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Quasi-isometric classification of right-angled Artin groups
I: The finite out case

JINGYIN HUANG

Let G and G0 be two right-angled Artin groups. We show they are quasi-isometric if
and only if they are isomorphic, under the assumption that the outer automorphism
groups Out.G/ and Out.G0/ are finite. If we only assume Out.G/ is finite, then
G0 is quasi-isometric to G if and only if G0 is isomorphic to a subgroup of finite
index in G . In this case, we give an algorithm to determine whether G and G0 are
quasi-isometric by looking at their defining graphs.

20F65, 20F67, 20F69

1 Introduction

1.1 Backgrounds and summary of results

Given a finite simplicial graph � with vertex set fvigi2I , the right-angled Artin
group (RAAG) with defining graph �, denoted by G.�/, is given by the following
presentation:

fvi for i 2 I j Œvi ; vj �D 1 if vi and vj are joined by an edgeg:

We call fvigi2I a standard generating set for G.�/; see Section 2.4.

The class of RAAGs enjoys a balance between simplicity and complexity. On one hand,
RAAGs have many nice geometric, combinatorial and group theoretic properties (see
Charney [16] for a summary); on the other hand, this class inherits the full complexity
of the collection of finite simplicial graphs, and even a single RAAG could have very
complicated subgroups (see, for example, Bestvina and Brady [8]).

In recent years, RAAGs have become important models to understand other unknown
groups, either by (virtually) embedding the unknown groups into some RAAGs (such a
program is outlined in Wise [61, Section 6]; see also Agol [2], Hagen and Wise [31; 32],
Haglund and Wise [36], Ollivier and Wise [52], Przytycki and Wise [54; 55] and
Wise [60; 62]), or by finding embedded copies of RAAGs in the unknown groups (see
Baik, Kim and Koberda [3], Clay, Leininger and Mangahas [19], Kim and Koberda [44],
Koberda [48] and Taylor [59]).
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In this paper, we study the asymptotic geometry of RAAGs and classify a particular class
of RAAGs by their quasi-isometric types. Previously, the quasi-isometric classification
of RAAGs has been done for the following two classes:

(1) Tree groups It is shown by Behrstock and Neumann [7] that for any two
trees �1 and �2 with diameter � 3, the RAAGs G.�1/ and G.�2/ are quasi-
isometric. Higher-dimensional analogs of tree groups are studied by Behrstock,
Januszkiewicz and Neumann [5].

(2) Atomic groups A RAAG is atomic if its defining graph � is connected and
does not contain valence-one vertices, cycles of length <5 and separating closed
stars. It is shown by Bestvina, Kleiner and Sageev [9] that two atomic RAAGs
are quasi-isometric if and only if they are isomorphic.

Note that atomic groups are much more “rigid” than tree groups. We define the
dimension of G.�/ to be the maximal n such that G.�/ contains a Zn subgroup, and
it coincides with the cohomological dimension of G.�/. All atomic groups are 2–
dimensional; hence it is natural to ask what higher-dimensional RAAGs satisfy similar
rigidity properties as atomic RAAGs. This is the starting point of the current paper.

Since we are looking for RAAGs which are rigid, those with small quasi-isometry
groups would be reasonable candidates. However, even in the atomic case, the quasi-
isometry group QI.G.�// is huge; see the discussion of quasi-isometry flexibility in [9,
Section 11]. Then we turn to the outer automorphism group Out.G.�// for guidance.

Now we ask whether those RAAGs with “small” outer automorphism groups are also
geometrically rigid in an appropriate sense. Actually, “small” outer automorphism
groups and (quasi-isometric or commensurability) rigidity results come together in
several other cases: for example, higher rank lattices (Eskin [25], Eskin and Farb [26],
Kleiner and Leeb [45] and Mostow [51]), mapping class groups (Behrstock, Kleiner,
Minsky and Mosher [6] and Hamenstädt [37]), Out.Fn/ (Farb and Handel [27]), etc.
Our first result is about the quasi-isometric classification for RAAGs with finite outer
automorphism group.

Theorem 1.1 Pick G.�1/ and G.�2/ such that Out.G.�i // is finite for i D 1; 2.
Then they are quasi-isomeric if and only if they are isomorphic.

This theorem is proved in Section 4. See Theorem 4.13 for a more detailed version.

The collection of RAAGs with finite outer automorphism group is a reasonably large
class. Recall that there is a one-to-one correspondence between finite simplicial graphs
and RAAGs (see Droms [23]); thus it makes sense to talk about a random RAAG by
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considering the Erdös–Rényi model for random graphs. If the parameters of the model
are in the right range, then almost all RAAGs have finite outer automorphism group;
see Charney and Farber [18] and Day [22].

The class of 2–dimensional RAAGs with finite outer automorphism group is strictly
larger than the class of atomic RAAGs; moreover, there are plenty of higher-dimensional
RAAGs with finite outer automorphism group.

Whether Out.G.�// is finite or not can be easily read from �. We defined the closed
star of a vertex v in �, denoted by St.v/, to be the full subgraph (see Section 2.1)
spanned by v and vertices adjacent to v . Similarly, lk.v/ is defined to be the full
subgraph spanned by vertices adjacent to v . Note that this definition is slightly different
from the usual one.

By results from Laurence [49] and Servatius [57], Out.G.�// is generated by the
following four types of elements (we identify the vertex set of � with a standard
generating set of G.�/):

(1) Given a vertex v 2 �, the group automorphism defined by sending v! v�1 and
fixing all other generators.

(2) Graph automorphisms of �.

(3) If lk.w/ � St.v/ for vertices w; v 2 �, sending w! wv and fixing all other
generators induces a group automorphism, called a transvection. It is an adjacent
transvection when d.v;w/D 1, and a nonadjacent transvection otherwise.

(4) Suppose � nSt.v/ is disconnected. Then one obtains a group automorphism by
picking a connected component C and sending w! vwv�1 for each vertex
w 2 C (all other generators are fixed). It is called a partial conjugation.

Elements of type (3) or (4) have infinite order in Out.G.�// while elements of type
(1) or (2) are of finite order. Out.G.�// is finite if and only if � does not contain
any separating closed star and there do not exist distinct vertices v;w 2 � such that
lk.w/� St.v/.

Theorem 1.2 Suppose Out.G.�1// is finite. Then the following are equivalent:

(1) G.�2/ is quasi-isometric to G.�1/.

(2) G.�2/ is isomorphic to a subgroup of finite index in G.�1/.

(3) �e2 is isomorphic to �e1 .
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Here �e denotes the extension graph introduced by Kim and Koberda in [42]; see
Definition 2.11. Extension graphs can be viewed as “curve graphs” for RAAGs; see
Kim and Koberda [43]. This analog carries on to the aspect of quasi-isometric rigidity.
Namely, if G is a mapping class group and qW G0! G is a quasi-isometry, then it
is shown in [6] that G0 naturally acts on the curve graph associated with G . This is
still true if G is a RAAG with some restriction on its outer automorphism group, for
example, if Out.G/ is finite.

However, in general, there exists a pair of commensurable RAAGs with different
extension graphs; see Example 3.22. There also exists a pair of RAAGs, not quasi-
isometric, with isomorphic extension graphs; see Huang [38, Section 5.3].

Motivated by Theorem 1.2(2), we now look at finite-index RAAG subgroups (ie sub-
groups which are also RAAGs) of G.�1/.

Given a RAAG G.�/ (not necessarily having a finite outer automorphism group) with
a standard generating set S , let dS be the word metric on G.�/ with respect to S .
A subset K �G.�/ is S –convex if for any three points x; y 2K and z 2G.�/ such
that dS .x; y/ D dS .x; z/C dS .z; y/, we must have z 2 K . Every finite S –convex
subset K naturally gives rise to a finite-index RAAG subgroup G �G.�/ such that K
is the fundamental domain of the left action GÕG.�/. For example, if G.�/DZ˚Z
and K is a rectangle of size n by m, then the corresponding subgroup is of the form
nZ˚mZ. The detailed construction in the more general case is given in Section 6.1.
G is called an S –special subgroup of G.�/. A subgroup of G.�/ is special if it is
S –special for some standard generating set S . A similar construction in the case of
right-angled Coxeter groups is in Haglund [34].

Here is an alternative description in terms of the canonical completion introduced by
Haglund and Wise [35]. Let S.�/ be the Salvetti complex of G.�/ (see Section 2.4)
and let X.�/ be the universal cover. We pick an identification between G.�/ and
the 0–skeleton of X.�/. The above subset K gives rise to a convex subcomplex
xK �X.�/. Then the corresponding special subgroup is the fundamental group of the

canonical completion with respect the local isometry xK! S.�/.

Our next result says if Out.G.�// is finite, then this is the only way to obtain finite-index
RAAG subgroups of G.�/.

Theorem 1.3 Suppose Out.G.�// is finite, and let S be a standard generating set
for G.�/. Then all finite-index RAAG subgroups are S –special. Moreover, there is
a one-to-one correspondence between nonnegative finite S –convex subsets of G.�/
based at the identity and finite-index RAAG subgroups of G.�/.

See Theorem 6.13 for a slight reformulation of Theorem 1.3.
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We need to explain two terms: nonnegative and based at the identity. For example, take
G D nZ˚mZ inside Z˚Z; then any n by m rectangle could be the fundamental
domain for the action of G . We naturally require the rectangle to be in the first quadrant
and contain the identity, which would give us a unique choice. Similar things can be
done in all RAAGs, and these two terms will be defined precisely in Section 6.

The most simple example is when G.�/D Z; we have a one-to-one correspondence
between finite-index subgroups of the form nZ and intervals of the form Œ0; n� 1�.

Corollary 1.4 If Out.G.�1// is finite, then G.�2/ is quasi-isometric to G.�1/ if and
only if G.�2/ is isomorphic to a special subgroup of G.�1/.

It turns out that there is an algorithm to enumerate the defining graphs of all special
subgroups of a RAAG:

Theorem 1.5 If Out.G.�// is finite, then G.� 0/ is quasi-isometric to G.�/ if and
only if � 0 can be obtained from � by finitely many GSEs. In particular, there is an
algorithm to determine whether G.� 0/ and G.�/ are quasi-isometric by looking at the
graphs � and � 0.

A GSE is a generalized version of a star extension in [9, Example 1.4]; see also [42,
Lemma 50]. It will be defined in Section 6.

A question motivated by Theorem 1.2 is the following:

Question 1.6 Let G.�/ be a RAAG such that Out.G.�// is finite, and let H be a
finitely generated group quasi-isometric to G.�/. What can we say about H ?

As a partial answer to this question, we have the following:

Theorem 1.7 (Huang and Kleiner [40]) Let G.�/ and H be as in Question 1.6. Then
the induced quasi-action H ÕX.�/ is quasi-isometrically conjugate to a geometric
action H ÕX 0 . Here X 0 is a CAT.0/ cube complex which is closely related to X.�/.

1.2 Comments on the proof

1.2.1 Proof of Theorem 1.1 We start by introducing notation. The Salvetti complex
of G.�/ is denoted by S.�/, the universal cover of S.�/ is denoted by X.�/, and
flats in X.�/ that cover standard tori in S.�/ are called standard flats. See Section 2.4
for precise definition of these terms.

Let qW X.�/! X.� 0/ be a quasi-isometry. The proof of Theorem 1.1 follows the
scheme of the proof of the main theorem in [9]. Similar schemes can also be found
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in [6; 45]. There are three steps in [9]. First they show that q maps top-dimensional
flats to top-dimensional flats up to finite Hausdorff distance. However, the collection
of all top-dimensional flats is too large to be linked directly to the combinatorics of
RAAGs, so the second step is to show that quasi-isometries preserve standard flats up
to finite Hausdorff distance. The third step is to straighten the quasi-isometry such that
it actually maps standard flats to standard flats exactly, not just up to finite Hausdorff
distance, and the conclusion follows automatically.

In our case, the first step has been done in Huang [39], where we show q still preserves
top-dimensional flats up to finite Hausdorff distance in the higher-dimensional case.
No assumption on the outer automorphism group is needed for this step.

The second step consists of two parts. First we show q preserves certain top-dimensional
maximal products up to finite Hausdorff distance. Then one wishes to pass to standard
flats by intersecting these top-dimensional objects. However, in the higher-dimensional
case, a lower-dimensional standard flat may not be the intersection of top-dimensional
objects, and even when it is an intersection, one may not be able to read this information
directly from the defining graph �. This is quite different from the 2–dimensional
situation in [9] and relies on several new ingredients.

A necessary condition for q to preserve the standard flats is that every element in
Out.G.�// does so, which implies there could not be any transvections in Out.G.�//.
This condition is also sufficient.

Theorem 1.8 Suppose Out.G.�// is transvection-free. Then there exists a positive
constant D D D.L;A; �/ such that for any standard flat F � X.�/, there exists a
standard flat F 0 �X.� 0/ such that dH .q.F /; F 0/ < D .

Here dH denotes the Hausdorff distance.

In Step 3, we introduce an auxiliary simplicial complex P.�/, which serves as a link be-
tween the asymptotic geometry of X.�/ and the combinatorial structure of X.�/. More
precisely, on one hand, P.�/ can be viewed as a simplified Tits boundary for X.�/; on
the other hand, one can read certain information about the wall space structure of X.�/
from P.�/. This complex turns out to coincide with the extension graph introduced
in [42], where it was motivated from the viewpoint of the mapping class group.

Denote the Tits boundary of X.�/ by @T .X.�//, and let T .�/ � @T .X.�// be the
union of Tits boundaries of standard flats in X.�/. Then T .�/ has a natural simplicial
structure. However, T .�/ contains redundant information; this can be seen in the
similar situation where the link of the base point of S.�/ looks more complicated
than �, but they essentially contain the same information.
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This redundancy can be resolved by replacing the spheres in T .X/ that arise from
standard flats by simplexes of the same dimension. This gives rise to a well-defined sim-
plicial complex P.�/ since for any standard flats F1 and F2 with @TF1\ @TF2 ¤∅,
there exists a standard flat F such that @TF D @TF1 \ @TF2 . See Section 4.1 for
more properties of P.�/.

By Theorem 1.8, if both Out.G.�// and Out.G.� 0// are transvection-free, then q
induces a boundary map @qW P.�/! P.� 0/, which is a simplicial isomorphism. Next
we want to consider the converse and reconstruct a map X.�/! X.� 0/ from the
boundary map @q in the following sense. Pick a vertex p 2X.�/, and let fFigniD1 be
the collection of maximal standard flats containing p . By Theorem 1.8, for each i ,
there exists a unique maximal standard flat F 0i �X.� 0/ such that dH .q.Fi /; F 0i / <1.
One may wish to map p , which turns out to be the intersection of the Fi , to the
intersection of all the F 0i . However, in general,

Tn
iD1 F

0
i may be empty, or it may

contain more than one point; hence our map may not be well defined.

It turns out that if we also rule out partial conjugations in Out.G.�//, then
Tn
iD1 F

0
i

is exactly a point. This give rises to a well-defined map xqW X.�/.0/!X.� 0/.0/ which
maps vertices in a standard flat to vertices in a standard flat. If Out.G.� 0// is also finite,
then we can define an inverse map of xq , and this is enough to deduce Theorem 1.1.

1.2.2 Proof of Theorem 1.2 If only Out.G.�// is assumed to be finite, we can
still recover the fact that @q is a simplicial isomorphism (this is nontrivial, since
Theorem 1.8 does not say that for any standard flat F 0 �X.� 0/, we can find a standard
flat F � X.�/ such that dH .q.F /; F 0/ < 1). Hence we can define xq as before.
However, the inverse of xq does not exist in general.

The next step is to trying to extend xq to a cubical map (Definition 2.1) from X.�/

to X.� 0/. There are obvious obstructions: though xq maps vertices in a standard
geodesic to vertices in a standard geodesic, xq may not preserve the order of these
vertices. A typical example is given in Figure 1, where one can permute the green level
and the red level in a tree; then the order of vertices in the black line is not preserved.

A remedy is to “flip backwards”. Namely we will precompose xq with a sequence of
permutations of “levels” such that the resulting map restricted to each standard geodesic
respects the order. Then we can extend xq to a cubical map. This argument relies on
the understanding of quasi-isometric flexibility, namely how much room we have to
perform these flips. One formulation of this aspect is the following.

Theorem 1.9 If Out.G.�// is finite, then Aut.P.�//Š Isom.G.�/; dr/.

Here dr denotes the syllable metric, defined in Section 4.3; see also [43, Section 5.2].
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�!

Figure 1: Flipping of levels

Theorem 1.2, Theorem 1.3, Corollary 1.4 and Theorem 1.5 rely on the cubical map xq .
In particular, xq�1.x/ (x 2 X.� 0/ is a vertex) is a compact convex subcomplex, and
this is how we obtain the S –convex subset in Theorem 1.3.

1.3 Organization of the paper

Section 2 contains basic notation used in this paper and some background material
about CAT.0/ cube complexes and RAAGs. In particular, Section 2.3 collects several
technical lemmas about CAT.0/ cube complexes. One can skip Section 2.3 on first
reading and come back when needed.

In Section 3, we prove Theorem 1.8. Section 3.1 is about the stability of top-dimensional
maximal product subcomplexes under quasi-isometries, and Section 3.2 deals with
lower-dimensional standard flats. In Section 4, we prove Theorem 1.1. We will construct
the extension complex from our viewpoint in Section 4.1 and explain how is this object
is related to Tits boundary, flat space and contact graph. In Section 4.2, we describe
how to reconstruct the quasi-isometry.

Sections 5.1 and 5.2 are devoted to proving Theorem 1.2. We prove Theorem 1.3,
Corollary 1.4 and Theorem 1.5 in Section 6.
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2 Preliminaries

2.1 Notation and conventions

All graphs in this paper are simple.

The flag complex of a graph � is denoted by F.�/; ie F.�/ is a flag complex whose
1–skeleton is �.

A subcomplex K 0 in a combinatorial polyhedral complex K is full if K 0 contains all
the subcomplexes of K which have the same vertex set as K 0 . If K is 1–dimensional,
then we also call K 0 a full subgraph.

We use “�” to denote the join of two simplicial complexes and “ı” to denote the join
of two graphs. Let K be a simplicial complex or a graph. By viewing the 1–skeleton
as a metric graph with edge length D 1, we obtain a metric defined on the 0–skeleton,
which we denote by d . Let N � K be a subcomplex. We define the orthogonal
complement of N , denoted by N? , to be the set fw 2 K.0/ j d.w; v/ D 1 for any
vertex v 2 N g; define the link of N , denoted by lk.N /, to be the full subcomplex
spanned by N? ; and define the closed star of N , denoted by St.N /, to be the full
subcomplex spanned by N [lk.N /. Suppose L is a subcomplex such that N �L�K .
We denote the closed star of N in L by St.N;L/. If L is a full subcomplex, then
St.N;L/D St.N /\L. We can define lk.N;L/ in a similar way. Let M �K be an
arbitrary subset. We denote the collection of vertices inside M by v.M/.

We use id to denote the identity element of a group, and we use Id to denote the
identity map from a space to itself.

Let .X; d/ be a metric space. The open ball of radius r centered at p in X will be
denoted by B.p; r/. Given subsets A;B �X , the open r –neighborhood of a subset A
is denoted by Nr.A/. The diameter of A is denoted by diam.A/. The Hausdorff
distance between A and B is denoted by dH .A;B/. We will also use the adapted
notation of coarse set theory introduced in [50], displayed in the following table:

symbol meaning

A�r B A�Nr.B/

A�1 B 9r > 0 such that A�Nr.B/

A
r
D B dH .A;B/� r

A
1
D B dH .A;B/ <1

A\r B Nr.A/\Nr.B/
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2.2 CAT.0/ space and CAT.0/ cube complex

The standard reference for CAT.0/ spaces is [13].

Let .X; d/ be a CAT.0/ space. Pick x; y 2X , we denote the unique geodesic segment
joining x and y by xy . For y; z 2X n fxg, denote the comparison angle between xy
and xz at x by †x.y; z/ and the Alexandrov angle by †x.y; z/.

The boundary of X , denoted by @X , is the collection of asymptotic classes of geodesic
rays. The boundary @X has an angular metric, which is defined by

†.�1; �2/D lim
t;t 0!1

†p.l1.t/; l2.t
0//;

where l1 and l2 are unit speed geodesic rays emanating from a base point p such
that li .1/ D �i for i D 1; 2. This metric does not depend on the choice of p , and
the length metric associated to the angular metric, denoted by dT , is called the Tits
metric. The Tits boundary, denoted by @TX , is the CAT.1/ space .@X; dT /; see [13,
Chapters II.8 and II.9].

Given two metric spaces .X1; d1/ and .X2; d2/, denote the Cartesian product of X1
and X2 by X1�X2 , ie d D

p
d21 C d

2
2 on X1�X2 . If X1 and X2 are CAT.0/, then

so is X1 �X2 .

An n–flat in a CAT.0/ space X is the image of an isometric embedding En! X .
Note that any flat is convex in X .

Pick a convex subset C �X ; then C is also CAT.0/. We use �C to denote the nearest
point projection from X to C ; it is well defined and 1–Lipschitz. Moreover, pick
x 2 X n C ; then †�C .x/.x; y/ �

�
2

for any y 2 C such that y ¤ �C .x/; see [13,
Proposition II.2.4].

If C 0�X is another convex set, then C 0 is parallel to C if d. � ; C /jC 0 and d. � ; C 0/jC
are constant functions. There is a natural isomorphism between C � Œ0; d.C; C 0/� and
the convex hull of C and C 0 in this case. We define the parallel set of C , denoted
by PC , to be the union of all convex subsets of X parallel to C . If C has the
geodesic extension property, or more generally, C is boundary-minimal (see [14,
Section 3.C]), then PC is a convex subset in X . Moreover, PC admits a canonical
splitting PC D C �C? , where C? is also a CAT.0/ space.

Now we turn to CAT.0/ cube complexes. All cube complexes in this paper are assumed
to be finite dimensional.

A cube complex X is obtained by gluing a collection of unit Euclidean cubes isometri-
cally along their faces, see [13, Definition II.7.32] for a precise definition. Then the
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cube complex has a natural piecewise Euclidean metric. This metric is complete and
geodesic if X is finite dimensional [13, I.7.19] and is nonpositively curved if the link
of each vertex is a flag complex [29]. If in addition X is simply connected, then this
metric is CAT.0/ and X is said to be a CAT.0/ cube complex. We can put a different
metric on the 1–skeleton X .1/ by considering it as a metric graph with all edge lengths
1. This is called the `1 metric. We use d for the CAT.0/ metric on X and d`1 for the
`1 metric on X .1/ . The natural injection .X .1/; d`1/ ,! .X; d/ is a quasi-isometry;
see [13, I.7.31] or [15, Lemma 2.2]. In this paper, we will mainly use the CAT.0/
metric unless otherwise specified. Also any notions which depend on the metric, like
geodesic, convex subset, convex hull etc, will be understood automatically with respect
to the CAT.0/ metric unless otherwise specified.

Definition 2.1 [15, Section 2.1] A cellular map between CAT.0/ cube complexes is
cubical if its restriction � ! � between cubes factors as � ! �! � , where the first
map � ! � is a natural projection onto a face of � and the second map �! � is an
isometry.

A geodesic segment, geodesic ray or geodesic line in X is an isometric embedding of
Œa; b�, Œ0;1/ or R into X with respect to the CAT.0/ metric. A combinatorial geo-
desic segment, combinatorial geodesic ray or combinatorial geodesic is an `1–isometric
embedding of Œa; b�, Œ0;1/ or R into X .1/ such that its image is a subcomplex.

Let X be a CAT.0/ cube complex and let Y �X be a subcomplex. Then the following
are equivalent (see [34]):

(1) Y is convex with respect to the CAT.0/ metric.

(2) Y is a full subcomplex and Y .1/ �X .1/ is convex with respect to the `1 metric.

(3) Lk.p; Y / (the link of p in Y ) is a full subcomplex of Lk.P;X/ for every vertex
p 2 Y .

The collection of convex subcomplexes in a CAT.0/ cube complex enjoys the following
version of Helly’s property [28]:

Lemma 2.2 Let X be as above, and let fCigkiD1 be a collection of convex subcom-
plexes. If Ci \Cj ¤∅ for any 1� i ¤ j � k , then

Tk
iD1 Ci ¤∅.

Lemma 2.3 Let X1 and X2 be two CAT.0/ cube complexes, and let K �X1 �X2
be a convex subcomplex. Then K admits a splitting K D K1 �K2 , where Ki is a
convex subcomplex of Xi for i D 1; 2.

The lemma is clear when X1Š Œ0; 1�, and the general case follows from this special case.
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Now we come to the notion of hyperplane, which is the cubical analog of “track”
introduced in [24]. A hyperplane h in a cube complex X is a subset such that:

(1) h is connected.

(2) For each cube C �X , either h\C is empty or it is a union of mid-cubes of C .

(3) h is minimal; ie if there exists h0 � h satisfying (1) and (2), then hD h0 .

Recall that a mid-cube of C D Œ0; 1�n is a subset of the form f �1i
�
1
2

�
, where fi is one

of the coordinate functions.

If X is a CAT.0/ cube complex, then the following are true (see [56]):

(1) Each hyperplane is embedded; ie h\C is either empty or a mid-cube of C (in
more general cube complexes, it is possible that h\C contains two or more
mid-cubes of C ).

(2) h is a convex subset in X , and h with the induced cell structure from X is also
a CAT.0/ cube complex.

(3) X n h has exactly two connected components; they are called halfspaces. The
closure of a halfspace is called closed halfspace, which is also convex in X with
respect to the CAT.0/ metric.

(4) Let Nh be the smallest subcomplex of X that contains h. Then Nh is a convex
subcomplex of X , and there is a natural isometry i W Nh! h� Œ0; 1� such that
i.h/D h�

˚
1
2

	
. Nh is called the carrier of h.

(5) For every edge e �X , there exists a unique hyperplane he which intersects e
in its midpoint. In this case, we say he is the hyperplane dual to e and e is an
edge dual to the hyperplane he .

(6) Lemma 2.2 is also true for a collection of hyperplanes.

Now it is easy to see an edge path ! � X is a combinatorial geodesic segment if
and only if there do not exist two different edges of ! such that they are dual to the
same hyperplane. Moreover, for two vertices v;w 2X , their `1 distance is exactly the
number of hyperplanes that separate v from w .

Pick an edge e �X , and let �eW X ! e Š Œ0; 1� be the CAT.0/ projection. Then:

(1) The hyperplane dual to e is exactly ��1e
�
1
2

�
.

(2) ��1e .t/ is convex in X for any 0 � t � 1; moreover, if 0 < t < t 0 < 1, then
��1e .t/ and ��1e .t 0/ are parallel.

(3) Let Nhe be the carrier of the hyperplane dual to e . Then Nhe is the closure of
��1e .0; 1/. Alternatively, we can describe Nhe as the parallel set of e .
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2.3 Coarse intersections of convex subcomplexes

Lemma 2.4 [39, Lemma 2.10] Let X be a CAT.0/ cube complex of dimension n,
and let C1 , C2 be convex subcomplexes. Put � D d.C1; C2/. Let Y1 D fy 2 C1 j
d.y; C2/D�g and Y2 D fy 2 C2 j d.y; C1/D�g. Then:

(1) Y1 and Y2 are not empty.

(2) Y1 and Y2 are convex; �C1 maps Y2 isometrically onto Y1 and �C2 maps Y1
isometrically onto Y2 ; the CAT.0/ convex hull of Y1 [ Y2 is isometric to
Y1 � Œ0;�� (since we are taking the CAT.0/ convex hull, it does not has to be a
subcomplex).

(3) Y1 and Y2 are subcomplexes, and �C2 jY1 is a cubical isomorphism from Y1
to Y2 with its inverse given by �C1 jY2 .

(4) For any � > 0, there exists AD A.�; n; �/ such that if d.p1; Y1/� � > 0 and
d.p2; Y2/� � > 0 for p1 2 C1 and p2 2 C2 , then

(2-1) d.p1; C2/��CAd.p1; Y1/ and d.p2; C1/��CAd.p2; Y2/:

Remark 2.5 Equation (2-1) implies for any r > 0, we have .C1 \r C2/ �r 0 Yi
(i D 1; 2), where r 0 D min.1; .2r � �/=A/ C r and A D A.�; n; 1/. Moreover,
@TC1\ @TC2 D @T Y1 D @T Y2 .

The remark implies Y1
1
D Y2

1
D .C1\r C2/ for r large enough. We use I.C1; C2/D

.Y1; Y2/ to describe this situation, where I stands for the word “intersect”. The next
lemma gives a combinatorial description of Y1 and Y2 .

Lemma 2.6 Let X , C1 , C2 , Y1 and Y2 be as above. Pick an edge e in Y1 (or Y2 ),
and let h be the hyperplane dual to e . Then h\Ci ¤∅ for i D 1; 2. Conversely, if
a hyperplane h0 satisfies h0 \Ci ¤ ∅ for i D 1; 2, then h0 is the dual hyperplane of
some edge e0 in Y1 .or Y2/. Moreover, I.h0\C1; h0\C2/D .h0\Y1; h0\Y2/.

Proof The first part follows from Lemma 2.4. Let I.h0 \C1; h0 \C2/ D .Y 01; Y 02/.
Pick x 2 Y 01 and let x0D�h0\C2.x/2 Y

0
2 . Then �h0\C1.x

0/D x . Let Nh0 D h0� Œ0; 1�
be the carrier of h0 . Then .h0\Ci /�

�
1
2
� �; 1

2
C �

�
D Ci \

�
h0 �

�
1
2
� �; 1

2
C �

��
for

i D 1; 2 and � < 1
2

. Thus for any y 2 C2 , we have †x0.x; y/ � �
2

, which implies
x0D�C2.x/. Similarly, xD�C1.x

0/D�C1 ı�C2.x/; hence x 2 Y1 and Y 01� Y1 . By
the same argument, Y 02� Y2 ; thus Y 0i D Yi \h0 for i D 1; 2, and the lemma follows.

Lemma 2.4, Remark 2.5 and Lemma 2.6 can also be applied to CAT.0/ rectangle
complexes of finite type, whose cells are of the form

Qn
iD1Œ0; ai �. “Finite type” means

there are only finitely many isometry types of rectangle cells in the rectangle complex.
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Lemma 2.7 Let X;C1; C2; Y1 and Y2 be as above. If h is a hyperplane separating C1
from C2 , then there exists a convex set Y � h such that Y is parallel to Y1 (or Y2 ).

Proof Let �D d.C1; C2/, and let M D Y1� Œ0;�� be the convex hull of Y1 and Y2 .
We want to prove M \ hD Y1 � ftg � Y1 � Œ0;�� for some t 2 Œ0;��. It suffices to
show for any edge e � Y1 , we have .e� Œ0;��/\ hD e� ftg for some t .

Pick a point x 2 e , and consider the point fxg � ftg in M D Y1 � Œ0;��. Since
e� ftg and e are parallel, e� ftg sits inside a cube and is parallel to an edge of this
cube. Thus either e � ftg � h or e � ftg is parallel to some edge dual to h. But the
second case implies that h is dual to e and h \ Y1 ¤ ∅, which is impossible, so
e � ftg � .e � Œ0;��/\ h. Now we are done since .fxg � Œ0;��/\ h is exactly one
point for each x 2 e .

2.4 Right-angled Artin groups

Pick a finite simplicial graph �. Let G.�/ be a RAAG. A generating set S �G.�/ is
called a standard generating set if all relators in the associated group presentation are
commutators. Each standard generating set S determines a graph �S whose vertices
are elements in S , and two vertices are adjacent if the corresponding group elements
commute. It follows from [23] that the isomorphism type of �S does not depend on
the choice of the standard generating set S ; in particular, �S is isomorphic to �.

Let S be a standard generating set for G.�/. We label the vertices of � by elements
in S . The RAAG G.�/ has a nice Eilenberg–Mac Lane space S.�/, called the Salvetti
complex; see [17; 16]. This is a nonpositively curved cube complex. The 2–skeleton of
S.�/ is the usual presentation complex of G.�/. If the presentation complex contains
a copy of 2–skeleton of a 3–torus, then we attach a 3–cell to obtain a 3–torus. We
can build S.�/ inductively in this manner, and this process will stop after finitely
many steps. The closure of each k–cell in S.�/ is a k–torus. A torus of this kind is
called a standard torus. There is a one-to-one correspondence between the k–cells
(or standard tori of dimension k ) in S.�/ and k–cliques (complete subgraphs of k
vertices) in � ; thus dim.S.�//D dim.F.�//C 1. We define the dimension of G.�/
to be the dimension of S.�/.

Denote the universal cover of S.�/ by X.�/, which is a CAT.0/ cube complex. Our
previous labeling of vertices of � induces a labeling of the standard circles of S.�/,
which lifts to a labeling of edges of X.�/. We choose an orientation for each standard
circle of S.�/, and this gives us a directed labeling of the edges in X.�/. If we pick a
base point v 2X.�/ (v is a vertex), then there is a one-to-one correspondence between
words in G.�/ and edge paths in X.�/ which start at v .
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Each full subgraph � 0 � � gives rise to a subgroup G.� 0/ ,!G.�/. A subgroup of
this kind is called a S –standard subgroup and a left coset of an S –standard subgroup
is called an S –standard coset (we will omit S when the generating set is clear). There
is also an embedding S.� 0/ ,! S.�/ which is locally isometric. Let pW X.�/! S.�/

be the covering map. Then each connected component of p�1.S.� 0// is a convex
subcomplex isometric to X.� 0/. We will call these components standard subcomplexes
with defining graph � 0. A standard k–flat is a standard complex which covers a
standard k–torus in S.�/. When k D 1, we also call it a standard geodesic.

We pick an identification of the Cayley graph of G.�/ with the 1–skeleton of X.�/;
hence G.�/ is identified with the vertices of X.�/. Let v 2X.�/ be the base vertex
which corresponds to the identity in the Cayley graph of G.�/. Then for any h2G.�/,
the convex hull of fhgvgg2G.� 0/ is a standard subcomplex associated with � 0. Thus
there is a one-to-one correspondence between standard subcomplexes with defining
graph � 0 in X.�/ and left cosets of G.� 0/ in G.�/.

Note that for every edge e 2X.�/, there is a vertex in � which shares the same label
as e , and we denote this vertex by Ve . If K �X.�/ is a subcomplex, we define VK
to be fVe j e is an edge in Kg and �K to be the full subgraph spanned by VK . This
subgraph is called the support of K . In particular, if K is a standard subcomplex, then
the defining graph of K is �K .

Every finite simplicial graph � admits a canonical join decomposition

� D �1 ı�2 ı � � � ı�k;

where �1 is the maximal clique join factor and �i does not allow any nontrivial join
decomposition and is not a point, for 2 � i � k . The graph � is irreducible if this
join decomposition is trivial. This decomposition induces a product decomposition
X.�/ D En �

Qk
iD2X.�i /, which is called the De Rahm decomposition of X.�/.

This is consistent with the canonical product decomposition of CAT.0/ cube complex
discussed in [15, Section 2.5].

We turn to the asymptotic geometry of RAAGs. A right-angled Artin group G.�/
is one-ended if and only if � is connected. Moreover, the n–connectivity at infinity
of G.�/ can be read off from � ; see [11]. In order to classify all RAAGs up to
quasi-isometry, it suffices to consider those one-ended RAAGs. This follows from the
main results in [53]. Moreover, we deduce the following lemma from [53, Lemma 3.2].

Lemma 2.8 If qW X.�/ ! X.� 0/ is an .L;A/–quasi-isometry, then there exists
D DD.L;A/ > 0 such that for any connected component �1 � � where �1 is not
a point and any standard subcomplex K1 � X.�/ with defining graph �1 , there is a
unique connected component � 01 � � 0 and a unique standard subcomplex K 01 �X.� 0/
with defining graph � 01 such that dH .q.K1/;K 01/ < D .
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It is shown in [4] and [1] that G.�/ has linear divergence if and only if � is either a
join or a point, which implies � being a join is a quasi-isometric invariant. Moreover,
their results together with Theorem B of [41] implies that the De Rahm decomposition
is stable under quasi-isometry:

Theorem 2.9 Given XDX.�/ and X 0DX.� 0/, let XDRn�
Qk
iD1X.�i / and X 0D

Rn
0

�
Qk0

jD1X.�
0
j / be the corresponding De Rahm decompositions. If �W X !X 0 is

an .L;A/–quasi-isometry, then nDn0 , kDk0 and there exist constants L0DL0.L;A/,
A0DA0.L;A/ and DDD.L;A/ such that after reindexing the factors in X 0 , we have
.L0; A0/–quasi-isometry �i W X.�i /!X.� 0i / with d.p0 ı�;

Qk
iD1 �i ıp/ <D , where

pW X !
Qk
iD1X.�i / and p0W X 0!

Qk
iD1X.�

0
i / are the projections.

Thus in order to study the quasi-isometric classification of RAAGs, it suffices to
study those RAAGs which are one-ended and irreducible, but this will rely on finer
quasi-isometric invariants of RAAGs.

Recall that in the case of Gromov hyperbolic spaces, quasi-isometries map geodesics
to geodesics up to finite Hausdorff distance, hence induce a well-defined boundary
map. The analog of this fact for 2–dimensional RAAGs has been established in [10], ie
quasi-isometries map 2–flats to 2–flats up to finite Hausdorff distance. The following
is a higher-dimensional generalization of [10, Theorem 3.10].

Theorem 2.10 [39, Theorem 5.20] If �W X.�1/ ! X.�2/ is an .L;A/–quasi-
isometry, then dim.X.�1// D dim.X.�2//, and there is a constant D D D.L;A/

such that for any top-dimensional flat F1 �X.�1/, there is a unique flat F2 �X.�2/
with dH .�.F1/; F2/ < D .

For each right-angled Artin group G.�/, there is a simplicial graph �e, called the
extension graph, which is introduced in [42]. Extension graphs can be viewed as “curve
graphs” for RAAGs [43].

Definition 2.11 [42, Definition 1] The vertex set of �e consists of words in G.�/ that
are conjugate to elements in S (recall S is a standard generating set for G.�/), and two
vertices are adjacent in �e if and only if the corresponding words commute in G.�/.

The flag complex of the extension graph is called the extension complex.

Since the curve graph captures the combinatorial pattern of how Dehn twist flats
intersect in a mapping class group, it plays an important role in the quasi-isometric
rigidity of a mapping class group [37; 6]. Similarly, we will see in Section 4 that
the extension graph captures the combinatorial pattern of the coarse intersection of a
certain collection of flats in a RAAG, and it is a quasi-isometric invariant for certain
classes of RAAGs.
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3 Stable subgraph

We now study the behavior of certain standard subcomplexes under quasi-isometries.

3.1 Coarse intersection of standard subcomplexes and flats

Lemma 3.1 Let � be a finite simplicial graph and let K1 , K2 be two standard
subcomplexes of X.�/. If .Y1; Y2/D I.K1; K2/, then Y1 and Y2 are also standard
subcomplexes.

Proof The lemma is clear if K1\K2¤∅. Now we assume d.K1; K2/D c > 0. Pick
a vertex v1 2K1 . By Lemma 2.4, there exists a vertex v2 2K2 such that d.v1; v2/D c .
Let l W Œ0; c�!X.�/ be the unit speed geodesic from v1 to v2 . We can find a sequence
of cubes fBigNiD1 and 0D t0 < t1 < � � �< tN�1 < tN D c such that each Bi contains
fl.t/ j ti�1 < t < tig as interior points.

Let Vl D
SN
iD1 VBi (recall that VBi is the collection of the labels of edges in Bi ; see

Section 2.4) and let Vi D VKi for i D 1; 2. Put V 0 D V1 \V2\V ?l (recall that V ?
l

denotes the orthogonal complement of Vl ; see Section 2.1) and let � 0 be the full
subgraph spanned by V 0. Let Y 01 be the standard subcomplex that has defining graph � 0

and contains v1 (if V 0 is empty, then Y 01 D v1 ). We claim Y1 D Y
0
1 .

Pick an edge e � K1 such that v1 2 e and Ve 2 V 0. Let h be the hyperplane dual
to e and Nh Š h � Œ0; 1� be the carrier of h. Since d.Ve; w/ D 1 for any w 2 Vl ,
we can assume l � h� f1g � Nh . By our definition of V 0, there is an edge e0 2K2
with v2 2 e0 and h dual to e0 ; thus e and e0 cobound an isometrically embedded flat
rectangle (one side of the rectangle is l ), which implies e � Y1 . Let l 0 be the side of
the rectangle opposite to l . We can define Vl 0 similarly as we define Vl ; then Vl 0 D Vl .
Now let ! be any edge path starting at v1 such that Ve0 2 V 0 for any edge e0 � ! .
Then it follows from the above argument and induction on the combinatorial length
of ! that ! � Y1 , thus Y 01 � Y1 .

For the other direction, since Y1 is a convex subcomplex by Lemma 2.4, it suffices to
prove every vertex of Y1 belongs to Y 01 . By the induction argument as above, we only
need to show that, for an edge e1 with v1 2 e1 , if e1 � Y1 , then e1 � Y 01 . Lemma 2.4
implies that there exists an edge e2 � Y2 such that e1 and e2 cobound an isometrically
embedded flat rectangle (one side of the rectangle is l ). So l is in the carrier of the
hyperplane dual to e1 . It follows that Ve1 2 V

0 and e1 � Y 01 .

Corollary 3.2 Let K1; K2; Y1 and Y2 be as above. Let h be a hyperplane separating
K1 and K2 and let e be an edge dual to h. Then Ve 2 V ?Y1 D V

?
Y2

. In particular, pick a
vertex v 2 �. Then v 2 VY1 if and only if

Geometry & Topology, Volume 21 (2017)



3484 Jingyin Huang

(1) v 2 VK1 \VK2 , and

(2) for any hyperplane h0 separating K1 from K2 and any edge e0 dual to h0 ,
d.v; Ve0/D 1.

Proof Let l and Vl be as in the proof of Lemma 3.1. Let V 0l be a collection of vertices
of � such that v 2 V 0l if and only if v D Ve0 for some edge e0 �X.�/ satisfying (2).
It suffices to prove V 0l D Vl .

It is clear that V 0l �Vl since if a hyperplane h separates K1 from K2 , then l intersects h
transversally at one point. To see Vl � V

0
l , it suffices to show h\Ki D∅ for i D 1; 2,

where h is a hyperplane that intersects l transversally. Let x D l \ h. Suppose
h\K1 ¤ ∅ and let x0 D �h\K1.x/. Now consider the triangle �.v1; x; x0/ (recall
that v1 D l.0/). We have †v1.x; x

0/� �
2

(since �K1.x/D v1 ), †x0.v1; x/� �
2

(see
the proof of Lemma 2.6) and †x.v1; x0/ > 0, which is a contradiction, so h\K1D∅.
Similarly, h\K2 D∅.

Remark 3.3 Recall that a standard coset of G.�/ is a left coset of a standard subgroup
of G.�/. Lemma 3.1 implies that for each pair of standard cosets of G.�/, we can
associated another standard coset which captures the coarse intersection of the pair.
Moreover, we can also define a notion of distance between two standard cosets, which
takes values in G.�/.

Recall that �K is the support of K (see Section 2.4), and that lk.�K/ is the full
subgraph spanned by V ?K (see Section 2.1).

Lemma 3.4 Let K �X.�/ be a convex subcomplex and let � 0 D lk.�K/. Then the
parallel set PK of K is a convex subcomplex and canonically splits as K �X.� 0/.

Note that we do not require K to satisfy the geodesic extension property.

Proof Pick a vertex v 2 K . Let � 00 D �K and let P1 be the unique standard
subcomplex that passes through v and has defining graph � 0ı� 00 (recall that ı denotes
the graph join). Then K � P1 . Let P 0 be the natural copy of K �X.� 0/ inside P1 . It
is clear that P 0 � PK .

Let K 0 be a convex subset parallel to K , and let �W K!K 0 be the isometry induced
by CAT.0/ projection onto K 0 . Pick a vertex v 2K , and let l be the geodesic segment
connecting v and �.v/. We define Vl as in the proof of Lemma 3.1 (note that �.v/ is
not necessarily a vertex). Let e be any edge such that v 2 e �K . Then there is a flat
rectangle with e , �.e/ and l as its three sides. Thus l is contained in the carrier of
the hyperplane dual to e , and Vl � V ?e . Note that if l 0 is the side opposite to l , then
Vl 0 D Vl . For any given edge e0 �K , we can find an edge path ! �K such that e is
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the first and e0 is the last edge in ! . By induction on the combinatorial length of w
and the same argument as above, we can show Vl � V

?
e0 , thus Vl � V ?K and K 0 � P 0 .

It follows that PK � P 0 , so PK D P 0 .

Remark 3.5 The following is a generalization of the above lemma for general CAT.0/
cube complexes. Let X be a CAT.0/ cube complex. A convex set K �X is regular
if for any x 2K , the space of direction †xK of x in K [13, Chapter II.3] satisfies:

(1) †xK is a subcomplex of †xX with respect to the canonical all-right spherical
complex structure on †xX .

(2) There exists r > 0 such that B.x; r/\K is isometric to the r –ball centered at
the cone point in the Euclidean cone over †xK .

If K � X is a regular convex subset, then PK is convex and admits a splitting
PK ŠK �N , where N has an induced cubical structure from X (N is CAT.0/).

Lemma 3.6 Let qW X.�1/!X.�2/ be an .L;A/–quasi-isometry and let F �X.�1/
be a subcomplex isometric to Ek. Suppose nD dim.X.�1//D dim.X.�2//. If there
exist R1; R2 > 0 and top-dimensional flats F1 and F2 such that

F
R2
D F1\R1 F2 and F

1
D F1\R F2

for any R �R1 , then:

(1) There exist a constant D DD.L;A;R1; R2; n/ and a subcomplex F 0 �X.�2/
isometric to Ek such that q.F / DD F 0 .

(2) There exists a constant D0 DD0.L;A/ such that q.PF /
D0
D PF 0 .

Proof By Theorem 2.10, there exist top-dimensional flats F 01; F 02 �X.�2/ such that
q.Fi /

D1
D F 01 for D1DD1.L;A/ and iD1; 2. Thus there exist R0DR0.L;A;R1; R2/

and R3DR3.L;A;R1; R2/>R1 such that q.F1\R1F2/�F
0
1\R0F

0
2�q.F1\R3F2/;

this and Remark 2.5 imply

(3-1) q.F1\R1 F2/
D2
D F 01\R0 F

0
2

for D2 DD2.n; d.F1; F2//DD2.L;A;R1; R2; n/.

Let .Y1; Y2/D I.F 01; F 02/. Then there exists D3 DD3.L;A;R1; R2; n/ such that

(3-2) Y1
D3
D F 01\R0 F

0
2:

From (3-1) and (3-2), we have

(3-3) q.F /
D4
D Y1
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for D4 D D4.L;A;R1; R2; n/. By Lemma 2.4, Y1 is a convex subcomplex of F 01 .
This together with (3-3) implies Y1 D F 0 �

Qk0

iD1Ii , where F 0 is isometric to Ek and
fIig

k0

iD1 are finite intervals. Moreover, by (3-3), diam
�Qk0

iD1Ii
�

must be bounded in
terms of D4; L and A; thus (1) follows.

Let fF�g�2ƒ be the collection of top-dimensional flats in X.�1/ which are contained
in the parallel set PF of F . Lemma 3.4 implies

(3-4) dH

�[
�2ƒ

F�; PF

�
� 1:

For � 2ƒ, there exists R� > 0 such that F �R� F� . Let F 0� be the top-dimensional
flat in X.�2/ such that q.F�/

D1
D F 0� . Then by (1), there exists R0� > 0 such that

F 0 �R0� .F
0
�/. This and Lemma 2.4 imply F 0� � PF 0 for any � 2ƒ. Thus by (3-4),

there exists D0 DD0.L;A/ such that q.PF / �D0 PF 0 . And (2) follows by running
the same argument for the quasi-isometry inverse of q .

A tree product is a convex subcomplex K �X.�/ such that K splits as a product of
trees, ie there exists a cubical isomorphism K Š

Qn
iD1 Ti where the Ti are trees. A

standard tree product is a tree product which is also a standard subcomplex.

One can check that K is a standard tree product if and only if the defining graph �K
of K has a join decomposition �K D �1 ı �2 ı � � � ı �n , where each �i is discrete.
Thus one can choose the above Ti to be standard subcomplexes of K . Note that every
standard flat is a standard tree product, and every subcomplex isometric to Ek is a
tree product.

Lemma 3.7 Suppose dim.X.�// D n. Let qW X.�/! X.� 0/ be a quasi-isometry.
Let K D

Qn
iD1 Ti be a top-dimensional tree product with its tree factors. Then there

exists a standard tree product K 0 in X.� 0/ such that q.K/�1 K 0 .

The proof essentially follows [9, Theorem 4.2].

Proof For 1� i � n, let Vi D VTi 2 � be the collection of labels of edges in Ti . The
case where all the Vi are consist of one point follows from Theorem 2.10. If each Vi
contains at least two points, then by Lemma 3.6, for any geodesic l � Ti , there exists
a subcomplex l 0 �X.� 0/ isometric to R such that q.l/1D l 0 . Since l 0 is unique up to
parallelism, the collection of labels of edges in l 0 does not depend on the choice of l 0

and will be denoted by Vq.l/ . For 1� i � n, define V 0i D
S
l�Ti

Vq.l/ where l varies
among all geodesics in Ti .
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We claim V 0i � .V
0
j /
? for i¤ j . To see this, pick geodesic li 2Ti and let F D

Qn
iD1 li .

Then there exist top-dimensional flat F 0 and geodesic lines fl 0igniD1 (each l 0i is a
subcomplex) in X.� 0/ such that q.F / 1D F 0 and q.li /

1
D l 0i . Since l 0i �1 F 0 , by

Lemma 2.4, we can assume l 0i is a subcomplex of F 0 . Pick i ¤ j . Since li and lj
are orthogonal, they have infinite Hausdorff distance. Thus l 0i and l 0j have infinite
Hausdorff distance. By our assumption, l 0i and l 0j are isometric to E1 , and they are
convex subcomplexes of F 0 Š En . Thus either l 0i and l 0j are parallel, or they are
orthogonal. The former is impossible since l 0i and l 0j have infinite Hausdorff distance.
Thus fl 0igniD1 is a mutually orthogonal collection.

Let � 01D V 01 ıV 02 ı� � �ıV 0n�� 0. Then each V 0i has to be a discrete full subgraph by our
dimension assumption. Let fF�g�2ƒ be the collection of top-dimensional flats in K and
let F 0� be the unique flat such that q.F�/

1
D F 0� . Note that for arbitrary F�1 and F�2 ,

there exists a finite chain in fF�g�2ƒ which starts with F�1 and ends with F�2 such
that the intersection of adjacent elements in the chain contains a top-dimensional orthant.
Thus the collection fF 0�g�2ƒ also has this property. Then

S
�2ƒ F

0
� is contained in a

standard subcomplex of X.� 0/ with defining graph � 01 .

It remains to deal with the case where there exist i ¤ j such that jVi j D 1 and jVj j � 2.
We suppose jVi j D 1 for 1� i �m and jVi j � 2 for i > m. By applying Lemma 3.6
with F D

Qm
iD1 Ti , we can reduce to a lower-dimensional case, and the lemma follows

by induction on dimension.

Corollary 3.8 Let qW X.�/ ! X.� 0/ be a quasi-isometry, and let K be a top-
dimensional maximal standard tree product; ie K is not properly contained in another
tree product. Then there exists a standard tree product K 0�X.� 0/ such that q.K/1DK 0.

3.2 Standard flats in transvection-free RAAGs

Up to now, we have only dealt with top-dimensional standard subcomplexes. The next
goal is to study those standard subcomplexes which are not necessarily top dimensional.
In particular, we are interested in whether quasi-isometries will preserve standard
flats up to finite Hausdorff distance. The answer turns out to be related to the outer
automorphism group of G.�/.

One direction is obvious: namely, if every quasi-isometry qW X.�/!X.� 0/ maps any
standard flat in X.�/ to a standard flat in X.� 0/ up to finite Hausdorff distance, then
Out.G.�// must be transvection-free (ie Out.G.�// does not contain any transvec-
tions). The converse is also true. Now we set up several necessary tools to prove the
converse.

In this section, � will always be a finite simplicial graph.
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Definition 3.9 A subgraph �1 � � is stable in � if the following are true:

(1) �1 is a full subgraph.

(2) Let K �X.�/ be a standard subcomplex such that �K D �1 , and let � 0 be a
finite simplicial graph such that, for some L and A, there is an .L;A/–quasi-
isometry qW X.�/!X.� 0/. Then there exists D DD.L;A; �1; �/ > 0 and a
standard subcomplex K 0 �X.� 0/ such that dH .q.K/;K 0/ < D .

For simplicity, we will also say the pair .�1; �/ is stable in this case. A standard
subcomplex K �X.�/ is stable if it arises from a stable subgraph of �.

We claim the defining graph �K0 of K 0 is stable in � 0. To see this, pick any graph � 00

so that there is an .L;A/–quasi-isometry q0W X.� 0/!X.� 00/, and pick any standard
subcomplex K 01 � X.� 0/ with defining graph �K0 . Note that there is an isometry
i W X.� 0/!X.� 0/ such that i.K 0/DK 01 . Since the map q0 ı i ı q is a quasi-isometry
from X.�/ to X.� 00/, we have that q0 ı i ı q.K/ is Hausdorff close to a standard
subcomplex in X.� 00/ by the stability of �1 ; hence the same is true for q0.K 01/. It
follows from this claim that one can obtain quasi-isometric invariants by identifying
certain classes of stable subgraphs.

It is immediate from the definition that for finite simplicial graphs �1 � �2 � �3 , if
.�1; �2/ is stable and .�2; �3/ is stable, then .�1; �3/ is stable. However, it is not
necessarily true that if .�1; �3/ and .�2; �3/ are stable, then .�1; �2/ is stable. In the
sequel, we will investigate several other properties of stable subgraphs. The following
lemma is an easy consequence of Lemma 3.1 and Remark 2.5:

Lemma 3.10 Suppose �1 and �2 are stable in �. Then �1\�2 is also stable in �.

The following result follows from Lemma 2.8.

Lemma 3.11 If �1 is stable in �, then every connected component of �1 that contains
more than one point is also stable in �.

Lemma 3.12 Suppose �1 is stable in �. Let V be the vertex set of �1 and let �2 be
the full subgraph spanned by V and the orthogonal complement V ? . Then �2 is also
stable in �.

Proof Let K2 �X.�/ be a standard subcomplex with defining graph �K2 D �2 , and
let K1 �K2 be any standard subcomplex satisfying �K1 D �1 . Lemma 3.4 implies
K2DPK1DK1�K

?
1 . For a vertex x2K?1 , let KxDK1�fxg. Let qW X.�/!X.� 0/
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be an .L;A/–quasi-isometry. Then there exists standard subcomplex K 0x such that
dH .q.Kx/;K

0
x/ < D DD.L;A; �1; �/. Thus K 0x

1
DK 0y for vertices x; y 2 K?1 . It

follows from Lemma 3.1 that K 0x and K 0y are parallel. Thus q.PK1/ �R PK0x for
RDDCLCA. Moreover, PK0x is also a standard subcomplex by Lemma 3.4. By
considering the quasi-isometry inverse and repeating the previous argument, we know
q.PK1/

1
D PK0x ; thus �2 is also stable in �.

Lemma 3.13 Suppose �1 is stable in �. Pick a vertex v … �1 . Then the full subgraph
spanned by v?\�1 is stable in �.

Proof We use �2 to denote the full subgraph spanned by v?\�1 . Let K2 �X.�/
be a standard subcomplex such that �K2 D �2 , and let K1 � X.�/ be the unique
standard subcomplex such that �K1 D �1 and K2 �K1 . Pick a vertex x 2K2 , and
let e � X.�/ be the edge such that Ve D v and x 2 e . Suppose xx is the other end
point of e . Let xKi be the standard subcomplex that contains xx and has defining
graph �i for i D 1; 2. Denote the hyperplane dual to e by h. Since v … �1 , we have
h\K1 D∅ and h\ xK1 D∅; thus h separates K1 and xK1 , and d.K1; xK1/D 1. It
follows from Corollary 3.2 that I.K1; xK1/D .K2; xK2/; in particular K2

D
DK1\R xK1

for D depending on R and the dimension of X.�/. Now the lemma follows since �1
is stable.

The next result is a direct consequence of Corollary 3.8.

Lemma 3.14 If �1 is stable in �, then there exists �2 which is stable in �1 such that

(1) �2 is a graph join x�1 ı x�2 ı � � � ı x�k , where x�i is discrete for 1� i � k ;

(2) k D dim.X.�1//.

Lemma 3.15 Let � be a finite simplicial graph such that there do not exist vertices
v¤w of � with v?�St.w/. Then every stable subgraph of � contains a stable vertex.

Proof Let �1 be a minimal stable subgraph; ie it does not properly contain any stable
subgraph of �. It suffices to show �1 is a point. We argue by contradiction and
assume �1 contains more than one point.

First we claim �1 cannot be discrete. Suppose the contrary is true. Pick vertices
v;w 2 �1 and pick a vertex u 2 v? nSt.w/. By Lemma 3.13, u?\�1 is also stable.
Note that v 2 u?\�1 and w … u?\�1 , which contradicts the minimality of �1 .

We claim �1 must be a clique. Since �1 is not discrete, by Lemma 3.14, we can find a
stable subgraph

(3-5) �2 D x�1 ı x�2 ı � � � ı x�m � �1;
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where fx�igmiD1 are discrete full subgraphs and m � 2. Then �2 D �1 . Suppose
some x�i contains more than one point, and let �3 be the join of the remaining join
factors. Then Theorem 2.9 implies that �3 is stable, contradicting the minimality of �1 .
Therefore, �1 is a clique.

Pick distinct vertices v1; v2 2 �1 . By our assumption, there exists a vertex w 2

v?1 nSt.v2/. Since �1 is a clique, �1� St.v2/, so w …�1 . Let �4 be the full subgraph
spanned by w?\�1 . Then �4 is stable by Lemma 3.13. Moreover, �4 ¨ �1 (since
v2 … �4 ), which yields a contradiction.

Lemma 3.16 Let � be as in Lemma 3.15 and let �1 be a stable subgraph of �. Then
for any vertex w 2 �1 , there exists a stable vertex v 2 �1 such that d.v;w/� 1.

Proof Denote the combinatorial distances in � and �1 by d and d1 , respectively.
Since �1 is a full subgraph, d.x; y/D 1 if and only if d1.x; y/D 1, and d.x; y/� 2
if and only if d1.x; y/� 2, for vertices x; y 2 �1 . If w is isolated in �1 , then we can
use the argument in the second paragraph of the proof of Lemma 3.15 to get rid of all
vertices in �1 except w , which implies w is a stable vertex. If w is not isolated, we
can assume �1 is connected by Lemma 3.11.

By Lemma 3.15, there exists a stable vertex u 2 �1 . If d1.u;w/� 1, then we are done.
Otherwise, let ! be a geodesic in �1 connecting u and w (note that ! might not be a
geodesic in � ), and let fvigniD0 be the consecutive vertices in ! ; here v0Dw , vnD u
and nD d1.w; u/.

Since u is stable, by Lemma 3.12, St.u/ is also stable. Note that d1.vn�2; u/D 2, so
d.vn�2; u/D 2 and vn�2 … St.u/. Lemma 3.13 implies v?n�2\St.u/ is stable, and by
Lemma 3.10, v?n�2\St.u/\�1 is also stable. Note that v?n�2\St.u/\�1¤∅ since
it contains vn�1 . Lemma 3.15 implies there is a stable vertex u0 2 v?n�2\St.u/\�1 ,
and it is easy to see d1.w; u0/D n� 1. Now the lemma follows by induction.

Lemma 3.17 Let � be as in Lemma 3.15. Then every vertex of � is stable.

Proof Let �w be the intersection of all the stable subgraphs that contain w . By
Lemma 3.10, �w is the minimal stable subgraph that contains w . It suffices to prove
�w D fwg. We argue by contradiction and denote the vertices in �w nfwg by fvigkiD1 .
The minimality of �w implies we cannot use Lemma 3.13 to get rid of some vi while
keeping w ; thus w? nSt.vi /� fv1; : : : ; vi�1; viC1; : : : ; vkg for any i . In other words,

(3-6) w? � St.vi /[fv1; : : : ; vi�1; viC1; : : : ; vkg

for 1� i � k . Then there does not exist i such that �w � St.vi /: otherwise, we would
have w? � St.vi / by (3-6).
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On the other hand, Lemma 3.16 implies there exists a stable vertex u 2 �w with
d.w; u/D1. Then St.u/ is stable (Lemma 3.12) and St.u/\�w is stable (Lemma 3.10).
Note that w 2 St.u/\ �w . By the minimality of �w , we have �w � St.u/, which
yields a contradiction.

Lemma 3.18 Let � be a finite simplicial graph, and pick stable subgraphs �1; �2
of �. Let x� be the full subgraph spanned by V and V ? , where V D V�1 . If �2 � x� ,
then the full subgraph spanned by �1[�2 is stable in �.

To simplify notation, in the following proof, we will write q.K/� K 0 , where q;K
and K 0 are as in Definition 3.9. We will also assume without loss of generality that
q.K/�K 0 .

Proof Let qW X.�/ ! X.� 0/ be an .L;A/–quasi-isometry. Suppose K1 and K

are standard subcomplexes in X.�/ such that �K1 D �1 , �K D x� and K1 � K .
Put K 0 � q.K/, K 01 � q.K1/, K D K1 � K

?
1 and K 0 D K 01 � K

0?
1 . The proof

of Lemma 3.12 implies there exist a quasi-isometry q0W K?1 ! K 0?1 and a constant
D1 DD1.L;A; �1; �/ such that

(3-7) d.q0 ıp2.x/; p
0
2 ı q.x// < D1

for any x 2K , where p2W K!K?1 and p02W K 0!K 0?1 are projections.

Let �2D�21ı�22 , where �21D�1\�2 , and let K22; K2 be standard subcomplexes
such that �K22 D �22 , �K2 D �2 and K22 �K2 �K . By (3-7), it suffices to prove
there exist a standard subcomplex K 022 �K 0 and a constant D DD.L;A; �1; �2; �/
such that dH .p02 ıq.K22/;K

0
22/ <D . Let K 02� q.K2/. Then K 02 �K 0 , and p02.K

0
2/

is a standard subcomplex. By (3-7), p02 ı q.K22/
1
D p02 ı q.K2/

1
D p02.K

0
2/; thus we

can take K 022 D p02.K
0
2/.

Remark 3.19 In general, the full subgraph spanned by �1 [ �2 is not necessarily
stable even if �1 and �2 are stable; see Remark 3.26.

The next theorem follows from Lemma 3.17 and Lemma 3.18.

Theorem 3.20 Given a finite simplicial graph �, the following are equivalent:

(1) Out.G.�// is transvection-free.

(2) For any .L;A/–quasi-isometry qW X.�/! X.� 0/, there exists a positive con-
stant D DD.L;A; �/ such that for any standard flat F �X.�/, there exists a
standard flat F 0 �X.� 0/ with dH .q.F /; F 0/ < D .
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3.3 Standard flats in general RAAGs

At this point, we have the following natural questions:

(1) In Theorem 3.20, is it true that every standard flat in X.� 0/ comes from some stan-
dard flat in X.�/? A related question could be, is condition (1) in Theorem 3.20
a quasi-isometric invariant for right-angled Artin groups?

(2) What can we say about the stable subgraphs of � if we drop condition (1) in
Theorem 3.20?

We will first give a negative answer to question (1) in Example 3.22 below. Then we
will prove Theorem 3.21, which answers question (2). Section 4 and, in particular,
the proof of Theorem 1.1 will not depend on this subsection. However, we will need
Theorem 3.21 and Lemma 3.23 for Section 5.

Theorem 3.21 Let � be an arbitrary finite simplicial graph. A clique �1�� is stable
if and only if there do not exist vertices w 2 �1 and v 2 � n�1 such that w? � St.v/.

In other words, the clique �1 is stable if and only if the corresponding Zn subgroup
of G.�1/ is invariant under all transvections.

Example 3.22 Let �1 and �2 be as indicated in Figure 2. It is easy to see Out.G.�1//
is transvection-free while Out.G.�2// contains nontrivial transvection (�2 has a dead
end at vertex u). We claim G.�1/ and G.�2/ are commensurable and, in particular,
quasi-isometric.

�1 �2v

w

z

k

u

Figure 2: Out.G.�1// is transvection-free while Out.G.�2// contains non-
trivial transvection.

Let � � �1 be the pentagon on the left side and let Y be the Salvetti complex of �.
Suppose X1 D Y tY t .S1 � Œ0; 1�/=�; here the two boundary circles of the annulus
are identified with two standard circles which are in different copies of Y . Then
�1.X1/DG.�1/. Define the homomorphism h1W G.�/! Z=2 by sending w to the
nontrivial element in Z=2 and other generators to the identity element. Let Y 0 be the
2–sheeted cover of Y with respect to ker.h1/.

Geometry & Topology, Volume 21 (2017)



Quasi-isometric classification of right-angled Artin groups, I 3493

Y 0X Y 0
h:e: X 0

2 W 1

Y YX1

Figure 3

Define the homomorphism h2W G.�1/! Z=2 by sending w and k to the nontrivial
element in Z=2 and other generators to the identity element. Let X be the 2–sheeted
cover of X1 with respect to ker.h2/. Then X is made of two copies of Y 0 and two
annuli with the boundaries of the annuli identified with the v–circles in Y 0 (each Y 0

has two v–circles which cover the v–circle in Y ); see Figure 3.

The cover X is homotopy equivalent to a Salvetti complex. To see this, let Sw be the
circle in Y 0 which covers the w–circle in Y two times and let Sz _Sv be a wedge of
the two circles in Y 0 which covers the wedge of the z–circle and the v–circle in Y .
There is a copy of Sw � .Sz _Sv/ inside Y 0 . Let I be a segment in Sw such that its
end points are mapped to the base point of Y under the covering map. We collapse
I � .Sz_Sv/ to fptg� .Sz_Sv/ inside each copy of Y 0 in X , and collapse one of the
annuli in X to a circle by killing the interval factor. Denote the resulting space by X 0 .
Then X 0 is homotopy equivalent to X , and the uncollapsed annulus in X becomes a
torus in X 0 . It is not hard to see X 0 is a Salvetti complex with defining graph �2 .

Any standard geodesic in X.�2/ which comes from vertex u is not Hausdorff close to
a quasi-isometric image of some standard geodesic in X.�1/, since u is not a stable
vertex while every vertex in �1 is stable.

Here is a generalization of the above example. Suppose � is a finite simplicial
graph with vertices v1; v2 2 � such that d.v1; v2/D 2 and they are separated by the
intersection of links lk.v1/\ lk.v2/. Define a homomorphism hW G.�/! Z=2 by
sending v1 and v2 to the nontrivial element in Z=2 and killing all other generators.
Then ker.h/ is also a right-angled Artin group by the same argument as before. To find
its defining graph, let fCigniD1 be the components of � n.lk.v1/\ lk.v2//, and suppose
v1 2C1 . Define �1DC1[.lk.v1/\ lk.v2// and �2D

�Sn
iD2 Ci

�
[.lk.v1/\ lk.v2//.

Then �1 and �2 are full subgraphs of �; moreover, St.vi / 2 Ci . For i D 1; 2, let � 0i
be the graph obtained by gluing two copies of �i along St.vi /, and let � 03 be the join
of one point and lk.v1/\ lk.v2/. Then the defining graph of ker.h/ can be obtained
by gluing � 01 , � 02 and � 03 along lk.v1/\ lk.v2/.
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Note that we are taking advantage of separating closed stars while constructing the
counterexample. If separating closed stars are not allowed in �, then we have a positive
answer to question (1); see Section 5.

In the rest of this subsection, we will prove Theorem 3.21. � will be an arbitrary finite
simplicial graph in the rest of this subsection. Theorem 3.21 is actually a consequence
of the following more general result.

Lemma 3.23 Pick a vertex w 2 � , and let �w be the intersection of all stable sub-
graphs of � that contain w . Define W D fw0 2 � j w? � St.w0/g. Then �w is the
full subgraph spanned by W .

In other words, G.�w/�G.�/ is the minimal standard subgroup containing w with
the property that G.�w/ is invariant under any transvection.

Now we show how to deduce Theorem 3.21 from Lemma 3.23

Proof of Theorem 3.21 The “only if” part can be proved by contradiction (choose
a transvection which does not preserve the subgroup G.�1/). For the converse, let
fvig

n
iD1 be the vertex set of �1 , and let �vi be the minimal stable subgraph that

contains vi for 1 � i � n. By our assumption and Lemma 3.23, �vi � �1 . Thus
the full subgraph spanned by

Sn
iD1 �vi is stable by Lemma 3.18, which means �1

is stable.

It remains to prove Lemma 3.23. We first set up two auxiliary lemmas.

Lemma 3.24 Let v 2 � be a vertex which is not isolated. Then at least one of the
following is true:

(1) v is contained in a stable discrete subgraph with more than one vertex.

(2) v is contained in a stable clique subgraph.

(3) There is a stable discrete subgraph with more than one vertex whose vertex set is
in v?.

(4) There is a stable clique subgraph whose vertex set is in v?.

Proof Since v is not isolated, we can assume � is connected by Lemma 3.11. By
Lemma 3.14, we can find a stable subgraph �1D x�1 ı x�2 ı � � � ı x�n where fx�igniD1 are
discrete full subgraphs and nD dim.X.�//. If v 2 �1 , then by the third paragraph of
the proof of Lemma 3.15, we know either (1), (2) or (4) is true.
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Suppose d.v; �1/D 1. Let �2 be the full subgraph spanned by v?\�1 . Then �2 is
stable by Lemma 3.13. The proof of Lemma 3.15 implies every stable subgraph of �
contains either a stable discrete subgraph or a stable clique subgraph (this does not
depend on the v? ª St.w/ assumption); thus either (3) or (4) is true.

Suppose d.v; �1/ � 2. Pick vertex u 2 �1 such that d.v; u/ D d.v; �1/ D n, and
let ! be a geodesic connecting v and u. Suppose fvigniD0 are the consecutive vertices
in ! such that v0 D v and vn D u. Let � 0 be the full subgraph spanned by v?n�1\� ,
and let � 00 be the full subgraph spanned by V and V ? , where V D V� 0 (the vertex set
of � 0 ). Then � 0 is stable by Lemma 3.13, and � 00 is stable by Lemma 3.12. Note that
d.v; x/ � n for any vertex x 2 V , so d.v; y/ � n� 1 for any vertex y 2 V ? . Thus
d.v; � 00/ � n� 1. However, vn�1 2 � 00. So d.v; � 00/ D n� 1. Now we can induct
on n and reduce to the d.v; �1/D 1 case.

It is interesting to see that if � has large diameter, then there are a lot of nontrivial
stable subgraphs.

We record the following lemma which is an easy consequence of Theorem 2.9.

Lemma 3.25 Suppose � D �1 ı�2 , where �1 is the maximal clique join factor of �.
If � 02 is stable in �2 , then �1 ı� 02 is stable in �.

Now we are ready to prove Lemma 3.23.

Proof of Lemma 3.23 By Lemma 3.10, �w is the minimal stable subgraph that
contains w . If there exists vertex w0 2W such that w0 … �w , then sending w! ww0

and fixing all other vertices would induce a group automorphism, which gives rise to a
quasi-isometry from X.�/ to X.�/. The existence of such a quasi-isometry would
contradict the stability of �w ; thus W � �w .

Let W 0 be the vertex set of �w . It remains to prove W 0 �W . Suppose W ¨W 0 and
let u 2 W 0 nW . Then ∅ ¤ w? n St.u/. The minimality of �w implies we cannot
use Lemma 3.13 to get rid of u while keeping w ; thus w? n St.u/�W 0 n fu;wg. In
summary,

(3-8) ∅¤ w? nSt.u/�W 0 n fu;wg:

In particular, w is not isolated in �w , and

(3-9) �w ª St.u/:

Now we apply Lemma 3.24 to �w and w , and recall that if a subgraph is stable in �w ,
then it is stable in �. If case (1) in Lemma 3.24 is true, then we will get a contradiction
since w is not isolated in �w . If case (2) is true, then �w sits inside some clique,
which is contradictory to (3-9).
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�1 �2

Figure 4: Failure of Theorem 3.21 in the more general case; see Remark 3.26

If case (3) is true, let �1 � �w be the corresponding stable discrete subgraph. Let
V1 D V�1 , and let V 01 D fu 2 �w j d.u; v/ D 1 for any v 2 V1g. Suppose � 0w is
the full subgraph spanned by V1 and V 01 . Then � 0w is stable by Lemma 3.12; hence
� 0w D �w . Let �w D x�1 ı x�2 ı � � � ı x�k be the join decomposition induced by the
De Rahm decomposition of X.�w/. Then k � 2 and u does not sit inside the clique
factor by (3-9).

If there is no clique factor, then each join factor is stable by Theorem 2.9, and w is
inside one of the join factors, which contradicts the minimality of �w . If the clique
factor exists and w sits inside the clique factor, then by Theorem 2.9, the clique factor
is stable, and we have the same contradiction as before. If the clique factor exists and w
sits outside the clique factor, this reduces to the next case.

If case (4) is true, let �2 � �w be the corresponding stable clique subgraph. We can
also assume without loss of generality that w is not contained in a stable clique. Let
V2 D V�2 and V 02 D fu 2 �w j d.u; v/ D 1 for any v 2 V2g. Suppose � 00w is the
full subgraph spanned by V2 and V 02 . Then � 00w D �w as before. Let �w D � 01 ı� 02
where � 01 corresponds to the Euclidean De Rahm factor of X.�w/. Note that � 02 is
nontrivial, and w; u 2 � 02 as in the discussion of case (3). Equation (3-8) implies that
w? ª St.u/ is still true if we take the orthogonal complement of w and the closed
star of u in � 02 ; in particular, w is not isolated in � 02 . Moreover, dim.X.� 02// <
dim.X.�w//� dim.X.�//.

If dim.X.�//D 2, then � 02 has to be discrete, which is contradictory to the fact that
w is not isolated in � 02 . If dim.X.�//D n > 2, then by induction, we can assume the
lemma is true for all lower-dimensional graphs. Then there exists x�w stable in � 02
such that w 2 x�w and u … x�w . By Lemma 3.25, x�w ı� 01 is stable in �w , hence in �,
which contradicts the minimality of �w .

Remark 3.26 It is nature to ask whether Theorem 3.21 is still true if we do not
require �1 to be a clique. It turns out there are counterexamples. Let �1 and �2 be as
indicated in Figure 4. Then G.�1/ is quasi-isometric to G.�2/ by the discussion in Sec-
tion 11 of [9]. Let qW X.�2/!X.�1/ be a quasi-isometry, and let K be a standard sub-
complex in X.�2/ such that its defining graph �K is a pentagon in �2 . Suppose q.K/ is
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Hausdorff close to a standard subcomplex K 0 in X.�/. Then �K0 must be a connected
proper subgraph of �1 , hence a tree. But this is impossible by the results in [7].

4 From quasi-isometries to isomorphisms

4.1 The extension complexes

4.1.1 Extension complexes and standard flats Let qW X.�/! X.� 0/ be a quasi-
isometry. Usually q does not induce a well-defined boundary map; see [20]. However,
Theorem 3.20 implies we still have control on a subset of the Tits boundaries when
Out.G.�// and Out.G.� 0// are transvection-free. In this subsection, we will reorganize
this piece of information in terms of extension complexes.

Recall that we identify the vertex set of � with a standard generating set S of G.�/.
We also label the standard circles in the Salvetti complex by elements in S . By choosing
an orientation for each standard circle, we obtain a directed labeling of edges in X.�/.

Denote the extension complex of � by P.�/. We give an alternative definition of
P.�/ here, which is natural for our purposes. The vertices of P.�/ are in one-to-one
correspondence with the parallel classes of standard geodesics in X.�/ (two standard
geodesics are in the same parallel class if they are parallel). Two distinct vertices
v1; v2 2P.�/ are connected by an edge if and only if we can find standard geodesics li
in the parallel classes associated with vi (i D 1; 2) such that l1 and l2 span a standard
2–flat. The next observation follows from Lemmas 3.1 and 2.4:

Observation 4.1 If v1 ¤ v2 , then v1 and v2 are joined by an edge if and only if
there exist l 0i in the parallel classes associated with vi (i D 1; 2) and R > 0 such that
l 01 �NR.Pl 02

/.

We define P.�/ to be the flag complex of its 1–skeleton.

Lemma 4.2 P.�/ is isomorphic to the extension complex of �.

Proof It suffices to show the 1–skeleton of P.�/ is isomorphic to the extension
graph �e. Pick vertex v 2 P.�/, and let l be a standard geodesic in the parallel
class associated with v . We identify l with R in an orientation-preserving way (the
orientation in l is induced by the directed labeling). Recall that G.�/ÕX.�/ by deck
transformations. Let ˛v 2G.�/ be the element such that ˛v.l/D l and ˛v.x/D xC1
for any x 2 l . It is easy to see ˛v is conjugate to an element in S ; thus ˛v gives rise
to a vertex ˛v 2 �e by Definition 2.11. Note that ˛v does not depend the choice of l
in the parallel class, so we have a well-defined map from the vertex set of P.�/ to the
vertex set of �e. Moreover, if v1 and v2 are adjacent, then ˛v1 and ˛v2 commute.
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Now we define an inverse map. Pick ˛ D gsg�1 2 �e (s 2 S ). Then all standard
geodesics which are stabilized by ˛ are in the same parallel class. Let v˛ be the vertex
in P.�/ associated with this parallel class. We map the vertex ˛ of �e to the vertex v˛ .
Now we show this map extends to the 1–skeleton. For i D 1; 2, let ˛i D gisig�1i 2 �

e.
By the centralizer theorem of [58], ˛1 and ˛2 commute if and only if Œs1; s2� D 1
and there exists g 2 G.�/ such that ˛i D gsig�1 . Thus v˛1 and v˛2 are adjacent
in P.�/.

Since every edge in the standard geodesics of the same parallel class has the same label,
the labeling of the edges of X.�/ induces a labeling of the vertices of P.�/. Moreover,
since G.�/ÕX.�/ by label-preserving cubical isomorphisms, we obtain an induced
action G.�/ Õ P.�/ by label-preserving simplicial isomorphisms. Moreover, the
unique label-preserving map from the vertices of P.�/ to the vertices of F.�/ extends
to a simplicial map

(4-1) � W P.�/! F.�/:

Pick an arbitrary vertex p 2X.�/; one can obtain a simplicial embedding ip from the
flag complex F.�/ of � to P.�/ by considering the collection of standard geodesics
passing through p . We will denote the image of ip by .F.�//p . Note that for each
vertex p 2X.�/, the composition � ı ipW F.�/! F.�/ is the identity map.

Pick a .k�1/–simplex in P.�/ with vertex set fvigkiD1 , and pick a standard geodesic li
in the parallel class associated with vi for each 1 � i � k . Since Pli \Plj ¤∅ for
1� i ¤ j � k , by Lemma 2.2,

Tk
iD1Pli ¤∅. By Corollary 3.2 and Lemma 3.4, there

exist standard geodesics fl 0igkiD1 satisfying:

(1) l 0i is parallel to li for each i .

(2) The convex hull of fl 0igkiD1 is a standard k–flat denoted by Fk .

(3)
Tk
iD1 Pli D PFk .

Thus we have a one-to-one correspondence between the .k�1/–simplexes of P.�/ and
parallel classes of standard k–flats in X.�/. In particular, maximal simplexes in P.�/,
namely those simplexes which are not properly contained in some larger simplexes
of P.�/, are in one-to-one correspondence with maximal standard flats in X.�/. For
standard flat F �X.�/, we denote the simplex in P.�/ associated with the parallel
class containing F by �.F /.

Observation 4.3 Let �1 , �2 be two simplexes in P.�/ such that �D�1\�2¤∅.
For i D 1; 2, let Fi �X.�/ be a standard flat such that �.Fi /D�i . Set .F 01; F 02/D
I.F1; F2/. Then �.F 01/D�.F 02/D�.
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We define the reduced Tits boundary, denoted x@T .X.�//, to be the subset of @T .X.�//
which is the union of Tits boundaries of standard flats in X.�/. For a standard flat
F �X.�/, we triangulate @TF into all-right spherical simplexes which are the Tits
boundaries of orthant subcomplexes in F . Pick another standard flat F 0 �X.�/; then
@TF \ @TF

0 is a subcomplex in both @TF and @TF 0 by Lemma 3.1 and Remark 2.5.
Thus we can endow x@T .X.�// with the structure of an all-right spherical complex.

Now we look at the relation between x@T .X.�// and P.�/. For each standard flat
F � X.�/, we can associate @TF with �.F / � P.�/. This induces a surjective
simplicial map sW x@T .X.�//! P.�/ (s can be defined by induction on dimension).
Note that the inverse image of each simplex in P.�/ under s is a sphere in x@T .X.�//.
Then one can construct x@T .X.�// from P.�/ as follows. We start with a collection
of the S0 which are in one-to-one correspondence to vertices of P.�/ and form a
join of n copies of the S0 if and only if the corresponding n vertices in P.�/ span
an .n�1/–simplex. In other words, x@T .X.�// is obtained by applying the spherical
complex construction in the sense of [12, Definition 2.1.22] to P.�/.

Let K1 �X.�/ be a standard subcomplex. We define x@T .K1/ to be the union of Tits
boundaries of standard flats in K1 . Note that x@T .K1/ D x@T .X.�//\ @TK1 , and it
descends to a subcomplex in P.�/, which will be denoted by �.K1/.

Lemma 4.4 Let K1 and K2 be two standard subcomplexes of X.�/. Put .K 01; K 02/D
I.K1; K2/. Then �.K 01/D�.K 02/D�.K1/\�.K2/.

Proof By Remark 2.5, we have @TK 01 D @TK 02 D @TK1 \ @TK2 ; hence x@TK 01 D
x@TK

0
2 D
x@TK1\x@TK2 and �.K 01/D�.K 02/D�.K1/\�.K2/.

Now we study how the extension complexes behave under quasi-isometries.

Lemma 4.5 Pick �1 and �2 such that Out.G.�i // is transvection-free for i D 1; 2.
Then any quasi-isometry qW X.�1/ ! X.�2/ induces a simplicial isomorphism
q�W P.�1/ ! P.�2/. If only Out.G.�1// is assumed to be transvection-free, we
still have a simplicial embedding q�W P.�1/! P.�2/.

Proof We prove the case when both Out.G.�1// and Out.G.�2// are transvection-
free. The other case is similar. By Theorem 3.20, every vertex in �1 is stable; thus
q sends any parallel class of standard geodesics in X.�1/ to another parallel class
of standard geodesics in X.�2/ up to finite Hausdorff distance. This induces a well-
defined map q� from the 0–skeleton of P.�1/ to the 0–skeleton of P.�2/. The map
q� is a bijection by considering the quasi-isometry inverse. Moreover, Observation 4.1
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implies two vertices in P.�1/ are adjacent if and only if their images under q� are
adjacent. So we can extend q� to be a graph isomorphism between the 1–skeleton of
P.�1/ and the 1–skeleton of P.�2/. Since both P.�1/ and P.�2/ are flag complexes,
we can extend the isomorphism to the whole complex.

4.1.2 Extension complexes and their relatives Now we discuss the relation be-
tween P.�/ with several other objects in the literature. The material in this subsection
will not be used later.

We can endow F.�/ with the structure of complex of groups, which gives us an
alternative definition of P.�/. More specifically, P.�/ D F.�/ � G.�/=�; here
St.v/� g1 and St.v/� g2 (v 2 F.�/ is a vertex) are identified if and only if there
exists an integer m such that g�11 g2 D v

m (we also view v as one of the generators
of G.�/). Hence for k–simplex �k � F.�/ with vertex set fvigkiD1 , we have that
St.�k/ � g1 and St.�k/ � g2 are identified if and only if g�11 g2 belongs to the
Zk subgroup of G.�/ generated by fvigkiD1 . One can compare this with a similar
construction for a Coxeter group in [21].

There is another important object associated with a right-angled Artin group, called the
modified Deligne complex in [17] and the flat space in [9].

Definition 4.6 Let P .�/ be poset of left cosets of standard abelian subgroups of G.�/
(including the trivial subgroup) such that the partial order is induced by inclusion of
sets. Then the modified Deligne complex is defined to be the geometric realization of
the derived poset of P .�/.

Recall that elements in the derived poset of a poset P are totally ordered finite chains
in P . It can be viewed as an abstract simplex.

The extension complex P.�/ can be viewed as a coarse version of the modified Deligne
complex. Let A and B be two subsets of a metric space. We say A and B are coarsely
equivalent if A1D B , and A is coarsely contained in B if A�1 B . Let P 0.�/ be the
poset whose elements are coarsely equivalent classes of left cosets of nontrivial standard
abelian subgroups of G.�/, and the partial order is induced by coarse inclusion of sets.

Observation 4.7 The poset P 0.�/ is an abstract simplicial complex, and it is isomor-
phic to P.�/.

Roughly speaking, P .�/ captures the combinatorial pattern of how standard flats in
X.�/ intersect with each other, and P.�/ is about how they coarsely intersect with
each other; thus P .�/ contains more information than P.�/. However, in certain
cases, it is possible to recover information about P .�/ from P.�/, and this enable us
to prove quasi-isometric classification/rigidity results for RAAGs.
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We can define the poset P 0.�/ for an arbitrary Artin group by considering the collection
of coarse equivalent classes of spherical subgroups in an Artin group under coarse
inclusion. Then the geometric realization of the derived poset of P 0.�/ would be a
natural candidate for the extension complex of an Artin group. It is interesting to ask
how much of the results in [43] can be generalized to this context.

There is also a link between P.�/ and the structure of hyperplanes in X.�/. Recall
that for every CAT.0/ cube complex X , the crossing graph of X , denoted by C.X/,
is a graph whose vertices are in one-to-one correspondence to the hyperplanes in X ,
and two vertices are adjacent if and only if the corresponding hyperplanes intersect.
The contact graph, introduced in [30] and denoted by C.X/, has the same vertex set as
C.X/, and two vertices are adjacent if and only if the carriers of the corresponding
hyperplanes intersect.

There is a natural surjective simplicial map pW C.X.�//!�e defined as follows. Pick
a vertex v 2 C.X.�// and let h be the corresponding hyperplane. Since all standard
geodesics which intersect h at one point are in the same parallel class, we define p.v/
to be the vertex in �e associated with this parallel class; see Lemma 4.2. It is clear
that if v1; v2 2 C.X.�// are adjacent vertices, then p.v1/ and p.v2/ are adjacent, so
p extends to a simplicial map. Pick a vertex w 2 �e ; then p�1.e/ is the collection of
hyperplanes dual to a standard geodesic.

Theorem 4.8 [42; 30] If � is connected, then C.X.�//, C.X.�// and P.�/ are
quasi-isometric to each other; moreover, they are quasi-isometric to a tree.

From this viewpoint, P.�/ captures both the geometric information of X.�/ (the
standard flats) and the combinatorial information (the hyperplanes).

4.2 Reconstruction of quasi-isometries

We show the boundary map q�W P.�/! P.� 0/ in Lemma 4.5 induces a well-defined
map from G.�/ to G.� 0/.

Lemma 4.9 Let F1 and F2 be two maximal standard flats in X.�/ and let �1 and �2
be the corresponding maximal simplexes in P.�/. If F1 and F2 are separated by a
hyperplane h, then there exist vertices vi 2�i for i D 1; 2 and v 2 P.�/ such that v1
and v2 are in different connected components of P.�/ nSt.v/.

Proof Let e be an edge dual to h and let l be the standard geodesic that contains e .
Set v D�.l/ 2 P.�/. By Lemma 3.4, the parallel set Pl of l is isometric to h�E1 .
Thus every standard geodesic parallel to l must have nontrivial intersection with h.
Since F1\hD∅, we see that F1 cannot contain any standard geodesic parallel to l ,
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which means v …�1 . Moreover, �1ªSt.v/ since �1 is a maximal simplex. Similarly,
�2 ª St.v/; thus we can find vertices vi 2�i nSt.v/ for i D 1; 2. We claim v1 , v2
and v are the vertices we are looking for.

If there is a path ! � P.�/ nSt.v/ connecting v1 and v2 , we can assume ! consists
of a sequence of edges feigkiD1 with v1 2 e1 and v2 2 ek . For each ei , pick a
maximal simplex �0i that contains ei , and let F 0i be the maximal standard flat such
that �.F 0i /D�0i . Then v …�0i for 1� i � k ; hence F 0i \ hD∅.

Set �00 D�1 , �0kC1 D�2 , F 00 D F1 and F 0kC1 D F2 . Since �0i \�0iC1 contains a
vertex in ! , we have

(4-2) .�0i \�
0
iC1/ nSt.v/¤∅

for 0� i � k . Since F 00 and F 0kC1 are in different sides of h, there exists i0 such that
h separates F 0i0 and F 0i0C1 . Let .F 00i0 ; F

00
i0C1/ D I.F 0i0 ; F

0
i0C1/. By Observation 4.3,

�.F 00i0/ D �.F
00
i0C1/ D �

0
i \�

0
iC1 . However, by Lemma 2.7, there exists a convex

subset of h parallel to F 00i0 ; thus F 00i0 �1 h� Pl . It follows from Observation 4.1 that
�0i \�

0
iC1 � St.v/, which contradicts (4-2).

Denote the Cayley graph of G.�/ with respect to the standard generating set S by C.�/.
We pick an identification between C.�/ and the 1–skeleton of X.�/. Thus G.�/ is
identified with the vertex set of X.�/.

Lemma 4.10 Let �1 be a simple graph such that:

(1) There is no separating closed star in F.�1/.

(2) F.�1/ is not contained in a union of two closed stars.

Then any simplicial isomorphism sWP.�1/!P.�2/ induces a unique map s0WG.�1/!
G.�2/ such that for any maximal standard flat F1 �X.�1/, vertices in F1 are mapped
by s0 to vertices lying in a maximal standard flat F2�X.�2/ with �.F2/D s0.�.F1//.

Proof Pick a vertex p 2G.�1/. Let fFigkiD1 be the collection of maximal standard
flats containing p . For 1� i �k , define �i D�.Fi / and �0i D s.�i /. Let F 0i �X.�2/
be the maximal standard flat such that �.F 0i /D�0i . Let Kp D .F.�1//p D

Sk
iD1�i

(recall that Kp Š F.�1/). We claim

(4-3)
k\
iD1

F 0i ¤∅:

The lemma will then follow from (4-3). To see this, we deduce from condition (2) thatTk
iD1�i D∅. Hence

Tk
iD1 Fi D fpg. It follows that

Tk
iD1�

0
i D∅. This together
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with (4-3) imply that
Tk
iD1 F

0
i is exactly one point. We define s0 by sending p to this

point. One readily verifies that s0 has the required properties.

It remains to prove (4-3).

Suppose that (4-3) is not true. Then by Lemma 2.2, there exist i1 and i2 such that
F 0i1 \ F

0
i2 D ∅. Thus F 0i1 and F 0i2 are separated by a hyperplane. It follows from

Lemma 4.9 that there exist vertices v0 2 P.�2/, v01 2�0i1 and v02 2�
0
i2 such that v01

and v02 are in different connected components of P.�2/ n St.v0/. Let v D s�1.v0/,
v1 D s�1.v01/ and v2 D s�1.v02/. Then Kp n .Kp \ St.v// is disconnected (since
v1; v2 2Kp and they are separated by St.v/).

If v 2Kp , then Kp would contain a separating closed star, which yields a contradiction;
thus (4-3) is true in this case.

Suppose v …Kp . Pick a standard geodesic l such that �.l/D v and let fhigniD1 be
the collection of hyperplanes in X.�/ such that each hi separates p from the parallel
set Pl of l (note that p … Pl ). For 1� i � n, pick an edge ei dual to hi and let wi
be the unique vertex in Kp that has the same label as ei . Let w0 2Kp be the unique
vertex which has the same label as v . We claim

(4-4) St.v/\Kp D
n\
iD0

.St.wi /\Kp/:

For every u 2 Kp , let lu be the unique standard geodesic such that �.lu/ D u and
p 2 lu .

Pick u 2 St.v/ \ Kp . Observation 4.1 implies I.lu; Pl/ D .lu; l
0
u/, where l 0u is

some standard geodesic in Pl . Then for 1 � i � n, the hyperplane hi separates lu
from Pl , otherwise hi \ lu ¤ ∅ and Lemma 2.6 implies hi \ Pl ¤ ∅, which is a
contradiction. It follows from Corollary 3.2 that u and wi are adjacent for 0� i � n;
thus u 2

Tn
iD0.St.wi /\Kp/. Therefore, St.v/\Kp �

Tn
iD0.St.wi /\Kp/.

Pick u 2
Tn
iD0.St.wi /\Kp/. First we show lu\Pl D∅. Suppose there is a vertex z

in lu \Pl . Since v and w0 have the same label and u 2 St.w0/, it follows that the
edge in lu which contains z belongs to the parallel set Pl . Then lu�Pl , contradicting
the fact that p … Pl . Therefore, lu\Pl D∅.

Now we pick an edge path ! of shortest combinatorial length that travels from lu to Pl .
Let ffj gmjD1 be the consecutive edges in ! such that f1\ lu¤∅. For each fj , let xhj
be the hyperplane dual to fj . Then xhj separates lu from Pl (otherwise ! would not be
the shortest edge path), hence separates p from Pl . This and u 2

Tn
iD0.St.wi /\Kp/

imply that d.�.u/; Vfj / � 1 for each j , where � is the map in (4-1) and Vfj is the
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label of the edge fj . It follows that ! is contained in the parallel set Plu , and hence the
intersection Plu \Pl contains some vertex z . Again, since u 2 St.w0/, and since w0
has the same label as v , we find that the standard geodesic l 0u�Plu that is parallel to lu
and passes through z is contained in Pl . Therefore, u 2 St.v/\Kp , and (4-4) follows.

By condition (2) of Lemma 4.10, we have

(4-5) .St.w0/\Kp/[
� n\
iD1

.St.wi /\Kp/
�
¨Kp:

Let A D Kp n .St.w0/\Kp/, and let B D Kp n
�Tn

iD1.St.wi /\Kp/
�
. Then (4-5)

implies A\B ¤∅. Thus we have the following Mayer–Vietoris sequence for reduced
homology:

� � � ! zH0.A\B/! zH0.A/˚ zH0.B/! zH0.A[B/! 0:

Recall that Kp n .Kp \ St.v// is disconnected, we deduce that zH0.A[B/ is non-
trivial from (4-4). Thus zH0.A/ ˚ zH0.B/ is nontrivial, which implies that eitherTn
iD1.St.wi /\Kp/ or St.w0/\Kp would separate Kp . Thus we can induct on n

to deduce that there exists i0 such that St.wi0/ \Kp separates Kp . This yields a
contradiction to condition (1) of Lemma 4.10.

There are counterexamples if we only assume (1) in Lemma 4.10. For example, let �1
and �2 be discrete graphs made of two points. Then P.�1/ and P.�2/ are discrete
sets. Now it is not hard to construct a permutation of a discrete set to itself which does
not satisfy the conclusion of Lemma 4.10. If we go back to the proof of Lemma 4.10,
then the step using the Mayer–Vietoris sequence will fail, since we need A\B ¤∅
in order to use the reduced version of Mayer–Vietoris sequence.

Corollary 4.11 Suppose that G.�1/ and G.�2/ both satisfy the assumption of
Lemma 4.10. Then they are isomorphic if and only if P.�1/ and P.�2/ are isomorphic
as simplicial complexes.

Proof The “only if” direction follows from the fact that G.�1/ and G.�2/ are
isomorphic if and only if �1 and �2 are isomorphic; see [23]. It remains to prove the
“if” direction. Pick an isomorphism sW P.�1/! P.�2/, and let s0W G.�1/!G.�2/

be the map in Lemma 4.10. Pick a vertex p 2 G.�1/ and let q D s.p/. We define
.F.�1//p � P.�1/ and .F.�2//q � P.�2/ as in the first paragraph of the proof of
Lemma 4.10. Then (4-3) implies s..F.�1//p/ � .F.�2//q . This induces a graph
embedding �1 ,! �2 . By repeating the previous discussion for s�1 , we obtain another
graph embedding �2 ,! �1 . Since both �1 and �2 are finite simplicial graphs, they
are isomorphic. Hence G.�1/ŠG.�2/.
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Lemma 4.12 Let G.�/ be a RAAG such that Out.G.�// is finite and G.�/ © Z.
Then F.�/ satisfies the assumption of Lemma 4.10.

Proof It is clear that F.�/ should satisfy condition (1) of Lemma 4.10 since no
nontrivial partial conjugation is allowed. If F.�/ is contained in a closed star, then �
is a point. So if (2) is not true, then F.�/D St.v/[St.w/ for distinct vertices v;w 2�.
Since the orthogonal complement v? satisfies v? ª St.w/, there exists u 2 v? such
that d.u;w/� 2. Pick any edge e such that u 2 e ; then e ª St.w/, and so e � St.v/.
This implies u?� St.v/; hence Out.G.�// is infinite, which yields a contradiction.

By Lemma 4.5, Lemma 4.12 and Corollary 4.11, we have following result, which in
particular establishes Theorem 1.1 of the introduction.

Theorem 4.13 Let �1 and �2 be two finite simplicial graphs such that Out.G.�i //
is finite for i D 1; 2. Then G.�1/ and G.�2/ are quasi-isometric if and only if they
are isomorphic. Moreover, for any .L;A/–quasi-isometry qW X.�1/!X.�2/, there
exist a bijection q0W G.�1/!G.�2/ and a constant D DD.L;A; �1/ such that:

(1) d.q.v/; q0.v// < D for any v 2G.�1/.

(2) For any standard flat F1 �X.�1/, there exists a standard flat F2 �X.�2/ such
that q0 induces a bijection between F1\G.�1/ and F2\G.�2/.

If G.�1/¤ Z, then such a q0 is unique.

Proof It suffices to look at the case where G.�1/ ¤ Z. Then G.�2/ ¤ Z. In this
case, every vertex v in �1 or �2 is the intersection of maximal cliques that contain v
(otherwise there exists a vertex w such that w ¤ v and v? � St.w/). It follows
that every standard geodesic in X.�1/ or X.�2/ is the intersection of finitely many
maximal standard flats, and so is every standard flat. Let q�W P.�1/ ! P.�2/ be
the map in Lemma 4.5. We apply Lemma 4.10 to q� and q�1� to obtain q0 with the
required properties. Note that each vertex of X.�/ is the intersection of maximal
standard flats that contain it; thus q0 is unique.

4.3 The automorphism groups of extension complexes

Suppose Out.G.�// is finite; by Theorem 4.13, each element in the simplicial auto-
morphism group Aut.P.�// of P.�/ induces a bijection G.�/! G.�/. However,
this bijection does not extend to an isomorphism from X.�/ to itself in general. We
start by looking at the following example which was first pointed out in [9, Section 11]
in a slightly different form.
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Example 4.14 Let l � X.�/ be a standard geodesic, and let �l W X.�/! l be the
CAT.0/ projection. We identify the vertex set of l with Z. Let X .0/.�/ be the vertex
set of X.�/. Then the above projection induces a map �l W X .0/.�/! Z.

Recall that each edge of X.�/ is oriented and labeled, and G.�/ acts on X.�/

by transformations that preserve labels and orientations. There is a unique element
˛ 2G.�/ such that ˛ translates l one unit in the positive direction.

We want to define a bijection qW X .0/.�/! X .0/.�/ which basically flips ��1
l
.0/

and ��1
l
.1/. More precisely,

q.x/D

8<:
x if �l.x/¤ 0; 1;
˛.x/ if x 2 ��1

l
.0/;

˛�1.x/ if x 2 ��1
l
.1/:

One can check the following:

(1) q is a quasi-isometry.

(2) q does not respect the word metric.

(3) q maps vertices in a standard flat to vertices in another standard flat. Thus q
induces an element in Aut.P.�//.

The above example implies that, in general, elements in Aut.P.�// do not respect
the order along the standard geodesics of X.�/. There is another metric on G.�/
which “forgets about” the ordering. Following [43], we define the syllable length of a
word ! to be the minimal l such that ! can be written as a product of l elements of
the form vkii , where vi is a standard generator and ki is an integer.

An alternative definition is the following. Let fhigkiD1 be the collection of hyperplanes
separating ! 2 G.�/ and the identity element (recall that we have identified G.�/
with the 0–skeleton of X.�/). For each i , pick a standard geodesic li dual to hi .
Then the syllable length of ! is the number of elements in f�.li /gkiD1 . The syllable
length induces a left invariant metric on G.�/, which will be denoted by dr . Note that
the map in Example 4.14 is an isometry with respect to dr .

Denote the word metric on G.�/ with respect to the standard generators by dw .

Corollary 4.15 Let � be a graph such that Out.G.�// is finite, and denote the
simplicial automorphism group of P.�/ by Aut.P.�//. Then

Aut.P.�//Š Isom.G.�/; dr/:

Proof Let Perm.G.�// be the permutation group of elements in G.�/. We have
a group homomorphism h1W Aut.P.�//! Perm.G.�// by Lemma 4.10. Take � 2
Aut.P.�//; by Lemma 4.12, ' D h1.�/ and '�1 D h1.��1/ satisfy the conclusion
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of Lemma 4.10. Since every standard geodesic is the intersection of finitely many
maximal standard flats, points in a standard geodesic are mapped to points in a standard
geodesic by � , which implies dr.'.v1/; '.v2// � dr.v1; v2/ if dr.v1; v2/ � 1. By
the triangle inequality, we have dr.'.v1/; '.v2//� dr.v1; v2/ for any v1; v2 2G.�/.
Similarly, dr.'�1.v1/; '�1.v2// � dr.v1; v2/. Thus ' 2 Isom.G.�/; dr/, and we
have a homomorphism h1W Aut.P.�//! Isom.G.�/; dr/.

Now pick ' 2 Isom.G.�/; dr/. Let v1; v2; v3 2 G.�/ such that dr.v1; vi / D 1 for
i D 2; 3. We claim

(4-6) †v1.v2; v3/D
�
2
() †'.v1/.'.v2/; '.v3//D

�
2
:

If †v1.v2; v3/D
�
2

, then we can find v4 2G.�/ such that fvig4iD1 are the vertices of
a flat rectangle in X.�/. Note that

dr.v1; v4/D dr.v2; v3/D 2 and dr.v4; v2/D dr.v4; v3/D 1;

so

dr.'.v1/;'.v4//Ddr.'.v2/;'.v3//D2 and dr.'.v4/;'.v2//Ddr.'.v4/;'.v3//D1:

Now we consider the 4–gon formed by '.v1/'.v2/, '.v2/'.v4/, '.v4/'.v3/ and
'.v3/'.v1/. Then the angles at the four vertices of this 4–gon are bigger or equal to �

2
.

It follows from CAT.0/ geometry that the angles are exactly �
2

and the 4–gon actually
bounds a flat rectangle. Thus one direction of (4-6) is proved; the other direction is
similar.

We need another observation as follows. If three points v1; v2; v3 2 G.�/ satisfy
dr.vi ; vj / D 1 for 1 � i ¤ j � 3, then the angle at each vertex of the triangle
�.v1; v2; v3/ could only be 0 or � ; thus fvig3iD1 are inside a standard geodesic. It
follows from this observation that points in a standard geodesic are mapped by ' to
points in a standard geodesic.

We define �W P.�/! P.�/ as follows. For vertex w 2 P.�/, let l be a standard
geodesic such that �.l/D w . Suppose l 0 �X.�/ is the standard geodesic such that
�.v.l// � l 0 (v.l/ denotes the vertex set of l ). Suppose w0 D �.l 0/. We define
w0 D �.w/; (4-6) implies w0 does not depend on the choice of l , and �.w1/ and
�.w2/ are adjacent if vertices w1; w2 2 P.�/ are adjacent. Thus � is a well-defined
simplicial map. Note that '�1 also induces a simplicial map from P.�/ to itself in
a similar way, so � 2 Aut.P.�//. We define � D h2.'/. One readily verifies that
h2W Isom.G.�/; dr/!Aut.P.�// is a group homomorphism, and h2ıh1Dh1ıh2D Id.
Thus the corollary follows.
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Remark 4.16 If we drop the assumption in the above corollary about �, then
there is still a monomorphism hW Isom.G.�/; dr/ ! Aut.P.�//; moreover, any
' 2 Isom.G.�/; dr/ maps vertices in a standard flat to vertices in a standard flat
of the same dimension. The homomorphism h is surjective if Out.G.�// is finite.

Remark 4.17 For any finite simplicial graphs �1 and �2 , we have G.�1/ŠG.�2/
if and only if .G.�1/; dr/ and .G.�2/; dr/ are isometric as metric spaces. The “only
if” direction follows from [23; 49]. For the other direction, let 'W .G.�1/; dr/ !
.G.�2/; dr/ be an isometry. Pick v 2 G.�1/, and let fligkiD1 be the collection of
standard geodesics passing through v . Pick vi 2 G.�1/ such that vi 2 li n fvg.
Then dr.v; vi / D 1 for 1 � i � k , and dr.vi ; vj / D 2 for 1 � i ¤ j � k . So
dr.'.v/; '.vi // D 1 for 1 � i � k , and dr.'.vi /; '.vj // D 2 for 1 � i ¤ j � k ,
and †v.vi ; vj /D �

2
if and only if †'.v/.'.vi /; '.vj //D �

2
by (4-6). This induces a

graph embedding �1! �2 . By considering '�1 , we obtain another graph embedding
�2! �1 . Hence �1 and �2 are isomorphic.

Corollary 4.18 If Out.G.�// is finite and QI.G.�// is the quasi-isometry group
of G.�/, then we have the following commutative diagram, where i1 , i2 and i3 are
injective homomorphisms:

Isom.G.�/; dw/ QI.G.�// Isom.G.�/; dr/.
i1 i2

i3

Proof The homomorphisms i1 and i3 are obvious, and i2 is given by Lemma 4.5
and Corollary 4.15. It is clear that i2 is a group homomorphism and i3 D i2 ı i1 . Note
that i3 is injective, so i1 is injective. Pick ˛ 2QI.G.�//; by Corollary 4.15, we know
i2.˛/D Id implies the image of every standard flat under ˛ is uniformly Hausdorff
close to itself; thus ˛ is of bounded distance from the identity map.

5 Quasi-isometries and special subgroups

Let G.�/ be a RAAG with finite outer automorphism group. In this section, we
characterize all other RAAGs quasi-isometric to G.�/.

5.1 Preservation of extension complex

Lemma 5.1 Let � be a finite simplicial graph. Pick a vertex w 2 � , and let �w be
the minimal stable subgraph containing w . Denote �1 D lk.w/ and �2 D lk.�1/ .see
Section 2.1 for the definition of links/. Then exactly one of the following is true:

(1) �w is a clique. In this case, St.w/ is a stable subgraph.
(2) Both �1 and �1 ı�2 are stable subgraphs of �. Moreover, �2 is disconnected.
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Recall that we use .� 0/? to denote the orthogonal complement of the subgraph � 0��
(see Section 2.1), and we assume .∅/? D �.

Proof If �w � St.w/, then �w is a clique by Lemma 3.23. We also deduce from
Lemma 3.23 that each vertex of St.w/ n �w is in �?w . Moreover, �?w � w

? since
w 2 �w . Thus St.w/ is the full subgraph spanned by vertices in �w and �?w . So
St.w/ is stable by Lemma 3.12.

If �w ª St.w/, let �11 be the full subgraph spanned by vertices in �w \ lk.w/,
and let � 02 be the full subgraph spanned by vertices in �w n �11 . By Lemma 3.23,
�w D�11 ı�

0
2 and � 02D�2 . Note that �2 is disconnected with isolated point w 2�2 ,

and �11 may be empty.

Let Vw D v.�w/ be the vertex set of �w and let �12 be the full subgraph spanned
by V ?w . Then �w ı �12 D �11 ı �2 ı �12 is stable by Lemma 3.12. Pick a vertex
v2�1n�11 ; then v2w?�St.u/ for any vertex u2�w by Lemma 3.23. Thus v2�12
and �1��11ı�12 . On the other hand, w 2�2 , so �11ı�12��1 and �1D�11ı�12 .
Since �2 does not contain any clique factor and �11 ı�2 ı�12 D �1 ı�2 is stable,
we know �1 is stable in � by Theorem 2.9.

Remark 5.2 In the above proof, �12 may be empty. But if �12 ¤ ∅, then it does
not contain any clique join factor. Thus �11 is the maximal clique join factor of
�11 ı�2 ı�12 .

The next result answers the question at the end of Example 3.22.

Theorem 5.3 Suppose Out.G.�// is finite and let qW X.�/ ! X.� 0/ be a quasi-
isometry. Then q induces a simplicial isomorphism q�W P.�/! P.� 0/; in particular,
Out.G.� 0// is transvection-free.

In the following proof, we identify � with the one-skeleton of F.�/, which is the flag
complex of �. Also recall that there are label-preserving projections � W P.�/!F.�/

and � W P.� 0/! F.� 0/.

Proof By Lemma 4.5, there is a simplicial embedding q�W P.�/! P.� 0/. Note that
q�.P.�// is a full subcomplex in P.� 0/. To see this, pick a simplex �0 � P.� 0/ with
its vertices in q�.P.�//. Then each vertex of �0 comes from a stable standard geodesic
line in X.� 0/. Thus there exists a stable standard flat F 0�X.� 0/ such that �.F 0/D�0

by Lemma 3.18. By considering the quasi-inverse of q , we know F 0 is Hausdorff close
to the q–image of a stable standard flat in X.�/. Thus �.F 0/D�0 � q�.P.�//.
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Pick a vertex p 2 X.�/, and let f�igkiD1 , fFigkiD1 , f�0igkiD1 and fF 0i gkiD1 be as in
the proof of Lemma 4.10. We claim

(5-1)
k\
iD1

F 0i ¤∅:

Suppose (5-1) is not true. Then there exist 1� i1 ¤ i2 � k and hyperplane h0 �X.�/
such that h0 separates F 0i1 and F 0i2 . Let l 0 be a standard geodesic that intersects h0

transversely, and let v0 D�.l 0/. By the discussion in Lemma 4.9, we can find vertices
v01 2�

0
i1 and v02 2�

0
i2 such that v01 and v02 are separated by St.v0/. If there exists i0

such that F 0i0\h¤∅, then v0 2 q�.P.� 0//, and we can prove (5-1) as in Lemma 4.10.
Now we assume F 0i \ h0 D ∅ for any i . Let w0 D �.v0/ 2 � 0 , and let �w 0 be the
minimal stable subgraph of � 0 that contains w0 .

We apply Lemma 5.1 to w0 2 � 0 ; if case (1) is true, let F 0 be the standard flat in
X.� 0/ such that l 0 � F 0 and �F 0 D �w 0 . Since �w 0 is stable, �.F 0/ � q�.P.� 0//;
in particular, v0 2 q�.P.� 0//, and we can prove (5-1) as in Lemma 4.10.

If case (2) is true, let � 01 D lk.w0/ and let � 02 D lk.� 01/. Take K 01 and K 0 to be
the standard subcomplexes in X.� 0/ such that: (a) the defining graphs �K01 and �K0
of K 01 and K 0 satisfy �K01 D �

0
1 and �K0 D � 01 ı� 02 ; (b) l 0 �K 0 and K 01 �K 0 . Set

M 01 D�.K
0
1/ and M 0 D�.K 0/. Let K 02 be an orthogonal complement of K 01 in K 0 ;

ie K 02 is a standard subcomplex such that �K02 D �
0
2 and K 0 DK 01 �K 02 . It follows

that M 0 DM 01 �M 02 for M 02 D�.K 02/. By construction, v0 2M 0 and lk.v0/DM 01 .

Since K 0 and K 01 are stable, there exist stable standard subcomplexes K and K1 in
X.�/ such that q.K/1DK 0 and q.K1/

1
DK 01 . Moreover, by applying Theorem 2.9 to

the quasi-isometry between K and K 0 , there exists a standard subcomplex K2�K such
that K DK1 �K2 , and K2 is quasi-isometric to K 02 . Thus �K2 is also disconnected.
Let Mi D �.Ki / � P.�/ for i D 1; 2, and let M D M1 �M2 D �.K/. Then
q�.M1/�M

0
1 (at this stage we may not know q�.M1/DM

0
1 ), and

(5-2) q�1� .M 01/DM1:

To see this, pick a simplex �� P.�/ with q�.�/�M 01 . Suppose �D�.F / for a
stable standard flat F �X.�/. Then q.F /�1 K 01 ; hence F �1 K1 and ��M1 .

Let LD
Sk
iD1�i and L0D

Sk
iD1�

0
i . By the proof of Lemma 4.10, L0n.St.v0/\L0/

is disconnected; thus Lnq�1� .St.v0/\L0/ is disconnected. Recall that lk.v0/DM 01 , and
we are assuming v0 …L0 . Thus .St.v0/\L0/�M 01 . Then q�1� .St.v0/\L0/�q�1� .M 01/;
hence q�1� .St.v0/\L0/�M1 by (5-2).

Let N D �.q�1� .St.v0/\L0//, and let Ni D �.Mi / for i D 1; 2. Then N separates
F.�/, N �N1 and N2 is disconnected. Pick vertices u1; u2 in different connected
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components of N2 ; then d.u1; u2/ � 2 (since N2 is the full subcomplex spanned
by �K2 ). Since �.M/D N1 �N2 � F.�/, we have N � St.ui / n fuig for i D 1; 2.
Let fCj gdjD1 be the connected components of F.�/ nN . Then at most one of Cj
is contained in St.u1/. If d � 3, then St.u1/ would separate F.�/, which is a
contradiction. Now we suppose d D 2. Note that for i D 1; 2, there must exist j such
that Cj � St.ui /: otherwise, St.ui / would separate F.�/. Moreover, if Cj � St.ui /,
then ui 2 Cj . So we can assume without loss of generality that C1 � St.u1/ and
C2�St.u2/, which implies F.�/DSt.u1/[St.u2/, and again we have a contradiction
by Lemma 4.12. Thus case (2) is impossible, and (5-1) is true.

Let fF�g�2ƒ be the collection of maximal standard flats in X.�/. Then X.�/ DS
�2ƒ F� . For each �, let F 0� be the unique maximal standard flat in X.� 0/ such that

q.F�/
1
D F 0� . Then

(5-3) X.� 0/
1
D

[
�2ƒ

F 0�:

Let h � X.� 0/ be an arbitrary hyperplane. Then h\
�S

�2ƒ F
0
�

�
¤ ∅: otherwise,S

�2ƒ F
0
� would stay on one side of the hyperplane since it is a connected set by (5-1),

and this contradicts (5-3). Pick any standard geodesic r � X.� 0/, and let hr be a
hyperplane dual to r . Then there exists � 2 ƒ such that F 0� \ hr ¤ ∅. It follows
that r �1 F 0� . So �.r/ 2�.F 0�/� q�.P.�//, which implies q� is surjective on the
vertices. However, q�.P.�// is a full subcomplex in P.� 0/, so q� is surjective.

5.2 Coherent ordering and coherent labeling

Throughout this section, we assume that Out.G.�// is finite and G.�/ © Z. If
qW G.�/!G.� 0/ is a quasi-isometry, then G.� 0/ has a quasi-action (see [46, Defini-
tion 2.2]) on G.�/, which induces a group homomorphism

H W G.� 0/! QI.G.�//:

On the other hand, since G.�/ acts by isometries on X.�/, we can identify G.�/ as
a subgroup of QI.G.�// (more precisely, we embed G.�/ into Isom.G.�/; dw/ and
embed Isom.G.�/; dw/ into QI.G.�// by Corollary 4.18). In this subsection, we will
seek to answer the following question:

Does there exist g 2 QI.G.�// such that g �H.G.� 0// �g�1 �G.�/?

Recall that we have picked an identification between G.�/ and the 0–skeleton of X.�/.
Each circle in the 1–skeleton of the Salvetti complex of G.�/ is labeled by an element
in the standard generating set S of G.�/. Moreover, we have chosen an orientation
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for each such circle. By pulling back the labeling and orientation of edges to the
universal cover X.�/, we obtain a G.�/–invariant directed labeling of edges in X.�/.
Moreover, both the labeling and orientation of edges in X.�/ are compatible with
parallelism between edges. This also induces an associated G.�/–invariant labeling of
vertices in P.�/.

Let fl�g�2ƒ be the collection of standard geodesics in X.�/, and let V� D v.l�/ be
the vertex set of l� . A coherent ordering of G.�/ is obtained by assigning a collection
of bijections f�W V�! Z for each � 2ƒ such that if l�1 and l�2 are parallel, then
the f�2 ıp ı f

�1
�1
W Z! Z is a translation, where pW V�1 ! V�2 is the map induced

by parallelism. The map f� pulls back the total order on Z to V� , which we denote
by �� . Then pW V�1 ! V�2 is order preserving.

Two coherent orderings �1 and �2 are equivalent, denoted by �1 D �2 , if their
collections of bijections agree up to a translation of Z. Recall that we have a G.�/–
invariant orientation of edges in X.�/ which is compatible with parallelism between
edges. This induces a unique coherent ordering � of G.�/ up to the equivalence
relation defined before. Moreover, for any element g 2G.�/, the pull-back g�.�/ is
also a coherent ordering; additionally, g�.�/D�.

Recall that for any vertex v 2X.�/, there is a label-preserving simplicial embedding
ivW F.�/!P.�/ by considering the standard geodesics passing through v . A coherent
labeling of G.�/ is a simplicial map aW P.�/!F.�/ such that aıivW F.�/!F.�/

is a simplicial isomorphism for every vertex v 2X.�/.

The label-preserving projection LW P.�/! F.�/ gives rise to a coherent labeling
of G.�/. Recall that G.�/ acts on P.�/ by simplicial automorphisms, and the labeling
of vertices in P.�/ is G.�/–invariant. Thus for any element g 2G.�/, the pull-back
g�.L/ is also a coherent labeling and g�.L/D L.

We have the following alternative characterization of elements in Isom.G.�/; dr/.

Lemma 5.4 There is a one-to-one correspondence which associates each element of
Isom.G.�/; dr/ to a triple consisting of

(1) a point v 2G.�/,

(2) a coherent ordering of G.�/ (up to the equivalence relation defined above),

(3) a coherent labeling of G.�/.

Proof Pick � 2 Isom.G.�/; dr/ and let ' D h.�/W P.�/! P.�/, where h is the
monomorphism in Remark 4.16. Then '�L D L ı 'W P.�/! F.�/ is a coherent
labeling of G.�/. Pick a standard geodesic l1 � X.�/. Then the parallel set Pl1
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admits a splitting Pl1 D l1 � l
?
1 . Since � maps vertices in a standard flat bijectively

to vertices in a standard flat, there exists a standard geodesic l2 � X.�/ such that
�.v.l1// D v.l2/ and �.v.Pl1// D Pl2 ; moreover, � respects the product structure
on Pl1 . Thus the pull-back ��� is a coherent ordering of G.�/. Now we can set up
the correspondence in one direction:

� .�.id/; ���; '�L/:

Here, id denotes the identity element of G.�/.

Conversely, given a point v 2G.�/, a coherent ordering �0 and a coherent labeling L0 ,
we can construct a map � as follows. Set �.id/ D v . For u 2 G.�/, pick a word
wuD a1a2 � � � an representing u. Let ui be the point in G.�/ represented by the word
a1a2 � � � ai for 1 � i � n, and let u0 D id. We define qi D �.a1a2 � � � ai / 2 G.�/
inductively as follows. Set q0 D v , and suppose qi�1 is already defined. Denote
the standard geodesic containing ui�1 and ui by li . Let vi D L0.�.li //, which
is a vertex of �, and let l 0i be the standard line that contains qi�1 and is labeled
by vi . Denote the vertex set of li with the order from �0 by .v.li /;��0/. Suppose
that kW .v.li /;��0/! .v.l 0i /;��/ is the unique order-preserving bijection such that
k.ui�1/D qi�1 . Then we define qi D k.ui /.

We claim that for any other word w0u representing u, we have �.wu/D �.w0u/, and
hence there is a well-defined map �W G.�/!G.�/. To see this, recall that one can
obtain wu from w0u by performing the following two basic moves:

(1) w1aa
�1w2! w1w2 ,

(2) w1abw2! w1baw2 when a and b commute.

It is clear that �.w1aa�1w2/ D �.w1w2/. For the second move, let ui�1 , ui , u0i
and uiC1 be points in G.�/ represented by w1; w1a;w1b and w1ab D w1ba , re-
spectively. Define qi�1D �.w1/, qi D �.w1a/, q0i D �.w1b/, qiC1D �.w1ab/ and
q0iC1D �.w1ba/. Since L0 is a coherent labeling, †qi .qiC1; qi�1/D†qi�1.qi ; q0i /D
†q0

i
.qi�1; q0iC1/ D

�
2

; moreover, the standard geodesic containing qi and qiC1 is
parallel to the standard geodesic containing qi�1 and q0i . Since �0 is a coherent
ordering, d.qi ; qiC1/D d.qi�1; q0i /; thus qiqiC1 and qi�1q0i are parallel. Similarly,
qi�1qi and q0i q0iC1 are parallel; thus qiC1 D q0iC1 .

Now we define another map �0W G.�/!G.�/, which serves as the inverse of � . Set
�0.v/D id and pick a word w D a1a2 � � � an . Let ri be the point in G.�/ represented
by va1a2 � � � ai for 1 � i � n, and let r0 D v . We define pi D �0.va1a2 � � � ai /

inductively as follows. Put p0 D id, and suppose pi�1 is already defined. Since L0 is
a coherent labeling, there exists a unique standard geodesic li containing pi�1 such
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that L0.�.li // and the edge ri�1ri share the same label. Let l 0i be the unique standard
geodesic containing ri�1 and ri , and let k0W .v.l 0i /;��/! .v.li /;��0/ be the unique
order-preserving bijection such that k0.ri�1/D pi�1 . Put pi D k0.ri /. By a similar
argument as above, �0W G.�/! G.�/ is well defined. It is not hard to deduce the
following properties from our construction:

(1) �0 ı� D � ı�0 D Id.

(2) dr.�.v1/; �.v2// � dr.v1; v2/ and dr.�
0.v1/; �

0.v2// � dr.v1; v2/ for any
vertices v1; v2 2G.�/.

(3) If L0 D L and �0 D�, then � is a left translation. If, in addition, v D id, then
� D Id.

It follows from (1) and (2) that � 2 Isom.G.�/; dr/. Moreover, vD �.id/, L0D '�L
(' D h.�/, where h is the monomorphism in Remark 4.16) and �0 D ���; thus we
have established the required one-to-one correspondence.

Pick finite simplicial graphs � and � 0 such that: (1) Out.G.�// is finite; (2) there
exists a simplicial isomorphism sW P.�/! P.� 0/. By Lemma 4.10, s induces a map
�W G.�/!G.� 0/. For every g0 2G.� 0/, there is a left translation

x�g 0 W G.�
0/!G.� 0/;

which gives rise to a simplicial isomorphism xsg 0 W P.� 0/!P.� 0/. Let sg 0D s�1ıxsg 0ıs .
Then sg 0 gives rise to a map �g 0 2 Isom.G.�/; dr/ by Corollary 4.15; moreover, by
Lemma 4.10,

(5-4) x�g 0 ı� D � ı�g 0

for any g0 2 G.� 0/. So G.� 0/ acts on G.�/, and we can define a homomorphism
ˆW G.� 0/! Isom.G.�/; dr/ by sending g0 to �g 0 . ˆ is injective since each step in
defining ˆ is injective.

Lemma 5.5 In the above setting, there exists an element �1 2 Isom.G.�/; dr/ such
that it conjugates the image of ˆ to a finite-index subgroup of G.�/.

We identify G.�/ as a subgroup of Isom.G.�/; dr/ via the left action of G.�/ on itself.

Proof Pick a reference point q 2 Im� , and let Kq D .F.� 0//q . Denote the points in
��1.q/ by fp�g�2ƒ , and let Kp� D .F.�//p� . Since the f�.Kp�/g�2ƒ are distinct
subcomplexes of Kq , the set ƒ must be finite.

Let LW P.�/! F.�/ and � be the coherent labeling and coherent ordering induced
by the G.�/–invariant labeling of X.�/ and P.�/. In a similar fashion, we can obtain
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a coherent labeling L0W P.� 0/! F.� 0/ and a coherent ordering �0 for G.� 0/ which
are invariant under the G.� 0/–action, ie

(5-5) .xsg 0/
�L0 D L0 and .x�g 0/

��0 D�0:

Our goal is to find a coherent labeling L1 and a coherent ordering �1 of G.�/ such
that .sg 0/�L1 D L1 and .�g 0/��1 D�1 for any g0 2G.� 0/.

Let iqW F.� 0/! P.� 0/ be the canonical embedding, and let

L1 D L ı s
�1
ı iq ıL

0
ı s

be the simplicial map from P.�/ to F.�/. Pick an arbitrary p 2 G.�/, and let
ipW F.�/!P.�/ be the canonical embedding. We need to show L1ıip is a simplicial
isomorphism. Let Kp D ip.F.�//, and let g01 2G.� 0/ such that g01 ��.p/D q . Then
iq ıL

0js.Kp/ Dxsg 01
js.Kp/ . Thus

L1 ı ip D L ı s
�1
ı iq ıL

0
ı s ı ip D L ı s

�1
ıxsg 01

ı s ı ip D L ı sg 01
ı ip;

which is a simplicial isomorphism by Lemma 4.10. It follows that L1 is a coherent
labeling; moreover,

.sg 0/
�L1 D .L ı s

�1
ı iq ıL

0
ı s/ ı .s�1 ıxsg 0 ı s/D L ı s

�1
ı iq ıL

0
ıxsg 0 ı s

D L ı s�1 ı iq ıL
0
ı s D L1

for any g0 2G.� 0/, where the third equality follows from (5-5). So L1 is the required
coherent labeling.

To simplify notation, we will write x<�y if x<y under the ordering �. We define �1
as follows. Let p1; p2 2 G.�/ be two distinct points in a standard geodesic line. If
�.p1/¤ �.p2/, then we set p1 <�1 p2 if and only if �.p1/ <�0 �.p2/. If �.p1/D
�.p2/, then by (5-4), there exists a unique g0 2G.� 0/ such that �g 0.pi / 2 ��1.q/ for
iD1; 2, and we set p1<�1 p2 if and only if �g 0.p1/<��g 0.p2/. It follows from (5-5),
(5-4) and our construction that p1 <�1 p2 if and only if �g 0.p1/ <�1 �g 0.p2/ for any
p1; p2 in the same standard geodesic line and any g0 2G.� 0/; thus .�g 0/��1 D�1 .

To verify �1 is coherent, pick parallel standard geodesics l1 and l2 in X.�/, and pick
distinct vertices p11; p12 2 l . Let p21; p22 be the corresponding vertices in l2 via
parallelism. We assume p11 <�1 p12 ; it suffices to prove p21 <�1 p22 .

Case 1 We assume �.p11/¤�.p12/. Recall that l1 can be realized as an intersection
of finitely many maximal standard flats, so by Lemma 4.10, there exists a standard geo-
desic line l 01�X.� 0/ such that �.v.l1//�v.l 01/ and �.v.Pl1//�v.Pl 01/; moreover, �
respects the product structures of Pl1 and Pl 01 . Thus �.p11/�.p21/ and �.p21/�.p22/
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are the opposite sides of a flat rectangle in X.� 0/. Now p21 <�1 p22 follows since
�0 is coherent.

Case 2 We assume �.p11/D �.p12/¤ �.p21/. In this case, we can assume without
loss of generality that �.p11/D�.p12/Dq (since .�g 0/��1D�1 ), and the points p11
and p21 stay in the same standard geodesic. For iD1; 2, let ri be the standard geodesic
passing p1i and p2i . Take r 0i �X.�

0/ and l 0i �X.� 0/ to be the standard geodesics such
that �.v.ri // � v.r 0i / and �.v.li // � v.l 0i /, respectively. Let q0 D �.p21/. Since �
restricted to v.Pl1/ respects the product structure, �.p21/D �.p22/D q0 and r 01D r

0
2 .

Let x�g 0 be the left translation such that x�g 0.q0/ D q . Since q0 2 r 01 and q 2 r 01 , we
have that x�g 0 is a translation along r 01 , and xsg 0 fixes every point in St.�.r 01//; hence
sg 0 fixes every point in s�1.St.�.r 01///D St.�.r1//, and

(5-6) �g 0.ri /D ri

for i D 1; 2. Let l3 D �g 0.l2/. Then l3 is parallel to l1 (or l2 ). To see this, note
that �.l1/ 2 St.�.r1//; hence �.l1/ is fixed by sg 0 . Put p3i D �g 0.p2i / for i D 1; 2.
Then p3i 2 ri by (5-6); hence p11p12 and p31p32 are the opposite sides of a flat
rectangle. Moreover, p3i 2 ��1.q/ for i D 1; 2 by (5-4), so p31 <�1 p32 since � is
coherent, and �D�1 while restricted on ��1.q/. Now the G.� 0/–invariance of �1
implies p21 <�1 p22 .

Case 3 If �.p11/D �.p12/D �.p21/, then we can assume without loss of generality
that they all equal to q . It follows that �.p22/ D q since � respects the product
structure while restricted to v.Pl1/. Thus p21 <�1 p22 by definition.

By Lemma 5.4, there exists �1 2 Isom.G.�/; dr/ such that ��1�D�1 and s�1LDL1
(s1 D h.�1/ where h is the monomorphism in Remark 4.16). Thus

.�1 ı�g 0 ı�
�1
1 /��D .��11 /� ı .�g 0/

�
ı .��1�/D .�

�1
1 /� ı .�g 0/

��1

D .��11 /��1 D�

for any g0 2G.� 0/. Similarly, .s1 ı sg 0 ı s�11 /�LD L for any g0 2G.� 0/. Note that
s1 ı sg 0 ı s

�1
1 D h.�1 ı �g 0 ı �

�1
1 /; thus by Lemma 5.4, G.� 0/ acts on G.�/ by left

translations via g0! �1 ı�g 0 ı�
�1
1 . This induces a monomorphism G.� 0/!G.�/.

Moreover, by (5-4) and the fact that ��1.q/ is finite, this action has finite quotient;
thus we can realize G.� 0/ as a finite-index subgroup of G.�/.

The next result basically says under suitable conditions, if there exists a quasi-isometry
qW G.�/!G.� 0/, then there exists a very “nice” quasi-isometry q0W G.�/!G.� 0/.
However, we do not insist that q0 is of bounded distance away from q (compared to
Theorem 4.13).
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Theorem 5.6 Let � and � 0 be finite simplicial graphs such that Out.G.�// is fi-
nite and G.� 0/ is quasi-isometric to G.�/. Then there exists a cubical map (see
Definition 2.1) 'W X.�/!X.� 0/ such that:

(1) The map ' is onto, and ' maps any standard flat in X.�/ onto a standard flat in
X.� 0/ of the same dimension.

(2) The map ' maps combinatorial geodesics in the 1–skeleton of X.�/ to combi-
natorial geodesics in the 1–skeleton of X.� 0/.

(3) The map ' is a quasi-isometry.

Proof Let f W G.�/ ! G.� 0/ be a quasi-isometry. By Theorem 5.3, f induces
a simplicial isomorphism sW P.�/ ! P.� 0/. By Lemma 4.10, s induces a map
�W G.�/! G.� 0/ such that dw.f .x/; �.x// < D for any x 2 G.�/. Let �1 be the
map in Lemma 5.5 and let ' D � ı��11 . We will use the same notation as in the proof
of Lemma 5.5.

We claim that if F D
Th
iD1 Fi , where each Fi is a maximal standard flat, then there

exists a unique standard flat F 0�G.� 0/ such that �.v.F //Dv.F 0/. To see this, let F 0i
be the maximal standard flat in X.� 0/ such that �.F 0i / D s.�.Fi // for 1 � i � h,
and let F 0 D

Th
iD1 F

0
i . Then it follows from Lemma 4.10 that �.v.F // � v.F 0/.

Recall that G.� 0/ acts on G.� 0/, P.� 0/, G.�/ and P.�/. The stabilizer Stab.v.F 0//
fixes �.F 0i / for all i ; hence it fixes �i for all i , and Stab.v.F 0// � Stab.v.F //.
Since Stab.v.F 0// acts on v.F 0/ transitively, (5-4) implies �.v.F // D v.F 0/ and
j��1.y/\F jD j��1.y0/\F j for any y; y0 2 v.F 0/. It also follows that Stab.v.F //�
Stab.v.F 0//; thus Stab.v.F 0//D Stab.v.F //.

Note that the above claim is also true for ' , and any standard geodesic satisfies the
assumption of the claim. Moreover, ' is surjective since �1 is surjective by (5-4).
Pick standard geodesics l �X.�/ and l 0 �X.� 0/ such that v.l 0/D '.v.l//, and we
identify v.l/ and v.l 0/ with Z in an order-preserving way. Then the above claim and
the construction of �1 imply that 'jv.l/ is of the form

(5-7) '.a/D ba=dcC r

for some integers r and d (with d � 1). In particular, ' can be extended to a simplicial
map from the Cayley graph C.�/ of G.�/ to C.� 0/.

Pick a combinatorial geodesic ! � C.�/ connecting vertices x and y ; we claim that
!0 D �.!/ is also a geodesic in C.� 0/ (it could be a point). Let fvigniD0 be vertices
in ! such that for 0 � i � n� 1, we have that Œvi ; viC1� is a maximal subsegment
of ! that is contained in a standard geodesic (v0 D x and vn D y ). Denote the
corresponding standard geodesic by li . For 0 � i � n � 1, let l 0i � X.� 0/ be the
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standard geodesic such that v.l 0i /D '.v.li //, and let !0i D �.Œvi ; viC1�/. Then !0i is a
(possibly degenerate) segment in l 0i by (5-7). Since ! is a geodesic, no two geodesics
in flign�1iD0 are parallel. Note that ' is induced by a simplicial isomorphism between
P.�/ and P.� 0/; thus the same property is true for the collection of geodesics fl 0ign�1iD0 .
It follows that no hyperplane in X.� 0/ could intersect !0 at more than one point;
hence !0 is a combinatorial geodesic.

Let ui D '.vi /. Then dw.ui ; uiC1/� dw.vi ; viC1/ by (5-7) (recall that dw denotes
the word metric on the corresponding group). Thus

(5-8) dw.'.x/; '.y//D

n�1X
iD0

dw.ui ; uiC1/�

n�1X
iD0

dw.vi ; viC1/D dw.x; y/

for any x; y 2G.�/.

Pick p 2 G.� 0/ and let k D j'�1.p/j. Then k does not depend on p by (5-4). It
follows that dw.'.x/; '.y//� 1 whenever dw.x; y/� kC1. Now we can cut ! into
pieces of length kC 1. Since '.!/ is a combinatorial geodesic,

dw.'.x/; '.y//�
dw.x; y/

kC 1
� 1:

Note that ' naturally extends to a cubical map from X.�/ to X.� 0/, which satisfies
all the required properties.

Theorem 5.7 If � and � 0 are finite simplicial graphs such that Out.G.�// is finite,
then the following are equivalent:

(1) G.� 0/ is quasi-isometric to G.�/.

(2) P.� 0/ is isomorphic to P.�/ as simplicial complexes.

(3) G.� 0/ is isomorphic to a subgroup of finite index in G.�/.

Proof .1/D) .2/ follows from Theorem 5.3. .2/D) .3/ follows from Lemma 5.5.
.3/D) .1/ is trivial.

This establishes Theorem 1.2 in the introduction.

6 The geometry of finite-index RAAG subgroups

Throughout this section, we assume G.�/© Z, since the main results of this section
(Theorems 6.13 and 6.19) are trivial when G.�/Š Z.
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6.1 Constructing finite-index RAAG subgroups

A right-angled Artin subgroup is a subgroup which is also a right-angled Artin group.
In this section, we introduce a process to obtain finite-index RAAG subgroups of an
arbitrary RAAG.

Lemma 6.1 Let X be a CAT.0/ cube complex, let l � X be a geodesic in the 1–
skeleton and let fhigi2Z be consecutive hyperplanes dual to l . Let �l W X ! l be the
CAT.0/ projection. Then:

(1) For every edge e �X , if e\hi D∅ for all i , then �l.e/ is a vertex in l , and if
e\ hi ¤∅ for some i , then �l.e/ is an edge in l .

(2) If K is any connected subcomplex such that e\ hi D∅ for all i , then �l.K/
is a vertex in l; moreover, if K stays between hi and hiC1 , then �l.K/ is the
vertex in l that stays between hi and hiC1 .

(3) For every interval Œa; b�� l , we have that ��1
l
.Œa; b�/ is a convex set in X . In

particular, if x 2 l is a vertex, then ��1
l
.x/ is a convex subcomplex of X .

(4) If K is a convex subcomplex such that K \ l ¤∅, then �l.K/DK \ l .

Proof Here (1) and (3) follow from the fact the every hyperplane has a carrier,
and (2) follows from (1). To see (4), it suffices to show that for every i such that
hi \ l ¤∅ and hi \K ¤∅, we have ei �K (ei is the edge in l dual to hi ). Let Nhi
be the carrier of hi . By Lemma 2.3, d.x;Nhi \K/ � c for any x 2 ei . Moreover,
d.x;Nhi \K/Dd.x;K/ for x in the interior of ei , so we must have cD 0: otherwise,
the convexity of d. � ; K/ would imply K \ l D∅.

Recall that v.P.�/ nSt.�.l/// is the collection of vertices in P.�/ nSt.�.l//.

Lemma 6.2 Let l �X.�/ be a standard geodesic. Then there is a map

��.l/W v.P.�/ nSt.�.l///! v.l/

such that if v1 and v2 are in the same connected component of P.�/ nSt.�.l//, then
��.l/.v1/D ��.l/.v2/.

Proof Let �l W X.�/! l be the CAT.0/ projection and let l1 �X.�/ be a standard
geodesic such that d.�.l1/;�.l//� 2. Then �l.l1/ is a vertex in l by Lemma 3.1 and
Corollary 3.2. Moreover, we claim �l.l1/D �l.l2/ if l2 is a standard geodesic parallel
to l1 . It suffices to prove the case when there is a unique hyperplane h separating l1
from l2 . Note that d.�.l1/;�.l// � 2 yields h\ l D ∅, so l1 and l2 are pinched
by two hyperplanes dual to l ; then the claim follows from Lemma 6.1. Thus �l

Geometry & Topology, Volume 21 (2017)



3520 Jingyin Huang

induces a well-defined map ��.l/W v.P.�/nSt.�.l///! v.l/. If �.l1/ and �.l2/ are
connected by an edge, then there exist standard geodesics l 01 and l 02 such that l 01\l 02¤∅
and l 0i is parallel to li for i D 1; 2. Thus �l.l1/ D �l.l

0
1/ D �l.l

0
2/ D �l.l2/, and

��.l/.�.l1//D ��.l/.�.l2//.

Pick a standard generating set S of G.�/, and let C.�; S/ be the Cayley graph. We
identify G.�/ as a subset of C.�; S/ and attach higher-dimensional cubes to C.�; S/
to obtain a CAT.0/ cube complex X.�; S/, which is basically the universal cover of the
Salvetti complex. Here we would like to think of G.�/ as a fixed set and of C.�; S/
and X.�; S/ as objects formed by adding edges and cubes to G.�/ in a particular
way determined by S , so we write S explicitly. We will choose a G.�/–equivariant
orientation for edges in X.�; S/ as before.

An S –flat (or an S –geodesic) in G.�/ is defined to be the vertex set of a standard flat
(or geodesic) in X.�; S/. We define P.�; S/ as before such that its vertices correspond
to coarse equivalence classes of S –geodesics.

We define an isometric embedding I W G.�/! `1.v.P.�; S/// which depends on S
and the orientation of edges in X.�; S/. Pick a standard geodesic l � X.�; S/,
and let �l W X.�; S/ ! l be the CAT.0/ projection. We identify v.l/ with Z�.l/

in an orientation-preserving way such that �l.id/ D 0 (id is the identity element
in G.�/). Then �l induces a coordinate function I�.l/W G.�/ ! Z�.l/ . If we
change l to a standard geodesic l1 parallel to l , then I�.l/ and I�.l1/ are identical by
Lemma 6.1. Thus for every vertex v 2P.�/, there is a well-defined coordinate function
IvW G.�/! Zv . These coordinate functions induce a map I W G.�/! Z.v.P.�/// .

The map I is an embedding since every two points in G.�/ are separated by some
hyperplane. I.G.�//� `1.v.P.�/// since for any g 2G.�/, there are only finitely
many hyperplanes separating id and g . I naturally extends to a map I W X.�; S/!
`1.v.P.�///, and it maps combinatorial geodesics to geodesics by the argument
in Theorem 5.6. Thus I is an isometric embedding with respect to the `1 metric
on X.�; S/. We say a convex subcomplex K � X.�; S/ is nonnegative if each
point in I.K/ has nonnegative coordinates (this notion depends on the orientation of
edges in X.�; S/). Let CN.�; S/ be the collection of compact, convex, nonnegative
subcomplexes of X.�; S/ that contain the identity.

For any K 2 CN.�; S/, we find a maximal collection of standard geodesics fcigsiD1
such that ci \K ¤∅ for all i and �.ci /¤�.cj / for any i ¤ j . Let gi 2 S be the
label of edges in ci and let ˛i D �ci .id/. Put ni D jv.K \ ci /j and vi D ˛ig

ni
i ˛
�1
i .

Let G0 be the subgroup generated by fvigsiD1 . It follows from the convexity of K that
if a standard geodesic c is parallel to ci and c\K¤∅, then jv.K\ci /j D jv.K\c/j.
Thus fvigsiD1 and G0 do not depend on the choice of the ci .
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Lemma 6.3 G0 is a finite-index subgroup of G.�/.

Proof We prove this by showing G0 � v.K/D G.�/. Let dr be the syllable metric
on G.�/ defined in Section 4.3. Pick a word ˛ 2 G.�/ and assume ˛ 2 G0 � v.K/
when dr.˛; id/ � k � 1. If dr.˛; id/ D k , then there exists ˇ 2 G.�/ such that
dr.id; ˇ/ D k � 1 and dr.ˇ; ˛/ D 1. Let ˇ D ˇ1ˇ2 for ˇ1 2 G0 and ˇ2 2 v.K/.
Then dr.ˇ2; ˇ�11 ˛/D 1. Suppose c is the standard geodesic containing ˇ2 and ˇ�11 ˛ .
Then there exists i such that ci and c are parallel. Note that Pc \K is a convex set
in the parallel set Pc , hence respects the natural splitting Pc D c � c? ; moreover,
the left action of vi translates the c factor by ni units and fixes the other factor.
Thus there exists d 2 Z and ˇ02 2 K \ c such that vdi ˇ

0
2 D ˇ

�1
1 ˛ , which implies

˛ D ˇ1v
d
i ˇ
0
2 2G

0 � v.K/.

Let � 0 be the full subgraph of P.�/ spanned by points f�.ci /gsiD1 . Then there is a
natural homomorphism G.� 0/!G0 .

Lemma 6.4 The homomorphism G.� 0/!G0 is actually an isomorphism. Hence G0

is a finite-index RAAG subgroup of G.�/.

We will follow the strategy in [47], where the following version of the ping-pong lemma
for right-angled Artin groups was used.

Theorem 6.5 [47, Theorem 4.1] Let G DG.�/ and let X be a set with a G–action.
Suppose the following hold:

(1) For each vertex vi of �, there exists a subset Xi �X such that the union of all
the Xi is properly contained in X .

(2) For each nonzero k 2 Z and vertices vi ; vj joined by en edge, vki .Xj /�Xj .

(3) For each nonzero k 2Z and vertices vi ; vj not joined by en edge, vki .Xj /�Xi .

(4) There exists x0 2X n
S
i2V Xi (V is the vertex set of � ) such that vki .x0/2Xi

for each nonzero k 2 Z.

Then the G–action is faithful.

Proof of Lemma 6.4 We will apply Theorem 6.5 with X DX.�; S/ and G DG.� 0/.
For 1� i � s , we identify ci and R in an orientation-preserving way such that �ci .id/
corresponds to 0 2R. Define XCi D �

�1
ci

��
ni �

1
2
;1

��
, X�i D �

�1
ci

��
�1;�1

2

��
and

Xi DX
C
i [X

�
i . It clear that the identity element id does not lie in Xi for any i , so

Theorem 6.5(1) is true. Each vi D ˛ig
ni
i ˛
�1
i translates ci by ni units, so (4) is also

true with x0 D id.
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If �.ci / and �.cj / are connected by an edge in P.�/, then vi stabilizes every
hyperplane dual to vj ; thus vki .Xj /DXj , and (2) is true. If

(6-1) d.�.ci /;�.cj //� 2;

then �cj .ci / is a point. Lemma 6.1 and ci \K ¤∅ yield that �cj .ci /� �cj .K/D
cj \K D Œ0; nj � 1�; thus

(6-2) ci \Xj D∅:

Similarly, ci \Xj D∅. Let hD ��1cj
�
�
1
2

�
be the boundary of X�j , and let Nh be the

carrier of h. Then (6-1) implies that h has empty intersection with any hyperplane
dual to ci , and so does Nh . It follows from Lemma 6.1 that �ci .h/D �ci .Nh/D p is
a vertex in ci . If h1 D ��1ci

�
p� 1

2

�
and h2 D ��1ci

�
pC 1

2

�
are two hyperplanes that

pinch p , then h\ hk D ∅ for k D 1; 2. This and (6-2) yield X�j \ hk D ∅; hence
�ci .X

�
j /D p by Lemma 6.1. Similarly, �ci .X

C
j /D p , so

p D �ci .Xj /D �ci .cj /� �ci .K/D ci \K D Œ0; ni � 1�:

Note .�ci ıv
k
i /.Xj /D .v

k
i ı�ci /.Xj /Dv

k
i .p/DpCkni , so vki .Xj /�Xi for k¤0.

The discussion in this subsection yields a well-defined map

‚S W CN.�; S/! ffinite-index RAAG subgroups of G.�/g:

The images of ‚S are called S –special subgroups of G.�/. A subgroup of G.�/ is
special if it is S –special for some standard generating set S of G.�/.

6.2 Rigidity of RAAG subgroups

In this subsection, we will assume G.� 0/ is a finite-index RAAG subgroup in G.�/
and Out.G.�// is finite. We will show that under such conditions, G.� 0/ must arise
from the process described in the previous subsection. We will prove this in three steps.
First we produce a convex subcomplex of X.�; S/ from G.� 0/. Then we will modify
this convex subcomplex such that it is an element in CN.�; S/. Thus we have defined
a map from finite-index RAAG subgroups of G.�/ to elements in CN.�; S/. In the
last step, we show the map defined in Step 2 is an inverse to the map ‚S defined in
Section 6.1.

Also near the end of this subsection, we will leave several relatively long remarks
which discuss relevant material in the literature. The reader can skip these remarks at
first reading.

Recall that Out.G.�// is finite and Out.G.� 0// is transvection-free (Theorem 5.3),
so any two standard generating sets of G.�/ (or G.� 0/) differ by a sequence of
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conjugations or partial conjugations. Then given any two standard generating sets S
and S1 for G.�/, there is a canonical way to identify P.�; S/ and P.�; S1/ (every
S –geodesic is Hausdorff close to an S1–geodesic). Thus we will write P.�/ and
P.� 0/ and omit the generating set.

Lemma 6.6 Let � and s be as in the discussion before Lemma 5.5. Let l �X.�/ and
l 0�X.� 0/ be standard geodesics such that �.v.l//Dv.l 0/. Then �ı��.l/D��.l 0/ıs .

Proof Pick standard geodesics r �X.�/ and r 0 �X.� 0/ such that �.v.r//D v.r 0/;
then s.�.r// D �.r 0/ by Lemma 4.10 (recall that r is the intersection of maximal
standard flats). Therefore, by the definition of ��.l/ , it suffices to show � ı�l.x/D

�l 0 ı �.x/ for any vertex x 2 X.�/. Let y be a vertex such that y … l , and let
x D �l.y/. By Lemma 6.1, we can approximate xy by a combinatorial geodesic !
in the 1–skeleton of ��1

l
.y/; then no hyperplane could intersect both l and ! . Let

fvig
n
iD0 be vertices in ! such that for 0 � i � n� 1, we have that each Œvi ; viC1�

is a maximal subsegment of ! that is contained in a standard geodesic (v0 D x and
vn D y ). Denote the corresponding standard geodesic by li . Then �.l/¤�.li / for
all i . Let ui D �.vi / and let l 0i be the standard geodesic such that �.v.li //D v.l 0i /.
Then uiuiC1 � l 0i and �.l 0/¤�.l 0i / for all i ; thus �l 0.l

0
i / is a point by Corollary 3.2,

and �l 0.ui /D �l 0.uj / for all 1� i; j � n.

Step 1 We produce a convex subcomplex of X.�; S/ from G.� 0/.

The left action G.�/Õ G.�/ induces G.� 0/Õ G.�/ and G.� 0/Õ X.�; S/. By
choosing a standard generating set S 0 of G.� 0/, we have left action G.� 0/ÕX.� 0; S 0/.
For h 2G.� 0/, we use �h , x�h , sh and xsh to denote the action of h on G.�/, G.� 0/,
P.�/ and P.� 0/ respectively. Pick a G.� 0/–equivariant quasi-isometry qW X.�; S/!
X.� 0; S 0/ such that qjG.� 0/ D Id. By Theorem 5.3 and Lemma 4.10, q induces
surjective G.� 0/–equivariant maps �W G.�/! G.� 0/ and sW P.�/! P.� 0/. Note
that � depends on the choice of generating set S and S 0 , and this flexibility comes
from the automorphism groups of G.�/ and G.� 0/.

The key of Step 1 is to choose a “nice” standard generating set S 0 of G.� 0/ such that
� behaves like ' in Theorem 5.6.

Lemma 6.7 By choosing a possibly different standard generating set S 0 for G.� 0/,
we can assume the map � satisfies �.id/D id, where id denotes the identity element
in the corresponding group.

Proof Assume �.id/ D a ¤ id; we claim if we change the generating set from S 0

to aS 0a�1 , then the resulting � will satisfy our requirement. By the construction
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of � , it suffices to show for any maximal S 0–flat F 01 such that a 2 F 01 , there exists
a maximal aS 0a�1–flat F 02 such that id 2 F 02 and dH .F 01; F 02/ <1. Let us assume
F 01 D fag

kgk2Z for some g 2 S 0 . Then F 02 D f.aga
�1/kgk2Z would satisfy the

required condition. We can prove the general case in a similar way.

Pick a standard geodesic l � X.�; S/; we want to flip the order of points of l in
a G.� 0/–equivariant way such that (5-7) is true. We choose an order-preserving
identification of v.l/ and Z. Let d D j��1.�.p//\v.l/j where p is a vertex in v.l/.
Let Stab.v.l// be the stabilizer of v.l/ under the action G.� 0/ Õ G.�/. By the
second paragraph of the proof of Theorem 5.6, d does not depend on the choice of p
in v.l/, and Stab.v.l// acts on v.l/ in the same way as dZ acts on Z (recall that �
is G.� 0/–equivariant and the action of G.� 0/ on G.�/ is induced from the left action
of G.�/ on itself).

We will write �.l/D d . If xl and l are parallel, then �.l/D �.xl/. Thus �W P.�/!Z
is well defined. Since �.l/ only depends on how Stab.v.l// acts on v.l/, we see
that � does not depend on the standard generating set S 0 . However, � descends to
�W S 0! Z for any choice of S 0 by the G.� 0/–equivariance of � .

Let �.0/D a . Then Stab.v.l// is generated by aha�1 for some h 2 S 0 . By the same
reasoning as in Lemma 6.7, we can assume a D id. Let S 0 D fh�g�2ƒ . For each
h� 2 S

0 , we associated an integer n� as follows. If h�hD hh� , we set n� D 0. Now
we consider the case where h�h¤ hh� . Let l 0� �X.� 0; S 0/ be the standard geodesic
that contains all powers of h� , and let b� D ��.l/ ı s�1.�.l

0
�// (��.l/ is the map in

Lemma 6.2). Then n� is defined to be the unique integer such that b�Cn�d 2 Œ0; d�1�
(recall that d D �.l/). Define f W S 0!G.� 0/ by sending h� to hn�h�h�n� ; then f
extends to an automorphism of G.� 0/, and S 00 D ff .h�/g�2ƒ is also a standard
generating set. Indeed, if �.l 0�1/ and �.l 0�2/ stay in the same connected component
of P.� 0/ n St.�.l 0//, then b�1 D b�2 by Lemma 6.2; hence n�1 D n�2 . It follows
that f can be realized as a composition of partial conjugations.

Lemma 6.8 Define �1 by replacing S 0 by S 00 in the definition of � . Then �1jv.l1/
satisfies (5-7) for any standard geodesic l1 �X.�; S/ with �.l1/ 2 fsh.�.l//gh2G.� 0/ .

Recall that for any h 2G.� 0/, we use sh to denote the action of h on P.�/.

Proof It suffices to show �1jv.l/ satisfies (5-7), and the rest follows from the G.� 0/–
equivariance of �1 . To show this, we only need to prove �1.i/D id for any i 2 Œ0; d�1�.
Let ƒ, b� and n� be as above.

We pick i 2 Œ0; d � 1�. Then there exists � 2 ƒ such that b� C n�d D i . By
Lemma 6.6, �.b�/ D id; hence �.i/ D hn� . Let li be a standard geodesic such
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that b� 2 li and d.�.li /;�.l// � 2. Then there exists h�0 2 S 0 with b�0 D b� such
that �.v.li //D fhk�0gk2Z . Then .�h/n�.v.li // is an S –geodesic passing through i ,
and .� ı .�h/n�/.v.li //D ..x�h/n� ı�/.v.li //D fhn�hk�0gk2Z . Note that

(6-3) dH
�
fhn�hk�0gk2Z; f.f .h�0//

k
gk2Z

�
<1:

Now we look at the new map �1 . Note that �1.0/D id is still true. Moreover, (6-3)
and Lemma 6.6 imply �1.i/D id. Thus the lemma follows.

The next lemma basically says the above change-of-basis process does not significantly
affect other geodesics.

Lemma 6.9 Let r be a standard geodesic in X.�; S/ which satisfies the condition
that �.r/… fsh.�.l//gh2G.� 0/ . Pick two different vertices x1; x2 2 r . If �.x/D �.y/,
then �1.x/D �1.y/.

Proof For i D 1; 2, let ri � X.�; S/ be a standard geodesic containing xi such
that d.�.ri /;�.r//� 2 for i D 1; 2. Let r 0 (resp. r 00 ) be an S 0–geodesic (resp. S 00–
geodesic) such that �.v.r//D v.r 0/ (resp. �1.v.r//D v.r 00/). Let ˛ D �.x/D �.y/.
Then there exist elements h�; h�1 and h�2 in S 0 such that �.v.ri //D f˛hk�i gk2Z for
i D 1; 2, and r 0 D f˛hk

�
gk2Z . Note that

(6-4) h¤ h�; h�1 ¤ h� and h�2 ¤ h�:

Recall that h is the generator of Stab.v.l//. The first inequality of (6-4) follows from
�.r/ … fsh.�.l//gh2G.� 0/ .

It suffices to show there exist S 00–geodesics r 001 and r 002 such that

(6-5) dH
�
�.v.ri //; r

00
i

�
<1

for i D 1; 2, and

(6-6) ��.r 00/.�.r
00
1 //D ��.r 00/.�.r

00
2 //;

then �1.x/D �1.y/ follows from Lemma 6.6. Define r 00i D f˛h
�n�i .f .h�i //

kgk2Z ;
then (6-5) is immediate. Note that for any a 2 r 01 and b 2 r 02 , we have

b D a � .f .h�1//
k1 � hn�1�n�2 � .f .h�2//

k2

for some k1; k2 2 Z; then (6-6) follows from (6-4) and the definition of ��.r 00/ .

Similarly, we can prove that if we change � with respect to the conjugation S 0 !
aS 0a�1 , then Lemma 6.9 is still true with r being an arbitrary standard geodesic.
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By Lemma 6.8 and Lemma 6.9, we can apply the above change-of-basis procedure
finitely many times to find an appropriate standard generating set S 0 of G.� 0/ such
that the corresponding map � satisfies (5-7) when restricted to any standard geodesic in
X.�; S/. By the proof of Theorem 5.6, we can extend � to a cubical map �W X.�; S/!
X.� 0; S 0/ such that combinatorial geodesics in C.�; S/ are mapped to combinatorial
geodesics in C.� 0; S 0/. Thus ��1.id/ is a combinatorially convex subcomplex. The
subcomplex ��1.id/ is also compact since ��1.id/ contains finitely many vertices.
Recall that combinatorial convexity in `1 metric and convexity in CAT.0/ metric are
the same for subcomplexes of CAT.0/ cube complexes [33], so we have constructed
a compact convex subcomplex ��1.id/� X.�; S/ from a given finite-index RAAG
subgroup G.� 0/�G.�/.

Step 2 We show ��1.id/ can be assumed to be an element in CN.�; S/.

For K � G.�/, denote the union of all standard geodesics in X.�; S/ that have
nontrivial intersection with K by K� . K is S –convex if and only if K is the vertex
set of some convex subcomplex in X.�; S/. Now we return to � . By Step 1, we can
assume �.id/D id, and ��1.y/ is S –convex for any y 2G.� 0/.

Step 2.1 Let flig
q
iD1 be the collection of standard geodesics passing through id, and

let ƒ1Dfidg. Let I W G.�/! `1.v.P.�; S/// and I�.l/W G.�/!Z�.l/ be the maps
defined in Section 6.1. Since v.li / and v.lj / are in different G.� 0/–orbits for i ¤ j ,
by Lemma 6.8 and Lemma 6.9, we can apply the change-of-basis procedure in Step 1
to find a standard generating set S 0 for G.� 0/ such that for each 1� i � q ,

(6-7) I�1�.li /
�
Œ0; �.li /� 1�

�
\ v.li /� �

�1.id/:

Step 2.2 Let ƒ2 D ƒ�1 \ �
�1.id/. Pick a vertex x 2 ƒ2 nƒ1 (if such x does not

exist, then our process terminates). Let l be a standard geodesic such that x 2 l . If l
is parallel to some li in Step 2.1, then (6-7) with li replaced by l is automatically true
without any modification on S 0 , because both I and � respect the product structure
of Pli . If l is not parallel to any li , then I�.l/.x/D 0. Moreover, �.l/ is not in the
G.� 0/–orbits of the �.li /, so we can modify S 0 as before such that both (6-7) and
I�1
�.l/

.Œ0; �.l/� 1�/\ v.l/� ��1.id/ are true. We deal with other standard geodesics
passing through x and other points in ƒ2 nƒ1 in a similar way.

Step 2.3 Let ƒ3Dƒ�2\�
�1.id/. For each vertex in ƒ3nƒ2 , we repeat the procedure

in Step 2.2. Then we can define ƒ4; ƒ5; : : : . Since j��1.id/j is finite and this number
does not change after adjusting S 0 , our procedure must terminate after finitely many
steps. Since ��1.id/ remains connected in each step, once the procedure terminates, we
must have already dealt with each point in ��1.id/ and each standard geodesic passing
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through each point in ��1.id/. By construction, the resulting � satisfies id 2 ��1.id/
and I�1

�.l/
.Œ0; �.l/�1�/\v.l/� ��1.id/ for each standard geodesic l which intersects

��1.id/. Thus ��1.id/ is nonnegative.

Note that the sets ƒi actually do not depend on the map � from step i � 1. They only
depend on the map �W v.P.�//! Z. Thus the nonnegative subset ��1.id/�G.�/
produced above depends only on S and the subgroup G.� 0/�G.�/. Then we have a
well-defined map

„S W fFinite-index RAAG subgroups of G.�/g ! CN.�; S/:

Step 3 We show „S is an inverse to the map ‚S defined in Section 5.2.

First we prove ‚S ı„S D Id. Let K D „S .G.� 0//. Let S 0 be the corresponding
standard generating set for G.� 0/ and let �W G.�/!G.� 0/ be the corresponding map.
We find a maximal collection of standard geodesics fcigsiD1 such that ci \K ¤ ∅
for all i and �.ci / ¤ �.cj / for any i ¤ j . Let ni D �.ci /, and let gi 2 S be the
label of edges in ci . Suppose ˛i D �ci .id/ where �ci W X.�; S/! ci is the CAT.0/
projection. Then it suffices to prove the following lemma.

Lemma 6.10 S 0 D f˛ig
ni
i ˛
�1
i g

s
iD1 .

Proof Pick h2S 0 and let ch�X.� 0; S 0/ be the standard geodesic containing id and h.
Then there exists a unique i such that �.v.ci //D ch . To see this, let c be a standard
geodesic in X.�; S/ such that s.�.c//D �.ch/. Then �.v.c// and ch are parallel
and there exists u 2G.� 0/ which sends �.v.c// to v.ch/. Thus � ı�u.v.c//D v.ch/
by (5-4), where �u is defined in the beginning of Step 1. Note that �u.v.c// has
nontrivial intersection with K . We choose ci to be the geodesic parallel to �u.v.c//.
Then �.v.ci //D v.ch/.

For any standard geodesic c0i parallel to ci , we have that �.c0i / is parallel to ch , so
h2 Stab.v.�.c0i ///D Stab.v.c0i //. It follows that �h stabilizes the parallel set Pci and
acts by translation along the ci –direction. Note that .I�.ci /ı�h/.x/DI�.ci /.x/C�.ci /
for any x 2 v.Pci /, so hD �h.id/D ˛ig

ni
i ˛
�1
i and the claim follows.

It remains to show „S ı‚S D Id. The following result implies this.

Lemma 6.11 Let � be an arbitrary finite simplicial graph. Pick a standard generating
set S for G.�/ and K 2CN.�; S/. Let G.� 0/D‚S .K/ and let S 0 be the correspond-
ing generating set. Suppose qW G.�/!G.� 0/ is a G.� 0/–equivariant quasi-isometry
such that qjG.� 0/ is the identity map. Then:
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(1) q induces a simplicial isomorphism q�W P.�; S/! P.� 0; S 0/.
(2) q� induces a G.� 0/–equivariant retraction r W G.�/!G.� 0/ such that r sends

every S –flat to an S 0–flat.
(3) r extends to a surjective cubical map r W X.�; S/!X.� 0; S 0/ with r�1.id/DK .

In particular, the vertex set of K is the strict fundamental domain for the left
action G.� 0/ÕG.�/.

Proof It suffices to prove the case when � does not admit a nontrivial join decompo-
sition and � is not a point.

By the construction of ‚S , we know the q–image of any S –flat which intersects K
is Hausdorff close to an S 0–flat which contains the identity. Moreover, if the S –flat
is maximal, then the corresponding S 0–flat is unique. Since G.� 0/ � v.K/ D G.�/,
the equivariance of q implies the q–image of every S –flat is Hausdorff close to an
S 0–flat. Since q is a quasi-isometry, images of parallel S –geodesics are Hausdorff
closed to each other. This induces q�W P.�; S/! P.� 0; S 0/, which is injective since
q is a quasi-isometry, and surjective by the G.� 0/–equivariance.

Pick x 2G.�/, and let fFigi2I be the collection of maximal S –flats containing x . For
each i , let F 0i be the unique maximal S 0–flat such that dH .q.Fi /; F 0i / <1. Note thatT
i2I Fi D x by our assumption on �. So

T
i2I F

0
i is either empty or one point. Note

that if x 2K , then
T
i2I F

0
i D id. The equivariance of q� implies that for every x ,T

i2I F
0
i is a point, which is defined to be r.x/. It is clear that v.K/ � r�1.id/,

but jG.�/W G.� 0/j � jv.K/j, so v.K/ D r�1.id/. It follows that v.K/ is the strict
fundamental domain for the left action of G.� 0/, and r is a G.� 0/–equivariant map
which maps v.K/ to id.

Note that r.id/ D id. Then the G.� 0/–equivariance of r implies r.g/ D g for any
g 2G.� 0/�G.�/. Thus r is a retraction. Similarly, by using the G.� 0/–equivariance
of r , we deduce that r sends every S –flat that intersects K to an S 0–flat passing
through the identity element of G.� 0/. Thus r sends every S –flat to an S 0–flat by the
equivariance of r . It is easy to see r extends to a cubical map r W X.�; S/!X.� 0; S 0/

such that r�1.id/DK .

Remark 6.12 We can generalize some of the results in Lemma 6.11 to infinite convex
subcomplexes of X.�; S/. A convex subcomplex K � X.�; S/ is admissible if for
any standard geodesic l , the CAT.0/ projection �l.K/ is either a finite interval or the
whole of l (a ray is not allowed). Let fl�g�2ƒ be a maximal collection of standard
geodesics such that (1) l� \K ¤ ∅; (2) l� and l�0 are not parallel for � ¤ �0 ; (3)
�l�.K/ is a finite interval. For each l� , let ˛� 2G.�/ be an element which translates
along l� with translation length D 1C length.�l�.K//. Let GK be the subgroup
generated by S 0 D f˛�g�2ƒ . If K is admissible, we can prove GK � v.K/DG.�/ as
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before. Moreover, for any finite subset S 01 � S 0 , the subgroup G1 generated by S 01 is
a right-angled Artin group, and G1 ,!GK is an isometric embedding with respect to
the word metric. We can define an S 0–flat as before and view each vertex of GK as a
0–dimensional S 0–flat.

Now we show v.K/ is a strict fundamental domain for the action GK Õ G.�/. It
suffices to show ˛.K/\K D∅ for each nontrivial ˛ 2GK . We can assume there is
a right-angled Artin group G1 such that ˛ 2 G1 � GK . Let ˛ D w1w2 � � �wn be a
canonical form of ˛ ; see [16, Section 2.3]. Then:

(1) Each wi belongs to an abelian standard subgroup of G1 .

(2) For each i , let wi D r
ki;1
i;1 r

ki;2
i;2 � � � r

ki;ni
i;ni

(ri;j 2 S 0 ). Then for each riC1;j
(1� j � niC1 ), there exists ri;j 0 which does not commute with riC1;j .

We associate each generator ri;j with a subset Xi;j � X.�; S/ as in the proof of
Lemma 6.4, and claim there exists j with 1� j � n1 such that ˛.K/�X1;j ; then
˛.K/\K D∅ follows. We prove by induction on n and assume w2w3 � � �wn.K/�
X2;j 0 . By (2), there is r1;j such that r1;j and r2;j 0 does not commute, so we have
rk1;j
1;j

.X2;j 0/ � X1;j . Moreover, by (1), rk1;h
1;h

.X1;j / D X1;j for h ¤ j , so ˛.K/ �
w1.X2;j 0/�X1;j .

Now we can define a GK –equivariant map r W G.�/! GK by sending v.K/ to the
identity of GK . We prove as before that r maps S –flats to (possibly lower-dimensional
or 0–dimensional) S 0–flats; thus r is 1–Lipschitz with respect to the word metric.
Let i W GK ,!G.�/ be the inclusion. Then by the equivariance of r , the composition
r ı i is a left translation of GK . In particular, if K contains the identity, then r is a
retraction. It follows that if S 0 is finite, then i is a quasi-isometric embedding.

Note that a related construction in the case of right-angled Coxeter groups has been
discussed in [34]. By taking larger and larger convex compact subcomplexes of X.�; S/,
we know G.�/ is residually finite. Moreover, pick ˇ 2 Stab.K/�G.�/. By definition
of S 0 , we have S 0 D ˇS 0ˇ�1 , so Stab.K/ normalizes GK . Now we have obtained a
direct proof of the fact that every word-quasiconvex subgroup of a finitely generated
right-angled Artin group is separable (Theorem F of [34]) by using the above discussion
together with the outline in Section 1.5 of [34].

The following result follows readily from the above discussion.

Theorem 6.13 Let G.�/ be a RAAG with Out.G.�// finite. We pick a standard
generating set S for G.�/. Then there is a one-to-one correspondence between
nonnegative convex compact subcomplexes of X.�; S/ that contain the identity and
finite-index RAAG subgroups of G.�/. In particular, these subgroups are generated by
conjugates of powers of elements in S .
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In particular, Theorem 1.3 in the introduction follows from Theorem 6.13.

Remark 6.14 If we drop the finite automorphism group assumption in the above
theorem, then there exist a RAAG G.�1/ and its finite index RAAG subgroup G.�2/
such that G.�2/ is not isomorphic to any special subgroup of G.�1/. To see this, let
G.�1/ be a right-angled Artin group such that Out.G.�1// is transvection-free. Then
Lemma 6.11 and Theorem 3.20 imply each special subgroup of G.�1/ does not admit
a nontrivial transvection in its outer automorphism group. Let �1 and �2 be the graphs
in Example 3.22. Then G.�2/ is a right-angled Artin subgroup of G.�1/, and there
are nontrivial transvections in Out.G.�2//. Thus G.�2/ is not isometric to any special
subgroup of G.�1/.

Remark 6.15 Pick G.�/ such that Out.G.�// is finite; then Theorem 6.13 can be
used to show a certain subgroup of G.�/ is not a RAAG. For example, let fvigkiD1
be a subset of some standard generating set for G.�/. We define a homomorphism
hW G.�/! Z=2 by sending each vi to the nontrivial element in Z=2 and killing all
other generators. Then ker.h/ is a RAAG if and only if k D 1. One can compare this
example to Example 3.22.

Remark 6.16 It is shown in [42, Theorem 2] that if F.� 0/ embeds into P.�/ as a full
subcomplex, then there exists a monomorphism G.� 0/ ,! G.�/. This result can be
recovered by our previous discussion as follows. Let � be an arbitrary finite simplicial
graph. Let S be a standard generating set for G.�/. For any vertex w 2 P.�/, let
˛w 2G.�/ be a conjugate of some element in S such that ˛w.l/D l for every standard
geodesic l �X.�; S/ with �.l/D w .

Suppose M � P.�; S/ is a compact full subcomplex and � 0 is the 1–skeleton of M .
Denote the vertex set of M by fwigniD1 , and let li be a standard geodesic with
�.li /D wi . We identify each li in an orientation-preserving way with R such that
0 2R is identified with �li .id/� li , where�li is the CAT.0/ projection to li and id
is the identity element of G.�/.

For 1 � i � n, define ƒi D f1 � j � n j d.wi ; wj / � 2g. For each i , we define
a pair of integers ai and ki as follows. If ƒi ¤ ∅, then let Œai ; ai C ki � � R
be the minimal interval such that

S
j2ƒi

�li .lj / � Œai ; ai C ki � (recall that li is
identified with R). If ƒi D ∅, then we pick an arbitrary ai and set ki D 0. Define
XiD�

�1
ci

��
�1; ai�

1
2

��
[��1ci

��
aiCkiC

1
2
;1

��
. Then by construction, Xi\Xj D∅

for i; j satisfying d.wi ; wj /� 2. Using the argument in Section 6.1, we can show the
subgroup generated by S 0 D f˛kiC1wi g

n
iD1 is a RAAG with defining graph � 0.

At this point it is natural to ask the following question.
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Question 6.17 Let S be a standard generating set of G.�/, and let S 0 be a finite
collection of elements of the form ˛rk˛�1 , where r 2 S , k 2 Z and ˛ 2 G.�/.
Suppose G is the subgroup generated by S 0 . Is G a right-angled Artin group?

6.3 Generalized star extension

Our goal in this subsection is to find an algorithm to determine whether G.�/ and
G.� 0/ are quasi-isometric or not, given that Out.G.�// is finite.

For a convex subcomplex E � X.�/, we denote the full subcomplex in P.�; S/
spanned by f�.l�/g�2ƒ by yE , where fl�g�2ƒ is the collection of standard geodesics
in X.�/ with l�\E ¤∅.

Now we describe a process to construct a graph � 0 from � such that G.� 0/ is isomor-
phic to a special subgroup of G.�/. Let �1 D � , and let K1 be one point. We will
construct a pair .�i ; Ki / inductively such that:

(1) Ki is a compact CAT.0/ cube complex, and there is a cubical embedding
f W Ki !X.�/ such that f .Ki / is convex in X.�/.

(2) �i is a finite simplicial graph, and there is a simplicial isomorphism gW F.�i /!1f .Ki /.
Note that these assumptions are true for i D 1.

We associate each edge e �Ki with a vertex in �i , denoted by ve , as follows. Let le
be the standard geodesic in X.�/ that contains f .e/. We define ve WD g�1.�.le//.
Each vertex x 2Ki can be associated with a full subcomplex ˆ.x/� F.�i / defined
by ˆ.x/D g�1.yx/.

To define .�iC1; KiC1/, pick a vertex v 2 �i , and let fxj gmjD1 be the collection of
vertices in Ki such that v 2 ˆ.xj /. Then ff .xj /gkjD1 are exactly the vertices in
Pl \ f .Ki /, where l is a standard geodesic such that �.l/ D g.v/. Let L be the
convex hull of fxj gmjD1 in Ki . Then e � L for any edge e �Ki with ve D v .

Since f .L/D Pl \f .Ki /, the natural product decomposition Pl Š l � l? induces a
product decomposition of LD h� Œ0; a�. Note that it is possible that aD 0, and a > 0
if and only if there exists an edge e �Ki with ve D v . If a > 0, then h is isomorphic
to the hyperplane dual to e , and for any edge e0 2 Ki with ve0 D v , the projection
of e0 to the interval factor Œ0; a� is an edge.

Let Li D h � fag � L, and let Mi D
S
x2Li

ˆ.x/ (where x is a vertex). We de-
fine F.�iC1/ to be the simplicial complex obtained by gluing F.�i / and Mi along
St.v;Mi / (see Section 2.1 for the notation), and define KiC1 to be the CAT.0/ cube
complex obtained by gluing Ki and Li � Œ0; 1� along Li . One readily verifies that one

Geometry & Topology, Volume 21 (2017)



3532 Jingyin Huang

can extend f to a cubical embedding f 0W KiC1!X.�/ such that f 0.KiC1/ is convex.
This also induces an isomorphism g0W F.�iC1/! yKiC1 which is an extension of g .

By construction, each G.�i / is isomorphic to a special subgroup of G.�/; moreover,
the associated convex subcomplex of this special subgroup is Ki . Also note that the
above induction process actually does not depend on knowing what X.�/ is. Thus it
also provides a way to construct convex subcomplexes of X.�/ by hand.

The above process of obtaining .�iC1; KiC1/ from .�i ; Ki / is called a generalized
star extension (GSE) at v . Note that the following are equivalent:

(1) �i ¨ �iC1 .
(2) Pl ¨X.�/, where l is the standard geodesic in X.�/ such that �.l/D g.v/.
(3) St.�.g.v///¨ F.�/, where � W P.�/! F.�/ is the natural label-preserving

projection defined in (4-1).

A GSE is nontrivial if �i ¨ �iC1 . If � is not a clique, then at each stage, there exists
a vertex v 2 �i such that the GSE at v is nontrivial.

Lemma 6.18 Suppose G.� 0/ is isomorphic to a special subgroup of G.�/. Then we
can construct � 0 from � by using finitely many GSEs.

Proof Let ‚S and CN.�; S/ be the objects defined in Section 6.1. Suppose G.� 0/
is isomorphic to ‚S .K/ for K 2 CN.�; S/. We define a sequence of convex subcom-
plexes in K by induction. Let K1 be the identity element in G.�/. Suppose Ki is
already defined. If Ki DK , then the induction terminates. If Ki ¨K , pick an edge
ei �K such that ei \Ki is a vertex and let KiC1 be the convex hull of Ki [ ei . Let
fKig

s
iD1 be the resulting collection of convex subcomplexes. An alternative way of

describing KiC1 is the following. If hi is the hyperplane in K dual to ei , and Ni
is the carrier of hi in K , then hi \Ki D ∅ by the convexity of Ki . Thus Ki \Ni
is disjoint from hi . Hence there is a copy of .Ki \Ni /� Œ0; 1� inside Ni , which is
denoted by Mi . Then KiC1 DKi [Mi . Now one readily verifies that one can obtain
. yKiC1; KiC1/ from . yKi ; Ki / by a GSE.

The above construction gives rise to an algorithm to detect whether G.� 0/ is isomorphic
to a special subgroup of G.�/. If there are n vertices in � 0, then � 0 can be obtained
from � by at most n nontrivial GSEs. So we can start with �, enumerate all possible n–
step nontrivial GSEs from �, and compare each resulting graph with � 0. By Theorem 5.7
and Theorem 6.13, we have the following result.

Theorem 6.19 If Out.G.�// is finite, then G.� 0/ is quasi-isometric to G.�/ if and
only if � 0 can be obtained from � by finitely many GSEs. In particular, there is an
algorithm to determine whether G.� 0/ and G.�/ are quasi-isometric.
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Note that a GSE gives rise to a pair .�i ; Ki /. If one does not care about the associated
convex subcomplex Ki , then there is a simpler description of GSE when Out.G.�//
is finite. Suppose we have already obtained F.�i / together with a finite collection of
full subcomplexes fG�g�2ƒi such that:

(1) fG�g�2ƒi is a covering of F.�i /.

(2) Each G� is isomorphic to F.�/.

When i D 1, we pick the trivial cover of F.�/ by itself. To construct �iC1 , pick a
vertex v 2 F.�i /, let ƒv D f� 2 ƒi j v 2 G�g and let �v D

S
�2ƒv

G� . Suppose
fCj g

m
jD1 is the collection of connected components of �v n St.v; �v/, and suppose

C 0j D Cj [ St.v; �v/. Then F.�iC1/ is defined by gluing C 01 and F.�i / along
St.v; �v/, and �iC1 is the 1–skeleton of F.�iC1/.

Lemma 6.20 Suppose Out.G.�// is finite. Then the above simplified process is
consistent with GSE.

Proof We assume inductively that there is a CAT.0/ cube complex Ki such that
the two induction assumptions for GSE are satisfied; moreover, fG�g�2ƒi coincides
with fˆ.x/gx2Ki (where x is a vertex). Let L D h � Œ0; a� be as before and let
Lj D h� fj g � L for each integer j 2 Œ0; a�. It suffices to show there is a one-to-one
correspondence between fLj gajD0 and fC 0j gmjD1 such that for each j , there exists
a unique j 0 with 1f .Lj / D g.C 0j 0/. Pick adjacent vertices x1; x2 2 f .Lj / and let
xw 2 � be the label of edge x1x2 . Suppose xv D �.g.v//. Then d. xw; xv/D 1. Since
Out.G.�// is finite, the orthogonal complement of xw satisfies xw?ª St.xv/. Then there
is a vertex xu 2 xw? such that d.xu; xv/D 2. The lifts of xu in yx1 and yx2 are the same
point, so .yx1\ yx2/ nSt.g.v// contains a vertex. Since F.�/ does not have separating
closed stars, yxi n St.g.v// is connected for i D 1; 2. Thus .yx1 \ yx2/ n St.g.v// is
connected. It follows that 1f .Lj / nSt.g.v// is connected. Moreover, from Lemma 4.9,
2f .Lj1/nSt.g.v// and 2f .Lj2/nSt.g.v// are in different components of P.�/nSt.g.v//
when j1 ¤ j2 , so there exists a unique j 0 such that 1f .Lj /D g.C 0j 0/.
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