Volume 21, issue 6 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 2, 547–1085
Issue 1, 1–546

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
A complex hyperbolic Riley slice

John R Parker and Pierre Will

Geometry & Topology 21 (2017) 3391–3451
Bibliography
1 H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Punctured torus groups and 2–bridge knot groups, I, 1909, Springer (2007) MR2330319
2 A F Beardon, The geometry of discrete groups, 91, Springer (1983) MR698777
3 S S Chen, L Greenberg, Hyperbolic spaces, from: "Contributions to analysis : a collection of papers dedicated to Lipman Bers" (editors L V Ahlfors, I Kra, B Maskit, L Nirenberg), Academic Press (1974) 49 MR0377765
4 D Cooper, D D Long, M B Thistlethwaite, Flexing closed hyperbolic manifolds, Geom. Topol. 11 (2007) 2413 MR2372851
5 M Culler, N Dunfield, M Goerner, J Weeks, SnapPy, a computer program for studying the geometry and topology of 3–manifolds
6 M Deraux, On spherical CR uniformization of 3–manifolds, Exp. Math. 24 (2015) 355 MR3359222
7 M Deraux, A 1–parameter family of spherical CR uniformizations of the figure eight knot complement, Geom. Topol. 20 (2016) 3571 MR3590357
8 M Deraux, E Falbel, Complex hyperbolic geometry of the figure-eight knot, Geom. Topol. 19 (2015) 237 MR3318751
9 M Deraux, J R Parker, J Paupert, New non-arithmetic complex hyperbolic lattices, Invent. Math. 203 (2016) 681 MR3461365
10 D B A Epstein, C Petronio, An exposition of Poincaré’s polyhedron theorem, Enseign. Math. 40 (1994) 113 MR1279064
11 E Falbel, A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69 MR2401419
12 E Falbel, A Guilloux, P V Koseleff, F Rouillier, M Thistlethwaite, Character varieties for SL(3, ) : the figure eight knot, Exp. Math. 25 (2016) 219 MR3463570
13 E Falbel, P V Koseleff, F Rouillier, Representations of fundamental groups of 3–manifolds into PGL(3, ) : exact computations in low complexity, Geom. Dedicata 177 (2015) 229 MR3370032
14 E Falbel, J R Parker, The geometry of the Eisenstein–Picard modular group, Duke Math. J. 131 (2006) 249 MR2219242
15 W M Goldman, Complex hyperbolic geometry, Clarendon (1999) MR1695450
16 W M Goldman, J R Parker, Complex hyperbolic ideal triangle groups, J. Reine Angew. Math. 425 (1992) 71 MR1151314
17 W M Goldman, J R Parker, Dirichlet polyhedra for dihedral groups acting on complex hyperbolic space, J. Geom. Anal. 2 (1992) 517 MR1189043
18 M Heusener, V Munoz, J Porti, The SL(3, )–character variety of the figure eight knot, preprint (2015) arXiv:1505.04451
19 L Keen, C Series, The Riley slice of Schottky space, Proc. London Math. Soc. 69 (1994) 72 MR1272421
20 B Martelli, C Petronio, Dehn filling of the “magic” 3–manifold, Comm. Anal. Geom. 14 (2006) 969 MR2287152
21 G J Martin, On discrete isometry groups of negative curvature, Pacific J. Math. 160 (1993) 109 MR1227506
22 G D Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980) 171 MR586876
23 J R Parker, Complex hyperbolic Kleinian groups, preprint
24 J R Parker, I D Platis, Complex hyperbolic quasi-Fuchsian groups, from: "Geometry of Riemann surfaces" (editors F P Gardiner, G González-Diez, C Kourouniotis), London Math. Soc. Lecture Note Ser. 368, Cambridge Univ. Press (2010) 309 MR2665016
25 J R Parker, J Wang, B Xie, Complex hyperbolic (3,3,n) triangle groups, Pacific J. Math. 280 (2016) 433 MR3453571
26 J R Parker, P Will, Complex hyperbolic free groups with many parabolic elements, from: "Geometry, groups and dynamics" (editors C S Aravinda, W M Goldman, K Gongopadhyay, A Lubotzky, M Mj, A Weaver), Contemp. Math. 639, Amer. Math. Soc. (2015) 327 MR3379837
27 J Paupert, P Will, Real reflections, commutators and cross-ratios in complex hyperbolic space, Groups Geom. Dyn. 11 (2013) 311
28 A Pratoussevitch, Traces in complex hyperbolic triangle groups, Geom. Dedicata 111 (2005) 159 MR2155180
29 J G Ratcliffe, Foundations of hyperbolic manifolds, 149, Springer (2006) MR2249478
30 R E Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105 MR1828374
31 R E Schwartz, Ideal triangle groups, dented tori, and numerical analysis, Ann. of Math. 153 (2001) 533 MR1836282
32 R E Schwartz, Complex hyperbolic triangle groups, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. Press (2002) 339 MR1957045
33 R E Schwartz, A better proof of the Goldman–Parker conjecture, Geom. Topol. 9 (2005) 1539 MR2175152
34 R E Schwartz, Spherical CR geometry and Dehn surgery, 165, Princeton Univ. Press (2007) MR2286868
35 W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)
36 P Will, Traces, cross-ratios and 2–generator subgroups of SU(2,1), Canad. J. Math. 61 (2009) 1407 MR2588430
37 P Will, Bending Fuchsian representations of fundamental groups of cusped surfaces in PU(2,1), J. Differential Geom. 90 (2012) 473 MR2916044
38 P Will, Two-generator groups acting on the complex hyperbolic plane, from: "Handbook of Teichmüller theory, VI" (editor A Papadopoulos), IMRA Lect. Math. Theor. Phys. 27, Eur. Math. Soc. (2016) 276