop

HomS

�
…1 colim

n2�op
f �i U

n; V
�

' colim
i2Iop

HomS.…1Yi ; V /

' HomProf.S/
��…1�lim

i2I

Yi
�
; j.V /

�
:

Let X be a log scheme. Denote by U the basis of contractible open subsets of Xan

given by Lemma 5.3.

Lemma 6.2 There is a hypercover

U �W �op
! TopC=Xan
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such that, for all n, the map U n! Xan is isomorphic to the coproduct of inclusions
of open neighborhoods in the basis U and all the structure maps are local homeomor-
phisms.

Proof Using standard techniques, since U is a basis for the topology of Xan we can
construct a split hypercover satisfying the above by induction (see [13]).

Remark 6.3 The image under the Yoneda embedding of the hypercover of topological
spaces U � just constructed is a hypercover of Y.Xan/ in the1–topos HypSh1.TopC/.
We will abuse notation by identifying the two.

We now prove our main result:

Theorem 6.4 Let X be a fine saturated log scheme locally of finite type over C . The
induced map �…1.ˆX /W �…1.Xlog/

�
�! �…1.1pX top/

is an equivalence of profinite spaces.

Proof Consider now the hypercover U � of Xan just constructed. Then each U n D`
˛ V˛ , where each V˛ is in U. Let us restrict to one such V D V˛ . Since V is in U,

there exists an x 2 V such that .Xlog/x ! XlogjV is a weak homotopy equivalence,
and such that there is a Kato chart U ! Spec CŒP �, with U ! X étale, such that
Uan!Xan admits a section � over V and with the property that the composite

V
�
�!Uan! .Spec CŒP �/an

carries x to the vertex point of the toric variety Spec CŒP �. Let us fix this x , and call
it the center of V . Suppose that the monoid P has rank k ; then the log structure at x
also has rank k . Moreover, the fiber of the map

Vn
..D V �.Spec CŒP �/an

�
Spec C

h
1

n
P
i�

an
! V

over x consists of a single point (see [24, Lemma 1.2]).

Let us fix an n; then we have that
n
p
X topjV ' Œ.Z=nZ/k ËVn�D ŒVn=.Z=nZ/k�:

Hence our groupoid presentation G.n/ for n
p
X topjV guaranteed by Proposition 5.2 is

the topological action groupoid .Z=nZ/k Ë Vn . This groupoid admits a continuous
functor to V (viewing V as a topological groupoid with only identity arrows) which
on objects is simply the canonical map Vn! V . Similarly, regard the one-point space
� also as a topological groupoid, and consider the canonical map

�! V
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picking out x . Since V and � have no nonidentity arrows, the lax fibered product of
topological groupoids

��
.2;1/
V ..Z=nZ/k ËVn/

is equivalent to the strict fibered product

��V ..Z=nZ/k ËVn/;

which is canonically equivalent to the action groupoid

.Z=nZ/k Ë .Vn/x;

where .Vn/x is the fiber over Vn! V . Since this fiber consists of a single point, we
conclude that the lax fibered product may be identified with .Z=nZ/k , where we are
identifying the group .Z=nZ/k with its associated 1–object groupoid.

Consider the continuous functor of topological groupoids

.Z=nZ/k ' ��.2;1/V ..Z=nZ/k ËVn/! .Z=nZ/k ËVn:

This induces a map of simplicial topological spaces between their simplicially enriched
nerves

N..Z=nZ/k/!N..Z=nZ/k ËVn/:

By Lemma 5.3, this map is degreewise a weak homotopy equivalence. It follows from
Proposition 3.18 and [12, Lemma 3.2] that the induced map

B..Z=nZ/k/'…1..Z=nZ/k Ë�/!…1
�
Œ.Z=nZ/k ËV �

�
'…1.

n
p
X topjV /

is an equivalence in S. Since the topological groupoid presentations for n
p
X top

constructed in Section 5.1 are compatible with the natural maps m
p
X top !

n
p
X top

when njm, it follows that we have a natural identification�…1.1pX topjV /' lim
n

B..Z=nZ/k/

in Prof.S/. Consider the pro-system of finite groups

n 7! .Z=nZ/k :

This is the kth cartesian power of the pro-system

n 7! .Z=nZ/;

which is simply yZ. By Proposition 2.22, it follows that�…1.1pX topjV /' B.yZ
k/;
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and hence, by Proposition 2.20, we have that�…1.1pX topjV /' B.
cZk /:

We also have that
.Xlog/x Š .S

1/k :

It follows that
…1.XlogjV /'…1.S

1/k ' B.Zk/;

and so �…1.XlogjV /'
1
B.Zk/:

Since Zk is a finitely generated free abelian group, it is good in the sense of Serre [45].
It follows from [41, Proposition 3.6] and Theorem 2.19 that the canonical map

1
B.Zk/! B.

cZk /
is an equivalence of profinite spaces, hence

�…1.XlogjV /' B.
cZk /:

It now follows that �…1.1pX topjV /' �…1.XlogjV /;

which is a local version of our statement.

Now let us globalize using the hypercover U � . For each n, denote by qn the natural
map

qnW
n
p
X top!Xan:

Since �…1 preserves colimits, it follows that the induced map

colim
l2�op

�…1 ı ��U l ! colim
l2�op

��…1 ı lim
n

q�nU
l
�

is an equivalence of profinite spaces, where � is the canonical map � W Xlog ! Xan .
However,

colim
l2�op

�…1 ı ��U l ' �…1�colim
l2�op

��U l
�
' �…1.Xlog/;

since ��U � is a hypercover of Xlog . Finally, by Lemma 6.1,

colim
l2�op

��…1 ı lim
n

q�nU
l
�
' �…1�lim

n

n
p
X top

�
D �…1.1pX top/:

7 The profinite homotopy type of a log scheme

We conclude this paper by defining the profinite homotopy type of an arbitrary log
scheme over a ground ring k , by using the notion of étale homotopy type.
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Étale homotopy theory, as originally introduced by Artin and Mazur [5], is a way of
associating to a suitably nice scheme a pro-homotopy type. In this seminal work they
proved a generalized Riemann existence theorem:

Theorem 7.1 [5, Theorem 12.9] Let X be scheme of finite type over C ; then
the profinite completion of the étale homotopy type of X agrees with the profinite
completion of Xan .

In light of the above theorem, the étale homotopy type of a complex scheme of finite
type gives a way of accessing homotopical information about its analytic topology by
using only algebro-geometric information, and for a setting where the analytic topology
is not available, such as a scheme over an arbitrary base, the profinite completion of its
étale homotopy type serves as a suitable replacement.

In the original work of Artin and Mazur, for X a locally Noetherian scheme, one
associates a pro-object in the homotopy category of spaces Ho.S/. This definition
was later refined by Friedlander [17] to produce a pro-object in the category Set�

op
of

simplicial sets, and a generalized Riemann existence theorem is also proven in this
context. In recent work of Lurie [32], the étale homotopy type of an arbitrary higher
Deligne–Mumford stack is defined by using shape theory to produce an object in the
1–category Pro.S/ (in fact the definition in [32] is for spectral Deligne–Mumford
stacks — analogues of Deligne–Mumford stacks for algebraic geometry over E1–
rings), and Hoyois has recently proven that, up to profinite completion, this definition
agrees with that of Friedlander for a classical locally Noetherian scheme in [22]. See
also recent work of Barnea, Harpaz and Horel [6].

In recent work of the first author [11], the étale homotopy type of an arbitrary higher
stack on the étale site of affine k–schemes is defined, and is shown to agree with the
definition of Lurie when restricted to higher Deligne–Mumford stacks. In particular,
there is shown to be a functor�…Ket

1W Sh1.AffLFT
k ; Ket/! Prof.S/

associating to a higher stack X on the étale site of affine k–schemes of finite type a
profinite space �…Ket

1.X/ called its profinite homotopy type, and an even more generalized
Riemann existence theorem is proven:

Theorem 7.2 [11, Theorem 4.13] Let X be higher stack on affine schemes of finite
type over C ; then there is a canonical equivalence of profinite spaces�…Ket

1.X/'
�…1.Xtop/

between its profinite étale homotopy type and the profinite homotopy type of its under-
lying topological stack Xtop in the sense of Theorem 3.1.
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Now let X be a log scheme locally of finite type over C . Its infinite root stack 1
p
X

is a pro-object in Sh1.AffLFT
C ; Ket/. Notice that the functor �…Ket

1 canonically extends
to a functor �…Ket

1W Pro.Sh1.AffLFT
k ; Ket//! Prof.S/:

In light of the above theorem, we conclude that there is a canonical equivalence of
profinite spaces �…Ket

1.
1
p
X/' �…1.1pX top/

between the profinite étale homotopy type of the infinite root stack 1
p
X and the profinite

homotopy type of the underlying topological stack of the infinite root stack 1
p
X top .

Combining this with Theorem 6.4 yields the following theorem:

Theorem 7.3 Let X be a log scheme locally of finite type over C . Then the following
three profinite spaces are canonically equivalent:

(i) The profinite completion bXlog of its Kato–Nakayama space.

(ii) The profinite homotopy type �…1.1pX top/ of the underlying topological stack
of its infinite root stack 1

p
X .

(iii) The profinite étale homotopy type �…Ket
1.
1
p
X/ of its infinite root stack 1

p
X .

In light of the above theorem, we make the following definition:

Definition 7.4 Let X be a log scheme over a ground ring k . Then the profinite
homotopy type of X is the profinite étale homotopy type of its infinite root stack 1

p
X .

Appendix

In this appendix we gather some definitions and results about log schemes, analytifica-
tion, the Kato–Nakayama space, root stacks and topological stacks.

A.1 Log schemes

Log (short for “logarithmic”) schemes were first defined and studied systematically
in [27]. A modern introduction (with a view towards moduli theory) can be found in [1].

Remark A.1 We will give definitions and facts in the algebraic category, but we will
apply them to the complex-analytic context as well. The only difference is that instead
of the étale topology we will be using the analytic topology.

Definition A.2 A log scheme is a scheme X with a sheaf of monoids M on the small
étale site XKet and a homomorphism ˛W M ! OX of sheaves of monoids, where OX
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is seen as a monoid with respect to multiplication of regular functions, such that ˛
induces an isomorphism

˛j˛�1.O�X /
W ˛�1.O�X /! O�X :

Note that the last condition gives us a canonical embedding O�X ,!M as a subsheaf
of groups.

We denote a log scheme by .X;M; ˛/ or sometimes simply by X .

Example A.3 � Any scheme X is a log scheme with M DO�X and ˛ the inclusion.
This is the trivial log structure on X .

� Any effective Cartier divisor D �X induces a log structure, by taking M to be
the subsheaf of OX given by functions that are invertible outside of D .

� If P is a monoid, the spectrum of the monoid algebra XP ..D Spec kŒP � has a
natural log structure. The sheaf M is obtained by considering the natural map
P ! kŒP �D �.OXP

/ and taking the “associated log structure” (see below for a
few more details).

Log structures can be pulled back and pushed forward along morphisms of schemes.
In particular:

� Any open subscheme of a log scheme can be equipped with the restriction of
the log structure.

� If we have a morphism of schemes f W X ! Spec kŒP � we get an induced log
structure on X . This happens in the following way: f gives a morphism of
monoids P ! OX .X/, which induces x̨W P ! OX , where P is the constant
sheaf. It is typically not true that x̨ induces an isomorphism between x̨�1O�X
and O�X , but there is a procedure to fix the behavior of the units, and this produces
a log structure ˛W M ! OX . See [27, Example 1.5] for details.

Remark A.4 In the situation of the last bullet, the quotient M=O�X is obtained from P

by locally “killing the sections of P that become invertible in OX ”, so in particular all
the stalks of M=O�X are quotients of the monoid P .

We consider only coherent log structures, which are those that, étale locally, come by
pullback from the spectrum of the monoid algebra of a monoid.

Definition A.5 A log scheme X is quasicoherent if there is an étale cover Ui of X ,
monoids Pi and morphisms of log schemes fi W Ui ! Spec kŒPi � that are strict, ie the
log structure on Ui is pulled back from Spec kŒPi � via fi . The monoid Pi and the
map fi are a chart for the log structure over Ui .
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A log scheme X is coherent (resp. fine, resp. fine and saturated) if the monoids Pi
above can be taken to be finitely generated (resp. finitely generated and integral, resp.
finitely generated, integral and saturated).

A morphism such as fi in the definition above that identifies the pullback of the log
structure on the target with the one of the source will be called strict.

We are interested only in fine and saturated log schemes.

Proposition A.6 [39, Proposition 2.1] Let X be a fine saturated log scheme and x a
geometric point. Then there exists an étale neighborhood U of x over which there is a
chart for the log structure with monoid P D .M=O�X /x .

This says in particular that, if X is fine and saturated, we can locally find charts with
P fine, saturated and sharp.

The quotient sheaf M DM=O�X is called the characteristic sheaf of the log structure.
Taking the quotient (in an appropriate sense) by O�X of the map ˛ , we get an alternative
definition of a (quasi-integral) log scheme, introduced in [9].

Let us denote by DivX the fibered category over XKet whose objects over U !X are
pairs .L; s/ where L is an invertible sheaf of OU –modules on U and s is a global
section. This is a symmetric monoidal fibered category, where the monoidal operation
is given by tensor product.

Definition A.7 A log scheme is a scheme X together with a sheaf of monoids A and
a symmetric monoidal functor LW A! DivX with trivial kernel.

The phrasing “trivial kernel” in the definition means that if a section a is such that
L.a/ is isomorphic to .OX ; 1/ in DivX , then aD 0.

Given a (quasi-integral) log scheme .X;M; ˛/, by taking the “stacky quotient” of
˛W M ! OX by O�X we get the functor LW ADM D ŒM=O�X �! ŒOX=O

�
X �D DivX .

Quasi-integrality ensures that the quotient ŒM=O�X � is actually a sheaf. Of course
integral log structures are quasi-integral. See [9, Theorem 3.6] for details.

One can give a notion of charts in this context as well. For many purposes these two
notions of chart can be used indifferently. We mostly use charts as in the first definition
above. These are called “Kato charts” in [9].

Remark A.8 A first approximation of how one should “visualize” a log scheme is by
thinking about the stalks of the sheaf M . This sheaf is locally constant on a stratification
of X (see Proposition A.27) and the stalks are fine saturated sharp monoids. Of course
this disregards the particular extension M of M by O�X and the map ˛ (or equivalently
the functor L), so it is indeed just a crude approximation.
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A.2 Analytification

We are mainly concerned with log schemes locally of finite type over C , and with their
analytifications.

Recall that if X is a scheme locally of finite typer over C , the associated analytic
space Xan is defined as a set as the C points X.C/ D X.Spec C/ of X . This has
an “analytic” topology coming from the local embeddings into Cn . Moreover this
construction extends also to algebraic spaces locally of finite type over C (see [2; 49]).

If X is a log scheme locally of finite type over C , the analytification Xan inherits a
log structure, because of the relationship between the étale topos of X and the analytic
topos of Xan . An étale morphism X! Y induces a local homeomorphism Xan! Yan ,
which consequently has local sections in the analytic topology. This gives a functor
from the étale site of X to the analytic site of Xan , and induces a morphism of topoi.
The log structure on Xan is obtained via this functor. Thus, in what follows, every time
something holds étale locally for the log scheme X , it will hold analytically locally for
the log analytic space Xan .

We will use this without further mention, and will use the same letter to denote the sheaf
of monoids M on X and the induced one on Xan . This should cause no real confusion.

Definition A.9 For a monoid P we denote by C.P / the analytification of the spectrum
of the monoid algebra Spec CŒP �.

As sets we have C.P /D Hom.P;C/, the set of homomorphisms of monoids, where
C is given the multiplicative structure.

A basis of opens of C.P / (where P is fine, saturated and sharp) can be described
as follows: call p1; : : : ; pk the indecomposable elements of P (see [38, Proposition
2.1.2]), and choose open disks Di in the complex plane C . Then the set of homomor-
phisms � 2 Hom.P;C/ such that �.pi / 2Di is open in C.P /. Letting the disks Di
vary we get a basis for the open subsets of C.P /.

Lemma A.10 [49, page 12] Analytification commutes with finite limits.

We will need the following result on the topological properties of analytifications of
schemes locally of finite type over C . As a reference, we point out [30].

Proposition A.11 Let X be an affine scheme of finite type over C and Y �X be a
closed subscheme. Then there exist compatible triangulations of Xan and Yan , realizing
Yan as a subcomplex.

We can apply this iteratively to a stratification, to get compatible triangulations of the
ambient affine scheme and of all the (closed) strata.
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A.3 Kato–Nakayama space

From now on all log schemes will be fine and saturated unless we specify otherwise.
Just for this subsection, X will denote an analytic space rather than a scheme.

The Kato–Nakayama space Xlog of a log analytic space X (for example of the form Yan

for some log scheme Y locally of finite type over C ) is a topological space introduced
in [28]. The idea is to define a topological space that “embodies” the log structure of
X in a topological way (ie without using the sheaf of monoids, but only “points”).

What comes out is a topological space Xlog (that also comes with a natural sheaf of
rings, but we do not use this in the present work) with a continuous map � W Xlog!X

that is proper and surjective. Moreover if U � X is the trivial locus of the log
structure (the largest open subset over which O�X ,!M is an isomorphism), the open
embedding i W U !X factors through � , so that Xlog can be considered as a “ relative
compactification” of the open immersion i .

Let us denote by p� the log analytic space given by the point ptD .Spec C/an with
monoid M DR�0 �S1 , and map ˛W M !C described by .r; a/ 7! r � a . Note that
this log structure is not integral.

As a set we have Xlog D Hom.p�; X/, the set of morphisms of log analytic spaces
from the log point p� to X . By unraveling this one can also write

Xlog D
˚
.x; c/ j cW M

gp
x ! S1 is a group homomorphism

such that c.f /D f=jf j for all f 2 O�X;x
	
:

In particular one can see that C.P /log D Hom.p�;C.P //D Hom.P;R�0�S1/, and
the projection � W C.P /log!C.P / is given by postcomposition with R�0�S1!C .

Note that from the above description C.P /log has a natural topology, which by means
of local charts for the log structure gives a topology on Xlog in general [28, Section 1.2].

From the description one sees easily that, for x2Xan , the fiber ��1.x/ is homeomorphic
to .S1/r , where r is the rank of the stalk M x , defined to be the rank of the free abelian
group M gp

x .

The construction of the Kato–Nakayama space is clearly functorial, and is also compat-
ible with strict base change.

Proposition A.12 [28, Lemma 1.3] Let f W X ! Y be a strict morphism of fine
saturated log analytic spaces. Then the diagram of topological spaces
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Xlog //

��

Ylog

��

X // Y

is cartesian.

The description of Xlog as a set can actually be enhanced to a description of its functor
of points (see Section 3.4).

We now prove the following proposition:

Proposition A.13 For any log scheme X , the Kato–Nakayama space Xlog is locally
Hausdorff, locally contractible and locally compact.

We will start by assuming that X is affine and has a global chart X! Spec CŒP � for a
fine saturated sharp monoid P , and will prove that Xlog is locally compact, Hausdorff
and locally contractible. This implies the conclusion for arbitrary X .

Note that since f W X! Spec CŒP � is strict, there is a cartesian diagram of topological
spaces

Xlog //

��

C.P /log

�

��

Xan
fan
// C.P /

Our proof will be as follows: We note that Xan and C.P / are semialgebraic, and
the map Xan ! C.P / is a semialgebraic function (this part of the diagram is even
algebraic). We will check that C.P /log is semialgebraic, and that the projection to
C.P / is a semialgebraic function.

After we do that, it will follow that Xlog is semialgebraic as well (being the inverse image
of the diagonal C.P /�C.P /�C.P /, a semialgebraic set, through the semialgebraic
map .fan; �/W Xan � C.P /log ! C.P / � C.P /, see [8, Proposition 2.2.7]), hence
triangulable (by the results of [30]), and any triangulable locally semialgebraic set is
locally compact, Hausdorff and locally contractible [21].

Lemma A.14 The topological space C.P /log is semialgebraic, and the projection
C.P /log!C.P / is a semialgebraic map.

Proof We will check this by writing out these spaces explicitly. Let pi be a finite set
of generators for P (for example the indecomposable elements), and assume we have a
finite number of relations that present the monoid P , of the form

P
j rijpj D

P
j sijpj .

Say there are k generators and h relations.
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Then we have a map C.P / D Hom.P;C/ ! Ck given by � 7! .�.pi //. This
is an embedding, and the closed image is the Zariski closed subset with equationsQ
j .zj /

rij D
Q
j .zj /

sij obtained from the h relations of the chosen presentation of P ,
where .zj / are the coordinates of Ck .

In the exact same way we have a map C.P /logDHom.P;R�0�S1/! .R�0�S1/k

given by  7! . .pi //. To describe the image, let us note that we have R�0�S1�R3

in a natural way, as a semialgebraic subset. If we denote by .�j / the “coordinates”
of .R�0 � S1/k , then the (isomorphic) image of C.P /log is again described by the
equations

Q
j .�j /

rij D
Q
j .�j /

sij , so it is semialgebraic (the equations translate into
algebraic equations on .R3/k ).

Of course the diagram

C.P /log //

��

.R�0 �S1/k

��

C.P / // Ck

commutes.

From this, it suffices to check that the map .R�0 �S1/k!Ck is semialgebraic, and
this is easy: in coordinates (where we see .R�0 �S1/k � .R3/k and Ck Š .R2/k ) it
is given by .ai ; bi ; ci / 7! .ai � bi ; ai � ci /.

A.4 Root stacks

Root stacks of log schemes were introduced in [9]. The infinite root stack, an inverse
limit of the ones with finitely generated weight system, is the subject of [48]. We briefly
recall the functorial definition and the groupoid presentations coming from local charts.

Let us fix a natural number n and a log scheme X with log structure LW A! DivX .
We can consider a sheaf 1

n
A of “fractions” of sections of A: the sections of 1

n
A are

formal fractions a
n

where a is a section of A. There is a natural inclusion inW A! 1
n
A.

Note that 1
n
A is isomorphic to A via a 7! a

n
. Through this isomorphism, the inclusion

in corresponds to multiplication by nW A! A. The fact that this map is injective
follows from torsion-freeness of stalks of A, which are fine saturated sharp monoids.

Definition A.15 The nth root stack n
p
X of the log scheme X is the stack over Sch,

the category of schemes (with the étale topology), whose functor of points sends a
scheme T to the groupoid whose objects are pairs .�;N; a/ where �W T ! X is a
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morphism of schemes, N W 1
n
��A!DivX is a symmetric monoidal functor with trivial

kernel and a is a natural isomorphism between ��L and the composite N ı in :

��A //

��

a��

DivX

1
n
��A

::

Morphisms are defined in the obvious way.

In other words the nth root stack parametrizes extensions of the symmetric monoidal
functor LW A! DivX to the sheaf 1

n
A. The pair .N; a/ in the definition above could

be called an “nth root” of the log structure LW A! DivX .

Every time njm there is a morphism m
p
X!

n
p
X , and by letting n and m vary, these

maps give an inverse system of stacks over Sch.

Definition A.16 The infinite root stack 1
p
X of the log scheme X is the pro-algebraic

stack .n
p
X/n2N .

Remark A.17 In [48] the infinite root stack is defined as the actual limit of the inverse
system in the 2–category of fibered categories, but in the present paper it will always
be the pro-object. The two contain the same information, since by the results of [48,
Section 5] the limit of the system of nth root stacks recovers the log scheme completely,
and hence recovers the pro-object as well.

The nth root stack n
p
X is a tame Artin stack with coarse moduli space X . Moreover

there are presentations of n
p
X for each n that assemble into a pro-object in groupoids

in schemes, and can be regarded as a presentation of the pro-object 1
p
X . This follows

from the following local descriptions as quotient stacks [48, Corollary 3.12].

Let us fix a monoid P , and let us denote by Cn the cokernel of the injective map
P gp! 1

n
P gp . Furthermore, denote by �n.P / the Cartier dual of Cn . This acts on the

monoid algebra Spec k
�
1
n
P
�

(k here is some base field, but this works the same way
over Z).

If X is a log scheme with a global chart X ! Spec kŒP �, then there is a cartesian
diagram

n
p
X //

��

�
Spec k

�
1
n
P
�
=�n.P /

�
��

X // Spec kŒP �

presenting n
p
X as a quotient stack ŒXn=�n.P /�, where XnDX�SpeckŒP �Spec k

�
1
n
P
�
.
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As we mentioned, these quotient stack presentations are all compatible, in the sense
that they give a pro-object in groupoids in schemes .Xn ��n.P /�Xn/n2N , which
can be seen as a groupoid presentation of 1

p
X .

If X does not have a global chart we cover it with étale opens Ui where there is a chart
with monoid Pi and assemble together the corresponding groupoid presentations.

Proposition A.18 [9, Proposition 4.19] The nth root stack n
p
X is a tame Artin stack,

and is Deligne–Mumford when we are over a field of characteristic 0.

A.5 Topological stacks

The main reference for this section is [36].

The two preceding subsections were about the objects that we would like to compare,
namely the Kato–Nakayama space and the infinite root stack of a log scheme locally
of finite type over C . Note that the former is of topological nature, and the latter is
algebraic. In order to find a map between them, we carry over the root stacks to the
topological side.

One can talk about stacks over any Grothendieck site. Algebraic stacks (also known as
Artin stacks) are stacks on the category of schemes over a base with the étale topology1

that admit a representable smooth epimorphism from a scheme and whose diagonal
is representable by algebraic spaces (and often one imposes some conditions on this
diagonal morphism, like being quasicompact or locally of finite type). Equivalently,
one can describe algebraic stacks as stacks of (étale) torsors for certain groupoid objects
in algebraic spaces, whose structure maps are smooth.

If instead of schemes over a base with the étale topology we start from topological
spaces with the étale topology (where covers are local homeomorphisms), and we
require a representable epimorphism from a topological space, we obtain the theory
of topological stacks.2 Such a stack will always have diagonal representable by a
topological space. As on the algebraic side, a topological stack can be defined through
a groupoid presentation: a topological stack is a stack of principal G–bundles for G a
topological groupoid, and much of the basic yoga that one learns when working with
algebraic stacks carries over in close analogy in this context.

In particular if G is a topological group acting on a space X , the functor of points of the
quotient stack ŒX=G� is described as principal G–bundles (the topological analogue

1Sometimes, rather than working with the étale topology, one defines algebraic stacks with the fppf
topology. However, the resulting 2–category of stacks is the same; see [7, Tag 076U].

2Noohi [36] demands further conditions for such a stack to be called a topological stack; however, in
subsequent papers (eg [37]), he relaxes these conditions to the ones just described.
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of G–torsors) with an equivariant map to X . In the same fashion, if R� U is a
topological groupoid, one can characterize the associated stack ŒU=R� as the stack of
principal bundles for this groupoid.

There is a procedure to produce a topological stack starting from an algebraic one, that
extends the analytification functor. We apply this in particular to the nth root stacks of
a log scheme.

Denote by AlgStLFT
C the 2–category of algebraic stack locally of finite type over C

and by TopSt the 2–category of topological stacks.

Proposition A.19 [36, Section 20] There is a functor of 2–categories

. � /topW AlgStLFT
C ! TopSt

that associates a topological stack to an algebraic stack locally of finite type over C .

In Section 3, we extend Noohi’s results to produce a left exact colimit-preserving
functor from 1–sheaves (also known as stacks of 1–groupoids) on the algebraic étale
site to hypersheaves on a suitable topological site. See Theorem 3.1 and Corollary 3.11.

This functor has several nice properties. We point out the ones that we use:

1. If X is a scheme (or algebraic space) locally of finite type over C , then
Xtop 'Xan is the analytification

2. The functor . � /top preserves all finite limits (ie is left exact).
3. The preceding properties give us a procedure for calculating Xtop for an algebraic

stack X. If R�U is a groupoid presentation of X, where R and U are locally
of finite type and the maps are smooth, then by the first property we can apply
the analytification functor to the diagram, and, by the second one, this will result
in another groupoid, namely the groupoid in topological spaces Ran�Uan . The
topological stack Xtop is then the associated stack ŒUan=Ran�.

In particular, if XD ŒU=G� for an action of an algebraic group locally of finite type G
on a scheme locally of finite type X , we have Xtop D ŒUan=Gan�.

Definition A.20 Let X be a log scheme locally of finite type over C . The topological
nth root stack of X is the topological stack n

p
X top . As for the algebraic ones, the

topological root stacks form an inverse system. The pro-topological stack 1
p
X top

..D

.
n
p
X top/n2N is the topological infinite root stack of X .

A.6 The rank stratification

In this section we will prove that the characteristic sheaf M is locally constant on a
stratification over the log scheme X . This is used in the main body of this article to
prove that the Kato–Nakayama space and the infinite root stack are “stratified fibrations”
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over X , and that the map that we construct between them induces an equivalence of
profinite completions.

The results of this part are probably known to experts, and we are including them
because of the lack of a suitable reference.

Definition A.21 By a stratification of a topological space T we mean a collection of
closed subsets SD fSi � T gi2I where I is partially ordered and

� if i � j then Si � Sj , and
� the stratification is locally finite: every point t 2 T has an open neighborhood
U such that only finitely many of the intersections U \Si are nonempty.

The locally closed subsets Sj nSi will be called the strata of the stratification.

If in the above definition T is the underlying topological space of a scheme X and
each Si is Zariski closed, we will say that S is an algebraic stratification of the
scheme X . Note that an algebraic stratification on X will induce a stratification on the
analytification Xan .

Definition A.22 Let T be a topological space equipped with a stratification S, and let
f W T 0! T be a morphism, where T 0 is a topological space or stack. We will say that
f is a stratified fibration with respect to S if the restrictions of f to the strata of S are
fibrations (in our case, this will always mean “locally the projection from a product”).

Now let X be a log scheme locally of finite type over a field k . We will describe an
algebraic stratification of X over which the sheaf M is locally constant.

The basic idea is that we are stratifying by the rank of the stalks M gp
x of the sheaf of

abelian groups M gp .

Lemma A.23 [39, Lemma 3.5] The sheaf M gp is a constructible sheaf of Z–modules
[4, Exposé IX, Definition 2.3]. This means that (Zariski locally) there is a decomposition
of X into locally closed subsets over which M gp is a locally constant sheaf.

Lemma A.24 [38, Theorem 2.3.2] If � is a generalization of � in X , meaning that
� 2 f�g, then there is a natural morphism of the stalks M x�!M x� , and this is surjective
(more specifically, it is a quotient by a face).

This last lemma follows from Proposition A.6 and from the explicit description of the
stalks of the monoid M of the log structure obtained from a chart; see Remark A.4.

In particular the rank “only jumps up in closed subsets”, ie for every n 2N the subset
Rn of points of X where the rank of the group M gp

xx is at least n is closed: it is
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constructible by Lemma A.23, and stable under specialization by Lemma A.24, so it is
closed. Note also that RnC1 �Rn .

Definition A.25 The rank stratification of a log scheme X is the algebraic stratification
RD fRngn2N , where

Rn D fx 2X j rankZM
gp
xx � ng:

We will denote the strata by Sn ..DRn nRnC1 .

For example, R0 D X and the complement X nR1 is the open subset of X where
the log structure is trivial (which might be empty). In general Sn is the locally closed
subset of X over which the rank of M gp

xx is equal to n.

We claim that both sheaves M and M gp are locally constant on the strata Sn .

To check this, let us describe the canonical log structure MP ! DivXP
on XP D

Spec kŒP � in more detail: the log structure is induced by the morphism of monoids
P ! kŒP �, which gives a morphism of sheaves of monoids P !OXP

(here P denotes
the constant sheaf), from which we get the sheaf MP by killing the preimage of the units
in OXP

. More precisely, denote by fpigi2I the finitely many indecomposable elements
of the fine saturated monoid P ; these are generators of P . For a geometric point
x!XP call S � I the subset of indices such that the image of tpi 2 kŒP � is invertible
in the residue field k.x/. Then the stalk .MP /x is the quotient P=hpi j i 2 Si.

In particular we note the following:

Lemma A.26 The only point x of XP where the stalk .MP /xx has rank nD rankZP
gp

is the “vertex” vP , the point given by the maximal ideal htpi j i 2 I i generated by the
variables corresponding to the indecomposable elements of P .

The point vP is also sometimes referred to as the “torus-fixed point”.

Proof Since P gp Š Zn for some n, as soon as at least one of the indecomposable
elements pi is killed, the rank will drop at least by 1. The only point in which no
indecomposable is killed is exactly the maximal ideal generated by all the tpi .

Proposition A.27 For every n and every point x of SnDRn nRn�1 , there is an étale
neighborhood U ! Sn of x such that the sheaves M jSn

and M gpjSn
are constant

sheaves.

Proof If we equip Rn with the reduced subscheme structure, it is a (fine saturated)
log scheme with the log structure pulled back from X , and the same is true for the open
subset Sn�Rn . Consequently there is an étale neighborhood U !Sn of x and a chart
U ! Spec kŒP � for the induced log structure on U , where P DM xx (Proposition A.6).
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If MP is the sheaf of monoids for the canonical log structure on Spec kŒP �, there is
exactly one point where the stalk has rank nD rankP (D rankZP

gp ), corresponding
to the vertex vP (Lemma A.26).

This implies (since over U the rank of the stalks of M is always n) that the morphism
U ! Spec kŒP � sends everything to vP , and in turn that the sheaf M jU , being a
pullback from Spec kŒP �, is constant. This implies that M gpjU is constant as well,
and concludes the proof.

Note that if k D C , the algebraic stratification of X we just constructed induces a
stratification of the analytification Xan , and the sheaves M and M gp of the log analytic
space are locally constant over the strata.
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