Volume 21, issue 6 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
The chromatic splitting conjecture at $n=p=2$

Agnès Beaudry

Geometry & Topology 21 (2017) 3213–3230
Bibliography
1 T Barthel, D Heard, The E2–term of the K(n)–local En–Adams spectral sequence, Topology Appl. 206 (2016) 190 MR3494442
2 A Beaudry, The algebraic duality resolution at p = 2, Algebr. Geom. Topol. 15 (2015) 3653 MR3450774
3 A Beaudry, Towards the homotopy of the K(2)–local Moore spectrum at p = 2, Adv. Math. 306 (2017) 722 MR3581316
4 M Behrens, The homotopy groups of SE(2) at p 5 revisited, Adv. Math. 230 (2012) 458 MR2914955
5 M Behrens, D G Davis, The homotopy fixed point spectra of profinite Galois extensions, Trans. Amer. Math. Soc. 362 (2010) 4983 MR2645058
6 I Bobkova, Resolutions in the K(2)–local category at the prime 2, PhD thesis, Northwestern University (2014) MR3251316
7 E S Devinatz, A Lyndon–Hochschild–Serre spectral sequence for certain homotopy fixed point spectra, Trans. Amer. Math. Soc. 357 (2005) 129 MR2098089
8 E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 MR2030586
9 P G Goerss, H W Henn, M Mahowald, The rational homotopy of the K(2)–local sphere and the chromatic splitting conjecture for the prime 3 and level 2, Doc. Math. 19 (2014) 1271 MR3312144
10 P Goerss, H W Henn, M Mahowald, C Rezk, A resolution of the K(2)–local sphere at the prime 3, Ann. of Math. 162 (2005) 777 MR2183282
11 H W Henn, On finite resolutions of K(n)–local spheres, from: "Elliptic cohomology" (editors H R Miller, D C Ravenel), London Math. Soc. Lecture Note Ser. 342, Cambridge Univ. Press (2007) 122 MR2330511
12 M Hovey, Bousfield localization functors and Hopkins’ chromatic splitting conjecture, from: "The Čech centennial" (editors M Cenkl, H Miller), Contemp. Math. 181, Amer. Math. Soc. (1995) 225 MR1320994
13 M Hovey, N P Strickland, Morava K–theories and localisation, 666, Amer. Math. Soc. (1999) MR1601906
14 M Mahowald, The image of J in the EHP sequence, Ann. of Math. 116 (1982) 65 MR662118
15 H R Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981) 287 MR604321
16 J Morava, Noetherian localisations of categories of cobordism comodules, Ann. of Math. 121 (1985) 1 MR782555
17 D C Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977) 287 MR0431168
18 D C Ravenel, A novice’s guide to the Adams–Novikov spectral sequence, from: "Geometric applications of homotopy theory, II" (editors M G Barratt, M E Mahowald), Lecture Notes in Math. 658, Springer (1978) 404 MR513586
19 D C Ravenel, Localization and periodicity in homotopy theory, from: "Homotopy theory" (editors E Rees, J D S Jones), London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press (1987) 175 MR932264
20 C Rezk, Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations" (editors M Mahowald, S Priddy), Contemp. Math. 220, Amer. Math. Soc. (1998) 313 MR1642902
21 K Shimomura, The Adams–Novikov E2–term for computing π(L2V (0)) at the prime  2, Topology Appl. 96 (1999) 133 MR1702307
22 K Shimomura, X Wang, The Adams–Novikov E2–term for π(L2S0) at the prime  2, Math. Z. 241 (2002) 271 MR1935487
23 K Shimomura, A Yabe, The homotopy groups π(L2S0), Topology 34 (1995) 261 MR1318877
24 J H Silverman, The arithmetic of elliptic curves, 106, Springer (1986) MR817210