
msp
Geometry & Topology 21 (2017) 3159–3190

Positive simplicial volume implies
virtually positive Seifert volume

for 3–manifolds
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HONGBIN SUN
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We show that for any closed orientable 3–manifold with positive simplicial volume,
the growth of the Seifert volume of its finite covers is faster than the linear rate. In
particular, each closed orientable 3–manifold with positive simplicial volume has
virtually positive Seifert volume. The result reveals certain fundamental differences
between the representation volumes of hyperbolic type and Seifert type. The proof is
based on developments and interactions of recent results on virtual domination and
on virtual representation volumes of 3–manifolds.

57M50; 51H20

1 Introduction

The representation volume of 3–manifolds is a beautiful theory, exhibiting rich con-
nections with many branches of mathematics. The behavior of those volume functions
appears to be quite mysterious; for example, their values are hard to predict except in a
very few nice cases. On the other hand, for most motivating applications, it suffices to
estimate the growth of such volumes for finite covers of the considered 3–manifold. In
this paper, we intend to investigate the possibility of the latter, which is interesting as a
topic on its own right.

To be more specific, let us introduce some basic notations and mention some known
properties of the representation volume. Let G be either

IsoCH3
Š PSL.2IC/;

the orientation-preserving isometry group of the 3–dimensional hyperbolic geometry,
or

Isoe
fSL2.R/ŠR�Z fSL2.R/;
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the identity component of the isometry group of the Seifert geometry (see Brooks
and Goldman [4]). For any closed orientable 3–manifold N and any representation
�W �1N !G , denote by volG.N; �/ the (unsigned) volume of � . We denote the set
of G –representation volumes of N by

vol.N;G/D fvolG.N; �/ W � any representation �1N !Gg;

which is a subset of the interval Œ0;C1/.

The following theorem contains a collection of fundamental facts in the theory of
representation volumes; see Brooks and Goldman [3] and Reznikov [23].

Theorem 1.1 Let N be a closed orientable 3–manifold.

(1) The sets of values vol.N; IsoCH3/ and vol.N; Isoe
fSL2.R// are both finite.

Hence the values

HV.N /Dmax vol.N; IsoCH3/ and SV.N /Dmax vol.N; Isoe
fSL2.R//

exist in Œ0;C1/, depending only on N .

(2) If N admits a hyperbolic geometric structure, then HV.N / equals the usual
hyperbolic volume of N , reached by any discrete and faithful representation. A
similar statement holds for SV.N / when N admits a Seifert geometric structure.

(3) If P1; : : : ;Ps are the prime factors of N in the Kneser–Milnor decomposition,
then

HV.N /D HV.P1/C � � �CHV.Ps/:

A similar formula holds for SV.N /.

(4) For any map f W M !N between closed orientable 3–manifolds,

HV.M /� jdegf j �HV.N /:

The same comparison holds for SV.M / and SV.N /.

The values HV.N / and SV.N / in the conclusion of Theorem 1.1(1) are called the
hyperbolic volume and the Seifert volume of N , respectively. In light of Theorem 1.1(3),
we assume from now on that all the closed orientable 3–manifolds considered are
prime, unless specified otherwise. This is especially convenient when we speak of the
geometric decomposition of the 3–manifold.

Remark Representation volumes were introduced and studied by R Brooks and
W Goldman [3; 4] as a generalization of the simplicial volume originally due to
M Gromov [10]. Among the eight 3–dimensional geometries of W P Thurston, H3 and
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fSL2.R/ are the only two that yield nontrivial invariants, the hyperbolic volume and the
Seifert volume, respectively. Recall that the simplicial volume of a closed orientable
3–manifold N roughly counts the minimal real number of singular tetrahedra to realize
the fundamental class of N, and it is denoted by kN k. It is known that the sum
of the classical hyperbolic volume of the hyperbolic pieces is equal to v3kN k (see
Soma [26]), where v3 is the volume of the ideal regular hyperbolic tetrahedron.

Like the simplicial volume, the volumes of Brooks–Goldman satisfy the domination
property, as stated by Theorem 1.1(4). It follows that if either of the volumes HV.N /

or SV.N / is positive, then the set of mapping degrees D.M;N / of N by any given
3–manifold M must be finite. Unlike the simplicial volume, neither the hyperbolic
volume nor the Seifert volume satisfies the covering property; see Derbez, Liu and
Wang [5, Corollary 1.8], and Section 6 for some further discussion.

It can be inferred from Theorem 1.1 and the following remark that nonvanishing HV.N /

or SV.N / contains interesting information about the topology of the 3–manifold N .
However, such information seems difficult to characterize. For example, the vanishing
or nonvanishing of SV.N / implies nothing about the behavior of HV.N / (see Brooks
and Goldman [3, Sections 4 and 5]), and except for the geometric case (Theorem 1.1(2)),
the geometry of pieces fails to detect the vanishing or nonvanishing of HV.N / or
SV.N / either; see Derbez, Liu and Wang [5, Theorem 1.7]. On the other hand, the
existence of some finite cover of N with nonvanishing representation volume turns out
to be a more accessible question. An affirmative answer would be practically useful:
it implies the finiteness of the set of mapping degrees as before. Motivated by that
application, it has been discovered that any nongeometric graph manifold admits a
finite cover of positive Seifert volume (see Derbez and Wang [7; 8]); a much more
general construction that invokes Chern–Simons-theoretic calculations, and virtual
properties of 3–manifolds shows that a right geometric piece implies virtually positive
volume of the right geometry [5, Theorems 1.6]:

Theorem 1.2 Suppose that N is a closed orientable nongeometric prime 3–manifold.

(1) If N contains at least one hyperbolic geometric piece, then the hyperbolic
volume of some finite cover of N is positive.

(2) If N contains at least one Seifert geometric piece, then the Seifert volume of
some finite cover of N is positive.

Despite the seeming parallelism so far, the hyperbolic volume and the Seifert volume
behave drastically differently with respect to finite covers. In this paper, we support
this point by investigating two problems proposed in [5, Section 8]:
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Problem 1.3 Estimate the growth of virtual hyperbolic volume and virtual Seifert
volume.

Problem 1.4 Is the Seifert volume of a closed prime 3–manifold virtually positive if
it has positive simplicial volume?

The main results of this paper address Problem 1.4 affirmatively (Theorem 1.5) and
Problem 1.3 partially for 3–manifolds of positive simplicial volume (Theorem 1.7 and
the following remark), showing that the growth of virtual Seifert volume is superlinear
while the growth of virtual hyperbolic volume is linear. On Problem 1.4, the case
of closed hyperbolic 3–manifolds is already known as a direct consequence of the
much stronger virtual domination theorem of Sun [27] (quoted as Theorem 1.8 below);
so essentially it remains to treat the case of nongeometric 3–manifolds (with only
hyperbolic pieces). On Problem 1.3, it is easy to observe that the growth of virtual
Seifert volume for a closed Seifert geometric 3–manifold is linear, indeed in a constant
rate equal to its Seifert volume. Comparing with our result, we are left with the
impression that the growth of virtual hyperbolic volume might be largely governed by
the product of the simplicial volume with v3 , and the growth of virtual Seifert volume
appears to be more sensitive to the geometric decomposition.

The main results of this paper are stated as Theorems 1.5 and 1.7:

Theorem 1.5 If M is a closed orientable 3–manifold with positive simplicial volume,
then there is a finite cover zM of M with positive Seifert volume.

Combining with results of Derbez, Liu, Sun and Wang [8; 5; 6], we infer immediately
the following characterization:

Corollary 1.6 Suppose that N is a closed orientable 3–manifold. Then the following
three statements are equivalent:

(1) The set of mapping degrees D.M;N / is finite for every closed orientable 3–
manifold M.

(2) The Seifert volume of some finite cover of N is positive.
(3) At least one prime factor of N is Seifert geometric, or hyperbolic, or nongeo-

metric.

Theorem 1.7 For any closed oriented 3–manifold M with nonvanishing simplicial
volume, the set of values�

SV.M 0/

ŒM 0 WM �

ˇ̌̌
M 0 any finite cover of M

�
has no upper bound in Œ0;C1/.
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Remark By contrast, it is evident by Reznikov [23, Theorem B] and Theorem 1.1
that the set of values �

HV.M 0/

ŒM 0 WM �

ˇ̌̌
M 0 any finite cover of M

�
is contained in the interval Œ0; v3kM k�.

Theorem 1.7 is significantly stronger than Theorem 1.5. Let us take a closer look at the
geometric case to illustrate their difference in the proof. As mentioned, when M is
assumed to be geometric, hence hyperbolic, Theorem 1.5 is implied by the following
result of Sun [27], by taking N to be a target with positive Seifert volume:

Theorem 1.8 For any closed oriented hyperbolic 3–manifold M and any closed
oriented 3–manifold N , there is a finite cover zM of M with a �1 –surjective degree-2
map f W zM !N .

Even though Theorem 1.8 is a powerful construction, employing deep theories including
Kahn and Markovic [14], Liu and Markovic [17], Agol [1] and Wise [31] on building
and separating certain quasiconvex subgroups in closed hyperbolic 3–manifold groups,
the construction provides no control on the degree Œ zM WM �. So Theorem 1.7 stays
beyond the reach of Theorem 1.8. Armed with a more recent result of A Gaifullin [9],
we prove the following Theorem 1.9 based on Theorem 1.8. The improved construction
is supplied with a desired efficient control of the mapping degree:

Theorem 1.9 For any closed oriented hyperbolic 3–manifold M, there exists a posi-
tive constant c.M / such that the following statement holds. For any closed oriented
3–manifold N and any � > 0, there exists a finite cover M 0 of M which admits a
nonzero degree map f W M 0!N such that

kM 0
k � c.M / � jdegf j � .kN kC �/:

To prove Theorems 1.5 and 1.7 in the nongeometric case, it is tempting to extend
Theorems 1.8 and 1.9 to mixed 3–manifolds, but we do not have available tools for
that project. Instead, we follow the framework of Derbez, Liu and Wang [5] and
integrate the virtual domination theorems. The interaction between Theorem 1.8 and
the fundamental construction for Theorem 1.2 is fairly direct and illustrating, so we
present it and prove Theorem 1.5 as a warm-up. The proof of Theorem 1.7 is relatively
more sophisticated, not only because of Theorem 1.9, but it requires some details of [5].
In particular, we introduce an auxiliary notion called CI completion to formalize a
useful idea underlying the construction of [5] (see Section 5.2).
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All the arguments are based on explicitly stated results, and the exposition is kept
otherwise self-contained. The organization of this paper is as follows: The proofs of
Theorems 1.5, 1.9 and 1.7 occupy Sections 3, 4 and 5, respectively. Section 2 includes
preliminaries on 3–manifold topology and representation volume. Section 6 contains
some further questions and observations.

Acknowledgement We are grateful to Ian Agol for valuable conversations. We also
thank the anonymous referee for helpful comments. Liu is supported by the Recruitment
Program of Global Youth Experts of China. Sun is partially supported by Grant No DMS-
1510383 of the National Science Foundation of the United States. Wang is partially
supported by Grant No 11371034 of the National Natural Science Foundation of China.

2 Preliminaries

In this section, we review the geometric decomposition of 3–manifolds and the theory
of representation volumes.

2.1 Geometry and topology of 3–manifolds after Thurston

Let N be a connected compact prime orientable 3–manifold with toral or empty
boundary. As a consequence of the geometrization of 3–manifolds [28; 29] achieved
by G Perelman and Thurston, exactly one of the following cases holds:

� N is geometric, supporting one of the following eight geometries: H3 , fSL2.R/,
H2 �R, Sol, Nil, R3 , S 3 and S 2 �R (where Hn , Rn and S n are the n–
dimensional hyperbolic space, Euclidean space and spherical space, respectively).

� N has a canonical nontrivial geometric decomposition. In other words, there is
a nonempty minimal union TN �N of disjoint essential tori and Klein bottles
in N , unique up to isotopy, such that each component of N nTN is either Seifert
fibered or atoroidal. In the Seifert fibered case, the piece supports both the
H2 �R geometry and the fSL2.R/ geometry. In the atoroidal case, the piece
supports the H3 geometry.

When N has nontrivial geometric decomposition, we call the components of N n TN

the geometric pieces of N or, more specifically, Seifert pieces or hyperbolic pieces
according to their geometry.

Traditionally, there is another decomposition introduced by Jaco and Shalen [12] and
Johannson [13], known as the JSJ decomposition. When N contains no essential Klein
bottles and has a nontrivial geometric decomposition, the JSJ decomposition of N
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coincides with its geometric decomposition, so the cutting tori and the geometric pieces
are also the JSJ tori and the JSJ pieces, respectively. Possibly after passing to a double
cover of N , we may assume that N contains no essential Klein bottle.

A hyperbolic piece J can be realized as a complete hyperbolic 3–manifold of finite
volume, unique up to isometry (by Mostow rigidity). Let J be a compact, orientable
3–manifold whose boundary consists of tori T1; : : : ;Tp and whose interior admits a
complete hyperbolic metric. Identify J with the complement of p disjoint cusps in
the corresponding hyperbolic manifold; then @J has a Euclidean metric induced from
the hyperbolic structure, and each closed Euclidean geodesic in @J has the induced
length. The hyperbolic Dehn filling theorem of Thurston [28, Theorem 5.8.2] can be
stated in the following form:

Theorem 2.1 There is a constant C >0 such that the closed 3–manifold J.�1; : : : ; �n/

obtained by Dehn filling each Ti along a slope �i � Ti admits a complete hyperbolic
structure if each �i has length greater than C . Moreover, with suitably chosen base-
points, J.�1; : : : ; �n/ converges to the corresponding cusped hyperbolic 3–manifold in
the Gromov–Hausdorff sense as the minimal length of �i tends to infinity.

A Seifert piece J of a nongeometric prime closed 3–manifold N supports both the
H2 �R geometry and the fSL2.R/ geometry. In this paper, we are more interested
in the latter case, so we describe the structure of fSL2.R/ geometric manifolds in the
following. All the material can be found in [25].

We consider the group PSL.2IR/ as the orientation-preserving isometries of the hyper-
bolic 2–space H2 D fz 2C j =.z/ > 0g with i as a basepoint. In this way PSL.2IR/
is identified with the unit tangent bundle of H2 , which has a natural Riemannian
metric induced from T H2 . Note that PSL.2IR/ is a (topologically trivial) circle
bundle over H2 , but not isometric to H2 �S 1 . Let pW fSL2.R/! PSL.2IR/ be the
universal covering of PSL.2IR/ with the induced metric, then fSL2.R/ is a line bundle
over H2 . For any ˛ 2R, denote by sh.˛/ the element of fSL2.R/ whose projection
into PSL.2IR/ is given by �

cos.2�˛/ � sin.2�˛/
sin.2�˛/ cos.2�˛/

�
:

Then the set fsh.n/ j n 2Zg is the kernel of p , as well as the center of fSL2.R/, acting
by integral translation along the fibers of fSL2.R/. By extending this Z–action on the
fibers by the R–action, we get the whole identity component of the isometry group
of fSL2.R/. To summarize, we have the following diagram of central extensions:
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f0g //

��

Z //

��

fSL2.R/ //

��

PSL.2IR/ //

��

f1g

��
f0g // R // Isoe

fSL2.R/ // PSL.2IR/ // f1g

In particular, the group Isoe
fSL2.R/ is generated by fSL2.R/ and the image of R,

which intersect with each other in the image of Z. More precisely, we state the
following useful lemma, which is easy to check.

Lemma 2.2 We have the identification Isoe
fSL2.R/DR�Z fSL2.R/, where .x; h/�

.x0; h0/ if and only if there exists an integer n 2 Z such that x0 � x D n and h0 D

sh.�n/ ı h.

From [4] we know that a closed orientable 3–manifold J supports the fSL2.R/ ge-
ometry — ie there is a discrete and faithful representation  W �1J ! Iso fSL2.R/ — if
and only if J is a Seifert fibered space with nonzero Euler number e.J / and the base
orbifold �O.J / has negative Euler characteristic.

2.2 Representation volumes of closed manifolds

In this subsection, we recall the definition of volume of representations. There are a
few equivalent definitions, and we will only state one of them.

Given a semisimple, connected Lie group G and a closed oriented manifold M n of
the same dimension as the contractible space X n D G=K , where K is a maximal
compact subgroup of G . We can associate to each representation �W �1M ! G a
volume volG.M; �/ in the following way.

First fix a G–invariant Riemannian metric gX on X , and denote by !X the corre-
sponding G –invariant volume form. Let zM denote the universal covering of M. We
think of the elements zx of zM as the homotopy classes of paths  W Œ0; 1�!M with
 .0/D x0 , which are acted on by �1.M;x0/ by setting Œ� �:zx D Œ�: �, where the dot
denotes the composition of paths.

A developing map D�W
zM !X associated to � is a �1M –equivariant map such that

for any x 2 zM and ˛ 2 �1M, we have

D�.˛:x/D �.˛/D�.x/;

where �.˛/ acts on X as an isometry. Such a map does exist and can be constructed
explicitly as in [2]: Fix a triangulation �M of M; then it lifts to a triangulation � zM
of zM, which is �1M –invariant. Then fix a fundamental domain � of M in zM such
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that the zero skeleton �0
zM

misses the frontier of �. Let fx1; : : : ;xlg be the vertices
of �0

zM
in �, and let fy1; : : : ;ylg be any l points in X . We first set

D�.xi/D yi ; i D 1; : : : ; l:

Then extend D� in a �1M –equivariant way to �0
zM

: for any vertex x in �0
zM

, there is
a unique vertex xi in � and ˛x 2 �1M such that ˛x :xi D x , and we set D�.x/D

�.˛x/
�1D�.xi/. Finally we extend D� to edges, faces, etc, and n–simplices of � zM

by straightening their images to totally geodesics objects using the homogeneous metric
on the contractible space X . This map is unique up to equivariant homotopy. Then
D�� .!X / is a �1M –invariant closed n–form on zM, which therefore can be thought of
as a closed n–form on M. Then we define

volG.M; �/D

Z
M

D�� .!X /D

sX
iD1

�i volX .D�.z�i//

Here f�1; : : : ; �sg are the n–simplices of �M , z�i is a lift of �i and �i D ˙1

depends on whether D�jz�i
preserves the orientation or not.

3 Positive simplicial volume implies virtually positive
Seifert volume

In this section, we adapt Theorem 1.8 to the framework of [5] to prove Theorem 1.5.

3.1 Virtual representation through geometric decomposition

We recall some results from [5]. The following additivity principle allows us to compute
the representation volume by information on the JSJ pieces. It is proved by using the
relation between the representation volume and the Chern–Simons theory.

Theorem 3.1 (additivity principle [5, Theorem 3.5]; see also [8]) Let M be an
oriented closed 3–manifold with JSJ tori T1; : : : ;Tr and JSJ pieces J1; : : : ;Jk , and
let �1; : : : ; �r be slopes on T1; : : : ;Tr , respectively.

Suppose that G is either Isoe
fSL2.R/ or PSL.2IC/, that

�W �1.M /!G

is a representation vanishing on the slopes �i , and that y�i W �1. yJi/!G are the induced
representations, where yJi is the Dehn filling of Ji along slopes adjacent to its boundary,
with the induced orientations. Then

volG.M; �/D volG. yJ1; y�1/C volG. yJ2; y�2/C � � �C volG. yJk ; y�k/:
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The following simple lemma suggests that we should focus on those JSJ pieces whose
groups have nonelementary images under � .

Lemma 3.2 [5, Lemma 3.6] Suppose that G is either Isoe
fSL2.R/ or PSL.2IC/

and that M is a closed oriented 3–manifold. If �W �1M !G has image either infinite
cyclic or finite, then volG.M; �/D 0.

The existence of a class inversion for the target group played an important role in [5]
for constructing virtual representation of mixed 3–manifold groups. Here we quote the
following definition. An intimately related notion called CI completion is introduced
and studied in this paper when we prove Theorem 1.7 (see Section 5.2).

Definition 3.3 [5, Definition 5.1] Let G be an arbitrary group and fŒAi �gi2I be
a collection of conjugacy classes of abelian subgroups. By a class inversion with
respect to fŒAi �gi2I , we mean an outer automorphism Œ�� 2 Out.G / such that for any
representative abelian subgroup Ai of each ŒAi �, there is a representative automorphism
�Ai
W G ! G of Œ�� that preserves Ai , taking every a 2 Ai to its inverse. We say G

is class invertible with respect to fŒAi �gi2I if there exists a class inversion. We often
ambiguously call any collection of representative abelian subgroups fAigi2I a class
invertible collection, and call any representative automorphism � a class inversion.

Now we state the following fundamental construction about virtual representation
extensions. It uses works of Przytycki and Wise [20; 21; 22] (and [31; 11]) and
Rubinstein and Wang [24] (see also [16]) to understand virtual properties of 3–manifolds
with nontrivial geometric decomposition.

Theorem 3.4 [5, Theorem 5.2] Let G be a group and M be an irreducible orientable
closed 3–manifold with nontrivial JSJ decomposition. For a fixed JSJ piece J0 �M,
suppose a representation

�0W �1.J0/! G

satisfies the following:

� �0 has nontrivial kernel restricted to �1.T / for every boundary torus T � @J0 ;
and

� �0.�1.T // forms a class invertible collection of abelian subgroups of G for
every boundary torus T � @J0 .

Then there exist a finite regular cover

�W zM !M

and a representation
z�W �1. zM /! G
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satisfying the following:

� for one or more elevations zJ0 of J0 , the restriction of z� to �1. zJ0/ is, up to a
class inversion, conjugate to the pullback ��.�0/; and

� for any elevation zJ other than the above, of any geometric piece J , the restriction
of z� to �1. zJ / is cyclic, possibly trivial.

3.2 Proof of Theorem 1.5

Now we are ready to prove Theorem 1.5, and here is a sketch of the strategy. Since
we can suppose that the manifold has a hyperbolic JSJ piece, Theorem 1.8 gives a
virtual representation of the hyperbolic piece with positive Seifert volume. Then, with
Lemma 3.6, Theorem 3.4 extends the virtual representation to the whole manifold,
and the volume of the virtual representation can be calculated by Theorem 3.1 and
Lemma 3.2.

By Theorems 1.2 and 1.8, we may assume that M has nontrivial JSJ decomposition
and contains a hyperbolic JSJ piece J in M. Suppose @J is a union of tori T1; : : : ;Tk .
Let ˛i be a slope on Ti ; then call ˛ D f˛1; : : : ; ˛kg a slope on @M. Denote by J.˛/

the closed orientable 3–manifold obtained by Dehn filling of k solid tori S1; : : : ;Sk to
J along ˛ . We can choose ˛ so that J.˛/ is a hyperbolic 3–manifold (Theorem 2.1).

Take a closed orientable manifold N of nonvanishing Seifert volume. For example, a
circle bundle N with Euler class e ¤ 0 over a closed surface of Euler characteristic
� < 0 works: in fact, for such N ,

SV.N /D
4�2j�j2

jej
> 0:

By Theorem 1.8 there is a finite cover qW Q ! J.˛/ such that Q dominates N,
therefore SV.Q/ > 0. Let S D

S
Si ; then S 0 D q�1.S/�Q is a union of solid tori

and J 0DQnS 0 is a connected 3–manifold which covers J . Moreover, Q is obtained
by Dehn filling S 0 to J 0 along ˛0 , where ˛0 is a slope of @J 0 which covers ˛ (ie each
component of ˛0 is an elevation of a component of ˛ and QD J 0.˛0/).

Fix J 0 and ˛0 for the moment. Let zJ be a finite covering of J 0 and z̨ be the slope
of @ zJ which covers ˛0 ; then SV. zJ .z̨// > 0. This is because the covering zJ ! J 0

extends to a branched covering (which is a nonzero degree map) zJ .z̨/! J 0.˛0/ and
SV.J 0.˛0//D SV .Q/ > 0.

According to [5, Proposition 4.2], there is a finite cover pW zM !M such that each
JSJ piece zJ of zM that covers J factors through J 0 . In particular, in the notations we
have just used, SV. zJ .z̨// > 0. To simplify the notations, we rewrite zM, zJ and z̨ as
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M, J and ˛ . Since Theorem 1.5 concludes with a virtual property, we need only to
prove the following statement:

Theorem 3.5 Suppose M is a closed orientable 3–manifold with nontrivial JSJ
decomposition and there is a JSJ piece J and a slope ˛ of @J such that SV.J.˛// > 0.
Then there is a finite cover zM of M such that SV. zM / > 0.

We are going to apply Theorem 3.4 to prove Theorem 3.5. So we first need to check
that the 3–manifold M and the local representation �W �1.J / ! G (which gives
positive representation volume for J.˛/) in Theorem 3.5 meet the two conditions of
Theorem 3.4.

We first write a presentation of �1.J.˛// from �1.J / by attaching k relations from
Dehn fillings. Let G D Isoe

fSL2.R/ be the identity component of Iso fSL2.R/, the
isometry group of the Seifert space fSL2.R/. Then the condition SV.J.˛//> 0 implies
that there is a representation �W �1.J /!G such that, for each component Ti of @J ,
�.�1.Ti// is a (possibly trivial) cyclic group. Moreover, � extends to y�W �1.J.˛//!G

such that VG.J.˛/; y�/ > 0. So the first condition of Theorem 5.2 of [5] is satisfied.
The following lemma, which strengthens [5, Lemma 6.1(2)], implies that the second
condition of Theorem 3.4 is also satisfied.

Lemma 3.6 Isoe
fSL2.R/ is class invertible with respect to all its cyclic subgroups, and

a class inversion can be realized by the conjugation of any �2 Iso fSL2.R/nIsoe
fSL2.R/.

The corresponding action on fSL2.R/ preserves the orientation.

Proof There are short exact sequences of groups

0!R! Iso fSL2.R/
p
�! Iso H2

! 1

and
0!R! Isoe

fSL2.R/
p
�! IsoCH2

! 1:

Recall that there are no orientation-reversing isometries in the fSL2.R/ geometry.

For each element � in the component of Iso fSL2.R/ not containing the identity,
� reverses the orientation of R (the center of Isoe

fSL2.R/). So �r��1 D r�1 for
any r 2 R, and Isoe

fSL2.R/ is class invertible with respect to its center R. A class
inversion can be realized by the conjugation of any � 2 Iso fSL2.R/n Isoe

fSL2.R/, and
the corresponding action on fSL2.R/ preserves the orientation. Actually, this part of
the proof is the same as the proof of [5, Lemma 6.1(ii)].

In the following, we suppose that h˛i is a cyclic subgroup of Isoe
fSL2.R/ generated

by a noncentral element ˛ .
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For each nontrivial element a in IsoCH2 , it is straightforward to see that there exists
a reflection about a geodesic la in H2 that conjugates a to its inverse. The la can be
chosen as (i) passing through the rotation center when a is elliptic; (ii) perpendicular
with the axis of a when a is hyperbolic; (iii) passing through the fixed point when a

is parabolic.

By the discussion in the last paragraph and the exact sequences, there exists an element
� 2 Iso fSL2.R/ n Isoe

fSL2.R/ such that p.�/ is a reflection of H2 conjugating p.˛/

to its inverse, namely p.��1˛�/D p.˛�1/. We claim that

��1˛� D ˛�1:

In fact, by the short exact sequences above, we have that ��1˛� D ˛�1r for some r

in the center R. Since p.�/ is a reflection, �2 is central, so

˛ D ��2˛�2
D ��1.˛�1r/� D .��1r�/.��1˛�/�1

D r�1.˛�1r/�1
D ˛r�2:

Here we used the fact that � is a class inversion for hri. So r�2 is trivial, and r is
trivial as the center is torsion-free. This verifies the claim. We conclude that � realizes
a class inversion of the cyclic subgroup h˛i of Isoe

fSL2.R/.

For two elements ˛1; ˛2 2 Isoe
fSL2.R/, there exist �1; �2 2 Iso fSL2.R/n Isoe

fSL2.R/
such that ��1

i ˛i�i D ˛
�1
i , and there also exists ˇ 2 Isoe

fSL2.R/ such that �1 D ˇ�2 .
Then the conjugation of �1 on Isoe

fSL2.R/ equals the composition of the conjugation
of �2 with the conjugation of ˇ . Since ˇ 2 Isoe

fSL2.R/, the conjugations of �1 and
�2 represent the same element in Out.Isoe

fSL2.R//

So Isoe
fSL2.R/ is class invertible with respect to all its cyclic subgroups, and a class

inversion can be realized by the conjugation of any element in Iso fSL2.R/nIsoe
fSL2.R/,

and the corresponding action on fSL2.R/ preserves the orientation.

Proof of Theorem 3.5 Fix J , ˛ and �W �1.J /! G as in our previous discussion,
and denote them by J0 , ˛0 , and �0 to match the notations of Theorem 3.4. Since
�0W �1.J0/!G meets the two conditions of Theorem 3.4, we can virtually extend �0

to some z�W �1. zM /!G which satisfies the conclusion of Theorem 3.4.

By the additivity principle (Theorem 3.1), we need only to compute the representation
volume for each JSJ piece of zM, then add the volumes together to compute VG. zM ; z�/.
By Theorem 3.4 and Lemma 3.2, only those elevations zJ0 of J0 such that the restriction
of z� to �1. zJ0/ is conjugate to the pullback ��.�0/, up to a class inversion, could
contribute to the Seifert representation volume of zM.
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By Lemma 3.6, the class inversions can be realized by conjugations of orientation-
preserving isomorphisms of fSL2.R/, therefore the volumes of all these elevations are
positive multiples of VG.J0.˛0/; y�0/ > 0. So the Seifert representation volume of zM
with respect to z� is positive, which implies SV. zM / > 0.

The completion of the proof of Theorem 3.5 also completes the proof of Theorem 1.5.
We can reformulate what we have done in this section with the following proposition:

Proposition 3.7 Let M be an orientable closed mixed 3–manifold and J0 be a
distinguished hyperbolic JSJ piece of M. Suppose that yJ0 is a closed hyperbolic Dehn
filling of J0 by sufficiently long boundary slopes.

(1) For any finite cover yJ 0
0

of yJ0 and any representation

�W �1. yJ
0
0/! Isoe

fSL2.R/;

there exist a finite cover
zM 0
!M

and a representation
�W �1. zM

0/! Isoe
fSL2.R/

with the following properties:

� For one or more elevations zJ 0 of J0 contained in zM 0, the covering zJ 0! J0 fac-
tors through a covering zJ 0! J 0

0
, where J 0

0
� yJ 0

0
denotes the unique elevation of

J0�
yJ0 . The restriction of � to �1. zJ

0/ is conjugate to either the pullback ˇ�.�/
or the pullback ˇ�.��/, where � is a class inversion and ˇ is the composition
of the maps

zJ 0
cov
�!J 00

fill
�! yJ 00:

� For any elevation zJ 0 other than the above, of any JSJ piece J of M, the
restriction of � to �1. zJ / has cyclic image, possibly trivial.

(2) VolIsoeeSL2.R/
. zM 0; �/ is a positive multiple of VolIsoeeSL2.R/

. yJ 0
0
; �/.

Remark The first part of Proposition 3.7 is a specialized refined statement of Theorem
3.4; the second part supplies a slot to connect with Theorem 1.8. Therefore, Theorem 1.5
is a consequence of Proposition 3.7 and Theorem 1.8. The stronger result, Theorem 1.7,
will follow from an efficient version of this proposition (Theorem 5.1) plus the efficient
virtual domination (Theorem 1.9).
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4 Efficient virtual domination by hyperbolic 3–manifolds

In this section, we employ the work of Gaifullin [9] to derive Theorem 1.9 from
Theorem 1.8. We quote the statement below for convenience.

Theorem 1.9 For any closed oriented hyperbolic 3–manifold M, there exists a posi-
tive constant c.M / such that the following statement holds. For any closed oriented
3–manifold N and any � > 0, there exists a finite cover M 0 of M which admits a
nonzero degree map f W M 0!N such that

kM 0
k � c.M / � jdegf j � .kN kC �/:

Remark In fact, the same statement holds for any closed orientable manifold which
virtually dominates all closed orientable manifolds of the same dimension. For dimen-
sion 3, all hyperbolic manifolds have such property [27]. For any arbitrary dimension,
manifolds with this property have been discovered by Gaifullin [9]. The 3–dimensional
example M…3 of Gaifullin is not a hyperbolic manifold, but we point out that a constant
c0 D 24v8=v3 � 86:64 is sufficient for this case, where v8 is the volume of the ideal
regular hyperbolic octahedron and v3 is the volume of the ideal regular hyperbolic
tetrahedron.

4.1 URC manifolds

As introduced by Gaifullin [9], a closed orientable (topological) n–manifold M is
said to have the property of universal realization of cycles (URC) if every homology
class of Hn.X IZ/ of an arbitrary topological space X has a positive integral multiple
which can be realized by the fundamental class of a finite cover M 0 of M, via a map
f W M 0!X .

For any arbitrary dimension n, Gaifullin shows that examples of URC n–manifolds
can be obtained by taking some 2n –sheeted cover

M…n

of some n–dimensional orbifold …n . More precisely, the underlying topology space
of …n is the permutahedron, namely, the polyhedron combinatorially isomorphic
to the convex hull of the points .�.1/; : : : ; �.nC 1// of RnC1 , where � runs over
all permutations of f1; : : : ; nC 1g. The orbifold structure of …n is given so that
each codimension-1 face is a reflection wall, so each codimension-k face is the local
fixed point set of a Zk

2
–action. The abelian characteristic cover of …n on which

H1.…
nIZ2/ Š Zn

2
acts is the orientable closed n–manifold M…n . In particular,

M…n can be obtained by facet pairing of 2n permutahedra.
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The following quantitative version of Gaifullin’s proof [9, Section 5] is important
for our application. Recall that a (compact) pseudo-n–manifold is a finite simplicial
complex in which each simplex is contained in an n–simplex and each .n�1/–simplex
is contained in exactly two n–simplices. Topologically, a pseudo-n–manifold is just
a manifold away from its codimension-2 skeleton. A strongly connected orientable
pseudo-n–manifold means that, away from the codimension-2 skeleton, the manifold
is connected and orientable, or equivalently that the n–dimensional integral homology
is isomorphic to Z. In particular, the concept of (unsigned) mapping degree can be
extended similarly to maps between strongly connected orientable pseudo-n–manifolds.

Theorem 4.1 (see [9, Proposition 5.3]) For any strongly connected orientable pseudo-
n–manifold Z , there exists a finite cover M 0

…n of M…n and a nonzero degree map
f1W M

0
…n !Z such that

#fn–permutahedra of M 0
…ng D .nC 1/! � jdegf1j � #fn–simplices of Zg:

Remark The map f1 is as asserted by [9, Proposition 5.3]. The cover yM…n D

U…n=�H there is rewritten as M 0
…n in our notation. To compare with the statement

of [9, Proposition 5.3], the index jW W �H j there equals the number of permutahedra
in M 0

…n here; the notation jAj there stands for the number of n–simplices in the
barycentric subdivision of Z , which equals .nC 1/! times the number of n–simplices
of Z here. For dimension 3, all orientable closed hyperbolic manifold are known to
be URC [27].

4.2 Virtual domination through URC 3–manifolds

We combine the results of [9; 27] to prove Theorem 1.9. The following lemma allows
us to create an efficient virtual realization of the fundamental class of N .

Lemma 4.2 For any closed oriented n–manifold N and any � > 0, there exists a
connected oriented pseudo-n–manifold Z and a nonzero degree map f W Z!N such
that

#fn–simplices of Zg � jdegf j � .kN kC �/:

Proof By the definition of the simplicial volume, for any � > 0 there exists a singular
cycle

˛ D

kX
iD1

si�i 2Zn.N;R/
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such that Œ˛�D ŒN � 2Hn.N;R/ and

kX
iD1

jsi j< kN kC �:

Here the si are real numbers and the �i are maps from the standard oriented n–simplex
to N .

Since
kX

iD1

xi�i 2Zn.N;R/ and
� kX

iD1

xi�i

�
D ŒN � 2Hn.N;R/

can be expressed as linear equations with integer coefficients, they have a rational
solution .r1; : : : ; rk/ close to .s1; : : : ; sk/ such that ri 2Q and

kX
iD1

jri j< kN kC �:

In particular,
�Pk

iD1 ri�i

�
D ŒN � 2Hn.N;R/ holds. Here we can suppose that each

ri is nonnegative, by reversing the orientation of �i if necessary.

Let the least common multiple of the denominators of ri be denoted by m; then

ˇ Dm

� kX
iD1

ri�i

�
D

kX
iD1

.mri/�i 2Zn.N IZ/

is an integer linear combination of �i and Œˇ�DmŒN � 2Hn.N;R/.

Here we take mri copies of the standard oriented n–simplex that is mapped as �i for
i D 1; 2; : : : ; k . The condition that

Pk
iD1.mri/�i be an n–cycle implies that we can

find a pairing of all the .n�1/–dimensional faces of the collection of copies of the �i

such that each such pair is mapped to the same singular .n�1/–simplex in N, with
opposite orientation.

This pairing allows us to build an oriented pseudomanifold Z0 (possibly disconnected).
It is given by taking

Pk
iD1 mri copies of the standard oriented n–simplex and pasting

them together by the pairing given above. Then the singular n–simplices f�ig
k
iD1

induces a map f0W Z
0!N .

Let ŒZ0� be the homology class in Hn.Z
0/ which is represented by the n–cycle which

takes each oriented n–simplex in Z0 exactly once. It is easy to see that f0.ŒZ
0�/D
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Œˇ� D mŒN �, so f0 has mapping degree degf0 D m. Moreover, the number of n–
simplices in Z0 is just

kX
iD1

.mri/Dm

� kX
iD1

ri

�
<m.kN kC �/D degf0 � .kN kC �/:

If Z0 is connected, we are done with the proof. If Z0 is disconnected, take the
component Z of Z0 such that

deg.f0jZ /

#fn–simplices of Zg

is not smaller than the corresponding number for all the other components of Z0 . Then
f D f0jZ satisfies the desired condition in this lemma.

4.2.1 Construction of .M 0; f / Let M be a closed orientable hyperbolic 3–mani-
fold and N be any closed orientable 3–manifold. Given any constant � > 0, denote
by

pW Z!N

a virtual realization of the fundamental class of N by a strongly connected orientable
pseudo-3–manifold, as guaranteed by Lemma 4.2. Take a finite cover M 0

…3 of Gai-
fullin’s URC 3–manifold M…3 and an efficient domination map

f1W M
0
…n !Z;

which come from Theorem 4.1. Take a finite cover zM of M and a �1 –surjectively
2–domination map

f2W
zM !M…3 ;

which comes from Theorem 1.8. Then there exists a unique finite cover M 0 of M, up
to isomorphism of covering spaces, and a unique �1 –surjective 2–domination map
f 0

2
W M 0! zM…3 that fits into the following commutative diagram of maps:

M 0
f 0

2 //

��

M 0

…3

��
zM

f2 // M…3

Indeed, M 0 is the cover of zM that corresponds to the subgroup .f2]/
�1.�1.M

0

…3//

of �1. zM / (after choosing some auxiliary basepoints). The finite cover M 0 of M and
the composed map

f W M 0 f
0

2
�! zM…3

f1
�!Z

p
�!N

are the claimed objects of Theorem 1.9.
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4.2.2 Verification With the notations above, the commutative diagram above implies

kM 0k

k zM k
D ŒM 0

W zM �D ŒM 0

…3 WM…3 �D
#fpermutahedra of M 0

…3g

#fpermutahedra of M…3g
:

Observe that there are 23 D 8 permutahedra in Gaifullin’s URC 3–manifold M…3 .
On the other hand, by Theorem 4.1 and Lemma 4.2, the construction of M 0

…3 and Z

yields

#fpermutahedra of M 0

…3g D 4! � jdegf1j � #ftetrahetra of Zg

< 24 � jdegf1j � jdeg pj � .kN kC �/

D
24
2
� jdegf 02j � jdegf1j � jdeg pj � .kN kC �/

D 12 � jdegf j � .kN kC �/:
Therefore,

kM 0
k< 1

8
.12 � jdegf j � .kN kC �/ � k zM k/D c0 � jdegf j � .kN kC �/;

where the constant c0 is taken to be

c0 D
3
2
k zM k:

Note that the constant c0 > 0 depends only on the hyperbolic 3–manifold M, because
zM is constructed by Theorem 1.8 without referring to N or � . In this proof, we only

applied Theorem 1.8 for the domain M…3 , not for a general 3–manifold.

This completes the proof of Theorem 1.9.

4.3 Virtual Seifert volume of closed hyperbolic 3–manifolds

We have mentioned in the introduction that Theorem 1.5 for closed hyperbolic 3–
manifolds follows directly from Theorem 1.8. Similarly, Theorem 1.7 for hyperbolic
closed 3–manifolds is a corollary of Theorem 1.9.

Corollary 4.3 For any closed oriented hyperbolic 3–manifold M, the set of values�
SV.M 0/

ŒM 0 WM �

ˇ̌̌
M 0 any finite cover of M

�
is not bounded.

Proof Take a closed orientable manifold N of nonvanishing Seifert volume and
vanishing simplicial volume. For example, a circle bundle N with Euler class e ¤ 0

over a closed surface of Euler characteristic � < 0 works.
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For every positive integer n, apply Theorem 1.9 with � D 1=n. There exists a finite
cover Mn!M and a nonzero degree map fnW Mn!N such that

kM k � ŒMn WM �D kMnk � c.M / � jdegfnj �

�
kN kC

1

n

�
D c.M / � jdegfnj �

1

n
:

So we have

ŒMn WM ��
c.M / � jdegfnj=n

kM k
:

Since SV.Mn/� jdegfnj �SV.N /, we have

SV.Mn/

ŒMn WM �
�

jdegfnj �SV.N /

.c.M / � jdegfnj=n/=kM k
D n �

kM k �SV.N /

c.M /
:

Since K D kM k �SV.N /=c.M / is a positive constant, fSV.Mn/=ŒMn WM �g is not a
bounded sequence, so we are done.

5 Positive simplicial volume implies unbounded virtual
Seifert volume

In this section, we prove Theorem 1.7 following the strategy of the proof of Theorem 1.5
summarized in the remark following Proposition 3.7. The main body of the proof is
the following theorem which produces virtual Seifert representations with controlled
volume, (compare Proposition 3.7).

Theorem 5.1 Let M be an orientable closed mixed 3–manifold and J0 be a distin-
guished hyperbolic JSJ piece of M. Suppose that yJ0 is a closed hyperbolic Dehn filling
of J0 by sufficiently long boundary slopes.

(1) For any finite cover yJ 0
0

of yJ0 and any representation

�W �1. yJ
0
0/! Isoe

fSL2.R/;

there exist a finite cover
zM 0
!M

and a representation
�W �1. zM

0/! Isoe
fSL2.R/

with the following properties:

� For one or more elevations zJ 0 of J0 contained in zM 0 , the covering zJ 0! J0

factors through a covering zJ 0!J 0
0

, where J 0
0
� yJ 0

0
denotes the unique elevation

of J0 �
yJ0 . The restriction of � to �1. zJ

0/ is conjugate to either the pullback
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ˇ�.�/ or the pullback ˇ�.��/, where � is a class inversion in Lemma 3.6 and ˇ
is the composition of the maps

zJ 0
cov
�!J 00

fill
�! yJ 00:

� For any elevation zJ 0 other than the above, of any JSJ piece J of M, the restric-
tion of � to �1. zJ / has cyclic image, possibly trivial.

(2) Furthermore, there exists a positive constant ˛0 depending only on M and the
Dehn filling J0!

yJ0 such that for any yJ 0
0

and � as above, the asserted zM 0 and � can
be constructed so that the sum of the covering degrees Œ zJ 0 W J0� over all the elevations
zJ 0 of the ˇ–pullback type equals ˛0 � Œ zM

0 WM �. Therefore,

VolIsoeeSL2.R/
. zM 0; �/

Œ zM 0 WM �
D ˛0 �

VolIsoeeSL2.R/
. yJ 0

0
; �/

Œ yJ 0
0
W yJ0�

:

The rest of this section is devoted to the proof of Theorem 5.1, before which we derive
Theorem 1.7 from Theorem 5.1 and Corollary 4.3.

5.1 Proof of Theorem 1.7

Since we have proved Theorem 1.7 for hyperbolic 3–manifolds (Corollary 4.3), we
may assume that M is nongeometric with at least one hyperbolic piece, or in other
words, mixed. The mixed case is derived from the hyperbolic case and Theorem 5.1.

Take a hyperbolic piece J of M and let yJ be a closed hyperbolic Dehn filling of J .
By Corollary 4.3, there are finite covers f yJ 0ng of yJ such that

SV. yJ 0n/

Œ yJ 0n W
yJ �
� nK

for some constant K > 0. Let

�nW �1. yJ
0
n/! Isoe

fSL2.R/

be a representation realizing SV. yJ 0n/.

Granted Theorem 5.1, there exist finite covers zM 0
n of M and representations

�nW �1. zM
0
n/! Isoe

fSL2.R/

such that

jVolIsoeeSL2.R/
. zM 0

nI �n/j

Œ zM 0
n WM �

D ˛0 �
jVolIsoeeSL2.R/

. yJ 0nI �n/j

Œ yJ 0n W
yJ �

D ˛0 �
SV. yJ 0n/

Œ yJ 0n W
yJ �
;
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where the positive constant ˛0 is determined by M and J0!
yJ0 . Therefore,

SV. zM 0
n/

Œ zM 0
n WM �

�
jVolIsoeeSL2.R/

. zM 0
nI �n/j

Œ zM 0
n WM �

D ˛0 �
SV. yJ 0n/

Œ yJ 0n W
yJ �
� n˛0K;

so the sequence fSV. zM 0
n/=Œ
zM 0

n WM �g is unbounded. This completes the proof of
Theorem 1.7.

5.2 CI completions of hyperbolic 3–manifolds

The statement of Theorem 5.1(2) suggests a relation between the asserted representation
�W �1. zM

0/! Isoe
fSL2.R/ and the given representation �W �. yJ0/! Isoe

fSL2.R/. It
would certainly hold if � factored through the restriction of � to some finite covers
of yJ0 . However, the latter is a much stronger requirement that exceeds our ability. To
overcome this difficulty, we examine the machinery of Theorem 3.4 and observe that �
does factor through a finite cover of certain CW complex associated with yJ0 , which
looks like yJ0 attached with a number of Klein bottles. In the following, we formalize
the idea and introduce CI completions, where CI is an abbreviation for class inversion.

In general, given an arbitrary group with a collection of conjugacy classes of abelian
subgroups, it is possible to embed the group into a larger group which possesses a class
inversion with respect to the induced collection. For concreteness, we only consider
the special case of CI completions for orientable closed hyperbolic 3–manifolds, with
respect to a collection of mutually distinct embedded closed geodesics.

5.2.1 Construction of the CI completion Let V be an orientable closed hyperbolic
3–manifold, and let 1; : : : ; s be a collection of mutually distinct embedded closed
geodesics of V .

The CI completion of V with respect to 1; : : : ; s is a pair

.W; �W /;

where W is a specific CW space equipped with a distinguished embedding V !W

and �W W W !W is a free involution. The construction is as follows.

Take the product space V �Z, where Z is endowed with the discrete topology, and
for each i , take a cylinder Li parametrized as S1 �R, where S1 is identified with
the unit circle of the complex plane C . We regard each closed geodesic i as a map
S1! V . Identify the circles S1�Z of Li with closed geodesics of V �Z by taking
any point .z; n/ 2 S1 �Z to either .i.z/; n/ or .i.xz/; n/, depending on the parity
of n. We agree to use i.z/ for even n and i.xz/ for odd n. The resulting space
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�WZ is equipped with a covering transformation � W �WZ!
�WZ , which takes any point

.x; n/ 2 V �Z to .x; nC 1/ and any point .z; t/ 2Li to .xz; t C 1/. The quotient of�WZ by the action of h�2i is a space W with a covering transformation �W induced
by � .

One may visualize the further quotient space W =h�W i as a 3–manifold V with Klein
bottles hanging on the closed geodesics i , one on each. Then W is a double cover of
that space into which V lifts, and on which the deck transformation �W acts. As a
CW space with a free involution, the isomorphism type of .W; �W / is independent of
the auxiliary parametrizations in the construction, and the isomorphism may further be
required to fix the distinguished inclusion of V .

5.2.2 Properties of CI completions We study the relation of CI completions with
class inversions and their behavior under finite covers.

Proposition 5.2 Let V be an orientable closed hyperbolic 3–manifold, and let
1; : : : ; s be a collection of mutually distinct embedded closed geodesics of V . Denote
by .W; �W / the CI completion of V with respect to 1; : : : ; s .

(1) The outer automorphism of �1.W / induced by �W is a class inversion of
�1.W / with respect to the collection of conjugacy classes of the maximal cyclic
subgroups �1.1/; : : : ; �1.s/ of �1.W / corresponding to the canonically in-
cluded free loops.

(2) Suppose that G is a group which possesses a class inversion Œ�� 2 Out.G /
with respect to the conjugacy classes of all the cyclic subgroups. Then for any
homomorphism �W �1.V /! G then there exists an extension of � to �1.W /,

�W �1.W /! G :

Moreover, for any representative automorphisms �W ] and � of the outer auto-
morphisms Œ�W � and Œ��, respectively, the image ��W ].�1.V // is conjugate to
��.�1.V // in G .

(3) Suppose that �W V 0 ! V is a covering map of finite degree. Denote by
.W 0; �W 0/ the CI completion of V 0 with respect to all the elevations in V 0

of 1; : : : ; s . Then there exists an extension of � ,

�W W 0!W;

which is a covering map equivariant under the action of �W 0 and �W . In
particular, the covering degree is preserved under the extension.
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Proof Recall that W is topologically the union of V , �W .V /. and annuli Ai

and �W .Ai/. Each annulus Ai has its boundary attached to V t�W .V / in such a way
that i � V can be freely homotoped to the orientation-reversal of �W .i/� �W .V /

through Ai , and the annuli �W .Ai/ make the homotopy as well.

Statement (1) is now obvious from the above description.

Statement (2) can also be seen topologically. To this end, let X be a CW model for
the Eilenberg–Mac Lane CW space K.G ; 1/. Uniquely, up to free homotopy, the outer
automorphism Œ�� can be realized by a map RW X ! X , and the homomorphism �

can be realized as a map f W V !X . With respect to the inclusion V !W , we define
a map F W W ! X , which extends f , as follows. First define the restriction of F

to V and �W .V / to be f and Rf , respectively. Since � is a class inversion, each
f i is freely homotopic to the orientation-reversal of Rf i , as a map S1! X , so
the homotopy defines maps F jW Ai!X and F jW �W .Ai/!X . The resulting map
F W W !X extends f W V !X , so on the level of fundamental groups it gives rise to
the claimed extension of �W �1.V /! G over �1.W /.

Statement (3) follows from a construction on further quotient spaces. Observe that
the quotient space W =h�W i, rewritten as W , is topologically the union of V and
Klein bottles Bi , where the Bi are projected from Ai . Then any finite covering map
V 0! V gives rise to a covering map of the same degree W 0!W . The covering of
Klein bottles are induced by the coverings of i �W by their elevations. In fact, the
covering W 0!W is unique up to homotopy. The covering W 0!W induces two
equivariant covering maps W 0!W , differing by deck transformation. The one that
respects the distinguished inclusions is as claimed.

5.3 Virtual representations through CI completions

With our gadgets of CI completions, we invoke Theorem 3.4 to derive the asserted
virtual representations of Theorem 5.1.

5.3.1 Construction for the basic level Let M be an orientable closed mixed 3–
manifold and J0 be a distinguished hyperbolic JSJ piece of M. Suppose that yJ0 is a
closed hyperbolic Dehn filling of J0 by sufficiently long boundary slopes, which are
denoted by 1; : : : ; s . Let

.W; �W /

be the CI completion of yJ0 with respect to 1; : : : ; s , (see Section 5.2.1). Since
�1.W / is class invertible with respect to the conjugacy classes of subgroups �1.i/

(Proposition 5.2(1)), Theorem 3.4 can be applied with the target group �1.W / and the
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initial homomorphism
�1.J0/! �1.W /

induced by the composition of the Dehn filling inclusion J0 �
yJ0 and the canonical

inclusion yJ0�W . The output is a finite cover zM of M together with a homomorphism

�W �1. zM /! �1.W /;

with described restrictions to its JSJ pieces. Since the CI completion W is an Eilenberg–
Mac Lane space K.�1.W /; 1/, it is convenient to realize � as a map

f W zM !W;

which is unique up to homotopy.

Suppose for the moment that we are provided with a representation

�0W �1. yJ0/! Isoe
fSL2.R/;

rather than a virtual representation. By Proposition 5.2(2) and Lemma 3.6, there is
an extension over �1.W / (which is still denoted by �0 , regarding the original one as
restriction), so that the composition

z�W �1. zM /
�
�!�1.W /

�0
�! Isoe

fSL2.R/

gives rise to a virtual extension of the representation

�0W �1.J0/! �1. yJ0/
�0j
�! Isoe

fSL2.R/:

At this basic level, the virtual extension is nothing but a finer version of Theorem 3.4
for the special case of Seifert representations of mixed 3–manifolds. It exhibits a fac-
torization of z� through the CI completion �1.W /. However, Proposition 5.2(3) allows
us to promote the above construction to deal with virtual representations of �1. zJ0/.

5.3.2 Construction of . zM 0; �/ Now suppose as in Theorem 5.1 that yJ 0
0

is a finite
cover of yJ0 , and

�W �1. yJ
0
0/! Isoe

fSL2.R/

is a Seifert representation of �1. yJ
0
0
/. Denote by

.W 0; �W 0/

the CI completion of yJ 0
0

with respect to all the elevations of 1; : : : ; s . By Proposition
5.2(3) there exists a finite covering map

�W W 0!W

which respects the free involutions and the distinguished inclusions. In particular,
� extends the covering yJ 0

0
! yJ0 preserving the degree.
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Remember that we have obtained a finite cover zM and a map f W zM !W for the
basic level. Take any elevation of f with respect to � , denoted by

f 0W zM 0
!W 0:

This means that the following diagram is commutative up to homotopy:

zM 0
f 0

//

��

W 0

�
��

zM
f // W

and zM 0! zM is the covering of zM which is minimal in the sense that it admits no
intermediate covering with this property. (More concretely, one may replace W with
the mapping cylinder Yf 'W , and turn the map f into an inclusion zM ! Yf , then
any elevation zM 0! Y 0

f
of zM in the corresponding finite cover Y 0

f
'W 0 gives rise

to some f 0W zM 0 ! Y 0
f
! W 0 up to homotopy.) Since W 0 is a finite cover of W ,

there are only finitely many such elevations . zM 0; f 0/ up to isomorphism between
covering spaces and homotopy. Moreover, the covering degree Œ zM 0 W zM � is bounded
by ŒW 0 WW �. Denote by

�0W �1. zM
0/! �1.W

0/

the homomorphism (up to conjugation) induced by f 0 .

Provided with � and �0 above, we extend � to be

�W �1.W
0/! Isoe

fSL2.R/

by Proposition 5.2(1) and (3) and Lemma 3.6. The finite cover

zM 0
!M

and the representation

�W �1. zM
0/

�0

�!�1.W
0/

�
�! Isoe

fSL2.R/

are the claimed objects in the conclusion of Theorem 5.1.

Homomorphisms which have been presented can be summarized in the following
commutative diagram:

�1. yJ
0
0
/

�j //

incl]
��

Isoe
fSL2.R/

Id
��

�1. zM
0/

cov]

��

�0

// �1.W
0/

� //

�]

��

Isoe
fSL2.R/

�1. zM /
� // �1.W /
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The homomorphisms � and �0 are realized by maps f and f 0 , respectively. The
representation � that we have constructed is the composition along the middle row.

We are going to verify Theorem 5.1(2) in the next three subsections.

5.3.3 Restriction to JSJ pieces For any elevation zJ 0 � zM 0 of a JSJ piece J �M,
zJ 0 covers a JSJ piece zJ of zM. Since we have constructed � using Theorem 3.4, either
the restriction of � to �1. zJ / has cyclic image, or J is the distinguished hyperbolic
piece J0 and the restriction of � to �1. zJ / is one of the following compositions up to
conjugation of �1.W /:

�1. zJ /! �1. yJ0/! �1.W /

or
�1. zJ /! �1. yJ0/! �1.W /

�W
�!�1.W /:

In the cyclic case, the restriction of �0 to �1. zJ
0/ must also have cyclic image as �] is

injective. Then the restriction of � to �1. zJ
0/ has cyclic image as well. In the other

case, the first homomorphism of either composition factors through �1.J0/ via the
Dehn filling, so possibly after homotopy of f , we may assume that zJ covers either
J0 or �W .J0/ under the map f . As f 0 is an elevation of f with respect to � , the
elevation zJ 0 of zJ covers either the unique elevation J 0

0
of J0 or the unique elevation

�W 0.J 0
0
/ of �W .J0/ in W 0 . Note that � is equivariant up to conjugacy with respect to

the class inversions �W 0 and � (Proposition 5.2 and Lemma 3.6). It follows that by
taking

ˇW zJ 0! J 00!
yJ 00;

the composition of the covering and the inclusion, the restriction of � to �1. zJ
0/ is

either ˇ�.�/ or ˇ�.��/. This verifies Theorem 5.1(1).

5.3.4 Count of degree By the consideration about the restriction of � to JSJ pieces
of zM 0 above, we have seen that a JSJ piece zJ 0 gives rise to the ˇ–pullback-type
restriction of � if and only if zJ 0 covers a JSJ piece zJ of zM such that �.�1. zJ // is
noncyclic. The union of all such zJ in zM form a (disconnected) finite cover zJ of
the distinguished piece J0 �M, and the union of all ˇ–pullback-types zJ 0 in zM 0 is
nothing but the preimage zJ 0 of zJ in zM 0 . Therefore, suppose ˛0 is the ratio between
the total degree of ˇ–pullback-type JSJ pieces of zM 0 over J0 and the degree of zM 0 ,

Œ zJ 0 W J0�D ˛0 � Œ zM
0
WM �;

then we observe

˛0 D
Œ zJ 0 W J0�

Œ zM 0 WM �
D

Œ zJ 0 W zJ � � Œ zJ W J0�

Œ zM 0 W zM � � Œ zM WM �
D
Œ zJ W J0�

Œ zM WM �
:
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Note that ˛0 depends only on M and J0 !
yJ0 , since zM and � are constructed

according to them, and ˛0 is positive because zJ is nonempty by Theorem 3.4.

5.3.5 Count of volume In a very similar situation as in the proof of Theorem 1.5, to
compute the volume of the representation

�W �1. zM
0/! Isoe

fSL2.R/;

it suffices to understand the contribution to the representation volume of � from the
ˇ–pullback-type JSJ pieces zJ 0 of zM 0 . Note that the map

ˇW zJ 0
cov
�!J 00

fill
�! yJ 00

factors through a unique hyperbolic Dehn filling zK0 of zJ 0 , which covers yJ 0
0

branching
over elevations of the core curves i via a map y̌:

ˇW zJ 0
fill
�! zK0

y̌
�! yJ 00

The restriction of � to �1. zJ
0/ thus factors as

�1. zJ
0/

fill]
�!�1. zK

0/
y�
�! Isoe

fSL2.R/;

where y� equals the y̌–pullback of � or ��. Note that the class inversion � of
Isoe

fSL2.R/ is realized by the conjugation of an orientation-preserving isomorphism
of fSL2.R/, so

VolIsoeeSL2.R/
. yJ 00I �/D VolIsoeeSL2.R/

. yJ 00I ��/:

It follows from the additivity principle (Theorem 3.1) that the contribution to the
representation volume of � from the piece zJ 0 equals VolIsoeeSL2.R/

. zK0I y�/ and

VolIsoeeSL2.R/
. zK0I y�/D jdeg y̌j �VolIsoeeSL2.R/

. yJ 00I �/D
Œ zJ 0 W J0�

Œ yJ 0
0
W yJ0�
�VolIsoeeSL2.R/

. yJ 00I �/:

On the other hand, the contribution from any cyclic-type JSJ piece zJ 0 of zM 0 is always
zero by Lemma 3.2. Take the summation of the contribution from all JSJ pieces, using
the formula of ˛0 in the degree count:

VolIsoeeSL2.R/
. zM I �/D

X
zJ 02 zJ 0

VolIsoeeSL2.R/
. zK0I y�/

D

X
zJ 02 zJ 0

Œ zJ 0 W J0�

Œ yJ 0
0
W yJ0�
�VolIsoeeSL2.R/

. yJ 00I �/

D
Œ zJ 0 W J0�

Œ yJ 0
0
W yJ0�
�VolIsoeeSL2.R/

. yJ 00I �/

D ˛0 �
Œ zM 0 WM �

Œ yJ 0
0
W yJ0�

�VolIsoeeSL2.R/
. yJ 00I �/;
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or equivalently,

VolIsoeeSL2.R/
. zM 0I �/

Œ zM 0 WM �
D ˛0 �

VolIsoeeSL2.R/
. yJ 0

0
I �/

Œ yJ 0
0
W yJ0�

:

This completes the proof of Theorem 5.1(2), and therefore the proof of Theorem 5.1.

6 On covering invariants

Although the covering property does not hold for the representation volumes [5, Corol-
lary 1.8], we can stabilize them to obtain covering invariants in the following way.

Definition 6.1 For any closed orientable 3–manifold N , define the covering Seifert
volume of N to be

CSV.N /D lim
 ��
zN

SV. zN /

Œ zN WN �
;

valued in Œ0;C1�, where zN runs over all the finite covers of N. Note that the
limit exists because SV. zN /=Œ zN WN � is nondecreasing under passage to finite covers.
Similarly one can define the covering hyperbolic volume CHV.M /.

Proposition 6.2 If CSV, or CHV, is valued on Œ0;C1/ for a class C of closed
orientable 3–manifolds, then it satisfies both domination property and covering property
for C .

Proof We verify the statement for CSV; the argument for CHV is completely similar.

To verify the domination property, let f W M ! N be any map of nonzero degree
between M;N 2 C . By definition, for any � > 0, there is a finite cover zN of N such
that

SV. zN /

Œ zN WN �
> CSV.N /� �:

We have the commutative diagram

zM
Qf //

��

zN

��
M

f // N

for the pullback cover zM of M via f , which has degree at most Œ zN WN �. Then we
have Œ zM WM � � jdegf j D Œ zN W N � � jdeg Qf j, and jdegf j � jdeg Qf j, and SV. zM / �
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jdeg Qf j �SV. zN /. It follows that

SV. zM /

Œ zM WM �
D

SV. zM / � jdegf j

Œ zN WN � � jdeg Qf j
�
jdegf j �SV. zN /

Œ zN WN �
� jdegf j � .CSV.N /� �/:

Taking the limit over all zM and �! 0C, we have

CSV.M /� jdegf j �CSV.N /:

To verify the covering property, suppose that f W M !N is a covering map, so degf
equals ŒM W N �. Then any finite cover zM of M is also a finite cover of N. By
definition we have

SV. zM /

Œ zM WM �
D ŒM WN � �

SV. zM /

Œ zM WN �
� ŒM WN � �CSV.N /D jdegf j �CSV.N /:

Taking the limit over all zM, we have CSV.M / � jdegf j �CSV.N /. So indeed we
have

CSV.M /D jdegf j �CSV.N /;

where the other direction follows from the domination property.

We post some further problems, updating those of [5, Section 8].

Problem 6.3 Does CSV.M / exist in .0;C1/ for every closed orientable nongeo-
metric graph manifold M ?

A positive answer would provide a nowhere-vanishing invariant with the covering
property in the class of closed orientable nongeometric graph manifolds. Finding
such an invariant was suggested by Thurston [15, Problem 3.16]. See [18; 19; 30]
for some attempts motivated by showing the uniqueness of covering degree between
graph manifolds. The uniqueness is confirmed by [32] using combinatorial methods
and matrix theory.

Problem 6.4 Determine the possible growth types and asymptotics of the virtual
Seifert volume for closed orientable 3–manifolds with positive simplicial volume.

We speak of the growth with respect to towers of finite covers, as the covering degree
increases. Theorem 1.7 shows that there are towers with superlinear growth. The
estimates of [3] imply that the growth must be at most exponential.

Problem 6.5 Is CHV.M / equal to v3kM k for every closed orientable 3–mani-
fold M ?

This quantity is at most v3kM k (see the remark following Theorem 1.7) and we suspect
that the equality might be achieved.
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