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Koszul duality patterns in Floer theory

TOLGA ETGÜ

YANKI LEKILI

We study symplectic invariants of the open symplectic manifolds X� obtained by
plumbing cotangent bundles of 2–spheres according to a plumbing tree � . For any
tree � , we calculate (DG) algebra models of the Fukaya category F.X�/ of closed
exact Lagrangians in X� and the wrapped Fukaya category W.X�/ . When � is a
Dynkin tree of type An or Dn (and conjecturally also for E6;E7;E8 ), we prove that
these models for the Fukaya category F.X�/ and W.X�/ are related by (derived)
Koszul duality. As an application, we give explicit computations of symplectic
cohomology of X� for � D An;Dn , based on the Legendrian surgery formula of
Bourgeois, Ekholm and Eliashberg.

57R58; 16E45

1 Introduction

Let us begin by recalling a simple example that we learned from Blumberg, Cohen
and Teleman [14]. Consider a simply connected smooth compact manifold S and
its cotangent bundle M D T �S with its canonical symplectic structure. The zero
section S is a Lagrangian submanifold. We choose a basepoint x 2 S and consider
the corresponding cotangent fiber LD T �x S . This is another Lagrangian submanifold,
a noncompact one. Throughout, our Lagrangian submanifolds will be equipped with
a brane structure. This means that they will be given an orientation, a spin structure
(in particular, we assume here that S is spinnable) and they will be equipped with a
grading in the sense of Seidel [59].

Fix a coefficient field K. Lagrangian Floer theory gives us Z–graded A1–algebras
over K

A D CF�.S;S/; B D CW�.L;L/:

Indeed, S is an object of F.M /, the Fukaya category of closed exact Lagrangian
branes in the Liouville manifold M (see Seidel [61]). The endomorphisms of the
object S in this category are given by the Fukaya–Floer A1–algebra CF�.S;S/.
On the other hand, L is an object of W.M /, the wrapped Fukaya category of M
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(see Abouzaid and Seidel [6]). The endomorphisms of the object L in this category
are given by the wrapped Floer cochain complex CW�.L;L/, which again has an
associated A1–structure (well-defined up to quasi-isomorphism).

Now, in this setting, by construction, there exists a full and faithful embedding

F.M /!W.M /

since by definition W.M / allows certain noncompact Lagrangians in M with con-
trolled behavior at infinity, in addition to the exact compact Lagrangians in M . Fur-
thermore, it is a general fact (see Abouzaid [2]) that a cotangent fiber generates the
wrapped Fukaya category in the derived sense. Hence, in particular, one has a Yoneda
functor to the DG-category of A1–modules over B ,

YW F.M /!Bmod;

which is a cohomologically full and faithful embedding. This sends an exact compact
Lagrangian T to the (right) A1–module YT DCW�.L;T / over B . As a consequence,
one can compute A via its quasi-isomorphic image under Y :

(1) A ' homB.K;K/;

where we write K for the right A1–module over B with underlying vector space
K � x D CW�.L;S/. Equipping S and L with suitable brane structures, one can
arrange that the degree jxj is 0. The only nontrivial module map is the multiplication
by the idempotent element in CW0.L;L/ D K � e , which acts as the identity. The
other products (including the higher products) are necessarily trivial. This can be seen
from the fact that CW�.L;L/ is supported in nonpositive degrees (as we shall see
below). Note that we are following the conventions of [61], where, for example, the
A1–module maps are given by Floer products

CW�.L;S/˝CW�.L;L/˝k
! CW�.L;S/Œ1� k�; k D 0; : : : :

Throughout, upwards shift of grading by n is written as Œ�n�.

On the other hand, CW�.L;S/ is also a (left) A1–module over CF�.S;S/, where
A1–module maps are given by Floer products

CF�.S;S/˝k
˝CW�.L;S/! CW�.L;S/Œ1� k�; k D 0; : : : :

To be in line with the conventions of [61], we prefer to view this as a right A op–module
(which entails slightly different sign conventions). In fact, in our setting, it turns out
that A is quasi-isomorphic to A op .
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Somewhat more surprisingly, one can also compute B as

(2) Bop
' homA op.K;K/:

This is an instance of Koszul duality.

Figure 1: A picture of Koszul duality

To see this, we observe that both A and B have topological models due to Abouzaid
[3; 4]. Indeed, there are A1–equivalences

A ' C �.S IK/ and B ' C��.�xS IK/;

where �xS is the based loop space of S at x . Notice the cohomological grading in
place. In particular, A is supported in nonnegative degrees and B is supported in
nonpositive degrees.

Now, (1) becomes an Eilenberg–Moore equivalence (of DGA’s)

RHomC��.�xS/.K;K/' C �.S IK/;

and (2) is Adams’ cobar equivalence (see Adams [8] and Jones and McCleary [44])

RHomC �.S/ op.K;K/' C��.�xS/op

(op operations get removed from both sides if one considers K as a left C �.S/–module).

This duality is relevant to us because it induces an isomorphism at the level of Hochschild
cohomology. Namely, by a general result of Keller [47] (see also Félix, Menichi and
Thomas [36]) one obtains an isomorphism of Gerstenhaber algebras (in fact, of B1–
algebras at the chain level)

HH�.C �.S/;C �.S//Š HH�.C��.�xS/;C��.�xS//:

In view of Abouzaid’s generation result [4], the right-hand side is in turn isomorphic
to HH�.W.M // as a Gerstenhaber algebra. On the other hand, the work of Bourgeois,
Ekholm and Eliashberg [17] can be interpreted, over a field K of characteristic 0, to
give an isomorphism of Gerstenhaber algebras

HH�.W.M //Š SH�.M /:
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The group on the right-hand side is called symplectic cohomology. Strictly speaking,
the results of [17] relate symplectic and Hochschild homologies. However, in our
computations, we will use an explicit DG-algebra as a model for W.M /, which has an
(open) Calabi–Yau property (in the sense of Ginzburg [39]) implying an isomorphism
between Hochschild homology and cohomology. This allows us to use the cohomo-
logical statement above that we find more convenient. Symplectic (co)homology of a
Liouville manifold is a symplectic invariant based on an extension of Hamiltonian Floer
(co)homology to noncompact symplectic manifolds. It was introduced by Viterbo [70] in
its current form. We recommend Seidel [60] for an excellent introduction to symplectic
cohomology and the recent manuscript Abouzaid [5] for more. Briefly, this is a very
interesting invariant of a Stein manifold that is sensitive to the underlying symplectic
structure (cf Eliashberg and Gromov [31]). Symplectic cohomology is in general
difficult to calculate explicitly. However, Bourgeois, Ekholm and Eliashberg [16; 17]
recently outlined a proof of a surgery formula for symplectic (co)homology. Combining
this with the very recent work of Ekholm and Ng [28], one obtains a purely combinatorial
description of symplectic cohomology of any 4–dimensional Weinstein manifold. (In
the absence of 1–handles and when the coefficient field is Z2 , one had Chekanov [19] as
a precursor to [28].) This combinatorial description is in general still highly complicated.
It involves noncommutative and infinite-dimensional chain complexes.

In the above setting, assuming that A D C �.S/ is a formal DG-algebra, that is, it is
quasi-isomorphic to its homology ADH�.S/, we get a promising way of computing
symplectic cohomology. Namely, one has

HH�.H�.S/;H�.S//D SH�.M /:

By a famous result of Deligne, Griffiths, Morgan and Sullivan [25], the formality
assumption holds if S is a Kähler manifold and K has characteristic 0. Note that as
a consequence of formality of C �.S/, one has a bigrading on HH�.C �.S/;C �.S//;
there is a cohomological grading r associated with the Hochschild cochain complex
and there is an internal grading s coming from the grading on H�.S/. To get an
isomorphism to SH�.M /, where the grading is given by a Conley–Zehnder type index,
one has to consider the grading of the total complex corresponding to r C s .

Let us note that one could arrive at the same conclusion by combining theorems of
Viterbo [70] and Cohen and Jones [20].

In this paper, we give a generalization of the above (in dimension 4) to Liouville
manifolds M DX� obtained via plumbings of T �S2 according to a plumbing tree � .
We will work over semisimple rings k of the form

kD
M
v

Kev;
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where e2
v D ev and evew D 0 for v ¤ w and the index set of the sum is the vertex

set �0 of � .

To wit, using Floer complexes over K, we set

A� D
M
v;w

CF�.Sv;Sw/;

where the Sv are the Lagrangian spheres corresponding to the zero sections of the
cotangent bundles T �S2 that we are plumbing, and similarly we have

B� D

M
v;w

CW�.Lv;Lw/;

where Lv is a cotangent fiber at a chosen basepoint on Sv (away from the plumbing
region).

In fact, assuming char KD 0, it turns out that A� tends to be a formal DG-algebra (we
can prove this when � is of type An or Dn , and conjecture it for E6;E7;E8 ), hence,
in such cases, we may replace it with A� DH�.A�/. Furthermore, very early on, we
will replace B� with a quasi-isomorphic DG-algebra (see [17, Proposition 4.11 and
Theorem 5.8]) which has a combinatorial description. Namely, we will use Chekanov’s
DG-algebra [19], with the cohomological grading, associated to a Legendrian link
ƒ� D

S
ƒv giving a Legendrian surgery diagram for X� where the components are

indexed by vertices v of � and each component ƒv is a Legendrian unknot in R3

(see Figure 3). In the context of [17], the homologically graded version of this is also
called the Legendrian contact homology algebra.

At this point, one obtains an explicit description of the DG-algebra B� . A careful
choice of the surgery diagram (with suitable decorations) enables us to observe that
the DG-algebra B� is a deformation of Ginzburg’s (cohomologically graded) DG-
algebra G� associated with the tree � (see Theorem 8).1 Note that Ginzburg [39]
associates a CY3 DG-algebra to any graph � and a potential function. In this paper,
� is a tree and the potential function vanishes. On the other hand, since we are plumbing
copies of T �S2 , our DG-algebras are CY2. This generalization of the construction
of Ginzburg’s DG-algebra in order to obtain a CY2 DG-algebra appears in Van den
Bergh [12]. (See Definition 5 for the definition of G� .)

The observation that B� is a deformation of the corresponding Ginzburg DG-algebra G�
enables us to use the vast literature on the study of Ginzburg’s DG-algebras to study
symplectic invariants of X� . Now, our discussion branches into two according to
whether the underlying tree � is of Dynkin type or not.

1An earlier version of this manuscript claimed an isomorphism between B� and G� , due to our
blindness to some higher energy curves. We are indebted to the referee for opening our eyes.
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Dynkin case For � of type An or Dn , we prove the following theorem:

Theorem 1 For � D An and K arbitrary field, or � D Dn and K a field with
char K¤ 2, there is a quasi-isomorphism of DG-algebras

B� ' G� :

For � D An , this result follows from a direct computation of B� . However, for
� DDn , direct computation only shows that B� is a certain deformation of G� . We
then appeal to standard deformation theory arguments to show that this deformation
is trivial when char K ¤ 2. In fact, we also prove that B� and G� are not quasi-
isomorphic when � DDn and char KD 2 by showing that the relevant obstruction
class in HH2.G�/ is nontrivial.

We conjecture that B� ' G� for � D E6;E7 if char K ¤ 2; 3 and for � D E8 if
char K¤ 2; 3; 5, but we leave the study of these exceptional cases to a future work.

Assuming for brevity char K¤ 2, and � DAn or Dn , we can now write B� ' G� .
For � of type ADE, G� turns out to be nonformal; see Hermes [41]. Its cohomology
has locally finite grading. Indeed, for an (algebraically closed) field with characteristic
0, it was computed in [41] that

H�.G�/Š…� Ì� kŒu�

as a k–algebra, where …� is the preprojective algebra associated with the tree � ,
juj D �1, and the multiplication is twisted by the Nakayama automorphism � of …� .
This is an involution, which is induced by an involution of the underlying Dynkin graph
(see Section 3).

Because G� is not formal, it is not immediately clear how to compute Hochschild
cohomology of G� . To help with this, we prove in Section 5 the following:

Theorem 2 Let K be any field. For any tree � , the associative algebra A� is Koszul
dual to the DG-algebra G� , in the sense that there are DG-algebra isomorphisms

RHomG�
.k; k/'A� and RHomA

op
�
.k; k/' G

op
�
:

Therefore, by Keller’s result [47], we can use this to compute SH�.X�/ as

SH�.X�/Š HH�.G�/Š HH�.A�/:

Since A� is a rather small finite-dimensional algebra over k, one can find a minimal
projective resolution to compute the latter group. Indeed, Brenner, Butler and King [18]
give a minimal periodic (graded) resolution for A� . However, we will find a shortcut
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to compute HH�.A�/ as a bigraded algebra for � DAn;Dn over a field K of arbitrary
characteristic. An explicit presentation of HH�.A�/ as a (graded) commutative K–
algebra is provided in Theorem 40 for An and in Theorem 44 for Dn .

As we noted above in the case �DDn and when char KD 2, B� is indeed a nontrivial
deformation of G� . In this case A� is not formal and indeed B� and A� are Koszul
dual in the above sense. Therefore, it appears that a natural statement (that applies in
all characteristics) may be that A� and B� are Koszul dual when � is a Dynkin tree.

Non-Dynkin case In this case, we only know that B� is a deformation of G� and even
at the formal level there are many nontrivial deformations of G� since HH2.G� ;G�/

is big (see Theorem 30) and HH3.G� ;G�/ D 0. Hence, it is not clear whether the
deformation corresponding to B� is trivial or not. On the other hand, as B� (being a
model for the wrapped Fukaya category of X� ) is also a Calabi–Yau (CY) algebra,
one can see the deformation of G� to B� as a deformation of CY2-algebras. In
characteristic 0, this allows one to conclude that the corresponding formal deformation
is trivial as follows.

G� is in a sense simpler for � non-Dynkin. Namely, in this case, the homology
H�.G�/ turns out to be concentrated in degree 0 and

H 0.G�/Š…�

is the preprojective algebra associated with the tree � . For a non-Dynkin tree � ,
working over K of characteristic 0, Hermes [41] proved that G� is formal, that is, G�
is quasi-isomorphic to its homology …� (see also Corollary 26 for another proof that
works over any field). Furthermore, it is well-known that …� is Koszul in the classical
sense (cf [54; 10]) over k. The quadratic dual to …� is given by the associative algebra
A� DH�.A�/ — the zigzag algebra associated with the tree � [43].

The Gerstenhaber algebra structure of the Hochschild cohomology of the preprojective
algebra …� in the non-Dynkin case has already been computed by Crawley-Boevey,
Etingof and Ginzburg in [23] when K has characteristic zero, and by Schedler [57]
in general. HH�.…�/ ¤ 0 only for � D 0; 1; 2. We give a brief review of these
computations of HH�.…�/ for completeness; see Section 6.1 for a full description.
Now, B� can be seen as a deformation of the CY2 algebra …� . If we consider the
corresponding formal deformation, then the associated Kodaira–Spencer class lives in
Ker.�W HH2.…�/! HH1.…�//, where � is the BV-operator (see for example [35]).
Now, it can be observed from the description given in Section 6.1 that this kernel
is trivial if char K D 0. This result does not hold in arbitrary characteristic; see
Remark 15 (cf Remark 33) for a proof that this deformation is nontrivial over a field K
of characteristic 2.
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Finally, let us remark that the above argument only shows that the associated formal
deformation is trivial. This does not mean that B� is quasi-isomorphic to G� —
such a quasi-isomorphism holds only after a certain completion. As was shown in
our subsequent work [33], H 0.B�/ is isomorphic to the multiplicative preprojective
algebra associated with � , introduced by Crawley-Boevey and Shaw [24]. On the other
hand H 0.G�/ is isomorphic to the additive preprojective algebra …� . It is known that
additive and multiplicative preprojective algebras are isomorphic only when char KD 0

and � is Dynkin, and in general, they are isomorphic when char K D 0 only after
completion, as follows from the above deformation theory argument.

In Section 2, we provide geometric preliminaries on plumbings of cotangent bundles.
In Section 3, we give a computation of Legendrian contact homology of the Legendrian
link ƒ� associated to a tree � , show that it is isomorphic to a deformation of the
corresponding CY2 Ginzburg DG-algebra G� (Theorem 8) and that this deformation is
trivial for � DAn or Dn , when char K¤ 2 in the latter case (Theorem 13). Section 4
computes the Floer cohomology algebra A� of the spheres in X� . The main result
appears in Section 5, where we show that G� and A� DH�.A�/ are Koszul duals for
any tree � . Finally, as an application of our main result, in Section 6, we explicitly
compute Hochschild cohomology of G� , hence also of B� for � D An and Dn ,
assuming char K¤ 2 if � DDn .

Convention Throughout, we adhere to the following conventions. K is a field,
of arbitrary characteristic unless otherwise specified, and k is a semisimple ring,
generated over K by finitely many mutually orthogonal idempotents. Letters A;B; : : :

denote associative algebras over k. All our modules are right modules and all our
multiplications are read from right to left. Letters A ;B; : : : denote A1– or DG-
algebras over k. We follow the sign conventions as given in Seidel [61, Chapter 1]
and its sequel Seidel [63]. In particular, an A1–algebra A over k is a Z–graded
k–module with a collection of k–linear maps

�d
W A ˝d

! A Œ2� d � for d � 1;

where Œ2�d � means �d lowers the degree by d�2. These maps are required to satisfy
the A1–relationsX
m;n

.�1/ja1jC���Cjanj�n�d�mC1.ad ; : : : ; anCmC1; �
m.anCm; : : : ; anC1/; an; : : : a1/

D 0:

A DG-algebra over k is an A1–algebra over k such that �d D 0 for d � 3. In this
case, we put

(3) daD .�1/jaj�1.a/; a2a1 D .�1/ja1j�2.a2; a1/:
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With this convention the A1–equation for d D 2 gives us the usual graded Leibniz
rule

d.a2a1/D .da2/a1C .�1/ja2ja2.da1/:

A op denotes the opposite of an A1–algebra A and its operations are given by

�d
A op.ad ; : : : ; a1/D .�1/ja1jC���Cjad j�d�d

A .a1; : : : ; ad /:

With the above conventions, a DG-algebra and its opposite are related via

dop.a/D .�1/jaj�1da; a2a1 D a1a2:

All our complexes are cohomological, ie the differential increases the grading by 1. It
often happens that our complexes are bigraded. In this case, we denote these gradings
by the pair .r; s/, where r refers to a cohomological (or length) grading and s refers to
an internal grading (the notation jaj is used to denote the internal grading of a specific
element). The grading rCs is referred to as the total degree. If a second grading is not
specified in the notation, for example as in HH�.A�/, it is understood that the grading
� refers to the total degree.

The notation HH�.A/ is used to denote Hochschild cohomology of a graded K–
algebra A with coefficients in A. It is a bigraded algebra over K. We write deg.x/ for
the total degree rCs of a specific element. There are two binary K–linear operations: an
associative graded commutative product of bidegree .0; 0/ and a Lie bracket of bidegree
.�1; 0/. These are called the cup product and Gerstenhaber bracket, respectively. The
product is graded commutative:

xy D .�1/deg.x/ deg.y/yx:

The Gerstenhaber bracket is graded antisymmetric on HH�.A/Œ1�, that is,

Œx;y�D�.�1/.deg.x/�1/.deg.y/�1/Œy;x�:

Finally, Hochschild cohomology of a (formal) Calabi–Yau algebra can be equipped
with a Batalin–Vilkovisky operator � of bidegree .�1; 0/, and we have the following
compatibility equation between these structures:

Œx;y�D .�1/jxj�.xy/� .�1/jxj�.x/y �x�.y/:

Acknowledgements Lekili is partially supported by a Royal Society Fellowship and
the NSF grant DMS-1509141. We thank Mohammed Abouzaid, Ben Antieau, Georgios
Dimitroglou Rizell, Tobias Ekholm, Sheel Ganatra, Travis Schedler, Paul Seidel and
Ivan Smith. We are especially grateful to the referee for a careful reading of the
manuscript: in an earlier version of this paper, we used a more complicated Lagrangian
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projection than the one given in Figure 4, which resulted in higher energy curves being
immersed and elusive. We are indebted to the referee for communicating to us the
existence of these higher-order contributions to the differential of B� .

2 Plumbing of cotangent bundles of 2–spheres

Let � be a finite tree. In the body of the paper, we will study Weinstein manifolds that
are given by a plumbing of cotangent bundles of the 2–sphere according to the tree � .
These are exact symplectic manifolds with a convexity condition at infinity. We briefly
recall the construction of these manifolds (cf [3]).

Associated to each vertex of � , we prepare a copy of D�S2 , the unit cotangent
bundle of the 2–sphere with its canonical symplectic structure. Now, say we have an
edge that connects the vertices v and w , and let us write D�Sv and D�Sw for the
corresponding copies of T �S2 and choose basepoints sv 2 Sv and sw 2 Sw . Near
sv and sw one can find real coordinates p1;p2; q1; q2 where the coordinates q1; q2

correspond to variations on the base and the coordinates p1;p2 correspond to variations
in the fiber direction. Furthermore, on these neighborhoods symplectic form can be
identified with dp^ dq . We then glue D�Sv and D�Sw together near sv and sw via
a symplectomorphism that sends .q;p/ to .p;�q/.

This leads to a symplectic manifold which has a boundary with corners. One then
smoothens the boundary and completes it to obtain a Weinstein manifold. The precise
details of this construction are somewhat technical; we refer to [3, Section 2.3] (see
also [37, Section 7.6]).

An alternative description of X� can be given via Legendrian surgery à la Eliash-
berg [29] and Gompf [40], which we will take as primary.2 In this description, we
exhibit X� as a surgery along a Legendrian link ƒ on .S3; �std/ such that the vertices v
of � correspond to the components ƒv of this link, which are Legendrian unknots.
Two such Legendrian unknots are “plumbed together” if there is an edge in � between
the corresponding vertices. To be precise, by choosing a vertex as the root of our tree,
we put our tree � in a standard form as in Figure 2, and the corresponding Legendrian
unknots in a standard form in .R3; dz�y dx/, which when projected to .x; z/ (front
projection) gives the surgery diagram as in Figure 3.

The surgery construction equips X� with a Weinstein structure (in fact, a Stein structure)
by extending the standard Weinstein structure on D4 via attaching 2–handles [73]

2Both the plumbing and surgery constructions lead to homotopic Weinstein manifolds but we do not
check this here. Throughout, we use the surgery construction and appeal to the plumbing picture only for
differential topological aspects.
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Figure 2: Standard form of �
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Figure 3: X� as given by Legendrian surgery along ƒ

along Legendrian unknots ƒi . Each such Legendrian unknot bounds an embedded
Lagrangian disk in D4 and another capping disk given by the attaching disk of the
corresponding Weinstein 2–handle. These fit together, as can be seen from the case
of T �S2 , to give the Lagrangian spheres Sv in X� corresponding to the vertices
of � , whereas the edges of � encode the intersection pattern of these spheres. The
symplectic form ! on X� is exact and it can be written as a primitive of a one-form �

for which the embedding of each sphere Sv is an exact Lagrangian submanifold of X� .
Both of these are easy facts since H2.X� IZ/ is generated by the Lagrangian spheres
Sv and H 1.SvIZ/D 0.

Furthermore, the cocores of the 2–handles give noncompact (exact) Lagrangians Lv
which are asymptotically Legendrian. The Lagrangian Lv intersects Sw only if vDw ,
in which case the intersection is transverse at a unique point xv . In the plumbing
description, the Lv correspond to the cotangent fibers T �xv

Sv � T �Sv , where the xv
are basepoints on each Sv away from the plumbing regions.

In the next section, we will be concerned with Reeb chords between the components
of ƒ in .R3; dz � y dx/. The Reeb flow is in the direction of the vector field @=@z ,
hence it is more convenient for computations to consider the Lagrangian projection, ie
the projection to .x;y/ as in Figure 4. Then the crossings of the projection ƒ are in
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one-to-one correspondence with Reeb chords from ƒ to itself. There is some freedom
in drawing the Lagrangian projection; we prefer the one given in Figure 4 as it makes
enumeration of holomorphic curves manifest. (Notice that the diagram has the property
that each component links at most one other component on its left. Clearly this is an
artifact of the way we put our tree in a standard form and is not necessary.)

In Figure 4, besides a basepoint on each component, we also indicated an orientation on
our Legendrian link ƒ by putting an arrow on each component. This, in turn, induces
orientations on the Lagrangian spheres Sv . Notice that

Sv �Sw DC1

if v and w are adjacent vertices. This ensures that the Floer complex CF�.Sv;Sw/ is
supported at an odd degree (see [59, Section 2d]).

We orient the noncompact Lagrangians Lv so that the algebraic intersection number
Lv �Sv is given by

Lv �Sv D�1:

As above, this ensures that the Floer complex CF�.Lv;Sv/ is supported at an even
degree (which we will fix below to be 0 by picking suitable grading structures).

The classical topology of X� is easy to study via the plumbing description, which
shows that X� deformation retracts onto a wedge of spheres formed by the union of
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Figure 4: Lagrangian projection of ƒ decorated with orientations and basepoints
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the Sv . In particular, X� is simply connected and the nonzero cohomology groups
of X� are given by

H 0.X� IK/DK; H 2.X� IK/D
M
v

K � ŒSv �
_:

The noncompact end of X� is a symplectization of a contact 3–manifold Y� which is
topologically a plumbing of circle bundles over S2 with Euler number �2. By abuse
of notation, we will write @X� D Y� .

To equip our Lagrangians with a brane structure, so as to have Z–gradings, we need:

Lemma 3 c1.X� ; !/D 0.

Proof We have hc1.X�/; ŒSv �i D rot.ƒv/ (see [40, Proposition 2.3]). Now, each ƒv
is an oriented Legendrian unknot in .S3; �std/ and as such its rotation number can be
computed to be rot.ƒv/D 0.

Therefore, the canonical bundle KDƒ2
C.T

�X�/ representing �c1.X�/ is trivial. To
define Z–gradings in various Floer type invariants, one needs to fix a trivialization
of K˝2 . Of course, since H 1.X�/D 0, there is actually only one homotopy class of
trivializations. We can induce a trivialization by picking a complexified volume form
� 2ƒ2

C.T
�X�/.

In this setup, a grading structure on a Lagrangian L can be thought of as a lift of the
squared-phase map

˛LW L! S1; ˛L.x/D
�.TxL/2

j�.TxL/2j

to a map z̨LW L! R. The fact that Sv and Lv are simply connected ensures that
such a lift exists for our Lagrangians.

A grading structure allows one to associate an absolute Maslov index in Z to an intersec-
tion point x 2 Sv \Sw (see [59, Section 2d]). In our situation, all our Lagrangians Sv
are simply connected, and if any two of them intersect they do so at a unique point.
If x is the intersection point of Sv and Sw , then for any given d 2 Z we can ensure
that x 2 CF�.Sv;Sw/ lies in degree d by shifting the grading structure on, say, Sw .
When viewed as a generator of CF�.Sw;Sv/, the same intersection point would then
be forced to have degree 2� d by Poincaré duality in Floer cohomology of compact
Lagrangians (see [61, Section 12e]). Furthermore, since � is a tree, we can grade
our Lagrangians inductively using the standard form of � as in Figure 2. Therefore
we can grade all of our Lagrangians Sv at once such that for any pair of intersecting
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Lagrangians Sv and Sw we are free to pick the gradings .d; 2� d/ as we would like.
Collapsing a grading structure on a Lagrangian to a Z2–grading, we get an orientation
of the underlying Lagrangian. To be compatible with the above choice of orientations
for the Lagrangian spheres Sv , we will need to demand that the gradings d be odd.
Throughout, a convenient choice will be to simply demand that d D 1, that is,

CF�.Sv;Sw/DKŒ�1� if v;w are adjacent:

Having graded the Lagrangian spheres Sv for all v , we now pick grading structures
for the noncompact Lagrangians Lv . As Lv is simply connected as well, we have the
freedom to choose a grading such that

CF�.Lv;Sv/DKŒ0�:

This is compatible with our choice of orientations on Lv and Sv as given before.

These considerations fix the orientations and the grading data up to an overall shift
(which does not change the degrees of intersection points) on our Lagrangians. (Note
that there is a unique choice of Spin structures as our Lagrangians are simply connected.)

Somewhat more nontrivially, these choices force that if v and w are adjacent vertices,
then we have the following.

Lemma 4 For v and w adjacent vertices of the tree � , the shortest Reeb chord
between Lv and Lw lies in the degree 0 part of CW�.Lv;Lw/. Furthermore, for any
pair v;w , the complex CW�.Lv;Lw/ is supported in nonpositive degrees.

Proof The first claim follows from a rigidity of a certain holomorphic square that
contributes to the higher multiplication

�3
W HF0.Lv;Sv/˝HW0.Lw;Lv/˝HF2.Sw;Lw/! HF1.Sw;Sv/;

as explained in [7, Section 4.2]. The second claim is a consequence of the first by
additivity properties of the Maslov grading (see [7, Lemma 4.11]).

We do not use the above result in our computations below. We have stated and proved
it as it helps motivate various grading choices (see also Remark 10). Let us also note
that Theorem 23 below provides an indirect check of this lemma.

3 Ginzburg DG-algebra of � and Legendrian cohomology
DG-algebra of ƒ�

3.1 Ginzburg DG-algebra of �

A quiver Q is a directed graph with a vertex set Q0 and an arrow set Q1 . A rooted
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tree � in a standard form, as in Figure 2, gives rise to a quiver by orienting the edges
so that they point away from the root. We will denote this quiver again by � unless
otherwise specified. Recall that the path algebra K� of quiver � is defined as a vector
space having all the paths in the quiver as basis (including, for each vertex v of the
quiver � , a trivial path ev of length 0), and multiplication is given by concatenation of
paths. As mentioned before, throughout we concatenate paths from right to left, when
we express them as a product.

The cohomologically graded 2–Calabi–Yau Ginzburg DG-algebra G� of � (with zero
potential) is defined as follows (see [39; 12; 41]).

Definition 5 Consider the extended quiver y� with vertices y�0 D �0 and arrows y�1

consisting of

� the original arrows g in �1 in bidegree .1;�1/;

� the opposite arrows g� to g in �1 in bidegree .1;�1/;

� loops hv at the vertex v 2 �0 of bidegree .1;�2/.

We define G� to be the DG-algebra over the semisimple ring kD
L
v2�0

Kev given by
the path algebra Ky� with the differential d of bidegree .1; 0/ defined as a k–bimodule
map by

dg D dg� D 0 and dhD
X

g2�1

g�g�gg�;

where hD
P
v2�0

hv .

In the notation .r; s/ for bigraded complexes, r corresponds to the path-length grading
and as usual we will call r C s the total degree. In particular, the notation H�.G / will
stand for the cohomology graded by the total degree. Note also that with respect to the
total grading G� is supported in nonpositive degrees.

The way we chose to orient the edges of � has only a minor effect on G� . Namely,
different choices change the signs in the formula for the differential. Our choice is to
ensure the consistency with the choice of orientations of the Lagrangians L� , as we
shall see in the next section. In particular, let �op be the quiver obtained from � by
reversing the orientation of all edges of � . Then the associated Ginzburg algebra gives
G

op
�

, the opposite of the Ginzburg algebra G� associated to the original quiver � . In
other words,

G�op D G
op
�
:
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Definition 6 The cohomology in total degree 0 of G� is called the preprojective
algebra …� WD H 0.G�/. It is the quotient of the path algebra KD� by the ideal
generated by X

g2�1

g�g�gg�;

where D� denotes the double of � , obtained by adding the opposite arrow g� for
every g 2 �1 .

It turns out that the nature of the DG-algebra G� depends on whether � is of Dynkin
type or not, as shown in the following theorem. It was first proven by Hermes [41] under
the assumption that K is algebraically closed and characteristic 0. In Corollary 26, we
give a proof of the first part of the theorem over an arbitrary field.

Theorem 7 (Hermes [41] and also Corollary 26) (1) Suppose � is non-Dynkin.
Then H�.G�/D…� is supported in degree 0 and is quasi-isomorphic to G� . In
other words, G� is formal.

(2) Suppose � is Dynkin and K is characteristic 0 and algebraically closed. Then

H�.G�/Š…� Ì� kŒu�; juj D �1

as a k–algebra, where the multiplication is twisted by the Nakayama automor-
phism � on …� . Furthermore, G� is not formal and there is an A1–structure
.�n/n�2 on the twisted polynomial algebra …� Ì� kŒu� making it a minimal
model of G� . Moreover, this A1–structure is u–equivariant, and �n D 0 for
n¤ 2; 3.

The Nakayama automorphism �W …� !…� in the above theorem refers to the auto-
morphism defined by

�.gwv/D

�
g�.w/�.v/ if gwv 2 � or g�.w/�.v/ 2 �;

�g�.w/�.v/ if gvw;g�.v/�.w/ 2 �;

where gwv denotes the arrow from the vertex v to w in …� , and � denotes either
the natural involution of the Dynkin graph (precisely when � is of type An;D2nC1

or E6 ) or the identity. We will abuse the notation and always denote the arrow from
v to w by gwv regardless of where it is considered, in the quiver � , its double D� ,
the extended quiver y� or in the algebras G� and …� , for that matter. In particular,
gvw D g�wv if gwv belongs to � . Note that � has order at most 2 and it is the identity
if and only if � is of type A1 or it is of type D2n;E7 or E8 and the base field K is
of characteristic 2 (see [18, Definition 4.6]).
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3.2 Legendrian cohomology DG-algebra of ƒ�

We recall the definition of the Z–graded Chekanov–Eliashberg DG-algebra of the Leg-
endrian link ƒ� D

S
ƒv following [17, Section 4], where it is denoted as LHA.ƒ�/.

It was originally introduced in [30; 19].

Let R denote the finite set of Reeb chords from ƒ� to itself. Recall from Section 2
that R is in bijection with the set of crossings in the Lagrangian projection of ƒ�
(Figure 4). We endow the vector space KhRi with a k–bimodule structure by declaring

ewRev

to be the set of Reeb chords from ƒw to ƒv . As a k–module, LHA.ƒ/ is the tensor
algebra over the semisimple ring k given by

LHA�.ƒ�/ WD
1M

iD0

KhRi˝ki :

After decorating ƒ� with extra data by orienting each component and picking a
basepoint at each component as in Figure 4, the chords c 2 R acquire a kind of
Conley–Zehnder grading by Z which we denote by jcj. The subscript in the notation
of LHA�.ƒ�/ denotes the induced grading on the tensor algebra. Elements ev 2 k
have degree 0; however, in general there may also be Reeb chords which have degree 0.
The differential DW LHA�.ƒ�/! LHA��1.ƒ�/ is defined as a map DW KhRi�!
LHA��1.ƒ�/ and extended by the graded Leibniz rule to LHA�.ƒ/.

Note that in general the differential is not compatible with the path-length grading
corresponding to the index i in the definition of LHA�.ƒ/.

As we follow the cohomological convention to be consistent with the literature on
Fukaya categories, instead of LHA�.ƒ/ we will use the cohomologically graded
DG-algebra LCA�.ƒ/. As a k–module, it is given by

LCA�.ƒ�/ WD LHA��.ƒ�/:

The differential DW LCA�.ƒ�/! LCA�C1.ƒ�/ is just carried over from the one on
LHA�.ƒ�/.

Let us describe the Legendrian cohomology DG-algebra of ƒ� more explicitly. The
underlying algebra of LCA�.ƒ�/ is the tensor algebra of the k–bimodule KhRi
generated by the Reeb chords (ie crossings in Figure 4):

RD fcwv; cvw W gwv 2 �1g[ fcv W v 2 �0g;
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where cv is the Reeb chord at the unique self-crossing of the component ƒv , and for
every two adjacent vertices v and w of the tree �, cwv corresponds to the unique
Reeb chord from ƒw to ƒv , ie the chord at the unique crossing between ƒv and ƒw
where ƒw is the undercrossing component.

Notice the remarkable coincidence of the k–bimodule structure on LCA�.ƒ�/ and the
k–bimodule structure on G� from Definition 5. Next, we will see that the differentials
do not agree in general. Nonetheless the Legendrian cohomology DG-algebra is
isomorphic to a deformation of the Ginzburg algebra.

Theorem 8 If ƒ� is the Legendrian link in the standard form associated to the tree �
with Lagrangian projection in Figure 4 with the grading decoration as indicated, then
there is an isomorphism between .LCA�.ƒ�/;D/ and a deformation of .G� ; d/ as DG-
algebras. More precisely, there is a graded derivation dW G� ! G� with homogeneous
components d D d3 C d5 C � � � C d2m�1 for some m � 1, d2i�1 having bidegree
.2i � 1; 2� 2i/, and there is an isomorphism of DG-algebras

.LCA�.ƒ�/;D/' .G� ; d C d/

such that the Conley–Zehnder degree on the left-hand side agrees with the total degree
on the right-hand side.

Proof Generators The natural one-to-one correspondence, ie gwv$ cwv , hv$ cv ,
between the arrow set y�1 of the extended quiver y� and the set R of Reeb chords
provides the isomorphism of the underlying k–algebras, the path algebra Ky� and the
tensor algebra of KhRi. Note that the Reeb orientation of the chord cwv is from ƒw
to ƒv , whereas the arrow gwv goes from the vertex v to w .

Gradings It suffices to identify the gradings of the generators. We first recall the
definition for an arbitrary Legendrian link ƒ� .S3; �std/.

According to the original combinatorial description [19], LCA has a Z=rZ–grading,
where r is the gcd of the rotation numbers of the components. In our case, each
component of ƒ� is an unknot with rotation number 0, providing a Z–grading on
LCA�.ƒ�/.

Let z˙ be the endpoints of a Reeb chord c of an oriented Legendrian link ƒ equipped
with basepoints on every component, zC being the one with the greater z–coordinate.
Let 
˙ be the shortest paths in ƒ, from z˙ to the basepoint of the corresponding
component, in the direction of the orientation of ƒ. The grading of c in LCA is defined
to be 2r�� 2rCC

1
2

, where r˙ 2Q is the number of counterclockwise rotations the
tangent vector of 
˙ makes (in the xy–plane). It is straightforward to verify that the
grading of every generator of the form cv of LCA.ƒ�/ is �1 and that of the form
cwv is 0.
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Differential We briefly recall the definition of the differential of LCA for any Legen-
drian link in the standard contact S3 , and then compute the differentials on the set R
of generators of LCA�.ƒ�/. The rest will be determined by the Leibniz rule.

To simplify the definition, we arrange that at every crossing of the Lagrangian projection,
the understrand and the overstrand have slopes C1 and �1, respectively. We also use
the same notation for a crossing in the Lagrangian projection as the corresponding
Reeb chord.

First of all, each quadrant around a crossing in the Lagrangian projection is decorated
with a Reeb sign. The right and left quadrants at a crossing have positive signs whereas
the top and bottom quadrants have negative signs.

There is also a second set of signs, orientation signs, for these quadrants. Every quadrant
has orientation sign C1 except for the bottom and right quadrants at an even-graded
crossing, which are decorated with �1, as in Figure 5. In fact, the choice of orientation
signs for a given diagram depends on an isotopy of the diagram near the crossing so
that the strand with a positive slope goes under the strand with a negative slope, as in
Figure 5. We indicated our choice in the upper left diagram of Figure 6. This affects
the signs, but different choices give isomorphic DG-algebras (see [28, page 80]).

C C

�

�

C1 .�1/jcjC1

C1

.�1/jcjC1

Figure 5: Reeb signs (left) and orientation signs (right) at a crossing c

On a generator, the differential is given by a count of immersed polygons and it is
extended by the graded Leibniz rule. The polygons taken into account are in the
xy–plane with boundary on the Lagrangian projection of the link and vertices at the
crossings. It is also required that at all but one vertex of the polygon, the quadrant
included in the polygon should have a negative Reeb sign. Suppose that � is such an
immersed polygon whose positive vertex is at c and the negative vertices c1; c2; : : : ; cm

are in order as we traverse the boundary of � counterclockwise starting at c . Note that
m may be 0 and the ci are not necessarily distinct. If b is the total number of times the
boundary of � passes through basepoints of the Legendrian link, the orientation sign
�

�
is defined to be .�1/b times the product of the orientation signs at the vertices.

With this setup, we have
dc D

X
�

�
�

cmcm�1 � � � c1
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for any generator c . Observe that the differential of a generator of the form cwv
vanishes since it has grading 0 and LCA�.ƒ�/ is nonpositively graded. Again for
grading reasons, any negative vertex of an immersed polygon which contributes to the
differential of a generator cv is of type cuw .

In the rest of the proof we will show that

D.cv/D�
X

uWgvu2�1

cvucuvC

X
i�1

X
w1;:::;wi

gwj v2�1

w1<���<wi

cvw1
cw1v � � � cvwi

cwiv;

where the ordering in the last summation refers to the clockwise ordering of the
components of ƒ� which are linked to v from the right in the Lagrangian projection in
Figure 4, eg the natural ordering of the integers associated to components in Figure 4.
Note that the second sum not only corresponds to higher-order terms in the length
filtration, it also contributes terms of word-length 2 of the form cvw1

cw1v . Indeed, all
the terms of word-length 2 that appear in the image of D.cv/ precisely correspond to
d.cv/ in G� . In particular, the first sum has at most one term as long as our Legendrian
link is associated to a tree in the standard form.

We will prove that all the terms in the above differential are induced by embedded
polygons as indicated in Figure 6, the relevant piece of the Lagrangian projection

�
�

�
�

�� ��
�
�

�
�

��

�
�

F
F

F

F

Figure 6: The polygons which correspond to the words in the differential
D.cv/: (from top left in clockwise order) a triangle (with a negative orienta-
tion sign), a triangle, a pentagon, and a heptagon (all with positive orientation
signs). The quadrants with negative orientation signs and the basepoints are
indicated in the upper left diagram.
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given in Figure 4, together with the orientation signs at the crossings. There are also
two unigons with a unique vertex at cv , one to the left and the other to the right with
canceling contributions to the differential D.cv/ since they come with opposite signs.

C C

cv

C
�

cuv

C
�

cvu

�
C

�
C

�

C

�

C

�
C

�

C

Figure 7: Reeb signs

We now prove that there are no other immersed polygons which contribute to the
differential D.cv/. To begin with, any such polygon has a (Reeb-) positive vertex at cv
(see Figure 7 for the Reeb signs at the relevant crossings). Start traversing its boundary
in the counterclockwise direction assuming that the polygon includes the left quadrant
at cv . If it has a vertex other than cv , ie if it is not the unigon canceled by a similar
unigon to the right, then the only option for an initial negative vertex is at cuv because
of the configuration of the Reeb signs. Moreover, this vertex has to be followed (as we
continue traversing the boundary) by a vertex at cvu since otherwise the polygon would
intersect the region outside the Lagrangian projection, which is prohibited. Similar
considerations imply that a polygon which includes the right quadrant at cv can only
have vertices at the crossings of ƒv with other components of ƒ as shown in Figure 6
above so as not to intersect the noncompact region.

Remark 9 A relation between Ginzburg’s construction of CY3 DG-algebras associ-
ated with quivers (with potentials) and Fukaya categories of certain quasiprojective
3–folds also appears in the work of Smith [69].

Remark 10 Recall that LCA�.ƒ�/ is associated to the Legendrian attaching spheres
ƒv of Weinstein 2–handles. Stated results of [17] provide a dual picture given in
terms of the wrapped Floer cohomology of the cocores Lv of these handles induced
by cobordism maps associated to the handle attachments. Namely, there is a grading-
preserving quasi-isomorphism of A1–algebras

LCA�.ƒ�/'
M
v;w

CW�.Lv;Lw/:
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A rigorous justification of the equivalence of these two dual pictures is not fully
established at this time. However, a detailed sketch of proof based on the results
of [17] has recently appeared in [27, Theorem 2]. We must emphasize that we do not
make use of this correspondence anywhere in our computations. Rather, this appealing
geometric picture serves us as a guide to find the correct algebraic statement to be
proven rigorously.

3.2.1 Recourse to deformation theory of DG-algebras As a consequence of the
explicit computation given above we can see the Legendrian cohomology DG-algebra
LCA�.ƒ�/ as a deformation of the Ginzburg DG-algebra G� . Therefore, it is natural to
check whether this deformation is trivial or not (up to equivalence). We recall here the
basics of deformation theory of DG-algebras and exploit it to determine the relationship
between our computation of LCA�.ƒ�/ and the Ginzburg DG-algebra G� . A classical
reference for this material is [38]. A recent exposition close to our purpose appears in
[65, Appendix A].

Unfortunately, these methods do not help directly as they apply in the setting of formal
deformations (such as a deformation over kŒŒt ��) whereas here we have that LCA�.ƒ�/
is a global deformation of G� (over kŒt �). Nonetheless, it is helpful to start at the formal
level and observe that we can arrange for a globalization in certain cases.

There is a decreasing, exhaustive, bounded-above filtration on the complex LCA�.ƒ�/:

F0
WD LCA�.ƒ�/� F1

WD

1M
iD1

KhRi˝
i
k � � � � � Fp

WD

1M
iDp

KhRi˝
i
k � � � � :

Let us write .LCA�.ƒ�/;D/D .G� ; d1C d2C � � �C dm/, for some finite m, where
di W Fp!FpCi is the i th homogeneous piece of the differential. Observe that d1D d

can be identified as the differential in the Ginzburg DG-algebra. It follows from k–
linearity of the differential that in fact di is identically zero for even i . Note also that
since G� is bigraded, this complex is doubly graded. Denoting the second grading
by s , we have s.d2i�1/D 2� 2i .

Now, the first nontrivial di for i > 1 is possibly d3 . Because D2 D 0, using the
filtration, we deduce that

d1d3C d3d1 D 0:

Recall that the reduced bar complex .homk.TG� ;G�/; ı D ı0 C ı1/ can be used to
compute Hochschild cohomology of G� . Here, we only need the explicit form of the
Hochschild differential for elements � 2 homk.G� ;G�/ (see formula in [61, Equa-
tion (1.8)], which we adapted using DG-algebra conventions given in the introduction).
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For such � , we have

.�1/j�jCjbj.ı0�/.a˝k b/D a�.b/C .�1/j�jjbj�.a/b��.ab/;

.�1/j�jCjaj.ı1�/.a/D d�.a/��.da/:

By definition, G� is bigraded and its differential has bidegree .1; 0/, so the Hochschild
cochain complex CC�.G� ;G�/ D homk.TG� ;G�/ has three gradings: the cohomo-
logical degree, the degree induced by the total degree r C s on G� and the internal
grading induced by the second grading s on G� . However, the Hochschild differential
ıDı0Cı1 is homogeneous (of degree 1) with respect to the sum of the first two gradings
and it also preserves the internal degree, hence we get a bigrading on HH�.G� ;G�/,
which we write as

(4) HH�.G� ;G�/Š
M
r;s

HHr .G� ;G� Œs�/;

where r is the total degree (the sum of the cohomological degree and the degree induced
by the total degree on G� ) and s is the internal grading induced by the internal grading
on G� .

Now, the fact that d3 is a degree-1 derivation which anticommutes with d1 means that
the sign-modified map zd3 2 hom1

k.G� ;G�/, defined by

zd3aD .�1/jajd3a;

is closed under the Hochschild differential. This yields the first obstruction class of the
deformation:

Œ zd3� 2 HH2.G� ;G� Œ�2�/:

If this class is trivial, choosing a trivializing class �2 2 hom0
k.G� ;G� Œ�2�/, we get a

map �2 for which we have

d3 D d�2��2d:

Note that �2 is induced by a map KhRi !KhRi˝k3 . Therefore, we can consider an
algebra map

ˆ2 D IdC�2W G� ! G�

defined initially as a map on KhRi ! G� and then extended to an algebra map.

Then, we would like to define a new differential D0 on G� of the form

D0 D d C d 05C � � �
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so that ˆ2W .G� ;D
0/! .G� ;D/ is a chain map (in addition to being an algebra map).

The obvious candidate for D0 is given by

D0 D .Id��2C�
2
2 � � � � / ıD ı .IdC�2/:

However, the alternating sum .Id��2C�
2
2
� � � � / will in general be an infinite series;

therefore, to make sense of this we need to consider the completion of G� with respect
to the length filtration F� : �G� D lim

 ��
p

G�=FpG� :

The differential D of LCA�.ƒ�/ extends naturally to �G� . We write the resulting
complex as

bLCA.ƒ�/D .�G� ;D/
Concretely, we can write the underlying k–bimodule as bLCA.ƒ�/DKhRiŒŒt ��, where
t is a formal parameter in degree 0. In other words, we now allow formal power series
in Reeb chords.

We can now proceed with the construction mentioned above. Notice that since �2

increases the length by 2, there is no convergence issue for the series .Id��2C�
2
2
�� � � /

on �G� . Therefore, we have a filtered DG-algebra map

ˆ2W .�G� ;D0/! .�G� ;D/
which by construction is a chain map with an inverse, hence is in particular a quasi-
isomorphism.

We can then focus on the complex .�G� ;D0 D d C d 0
5
C � � � /. As before, we have that

d 0
5

is a derivation which anticommutes with d , hence the sign-twisted map zd 0
5

leads to
an obstruction class Œ zd 0

5
� 2 HH2.G� ;G� Œ�4�/. If this vanishes we can continue along

and find a quasi-isomorphism of the form IdC�4 . Iterating this argument infinitely
many times (which we can do as each quasi-isomorphism increases the length), we
obtain the following lemma (cf [65, Lemma A.5]).

Lemma 11 Suppose that HH2.G� ;G� Œs�/ D 0 for all s < 0. Then there exists a
quasi-isomorphism of completed DG-algebras

.�G� ; d/' . bLCA.ƒ�/;D/:

We next apply these ideas to the case where � DDn and show that all the obstructions
vanish in this case. Furthermore, we prove that one can truncate the above quasi-
isomorphism, eliminating the need for completions. Here, we make use of the results
of Section 6.2.3, where HH�.G� ;G�/ is computed for � D Dn . We would like to
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point out that the computation given there is independent of the conclusions we are
drawing here.

The following lemma is the key technical result that we will use to truncate the quasi-
isomorphism given on completions by the above deformation theory argument.

Lemma 12 Let F� denote the length filtration on LCA�.ƒDn
/. For each grading k ,

there exists a p.k/ such that for all p � p.k/ we have that

FpH k.LCA.ƒDn
//D Im

�
H k.Fp LCA.ƒDn

//!H k.LCA.ƒDn
//
�
D 0:

In particular, for all k , the filtration on H k.LCA.ƒDn
// induced by F� is complete

and Hausdorff.

2

1

3 4 n. . .

Figure 8: Lagrangian projection of a Legendrian link associated to the Dn tree

Proof Consider the Lagrangian projection in Figure 8. The proof of Theorem 8 gives
us the following description of the differential on .LCA�.ƒDn

/;D/:

Dc1 D c13c31;

Dc2 D c23c32;

Dc3 D�c31c13� c32c23C c34c43� c31c13c32c23;

Dc4 D�c43c34C c45c54;
:::

Dcn�1 D�c.n�1/.n�2/c.n�2/.n�1/C c.n�1/ncn.n�1/;

Dcn D�cn.n�1/c.n�1/n;

where the gradings are given by jci jD�1 and jcij jD0. In particular, H�.LCA.ƒDn
//

is supported in nonpositive degrees.

Notice that DD d1Cd3 , where d1 is the differential on the Ginzburg DG-algebra GDn

and d3 is zero on all the generators except c3 , and we have

d3.c3/D�c31c13c32c23:
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We shall first establish the result for H 0.LCA.ƒDn
// by direct computation. The goal

here is to take any word in cij and prove that if the word is long enough, then it is
actually null-homologous.

Note that we have a decomposition

H 0.LCA.ƒDn
//Š

nM
i;jD1

eiH
0.LCA.ƒDn

//ej :

Letting x D c31c13 , y D c32c23 and z D c34c43 we obtain

e3H 0.LCA.ƒDn
//e3 ŠKhx;y; zi=.x2;y2; zn�2;xCyCxy � z/

(cf [57, Proposition 11.3.2(i)]). Indeed, we have

x2
DD.c31c1c13/; y2

DD.c32c2c23/; xCyCxy � z DD.�c3/:

Next, observe that for 4 � i � n � 1, we have ci.i�1/c.i�1/i D ci.iC1/c.iC1/i 2

H 0.LCA.ƒDn
// since their difference is precisely Dci . Consequently, we get

zn�2
D c34.c43c34/

n�3c43 D c34.c45c54/
n�3c43 D c34c45.c56c65/

n�4c54c43 D � � �

D c34c45 � � � c.n�1/ncn.n�1/c.n�1/ncn.n�1/ � � � c54c43

DD.�c34c45 : : : c.n�1/ncncn.n�1/ : : : c54c43/:

Furthermore, any word in e3H 0.LCA.ƒDn
//e3 is cohomologous to a word in x;y; z

which is of the same length (note that the lengths of x , y and z are 2). Namely,
whenever a word w has terms which goes along the long branch of the Dn tree, it has
to return back at some point, hence it will include a subword of the form ci.iC1/c.iC1/i

which can be replaced with ci.i�1/c.i�1/i applying the relation Dci . This can be
repeated until we replace each subword that lies in the long branch by a power of z .

Arguing similarly, one can see why it suffices to consider e3H 0.LCA.ƒDn
//e3 to

prove the statement in the lemma for the zeroth cohomology. Indeed, the relations
given by Dc4;Dc5; : : : ;Dcn can be used to show that any sufficiently long word in
LCA0.ƒDn

/ can be replaced by a word which contains a sufficiently long subword in
e3 LCA0.ƒDn

/e3 . More precisely, for any word w 2 hcij j i; j D 1; ni we can write

w D ˛vˇChIm Di

such that v lies in e3 LCA0.ƒDn
/e3 and is sufficiently long. In fact, since we only

use the preprojective relations, Dci for i ¤ 3, one can show that the analogue of [57,
Proposition 11.3.2(ii)] holds in this case.
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We can simplify the presentation of e3H 0.LCA.ƒDn
//e3 further by eliminating the z

variable and write

e3H 0.LCA.ƒDn
//e3 ŠKhx;yi=.x2;y2; .xCyCxy/n�2/:

Let us define two-sided ideals

In D .x
2;y2; .xCyCxy/n�2/ and Jn D .x

2;y2; .xCy/n�2/

in Khx;yi and claim that they are equal for n� 4. Note that in Khx;yi=Jn any word
that is long enough is trivial; in particular, this is a finite-dimensional vector space. This
is because the only words that are not killed by the relations x2 D y2 D 0 are words
alternating in x and y , and sufficiently long such words are killed by x.xCy/n�2y

and y.xCy/n�2x . Therefore the result for H 0.LCA.ƒDn
// follows from the claim

In D Jn .

To prove this claim, first observe that AD xCy and B D xCyCxy satisfy

B2
D .1Cx/A2.1Cy/ 2Khx;yi=.x2;y2/:

Moreover, since .1C x/.1 � x/ D 1 D .1C y/.1 � y/ the above identity leads to
A2D .1�x/B2.1�y/ and together they show I4D J4 . We similarly obtain I5D J5 ,
using the observation

B3
D .1Cx/A3.1Cx/.1Cy/ 2Khx;yi=.x2;y2/:

The fact that A2 is in the center of Khx;yi=.x2;y2/ implies

B2k
D .B2/k D .1Cx/A2k.1Cy/.1Cx/ � � � .1Cy/;

B2kC1
D B3.B2/k�1

D .1Cx/A2kC1.1Cy/.1Cx/ � � � .1Cy/;

proving In D Jn for every n� 4.

Alternatively, one can check that a noncommutative Gröbner basis (with respect to the
lexicographical order) for both In and Jn is given by the collection of the following
three elements:

fx2;y2;xyxy � � � Cyxyx � � � g

where the lengths of the words in the last element are n� 2.

This completes the proof of the lemma for H 0.LCA.ƒDn
//. It is much harder to

directly compute H i.LCA.ƒDn
// for i < 0 and verify Hausdorffness of the length

filtration. Fortunately, there is an alternative way to go about this, making use of
a recent result of Dimitroglou Rizell [26] which in turn exploits the weak division
algorithm in free noncommutative algebras due to P M Cohn [22]. This is a general
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result about Legendrian cohomology DG-algebras which states that the natural algebra
homomorphism

H�.LCA.ƒ�//! LCA�.ƒ�/=hIm Di

induced by inclusion is injective, where hIm Di denotes the two-sided ideal in the
tensor algebra LCA�.ƒ�/ generated by the image of the differential. In view of this,
it suffices to show that for each k there exists a p.k/ such that if w is a word in cij of
length greater than p.k/ containing exactly k instances of ci , then w is in hIm Di.

This is, however, quite straightforward given what we have already proven. Namely, in
any such word, since the number of degree �1 generators, ci , is precisely k as soon
as the length is sufficiently large, we can find a sufficiently long subword consisting of
degree 0 generators cij only. Now, we proved above that any sufficiently long word in
the degree 0 generators cij is in the image of D . Thus, the result follows.

Note that the corresponding result also holds true for GDn
but this is much simpler.

The cohomology H�.GDn
/ is a graded filtered algebra, where the filtered subalgebras

FpH�.GDn
/ for p � 0 are induced by the length filtration on GDn

. We claim that this
filtration on H�.GDn

/ is complete and Hausdorff. To see this, observe the image of the
differential of GDn

consists of homogeneous terms (with respect to length filtration),
hence the filtration is Hausdorff. The filtration is complete because H�.GDn

/ is
finite-dimensional at each degree. To see this, when K is algebraically closed and of
characteristic 0, one can use the result by Hermes (see Theorem 7) that H i.GDn

/Š…Dn

for every i�0, and the well-known fact that the preprojective algebra of a Dynkin quiver
is finite-dimensional. Alternatively, for any field, H 0.GDn

/D…Dn
by definition, hence

we can appeal to the argument given in the last part of the above lemma to conclude.
(Note that the result of [26] requires an action filtration on the chain complex respected
by the differential. This is automatic for LCA�.ƒ�/ as the relevant filtration is given
by the geometric action functional. On the other hand, if the complex is supported in
nonpositive (or nonnegative) degrees, then one can easily construct an action filtration
of the required type inductively, hence the main result of [26] is applicable to G� as
well for any � .)

We are now ready to prove the main result of this section:

Theorem 13 Let � DAn or Dn , and assume that char K¤ 2 if � DDn . Then there
exists a quasi-isomorphism

LCA�.ƒ�/' G� :

Furthermore, if char K D 2 and � D Dn , then LCA�.ƒ/ and G� are not quasi-
isomorphic.
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(We conjecture that LCA�.ƒ/' G� for � DE6;E7 if char K¤ 2; 3 and for � DE8

if char K¤ 2; 3; 5.)

Proof The case when � DAn is immediate since LCA�.ƒ�/ and G� are identical
in this case. So we will focus on the case � DDn .

When char K¤ 2, we will construct a chain map ˆW G� ! LCA�.ƒ�/ which is of
the form

ˆD IdC h:o:t:;

where h:o:t: stands for higher-order terms in terms of the length filtration F� on
LCA�.ƒ�/.

In Section 6.2.3, we computed

HH�.G� ;G�/Š HH�.A� ;A�/;

where A� is the Koszul dual to G� as proven in Theorem 23. Note that the isomorphism
between the Hochschild cohomologies of G� and A� is a consequence of the Koszul
duality given by Theorem 23, which also states that the Koszul duality functor sends
the internal grading of G� to those of A� , implying that the internal gradings on their
Hochschild cohomologies match as well. In particular, we have

HH2.G� ;G� Œs�/Š HH2�s.A� ;A� Œs�/:

Let us warn the reader of a potentially confusing point in our notation. On the right-hand
side, r D 2� s refers to the length grading in Hochschild cohomology, and s refers to
the internal grading induced from the internal grading of the algebra A� . This group is
a summand of HH2.A� ;A�/ where 2D r C s is the total degree. On the other hand,
HH2.G� ;G� Œs�/ is a summand of HH2.G� ;G�/ where s refers to the second grading
on G� (as was explained after (4)).

The computation given in Section 6.2.3 implies that for � DDn and when char K¤ 2,
we have

HH2.G� ;G� Œs�/D 0 for s < 0:

Therefore, from Lemma 11, we deduce that there exists a quasi-isomorphism

ˆW �G� ! bLCA
�
.ƒ�/:

Now, let N be an integer large enough that FN H 0.LCA.ƒ�//D 0; such an N exists,
as we proved above in Lemma 12. We then consider the truncation of ˆ at length N

to define an algebra map between uncompleted algebras

ˆN
W G� ! LCA�.ƒ�/:
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The apparent problem with ˆN is that it is not a chain map, though it fails to be a
chain map only at large length. So, we can correct it as follows. For each vertex v , let
us find a chain ˛v such that

DˆN .hv/�ˆ
N .dhv/DD˛v:

Note that the left-hand side is automatically D–closed since it lies in LCA0.ƒ�/.

We then define a new algebra map by setting

‰.hv/ WDˆ
N .hv/C˛v; ‰.gvw/ WDˆ

N .gvw/:

We now have a filtered chain map G�!LCA�.ƒ�/ which respects the length filtrations
on each side. Note that the E2–pages of the associated spectral sequences are identical:

E
p;q
2
Š FpG�=FpC2;G�

with the differential induced from the differential on the Ginzburg DG-algebra. Fur-
thermore, the length filtration is not only complete and Hausdorff on both sides by
Lemma 12 and the discussion following its proof, but also easily seen to be weakly
convergent. Therefore the spectral sequences converge strongly to H�.GDn

/ and
H�.LCA.ƒDn

//, respectively. Moreover, since

‰ D IdC h:o:t:;

where h:o:t: refers to a higher-order term that sends F� to F�C2 , it induces an isomor-
phism on the E2–page, therefore we conclude that it induces a quasi-isomorphism of
chain complexes by [15, Theorem 2.6]. This completes the proof that LCA�.ƒDn

/

and GDn
are quasi-isomorphic over a field of characteristic ¤ 2.

Next suppose that K is a field of characteristic 2. Let us write D D d C d3 for the
differential on LCA�.ƒDn

/ where, in the notation of Lemma 12, we have

d3.c3/D�c31c13c32c23:

We want to show that there is no degree 0 derivation �2 which increases length by 2

and solves d3 D d�2 � �2d . For � D D4 , this is equivalent to the following set of
linear equations:

0D d�2.c1/��2.c13/c31� c13�2.c31/;

0D d�2.c2/��2.c23/c32� c23�2.c32/;

�c31c13c32c23 D d�2.c3/C�2.c31c13C c32c23� c34c43/;

0D d�2.c4/C�2.c43/c34C c43�2.c34/:
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(Although we are working over characteristic 2 here, we have kept the signs in their
general form for reference.)

Since �2 is supposed to preserve the degree and increase the length by 2, there are
only a few possibilities. The general form of the possibilities is as follows:

�2.c1/ 2Kc1c13c31˚Kc13c31c1˚Kc13c3c31;

�2.c2/ 2Kc2c23c32˚Kc23c32c2˚Kc23c3c32;

�2.c3/ 2Kc3c31c13˚Kc31c13c3˚Kc3c32c23˚Kc32c23c3˚Kc3c34c43

˚Kc34c43c3˚Kc31c1c13˚Kc32c2c23˚Kc34c4c43;

�2.c4/ 2Kc4c43c34˚Kc43c34c4˚Kc43c3c34;

�2.c13/ 2Kc13c31c13˚Kc13c32c23˚Kc13c34c43;

�2.c31/ 2Kc31c13c31˚Kc32c23c31˚Kc34c43c31;

�2.c23/ 2Kc23c32c23˚Kc23c31c13˚Kc23c34c43;

�2.c32/ 2Kc32c23c32˚Kc31c13c32˚Kc34c43c32;

�2.c43/ 2Kc43c34c43˚Kc43c31c13˚Kc43c32c23;

�2.c34/ 2Kc34c43c34˚Kc31c13c34˚Kc32c23c34:

This leads to a system of 18 linear equations of 36 variables. It is straightforward, if
tedious, to verify directly (or with the help of a computer) that none of the possibilities
gives a solution when KDZ2 . This, in turn, implies that the class of Œ zd3� is nontrivial
over any field K of characteristic 2 by the universal coefficient theorem.

This implies that there is a nonvanishing obstruction for constructing a chain map
between GD4

and LCA�.ƒ/ over a field of characteristic 2 for D4 . In other words,
the class Œ zd3� 2HH2.GD4

;GD4
Œ�2�/ is nontrivial. (Compare this with our computation

of HH2.GD4
;GD4

Œ�2�/ given later on in Table 4, where this group is shown to be
nontrivial only in characteristic 2.) Now, the class of Œ zd3� for � D Dn restricts to
the class of � D D4 under the restriction map. (Note that in general Hochschild
cohomology does not have good functoriality properties; however, there is a full and
faithful inclusion of the GD4

to GDn
, and there is a restriction map on Hochschild

cohomology in this case.) Hence, it cannot vanish for � DDn either.

Remark 14 Over a field of characteristic ¤ 2, and for � D D4 , we constructed
an explicit chain map between GD4

and LCA�.ƒD4
/ as a check on our arguments

above. The complication in this also displays the effectiveness of the deformation
theory argument given above. (Notice the factors of 1

2
, which are indeed necessary.)

The map is given as follows:
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h1 7! c1�
1
2
.c13c31c1C c13c3c31C c1c13c32c23c31/;

h2 7! c2�
1
2
.c23c32c2C c23c3c32C c23c31c13c32c2/

C
1
4

�
c23c34c43c3c32C c23c34c4c43c32

C c23c34c43c32c2C c23c34c43c31c13c32c2

�
;

h3 7! c3�
1
4

�
c31c13c3c34c43C c31c1c13c34c43

C c31c13c34c4c43C c31c1c13c32c23c34c43

�
;

h4 7! c4�
1
2

�
c4c43c34C c43c3c34� c43c3c32c23c34� c43c32c2c23c34

� c4c43c32c23c34� c43c31c13c32c2c23c34

�
;

g13 7! c13C
1
2
.c13c32c23� c13c34c43/;

g31 7! c31;

g23 7! c23�
1
2
c23c34c43;

g32 7! c32C
1
2
c31c13c32;

g34 7! c34�
1
2
.c32c23c34C c31c13c34/;

g43 7! c43:

Remark 15 One can deduce from the argument given in the last part of the proof of
Theorem 13 that for any tree � which is not of type An , we have that B� WDLCA�.ƒ�/
is a nontrivial deformation of G� over a field of characteristic 2 since any such tree
has a subtree of the form D4 (see also Remark 33).

4 Floer cohomology algebra of the spheres in X�

We next consider the A1–algebra over k given by the Floer cochain complexes:

A� WD
M
v;w

CF�.Sv;Sw/:

Recall that the Lagrangian 2–spheres Sv and Sw intersect only if the vertices v and w
are connected by an edge, in which case Sv\Sw is a unique point. Recall also that we
made choices of grading structures on the sphere Sv in Section 2 so that CF�.Sv;Sw/
is concentrated in degree 1 if v;w are adjacent vertices. On the other hand, the self-
Floer cochain complex CF�.Sv;Sv/ is quasi-isomorphic to the singular chain complex
C �.Sv/ since Sv is an exact Lagrangian sphere in X� . Therefore, we can take a model
for A� such that the differential on A� necessarily vanishes for degree reasons.

Let us put A� D H�.A�/ for the corresponding associative algebra. We can think
of A� as a minimal A1–structure .�n/n�2 on the associative algebra A� . As before,
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by choosing a root, we make � into a directed graph such that oriented edges point
away from the root. Let D� denote the double of the quiver � , formed by introducing
a new oriented edge avw from w to v for every oriented edge awv from v to w .

Proposition 16 Suppose � ¤ A1 . The graded k–algebra A� is isomorphic to the
zigzag algebra of � given by the path algebra KD� equipped with the path-length
grading modulo the homogeneous ideal generated by the following elements:

� auvavw such that u¤ w , where v is adjacent to both u; w .

� avwawv � avuauv , where v is adjacent to both u; w .

If � DA1 , then A� ŠH�.S2/DKŒx�=.x2/ with jxj D 2.

Proof Note that Sv intersects Sw for w ¤ v if and only if v and w are adjacent
vertices, in which case the intersection is transverse at a unique point. Furthermore,
we have chosen the grading structures on the Lagrangians Sv so as to ensure that for
v;w adjacent CF�.Sv;Sw/ is of rank 1 and concentrated in degree 1. We let avw
be a generator for this 1–dimensional vector space. Finally, the algebra structure is
determined by the general Poincaré duality property of Floer cohomology (see [61,
Section 12e]).

The algebra A� only depends on the underlying tree � ; different ways of orienting its
edges results in the same algebra. We call the algebra A� the zigzag algebra of � ,
following Khovanov and Huerfano [43], who studied properties of this algebra and its
appearances in a variety of areas related to representation theory and categorification.
On the other hand, the case where � is the An quiver appeared in an earlier paper
of Seidel and Thomas [67] in the context of Floer cohomology (as it does here) and
mirror symmetry. In the context of Koszul duality (see [54; 10]), the algebras A� were
studied much earlier by Martínez-Villa in [52]. This remarkable work is the first paper,
as far as we know, which draws attention to the fact that A� is a Koszul algebra if and
only if � is not Dynkin or � DA1 .

We will next discuss formality of A� , ie the question of whether there is a quasi-
isomorphism between A� and A� DH�.A�/. In the case when � is the An quiver,
the formality was proven by Seidel and Thomas [67, Lemma 4.21] based on the notion
of intrinsic formality.

Definition 17 A graded algebra A is called intrinsically formal if any A1–algebra A

with H�.A /ŠA is quasi-isomorphic to A.
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Furthermore, Seidel and Thomas give a useful method to recognize intrinsically formal
algebras. Recall that for a graded algebra A, HH�.A/ has two gradings: the cohomo-
logical grading r and the grading s coming from the grading of the algebra A. To
specify the decomposition into graded pieces, we write

HH�.A/D
M
�DrCs

HHr .A;AŒs�/:

Notice that the superscript denotes the diagonal grading, as usual. It is also the grading
that survives, if A is more generally a DG-algebra or an A1–algebra.

Theorem 18 (Kadeishvili [45]; see also Seidel and Thomas [67]) Let A be an
augmented graded algebra. If

HH2�s.A;AŒs�/D 0 for all s < 0;

then A is intrinsically formal.

As mentioned above, Seidel and Thomas proved intrinsic formality of A� where � is
the An quiver by showing the vanishing of HH2�s.A� ;A� Œs�/ for s < 0. In a similar
vein, we prove in Theorem 44 that A� is intrinsically formal if � is the Dn quiver
and the characteristic of the ground field is not 2.

We have the following conjecture for the remaining Dynkin types.

Conjecture 19 Working over a ground field K of characteristic 0, let � be a tree of
type E6;E7 or E8 . Then the corresponding zigzag algebra A� is intrinsically formal.

Unlike the An case, some restriction on the characteristic of K is necessary as we have
checked that the zigzag algebras are not intrinsically formal in type Dn , n� 4, over
characteristic 2, in type E6 and E7 over characteristic 2 or 3, and in the type E8 , over
characteristic 2, 3 or 5. It is very likely that these are the only “bad” characteristics
(cf [57]).

5 Koszul duality

By combining the work of Bourgeois, Ekholm and Eliashberg [17] with Abouzaid’s
generation criteria [1], one might suspect that the Lagrangians Lv split-generate the
wrapped Fukaya category W.X�/. Now, there exists a full and faithful embedding

F.X�/!W.X�/
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of the exact Fukaya category of compact Lagrangians. Therefore, in view of Remark 10,
we would conclude that there is a quasi-isomorphism of DG-algebras

(5) RHomB�
.k; k/' A� :

The right-hand side is in turn quasi-isomorphic to A� if one checks that A� is formal
(for example this is known if � is of type An [67] and we prove it in Theorem 44 for
type Dn over a field of characteristic ¤ 2). We will provide an alternative independent
approach via a purely algebraic argument based on Koszul duality theory for DG- or
A1–algebras (see [51]) to stay within the algebraic framework of this paper (and avoid
the technicalities that go into the discussion in Remark 10).

In fact, as we shall see below, Koszul duality theory allows us to work directly with
A� DH�.A�/, hence in this way we bypass formality questions for A� .

We now give a brief review of Koszul duality, first in the case of associative algebras
and then for A1–algebras.

5.1 Quadratic duality and Koszul algebras

To begin with, we review quadratic duality for associative algebras following [64,
Section 2.1] which has an explicit discussion of signs in the context relevant here. The
original reference is [54], and see also the excellent exposition in [10].

Let kD
L
v Kev be the commutative semisimple ring of orthogonal primitive idempo-

tents over the base field K, as before. Let V be a finite-dimensional graded K–vector
space with a k–bimodule structure. We write

TkV WD
M1

iD0
V ˝ki

for the tensor algebra over k. A quadratic graded algebra A is an associative unital
graded k–algebra that is a quotient

A WD TkV =J

of TkV by the two-sided ideal generated by a graded k–submodule J � V ˝k V . In
fact, this makes A into a bigraded algebra: it has an internal grading coming from
the graded vector space V , denoted by s or jxj if for a specific element, and a length
grading coming from the tensor algebra, denoted by r . The reference [51] refers to s

as Adams grading.

Let V _ D HomK.V;K/ be the linear dual of V viewed naturally as a k–bimodule, ie
eiV
_ej is the dual of ej Vei . Next, we consider the orthogonal dual J? � V _˝k V _
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with respect to the canonical pairing given by

V _˝k V _˝k V ˝k V ! k; v_2 ˝k v
_
1 ˝k v1˝k v2 7! .�1/jv2jv_2 .v2/v

_
1 .v1/:

The quadratic dual to A is defined as

A!
D Tk.V

_Œ�1�/=J?Œ�2�:

As does A, the graded quadratic algebra A! has two natural gradings: one internal
grading coming from the internal grading of the vector space V _Œ�1�, denoted by s

or jx!j for a specific element, and the length grading coming from the tensor algebra,
denoted by r .

The Koszul complex of a quadratic algebra is the graded right A–module A!˝k A with
the differential3

(6) x!
˝k x!

X
i
.�1/jxjx!a_i ˝k aix;

where the sum is over a basis of faig of V , and fa_i g is the dual basis in V _Œ�1�.
This should be thought of as an .r; s/–bigraded complex, where the grading r is the
path-length grading in the A! factor and the total grading r C s corresponds to the
natural grading jx!jC jxj. In particular, one has ja_i jC jai j D 1 for all i , hence the s

grading is preserved by the differential.

A Koszul algebra A is a quadratic algebra for which the Koszul complex is acyclic (ie
homology is isomorphic to kŒ0�). Taking the dual by applying the left exact functor
HomA. � ;A/, we get a resolution of k as a graded right Aop–module (see [10, Section 2]
for more details).

In fact, if A is Koszul, considering k as a simple module in the abelian category of
graded right Aop–modules, one has a canonical isomorphism of bigraded rings

A!
Š Ext�Aop.k; k/:

Since A is bigraded, a priori Ext�Aop.k; k/ is triply graded (by the cohomological degree
and by the length and internal gradings, derived from the corresponding ones in A).
One characterization of Koszulity is that the cohomological degree, which we denote
by r , agrees with the grading induced by length. Finally, we denote the internal grading
by s . With this understood, we have the graded identifications

A!
r;s Š ExtrAop.k; kŒs�/:

3[10] prefers to use the graded left module A˝k
_.A!/ ; the two graded modules are related by the

right module isomorphism A! ˝A ' HomA.A˝k
_.A!/;A/ and the sign .�1/jxj coming from this

dualization.
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If A is Koszul, then its Koszul dual A! is also Koszul and .A!/! ŠA.

Finally, for a Koszul algebra A, the Hochschild cohomology can be computed via the
Koszul bimodule resolution of A. The resulting complex which computes Hochschild
cohomology is

(7) .A!
˝k A/diag D

M
v

evA
!
˝k Aev

with the differential

x!
˝k x!

X
i

.�1/jxjx!a_i ˝k aix� .�1/.jai jC1/.jxjCjx!j/a_i x!
˝k xai :

It is often the case, as in this paper, that V is generated either by odd elements or
even elements; this simplifies the signs in the above formula. For Koszul algebras, the
homology of this complex coincides with the bigraded Hochschild cohomology groups
HHr .A;AŒs�/, where rC s corresponds to the natural grading on .A!˝A/diag , that is,
an element x!˝k x has grading jx!jC jxj. The length grading r corresponds to the
path-length grading in the A! factor.

Example 20 Let A� DKŒx�=.x2/ with jxj D 2 be the zigzag algebra associated with
a single vertex, ie � is of type A1 . It is easy to see that this is a Koszul algebra and
we have A!

�
DKŒx_�, the free algebra with jx_j D �1. One can compute Hochschild

cohomology using the Koszul bimodule complex. This has generators .x_/i ˝ 1 and
.x_/i ˝x for i � 0. The differential can be computed as

d..x_/i ˝ 1/D .1C .�1/iC1/.x_/iC1
˝x;

d..x_/i ˝x/D 0:

Therefore, whenever char K D 2, the differential vanishes, and as a consequence
HH�.A�/ has a basis .x_/i˝1, for i �0, in bigrading .r; s/D .i;�2i/ and .x_/i˝x ,
for i � 0, in bigrading .r; s/D .i; 2� 2i/.

If char K¤ 2, then HH�.A�/ has a basis .x_/2i˝1, for i � 0, in bigrading .r; s/D
.2i;�4i/ and .x_/2iC1˝x , for i � 0, in bigrading .r; s/D .2iC1;�4i/ and 1˝x

in bigrading .0; 2/.

In view of the discussion in the introduction, this result computes SH�.T �S2/ for
� D r C s . For convenient access, we record a finite portion of this calculation in
Table 1.

By Viterbo’s isomorphism [70; 5], this computation also gives H2��.LS2/, where
LS2 is the free loop space of S2 . This was previously computed as a ring by Cohen,
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Jones and Yan [21] over Z to be

H2��.LS2
IZ/Š .ƒb˝ZŒa; v�/=.a2; ab; 2av/; jaj D 2; jbj D 1; jvj D �2

using the fibration �xS2! LS2! S2 . From this, one can deduce that

H2��.LS2
IK/Šƒa˝KŒu�; jaj D 2; juj D �1

if char KD 2, and

H2��.LS2
IK/Š .ƒb˝KŒa; v�/=.a2; ab; av/; jaj D 2; jbj D 1; jvj D �2r

if char K¤ 2, in agreement with our computation.

r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8

2 1 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 x 0 0 0 0 0 0

�1 0 0 0 0 x 0 1 0 0 0 0

�2 0 0 0 0 0 0 1 0 x 0 0

Table 1: � DA1 ; x is 1 if char KD 2 , 0 otherwise

5.2 Koszul duality for A1–algebras

We now review Koszul duality for A1–algebras. Our primary reference for this
material is [51]. The discussion in Œ51� is about A1–algebras over a field K, but as in
classical Koszul duality, the proofs extend readily to A1–algebras over a semisimple
ring k (see also [58]). The extension of Koszul duality theory to DG- or A1–algebras
has appeared earlier (see eg [46]).

Suppose AD
L

i�0 Ai is a positively graded associative algebra over A0 D k. Then,
as before, the complex

RHomAop.k; k/

inherits a bigrading by cohomological and length gradings. However, it usually happens
that at the level of homology these two gradings do not agree, that is, A is not Koszul as
an associative algebra, and passing to the homology of this complex yields an associative
algebra Ext�Aop.k; k/ from which one cannot recover A. In this case, the idea is that
rather than passing to homology, one thinks of the DG-algebra RHomAop.k; k/ as
the DG-Koszul dual of A. To be able to carry this out, one is led to work with DG-
or A1–algebras from the beginning. So, let A be a Z–graded A1–algebra over k
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together with an augmentation �W A ! k, making k into a right A1–module over A op .
One defines

A !
D RHomA op.k; k/:

Note that the Yoneda image of k given by RHomA op.A op; k/ makes k into a right
.A !/op–module. Now, the obvious concern is whether .A !/! gets back to A (up
to quasi-isomorphism). This is not quite the case in general; one recovers a certain
completion of A (see [58] for a beautiful geometric description of this construction).
However, suppose that A has an additional s grading (called Adams grading in [51])
which is required to be preserved by the A1–operations. Furthermore, assume that
A is connected and locally finite with respect to this grading; this means that A is
either nonnegatively or nonpositively graded and the s–homogeneous subspace of A

is of finite dimension for each s (see [51, Definition 2.1]). Then it is true that .A !/! is
quasi-isomorphic to A . We state this as:

Theorem 21 (Lu, Palmieri, Wu and Zhang [51, Theorem 2.4]4) Suppose A is an
augmented A1–algebra over the semisimple ring k with a bigrading for which �k has
degree .2� k; 0/ and suppose A is connected and locally finite with respect to the
second grading. Let

A !
D RHomA op.k; k/

be its Koszul dual as an A1–algebra. Then there is a quasi-isomorphism of A1–
algebras

A ' RHom.A !/op.k; k/:

Below, we will apply this result for A DA� viewed as a formal A1–algebra.

Example 22 To see the importance of the connectedness and finiteness assumptions,
let us consider ADKŒx;x�1� with x in bigrading .0; 0/, the (trivially graded) algebra
of Laurent polynomials. Consider the augmentation �W Aop!K given by mapping x

to 1 2 K, which makes K into a right A–module. Then one can check that A! D

RHomAop.K;K/ is quasi-isomorphic to the exterior algebra KŒx!�=..x!/2/ with x! in
bigrading .0; 1/. However, RHom.A!/op.K;K/ Š KŒŒy�� gives the power series ring
with y in bigrading .0; 0/. Hence, dualizing twice does not get us back in this case.

4The proof of [51, Theorem 2.4] uses [51, Lemma 1.15] which omits a necessary hypothesis. Namely, in
the notation of [51, Lemma 1.15], one should further assume B1augR is locally finite. By [51, Lemma 2.2],
this requirement holds under our hypothesis.

Geometry & Topology, Volume 21 (2017)



3352 Tolga Etgü and Yankı Lekili

5.3 Koszul dual of G�

We next prove that the DG-algebras G� and A� (viewed as a formal A1–algebra)
are related by Koszul duality. We remind the reader that we always work with right
modules (as we follow the sign conventions from [61]).

We have the following analogue of [39, Proposition 2.9.5] in our setting:

Theorem 23 Consider k D A
op
�
=.A

op
�
/>0 as a right A

op
�

–module. There is a DG-
algebra isomorphism

RHomA
op
�
.k; k/' G�op

such that the cohomological (resp. internal) grading on the left-hand side agrees with
the path-length (resp. internal) grading on the right-hand side.

Proof First, let us clarify the multiplication on A
op
�

, which we view as a formal
A1–algebra. We identify the elements of A

op
�

with the elements of A� which are
given by the symbols avw and avwawv as before. Since jawvj D 1 for all w adjacent
to v , the product is given by

�2
A

op
�

.awv; avw/D .�1/jawv jCjavw j�2
A�
.avw; awv/D .�1/javw javwawv D�avwawv

for w adjacent to v (see [61, Section (1a)] for signs used in defining the opposite of
an A1–algebra).

We use the reduced bar resolution of k as a right A
op
�

–module to calculate RHomA
op
�
.k;k/,

which takes the form

RHomAop.k; k/' homAop..A˝k T xA/op; k/;

where ADA� , xADA�=k, and T xA is the tensor algebra of xA� over k.

The fact that k D A0 allows us to identify xA with the positive graded subalgebra
A1˚A2 of A. We follow the conventions in [61, Section (1j)] for the DG-algebra
structure of homAop..A˝k T xA/op; k/. However, we view homAop..A˝k T xA/op; k/ as
a DG-algebra rather than an A1–algebra with �k D 0 for k > 2 since G� is always
viewed as a DG-algebra. The difference is in the signs, and this was explained in the
introduction (see (3)).

More precisely, a generator t 2 homAop..A˝k T xA/op; k/ of bidegree .r; s/ is an Aop–
module homomorphism t W A˝k xA

˝r ! k of internal degree jt j D s . Observe that
any such t maps an element .arC1; ar ; : : : ; a1/ to 0 unless arC1 2A0 because of the
Aop–module structure of k.
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The differential and the product on the DG-algebra homAop..A˝kT xA/op; k/ are defined
by

.dt/.ev; arC1; : : : ; a1/

D

rX
nD1

.�1/|Cjt jt.ev; arC1; : : : anC2; �
2
Aop.anC1; an/; an�1; : : : ; a1/

and if t1 and t2 are two generators of lengths r1; r2 , then

.t2 � t1/.ev; ar2Cr1
; : : : ; a1/D .�1/}Cjt1jt2.t1.ev; ar2Cr1

; : : : ; ar2C1/; ar2
; : : : ; a1/;

where |D
PrC1

iDn .jai j � 1/ and }D
Pr2Cr1

iDr2C1
.jai j � 1/.

We now construct a chain map

ˆW G�op ! homAop..A˝k T xA/op; k/

that respects the cohomological and internal gradings, first by defining it on the gen-
erators gwv and hv of the underlying tensor algebra of G�op , and then extending by
mapping the product p2p1 of two elements p2 and p1 in G�op to the homomorphism
ˆ.p2/ �ˆ.p1/ 2 homAop..A˝k T xA/op; k/.

Indeed, let us define ˆ.gwv/ and ˆ.hv/ to be A–module homomorphisms each of
which is nonzero only on a 1–dimensional subspace of A˝k T xA, given by

ˆ.gwv/W .ev; awv/ 7! �wvew and ˆ.hv/W .ev; avwawv/ 7! �vev;

for any vertex w adjacent to v in � . Here the signs �wv , �v are determined as follows.
For a vertex v 2�0 , we set �vD .�1/ıv , where ıv is the distance from the root of � to
the vertex v . If gwv is an arrow in the quiver �op , then define �wvD �v and �vwDC1.
Note that �wv�vw=�v is C1 if and only if gwv is an arrow in the quiver �op .

Observe that the internal gradings are

jˆ.gwv/j D �jawvj D �1 and jˆ.hv/j D �javwawvj D �2;

respectively. Note also that ˆ takes the path-length grading on G� to the cohomological
grading on homAop..A˝k T xA/op; k/, hence ˆ respects the bigraded structure of both
sides.

The differentials on the DG-algebras G�op and homAop..A˝kT xA/op; k/ obey the graded
Leibniz rule, hence it suffices to check that

d.ˆ.gwv//Dˆ.dgwv/D 0 and d.ˆ.hv//Dˆ.dhv/

to verify that ˆ is a DG-algebra homomorphism.
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The first identity follows immediately since both gwv and ˆ.gwv/ are in total degree 0

and the differential vanishes here. To check the second identity, observe that d.ˆ.hv//

is nonzero only on the subspace of A˝k T xA spanned by

f.ev; awv; avw/ W w is adjacent to vg;

and for every w adjacent to v ,

.d.ˆ.hv///.ev; awv; avw/D .�1/jˆ.hv/jC.jawv j�1/C.javw j�1/ˆ.hv/.ev;�avwawv/

D��vev:

Note that the appearance of the extra sign here is precisely the point where the use
of A

op
�

rather than A� takes effect.

On the other hand,

ˆ.dhv/Dˆ

�X
w

�wv�vw

�v
gvwgwv

�
D

X
w

�wv�vw

�v
ˆ.gvw/ �ˆ.gwv/:

For each w adjacent to v , ˆ.gvw/ �ˆ.gwv/ is nonzero only on the subspace spanned
by .ev; awv; avw/, and

.ˆ.gvw/ �ˆ.gwv//.ev; awv; avw/

D .�1/jˆ.gwv/jC.jawv j�1/ˆ.gvw/..ˆ.gwv/.ev; awv//; avw/

D��wv�vwev:

Indeed, we also have an extra sign here, and hence the second identity holds.

To prove the bijectivity of ˆ, consider a generator .ev; ar ; : : : ; a1/ of A˝k xA
˝r . Note

that such a generator is uniquely determined by the initial and terminal points of ai

considered as paths in A� which in turn determine a unique path gr � � �g1 of length r

in G� , so that the initial and terminal points of each arrow gi in the extended quiver y�
match those of arC1�i . It is straightforward to check that

.ˆ.gr � � �g1//.ev; ar ; : : : ; a1/D˙ew;

where w is the terminal point of a1 . This proves that ˆ is injective since the algebra
underlying G� is the path algebra generated by the arrows in y� . Moreover, the
observation that ˆ.gr � � �g1/ is nonzero only on the subspace of A˝k T xA spanned
by .ev; ar ; : : : ; a1/ shows that ˆ is surjective as well.

Remark 24 As can be seen from the proof of Theorem 23, we could arrange the
definition of the DG-algebra isomorphism ˆ so as to obtain an isomorphism

RHomA�
.k; k/' G� ;
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where kDA�=.A�/>0 is viewed as a right A�–module. This is because there happens
to be an isomorphism of algebras between A� and A

op
�

. We have opted to use A
op
�

to
be consistent with the general framework of Koszul duality (see [10, Theorem 2.10.1]).

The following corollary is immediate from Theorem 23 and Theorem 21:

Corollary 25 Consider k D G�=.G�/r>0 as a right G�–module, and A� as a DG-
algebra with trivial differential. There is a quasi-isomorphism of DG-algebras

RHomG�
.k; k/'A�

such that the cohomological and internal gradings on the left-hand side coincide with
each other and they agree with the path-length grading on the right-hand side.

Proof In view of Theorem 23 and Theorem 21, we only need to check the hypothesis in
Theorem 21, but this is straightforward. Certainly, A� is positively graded and the local
finiteness condition holds since A� is finite-dimensional (see [51, Definition 2.1]).

Since A� is known to be Koszul in the classical sense for non-Dynkin � , we easily
get an alternative proof of the formality result mentioned in Theorem 7(1).

Corollary 26 For � non-Dynkin, G� is formal, that is, it is quasi-isomorphic to the
preprojective algebra …� DH 0.G�/.

Proof Recall that the differential on the complex RHomA
op
�
.k; k/ has bidegree .1; 0/.

Therefore, after applying the homological perturbation lemma, we obtain a minimal
A1–structure on Ext�Aop.k; k/ such that �d has bidegree .2 � d; 0/. On the other
hand, Koszulity of A� means that the two gradings agree at the level of cohomology.
Therefore, it is impossible to have a nontrivial �d for d ¤ 2.

Note that if � is a Dynkin-type graph, G� is not quasi-isomorphic to the preprojective
algebra …� . Our result above can be described as stating that G� and A� are A1–
Koszul dual. This should be seen as the natural extension to all � of the classical
Koszul duality between …� and A� which only worked when � is non-Dynkin.

Finally, in view of the Theorem 23 and Corollary 25, we conclude from Keller’s
theorem [47] that there is an isomorphism of Hochschild cohomologies as Gerstenhaber
algebras. Besides this isomorphism, the following theorem also uses the fact that
HH2��.G�/Š HH�.G�/ by the Calabi–Yau property [39], together with [17] which
applies over K of characteristic 0, and Theorem 13.
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Theorem 27 For any tree �, there is an isomorphism of Gerstenhaber algebras over K

HH�.G�/Š HH�.A�/:

If � is of Dynkin type An or Dn (and conjecturally also for E6;E7;E8 ) and K is of
characteristic 0, then we have

SH�.X�/Š HH�.G�/Š HH�.A�/:

Remark 28 Note that all of the Gerstenhaber algebras appearing in the above theorem
are induced from a natural underlying Batalin–Vilkovisky (BV) algebra structure. In
the case of symplectic cohomology, BV-algebra structure is given by a geometric
construction reminiscent of the loop rotation in string topology and in the cases of G�
and A� , it is induced by the underlying Calabi–Yau structure on these DG-algebras,
which allows one to dualize the Connes differential B on Hochschild homology.
However, the above theorem does not claim an isomorphism of the underlying Batalin–
Vilkovisky structures. We believe that this can be achieved, however, it requires a finer
investigation of Calabi–Yau structures. On the other hand, we explain in Remark 33
that for � non-Dynkin and non-extended Dynkin, we have an isomorphism of Batalin–
Vilkovisky algebras between HH�.G�/ and HH�.A�/ as it turns out that there is a
unique way of equipping this Gerstenhaber algebra with a BV-algebra structure.

Remark 29 It is well-known that in the case when � is Dynkin, the exact Lagrangian
spheres Sv split-generate the Fukaya category F.X�/ of compact exact Lagrangians —
this follows for example by combining [59, Lemma 4.15] and [61, Corollary 5.8].
Furthermore, as mentioned in the beginning of Section 5, one expects that the noncom-
pact Lagrangians Lv split-generate the wrapped Fukaya category. Hence, one could
interpret the above result as showing that

HH�.F.X�//Š HH�.W.X�//:

On the other hand, it is by no means the case that D�F.X�/ and D�W.X�/ are
equivalent as triangulated categories. (Here, we mean an equivalence between the
Karoubi-completed triangulated closures of F.X�/ and W.X�/.) This is clear from
the fact that the latter category has objects with infinite-dimensional endomorphisms
(over K) but every object in the former has finite-dimensional endomorphisms. More
strikingly, the monotone Lagrangian tori studied in [49] give objects in D�W.X�/ for
� D An with finite-dimensional endomorphisms and yet these do not belong to the
category D�F.X�/. One has to collapse the grading to Z2 in order to admit these
objects in F.X�/.

In the next section, we compute HH�.A�/ for all trees � except E6;E7;E8 .
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6 Hochschild cohomology computations

6.1 Non-Dynkin case

In this section we assume that � is a non-Dynkin tree and describe the Hochschild
cohomology HH�.G�/ of the associated Ginzburg DG-algebra. Note, however, that as
explained in the introduction, when � is non-Dynkin, B� is a nontrivial deformation
of G� , and so this computation does not directly give enough information to compute
HH�.B�/, and thus SH�.X�/. However, at least away from characteristic 0, the
computation of HH�.G�/Š HH�.A�/ is still of geometric significance as it controls
the deformations of the compact Fukaya category F.X�/.

Recall that for non-Dynkin � , the cohomology H�.G�/Š…� is supported in total
degree 0 and moreover G� is formal, ie it is quasi-isomorphic to the preprojective
algebra …� . Therefore we have an isomorphism of Gerstenhaber algebras

HH�.G�/Š HH�.…�/;

where …� is to be considered as a trivially graded algebra. For any non-Dynkin
quiver � , the Gerstenhaber structure of the Hochschild cohomology of …D…� is
described in [57] (and previously in [23] when char KD 0). We do not have anything
new to say here, we simply review some of the results of [23] and [57] to give a flavor of
what’s known. For an impressive amount of further information, see the comprehensive
work of Schedler [57].

The Hochschild cohomology HH�.…�/ turns out to be trivial in every grading except
for 0; 1 and 2. A way to see this is to use the Koszul bimodule resolution given in (7).
Recall that for � non-Dynkin, …� is Koszul in the classical sense with Koszul dual
ADA� . The latter has a decomposition into its graded pieces as ADA0˚A1˚A2 .
Hence, the Koszul bimodule resolution takes the form

0!
M

v
ev…ev!

M
v

evA1˝k…ev!
M

v
evA2˝k…ev! 0:

Moreover, it is well known that … is Calabi–Yau of dimension 2 (see [39, Defi-
nition 3.2.3]), hence a duality result of Van den Bergh [11] applies and we have a
canonical isomorphism

HH�.…/Š HH2��.…/:

For the K–vector space structure of the Hochschild cohomology let us recall some
general facts (see eg [50]) which apply to any algebra (with trivial grading and differ-
ential). The zeroth cohomology HH0.…/ is given by the center Z.…/, and HH1.…/

is given by outer derivations Der.…/= Inn.…/. Recall that a derivation is a linear map
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DW …!… satisfying the Leibniz rule, and each a 2… defines an inner derivation by
Da.b/D ab�ba. The zeroth homology HH0.…/ is isomorphic to …cyc WD…=Œ…;…�,
where Œ…;…��… is the K–linear subspace spanned by the commutators.

Theorem 30 [56, Corollary 10.1.2; cf 23, Theorem 8.4.1] The K–vector space struc-
ture of the Hochschild cohomology HH�.…/ of the preprojective algebra associated to
a non-Dynkin quiver is as follows.

(1) If � is extended Dynkin, then HH0.…/ Š Z.…/ Š ev0
…ev0

, where v0 is
a vertex in � whose complement is Dynkin. Otherwise the center Z.…/ is
isomorphic to K.

(2) HH1.…/ŠDer.…/= Inn.…/ŠZ.…/˚.F˝ZK/˚
�
T˝Z

L
p HomZ.Fp;K/

�
,

where F and T are the free and torsion parts of …Z
cyc , respectively, and …Z is

the preprojective Z–algebra associated to � .

(3) HH2.…/Š HH0.…/Š…cyc .

Remark 31 In the extended Dynkin case, by the McKay correspondence Z.…/ is
isomorphic to the ring of invariant polynomials in KŒx;y� under the action of the
corresponding finite subgroup G � SL2.K/ as long as K has jGjth roots of unity (see
[56, Theorem 9.1.1]). Furthermore, in this case T is trivial and hence HH�.…/ is
determined by Z.…/ and …cyc , unless the characteristic of K is a “bad prime” for � ,
ie 2 for zDn , 2 or 3 for zE6 and zE7 , and 2; 3 or 5 for zE8 [57]. Note that the Hilbert
series of Z.…/ and …cyc , as algebras graded by path-length, are given in [34] and [57].

The quotient …cyc can be considered as a graded Lie algebra with the path-length
grading and the Lie bracket induced by the necklace Lie bracket f � ; � g on …, given by

fp; qg D
X

gwv2�1

.@vwq/.@wvp/� .@wvq/.@vwp/:

Here, for any path p 2… and adjoint pair .v; w/ in � , @wvp is given as the sumX
i
gi�1 � � �g1gl � � �giC1;

taken over all i for which the i th arrow gi in the path p D gl � � �g1 is gwv .

Note that the Lie bracket ŒD;D0�DD ıD0 �D0 ıD on Der.…/= Inn.…/ coincides
with the Gerstenhaber bracket on HH1.…/ in favorable cases, eg if char KD 0 and �
is not extended Dynkin.

The Lie brackets above are used to describe the (cup) product as well as the Gerstenhaber
bracket on HH�.…/ in [23], when char KD 0. We now recall the description of the
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Gerstenhaber algebra structure of HH�.…/ in [57], for arbitrary char K, using the
BV operator � dual to the Connes differential (see eg [50]) on HH�.…/. The Euler
derivation eu on …cyc is defined as multiplication by l on each path of length l ,
and the derivation u, called half Euler derivation in [57], multiplies each path by the
number of edges from � that it contains. Note that we have euD 2u as elements of
HH1.…/. In other words, their difference is an inner derivation. The first summand of
HH1.…/ in Theorem 30 consists of multiples of u by Z.…/.

Theorem 32 [56, Theorem 10.3.1] As a BV-algebra, HH�.…/ is determined by the
following properties.

(1) The graded-commutative product

[W HHi.…/˝HHj .…/! HHiCj .…/

is given as follows:
(a) If �; � 0 2 Der.…/= Inn.…/ Š HH1.…/ and � 0 belongs to the F ˝Z K

summand of HH1.…/, then � [ � 0 is obtained by considering � 0 as an
element of …cyc and applying the derivation � to it.

(b) If none of �; � 0 2HH1.…/ belongs to the F˝ZK summand, then �[� 0D0.
(c) If ij D 0, then [ is given by multiplication in ….

(2) The BV-operator
�W HHi.…/! HHi�1.…/

dual to the Connes differential is given as follows.
(a) We have

�.u/D 1; �.z[ �/D �.z/C z�.�/

for every z 2HH0.…/ŠZ.…/, � 2Der.…/= Inn.…/ŠHH1.…/. The BV-
operator vanishes on the

�
T ˝Z

L
p HomZ.Fp;K/

�
summand of HH1.…/.

(b) The operator �W HH2.…/Š…cyc! Der.…/= Inn.…/Š HH1.…/ maps to
the F ˝Z K summand and it is given by

�.gl � � �g1/D
Xl

iD1
˙@g�

i
.�/gi�1 � � �g1gl � � �giC1;

where each gi is an arrow in the double of the quiver � and the sign is
positive if and only if gi 2 � .

Remark 33 A word of caution is in order. For � non-Dynkin, the BV-algebra structure
on HH�.…�/ is induced by the 2–Calabi–Yau structure (in the sense of Ginzburg [39],
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also known as smooth Calabi–Yau structure) on the homologically smooth algebra …� .
This means that we have an isomorphism of …�–bimodules

…� ' RHom…��…�
.…� ;…� ˝…�/Œ2�;

where the bimodule structure on the right is with respect to the inner bimodule struc-
ture on …� ˝…� and RHom is taken with respect to the outer bimodule structure
on …� ˝…� . Two such 2–Calabi–Yau structures differ by an invertible element
in HH0.…�/. The effect by such an invertible � is to replace � by ��1�� [66,
Remark 4.8].

We can consider the Koszul dual notion. Namely, by Koszul duality, for � non-
Dynkin, we have HH�.…�/ Š HH�.A�/ and then the BV-algebra structure can be
seen as naturally arising from a weak Calabi–Yau structure on A� . Recall that a
weak Calabi–Yau structure (also known as Frobenius structure or compact Calabi–Yau
structure) of dimension 2 on the finite-dimensional algebra A� is a quasi-isomorphism
of A�–bimodules

A� 'A_� Œ�2�;

where A_
�

is the K–linear dual of A� . Two such Calabi–Yau structures again differ
by an invertible element in HH0.A�/.

In any case, if � is non-Dynkin and non-extended Dynkin, then by Theorem 30,
HH0.…�/ŠHH0.A�/ŠK is rank-1 generated by the identity, hence there exists (up
to scaling) at most one (Ginzburg) Calabi–Yau structure on …� and at most one (weak)
Calabi–Yau structure on A� . These Calabi–Yau structures can either be constructed
algebraically as in [39] or symplectically as a manifestation of Poincaré duality for
the Fukaya category of compact Lagrangians or the open Calabi–Yau property of the
wrapped Fukaya category.

Now, suppose B� ' G� . Then, since G� is formal, we would have an isomorphism
SH�.X�/ŠHH�.B�/ŠHH�.…�/. Under this isomorphism, the natural BV-algebra
structure on SH�.X�/ given by the loop rotation operator �W SH�.X�/!SH��1.X�/

has to coincide with the algebraically constructed BV-algebra structure on HH�.…�/
in the case that � is non-Dynkin and non-extended Dynkin.

On the other hand, combining the results from [53] and [5] one deduces that

SH�.T �S2/Š HH�.C2��.�S2//Š HH�.C �.S2//
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does not admit a dilation over a field of characteristic 2.5 Recall that a dilation is an
element b 2 SH1.X�/ such that

�b D 1;

where �W SH�.X�/ ! SH��1.X�/ is the BV-operator in symplectic cohomology.
Furthermore, since T �S2 can be embedded as a Liouville subdomain of X� , one has a
restriction map, SH�.X�/! SH�.T �S2/ which is a map of BV-algebras. Therefore,
a dilation on X� can be restricted to a dilation on T �S2 . On the other hand, we see
from the above theorem that there is a class u 2 HH1.…�/ that is sent to the identity
by the BV-operator induced from the Calabi–Yau structure on …� . Hence, we arrive
at a contradiction.

This is in agreement with Remark 15 where we have seen that B� is a nontrivial
deformation of G� over a field of characteristic 2.

6.2 Dynkin case

In this section we compute the Hochschild cohomology of the zigzag algebra A�
associated with a Dynkin tree. If the underlying tree � is of type A1 , ie a single
vertex, then A� DKŒx�=.x2/ with jxj D 2 and it is a Koszul algebra. Its Hochschild
cohomology was computed in Example 20 above. Thus, hereafter we assume � ¤A1 .
It turns out that if the underlying tree � is of Dynkin type but not a single vertex, then
A� is an almost-Koszul algebra (in the sense of [18]). In this situation, the Koszul
complex leads to a construction of a minimal periodic resolution. We first review the
basics of quadratic algebras and the associated Koszul complexes.

6.2.1 Zigzag algebra A� as a trivial extension Recall that for any � , the zigzag
algebra A� is defined as the quotient of the path algebra KD� of the double quiver D�
by the ideal J generated by the elements

� auvavw such that u¤ w , where v is adjacent to both u; w , and
� avwawv � avuauv where v is adjacent to both u; w .

Clearly, this is an example of a quadratic algebra over k where V is the K–vector
space generated by the edges awv of D� and supported in grading 1. The path-length
grading on KD� descends to A� where it is supported in degrees 0; 1 and 2. It is
straightforward to verify that:

Proposition 34 For any tree � the quadratic dual A!
�

of the zigzag algebra A� is the
preprojective algebra …� , when both are equipped with path-length grading.

5An independent verification of this fact based on a Morse–Bott computation of BV-operator on
SH�.T �S2/ was communicated to us by P. Seidel.
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As mentioned before, when � is a single vertex, or not a Dynkin-type tree, A� is
a Koszul algebra. For these cases, we have already computed HH�.A�/ above (see
Section 6.1 and Example 20). Henceforth, we will assume that � is Dynkin, but not a
single vertex. These are the only cases when A!

�
D…� is finite-dimensional.

Let us drop � from the notation for the moment and write

ADA0˚A1˚A2 and …D…0˚…1˚ � � �˚…h�2

for the graded pieces of A and …. Here h stands for the Coxeter number of the Dynkin
tree and it is equal to nC 1, 2n� 2, 12, 18 and 30, for An , Dn , E6 , E7 and E8 ,
respectively [18].

It turns out that, in this case, A� is not Koszul and its Koszul complex (6) is not acyclic.
Indeed, the Koszul complex is given by

0!A� !…1˝k A� ! � � � !…h�2˝k A� ! 0(8)

and it fails to be exact at the right end but only there [18]. Nonetheless, in [18] the
authors are able to modify the Koszul bimodule complex to obtain a .2h�2/–periodic
complex that computes Hochschild cohomology of A� . Indeed, the algebras A�
belong to a class of periodic algebras which are almost Koszul.

We will, however, now turn to a slightly different approach, which makes use of the
fact that A� is isomorphic to a trivial extension algebra.

Definition 35 Let B be a finite-dimensional algebra over the field K. Let B_ WD

HomK.B;K/ be the linear dual of B , viewed naturally as a B–bimodule. The trivial
extension algebra of B , denoted by T .B/, is the vector space B˚B_ equipped with
the multiplication

.x; f / � .y;g/D .xy;xgCfy/:

If B is graded, to get a CY2 algebra, we grade T .B/ so that T .B/D B˚B_Œ�2�.

Let A! D K�=J be the quotient of the path algebra of a quiver with respect to an
arbitrary orientation of the edges modulo the ideal generated by paths of length 2.
The following proposition appears in [43, Proposition 9] and results from an easy
computation.

Proposition 36 A� is isomorphic to the trivial extension algebra T .A!/.

In particular, if we orient � so that each vertex is either a sink or a source, then there
are no paths of length 2, hence A� is a trivial extension algebra of the path algebra K�
in the bipartite orientation.
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Remark 37 There is a way to understand the above proposition in terms of symplectic
topology. Namely, one can consider a Lefschetz fibration f W C3! C , .x;y; z/ 7!
f .x;y; z/ given by perturbing the simple singularities

An W x2
Cy2

C znC1 for n� 1;

Dn W x2
C zy2

C zn�1 for n� 4;

E6 W x2
Cy3

C z4;

E7 W x2
Cy3

Cyz3;

E8 W x2
Cy3

C z5:

One can then identify the surface X� with a regular fiber of these fibrations, ie the
Milnor fiber of the singularity. The spheres Sv can be identified with the vanishing
spheres and the corresponding thimbles generate the Fukaya–Seidel category of f by a
famous result of Seidel [61]. For a suitable choice of grading structures and ordering of
objects, the Floer endomorphism algebra A! of these thimbles in the Fukaya–Seidel
category of f coincides with the path algebra of K� modulo the ideal generated by
length 2 paths. The algebra isomorphism

A� DA!˚A!Œ�2�

follows from the general relationship between the Fukaya–Seidel category of a Lefschetz
fibration and the Fukaya category of its fiber (see [62, Section 4]).

We next recall the following theorem about trivial extension algebras, which we will
apply to path algebras of quivers whose underlying graph is a tree. Note that by a
well-known result of Bernšteı̆n, Gel’fand and Ponomarev [13], the path algebras KQ

of quivers Q obtained by orienting edges of the same tree in different ways are derived
equivalent algebras.

Theorem 38 (Rickard [55]) Suppose C and D are derived equivalent algebras.
Then their trivial extensions T .C / and T .D/ are also derived equivalent. In particular,
HH�.T .C // and HH�.T .D// are isomorphic as Gerstenhaber algebras.

Our strategy will be to apply the above theorem to T .A!/DA� to pass to another
algebra whose Hochschild cohomology is previously computed. However, it is impor-
tant to note that the above theorem is for trivially graded algebras. On the other hand,
we need to compute HH�.A�/ as a bigraded algebra. What’s worse, since A� has
elements in both even and odd degrees, we cannot simply forget about the grading and
reinstate it afterwards, as in a graded resolution, odd elements affect the signs.
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We next explain how to deal with this tricky point. Namely, recall from Proposition 16
that A� is the graded algebra obtained as

A� D
M
v;w

HF�.Sv;Sw/:

On the other hand, given integers �v 2 Z for every vertex v , we can define another
graded algebra

zA� D
M
v;w

Hom.Sv Œ�v �;Sw Œ�w �/D
M
v;w

HF�.Sv;Sw/Œ�w � �v �;

where Sv Œnv � denotes a graded object whose grading is shifted down by nv . Clearly,
A� and zA� are graded Morita equivalent (in particular, derived equivalent). Therefore,
the (graded) Hochschild cohomologies of A� and zA� are canonically isomorphic
(see for example [64, Section (1c)]). Hence, for the purpose of computing Hochschild
cohomology of A� , we can choose the shifts �v so that the shifted algebra is supported
in even degrees. In fact, using the standard tree form of � as in Figure 2, we simply
shift the object Sv up Sv Œ�ıv �, where ıv is the distance from the root to the vertex v .
In this way, any arrow in the double D� is in degree 0 or 2 according to whether it
points towards or away from the root.

Summary To compute HH�.A�/ as a graded Gerstenhaber algebra, we follow this
procedure:

� First check that it is possible to shift gradings so that A� is supported in even
degrees.

� Forget the grading altogether and treat A� as an ungraded algebra.

� Compute the algebra structure of the Hochschild cohomology of the ungraded
algebra by relating it to previous computations using derived equivalences of
ungraded algebras in Theorem 38. This algebra will have only the cohomological
grading r .

� Finally, reinstate the s–grading on HH�.A�/ by finding explicit (graded) cocy-
cles for the generators of Hochschild cohomology as an algebra.

6.2.2 Type A Throughout this section, � is the Dynkin tree An , n> 1. We describe
the Hochschild cohomology ring of the zigzag algebra A� in detail. We follow the
strategy outlined in the previous section. Namely, we first determine the Hochschild
cohomology of A� as an ungraded algebra. The result will be singly graded with the
cohomological grading r . We then reinstate the s–grading by explicitly identifying
generators.
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As was mentioned in Proposition 36, A� is isomorphic to the trivial extension algebra
of the path algebra KQ of the quiver Q with the underlying tree � DAn and oriented
with the bipartite orientation (see Figure 9). Furthermore, as explained above, the
derived equivalence class of a path algebra of a quiver, and hence by Theorem 38, the
derived equivalence class of trivial extensions of KQ, does not depend on the choice
of the orientation of the edges of the underlying tree.

. . .

Figure 9: An quiver in bipartite orientation

Let B� be the trivial extension algebra of the path algebra of � D An where the
underlying quiver is now oriented in the linear orientation (see Figure 10).

. . .

Figure 10: An quiver in linear orientation

Let zAn�1 be the extended Dynkin quiver of type An�1 , namely the quiver with cyclic
orientation whose underlying graph is a simple cycle with n vertices and n edges (see
Figure 11), and let us denote the ideal generated by paths of length � nC 1 by JnC1 .

Figure 11: Cyclic quiver zAn�1

The following well-known fact (cf [18]) can be verified by identifying K� with its image
under the natural inclusion K�!K zAn�1=JnC1 , and observing that the subspace of
K zAn�1=JnC1 spanned by paths containing the unique arrow in the complement of �
in zAn�1 is canonically isomorphic to the linear dual of K� as a K�–bimodule.

Lemma 39 B� is isomorphic to the truncated algebra K zAn�1=JnC1 .

The derived equivalence between A� and B� implies an isomorphism between the
Hochschild cohomology rings. On the other hand, the Hochschild cohomology of
the (trivially graded) algebra B� is studied in [42; 32; 9]. In particular, the algebra
structure of HH�.B�/ over a field of arbitrary characteristic was already known. Our
contribution is to determine the internal s–grading coming from the grading of A� .
We have the following result:
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Theorem 40 As a (graded) commutative K–algebra, the .r; s/–bigraded Hochschild
cohomology algebra

HH�.A�/D
M

rCsD�

HHr .A� ;A� Œs�/;

of the graded k–algebra A� is given by the following generators and relations. (The
subscripts of the generators, except for si , refer to total degrees.)

� Suppose char K − nC1. We have generators labeled along with their bidegrees
.r; s/ given by

s1; : : : ; sn .0; 2/;

t1 .1; 0/;

t0 .2;�2/;

t�2 .2n;�2n� 2/

and relations
sisj D si tj D t2

1 D tn
0 D 0:

� Suppose char K j nC1. We have generators labeled along with their bidegrees
.r; s/ given by

s1; : : : ; sn .0; 2/;

t1 .1; 0/;

t0 .2;�2/;

u�1 .2n� 1;�2n/;

t�2 .2n;�2n� 2/

and relations

sisj D si t1 D si t0 D t2
1 D 0;

siu�1 D t1tn�1
0 ;

si t�2 D tn
0 ;

t0u�1 D t1t�2;

t1u�1 D ˛tn
0 ;

u2
�1 D ˇtn�1

0 t�2;

where ˛ D ˇ D 1 if char KD 2 and 4 − nC1, otherwise ˛ D ˇ D 0.
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Proof The presentation of HH�.A�/ given above is adapted from the presentation of
HH�.B�/ as a K–algebra graded by the cohomological grading, which was calculated
in [42, Theorems 8.1 and 8.2] and [32, Theorem 5.19]. In view of the isomorphism
between HH�.A�/ and HH�.B�/ as K–algebras graded with respect to the cohomo-
logical r–gradings, it remains to determine the s–gradings. In particular, the rank of
HHr .B�/Š

L
s HHr .A� ;A� Œs�/ is given explicitly in [42; 32] for each r and it can

be recovered from the presentations in the statement. We will make extensive use of
this information in the following arguments.

In what follows, we describe generators as elements of the reduced bar-resolution

(9) CC�.A;A/ WD homk.T xA;A/;

where ADA� and xADA=k. The grading on A gives a decomposition

CC�.A;A/D
M
�DrCs

CCr .A;AŒs�/;

where the Hochschild differential ı is of bidegree .1; 0/. We find explicit cocycles
for r D 0; 1; 2 and show that the s–gradings of other generators are determined by the
relations given above.

As a graded algebra, A� DA0˚A1˚A2 , with components given by

A0 D

nM
iD1

Kei ; A1 D

n�1M
iD1

Kai ˚

n�1M
iD1

Kbi ; A2 D

nM
iD1

Ksi ;

where eiC1aiei D ai , eibieiC1 D bi and siC1 D aibi D biC1aiC1 .

The Hochschild differential ı in the complex (9) is given by the formula in [61,
Equation (1.8)] (recall also the convention in (3)). We will only need the differentials
on CCr .A;AŒs�/ for r D 0; 1; 2. These are given by

ı.c/.x1/D �
2.x1; c/C .�1/.s�1/.jx1j�1/�2.c;x1/;

ı.c/.x2;x1/D �
2.x2; c.x1//C .�1/.s�1/.jx1j�1/�2.c.x2/;x1/

C .�1/sc.�2.x2;x1//;

ı.c/.x3;x2;x1/D �
2.x3; c.x2;x1//C .�1/.s�1/.jx1j�1/�2.c.x3;x2/;x1/

C .�1/sc.x3; �
2.x2;x1//C .�1/sCjx1j�1c.�2.x3;x2/;x1/

for c 2 CC0.A;AŒs�/, for c 2 CC1.A;AŒs�/, and for c 2 CC2.A;AŒs�/, respectively.
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r D 0 The 0–cocycles are given by central elements. The identity elementX
j

ej 2 CC0.A;AŒ0�/

and the elements
si 2 CC0.A;AŒ2�/ for i D 1; : : : ; n

give a basis of the center of A over K.

r D 1 The 1–cocycles are given by derivations. We define a 1–cocycle �1 2

CC1.A;AŒ0�/ by

�1.ai/D�ai ; �1.bi/D 0; �1.si/D si

for all i D 1; : : : ; n. It is straightforward to check that �1 is a derivation but not an inner
derivation, so it is a nontrivial element of

L
s HH1.A;AŒs�/, which is 1–dimensional

for any K. Therefore, any generator of this group, in particular t1 , must have the same
s–grading as �1 .

r D 2 We define a 2–cocycle �0 2 CC2.A;AŒ�2�/ given by

�0.ai ; bi/D .�1/ieiC1;

�0.ai ; si/D .�1/iC1ai ;

�0.si ; bi/D .�1/ibi ;

�0.si ; si/D .�1/iC1si

for all i D 1; : : : ; n. Applying the Hochschild differential we get

.ı.�0//.x3;x2;x1/D .�1/jx1jCjx2jx3�0.x2;x1/� �0.x3;x2/x1

C .�1/jx1j�0.x3;x2x1/� .�1/jx1jCjx2j�0.x3x2;x1/:

It is straightforward (if tedious) to check that this expression vanishes identically
on xA˝3 . On the other hand, �0 cannot be a coboundary, since any � 2CC1.A;AŒ�2�/

has to be of the form
�.si/Dmiei for some mi 2K

and the Hochschild differential takes the form

.�1/jx1j.ı.�//.x2;x1/D x2�.x1/C �.x2x1/� .�1/jx1j�.x2/x1;

which gives, in particular, that ı.�/.si ; si/D 0 and ı.�/.ai ; si/Dmiai .

Hence, �0 cannot be of the form ı.�/ and therefore it represents a nontrivial element
of the group

L
s HH2.A;AŒs�/. But we know that this group is 1–dimensional over
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any field K, consequently any generator of this group over an arbitrary field K must
have the same s–grading as �0 .

It is harder to find explicit cocycles representing the elements u�1 and t�2 given in the
statement of the theorem. Fortunately, for the purpose of determining the s–gradings
we do not need explicit cocycles for these.

The element u�1 appears only if char K j nC1, and it satisfies the equation

siu�1 D t1tn�1
0 :

Since the s–gradings of si , t1 and t0 are 2; 0 and �2, respectively, it follows that the
projection u0

�1
of u�1 to HH2n�1.A;AŒ�2n�/ must be nonzero. A priori u�1 is not

necessarily homogeneous with respect to the s–grading, but it has r–grading 2n�1, andL
s HH2n�1.A;AŒs�/ is 2–dimensional with generators u�1 and t1tn�1

0
. Therefore,

u�1 has a decomposition u0
�1
C�t1tn�1

0
into .r; s/–homogeneous elements for some

� 2K. On the other hand, the relations in the statement of the theorem which involve
u�1 are satisfied by u�1 if and only if they are satisfied by u0

�1
D u

�1
� �t1tn�1

0
.

Therefore, we may freely replace u
�1

by u0
�1

and hence assume that it is homogeneous
with s–grading �2n.

Similarly, if char K j nC1, then t�2 2
L

s HH2n.A;AŒs�/ appears in the relation

si t�2 D tn
0

and
L

s HH2n.A;AŒs�/ is 2–dimensional with generators t�2 and tn
0

. As a conse-
quence, t�2 has a decomposition t�2 D t 0

�2
C�tn

0
into .r; s/–homogeneous elements

for some � 2K and t 0
�2
¤ 0. The argument we used for u�1 applies here as well and

we may assume that t�2 is homogeneous with s–grading �2n� 2.

Finally, we need to determine the s–grading of t�2 over a field K for which char K −
nC1. Since A can be defined over Z, its Hochschild cohomology groups can also be
defined over Z. Furthermore, since A has finite rank as a Z–module, the bar-complex
over Z is just a chain complex of finitely generated free abelian groups. So we can
apply the universal coefficient theorem

(10) 0!
M

s

HHr
Z.A;AŒs�/˝K!

M
s

HHr
K.A˝K;AŒs�˝K/

! Tor
�M

s

HHrC1
Z .A;AŒs�/;K

�
! 0:

Now, it follows from the presentation given in the statement that the middle group for
r D 2nC1 has rank 1 for any field K and we know that it is supported in internal degree
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s D �2n� 2 if char K j nC1. Therefore, we deduce from the universal coefficient
theorem (by testing KD Fp for infinitely many primes p ) thatM

s

HH2nC1
Z .A;AŒs�/D ZŒ2nC 2�;

hence, in particular, M
s

HH2nC1
K .A;AŒs�/DKŒ2nC 2�:

Finally, observe that the element

t1t�2 2

M
s

HH2nC1.A;AŒs�/DKŒ2nC 2�

is a generator of the Hochschild cohomology group in grading r D 2nC 1 over an
arbitrary field K, and hence t�2 must have s–grading �2n � 2 over an arbitrary
field K.

Remark 41 Over the finite field F3 of characteristic 3, the group algebra F3S3 of
the symmetric group in three letters is isomorphic to the algebra A� for � DA2 . A
presentation for the Hochschild cohomology ring of this group algebra was given in
[68, Theorem 7.1]. This agrees with the presentation given above.

As a consequence of Theorem 40 we conclude that the group
L

rCsD�HHr .A� ;A� Œs�/

is nontrivial if and only if ��2. If char K − nC1, the rank is n at each ��2, otherwise
the rank is n for � D 2; 1 and nC 1 for � � 0.

Recall that we have proved in Theorem 27 that there is an isomorphism of Gerstenhaber
algebras

SH�.X�/Š HH�.A�/

over a field K of characteristic 0, where the Conley–Zehnder grading on the left
corresponds to the total grading r C s on the right. Having computed HH�.A�/ as
a bigraded algebra, we immediately get a description of the algebra structure of the
symplectic cohomology. Let us also record its rank.

Corollary 42 The symplectic cohomology group SH�.X�/ over a field K of charac-
teristic 0 is of rank n if � � 2 and it is trivial otherwise.

We have also performed computer-aided checks on our calculations. Tables 2 and 3 list
the ranks (of a finite portion) for the cases A2 and A3 .
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r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8

2 2 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 x 0 0 0 0

�1 0 0 0 0 0 0 x 0 1 0 1

�2 0 0 0 0 0 0 0 0 1 0 1

Table 2: � DA2 ; x is 1 if char KD 3 , 0 otherwise

r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8

2 3 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 1 0 x 0 0

�1 0 0 0 0 0 0 0 0 x 0 1

�2 0 0 0 0 0 0 0 0 0 0 1

Table 3: � DA3 ; x is 1 if char KD 2 , 0 otherwise

6.2.3 Type D In this section we consider the case where � is the Dynkin tree Dn ,
n � 4. Most of the arguments in the previous section apply verbatim or with minor
modifications. So we will focus on the differences and provide details as necessary.

Considering the quiver based on � with the orientation of the arrows given by Figure 12,
we obtain the following result.

. . .a1 a2 a3 an�3

an�2

an�1

Figure 12: Dn quiver

Lemma 43 The trivial extension algebra B� of the path algebra K� is isomorphic
to the quotient KQ=I , where Q is the quiver given in Figure 13 and I is the ideal
generated by the elements

ˇn�1
n�1�ˇn
n; ˛i � � �˛1ˇn
n˛n�3 � � �˛i ;


n˛n�3 � � �˛1ˇn�1; 
n�1˛n�3 � � �˛1ˇn:

Proof Using the identifications ai $ ˛i for 1 � i � n � 3 and aj $ 
jC1 for
j D n� 2 and n� 1, we can consider K� as a subalgebra of KQ=I . Observe that
KQ=I decomposes as a direct sum K�˚V and V is generated by ˇn�1 and ˇn as a
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. . .˛1 ˛2 ˛3 ˛n�3

ˇn�1

ˇn


n�1


n

Figure 13: The quiver Q

K�–bimodule. Moreover, as K�–bimodules, V and the dual of K� are isomorphic via

 W V ! .K�/_;

ˇn�1 7! .an�2an�3 � � � a2a1/
_;

ˇn 7! .an�1an�3 � � � a2a1/
_:

It is straightforward to check that this map is a well-defined isomorphism.

In fact, .K�/_ can also be considered as a subalgebra of KQ=I by identifying the
dual p_ of a path p 2K� with the path q 2KQ=I such that

q �p D � t .ˇn
n˛n�3 � � �˛1/D �
t .ˇn�1
n�1˛n�3 � � �˛1/ 2KQ=I;

where � denotes the simple rotation action on the cycles and t is the distance between
the initial points of p and ˛1 .

As a consequence of this lemma and the discussions in the previous section, there
is an isomorphism between the Hochschild cohomology rings of the zigzag algebra
A� and B� . On the other hand, the Hochschild cohomology of B� as a trivially
graded algebra was described in detail in [72; 71]. As in the case of � D An (see
Theorem 40), we determine the internal grading s induced by the zigzag algebra and
obtain the following result. This extra information does not appear in [72; 71] and the
determination of this grading is the main contribution given in the following theorem.

Theorem 44 Let � D Dn , n � 4. The .r; s/–bigraded Hochschild cohomology
algebra

HH�.A�/D
M

rCsD�

HHr .A� ;A� Œs�/

of the graded k–algebra A� is (graded) commutative and given by the following
generators and relations. (The subscripts of the generators, except for the si , refer to
total degrees.)
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(1) Suppose char K ¤ 2. We have generators labeled along with their bidegrees
.r; s/ given by

s1; : : : ; sn .0; 2/;

t1 .1; 0/;

r1 .2n� 3;�2nC 4/;

t0 .4;�4/;

r0 .2n� 4;�2nC 4/;

t�2 .4n� 6;�4nC 4/

and relations

sisj D si tj D sirj D t2
1 D t1r1 D r2

1 D tn�1
0 D 0;

together with

if n is even if n is odd

t1r0 D
�

n
2

�
t1t
.n�2/=2
0

� .n� 1/r1

�
n�1

2

�
r1

2t0r1 D t1t
n=2
0

0

2r1r0 D 0 t1tn�2
0

2t0r0 D t
n=2
0

0

2r2
0
D

�
n
2

�
tn�2
0

�
n�1

2

�
tn�2
0

(2) Suppose char K D 2. We have generators labeled along with their bidegrees
.r; s/ given by

s1; : : : ; sn .0; 2/;

t1 .1; 0/;

u1 .3;�2/;

t0 .4;�4/;

r0 .2n� 4;�2nC 4/;

u0

�
4
�

n
2

˘
;�4

�
n
2

˘�
;

u�1

�
4
�

n�1
2

˘
C 1;�4

�
n�1

2

˘
� 2

�
;

t�2 .4n� 6;�4nC 4/
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and relations

sisj D si t1 D siu1 D siu0 D 0;

t2
1 D u2

1 D u2
0 D u1u0 D 0;

t
bn

2
c

0
D u1t

bn�1
2
c

0
D 0;

r2
0 D

�
n
2

˘
u0t
bn�3

2
c

0
;

sj t0 D t1u1

together with

if n is even if n is odd

u2
�1
D t�2 t�2t0

u1u�1 D u0 u0t0

t0r0 D u1u�1 t1u�1

u1r0 D 0 t1u0

sj u�1 D

(�
n�2

2

�
t1t
.n�2/=2
0

C t1r0 if j � n� 1;�
n
2

�
t1t
.n�2/=2
0

C t1r0 if j D n
u1r0

sj r0 D

(
t1u1t

.n�4/=2
0

if j � n� 1;

0 if j D n
0

u�1r0 D t1t�2

t1r0 D
�

n�1
2

�
u1t

.n�3/=2
0

sj t�2 D r0u0

Proof The presentation of the algebra structure of HH�.B�/ in [71, Theorem 4]
provides all the generators with their r–gradings and relations. The derived equivalence
between A� and B� gives

HHr .B�/Š
M

s

HHr .A� ;A� Œs�/:

Therefore it suffices to determine the s–gradings of the generators in the statement.
Extending the notation in Figure 12, we consider the decomposition of the graded
algebra A� into homogeneous K–subspaces A0 , A1 and A2 , spanned by

fe1; : : : ; eng; fa1; b1; : : : ; an�1; bn�1g and fs1; : : : ; sng;
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respectively, where

eiC1aiei D ai ; eibieiC1 D bi ; enan�1en�2 D an�1; en�2bn�1en D bn�1;

s1 D b1a1; siC1 D aibi D biC1aiC1; sn�2 D an�3bn�3 D bj aj ; sjC1 D aj bj

for 1� i � n� 4 and j D n� 2, n� 1.

As in the proof of Theorem 40, we will again use the reduced bar-resolution associated
to ADA� and denote the Hochschild differential by ı . Consequently, the discussion
for r D 0; 1 is exactly the same as in the proof of Theorem 40. We identify the
s–gradings of s1; : : : ; sn and t1 as in the statement.

For every nonnegative integer r , the dimension of
L

s HHr .A;AŒs�/ Š HHr .B�/

can be deduced from the presentation in the statement and it is explicitly given in
[71, Theorem 3]. We will make extensive use of this information. To begin with,
note that

L
s HH2.A;AŒs�/ is trivial over any field K, and

L
s HH3.A;AŒs�/ is 1–

dimensional if char KD 2 and trivial otherwise. Over a field K of characteristic 2, for
c 2 CC3.A;AŒs�/, the Hochschild differential ı is given by

ı.c/.x4;x3;x2;x1/D x4c.x3;x2;x1/C c.x4;x3;x2/x1C c.x4x3;x2;x1/

C c.x4;x3x2;x1/C c.x4;x3;x2x1/:

We claim that, if char K D 2, there is a cocycle �1 2 CC3.A;AŒ�2�/ which is not
the coboundary of any � 2 CC2.A;AŒs�/. This and the fact that

L
s HH3.A;AŒs�/ is

1–dimensional imply that the s–grading of u1 must be �2, the same as �1 . To describe
the graded homomorphism �1W

xA˝3!AŒ�2� uniquely, it suffices to list the generators
of xA˝3 on which �1 is nonzero. It necessarily vanishes on any element of degree 5

or 6 in xA˝3 since A is supported in gradings between 0 and 2. We declare �1 to be
nonzero exactly on those nontrivial elements .x3;x2;x1/ 2 xA

˝3 which satisfy one of
the following conditions:

� One of x1 , x2 and x3 is of the form ai and the other two is of the form bi ,
possibly with different indices, and .x3;x2;x1/¤ .bn�1; an�1; bn�2/.

� Exactly one of x1 , x2 and x3 is of the form sk , and the initial point of x1

matches the terminal point of x3 .

� .x3;x2;x1/D .an�2; bn�1; an�1/.

It is straightforward to check that �1 is a cocycle. To see that it is not a coboundary,
suppose that c 2 CC2.A;AŒ�2�/. Then

ı.�/..b2; a2; s2/C .a2; s2; b2/C .s2; b2; a2//

D b2�.a2; s2/C a2�.s2; b2/C �.a2; s2/b2C �.s2; b2/a2
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after cancellations. Observe that the right-hand side is either s2C s3 or 0, depending
on the values of �.a2; s2/ and �.s2; b2/. Since

�1..b2; a2; s2/C .a2; s2; b2/C .s2; b2; a2//D s3;

�1 cannot be a coboundary.

Next we determine the s–grading of t0 . Consider the case char KD 2. If nD 4, thenL
s HH4.A;AŒs�/ has generators t0; r0 and t1u1 . Note that any relation satisfied by

t0 and r0 is also satisfied by t0� 
 t1u1 and r0� 
 t1u1 , respectively, for any 
 2K.
Therefore, without loss of generality, we may assume that there are s–homogeneous
generators t 0

0
, r 0

0
and constants ˛; ˇ 2K such that

t0 D t 00C˛r 00 and r0 D r 00Cˇt 00:

From the relations regarding snr0 and snt0 we obtain

0D snr0 D snr 00Cˇsnt 00 and 0¤ u1t1 D snt0 D snt 00C˛snr 00:

Since the gradings of u1; t1 and sn are established above, the second equation implies
that at least one of t 0

0
and r 0

0
has s–grading �4; in fact they both do, as the following

arguments show. If snr 0
0
¤ 0, then the first equation proves that r 0

0
and t 0

0
have the

same s–grading, which is necessarily �4. So suppose snr 0
0
D 0. Now the second

equation gives snt 0
0
¤ 0. Moreover, the first equation implies ˇ D 0, which means

r0D r 0
0

; in particular, r0 is s–homogeneous. So we can use the relation s1r0D t1u1 to
establish the s–grading of r 0

0
as �4. On the other hand, under the assumption snr 0

0
D 0,

the second equation becomes snt 0
0
D u1t1 , implying that t 0

0
has s–grading �4 as well.

Therefore, regardless of the value of snr 0
0

, the s–gradings of t0 and r0 are both �4.

If n>4 and char KD2, then
L

s HH4.A;AŒs�/ has rank 2 with generators t0 and t1u1 ,
hence we may assume that there is an s–homogeneous generator t 0

0
and ˛ 2K such

that t0 D t 0
0
C˛t1u1 . The relation snt0 D t1u1 implies that the s–grading of t 0

0
is �4.

The s–grading of t1u1 is �2 by previous computations. If n is even, then any relation
in the statement holds for t0 if and only if it holds for t 0

0
. Therefore, without loss of

generality, we may assume that t0 D t 0
0

is s–homogeneous with grading �4, at least
when n is even. The same conclusion holds for odd n as well, but we will not prove
(nor use) it until Case 3 below.

Let us now consider the s–grading of t0 when char K ¤ 2. Regardless of whether
n D 4 or not, the argument uses the universal coefficient theorem (10) as in the
proof of Theorem 40. First of all, considering that

L
s HH2.A;AŒs�/ is trivial for any

field K and using (10) for r D 2, we conclude that
L

s HH3
Z.A;AŒs�/ has no torsion.

Since
L

s HH3.A;AŒs�/ is trivial when char K¤ 2, applying the universal coefficient
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theorem (10) for r D 3 implies that
L

s HH3
Z.A;AŒs�/ has no free component either,

hence it is trivial. Moreover, the same exact sequence and the fact that for char KD 2,L
s HH3.A;AŒs�/ is generated by u1 whose s–grading is computed as �2 above,

establish the torsion of
L

s HH4
Z.A;AŒs�/ as Z2Œ2�.

The argument above for char K D 2 shows that
L

s HH4.A;AŒs�/ Š Kd Œ4�˚KŒ2�,
where d D 2 if n D 4 and d D 1 otherwise. Using the fact that

L
s HH4.A;AŒs�/

is d–dimensional for any field K with char K¤ 2, and applying the universal coef-
ficient theorem (10) for r D 4 to infinitely many characteristics, we conclude thatL

s HH4
Z.A;AŒs�/ is in fact Zd Œ4�˚Z2Œ2�. In particular,

L
s HH4.A;AŒs�/ is sup-

ported in s–grading �4 whenever char K¤ 2, and the s–grading of t0 is �4 unless n

is odd and char KD 2.

The rest of the argument varies slightly according to the parity of n and the characteristic
of the base field.

Case 1 (n even and char KD 2)

We need to determine the s–gradings of the rest of the generators, namely u�1; t�2;u0

and r0 . Since
fu�1; t1r0; t1t

.n�2/=2
0

g

forms a basis of
L

s HH2n�3.A;AŒs�/,

u�1 D u0
�1C˛t1r0Cˇt1t

.n�2/=2
0

for some s–homogeneous u0
�1
¤ 0 and some ˛; ˇ 2 K. Observe that any relation

satisfied by u�1 is satisfied by u0
�1

as well. Therefore, without loss of generality, we
may assume that u�1 D u0

�1
and its s–grading is �2nC 2 as a result of the relation

snu�1� s1u�1 D t1t
.n�2/=2
0

:

Moreover, by the relations u0 D u1u�1 and t�2 D u2
�1

, both u0 and t�2 are s–
homogeneous with gradings �2n and �4nC 4, respectively. Regarding r0 , note
that

fr0; t
.n�2/=2
0

; t1u1t
.n�4/=2
0

g

forms a basis of
L

s HH2n�4.A;AŒs�/. Hence

r0 D r 00C˛t
.n�2/=2
0

Cˇt1u1t
.n�4/=2
0

for some s–homogeneous r 0
0
¤ 0 and some ˛; ˇ 2K. It is straightforward to check

that any relation satisfied by r0 is also satisfied by r0 � ˇt1u1t
.n�4/=2
0

, so we may
assume that r0 D r 0

0
C ˛t

.n�2/=2
0

. Moreover, the relation u0 D t0r0 D t0r 0
0

implies
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that the s–grading of r 0
0

is �2nC 4, the same as that of t
.n�2/=2
0

. Therefore, r0 is
s–homogeneous with this grading as well.

Case 2 (n even and char K¤ 2)

We have a single argument for the s–grading of r0 and r1 which belong to 2–
dimensional spaces

L
s HH2n�4.A;AŒs�/ and

L
s HH2n�3.A;AŒs�/, respectively. We

take s–homogeneous elements r 0
0
¤ 0 and r 0

1
¤ 0 such that

r0 D r 00C˛t
.n�2/=2
0

and r1 D r 01Cˇt1t
.n�2/=2
0

:

Suppose that char K − n � 1. By way of contradiction, assume that r0 is not s–
homogeneous, ie ˛ ¤ 0 and the s–grading of r 0

0
is not �2n C 4. Then t1r0 D�

n
2

�
t1t
.n�2/=2
0

� .n� 1/r1 implies that �.n� 1/r 0
1
D t1r 0

0
for grading reasons. Conse-

quently, the s–gradings of r 0
0

and r 0
1

should match. Moreover, since 2t0r1 D t1t
n=2
0

,
and again for grading reasons, ˇ ¤ 0. But then, ˛ˇt1tn�2

0
¤ 0 and its s–grading

does not match with the s–grading of any other term in the product r1r0 contradicting
with r1r0 D 0. Therefore r0 is s–homogeneous, and so is r1 , in fact with the same
s–grading, as a consequence of

t1r0 D
�

1
2
n
�
t1t
.n�2/=2
0

� .n� 1/r1:

In order to account for the possibility that char K j .n=2/, instead of the relation above
we use the relation 2t0r0 D t

n=2
0

to obtain the common s–grading of r0 and r1 .

For a field K with char K¤ 2, both
L

s HH2n�3.A;AŒs�/ and
L

s HH2n�4.A;AŒs�/

are 2–dimensional, and moreover we just proved that when char K − n�1, each of these
spaces are supported in s D�2nC 4. By using the universal coefficient theorem (10)
for r D 2n� 4 we conclude that, as long as char K¤ 2 (even if char K divides n� 1)
both

L
s HH2n�3.A;AŒs�/ and

L
s HH2n�4.A;AŒs�/ are supported in s D�2nC 4.

In particular, the common s–grading of r0 and r1 is �2nC 4.

The s–grading of the remaining generator t�2 is obtained by the following argument,
which applies to odd n as well. First of all, t�2 is s–homogeneous as it belongs to the
1–dimensional space

L
s HH4n�6.A;AŒs�/. On the other hand,

L
s HH4n�5.A;AŒs�/

is 1–dimensional over any field K and it is generated by t1t�2 . Since we already have
the s–grading of t1t�2 for char KD 2 from the previous case, we obtain the s–grading
of t�2 over any field using the universal coefficient theorem (10) for r D 4n� 5.

Case 3 (n odd and char KD 2)

In this case, the s–grading of r0 can be obtained by an argument which works regard-
less of char K. Over any K,

L
s HH2n�4.A;AŒs�/ is 1–dimensional and generated

by r0 , which is therefore s–homogeneous. Applying the universal coefficient theorem
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(10) for r D 2n� 4 and infinitely many different characteristics, we conclude thatL
s HH2n�4

Z .A;AŒs�/Š Z and to establish the s–grading of this group, it suffices to
use the relation 2r2

0
D
�

n�1
2

�
tn�2
0

over a field of characteristic 0. In particular, r0 has
s–grading �2nC 4 for any field K.

The generator u0 belongs to the 1–dimensional space
L

s HH2n�2.A;AŒs�/, hence it
is s–homogeneous, and its s–grading is determined by the relation u1r0 D t1u0 .

Next we consider u�1 . It belongs to
L

s HH2n�1.A;AŒs�/ which is generated by u�1

and u1r0 . So u�1 D u0
�1
C ˛u1r0 for some ˛ 2 K and s–homogeneous u0

�1
¤ 0.

Observe that any relation which involves u�1 is satisfied by u0
�1

as well. Hence we
may assume that u�1 is s–homogeneous. Its s–grading is obtained from

t1u�1 D t0r0 D t 00r0:

Note that we have not established the s–homogeneity of t0 in this case yet, and that is
why we had to refer to t 0

0
in the relation above and use the fact that t0r0 � t 0

0
r0 D 0

since it is a multiple of t1u1r0 D sj t0r0 D 0.

Finally, we determine the s–gradings of t0 and t�2 simultaneously. In the case we
consider, they belong to 2–dimensional spacesM

s

HH4.A;AŒs�/ and
M

s

HH4n�6.A;AŒs�/;

with respective bases ft0; t1u1g and ft�2; r0u0g. So there are s–homogeneous elements
t 0
0

and t 0
�2

with constants ˛; ˇ 2K such that

t0 D t 00C˛t1u1 and t�2 D t 0
�2Cˇr0u0 :

In fact, the s–gradings of t 0
0

and t 0
�2

are �4 and �4nC4, respectively, since sj t 0
0
D t1u1

and sj t 0
�2
D r0u0 . It is straightforward to check that any relation in the statement,

except for u2
�1
D t�2t0 , holds for t0 and t�2 if and only if it holds for t 0

0
and t 0

�2
. To

check that the remaining relation holds, we use

u2
�1 D t�2t0 D t 0

�2t 00C˛t 0
�2t1u1Cˇt 00r0u0C˛ˇt1u1r0u0

and observe that the only term on the right-hand side of the above relation whose
s–grading matches that of u2

�1
is t 0
�2

t 0
0

. Therefore, without loss of generality, we may
assume that t0 D t 0

0
and t�2 D t 0

�2
.

Case 4 (n is odd and char K¤ 2)

The s–gradings of t�2 and r0 are already obtained in Cases 2 and 3 above.

The remaining generator r1 is s–homogeneous since it belongs to the 1–dimensional
space

L
s HH2n�3.A;AŒs�/ and its s–grading is determined by the relation 2r1r0 D

t1tn�2
0

.
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Using Theorem 18, which is due to Seidel and Thomas, one gets the following conse-
quence of the computation above.

Corollary 45 If char K¤ 2 and � is of type Dn , n� 4, then the zigzag algebra A�
is intrinsically formal.

One can write explicit bases for the relevant K–vector subspaces of HH�.A�/ as
follows.

If char K ¤ 2, then
L

rCsD2 HHr .A;AŒs�/ is spanned by fs1; : : : ; sng, and for any
nonnegative integer m and i D 0; 1, a basis of

L
rCsDi�2m HHr .A;AŒs�/ is given by

fri t
m
�2; t

i
1tk

0 tm
�2 W 0� k � n� 2g:

When char KD 2, the increase in the dimensions of these spaces is immediate from
the statement of Theorem 44. The subspace

L
rCsD2 HHr .A;AŒs�/ is spanned by˚

sj ; t1u1tk
0 D sntkC1

0
W 1� j � n; 0� k �

�
n�4

2

˘	
;

and depending on the parity of n,
L

rCsD1 HHr .A;AŒs�/ is spanned by˚
u1tk

0 ; t1t l
0; t1r0t l

0 W 0� k � n�4
2
; 0� l � n�2

2

	
if n is even, and by ˚

u1t l
0; t1t l

0; t1u0t l
0 W 0� l � n�3

2

	
if n is odd.

If n is even and m is nonnegative, then a basis of
L

rCsD�m HHr .A;AŒs�/ can be
given as ˚

t l
0um
�1; r0t l

0um
�1; t1t l

0umC1
�1

; r0t1t l
0umC1
�1
W 0� l � n�2

2

	
:

If n is odd and m is nonnegative, thenM
rCsD�2m

HHr .A;AŒs�/ and
M

rCsD�2m�1

HHr .A;AŒs�/

are spanned by ˚
t l
0tm
�2; r0t l

0tm
�2;u0t l

0tm
�2;u0r0t l

0tm
�2 W 0� l � n�3

2

	
and ˚

u�1t l
0tm
�2;u�1r0t l

0tm
�2;u�1u0t l

0tm
�2;u�1u0r0t l

0tm
�2 W 0� l � n�3

2

	
;

respectively.

Therefore, the group
L

rCsD�HHr .A� ;A� Œs�/ is nontrivial if and only if � � 2. If
the ground field has characteristic 2, the rank is nC

�
n�2

2

˘
for �D 2; 1 and 4

�
n
2

˘
for
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� � 0. Otherwise the rank is n at each � � 2. Therefore, it follows from Theorem 27
that we have:

Corollary 46 The symplectic cohomology group SH�.X�/ over a field of character-
istic 0 is of rank n if � � 2 and it is trivial otherwise.

As before, for convenient access, we give tables listing the ranks of a truncated piece
of our calculation. As mentioned in Section 6.2.1, A� has a graded periodic resolution
as a graded bimodule, from which it follows easily that for � DDn , n� 4, the ranks
of the Hochschild cohomology groups obeys the following periodicity:

rank HHr .A;AŒs�/D rank HHrC.4n�6/.A;AŒs� .4n� 4/�/ for r > 0:

In this presentation, multiplication by the generator t�2 gives rise to this periodicity.
The tables below give the truncation, which includes a fundamental domain of the
period in the cases � DD4 , D5 , D6 . We have also performed computer-aided checks
in these cases.

r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

2 4 0 0 0 x 0 0 0 0 0 0 0 0

1 0 0 1 0 x 0 2 0 0 0 1 0 0

0 0 0 1 0 0 0 2 0 x 0 1 0 2x

�1 0 0 0 0 0 0 0 0 x 0 0 0 2x

Table 4: � DD4 ; x is 1 if char KD 2 , 0 otherwise

rCs # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14

2 5 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 x 0 1 0 1 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 1 0 1 0 x 0 1 0 x

�1 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 x

Table 5: � DD5 ; x is 1 if char KD 2 , 0 otherwise

Remark 47 As a result of the computation for �DDn , we have HH2.A� ;A� Œs�/D0

for all s over any field K. This rigidity has a useful implication in Floer theory: namely,
if one has a Dn–configuration of Lagrangian spheres Sv in a symplectic 4–manifold M ,
then the Floer cohomology algebra

L
v;w HF�M .Sv;Sw/ is isomorphic to A� , ie it

is independent of the symplectic manifold M . Furthermore, if char K¤ 2, intrinsic
formality implies that in fact the A1–algebra

L
v;w CF�M .Sv;Sw/ is quasi-isomorphic

to A� .
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7 Conclusion

7.1 Comparison with geometric viewpoint

We would like to discuss the algebraic computations given in Section 6.2.2 in terms of
the symplectic geometry of the Milnor fiber X� . We shall omit some of the details,
but the geometric setup that we are about to lay out is taken from [59]. Consider C3

with its standard symplectic form d˛ , where

˛ D�1
4
dc.jz1j

2
Cjz2j

2
Cjz3j

2/:

Let pW C3!C be the polynomial

p.z1; z2; z3/D znC1
1
C z2

2 C z2
3 ;

which has an isolated singularity at the origin of type An . Consider also the Hamiltonian
function H W C3!R given by

H.z1; z2; z3/D 2jz1j
2
C .nC 1/jz2j

2
C .nC 1/jz3j

2:

Let  be a cutoff function such that  .t2/D 1 for t � 1
3

and  .t2/D 0 for t � 2
3

.
For u 2Cnf0g with 0< juj< � for sufficiently small � , we consider the Milnor fiber

fz 2C3
W p.z/D  .H.z//ug:

For sufficiently small � , this is a symplectic submanifold of C3 and can be symplec-
tically identified with X� . For r � 2

3
, we let Lr D F \ fH D rg be the link of the

singularity. In other words, for such r , we have

Lr D fz 2C3
W 2jz1j

2
C .nC 1/jz2j

2
C .nC 1/jz3j

2
D r;p.z/D 0g:

r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8

2 6 0 0 0 x 0 0 0 x 0 0

1 0 0 1 0 x 0 1 0 x 0 2

0 0 0 1 0 0 0 1 0 0 0 2

�1 0 0 0 0 0 0 0 0 0 0 0

r C s # s! �9 �10 �11 �12 �13 �14 �15 �16 �17 �18

2 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0

0 0 x 0 1 0 x 0 1 0 2x

�1 0 x 0 0 0 x 0 0 0 2x

Table 6: � DD6 ; x is 1 if char KD 2 , 0 otherwise
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For r > 0, Lr inherits a contact structure ˛jLr
and outside of a compact set X� can

be identified with the positive symplectization of Lr . The appealing feature of this
setup is that the Reeb vector field Rr on Lr has a periodic flow given by

t � .z1; z2; z3/D .e
4it=r z1; e

2.nC1/it=r z2; e
2.nC1/it=r z3/:

Thus, all the Reeb orbits are along the circle direction of a Seifert fibered structure on
the lens space Lr ŠL.nC 1; n/. Furthermore, since the Reeb flow is explicit, we can
actually write down all the orbits. Let us take Y� DL1 as our contact boundary. There
are two types of simple orbits:

� Generic simple orbits of period �
2nC2

lcm.2; nC 1/. These are orbits through
points .z1; z2; z3/2Y� such that z1¤ 0. The N th multiple cover of these orbits
have Conley–Zehnder index 2N if n is odd, 4N if n is even.

� Exceptional simple orbits of period �
nC1

. These are orbits through points
.0; z2; z3/ 2 Y� . The N th multiple cover of this orbit has Conley–Zehnder
index 2

�
2N
nC1

˘
C 1 except when 2N DM.nC 1/ for some M 2 Z, in which

case the index is 2M .

For each N 2 ZC , we can consider N –fold multiple covers of generic simple orbits
together with .nC1/N –fold

�
resp. .nC1/N

2
–fold

�
for n even (resp. n odd) multiple

covers of exceptional orbits as parametrized by the manifold L.nC 1; n/ and the N –
fold cover of exceptional orbits for each N 2 ZC not divisible by nC 1

�
resp. nC1

2

�
for n even (resp. n odd) as parametrized by S1 tS1 . This leads to a standard Morse–
Bott-type spectral sequence converging to SH�.X�/ (see [60] and/or [48] for a more
recent exposition). For example, for nD 2, the E1 page is given by

(11) E
pq
1
D

8̂̂̂<̂
ˆ̂:

H q.X� IK/ if p D 0;

H q�p�2..S1 tS1/IK/ if p D 2l C 1< 0;

H q�p.L.3; 2/IK/˚H q�p�2..S1 tS1/IK/ if p D 2l < 0;

0 if p > 0:

The higher differentials come from contributions of holomorphic cylinders counted in
the differential of symplectic cohomology. A finite truncation of the E1 page of this
spectral sequence is shown in Table 7.

Comparing this with our results from Section 6.2.2, which correspond to a calculation of
the total complex at the E1 page of the spectral sequence, gives us information about
the holomorphic cylinders contributing to the differential of symplectic cohomology.
For example, if char KD 3, the spectral sequence has to be degenerate but otherwise
there has to be a nontrivial differential. See also the appendix of [48] for a similar

Geometry & Topology, Volume 21 (2017)



3384 Tolga Etgü and Yankı Lekili

r C s # s! 2 1 0 �1 �2 �3 �4

2 2 0 0 0 0 0 0

1 2 0 0 0 0 0 0

0 0 2 1 0 0 0 0

�1 0 3 0 0 0 0 0

�2 0 0 xC2 0 0 0 0

�3 0 0 2 x 0 0 0

�4 0 0 0 2 1 0 0

�5 0 0 0 3 0 0 0

�6 0 0 0 0 xC2 0 0

�7 0 0 0 0 2 x 0

�8 0 0 0 0 0 2 1

Table 7: E1 page of the Morse–Bott spectral sequence for � DA2 ; x is 1 if
char KD 3 , 0 otherwise.

spectral sequence obtained via another natural choice of a contact form on the lens
space L.nC 1; n/.

In conclusion, even though this geometric point of view leads to an appealing description
of the generators of the chain complex, it seems harder to determine the cohomology
this way, let alone its multiplicative structure. However, it is reassuring that the algebraic
approach taken in this paper and the geometric picture just outlined are compatible.

7.2 Generalizations

In this paper, we have studied Legendrian links ƒ� .S3; �std/ which are obtained by
plumbing Legendrian unknots according to a plumbing tree � . One might wonder what
Koszul duality has to say when ƒ is a more general Legendrian submanifold. Of course,
one can study this plumbing construction in higher dimensions. Both the Ginzburg
DG-algebra and the zigzag algebra have analogues corresponding to higher-dimensional
plumbings, and we expect that our calculations can be extended in a straightforward way.

Perhaps a more interesting direction to pursue is the following. One of our main
observations was that the Legendrian cohomology DG-algebra of ƒ admits a certain
natural augmentation �W LCA�.ƒ/! k such that

(12) RHomLCA�.ƒ/op.k; k/

is quasi-isomorphic to a finite-dimensional associative algebra A, whose Hochschild
complex is isomorphic to that of LCA�.ƒ/ by an A1–version of Koszul duality.

One could contemplate generalizing this construction to an arbitrary Legendrian link
ƒ whose LCA�.ƒ/ admits an augmentation � . In general, one cannot expect to have
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the connectedness and the finiteness conditions required in Theorem 21. Furthermore,
in general, LCA�.ƒ/ is not graded over Z but over Z=N for some N > 0. These
pose important restrictions, analogous to the assumption of simple connectedness that
appears in the classical story discussed in the introduction. One could partially extend
Koszul duality to these more general situations if one takes completions with respect
to the augmentation ideal.
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