Volume 21, issue 5 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds

Kota Hattori

Geometry & Topology 21 (2017) 2683–2723
Abstract

Colding and Minicozzi established the uniqueness of the tangent cones at infinity of Ricci-flat manifolds with Euclidean volume growth where at least one tangent cone at infinity has a smooth cross section. In this paper, we raise an example of a Ricci-flat manifold implying that the assumption for the volume growth in the above result is essential. More precisely, we construct a complete Ricci-flat manifold of dimension 4 with non-Euclidean volume growth that has infinitely many tangent cones at infinity where one of them has a smooth cross section.

Keywords
hyper-Kähler, tangent cone at infinity, Ricci flat manifold
Mathematical Subject Classification 2010
Primary: 53C23
References
Publication
Received: 10 May 2015
Revised: 12 October 2016
Accepted: 13 October 2016
Published: 15 August 2017
Proposed: Tobias H. Colding
Seconded: Dmitri Burago, Bruce Kleiner
Authors
Kota Hattori
Department of Mathematics
Keio University
3-14-1 Hiyoshi
Kohoku
Yokohama 223-8522
Japan