Volume 21, issue 6 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
A complex hyperbolic Riley slice

John R Parker and Pierre Will

Geometry & Topology 21 (2017) 3391–3451
Bibliography
1 H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Punctured torus groups and 2–bridge knot groups, I, 1909, Springer (2007) MR2330319
2 A F Beardon, The geometry of discrete groups, 91, Springer (1983) MR698777
3 S S Chen, L Greenberg, Hyperbolic spaces, from: "Contributions to analysis : a collection of papers dedicated to Lipman Bers" (editors L V Ahlfors, I Kra, B Maskit, L Nirenberg), Academic Press (1974) 49 MR0377765
4 D Cooper, D D Long, M B Thistlethwaite, Flexing closed hyperbolic manifolds, Geom. Topol. 11 (2007) 2413 MR2372851
5 M Culler, N Dunfield, M Goerner, J Weeks, SnapPy, a computer program for studying the geometry and topology of 3–manifolds
6 M Deraux, On spherical CR uniformization of 3–manifolds, Exp. Math. 24 (2015) 355 MR3359222
7 M Deraux, A 1–parameter family of spherical CR uniformizations of the figure eight knot complement, Geom. Topol. 20 (2016) 3571 MR3590357
8 M Deraux, E Falbel, Complex hyperbolic geometry of the figure-eight knot, Geom. Topol. 19 (2015) 237 MR3318751
9 M Deraux, J R Parker, J Paupert, New non-arithmetic complex hyperbolic lattices, Invent. Math. 203 (2016) 681 MR3461365
10 D B A Epstein, C Petronio, An exposition of Poincaré’s polyhedron theorem, Enseign. Math. 40 (1994) 113 MR1279064
11 E Falbel, A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69 MR2401419
12 E Falbel, A Guilloux, P V Koseleff, F Rouillier, M Thistlethwaite, Character varieties for SL(3, ) : the figure eight knot, Exp. Math. 25 (2016) 219 MR3463570
13 E Falbel, P V Koseleff, F Rouillier, Representations of fundamental groups of 3–manifolds into PGL(3, ) : exact computations in low complexity, Geom. Dedicata 177 (2015) 229 MR3370032
14 E Falbel, J R Parker, The geometry of the Eisenstein–Picard modular group, Duke Math. J. 131 (2006) 249 MR2219242
15 W M Goldman, Complex hyperbolic geometry, Clarendon (1999) MR1695450
16 W M Goldman, J R Parker, Complex hyperbolic ideal triangle groups, J. Reine Angew. Math. 425 (1992) 71 MR1151314
17 W M Goldman, J R Parker, Dirichlet polyhedra for dihedral groups acting on complex hyperbolic space, J. Geom. Anal. 2 (1992) 517 MR1189043
18 M Heusener, V Munoz, J Porti, The SL(3, )–character variety of the figure eight knot, preprint (2015) arXiv:1505.04451
19 L Keen, C Series, The Riley slice of Schottky space, Proc. London Math. Soc. 69 (1994) 72 MR1272421
20 B Martelli, C Petronio, Dehn filling of the “magic” 3–manifold, Comm. Anal. Geom. 14 (2006) 969 MR2287152
21 G J Martin, On discrete isometry groups of negative curvature, Pacific J. Math. 160 (1993) 109 MR1227506
22 G D Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980) 171 MR586876
23 J R Parker, Complex hyperbolic Kleinian groups, preprint
24 J R Parker, I D Platis, Complex hyperbolic quasi-Fuchsian groups, from: "Geometry of Riemann surfaces" (editors F P Gardiner, G González-Diez, C Kourouniotis), London Math. Soc. Lecture Note Ser. 368, Cambridge Univ. Press (2010) 309 MR2665016
25 J R Parker, J Wang, B Xie, Complex hyperbolic (3,3,n) triangle groups, Pacific J. Math. 280 (2016) 433 MR3453571
26 J R Parker, P Will, Complex hyperbolic free groups with many parabolic elements, from: "Geometry, groups and dynamics" (editors C S Aravinda, W M Goldman, K Gongopadhyay, A Lubotzky, M Mj, A Weaver), Contemp. Math. 639, Amer. Math. Soc. (2015) 327 MR3379837
27 J Paupert, P Will, Real reflections, commutators and cross-ratios in complex hyperbolic space, Groups Geom. Dyn. 11 (2013) 311
28 A Pratoussevitch, Traces in complex hyperbolic triangle groups, Geom. Dedicata 111 (2005) 159 MR2155180
29 J G Ratcliffe, Foundations of hyperbolic manifolds, 149, Springer (2006) MR2249478
30 R E Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105 MR1828374
31 R E Schwartz, Ideal triangle groups, dented tori, and numerical analysis, Ann. of Math. 153 (2001) 533 MR1836282
32 R E Schwartz, Complex hyperbolic triangle groups, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. Press (2002) 339 MR1957045
33 R E Schwartz, A better proof of the Goldman–Parker conjecture, Geom. Topol. 9 (2005) 1539 MR2175152
34 R E Schwartz, Spherical CR geometry and Dehn surgery, 165, Princeton Univ. Press (2007) MR2286868
35 W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)
36 P Will, Traces, cross-ratios and 2–generator subgroups of SU(2,1), Canad. J. Math. 61 (2009) 1407 MR2588430
37 P Will, Bending Fuchsian representations of fundamental groups of cusped surfaces in PU(2,1), J. Differential Geom. 90 (2012) 473 MR2916044
38 P Will, Two-generator groups acting on the complex hyperbolic plane, from: "Handbook of Teichmüller theory, VI" (editor A Papadopoulos), IMRA Lect. Math. Theor. Phys. 27, Eur. Math. Soc. (2016) 276