
G G G
G
G
G
G

GGGG
G
G
G
GGG T TT

T
T
T
TT

TTTT
T
T
T
T

T

Geometry &
Topology

Volume 21 (2017)
Issue 6 (pages 3191–3810)

msp



GEOMETRY & TOPOLOGY
msp.org/gt

EDITORS

MANAGING EDITORS

Yasha Eliashberg
eliash-gt@math.stanford.edu
Department of Mathematics

Stanford University
Stanford CA 94305-2125

USA

Colin Rourke
gt@maths.warwick.ac.uk

Mathematics Institute
University of Warwick

Coventry CV4 7AL
UK

BOARD OF EDITORS

Mark Behrens Massachusetts Institute of Technology
mbehrens@math.mit.edu

Martin Bridson Imperial College, London
m.bridson@ic.ac.uk

Jim Bryan University of British Columbia
jbryan@math.ubc.ca

Dmitri Burago Pennsylvania State University
burago@math.psu.edu

Danny Calegari California Institute of Technology
dannyc@caltech.edu

Ralph Cohen Stanford University
ralph@math.stanford.edu

Tobias Colding Massachusetts Institute of Technology
colding@math.mit.edu

Simon Donaldson Imperial College, London
s.donaldson@ic.ac.uk

Bill Dwyer University of Notre Dame
dwyer.1@nd.edu

Benson Farb University of Chicago
farb@math.uchicago.edu

Steve Ferry Rutgers University
sferry@math.rutgers.edu

Ron Fintushel Michigan State University
ronfint@math.msu.edu

Mike Freedman Microsoft Research
michaelf@microsoft.com

David Gabai Princeton University
gabai@princeton.edu

Lothar Göttsche Abdus Salam Int. Centre for Th. Physics
gottsche@ictp.trieste.it

Cameron Gordon University of Texas
gordon@math.utexas.edu

Jesper Grodal University of Copenhagen
jg@math.ku.dk

Robion Kirby University of California, Berkeley
kirby@math.berkeley.edu

Frances Kirwan University of Oxford
frances.kirwan@balliol.oxford.ac.uk

John Lott University of California at Berkeley
lott@math.berkeley.edu

Haynes Miller Massachusetts Institute of Technology
hrm@math.mit.edu

Shigeyuki Morita University of Tokyo
morita@ms.u-tokyo.ac.jp

John Morgan Columbia University
jm@math.columbia.edu

Tom Mrowka Massachusetts Institute of Technology
mrowka@math.mit.edu

Walter Neumann Columbia University
neumann@math.columbia.edu

Jean-Pierre Otal Université d’Orleans
jean-pierre.otal@univ-orleans.fr

Peter Ozsváth Columbia University
ozsvath@math.columbia.edu

Leonid Polterovich Tel Aviv University
polterov@post.tau.ac.il

Peter Teichner University of California, Berkeley
teichner@math.berkeley.edu

Richard Thomas Imperial College, London
richard.thomas@imperial.ac.uk

Gang Tian Massachusetts Institute of Technology
tian@math.mit.edu

Ulrike Tillmann Oxford University
tillmann@maths.ox.ac.uk

Anna Wienhard Universität Heidelberg
wienhard@mathi.uni-heidelberg.de

See inside back cover or msp.org/gt for submission instructions.

The subscription price for 2017 is US $495/year for the electronic version, and $730/year (C$60, if shipping outside the
US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to
MSP. Geometry & Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications
and the Science Citation Index.

Geometry & Topology (ISSN 1465-3060 printed, 1364-0380 electronic) at Mathematical Sciences Publishers, c/o Depart-
ment of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published 6 times
per year and continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.
POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University
of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

GT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/gt
mailto:eliash-gt@math.stanford.edu
mailto:gt@maths.warwick.ac.uk
mailto:mbehrens@math.mit.edu
mailto:m.bridson@ic.ac.uk
mailto:jbryan@math.ubc.ca
mailto:burago@math.psu.edu
mailto:dannyc@caltech.edu
mailto:ralph@math.stanford.edu
mailto:colding@math.mit.edu
mailto:s.donaldson@ic.ac.uk
mailto:dwyer.1@nd.edu
mailto:farb@math.uchicago.edu
mailto:sferry@math.rutgers.edu
mailto:ronfint@math.msu.edu
mailto:michaelf@microsoft.com
mailto:gabai@princeton.edu
mailto:gottsche@ictp.trieste.it
mailto:gordon@math.utexas.edu
mailto:jg@math.ku.dk
mailto:kirby@math.berkeley.edu
mailto:frances.kirwan@balliol.oxford.ac.uk
mailto:lott@math.berkeley.edu
mailto:hrm@math.mit.edu
mailto:morita@ms.u-tokyo.ac.jp
mailto:jm@math.columbia.edu
mailto:mrowka@math.mit.edu
mailto:neumann@math.columbia.edu
mailto:jean-pierre.otal@univ-orleans.fr
mailto:ozsvath@math.columbia.edu
mailto:polterov@post.tau.ac.il
mailto:teichner@math.berkeley.edu
mailto:richard.thomas@imperial.ac.uk
mailto:tian@math.mit.edu
mailto:tillmann@maths.ox.ac.uk
mailto:wienhard@mathi.uni-heidelberg.de
http://dx.doi.org/10.2140/gt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
http://msp.org/


msp
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Independence of satellites of torus knots in
the smooth concordance group

JUANITA PINZÓN-CAICEDO

The main goal of this article is to obtain a condition under which an infinite collection
F of satellite knots (with companion a positive torus knot and pattern similar to the
Whitehead link) freely generates a subgroup of infinite rank in the smooth concor-
dance group. This goal is attained by examining both the instanton moduli space over
a 4–manifold with tubular ends and the corresponding Chern–Simons invariant of
the adequate 3–dimensional portion of the 4–manifold. More specifically, the result
is derived from Furuta’s criterion for the independence of Seifert fibred homology
spheres in the homology cobordism group of oriented homology 3–spheres. Indeed,
we first associate to F the corresponding collection of 2–fold covers of the 3–sphere
branched over the elements of F and then introduce definite cobordisms from the
aforementioned covers of the satellites to a number of Seifert fibered homology
spheres. This allows us to apply Furuta’s criterion and thus obtain a condition that
guarantees the independence of the family F in the smooth concordance group.

57M25; 57N70, 58J28

1 Introduction

A knot is a smooth embedding of S1 into S3 . Two knots K0 and K1 are said to be
smoothly concordant if there is a smooth embedding of S1� Œ0; 1� into S3� Œ0; 1� that
restricts to the given knots at each end. Requiring such an embedding to be locally flat
instead of smooth gives rise to the weaker notion of topological concordance. Both
kinds of concordance are equivalence relations, and the sets of smooth and topological
concordance classes of knots, denoted by C1 and CTOP , respectively, are abelian groups
with connected sum as their binary operation. In both cases the identity element is
the concordance class of the unknot and the knots in that class are known as smoothly
slice and topologically slice, respectively. The algebraic structure of C1 and CTOP is a
much studied object in low-dimensional topology, as is the concordance class of the
unknot. Identifying the set of knots that are topologically slice but not smoothly slice is
a challenging topic, among other reasons because these knots reveal subtle properties
of differentiable structures in dimension four; see Gompf and Stipsicz [10, page 522].
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3192 Juanita Pinzón-Caicedo

One way to approach this problem is by using satellite operations to construct families
of knots and studying their concordance properties. To define a satellite operation we
start with a given knot B , embedded in an unknotted solid torus V � S3 , and a second
knot K � S3 . The satellite knot with pattern B � V and companion K is denoted by
B.K/ and is obtained as the image of B under the embedding of V in S3 that knots
V as a tubular neighborhood of K . Freedman’s theorem [6; 7] (see also Freedman and
Quinn [8]) implies that if the pattern B is an unknot in S3 and is trivial in H1.V IZ/,
then the satellite B.K/ is topologically slice.

Whitehead doubles are an important example of such satellites and are obtained by
using the Whitehead link (Figure 1, left) as the pattern of the operation. Similar
examples arise by considering Whitehead-like patterns Dn (Figure 2). Because the
knot Dn is trivial in S3 , every satellite knot with pattern Dn is topologically slice,
and classical invariants do not detect information about their smooth concordance type.
Thus, smooth techniques like gauge theory are necessary to obtain that information.
In this article we use the theory of SO.3/ instantons to establish an obstruction for
a family of Whitehead-like satellites of positive torus knots to be dependent in the
smooth concordance group. The main result is the following:

Theorem 6.2 Let f.pi ; qi/gi be a sequence of relatively prime positive integers and
ni a positive and even integer for i D 1; 2; : : : . Then, if

piqi.2nipiqi � 1/ < piC1qiC1.niC1piC1qiC1� 1/;

the collection fDni
.Tpi qi

/g1
iD1

is an independent family in C1 .

It is important to mention that the case ni D 2 is a result of Hedden and Kirk [12] and
the previous theorem is a generalization of their work.

The proof of Theorem 6.2 is based on a technique pioneered by Akbulut (and made
public at a 1983 NSF-CBMS Regional Conference in Santa Barbara) and later expanded
by Cochran and Gompf [2] among others. The starting point of Akbulut’s technique
is to assign to each satellite knot Dn.Tp;q/ the 2–fold cover of S3 branched over
the knot Dn.Tp;q/, since an obstruction to the cover from bounding results in an
obstruction to Dn.Tp;q/ from being slice. The next step is to construct a negative
definite cobordism W from the 2–fold cover †D†2.Dn.Tp;q// to the Seifert fibered
homology sphere �†.2; 3; 5/ and then glue W to the negative definite 4–manifold
E8 along their common boundary. The last step is to notice that if † bounded a
Z=2–homology 4–ball Q, then the manifold X DQ[W [E8 would be a closed
4–manifold with negative definite intersection form given by mh�1i˚E8 for some
integer m> 0. However, Donaldson’s diagonalization theorem prevents the existence

Geometry & Topology, Volume 21 (2017)



Independence of satellites of torus knots in the smooth concordance group 3193

of such a manifold, thus showing that Q cannot exist and that Dn.Tp;q/ is not smoothly
slice. This same technique can be used to prove that Dn.Tp;q/ has infinite order in the
smooth concordance group C1 and so we see that (1) nontriviality and order in C1 can
be obtained by studying 2–fold branched covers and the 4–manifolds they bound, and
(2) the existence of certain 4–manifolds with a fixed boundary can be obstructed using
gauge-theoretical techniques. This can be further extended to get to independence by
focusing on the 3–manifolds. Indeed, a 3–manifold counterpart to the group C1 can
be obtained by considering Z=2–homology 3–spheres under an equivalence relation
stemming from the notion of cobordisms; the details of this correspondence will be ex-
plained in Lemma 4.1. Since cobordisms will play a fundamental role in this paper, and
to clarify some terminology, we include a precise definition of an oriented cobordism.

Definition 1.1 Two closed, oriented 3–manifolds Y0 and Y1 are said to be oriented
cobordant if there exists a compact, oriented 4–manifold W with oriented boundary
@W D �Y0 t Y1 . The manifold W is called a cobordism from Y0 to Y1 , with Y0

referred to as the incoming boundary component and Y1 the outcoming boundary
component. Moreover, if W is positive (negative) definite, then W is called a positive
(negative) definite cobordism.

The 3–manifold equivalence relation corresponding to concordance is the following:
call two oriented Z=2–homology spheres †0 and †1 homology cobordant if there
is a cobordism W from †0 to †1 such that H�.W IZ=2/DH�.I �S3IZ=2/. The
set of homology cobordism classes of Z=2–homology spheres forms an abelian group
‚3

Z=2 with connected sum as the group operation. The same notion with Z=2 replaced
with Z gives rise to the Z–homology cobordism group ‚3

Z . Independence of infinite
families of knots in C1 can then be proven by establishing independence of the
corresponding families of 2–fold branched covers in ‚3

Z=2 . To prove the latter we will
use a generalization of the following gauge-theoretical result:

Theorem (Furuta [9]; see also Fintushel and Stern [5]) Let R.p; q; r/ be the
Fintushel–Stern invariant for †.p; q; r/ and suppose that a sequence †iD†.pi ; qi ; ri/

for i D 1; 2; : : : satisfies that R.pi ; qi ; ri/ > 0 for i D 1; 2; : : : . Then, if

piqiri < piC1qiC1riC1;

the homology classes Œ†i � for i D 1; 2; : : : are linearly independent over Z in ‚3
Z .

In a manner similar to Akbulut’s technique, the gauge-theoretical result cannot be
applied directly; in both cases it is necessary to first construct definite cobordisms from
the 2–fold cover †2.Dn.Tp;q// to Seifert fibered homology spheres and then apply
Furuta’s criterion for independence. This approach was used by Hedden and Kirk [12]

Geometry & Topology, Volume 21 (2017)
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to establish conditions under which an infinite family of Whitehead doubles of positive
torus knots is independent in C1 . Nonetheless, their proof involves a complicated
computation of bounds for the minimal Chern–Simons invariant of †2.D2.Tp;q//

and this can be sidestepped by introducing definite cobordisms from †2.D2.Tp;q//

to Seifert fibered homology 3–spheres. In this article we recover their result and
generalize it to include more examples of satellite operations.

Outline In Section 2 we offer a brief description of satellite operations and present
the important patterns. In Section 3 we review the theory of SO.3/ instantons and the
homology cobordism obstruction that derives from it. Then, in Section 4 we explore
the topology of the 2–fold covers to later introduce the construction of the relevant
cobordisms in Section 5. Finally, in Section 6 we prove the main result.

Acknowledgements The results in this paper originally formed the core of my PhD
dissertation. I would like to thank my advisor Paul Kirk for his patient guidance and
continual encouragement throughout my studies. I would also like to thank Charles
Livingston for his careful reading of my dissertation and his helpful comments.

2 Patterns and satellite knots

The main goal of this article is to show independence of families of satellite knots in
the smooth concordance group. This is done by considering satellite operations with
pattern similar to the Whitehead link and companion a positive torus knot. In this
section we describe the patterns of the relevant satellite operations.

Definition 2.1 Let B tA be a 2–component link in S3 , where A is an unknot, and
so V D S3 nN.A/ is an unknotted solid torus in S3 . For K any knot, consider
hW V ! S3 an orientation-preserving embedding taking V to a tubular neighborhood
of K in such a way that a longitude of V (which is a meridian of A) is sent to a
longitude of K ; then h.B/ is the untwisted satellite knot with pattern B tA and
companion K and is usually denoted by B.K/.

A notable example of a satellite operation is provided by using the Whitehead link
(Figure 1, left) as the pattern of the operation. The knots obtained in this way are called
Whitehead doubles. The following figures show the pattern, companion, and satellite
whenever we take the pattern B tA to be the Whitehead link and the companion knot
to be the right-handed trefoil, T2;3 .

In greater generality, we can add more twists to the clasp of Figure 1, left, to obtain the
patterns included in Figure 2. These are the Whitehead-like patterns under consideration
in the present article.

Geometry & Topology, Volume 21 (2017)
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Figure 1: An example of a satellite. The Whitehead link (left), trefoil (center),
and untwisted Whitehead double of the trefoil (right).

Since the pattern Dn , as a knot in S3 , is unknotted and lk.A;Dn/D0 whenever n is an
even integer, the Alexander polynomial of the satellite knot Dn.K/ is �Dn.K /.t/D 1

[13, Theorem 6.15]. A theorem of Freedman [6; 7; 8] states that every knot with
Alexander polynomial 1 is topologically slice. This implies that for any companion
knot K , the satellite Dn.K/ is a topologically slice knot. We will later show that
whenever K D Tp;q with .p; q/ a pair of positive and relatively prime integers, the
satellite knots Dn.Tp;q/ are not smoothly slice.

: : :

n times

A

Dn

Figure 2: The Whitehead-like patterns Dn . In this figure, n> 0 denotes the
number of positive half twists. Also, since we require lk.A;Dn/D 0 , we will
further assume that n is an even integer.

3 Instanton cobordism obstruction

In this section we survey the theory of instantons on SO.3/–bundles developed by
Furuta [9] and Fintushel and Stern [4; 5] in the setting of orbifolds (ie manifolds with
a special kind of singularities), and recast by Hedden and Kirk [11] in the setting of
manifolds with tubular or cylindrical ends. Additionally, in this section we introduce
the instanton cobordism obstruction, that is, the way in which the topology of the
instanton moduli space obstructs the existence of certain 4–manifolds.

Geometry & Topology, Volume 21 (2017)
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Following [9; 4; 5; 11], let p , q , r be positive and relatively prime integers, and consider
the Seifert fibered sphere †D†.p; q; r/ and the mapping cylinder W of the Seifert
projection †! S2 . The latter space is a negative definite orbifold with boundary †
and with three singularities, each of which has a neighborhood homeomorphic to a cone
on a lens space. To avoid singularities, form a manifold W DW .p; q; r/ by removing
the aforementioned neighborhoods from the mapping cylinder W , and notice that

H 2.W IZ/ŠH 2.W; †IZ/Š Z:

One of the key components of the theory is that these groups have a preferred generator.
Let e be the generator of H 2.W IZ/ and notice that this cohomology class determines
an SO.2/–vector bundle L over W , which is trivial over †. In addition, if " is the
trivial real vector bundle of rank 1 over W , the bundle L˚" is an SO.3/–vector bundle
over W . Then, if X is a 4–manifold with † as one of its boundary components, one
can form M DX [†W and, since L˚" is trivial over †, it can be extended trivially
to an SO.3/–vector bundle E over M .

For technical reasons originating from analytical considerations, it is necessary to attach
to M cylindrical ends isometric to Œ0;1/�@M to form a noncompact manifold M1 .
One then considers the corresponding extension of the bundle E to M1 and studies
connections A on E with finite energy, that is, connections for which the energy
integral satisfies

E.A/D
Z

M1

Tr.FA ^�FA/ <1:

Here FA is the curvature of A and � is the Hodge star operator. However, one
of the subtle variations present in the cylindrical end formulation of the theory of
instantons is the presence of limiting connections on E that are determined by the
cohomology class e . Modulo gauge equivalence, the class e uniquely determines a flat
connection ˇi on the restriction of L to each of the lens spaces in the boundary of W .
Furthermore, if #i is the trivial connection on the restriction of " to the i th lens space,
we can form ˛i D .ˇi ; #i/ to obtain an SO.3/–connection on the restriction of E to
the i th lens space. Then, if we choose the trivial SO.3/–connection over every other
boundary component of X [W , the tuple ˛D .˛1; ˛2; ˛3; �; : : : ; �/ is the limiting
flat connection and .E;˛/ is the adapted bundle (in the sense of [3]) to be considered.

For a positive number ı and an appropriate weighted Sobolev norm k � kı , the moduli
space M DMı.E;˛/ is the set of gauge equivalence classes of finite weighted norm
SO.3/–connections A on E that limit to ˛ and that satisfy the anti-self-dual (ASD)
equation

�FA D �FA:

Geometry & Topology, Volume 21 (2017)
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In other words, M is the moduli space of instantons over M1 . Then, perhaps after
perturbing either the metric of M1 or the anti-self-dual equation, M can be shown to
have the structure of a smooth manifold with some singular points. An in-depth account
of the theory of instantons over manifolds with cylindrical ends can be found in [3].

In summary, the cohomology class e determines the adapted bundle .E;˛/. The next
theorem shows that if X is a negative definite 4–manifold, the choice of e also gives
information about the topology of the instanton moduli space M and thus, all the
gauge theory over M1 .

Theorem 3.1 Let X be a negative definite 4–manifold whose boundary consists of
the union of some Seifert fibered homology spheres †i D †.pi ; qi ; kipiqi � 1/ for
i D 1; : : : ;N . Consider W DW .pN ; qN ; kN pN qN � 1/ and form M DX [†N

W .
Let E be the SO.3/–bundle over M1 determined by the generator e of H 2.W IZ/.

The moduli space M of finite energy instantons on E is a (possibly noncompact)
smooth 1–manifold with boundary and with the following properties:

(a) The number of boundary points of M is given by C.e/D T=2ˇ , where T is
the order of the torsion subgroup of H1.X IZ/ and

ˇ D rank.H1.X IZ=2//� rank.H1.X IZ//:

(b) If piqi.kipiqi � 1/ < piC1qiC1.kiC1piC1qiC1� 1/, then M is compact.

In what follows we offer a broad idea of the proof. For a precise account we refer the
reader to [11].

Using the theory of singular bundles over orbifolds, Fintushel and Stern compute the
index for the bundle L˚ " over W .a1; a2; a3/ and give an explicit formula as

R.a1; a2; a3/D
2

a1a2a3
C

3X
iD1

2

ai

ai�1X
kD1

cot
�
�ak

a2
i

�
cot
�
�k

ai

�
sin2

�
�k

ai

�
:

Furthermore, Hedden and Kirk [11] show that whenever R.a1; a2; a3/ is positive, it
equals the dimension of the moduli space of instantons over the noncompact manifold
M1 obtained from the augmented manifold M D X [W for any 4–manifold X .
A calculation using the Neumann–Zagier formula [16] shows that when p and q

are relatively prime positive integers and k � 1, the Fintushel–Stern invariant for
†.p; q; kpq� 1/ is such that

R.p; q; kpq� 1/D 1;

thus proving that M is a 1–dimensional space.

Geometry & Topology, Volume 21 (2017)
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It can be shown that the boundary points of M correspond to reducible connections.
Using results found in [18; 11] and some basic algebraic topology one can show that
the number of reducible connections is given by C.e/D T=2ˇ , where T is the order
of the torsion subgroup of H1.X IZ/ and ˇ D rank.H1.X IZ=2//� rank.H1.X IZ//
as claimed in Theorem 3.1(a).

Finally, the question about compactness is in fact a question about convergence. To
address this question, for any connection A on E that limits to ˛, consider the integral

�
1

8�2

Z
M1

Tr.FA ^FA/:

The value of this integral can be shown to be independent of the choice of A and thus
an invariant of the bundle .E;˛/. This invariant is usually denoted by p1.E;˛/ and
known as the Pontryagin number of .E;˛/. In addition, p1.E;˛/ captures convergence
of sequences of connections in M modulo gauge equivalence. Indeed, Uhlenbeck
compactness for noncompact manifolds characterizes lack of convergence in M as
taking one of two different forms: “bubbling” and “breaking”. Bubbling happens when
the curvature accumulates near a point inside a compact set in M1 and results in a
change of the Pontryagin number of the bundle. In fact, by Uhlenbeck’s removable
singularities theorem [19], this change comes in multiples of 4 and so, if p1.E;˛/

is less than 4, bubbling cannot occur. Breaking happens when a region appears in
one of the cylindrical ends of M1 where the connection looks like an instanton on a
tube that limits to a flat connection at either end of the tube. Furuta [9] shows that the
curvature of the connection at such a region is nonzero and the energy of the connection
is greater than or equal to the Chern–Simons invariant of the limiting connections. For
ease of notation, for Y a 3–manifold denote by �.Y / the minimum of the differences
cs.Y; b/� cs.Y;˛jY / 2 .0; 4�, where b ranges over all flat connections on EjY . So,
if p1.E;˛/ is less than �.Y; e/ for every connected component Y of @M , breaking
cannot occur. In conclusion, if p1.E;˛/ < 4 and p1.E;˛/ <minf�.Y / j Y � @M g,
neither bubbling nor breaking can occur, and thus the previous inequalities constitute a
compactness criterion for the moduli space M . Computations of these quantities for
the case at hand and proofs of the inequalities will show compactness of M . First, an
argument involving the intersection form of W shows that

p1.E;˛/D
1

pN qN .kN pN qN �1/
< 4

and can be found in [11]. Further, if L is any of the lens spaces in the boundary of W ,
then its minimum Chern–Simons invariant satisfies

�.L/�min
n

1

pN
;

1

qN
;

1

kN pN qN �1

o
> p1.E;˛/:
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In addition, it is also known [9; 5] that �.†.p; q; kpq�1//D 1=.pq.kpq�1//. Then,
the condition

piqi.kipiqi � 1/ < piC1qiC1.kiC1piC1qiC1� 1/

implies p1.E;˛/<minf�.†i/ j i D 1; : : : ;N �1g and so, by the compactness criterion
previously described, M is in fact a compact space as asserted in Theorem 3.1(b). This
completes the sketch of the proof of Theorem 3.1.

To obtain the instanton cobordism obstruction further assume that H1.X IZ=2/D 0.
In that case H1.X IZ/ would be a torsion group with no even torsion and so ˇ would
be 0 and T D jH1.X IZ/j would be an odd integer. Therefore, C.e/D jH1.X IZ/j
and the moduli space M would contain an odd number of reducible connections.
However, by Theorem 3.1, M is a compact 1–dimensional manifold. Since a com-
pact 1–dimensional manifold cannot have an odd number of boundary components,
Theorem 3.1 obstructs the existence of a negative definite 4–manifold satisfying
H1.X IZ=2/D 0. The following theorem is a reformulation of Theorem 3.1, with the
additional hypothesis H1.X IZ=2/D 0, expressed in purely topological terms.

Theorem 3.2 Let pi and qi be relatively prime integers and ki a positive integer for
i D 1; : : : ;N . If f†ig

N
iD1

is a family of Seifert fibred homology 3–spheres such that
†i D†.pi ; qi ; kipiqi � 1/ and satisfying

(1) piqi.kipiqi � 1/ < piC1qiC1.kiC1piC1qiC1� 1/;

then no combination of elements in f†ig
N
iD1

cobounds a smooth 4–manifold X with
negative definite intersection form and such that H1.X IZ=2/D 0.

In summary, the crucial idea is that the topology of the instanton moduli space obstructs
the existence of some definite 4–manifolds. Also key is the fact that the cohomol-
ogy class e and the minimum Chern–Simons invariant of the boundary 3–manifolds
provide important information about the topology of the moduli space. Note that the
compactness criterion presented in Theorem 3.1(b) is precisely the criterion for the
independence of a family of satellites of the form Dn.Tp;q/.

4 Topological description of 2–fold covers

A useful method to study the algebraic structure of a group G is to consider homomor-
phisms G!H and use information about the algebraic structure of H . In the case of
the smooth concordance group C1 it is common to associate to the concordance class
of a knot K the equivalence class of the 2–fold cover of S3 branched over K , †2.K/,
in the homology cobordism group of oriented Z=2–homology spheres, ‚3

Z=2 . The
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following lemma and the comment after it establish the precise relationship between
the smooth concordance group and the Z=2 homology cobordism group.

Lemma 4.1 [1, Lemma 2] Let K � S3 be a knot. Then:

(a) †2.K/ is a Z=2 homology 3–sphere, that is, H�.†2.K/IZ=2/ŠH�.S
3IZ=2/.

(b) If K is slice, then †2.K/D @Q, where Q is a Z=2–homology 4–ball, that is,
H�.QIZ=2/ŠH�.B

4IZ=2/.

Moreover, †2.K1 #K2/D†2.K1/#†2.K2/, where the separating sphere is obtained
as the lift of the embedded 2–sphere in S3 that appears in the definition of K1 # K2

as the connected sum of pairs .S3;K1/ # .S3;K2/. All these observations show that
the assignment K!†2.K/ is a group homomorphism

†2W C1!‚3
Z=2:

Therefore, the end result of the present article is in fact a result about independence
in ‚3

Z=2 . With all the previous in mind, in this section we include a topological
description of †2.Dn.K//.

In [17; 14] the authors offer a description of the infinite cyclic cover of a satellite knot
B.K/ in terms of some covers of the companion and pattern knots. Since finite cyclic
covers may be regarded as quotients of the infinite cyclic covers, their description can
be adapted to the case of 2–fold cyclic covers of satellite knots. The branched covers
are obtained by compactifying the cyclic cover and attaching to it a solid torus in such
a way that a meridian of the solid torus matches with the preimage of the meridian of
the knot in the cyclic cover. In what follows we reproduce without proof the modified
version of the description found in [17; 14].

Theorem 4.2 Let BtA be a pattern link satisfying lk.A;B/D 0 and K a knot in S3 .
There are splittings

†2.B/D V2[N2 and †2.B.K//DW2[M2

such that:

(a) The space N2 consists of two copies of N.A/ and M2 of two copies of
S3 nN.K/.

(b) If N i is the i th copy of N.A/ in N2 and X i the i th copy of S3 nN.K/ in M2 ,
then

V2\N i
D T i and W2\X i

D U i ;

where T i and U i are 2–tori for i D 1; 2.

(c) The embedding h from Definition 2.1 induces a homeomorphism h2W V2!W2 .
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(d) If qi and ˛i are, respectively, the lift of the meridian and longitude of N to T i ,
then the gluing map of †2.B/ identifies .�A/i with qi , and .�A/i with ˛i .
Analogously, the gluing map of †2.B.K// identifies .�K /i with the image of
qi under h2 , and .�K /i with the image of ˛i under h2 .

In conclusion, there is an isomorphism

†2.B.K//Š V2[� 2.S3
nN.K//;

where the gluing map � identifies each copy of �K with qi , and each corresponding
copy of �K with the corresponding lift ˛i . Thus, the 2–fold branched cover of S3

over a satellite knot is determined by the 2–fold cover of a solid torus branched over
the pattern B , and the curves ˛i .i D 1; 2/. The following proposition makes these
choices explicit for the patterns presented in Figure 2.

Proposition 4.3 Given a knot K � S3 , the 2–fold branched cover †2.Dn.K// of
S3 branched over Dn.K/ has a decomposition

†2.Dn.K//D S3
nN.T2;�2n/[' 2.S3

nN.K//;

where T2;�2n is the .2;�2n/ torus link with unknotted components A1 tA2 . Addi-
tionally, the gluing map ' is determined by

'�.�K /i D�n ��Ai
C�Ai

and '�.�K /i D �Ai
;

where �Ai
and �Ai

for i D 1; 2 denote the standard meridian–longitude pairs for the
components of the link T2;�2n DA1 tA2 , and .�K /i and .�K /i for i D 1; 2 denote
the standard meridian–longitude pairs for K .

: : :

n times

0

n=2 times

: : :C1 C1
0

C1

0

...

n=
2 tim

es

C1

Figure 3: Surgery description of Dn as a subspace of V . Left: the pattern
Dn and the pair .A; 0/ . Center: surgery description of the pattern Dn as a
subset of V . Right: an isotopy of the center diagram.
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C1

00

...

n=
2 tim

es

C1C1

C1
�2n

�n �n

Figure 4: Left: surgery diagram of the 2–fold cover of V branched over Dn .
Right: performing the surgeries one obtains the 2–fold cover of V branched
over Dn and the lifts of .A; 0/; the box represents half twists.

Proof By Theorem 4.2, to obtain a description of †2.Dn.K// it is enough to under-
stand V2 , the 2–fold cover of V D S3 nN.A/ branched over Dn , and ˛i for i D 1; 2,
the lifts of �A to V2 . Since the longitude �A of A is the 0–framing of A, it suffices
to consider the framed knot .A; 0/ and its framed lifts .Ai ; fi/ for i D 1; 2. Indeed,
if A1 tA2 is the lift of A to †2.Dn/, then

V2 D†2.Dn/ nN.A1 tA2/Š S3
nN.A1 tA2/;

and ˛i is the .fi ; 1/ curve in @N.Ai/ for i D 1; 2. Therefore, the proof amounts
to getting a description of the cover †2.Dn/, which, since Dn is trivial in S3 , is
simply S3 . This uses the surgery description of the pattern DntA, shown in Figure 3;
Figure 4 shows the description of the 2–fold branched cover.

5 Definite cobordisms

The main result will be obtained in terms of the instanton cobordism obstruction
presented in Theorem 3.2 for a collection of Seifert fibered homology 3–spheres to
cobound a negative definite 4–manifold. The issue here is that the 3–dimensional man-
ifold †2.Dn.Tp;q// is not Seifert fibered. However, this obstacle can be overcome by
introducing definite cobordisms with (unoriented) boundary †2.Dn.Tp;q// and some
Seifert fibered spaces. The following theorem introduces the sought-after cobordisms.

Theorem 5.1 Let .p; q/ be relatively prime positive integers and n>0 an even integer.
If †2.Dn.Tp;q// is the 2–fold cover of S3 branched over the satellite knot Dn.Tp;q/,
then there exist:

(a) A negative definite cobordism Z.n;p; q/ from the manifold †2.Dn.Tp;q// to
the manifold �†.p; q; npq� 1/.
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(b) A negative definite cobordism R.n;p; q/ from the manifold †2.Dn.Tp;q// to
the empty manifold.

(c) A positive definite cobordism P .n;p; q/ from the manifold †2.Dn.Tp;q// to
the manifold �†.p; q; 2npq� 1/t�†.p; q; 2npq� 1/.

Moreover, these cobordisms have trivial first homology group H1.�IZ/.

By the handle decomposition theorem, every cobordism with incoming boundary
component Y is obtained by attaching handles to I �Y . Requiring the cobordism to
be oriented is equivalent to requiring the attaching maps of the 1–handles to preserve
orientations. In the case being considered, all the cobordisms will be obtained by
attaching 2–handles to the 4–manifold I � †2.Dn.Tp;q// along framed knots in
f1g �†2.Dn.Tp;q//. To that end, we first recall the precise definition of framings to
later compute the relevant ones.

Definition 5.2 Let J be a knot in a Z–homology sphere Y and N.J / a tubular
neighborhood of J in Y . A framing of J is a choice of a simple closed curve J 0 in
the boundary N.J / that wraps once around J in the longitudinal direction. Similarly,
the framing coefficient of J is the oriented intersection number of J 0 and any Seifert
surface for J in Y .

With the definition of framing at hand, we start with the construction of the cobordism
Z.n;p; q/.

Proof of Theorem 5.1(a) Any torus knot Tp;q with .p; q/ relatively prime positive
integers admits a planar diagram with only positive crossings. This implies that Tp;q

can be unknotted by a sequence of positive-to-negative crossing changes in such a
way that the i th crossing change is obtained by performing �1 surgery on S3 along a
trivial knot i that lies in the complement of Tp;q and encloses the crossing. Then, if c

is the number of crossings changed and LD i t� � �tc , there exists an isomorphism

(2)  W S3
�1.L/! S3

that identifies the restriction of Tp;q to the complement of L with the unknot. Next,
notice that since L is contained in S3 nN.Tp;q/, it can be regarded as a subset of
†n D†2.Dn.Tp;q//. Thus, one can form a 4–manifold Z by attaching 2–handles to
I�†n along the framed link .L;�1/. Specifically, if hi is a 4–dimensional 2–handle,

Z D .I �†n/[L .h1 t � � � thc/:

It is then a matter of routine to check that the incoming boundary component of Z is
the manifold †n and its outcoming boundary component, Y , is the result of surgery on
†n along the framed link .L;�1/. In what follows, we will first obtain a description
of Y as surgery and then we will show that Z is a negative definite manifold.
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First, using the description of †n included in Proposition 4.3, Y can be seen to split
as the union of .S3 nN.Tp;q//['1

.S3 nN.T2;�2n// and the result of surgery on
S3 nN.Tp;q/ along the framed link .L;�1/. The restriction of the isomorphism  

from (2) to the latter space shows that surgery on S3 nN.Tp;q/ along the framed link
.L;�1/ is isomorphic to the unknot complement and therefore isomorphic to a standard
solid torus D2�S1 . Furthermore, choosing i to have linking number 0 with the knot
Tp;q guarantees that the Seifert longitude of Tp;q gets sent to the Seifert longitude of
the unknot, and thus to a meridional curve @D2�fptg of D2�S1 . The aforementioned
choice also guarantees that the meridian of Tp;q gets sent to the longitudinal curve
fptg�S1 of the solid torus D2�S1 . In other words, if h is the isomorphism between
surgery on S3nN.Tp;q/ and the standard solid torus D2�S1 , there is an isomorphism

Y Š .S3
nN.Tp;q//['1

.S3
nN.T2;�2n//['2ıh D2

�S1:

To simplify notation call A1 and A2 the components of the link T2;�2n and let

X D .S3
nN.T2;�2n//['2ıh D2

�S1
D .S3

nN.A1 tA2//['2ıh D2
�S1:

Notice that since the gluing map '2 ı hW @D2 �S1! @N.A1 tA2/ satisfies

.'2 ı h/�.ŒS
1�/D .'2/�.�K /D�n�A2

C�A2
;

.'2 ı h/�.Œ@D
2�/D .'2/�.�K /D �A2

;

it extends to the interior of D2 �S1 . This implies that X is the result of filling the
space left by N.A2/ in S3 with a solid torus in a way that makes X isomorphic to
S3 nN.A1/. Then, since A1 is unknotted, X is isomorphic to a standard solid torus
and thus Y is isomorphic to the union of S3 nN.Tp;q/ and a solid torus. In other
words, Y is the result of performing surgery on S3 along Tp;q . To make explicit the
coefficient of the surgery, recall that

.'1/�.�K /D�n�A1
C�A1

and .'1/�.�K /D �A1
:

Then, since �A1
is identified with the meridian @D2 and �A1

with the longitude S1 ,
simple arithmetic shows that

.'1/�.�K C n�K /D Œ@D
2�;

thus showing that the surgery coefficient is 1=n. Finally, since, for p; q; n > 0,
the result of 1=n surgery on S3 along the torus knot Tp;q is diffeomorphic to the
Seifert fibred homology sphere �†.p; q; npq� 1/ [15, Proposition 3.1], the outcoming
boundary component of Z is �†.p; q; npq� 1/, as sought.

As for definiteness, since †n is a homology sphere, the second homology group
H2.ZIZ/ admits a basis determined by the 2–handles. In addition, the matrix repre-
sentation of the intersection form of Z in terms of such basis is given by the linking
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matrix of the framed link .L;�1/. This, in turn, can be seen to be the matrix �Ic ,
where Ic is the c � c identity matrix. We thus see that Z is negative definite, as
sought.

The remaining statements Theorem 5.1(b)–(c) will be obtained as a corollary to the
following theorem.

Theorem 5.3 Let K be any knot and †n the 2–fold cover of S3 branched over
Dn.K/. Then there exist 4–manifolds Pn.K/ and Rn.K/ such that:

(a) Pn.K/ is a positive definite cobordism from †n to S3
1=2n

.K/ # S3
1=2n

.K/.

(b) Rn.K/ is a negative definite cobordism from †n to S3 .

The cobordisms will be constructed explicitly from I �†n by attaching some 2–
handles to it along framed knots in †n . Specifically, the attachment will take place
along the links ˙ D ˙

1
t � � � t ˙n shown in Figure 5 and will be completely

determined after establishing the appropriate framing and framing coefficient of the
link components. Notice that since ˙ is completely contained in S3 nN.T2;�2n/,
any tubular neighborhood N.˙i / in S3 small enough to be completely contained in
S3 nN.T2;�2n/ is also a tubular neighborhood of ˙i in †n . Definition 5.2 and the
previous statement show that there is no difference between framings of ˙ in S3

and †n . To see that the same holds for framing coefficients we need to analyze the
Seifert surfaces for ˙i in both S3 and †n . First, since ˙i is an unknot in S3 , any
embedded 2–disk in S3 bounding ˙i is a Seifert surface for ˙i in S3 . Call this
disk Di and choose it to be disjoint from every other component of ˙ . Notice also
that each curve ˙i encloses a crossing of T2;�2n in such a way that Di intersects
the boundary of N.T2;�2n/ in two disjoint curves, one homologous to ��A1

and the
other to ��A2

(see Figure 6). Next, to obtain a Seifert surface Si for ˙i in †n , let
Fj be a Seifert surface for K in S3 contained in the j th copy of S3 nN.K/ in †n

: : :: : :

C1 C1 C1 C1

C
1

C
n=2

C
n=2C1

Cn

�n

�n

: : :: : :

�1 �1 �1 �1

�
1

�
n=2

�
n=2C1

�n

�n

�n

Figure 5: Descriptions of Pn.K/ (left) and Rn.K/ (right), showing †n and
the links ˙ .
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C1

C
1

!

�1

�
1

!

Figure 6: Local depiction of one component of C (left) and � (right) and
the corresponding crossing changes.

and recall that the gluing map ' from Proposition 4.3 identifies �Aj
with a longitude

of K in the j th copy of S3 nN.K/ � †. The surface Fj can then be glued to Di

along 'j and so we can form

(3) Si DDi \S3
nN.T2;�2n/[' .F1 tF2/:

Hence, if ˇi is any framing of i , its framing coefficient in S3 is given by the number
of points in ˇi \Di counted with sign and its framing coefficient in †n is given by
the number of points in ˇi \Si counted with sign. Since any choice of ˇi is contained
in the interior of S3 nN.T2;�2n/, it is disjoint from each copy of S3 nN.K/ that
appears in the description of †n . Thus, ˇi is disjoint from both F1 and F2 and so

ˇi \Si D ˇi \ .Di \S3
nN.T2;�2n//D ˇi \Di :

This shows that the framing coefficient of ˙i in both S3 and †n agree.

So, let ˙ D ˙
1
t � � � t ˙n with the framings as shown in Figure 5, and form

Pn.K/D .I�†n/[C .h1t� � �thn/ and Rn.K/D .I�†n/[� .h1t� � �thn/:

These two 4–manifolds are the sought-after cobordisms, as will be established next.

Proof of Theorem 5.3 The boundary of Pn.K/ is the disjoint union of �†n and MC,
the result of surgery on †n along the framed link C. Analogously, the boundary
of Rn.K/ is the disjoint union of �†n and M�, the result of surgery on †n along
the framed link �. Then, since ˙ is a link in S3 nN.T2;�2n/, the space M˙

can be expressed as the union of two disjoint copies of S3 nN.K/ and surgery on
S3nN.T2;�2n/ along the framed link ˙. The latter manifold can be better understood
by first performing the surgery on S3 and then examining the effect such surgery has
on S3 nN.T2;�2n/.

Since the surgery is done along unknots with framing ˙1, the result is a space iso-
morphic to S3 . Also, notice that every component of ˙ encloses a crossing of the
link T2;�2n . Then, it is well-known that surgery on S3 along ˙ can be interpreted
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as a sequence of n crossing changes on the link T2;�2n that unlink its components. In
other words, there is an isomorphism

 ˙W S3
˙1.

˙/! S3

that sends the restriction of T2;�2n to the complement of ˙ to the 2–component
unlink U D U1 tU2 . Thus, after restricting,  ˙ gives us an isomorphism between
surgery on S3 nN.T2;�2n/ along ˙ and S3 nN.U /. The previous shows that

M˙
Š .S3

nN.U //[ ı' 2.S3
nN.K//:

Furthermore, since U is a 2–component unlink, there exists a 2–sphere S2 that
separates S3 nN.U / into S3 nN.U1/# S3 nN.U1/ŠD2�S1 # D2�S1 . Then, the
same sphere decomposes M˙ as

(4) M˙
Š
�
.D2
�S1/[

h˙
1

.S3
nN.K//

�
#
�
.D2
�S1/[

h˙
2

.S3
nN.K//

�
:

For simplicity in notation, set X˙ D .D2 � S1/[h˙ .S
3 nN.K// and notice that,

being the union of the complement of K and a solid torus, X˙ is surgery on S3

along K . The coefficient of the surgery is given by the homology class of the curve
that maps to the meridian @D2�fptg of D2�S1 under the gluing map h˙ , and so it
is important to understand h˙ . This can be done by analyzing the identifications that
took place to get (4), and the effect they have on �k and �K . With that in mind, let
f�Ai

; �Ai
g be the meridian–longitude pair of the component Ai of T2;�2n , and let

f�Ui
; �Ui
g be the meridian–longitude pair of the component Ui of U . Also, recall

that ' is such that

.'/�.�K /D�n ��Ai
C�Ai

and .'/�.�K /D �Ai
;

and that, since lk.˙j ;Ai/D 1 and  ˙ can be interpreted as a sequence of n crossing
changes,

 ˙� .�Ai
/D �Ui

and  ˙� .�Ai
/D .�n/ ��Ui

C�Ui
:

Similarly, the isomorphism � between S3nN.Ui/ and the standard solid torus D2�S1

identifies �Ui
with l D ŒS1� and �Ui

with mD Œ@D2�, so that

.h˙i /�.�K /DmC .�n� n/ � l and .h˙i /�.�K /D l:

Therefore .h˙i /�.�K C .n˙ n/ � �K / D m, showing that the slope of the surgery is
1=.n˙ n/. This shows that

MC
Š S3

1=2n.K/ # S3
1=2n.K/ and M�

Š S3
1=0.K/ # S3

1=0.K/Š S3;

thus proving that Pn.K/ is a cobordism from †n to S3
1=2n

.K/#S3
1=2n

.K/, and Rn.K/

is one from †n to S3 .
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To show definiteness, it is enough to understand the intersection form of the 4–manifolds
being considered. Let fb1; b2; : : : ; bng be the basis for H2.�IZ/ determined by the
handles. To find a surface that represents bj consider Sj the Seifert surface for Cj in
†n described in (3) and push int.Sj / into the interior of I �†� Pn.K/. Then add
the core of the i th handle along Cj to obtain a closed surface ySj . Next, denote by Q

the intersection form of Pn.K/. It is well-known that the value of Q.bj ; bk/ is given
by the number of points in ySj \

ySk , counted with sign. Then, using (3) we get

ySj \
ySk D Sj \ 

C

k
DDj \ 

C

k
:

Here Dj is a 2–disk in S3 bounding j and disjoint from every other component of C .
Since the disk Dj is disjoint from every other component of C , and Cj has framing
C1, the signed number of points in Dj\

C

k
is given by the Kronecker delta number ıik .

This shows that the n� n identity matrix In represents the intersection form Q in
terms of the basis fb1; b2; : : : ; bng, and thus that Pn.K/ is a positive definite manifold.

The analogous argument applied to � shows that �In represents the intersection
form of Rn.K/ and so Rn.K/ is negative definite.

The following corollary establishes Theorem 5.1(b)–(c):

Corollary 5.4 Let p; q > 0 and consider the satellite knot Dn.Tp;q/. If † D
†2.Dn.Tp;q// is the 2–fold cover of S3 branched over Dn.Tp;q/ then:

(a) There exists a positive definite 4–manifold, P .n;p; q/, with boundary compo-
nents �† and two copies of �†.p; q; 2npq� 1/.

(b) There exists a negative definite 4–manifold, R.n;p; q/, with boundary �†.

Proof First, to construct P .n;p; q/ attach a 3–handle to the manifold Pn.Tp;q/

along its outcoming boundary component to transform the connected sum of manifolds
into disjoint union. Next, recall that for p; q; n > 0, the result of 1=2n surgery on
S3 along the torus knot Tp;q is diffeomorphic to the Seifert fibred homology sphere
�†.p; q; 2npq� 1/ [15, Proposition 3.1].

Similarly, the manifold R.n;p; q/ is obtained from Rn.Tp;q/ by capping off its
outcoming boundary component S3 with a 4–ball.

6 Main result
Theorem 6.1 Let f.pi ; qi/gi be a sequence of relatively prime positive integers and
fnigi a sequence of positive and even integers. If

piqi.2nipiqi � 1/ < piC1qiC1.niC1piC1qiC1� 1/;

the family F D f†2.Dni
.Tpi qi

//g1
iD1

is independent in ‚3
Z=2 .
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Proof Denote by ŒY � the homology cobordism class of the Z=2–homology sphere Y

and suppose by contradiction that there exist integral coefficients c1; : : : ; cN 2 Z such
that

NX
iD1

ci Œ†2.Dni
.Tpi qi

//�D 0

in ‚3
Z=2 . The supposition implies the existence of an oriented 4–manifold Q with the

Z=2 homology of a punctured 4–ball and with boundary

@QD
N

#
iD1

� ci

#
jD1

†2.Dni
.Tpi qi

//

�
:

Attaching 3–handles to Q we can further assume that

@QD

NG
iD1

ci†2.Dni
.Tpi qi

//:

Here we use cY to denote the disjoint union of c copies of Y if c > 0, and �c copies
of �Y if c < 0. In addition, and without loss of generality, further assume that cN � 1.
Augment Q using the cobordisms constructed in Theorem 5.1, namely (see Figure 7),
let

X DQ[Z.nN ;pN ; qN /[

� G
ci>0

R.ni ;pi ; qi/

�
[

� G
ci<0

�P .ni ;pi ; qi/

�
:

Recall by Theorem 5.1 that Z.n;p; q/, �P .n;p; q/ and R.n;p; q/ are negative
definite cobordisms from † to �†.p; q; npq�1/, 2†.p; q; 2npq�1/ and the empty
set, respectively. Thus, X is a negative definite 4–manifold with oriented boundary

@X D�†.pN ; qN ; nN pN qN � 1/t

� G
ci<0

2†.pi ; qi ; 2nipiqi � 1/

�
:

Q

Z

�P

R

Figure 7: The manifold X
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Also, since the first Z=2–homology groups of Z.n;p; q/, �P .n;p; q/, R.n;p; q/

and Q are trivial, the Mayer–Vietoris theorem shows that H1.X;Z=2/ D 0. This
would imply that the Seifert fibered spaces

f�†.pN ; qN ; nN pN qN � 1/g[ f†.pi ; qi ; 2nipiqi � 1/gci<0

cobound a smooth 4–manifold that has negative definite intersection form and that
satisfies H1.X;Z=2/D 0, contradicting Theorem 3.2. Therefore, Q cannot exist and
so the 3–manifolds †2.Dni

.Tpi qi
// are independent in the Z=2 homology cobordism

group.

Theorem 6.2 Let f.pi ; qi/gi be a sequence of relatively prime positive integers and
fnigi a sequence of positive and even integers. Then, if

piqi.2nipiqi � 1/ < piC1qiC1.niC1piC1qiC1� 1/;

the collection fDni
.Tpi qi

/g1
iD1

is an independent family in C1 .

Proof If c1Dn1
.Tp1q1

/ # c2Dn2
.Tp2q2

/ # � � � # cN DnN
.TpN qN

/ is slice for some
integral coefficients c1; : : : ; cN 2 Z, then Lemma 4.1 shows that

†2.c1Dn1
.Tp1q1

/ # � � � # cN DnN
.TpN qN

//

D c1†2.Dn1
.Tp1q1

// # � � � # cN†2.DnN
.TpN qN

//

is the boundary of a Z=2–homology ball Q. However, Theorem 6.1 shows that Q

does not exist and the result thus follows.
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The chromatic splitting conjecture at nD p D 2

AGNÈS BEAUDRY

We show that the strongest form of Hopkins’ chromatic splitting conjecture, as
stated by Hovey, cannot hold at chromatic level n D 2 at the prime p D 2 . More
precisely, for V .0/ , the mod 2 Moore spectrum, we prove that �kL1LK.2/V .0/ is
not zero when k is congruent to �3 modulo 8 . We explain how this contradicts the
decomposition of L1LK.2/S predicted by the chromatic splitting conjecture.

55P60, 55Q45

1 Introduction

Fix a prime p . Let S be the p–local sphere spectrum, and LnS be the Bousfield
localization of S at the Johnson–Wilson spectrum E.n/. Let K.n/ be Morava K-theory.
There is a homotopy pullback square called the chromatic fracture square:

LnS //

��

LK.n/S

��

Ln�1S
�
// Ln�1LK.n/S

Let Fn be the fiber of the map LnS!LK.n/S . Note that Fn is weakly equivalent to
the fiber of �. It was shown by Hovey [12, Lemma 4.1] that Fn is weakly equivalent
to the function spectrum F.Ln�1S;LnS/. Hopkins’ chromatic splitting conjecture,
as stated by Hovey [12, Conjecture 4.2], stipulates that � is the inclusion of a wedge
summand, so that

(1-1) Ln�1LK.n/S 'Ln�1S _†Fn:

We will call this the weak form of the chromatic splitting conjecture. However, [12,
Conjecture 4.2] also gives an explicit decomposition of †Fn as a wedge of suspensions
of spectra of the form LiSp for 0 � i < n. We will call this the strong form of the
chromatic splitting conjecture.

The conjectured decomposition comes from the connection between the K.n/–local
category and the cohomology of a certain group called the Morava stabilizer group Gn .
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3214 Agnès Beaudry

Let Sn be the group of automorphisms of the formal group law of K.n/ over Fpn .
Then Gn is the extension of Sn by the Galois group Gal.Fpn=Fp/. Let W be the Witt
vectors on Fpn . There is a spectral sequence

(1-2) H s.Gn; .En/t / H) �t�sLK.n/S:

Note that W sits naturally in .En/0ŠW ŒŒu1; : : : ;un�1��. The inclusion induces a map

(1-3) H�.Gn;W /!H�.Gn; .En/0/:

Morava proves in [16, Remark 2.2.5], using the work of Lazard, that

H�.Gn;W /˝Qp ŠE.e1; : : : ; en/

for classes ei of degree 2i � 1. Therefore, H�.Gn;W / contains an exterior algebra
E.x1; : : : ;xn/ for appropriate integral multiples xi of the generators ei . The chromatic
splitting conjecture stipulates that, for some choice of x1; : : : ;xn , the exterior algebra
E.x1; : : : ;xn/ injects into H�.Gn; .En/0/ under the map (1-3), and that the nonzero
products xi1

� � �xij survive in (1-2) to nontrivial elements in ��2.
P

ik/Cj LK.n/S .
Further, it states that there is a factorization

S
�2.

P
ik/Cj

p
//

��

Ln�max.ik/S
�2.

P
ik/Cj

p

��

LK.n/S // †Fn

where Sm
p is the p–completion of Sm , and that these maps decompose †Fn as

(1-4) †Fn '

_
1�j�n

1�i1<���<ij�n

Ln�max.ik/S
�2.

P
ik/Cj

p :

The chromatic splitting conjecture has been shown for n � 2 and for all primes p ,
except in the case nD p D 2. For nD 1, it follows immediately from a computation
of ��L1Sp ; see Ravenel [19, Theorems 8.10 and 8.15]. At nD 2 and p � 5, it is due
to Hopkins, and follows from Shimomura and Yabe’s computations [23]. The proof
can be found in Behrens’ account of their work [4, Remark 7.8]. At nD 2 and p D 3,
the conjecture was proved recently by Goerss, Henn and Mahowald [9].

In this paper, we show that the chromatic splitting conjecture as stated above cannot
hold for nD p D 2. More precisely, we show that [12, Conjecture 4.2(iv)] fails in this
case. At nD 2, (1-1) and (1-4) imply that

(1-5) L1LK.2/S 'L1Sp _L1S�1
p _L0S�3

p _L0S�4
p :

Geometry & Topology, Volume 21 (2017)



The chromatic splitting conjecture at nD p D 2 3215

We show that the right-hand side of (1-5) has too few homotopy groups for the equiv-
alence to hold. However, our results do not contradict the possibility that � is the
inclusion of a wedge summand. Giving an alternative description for the fiber in this
case is work in progress.

That our methods could disprove (1-5) was first suggested to the author by Paul Goerss.
He and Mark Mahowald had been studying the computations of Shimomura and
Wang [22] and Shimomura [21] and noticed that these suggest that the right-hand side
of (1-5) is too small.

Statement of the results Let V .0/ be the cofiber of multiplication by p on S . Note
that for any p–local spectrum X , there is a cofiber sequence

X
p
�!X !X ^V .0/:

Since Bousfield localization of spectra preserves exact triangles, it follows that

LEV .0/'LES ^V .0/

for any spectrum E . This has the following consequence.

Proposition 1.1 The strong form of the chromatic splitting conjecture at nD 2 implies
that L1LK.2/V .0/'L1V .0/_L1†

�1V .0/.

We now fix our attention to the case when p D 2. Since L0V .0/ is contractible, it
follows from the chromatic fracture square that L1V .0/ ' LK.1/V .0/. Computing
��LK.1/V .0/ is a routine exercise using the spectral sequence

(1-6) E
s;t
2
DH s.G1; .E1/�V .0// H) �t�sLK.1/V .0/:

The E1–term is given in Figure 1. At pD 2, we have that V .0/ is not a ring spectrum.
This manifests itself by the fact that ��LK.1/V .0/ is not a ring. In fact,

��LK.1/V .0/D
�
Z2Œ�; ˇ

˙1; �1�=.2�; �
3; �2

1/
�
fe0; v1e0g=.2e0; 2v1e0� �

2e0/;

where � 2 �1 is the Hopf map, ˇ 2 �8 is the v1–self-map detected by v4
1 , and

�1 2 ��1 is detected by a generator of H 1.G1;Z2/ Š H 1.Z�
2
;Z2/. The element

e0 2 �0 represents the inclusion of the bottom cell S0 ,! V .0/, and v1e0 2 �2 is a
lift of †� to the top cell:

S2

v1e0

}}

†�
��

S0
e0
// V .0/ // S1

2
// S1

The following result is a consequence of Proposition 1.1.

Geometry & Topology, Volume 21 (2017)



3216 Agnès Beaudry

2

0

�4 �2 0 2 4 6 8 10 12

Figure 1: The E1–term of (1-6) computing ��LK.1/V .0/ . Vertical lines
denote extensions by multiplication by 2 , and lines of slope one denote
multiplication by � .

Corollary 1.2 The chromatic splitting conjecture implies that �kL1LK.2/V .0/ is
zero when k ��3 modulo 8.

However, in this paper, we prove the following result.

Theorem 1.3 There are nontrivial homotopy classes ˇtx in �8t�3L1LK.2/V .0/ and
�2ˇ

tx in �8t�4L1LK.2/V .0/.

This has the following immediate consequence.

Theorem 1.4 The homotopy group �kL1LK.2/V .0/ is nonzero when k ��3 mod-
ulo 8. Therefore, the decomposition (1-5) of the chromatic splitting conjecture does
not hold when nD 2 and p D 2.

The broad strokes of the proof of Theorem 1.3 when t D 0 are as follows. Let
G24 ŠQ8 Ì C3 be a representative of the unique conjugacy class of maximal finite
subgroups of S2 . Let C6 be a subgroup of G24 of order 6. Let S1

2
be the norm one

subgroup so that S2 Š S1
2

Ì Z2 (see Section 2). It follows from the duality resolution
techniques of Goerss, Henn, Mahowald and Rezk and the work of Bobkova [6] that,
for any X , there is a spectral sequence

E
p;t
1
D �t .Ep ^X / H) �t�p.E

hS1
2

2 ^X /;

where Ep are spectra such that E0 'EhG24
2 , Ep 'EhC6

2 if p D 1; 2 and .E2/�E3 Š

.E2/�E
hG24
2 as Morava modules. Localizing at E.1/, we obtain a spectral sequence

(1-7) E
p;t
1
D �tL1.Ep ^X / H) �t�pL1.E

hS1
2

2 ^X /:

We use this spectral sequence to show that ��3L1.E
hS1

2
2 ^V .0//Š F4 , in Lemma 4.1

and Proposition 4.2. After taking Galois invariants, we obtain a nonzero element x in
��3L1.E

hG1
2

2 ^V .0//. In the cofiber sequence

L1LK.2/V .0/!L1.E
hG1

2
2 ^V .0//!L1.E

hG1
2

2 ^V .0//;

Geometry & Topology, Volume 21 (2017)
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which is obtained from the cofiber sequence LK.2/S !EhG1
2

2 !EhG1
2

2 by smashing
with V .0/ and localizing at E.1/; this class gives rise to nonzero elements x 2

��3L1LK.2/V .0/ and �2x 2 ��4L1LK.2/V .0/.

Warning 1.5 We use the notation �2 to denote the homotopy class defined by

S0

1
��

�2

%%

LK.2/S // EhG1
2

2
// EhG1

2
2

// †LK.2/S

Experts will notice that this clashes with Ravenel [17, Lemma 2.1], but this is the
natural generalization of what is now commonly denoted by �n at odd primes.

Organization of the paper In Section 2, we specialize to the case nD 2 and p D 2

and describe the duality resolution spectral sequence and its E.1/–localization. In
Section 3, we compute the E1–page of this spectral sequence for V .0/. In Section 4,
we prove Theorem 1.3.

Acknowledgements I thank Paul Goerss, Hans-Werner Henn and Peter May for their
constant help and support. I thank Tobias Barthel, Daniel G Davis and Douglas Ravenel
for helping me sort out some of the details for the proofs of Section 2. I also thank
Mark Behrens, Irina Bobkova, Michael Hopkins, Jack Morava, Niko Naumann and
Zhouli Xu for helpful conversations. Finally, I thank Mark Mahowald for the insight
he shared with all of us throughout his life.

This material is based upon work supported by the National Science Foundation under
Grant No. DMS-1612020.

2 The E.1/–local duality resolution spectral sequence

We take the point of view that, at height 2, the Honda formal group law may be replaced
by the formal group law of a supersingular elliptic curve. This was carefully explained
in [3, Section 1]. (The reader who wants to ignore this subtlety may take SC , GC
and EC to mean S2 , G2 and E2 , respectively.)

Let SC be the group of automorphisms of the formal group law of the supersingular
elliptic curve

C W y2
Cy D x3

Geometry & Topology, Volume 21 (2017)



3218 Agnès Beaudry

of height two over F4 ; see [3, Section 3] for the comparison. It admits an action of the
Galois group Gal.F4=F2/. Define

GC D SC Ì Gal.F4=F2/:

Let EC be the spectrum which classifies the deformations of the formal group law of C
over F4 as described, for example, in Rezk [20]. It can be chosen to be a complex
oriented ring spectrum with

.EC/� DW ŒŒu1��Œu
˙1�

for ju1j D 0, juj D �2, whose formal group law is the formal group law of the curve

(2-1) CU W y2
C 3u1xyC .u3

1� 1/y D x3:

It admits an action of GC , and for any finite spectrum X ,

LK.2/X 'EhGC
C ^X ' .EC ^X /hGC I

see Behrens and Davis [5, page 5]. The group of automorphisms Aut.C/ of C is of
order 24 and injects into SC . We let G24 denote the image of Aut.C/. We note that

G24 ŠQ8 Ì C3;

where Q8 is a quaternion subgroup and C3 a cyclic group of order 3. The group SC
contains a central subgroup of order 2, which we denote by C2 . We define

C6 D C2 �C3:

There is a surjective homomorphism N W SC ! Z�
2
=.˙1/ Š Z2 , which we call the

norm. It is constructed using the determinant of a representation �W SC!GL2.W /;
see [3, Section 3]. Further, it can be extended to GC . We let S1

C and G1
C be the kernels

of the norms, and note that the elements of finite order in SC and GC are contained
in S1

C and G1
C respectively. Further,

(2-2) SC Š S1
C Ì Z2 and GC ŠG1

C Ì Z2:

The formal group law FCU
of CU , is not 2–typical. Nonetheless, it is strictly iso-

morphic to a 2–typical formal group law classified by a map BP�! .EC/� . Further,
Œ2�FCU

.x/� u1u�1x2 modulo .2;x4/; see [3, Section 6.1] for details on FCU
. The

strict isomorphism between FCU
and its 2–typification preserves this identity. Hence, v1

is mapped to u1u�1 modulo .2/. Since we are working primarily modulo .2/, we
abuse notation and let v1 D u1u�1 2 .EC/2 .

Geometry & Topology, Volume 21 (2017)
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We will need the following result, which can be found in Henn [11, Theorem 13] and
is also discussed in greater detail in Bobkova [6]. We restate it here using our notation
for convenience.

Theorem 2.1 (Goerss, Henn, Mahowald, Rezk and Bobkova) There is a resolution
of spectra in the K.2/–local category given by

EhS1
CC

// EhG24
C

// EhC6
C

// EhC6
C

// E3

E0
// E1

// E2
// E3

where .EC/�E3 Š .EC/�E
hG24
C as Morava modules. Further, for any spectrum X , the

resolution gives rise to a tower of fibrations spectral sequence

(2-3) E
p;t
1
D �t .Ep ^X /

SS1

DH) �t�p.E
hS1

C
C ^X /

with differentials dr W E
p;t
r !E

pCr;tCr�1
r .

We call the resolution of Theorem 2.1 the duality resolution. Let � generate Z2 in the
decompositions (2-2), and let G0

24
D �G24�

�1 . Recall from [3] or [2] that there is
also an algebraic duality resolution:

0 // Z2ŒŒS
1
C=G

0
24
�� // Z2ŒŒS

1
C=C6�� // Z2ŒŒS

1
C=C6�� // Z2ŒŒS

1
C=G24�� // Z2

// 0

C3
// C2

// C1
// C0

(2-4)

Now, let X be a finite spectrum. Resolving (2-4) into a double complex of projective
S1
C–modules and applying the functor HomZ2ŒŒS

1
C ��
.�; .EC/tX / gives rise to a spectral

sequence

(2-5) E
p;q;t
1
D Extq

Z2ŒŒS
1
C ��
.Cp; .EC/tX /

SS2

DH) H pCq.S1
C ; .EC/tX /

with differentials dr W E
p;q;t
r !E

pCr;q�rC1;t
r . Further, in each fixed degree p , there

are spectral sequences

(2-6) E
p;q;t
1
D Extq

Z2ŒŒS
1
C ��
.Cp; .EC/tX /

SS3

DH) �t�q.Ep ^X /

with differentials dr W E
p;q;t
r !E

p;qCr;tCr�1
r . Finally, there is also a spectral sequence

(2-7) E
s;t
2
DH s.S1

C ; .EC/tX /
SS4

DH) �t�s.E
hS1

C
C ^X /

Geometry & Topology, Volume 21 (2017)
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with differentials dr W E
s;t
r !E

sCr;tCr�1
r . Thus, for X finite, we obtain a diagram of

spectral sequences:

(2-8)

Extq
Z2ŒŒS

1
C ��
.Cp; .EC/tX /

SS3

��

SS2 +3 H pCq.S1
C ; .EC/tX /

SS4

��
�t�q.Ep ^X /

SS1

+3 �t�.pCq/.E
hS1

CC ^X /

Remark 2.2 For elements of Adams–Novikov filtration s D 0 in E
p;t
1
.SS1/, the

differentials d1 are related to the d1–differentials in the algebraic duality resolution
spectral sequence SS2 in the following way. If X is finite, as in [10, Proposition 2.4
and (2.7)], for G a closed subgroup of GC , there are isomorphisms of Morava modules

.EC/t .E
hG
C ^X /Š Homc.GC=G; .EC/tX /Š HomZ2

.Z2ŒŒGC=G��; .EC/tX /:(2-9)

Let
E1.SS1/

p;t
Š �t .Ep ^X /

h
�!H 0.GC; .EC/t .Ep ^X //ŠE

p;0;t
1

.SS2/

be the edge homomorphism for the spectral sequence

H s.GC; .EC/t .Ep ^X // H) �t�s.Ep ^X /:

The spectral sequence SS1 is constructed so that the following diagram commutes:

E
p;t
1
.SS1/

h
//

d1

��

E
p;0;t
1

.SS2/

d1

��

E
pC1;t
1

.SS1/
h
// E

pC1;0;t
1

.SS2/

When both horizontal maps h are injective, one can deduce information in SS1 from
information in SS2 .

For the statement of the next result, recall that for any closed subgroup F of GC and
finite spectrum X , there is a spectral sequence

(2-10) E
s;t
2
.F;X /DH s.F; .EC/tX / H) �t�s.E

hF
C ^X /:

The author learned the proof of the following result from Paul Goerss.

Lemma 2.3 Let S a closed subgroup of SC which is invariant under the action of
Gal.F4=F2/. Let G Š S Ì Gal.F4=F2/ be the corresponding closed subgroup of GC .
Then for any finite X and any 2� r �1,

Es;t
r .S;X /ŠW ˝Z2

Es;t
r .G;X /;

and the differentials of the spectral sequence E
s;t
r .S;X / are W –linear.

Geometry & Topology, Volume 21 (2017)
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Proof The action of Gal.F4=F2/ on .EC/�X is semilinear over W , so there is an iso-
morphism E�;�2 .S;X /ŠW ˝Z2

E�;�2 .G;X /. Now consider, Es;t
r .SC;S

0/. We have
E0;0

2 .SC;S
0/ŠW and the subring Z2 of W consists of permanent cycles. The spec-

tral sequence E�;�r .SC;S
0/ is multiplicative, so the differentials dr W E

0;0
r !Er;r�1

r

are Z2–derivations. Since W is an étale extension of Z2 , for any r , the Z2–derivations
from W to the W –module Er;r�1

r are zero. Hence, E0;0
2 .SC;S

0/ Š W consists
of permanent cycles and the differentials are W –linear. Since the spectral sequence
E�;�r .S;X / is one of modules over E�;�r .SC;S

0/, the differentials of E�;�r .S;X / are
also W –linear, and the result follows.

In what follows, we will use the following remark.

Remark 2.4 Let X be a finite spectrum and F be a closed subgroup of GC . As
noted by Devinatz in the proof of [7, Lemma 3.5], it follows from the fact that EhF

C is
.KC/�–local EC–nilpotent, (see Devinatz and Hopkins [8, Proposition A.3]) that the
descent spectral sequence (2-10) has a horizontal vanishing line.

Now, recall that the telescope conjecture holds at height nD 1. This was proved at
odd primes by Miller [15] and at p D 2 by Mahowald [14]. In particular, we have the
following result.

Theorem 2.5 (Mahowald and Miller) Let Y admit a v1–self-map vk
1 W †

2kY ! Y .
Then

L1Y 'LK.1/Y ' v
�1
1 Y;

where

v�1
1 Y WD colim

�
� � �

vk
1
��!†2kY

vk
1
��! Y

vk
1
��! � � �

�
:

Proposition 2.6 For any finite type-1 spectrum X , with self map vk
1 W †

2kX ! X ,
there is a diagram of strongly convergent spectral sequences:

v�1
1 Extq

Z2ŒŒS
1
C ��
.Cp; .EC/tX /

L1SS3

��

L1SS2 +3 v�1
1 H pCq.S1

C ; .EC/tX /

L1SS4

��

�t�qL1.Ep ^X /
L1SS1

+3 �t�.pCq/L1.E
hS1

CC ^X /

Proof The spectral sequence L1SS2 is obtained from SS2 by inverting the element
vk

1 2 .EC/2kX , and L1SS1 is obtained by the applying L1 to the tower of fibrations
which gives rise to SS1 . The spectral sequences L1SS3 and L1SS4 are obtained by
inverting the algebraic element vk

1 in the spectral sequences SS3 or SS4 , and using
the fact that

v�1
1 ��.Ep ^X /Š ��L1.Ep ^X /:
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With regards to the strong convergence of the four spectral sequences, note that local-
ization with respect to v1 is exact. Therefore, the localized spectral sequences will
converge strongly if they have horizontal vanishing lines at the E1–term. The spectral
sequences SS1 and SS2 have a vanishing line at p D 4 for all r � 1. As noted in
Remark 2.4, the descent spectral sequences SS3 and SS4 have horizontal vanishing
lines. Therefore, the spectral sequences L1SSi exist and converge.

Remark 2.7 As in Remark 2.2, the differentials d1 in L1SS1 and L1SS2 commute
with the edge homomorphisms

E1.L1SS1/
p;t
Š �tL1.Ep^X /

h
��! v�1

1 H 0.GC; .EC/t .Ep^X //ŠE
p;0;t
1

.L1SS2/:

Remark 2.8 For X as in Proposition 2.6, the element v2k
1 2 .EC/2kX can be chosen

to be Galois invariant. Therefore, the results of Lemma 2.3 also hold for the localized
spectral sequences. That is, let

v�1
1 E

s;t
2
.F;X /Š v�1

1 H s.F; .EC/tX / H) �t�sL1.E
hF
C ^X /:

Then for S and G as in Lemma 2.3, we have

v�1
1 Es;t

r .S;X /ŠW ˝Z2
v�1

1 Es;t
r .G;X /

for 2� r �1, and the differentials are W –linear.

3 The homotopy of L1.E
hG24
C ^V.0// and L1.E

hC6
C ^V.0//

The spectrum V .0/ has a self map

ˇW †8V .0/
v4

1
��! V .0/;

and in this section, we give the E1–term for

E
p;q
1
.L1SS1/D �qL1.Ep ^V .0//

L1SS1

DDH) �q�pL1.E
hS1

C
C ^V .0//:

In order to do so, we must compute ��L1.E
hG24
C ^V .0// and ��L1.E

hC6
C ^V .0//.

We do this using the descent spectral sequences

v�1
1 H s.G; .EC/tV .0// H) �t�sL1.E

hG
C ^V .0//:

Notation 3.1 We use the following conventions. First,

v1 D u1u�1; v2 D u�3 and j0 D u3
1:
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The element � is the discriminant of CU , and hence is given by

�D 27v2.v
3
1 � v2/

3
� v2.v

3
1 C v2/

3 mod .2/;
and

c4 D 9v4
1 C 72v1v2 � v

4
1 mod .2/:

The j –invariant is
j D c3

4�
�1
� v12

1 ��1 mod .2/:

These identities can be computed using Silverman [24, Section III.1]; see also [3,
Section 4.2]. We abuse notation and let

�D ı.v1/;

where ı is the Bockstein associated to

0! .EC/�=2
2
�! .EC/�=4! .EC/�=2! 0:

This is justified by the fact that ı.v1/ detects the homotopy class � (see [3, Section 4.1]).

The v1–torsion-free elements of H�.G24; .EC/�V .0// generate a submodule isomor-
phic to

F4ŒŒj ��Œv1; �;�
˙1; k�=.�4

� v4
1k; j�� v12

1 /

for elements of degrees .s; t/, where s is the cohomological grading, t is the internal
grading, and

jv1j D .0; 2/; j�j D .1; 2/; j�j D .0; 24/; jkj D .4; 0/; jj j D .0; 0/I

see Section 4.2 or the appendix of [3]. On the other hand, H�.C6; .EC/�V .0// is
v1–torsion-free and is isomorphic to

F4ŒŒj0��Œv1; �; v
˙1
2 ; h�=.�� v1h; j0v2� v

3
1/;

where jv2j D .0; 6/, jhj D .1; 0/ and jj0j D .0; 0/; see Section 4.2 of [3].

The next proposition is an immediate consequence of these results. In its statement, we
let F4..x// denote the Laurent series on x .

Proposition 3.2 There are isomorphisms

v�1
1 H�.G24; .EC/�V .0//Š F4..j //Œv

˙1
1 ; ��

and
v�1

1 H�.C6I .EC/�V .0//Š F4..j0//Œv
˙1
1 ; ��:

The degrees .s; t/ are given by jv1jD .0; 2/, j�jD .1; 2/, jj jD .0; 0/ and jj0jD .0; 0/.
The restriction associated to the inclusion of C6 in G24 maps j to j 4

0
.1C j0/

�3 .
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Proof This follows from [3, Section 4.2] after inverting v1 .

To compute the differentials, we will use the following observation.

Remark 3.3 There is a class ˛3 in Ext1;6
BP�BP

.BP�;BP�/ (see Ravenel [18, page 430])
such that d3.˛3/D �

4 . Further, ˛3 reduces to �v2
1 in Ext1;6

BP�BP
.BP�;BP�V .0//, so

�d3.v
2
1/D �

4 .

In general, for a 2–local BP–algebra spectrum E , the E–Adams spectral sequence
for any spectrum X is a module over ExtBP�BP .BP�;BP�/. There is a universal d3–
differential d3.˛3z/D �4zC˛3d3.z/. Further, if 2 annihilates E�.X /, this reduces
to d3.�v

2
1z/ D �4z C �v2

1d3.z/. If there is no �–torsion on the E3–term as in our
examples below, this gives a universal differential d3.v

2
1z/D �3zC v2

1d3.z/.

Lemma 3.4 Let G be a closed subgroup of GC . Let X be a K.2/–local spectrum
such that .EC/�X Š .EC/�E

hG
C . Then the K.2/–local, EC–Adams spectral sequence

computing ��X has E2–term isomorphic to H�.G; .EC/�/.

Proof We first prove that the E2–term is isomorphic to H�.GC; .EC/�X /. This can
be deduced directly from Barthel and Heard [1, Theorem 4.3]. Nonetheless, we sketch
the proof here. The assumption on .EC/�X implies that it is profree as an .EC/�–
module. An inductive argument using [13, Proposition 8.4] and [10, Proposition 2.4]
shows that

��LK.2/.E
^k
C ^X /Š Homc.Gk�1

C ; .EC/�X /;

which allows us to identify the E2–term as H�.GC; .EC/�X /. Now, using the fact
that .EC/�X Š .EC/�E

hG
C as Morava modules, (2-9) and Shapiro’s lemma imply that

H�.GC; .EC/�X /ŠH�.G; .EC/�/.

Lemma 3.5 Let X be a K.2/–local spectrum such that .EC/�X Š .EC/�E
hG24
C

as Morava modules. Then the K.2/–local, EC–Adams spectral sequence computing
��.X ^ V .0// has E2–term isomorphic to H�.G24; .EC/�V .0//. Further, in this
spectral sequence, the elements �k and v1�

k are d3–cycles for all k .

Proof The identification of the E2–term follows from Lemma 3.4 and the five lemma.
There are no d2–differentials, so all elements survive to the E3–term. Let �D0; 1. It fol-
lows from [2, Theorem 4.2.2], that d3.v

�
1�

k/D v10C�
1 �3p.j /�k�1 for p.j / 2 F4ŒŒj ��.

Suppose that p.j / is not zero. Then p.j /D j r p0.j / for r � 0 and p0.j / 2 F4ŒŒj ��

such that p0.j /� ` modulo .j / for some ` 2 F�
4

. Using the fact that the differentials
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are �– and v4
1–linear (since X ^V .0/ has a v4

1–self map), Remark 3.3 and the identity
j D v12

1 ��1 , we have

0D d3.v
10C�
1 �3p.j /�k�1/

D v12rC8
1 �3d3.v

2C�
1 p0.j /�

k�r�1/

D v12rC8C�
1 �6p0.j /�

k�r�1
C v12rC10

1 �3d3.v
�
1p0.j /�

k�r�1/:

Again, by [2, Theorem 4.2.2], H 3.G24; .EC/tV .0// is F4Œv1; ��–torsion-free in degrees
t � 6C 2� modulo .24/, so we can conclude that

�3p0.j /�
k�r�1

D v2��
1 d3.v

�
1p0.j /�

k�r�1/:

Since � D 0 or 1, the right-hand side is divisible by v1 , while the left-hand side is not,
a contradiction. Therefore, we must have p.j /D 0.

In the next two propositions, we let

R.�/DW ..�//Œˇ˙1; ��=.2�; �3/:

Proposition 3.6 Let X be as in Lemma 3.5. The E.1/–localization of the K.2/–local,
EC–Adams spectral sequence

E
s;t
2
D v�1

1 H s
�
GC; .EC/t .X ^V .0//

�
H) �t�sL1.X ^V .0//

satisfies
Es;t
1 ŠR.j /fx; v1xg=.2 �x; 2v1x/

for x in .0; 0/ and v1x 2 .0; 2/. Further, �8tL1.X ^ V .0// Š F4..j //fˇ
tg and the

edge homomorphisms

hW �8tL1.X ^V .0//! v�1
1 H 0.G24; .EC/8tV .0//

are isomorphisms.

Proof By Lemma 3.5 and naturality, Es;t
2 is isomorphic to v�1

1 H s.G24; .EC/tV .0//

and j k D v12k
1 ��k and v1j k are d3–cycles. By Remark 3.3, there are differentials

d3.v
2
1j k/ D �3j k and d3.v

3
1j k/ D v1�

3j k . This, together with the fact that the
differentials are v4

1–linear, determines all d3–differentials. The E4–term has a hor-
izontal vanishing line at s D 3. Therefore, there cannot be any higher differentials.
Letting x be the element detected by 1 2 H 0.G24; .EC/0V .0//, v1x the element
detected by v1 2H 0.G24; .EC/2V .0// and ˇt the element detected by v4t

1 , we obtain
the desired description of the E1–term. For degree reasons, �8tL1.X ^ V .0// Š

F4..j //fˇ
tg. That the edge homomorphisms are isomorphisms in degrees 8t follows

since v�1
1 H 0.G24; .EC/8tV .0//Š F4..j //fv

4t
1 g and h.j kˇt /D j kv4t

1 .

Remark 3.7 When X D V .0/, the class x can be described as the composite S0!

L1EhG24
C

1^e0
����!L1.E

hG24
C ^ V .0//, where the first map is the unit and e0 is the
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2

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Figure 2: This picture is both an illustration of the homotopy groups
��L1.E

hG24
C ^ V .0// and of the homotopy groups ��L1.E

hC6
C ^ V .0// .

For the former, a ı denotes a copy of F4..j // , and for the latter, it denotes a
copy of F4..j0// .

inclusion of the bottom cell. In ��V .0/.2/ , there is a relation 2v1e0 D �
2e0 for v1e0

detected by v1 2BP2V .0/ in the Adams–Novikov spectral sequence. This then implies
that 2v1x D �2x in ��L1.E

hG24
C ^V .0//, so

��L1.E
hG24
C ^V .0//ŠR.j /fx; v1xg=.2 �x; 2v1x� �2x/:

With some work, one can show that the relation 2v1x D �2x holds for arbitrary X

satisfying the condition of Lemma 3.5. However, this fact is not needed here.

Proposition 3.8 There is an isomorphism

��L1.E
hC6
C ^V .0//ŠR.j0/fy; v1yg=.2 �y; 2v1y � �2y/

for y in .0; 0/ and v1y 2 .0; 2/; see Figure 2. Hence, ��L1.E
hC6
2 ^ V .0// is 8–

periodic with periodicity generator ˇ . Further, the edge homomorphisms

hW �8tL1.E
hC6
C ^V .0//! v�1

1 H 0.C6; .EC/8tV .0//

are isomorphisms.

Proof We prove that j k
0

is a d3–cycle for all integers k . Then an argument similar
to that of Proposition 3.6 finishes the computation of the E1–term, where we let y be
the element detected by 1 2H 0.C6; .EC/0V .0// and v1y be the element detected by
v1y 2H 0.C6; .EC/2V .0//. The extension is obtained as in Remark 3.7.

The spectral sequence H�.C6; .EC/�/) ��E
hC6
C is multiplicative; hence, in this

spectral sequence, all elements of the form a2 are d3–cycles. Note that j0 lifts to
an invariant in H 0.C6; .EC/0/. This implies that d3.j

2r
0
/ D 0 and d3.j

2rC1
0

/ D

j 2r
0

d3.j0/. Hence, it suffices to prove that j0 is a d3–cycle. The restriction induced
by the inclusion of C6 in G24 , maps j to j 4

0
.1C j0/

�3 . By naturality, the element
d3.j

4
0
.1C j0/

�3/D 0. However,

d3.j
4
0 .1C j0/

�3/D j 4
0 .1C j0/

�4d3.1C j0/D j 4
0 .1C j0/

�4d3.j0/;

which implies that d3.j0/D 0.
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4 Some elements in ��L1LK.2/V.0/

We now turn to examining the spectral sequence

E
p;q
1
.L1SS1/D �qL1.Ep ^V .0//

L1SS1

DDH) �q�pL1.E
hS1

C
C ^V .0//:

The idea is to use knowledge of the differentials in the spectral sequence

E
p;q;t
1

.L1SS2/Dv
�1
1 Extq

Z2ŒŒS
1
C ��
.Cp; .EC/tV .0//

L1SS2

DDH) v�1
1 H pCq.S1

C :.EC/tV .0//

to deduce information about the differentials of L1SS1 .

Lemma 4.1 In the spectral sequence L1SS1 , we have E
3;8t
2
Š F4fˇ

tg.

Proof From Section 3, we have that

E
p;8t
1
Š

�
F4..j //fˇ

tg; p D 0; 3;

F4..j0//fˇ
tg; p D 1; 2:

From Remark 2.7 and the fact that the edge homomorphisms are isomorphisms in these
degrees, we obtain a commutative diagram

E
0;8t
1

.L1SS1/
d1
//

Š

��

E
1;8t
1

.L1SS1/
d1
//

Š

��

E
2;8t
1

.L1SS1/
d1
//

Š

��

E
3;8t
1

.L1SS1/

Š

��

E
0;0;8t
1

.L1SS2/
d1
// E

1;0;8t
1

.L1SS2/
d1
// E

2;0;8t
1

.L1SS2/
d1
// E

3;0;8t
1

.L1SS2/

where ˇ4t maps to v4t
1 . Theorem 1.2.1 and Corollary 1.2.3 of [3] give a computation

of the spectral sequence L1SS2 . In particular, it follows immediately from these
results that

E
3;0;8t
2

.L1SS2/Š F4..j //fv
4t
1 g=.j /Š F4fv

4t
1 g:

The claim follows.

Proposition 4.2 If k ��3 modulo 8, then �kL1.E
hS1

CC ^V .0//Š F4 .

Proof We use the spectral sequence E
p;q
r D E

p;q
r .L1SS1/. From Proposition 3.6

applied to X D E0 and X D E3 , and from Proposition 3.8, it follows that for r D 1, 2

or 3 and for any p ,

E
p;8t�r
1

D �8t�r L1.Ep ^V .0//D 0:

By Lemma 4.1, E
3;8t
2
Š F4fˇ

8tg, which proves the claim.

Geometry & Topology, Volume 21 (2017)



3228 Agnès Beaudry

Proposition 4.3 If k ��3 modulo 8, then �kL1.E
hG1

CC ^V .0//Š F2 .

Proof It follows from Remark 2.8 that

v�1
1 E�;�1 .S1

C ;V .0//ŠW ˝Z2
v�1

1 E�;�1 .G1
C ;V .0//:

Since �kL1.E
hS1

CC ^V .0//ŠF4 , there is a unique s0�0 such that Es0;kCs0
1 .S1

C ;V .0//

is nonzero, and Es0;kCs0
1 .S1

C ;V .0//ŠF4 . Therefore, Es;kCs
1 .G1

C ;V .0//D 0 if s¤ s0

and Es0;kCs0
1 .G1

C ;V .0//Š F2 .

Definition 4.4 Define the class x 2 ��3L1.E
hG1

CC ^V .0// to be the nonzero element.

Recall that
GC ŠG1

C Ì Z2:

Let � be a topological generator of the subgroup Z2 in GC . There is a cofiber sequence

(4-1) LK.2/S !EhG1
C

C
��1
���!EhG1

C
C :

We can now prove our main result.

Proof of Theorem 1.3 Since LK.2/S^V .0/'LK.2/V .0/ and localization preserves
exact triangles, the fiber sequence (4-1) gives rise to a fiber sequence

(4-2) L1LK.2/V .0/!L1.E
hG1

C
C ^V .0//

��1
���!L1.E

hG1
C

C ^V .0//:

Since � acts by automorphisms and the only automorphism of F2 is the identity, the
map � � 1 acts trivially on �8t�3L1.E

hG1
CC ^ V .0//. Therefore, in the long exact

sequence on homotopy groups, the class ˇtx is in the kernel of � � 1, and the image
of ˇtx under the map L1.E

hG1
CC ^V .0//!†L1LK.2/V .0/ is nonzero. We denote

it by �2ˇtx .

References
[1] T Barthel, D Heard, The E2 –term of the K.n/–local En –Adams spectral sequence,

Topology Appl. 206 (2016) 190–214 MR

[2] A Beaudry, The algebraic duality resolution at pD 2 , Algebr. Geom. Topol. 15 (2015)
3653–3705 MR

[3] A Beaudry, Towards the homotopy of the K.2/–local Moore spectrum at p D 2 , Adv.
Math. 306 (2017) 722–788 MR

[4] M Behrens, The homotopy groups of SE.2/ at p � 5 revisited, Adv. Math. 230 (2012)
458–492 MR

Geometry & Topology, Volume 21 (2017)

http://dx.doi.org/10.1016/j.topol.2016.03.024
http://msp.org/idx/mr/3494442
http://dx.doi.org/10.2140/agt.2015.15.3653
http://msp.org/idx/mr/3450774
http://dx.doi.org/10.1016/j.aim.2016.10.020
http://msp.org/idx/mr/3581316
http://dx.doi.org/10.1016/j.aim.2012.02.023
http://msp.org/idx/mr/2914955


The chromatic splitting conjecture at nD p D 2 3229

[5] M Behrens, D G Davis, The homotopy fixed point spectra of profinite Galois extensions,
Trans. Amer. Math. Soc. 362 (2010) 4983–5042 MR

[6] I Bobkova, Resolutions in the K.2/–local category at the prime 2 , PhD thesis, North-
western University (2014) MR Available at https://search.proquest.com/
docview/1558126694

[7] E S Devinatz, A Lyndon–Hochschild–Serre spectral sequence for certain homotopy
fixed point spectra, Trans. Amer. Math. Soc. 357 (2005) 129–150 MR

[8] E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the
Morava stabilizer groups, Topology 43 (2004) 1–47 MR

[9] P G Goerss, H-W Henn, M Mahowald, The rational homotopy of the K.2/–local
sphere and the chromatic splitting conjecture for the prime 3 and level 2 , Doc. Math.
19 (2014) 1271–1290 MR

[10] P Goerss, H-W Henn, M Mahowald, C Rezk, A resolution of the K.2/–local sphere
at the prime 3 , Ann. of Math. 162 (2005) 777–822 MR

[11] H-W Henn, On finite resolutions of K.n/–local spheres, from “Elliptic cohomol-
ogy” (H R Miller, D C Ravenel, editors), London Math. Soc. Lecture Note Ser. 342,
Cambridge Univ. Press (2007) 122–169 MR

[12] M Hovey, Bousfield localization functors and Hopkins’ chromatic splitting conjecture,
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Virtual fundamental classes for moduli spaces
of sheaves on Calabi–Yau four-folds

DENNIS BORISOV

DOMINIC JOYCE

Let .X ; !�
X
/ be a separated, �2–shifted symplectic derived C–scheme, in the

sense of Pantev, Toën, Vezzosi and Vaquié (2013), of complex virtual dimension
vdimCX D n 2 Z , and Xan the underlying complex analytic topological space. We
prove that Xan can be given the structure of a derived smooth manifold Xdm , of real
virtual dimension vdimRXdm D n . This Xdm is not canonical, but is independent
of choices up to bordisms fixing the underlying topological space Xan . There is
a one-to-one correspondence between orientations on .X ; !�

X
/ and orientations

on Xdm .

Because compact, oriented derived manifolds have virtual classes, this means that
proper, oriented �2–shifted symplectic derived C–schemes have virtual classes, in
either homology or bordism. This is surprising, as conventional algebrogeometric
virtual cycle methods fail in this case. Our virtual classes have half the expected
dimension.

Now derived moduli schemes of coherent sheaves on a Calabi–Yau 4–fold are
expected to be �2–shifted symplectic (this holds for stacks). We propose to use
our virtual classes to define new Donaldson–Thomas style invariants “counting”
(semi)stable coherent sheaves on Calabi–Yau 4–folds Y over C , which should be
unchanged under deformations of Y .
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1 Introduction

This paper will relate two apparently rather different classes of “derived” geometric
spaces. The first class is derived C–schemes X , in the derived algebraic geometry of
Toën and Vezzosi [34; 36], equipped with a �2–shifted symplectic structure !�

X
in

the sense of Pantev, Toën, Vaquié and Vezzosi [31]. Such .X ; !�
X
/ are the expected

structures on 4–Calabi–Yau derived moduli C–schemes.

The second class is derived smooth manifolds Xdm , in derived differential geometry.
There are several different models available: the derived manifolds of Spivak [32] and
Borisov and Noël [3; 4] (which form 1–categories DerManSpi , DerManBoNo ), and
Joyce’s d-manifolds [18; 19; 20] (a strict 2–category dMan) and m-Kuranishi spaces
[21, Section 4.7] (a weak 2–category mKur).

As it is known that equivalence classes of objects in all these higher categories are in
natural bijection, these four models are interchangeable for our purposes. But we use
theorems proved for d-manifolds or (m-)Kuranishi spaces.

Here is a summary of our main results, taken from Theorems 3.15, 3.16 and 3.24 and
Propositions 3.17 and 3.18 below.

Theorem 1.1 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme, in the

sense of Pantev et al [31], with complex virtual dimension vdimC X D n in Z, and
write Xan for the set of C–points of X D t0.X/, with the complex analytic topology.
Suppose that X is separated, and Xan is second countable. Then we can make
the topological space Xan into a derived manifold Xdm of real virtual dimension
vdimRXdm D n, in the sense of any of Borisov and Noel [3; 4], Joyce [18; 19; 20; 21]
and Spivak [32].

There is a natural one-to-one correspondence between orientations on .X ; !�
X
/, in the

sense of Section 2.4, and orientations on Xdm, in the sense of Section 2.6.

The (oriented) derived manifold Xdm above depends on arbitrary choices made in its
construction. However, Xdm is independent of choices up to (oriented) bordisms of
derived manifolds which fix the underlying topological space.

All the above extends to (oriented) �2–shifted symplectic derived schemes

.�W X !Z; !�X=Z/

over a base Z which is a smooth affine C–scheme of pure dimension, yielding an (ori-
ented) derived manifold �dmW Xdm!Zan over the complex manifold Zan associated
to Z, regarded as an (oriented) real manifold.
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In Section 2.5 we give a short definition of Kuranishi atlases K on a topological space X .
These are families of “Kuranishi neighbourhoods” .V;E; s;  / on X and “coordinate
changes” between them, based on work of Fukaya, Oh, Ohta and Ono [14; 15] in
symplectic geometry. The hard work in proving Theorem 1.1 is using .X ; !�

X
/ to

construct a Kuranishi atlas K on Xan . Then we use results from Borisov and Noel [3; 4]
and Joyce [18; 19; 20; 21] to convert .Xan;K/ into a derived manifold Xdm .

Readers of this papers do not need to understand derived manifolds, if they do not
want to. They can just think in terms of Kuranishi atlases, as is common in symplectic
geometry, without passing to derived manifolds.

We prove Theorem 1.1 using a “Darboux theorem” for k–shifted symplectic derived
schemes by Brav, Bussi and Joyce [6]. This paper is related to the series Ben-Bassat,
Brav, Bussi and Joyce [2], Brav, Bussi and Joyce [6], Brav, Bussi, Dupont, Joyce and
Szendrői [5], Bussi, Joyce and Meinhardt [7] and Joyce [22], mostly concerning the
�1–shifted (3–Calabi–Yau) case.

An important motivation for proving Theorem 1.1 is that compact, oriented derived
manifolds have virtual classes, in both bordism and homology. As in Sections 3.6–3.7,
from Theorem 1.1 we may deduce:

Corollary 1.2 Let .X ; !�
X
/ be a proper, oriented �2–shifted symplectic derived

C–scheme, with vdimC X D n. Theorem 1.1 gives a compact, oriented derived
manifold Xdm with vdimRXdm D n. We may define a d-bordism class ŒXdm�dbo

in the bordism group Bn.�/, and a virtual class ŒXdm�virt in the homology group
Hn.XanIZ/, depending only on .X ; !�

X
/ and its orientation.

Let X be a derived C–scheme, Z a connected C–scheme, �W X ! Z be proper,
and Œ!X=Z � a family of oriented �2–shifted symplectic structures on X=Z, with
vdimC X=Z D n. For each z 2 Zan we have a proper, oriented �2–shifted sym-
plectic C–scheme .Xz; !�

Xz
/ with vdimXz D n. Then ŒXz1dm�dbo D ŒX

z2
dm�dbo and

{
z1
� .ŒX

z1
dm�virt/ D {

z2
� .ŒX

z2
dm�virt/ for all z1; z2 2 Zan, with {z�.ŒX

z
dm�virt/ 2 Hn.XanIZ/

the pushforward under the inclusion {z W Xzan ,!Xan .

So, proper, oriented �2–shifted symplectic derived C–schemes .X ; !�
X
/ have virtual

classes. This is not obvious; in fact it is rather surprising. Firstly, if .X ; !�
X
/ is

�2–shifted symplectic then X D t0.X/ has a natural obstruction theory LX jX !LX
in the sense of Behrend and Fantechi [1], which is perfect in the interval Œ�2; 0�. But
the Behrend–Fantechi construction of virtual cycles [1] works only for obstruction
theories perfect in Œ�1; 0�, and does not apply here.

Secondly, our virtual cycle has real dimension vdimC X D
1
2

vdimRX , which is half
what we might have expected. A heuristic explanation is that one should be able to
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make X into a “derived C1–scheme” XC
1

(not a derived manifold), in some sense
similar to Lurie [27, Section 4.5] or Spivak [32], and .XC

1

; Im!�
X
/ should be a

“real �2–shifted symplectic derived C1–scheme”, with Im!�
X

the imaginary part
of !�

X
. There should be a morphism XC

1

!Xdm which is a “Lagrangian fibration”
of .XC

1

; Im!�
X
/. So vdimRXdmD

1
2

vdimRX
C1D

1
2

vdimRX , as for Lagrangian
fibrations � W .S; !/! B we have dimB D 1

2
dimS .

The main application that we intend for these results, motivated by Donaldson and
Thomas [13] and explained in Sections 3.8–3.9, is to define new invariants “counting”
(semi)stable coherent sheaves on Calabi–Yau 4–folds Y over C , which should be
unchanged under deformations of Y . These are similar to Donaldson–Thomas invariants
found in Joyce and Song [25], Kontsevich and Soibelman [26] and Thomas [33] and
could be called “holomorphic Donaldson invariants”, as they are complex analogues of
Donaldson invariants of 4–manifolds; see Donaldson and Kronheimer [12].

Pantev, Toën, Vaquié and Vezzosi [31, Section 2.1] show that any derived moduli
stack M of coherent sheaves (or complexes of coherent sheaves) on a Calabi–Yau
m–fold has a .2�m/–shifted symplectic structure !�M , so in particular 4–Calabi–Yau
moduli stacks are �2–shifted symplectic. Given an analogue of this for derived moduli
schemes, and a way to define orientations upon them, Corollary 1.2 would give virtual
classes for moduli schemes of (semi)stable coherent sheaves on Calabi–Yau 4–folds,
and so enable us to define invariants.

It is well known that there is a great deal of interesting and special geometry, related to
string theory, concerning Calabi–Yau 3–folds and 3–Calabi–Yau categories: mirror
symmetry, Donaldson–Thomas theory, and so on. One message of this paper is that there
should also be special geometry concerning Calabi–Yau 4–folds and 4–Calabi–Yau
categories, which is not yet understood.

During the writing of this paper, Cao and Leung [8; 9; 10] also proposed a theory of
invariants counting coherent sheaves on Calabi–Yau 4–folds, based on gauge theory
rather than derived geometry. We discuss their work in Section 3.9.

Section 2 provides background material on derived schemes, shifted symplectic struc-
tures upon them, Kuranishi atlases, and derived manifolds. The heart of the paper is
Section 3, with the definitions, main results, shorter proofs, and discussion. Longer
proofs of results in Section 3 are deferred to Sections 4–6.

Acknowledgements We would like to thank Yalong Cao, Conan Leung, Bertrand
Toën, Gabriele Vezzosi, and a referee for helpful conversations. This research was
supported by EPSRC Programme Grant EP/I033343/1.
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2 Background material

We begin with some background material and notation needed later. Some references are
Toën and Vezzosi [34; 36] for Sections 2.1–2.2, Pantev, Toën, Vezzosi and Vaquié [31]
and Brav, Bussi and Joyce [6] for Section 2.3, and Spivak [32], Borisov and Noël [3; 4]
and Joyce [18; 19; 20; 21; 23; 24] for Section 2.6.

2.1 Commutative differential graded algebras

Definition 2.1 Write cdgaC for the category of commutative differential graded C–
algebras in nonpositive degrees, and cdgaop

C for its opposite category. In fact cdgaC

has the additional structure of a model category (a kind of 1–category), but we only
use this in the proof of Theorem 3.1 in Section 4. In the rest of the paper we treat
cdgaC , cdgaop

C just as ordinary categories.

Objects of cdgaC are of the form � � � ! A�2 d
�!A�1 d

�!A0 . Here Ak for k D
0;�1;�2; : : : is the C–vector space of degree-k elements of A, and we have a C–
bilinear, associative, supercommutative multiplication Ak �Al �!AkCl for k; l 6 0,
an identity 1 2 A0 , and differentials dW Ak! AkC1 for k < 0 satisfying

d.a � b/D .da/ � bC .�1/ka � .db/

for all a 2 Ak , b 2 Al . We write such objects as A� or .A�; d/.

Here and throughout we will use the superscript “ � ” to denote graded objects (eg
graded algebras or vector spaces), where � stands for an index in Z, so that A� means
.Ak W k 2 Z/. We will use the superscript “ � ” to denote differential graded objects
(eg differential graded algebras or complexes), so that A� means .A�; d/, the graded
object A� together with the differential d.

Morphisms ˛W A�! B� in cdgaC are C–linear maps ˛k W Ak ! Bk for all k 6 0

commuting with all the structures on A� , B� .

A morphism ˛W A�! B� is a quasi-isomorphism if Hk.˛/W Hk.A�/!Hk.B�/ is
an isomorphism on cohomology groups for all k 6 0. A fundamental principle of
derived algebraic geometry is that cdgaC is not really the right category to work in,
but instead one wants to define a new category (or better, 1–category) by inverting
(localizing) quasi-isomorphisms in cdgaC .

We will call A� 2 cdgaC of standard form if A0 is a smooth finitely generated C–
algebra of pure dimension, and the graded C–algebra A� is freely generated over A0

by finitely many generators in each degree i D �1;�2; : : : . Here we require A0 to
be smooth of pure dimension so that .SpecA0/an is a complex manifold, rather than a
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disjoint union of complex manifolds of different dimensions. This is not crucial, but
will be convenient in Section 3.

Remark 2.2 Brav, Bussi and Joyce [6, Definition 2.9] work with a stronger notion
of standard form cdgas than us, as they require A� to be freely generated over A0 by
finitely many generators, all in negative degrees. In contrast, we allow infinitely many
generators, but only finitely many in each degree i D�1;�2; : : : .

The important thing for us is that since standard form cdgas in the sense of [6] are also
standard form in the (slightly weaker) sense of this paper, we can apply some of their
results [6, Theorems 4.1, 4.2, 5.18] on the existence and properties of nice standard
form cdga local models for derived schemes.

Definition 2.3 Let A� 2 cdgaC , and write D.modA/ for the derived category of
dg-modules over A� . Define a derivation of degree k from A� to an A�–module M �

to be a C–linear map ıW A�!M � that is homogeneous of degree k with

ı.fg/D ı.f /gC .�1/kjf jf ı.g/:

Just as for ordinary commutative algebras, there is a universal derivation into an
A�–module of Kähler differentials �1A� , which can be constructed as I=I 2 for I D
Ker.mW A�˝A�! A�/. The universal derivation ıW A�!�1A� is given by ı.a/D
a ˝ 1 � 1 ˝ a 2 I=I 2 . One checks that ı is a universal degree-0 derivation, so
that ı ıW Hom�A�.�

1
A� ;M

�/! Der�.A;M �/ is an isomorphism of dg-modules.

Note that �1A� D ..�
1
A�/
�; d/ is canonical up to strict isomorphism, not just up to quasi-

isomorphism of complexes, or up to equivalence in D.modA/. Also, the underlying
graded vector space .�1A�/

� , as a module over the graded algebra A� , depends only
on A� and not on the differential d in A� D .A�; d/.

Similarly, given a morphism of cdgas ˆW A�! B� , we can define the relative Kähler
differentials �1

B�=A�
.

The cotangent complex LA� of A� is related to the Kähler differentials �1A� , but is
not quite the same. If ˆW A� ! B� is a quasi-isomorphism of cdgas over C , then
ˆ�W �

1
A�˝A

� B�!�1B� may not be a quasi-isomorphism of B�–modules. So Kähler
differentials are not well behaved under localizing quasi-isomorphisms of cdgas, which
is bad for doing derived algebraic geometry.

The cotangent complex LA� is a substitute for �1A� which is well behaved under local-
izing quasi-isomorphisms. It is an object in D.modA/, canonical up to equivalence.
We can define it by replacing A� by a quasi-isomorphic, cofibrant (in the sense of model
categories) cdga B� , and then setting LA� D .�1B�/˝B� A

� . We will be interested
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in the pth exterior power ƒpLA� , and the dual .LA�/_ , which is called the tangent
complex, and written TA� D .LA�/_ .

There is a de Rham differential ddRW ƒ
pLA�!ƒpC1LA� , a morphism of complexes,

with ddR
2 D 0W ƒpLA� !ƒpC2LA� . Note that each ƒpLA� is also a complex with

its own internal differential dW .ƒpLA�/k! .ƒpLA�/kC1 , and ddR being a morphism
of complexes means that d ı ddRD ddRı d.

Similarly, given a morphism of cdgas ˆW A�!B� , we can define the relative cotangent
complex LB�=A� .

As in [6, Section 2.3], an important property of our standard form cdgas A� in
Definition 2.1 is that they are sufficiently cofibrant that the Kähler differentials �1A�
provide a model for the cotangent complex LA� , so we can take �1A� D LA� , without
having to replace A� by an unknown cdga B� . Thus standard form cdgas are convenient
for doing explicit computations with cotangent complexes.

A morphism ˆW A�!B� of cdgas will be called quasifree if ˆ0W A0!B0 is a smooth
morphism of C–algebras of pure relative dimension, and as a graded .A�˝A0 B

0/–
algebra B� is free and finitely generated in each degree. Here if A� is of standard
form and ˆ is quasifree then B� is of standard form, and a cdga A� is of standard
form if and only if the unique morphism C! A� is quasifree. We will only consider
quasifree morphisms when A� , B� are of standard form.

If ˆW A�! B� is a quasifree morphism then the relative Kähler differentials �1
B�=A�

are a model for the relative cotangent complex LB�=A� , and therefore we can take
�1
B�=A�

D LB�=A� . Thus quasifree morphisms are a convenient class of morphisms
for doing explicit computations with cotangent complexes.

2.2 Derived algebraic geometry and derived schemes

Definition 2.4 Write dStC for the 1–category of derived C–stacks (or D�–stacks)
defined by Toën and Vezzosi [36, Definition 2.2.2.14; 34, Definition 4.2]. Objects X
in dStC are 1–functors

X W fsimplicial commutative C–algebrasg ! fsimplicial setsg

satisfying sheaf-type conditions. There is a spectrum functor

SpecW cdgaop
C ! dStC :

A derived C–stack X is called an affine derived C–scheme if X is equivalent in dStC

to SpecA� for some cdga A� over C . As in [34, Section 4.2], a derived C–stack X
is called a derived C–scheme if it may be covered by Zariski open Y � X with Y
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an affine derived C–scheme. Write dSchC for the full 1–subcategory of derived
C–schemes in dStC , and dSchaff

C � dSchC for the full 1–subcategory of affine
derived C–schemes. See also Toën [35] for a different but equivalent way to define
derived C–schemes, as an 1–category of derived ringed spaces.

We shall assume throughout this paper that all derived C–schemes X are locally finitely
presented in the sense of Toën and Vezzosi [36, Definition 1.3.6.4]. Note that this is
a strong condition, for instance it implies that the cotangent complex LX is perfect
[36, Proposition 2.2.2.4]. A locally finitely presented classical C–scheme X need not
be locally finitely presented as a derived C–scheme. A local normal form for locally
finitely presented derived C–schemes is given in [6, Theorem 4.1].

There is a classical truncation functor t0W dSchC ! SchC taking a derived C–
scheme X to the underlying classical C–scheme X D t0.X/. On affine derived
schemes dSchaff

C the functor t0 maps SpecA�! SpecH 0.A�/D Spec.A0=d.A�1//.

Toën and Vezzosi show that a derived C–scheme X has a cotangent complex LX [36,
Section 1.4; 34, Sections 4.2.4–4.2.5] in a stable 1–category Lqcoh.X/ defined in [34,
Section 3.1.7, Section 4.2.4]. We will be interested in the pth exterior power ƒpLX ,
and the dual .LX /_ , which is called the tangent complex TX . There is a de Rham
differential ddRW ƒ

pLX !ƒpC1LX .

Restricted to the classical scheme X D t0.X/, the cotangent complex LX jX may
Zariski locally be modelled as a finite complex of vector bundles

ŒF�m! F 1�m! � � � ! F 0�

on X in degrees Œ�m; 0� for some m>0. The (complex) virtual dimension vdimC X is
vdimC X D

Pm
iD0.�1/

i rankF�i . It is a locally constant function vdimC X W X!Z,
so is constant on each connected component of X . We say that X has (complex)
virtual dimension n 2 Z if vdimC X D n.

When X DX is a classical scheme, the homotopy category of Lqcoh.X/ is the trian-
gulated category Dqcoh.X/ of complexes of quasicoherent sheaves. These LX , TX
have the usual properties of (co)tangent complexes. For instance, if f W X ! Y is a
morphism in dSchC there is a distinguished triangle

f �.LY /
Lf // LX // LX=Y // f �.LY /Œ1�;

where LX=Y is the relative cotangent complex of f .

Now suppose A� is a cdga over C , and X a derived C–scheme with X ' SpecA�

in dSchC . Then we have an equivalence of triangulated categories Lqcoh.X/ '

D.modA/, which identifies cotangent complexes LX 'LA� . If also A� is of standard
form then LA� '�1A� , so LX '�

1
A� .
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Bussi, Brav and Joyce [6, Theorem 4.1] prove:

Theorem 2.5 Suppose X is a derived C–scheme (as always, assumed locally finitely
presented), and x 2X . Then there exists a standard form cdga A� over C and a Zariski
open inclusion ˛W SpecA� ,!X with x 2 Im˛.

See Remark 2.2 on the difference in definitions of “standard form”. Bussi et al also
explain [6, Theorem 4.2] how to compare two such standard form charts SpecA� ,!X ,
SpecB� ,!X on their overlap in X , using a third chart. We will need the following
conditions on derived C–schemes and their morphisms.

Definition 2.6 A derived C–scheme X is called separated, or proper, or quasicom-
pact, if the classical C–scheme X D t0.X/ is separated, or proper, or quasicom-
pact, respectively, in the classical sense, as in Hartshorne [16, pages 80, 96, 100].
Proper implies separated. A morphism of derived schemes f W X ! Y is proper if
t0.f /W t0.X/! t0.Y / is proper in the classical sense [16, page 100].

We will need the following nontrivial fact about the relation between classical and
derived C–schemes. As in Toën [35, Section 2.2, page 186], a derived C–scheme X
is affine if and only if the classical C–scheme X D t0.X/ is affine.

Recall that a morphism ˛W X ! Y in SchC (or ˛W X ! Y in dSchC ) is affine if
whenever ˇW U ! Y is a Zariski open inclusion with U affine (or ˇW U ! Y is
Zariski open with U affine), the fibre product X �˛;Y;ˇ U in SchC (or homotopy
fibre product X �h

˛;Y;ˇ
U in dSchC ) is also affine. Since X is affine if and only if

X D t0.X/ is affine, we see that a morphism ˛W X ! Y in dSchC is affine if and
only if t0.˛/W t0.X/! t0.Y / is affine.

Now let X be a separated derived C–scheme. Then X D t0.X/ is a separated classical
C–scheme, so [16, page 96] the diagonal morphism �X W X ! X �X is a closed
immersion. But closed immersions are affine, and �X D t0.�X / for �X W X!X�X
the derived diagonal morphism, so �X is also affine. That is, X has affine diagonal.
Therefore if U1;U2 ,! X are Zariski open inclusions with U1 , U2 affine, then
U1 �

h
X
U2 ,!X is also Zariski open with U1 �hX U2 affine. Thus, finite intersections

of open affine derived C–subschemes in a separated derived C–scheme X are affine.

2.3 The shifted symplectic geometry of Pantev, Toën, Vaquié and Vezzosi

Next we summarize parts of the theory of shifted symplectic geometry, as developed by
Pantev, Toën, Vaquié and Vezzosi in [31]. We explain them for derived C–schemes X ,
although Pantev et al work more generally with derived stacks.
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Given a (locally finitely presented) derived C–scheme X and given p > 0, k 2 Z,
Pantev et al [31] define complexes of k–shifted p–forms ApC.X ; k/ and k–shifted
closed p–forms Ap;cl

C .X ; k/. These are defined first for affine derived C–schemes
Y D SpecA� for A� a cdga over C , and shown to satisfy étale descent. Then for
general X , k–shifted (closed) p–forms are defined as a mapping stack; basically, a
k–shifted (closed) p–form ! on X is the functorial choice for all Y , f of a k–shifted
(closed) p–form f �.!/ on Y whenever Y D SpecA� is affine and f W Y !X is a
morphism.

Definition 2.7 Let Y 'SpecA� be an affine derived C–scheme, for A� a cdga over C .
A k–shifted p–form on Y for k 2 Z is an element !A� 2 .ƒpLA�/k with d!A� D 0
in .ƒpLA�/kC1 , so that !A� defines a cohomology class Œ!A� �2Hk.ƒpLA�/. When
p D 2, we call !A� nondegenerate, or a k–shifted presymplectic form, if the induced
morphism TA�

!A� ���!LA� Œk� is a quasi-isomorphism.

A k–shifted closed p–form on Y is a sequence !�A� D .!0A� ; !
1
A� ; !

2
A� ; : : : / such

that !mA� 2 .ƒ
pCmLA�/k�m for m > 0, with d!0A� D 0 and d!1CmA� C ddR!

m
A� D 0

in .ƒpCmC1LA�/k�m for all m> 0. Note that if !�A� D .!
0
A� ; !

1
A� ; : : : / is a k–shifted

closed p–form then !0A� is a k–shifted p–form.

When p D 2, we call a k–shifted closed 2–form !�A� a k–shifted symplectic form if
the associated 2–form !0A� is nondegenerate (presymplectic).

If X is a general derived C–scheme, then Pantev et al [31, Section 1.2] define k–
shifted 2–forms !X , which may be nondegenerate (presymplectic), and k–shifted
closed 2–forms !�

X
, which have an associated k–shifted 2–form !0

X
, and where !�

X

is called a k–shifted symplectic form if !0
X

is nondegenerate (presymplectic). We will
not go into the details of this definition for general X .

The important thing for us is this: if Y � X is a Zariski open affine derived C–
subscheme with Y ' SpecA� then a k–shifted 2–form !X (or a k–shifted closed
2–form !�

X
) on X induces a k–shifted 2–form !A� (or a k–shifted closed 2–

form !�A� ) on Y in the sense above, where !A� is unique up to cohomology in
the complex ..ƒ2LA�/�; d/, and !X nondegenerate/presymplectic implies !A� non-
degenerate/presymplectic (or where !�A� is unique up to cohomology in the complex�Q

m>0.ƒ
2CmLA�/��m; dC ddR

�
, and !�

X
symplectic implies !�A� symplectic).

It is easy to show that if X is a derived C–scheme with a k–shifted symplectic
or presymplectic form, then k 6 0, and the complex virtual dimension vdimC X

satisfies vdimC X D 0 if k is odd, and vdimC X is even if k � 0 mod 4 (which
includes classical complex symplectic schemes when k D 0), and vdimC X 2 Z if
k � 2 mod 4. In particular, in the case k D�2 of interest in this paper, vdimC X can
take any value in Z.
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The main examples we have in mind come from Pantev et al [31, Section 2.1]:

Theorem 2.8 Suppose Y is a Calabi–Yau m–fold over C, and M a derived moduli
stack of coherent sheaves (or complexes of coherent sheaves) on Y . Then M has a
natural .2�m/–shifted symplectic form !M .

In particular, derived moduli schemes and stacks on a Calabi–Yau 4–fold Y are
�2–shifted symplectic.

Bussi, Brav and Joyce [6] prove “Darboux theorems” for k–shifted symplectic derived
C–schemes .X ; !X / for k < 0, which give explicit Zariski local models for .X ; !X /.
We will explain their main result for k D �2. The next definition is taken from [6,
Example 5.16] (with notation changed, 2qj sj in place of sj ).

Definition 2.9 A pair .A�; !A�/ is called in �2–Darboux form if A� is a standard
form cdga over C , and !A� 2 .ƒ2LA�/�2D .ƒ2�1A�/

�2 with d!A�D0 in .ƒ2LA�/�1

and ddR!A� D 0 in .ƒ3LA�/�2 , so that !�A� WD .!A� ; 0; 0; : : : / is a �2–shifted closed
2–form on A� , such that:

(i) A0 is a smooth C–algebra of dimension m, and there exist x1; : : : ; xm in A0

forming an étale coordinate system on V D SpecA0 .

(ii) The commutative graded algebra A� is freely generated over A0 by elements
y1; : : : ; yn of degree �1 and z1; : : : ; zm of degree �2.

(iii) There are invertible elements q1; : : : ; qn in A0 such that

(1) !A� D ddRz1 ddRx1C � � �C ddRzm ddRxm

C ddR.q1y1/ ddRy1C � � �C ddR.qnyn/ ddRyn:

(iv) There are elements s1; : : : ; sn 2 A0 satisfying

(2) q1.s1/
2
C � � �C qn.sn/

2
D 0 in A0;

such that the differential d on A� D .A�; d/ is given by

(3) dxi D 0; dyj D sj ; dzi D
nX

jD1

yj

�
2qj

@sj

@xi
C sj

@qj

@xi

�
:

Here the only assumptions are that A0 , x1; : : : ; xm are as in (i) and we are given
q1; : : : ; qn , s1; : : : ; sn in A0 satisfying (2), and everything else follows from these.
Defining A� as in (ii) and d as in (3), then A� D .A�; d/ is a standard form cdga
over C , where to show that d ı dzi D 0 we apply @=@xi to (2). Clearly ddR!A� D 0,
as ddRı ddRD 0. We have
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d!A� D
mP
iD1

.dıddRzi / ddRxiC
nP

jD1

.dıddR.qjyj // ddRyjC.dıddRyj / ddR.qjyj /

D� ddR

mP
iD1

dzi ddRxi�ddR

nP
jD1

Œd.qjyj / ddRyjCdyj ddR.qjyj /�

D� ddR

mP
iD1

nP
jD1

yj

�
2qj

@sj

@xi
Csj

@qj

@xi

�
ddRxi�ddR

nP
jD1

Œqj sj ddRyjCsj ddR.qjyj /�

D� ddRı ddR

nP
jD1

Œ.qj sj /yjCsj .qjyj /�D 0;

using (1) and d ı ddRxi D 0 for degree reasons in the first step, d ı ddRD � ddRı d
and ddRı ddRD 0 in the second, (3) in the third, dsj D

Pn
iD1.@sj =@xi / ddRxi and

similarly for qj in the fourth, and ddRı ddRD 0 in the fifth. Hence !�A� is a �2–shifted
closed 2–form on A� .

The action TA�
!A� ���!LA� Œ�2� is given by

!A� �
@

@xi
D� ddRzi C

nX
jD1

@qj

@xi
yj ddRyj ;

!A� �
@

@yj
D 2qj ddRyj �

mX
iD1

yj
@qj

@xi
ddRxi ; !A� �

@

@zi
D ddRxi :

By writing this as an upper triangular matrix with invertible diagonal (since the qj
are invertible), we see that !A� � is actually an isomorphism of complexes, so a quasi-
isomorphism, and !�A� is a �2–shifted symplectic form on A� .

The main result of Bussi, Brav and Joyce [6, Theorem 5.18] when k D�2 yields:

Theorem 2.10 Suppose .X ; !�
X
/ is a �2–shifted symplectic derived C–scheme.

Then for each x 2X D t0.X/ there exists a pair .A�; !A�/ in �2–Darboux form and
a Zariski open inclusion ˛W SpecA� ,! X such that x 2 Im˛ and ˛�.!�

X
/ ' !A�

in A2;cl
C .SpecA�;�2/. Furthermore, we can choose A� minimal at x, in the sense

that mD dimH 0.TX jx/ and nD dimH 1.TX jx/ in Definition 2.9.

2.4 Orientations on k–shifted symplectic derived schemes

If X is a derived C–scheme (always assumed locally finitely presented), with classical
C–scheme X D t0.X/, the cotangent complex LX jX restricted to X is a perfect
complex, so it has a determinant line bundle det.LX jX / on X .

The following notion is important for �1–shifted symplectic derived schemes, 3–
Calabi–Yau moduli spaces, and generalizations of Donaldson–Thomas theory:
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Definition 2.11 Let .X ; !�
X
/ be a �1–shifted symplectic derived C–scheme (or more

generally k–shifted symplectic, for k <0 odd). An orientation for .X ; !�
X
/ is a choice

of square root line bundle det.LX jX /1=2 for det.LX jX /.

Writing Xan for the complex analytic topological space of X , the obstruction to
existence of orientations for .X ; !�

X
/ lies in H 2.XanIZ2/, and if the obstruction

vanishes, the set of orientations is a torsor for H 1.XanIZ2/.

This notion of orientation, and its analogue for “d-critical loci”, are used by Ben-
Bassat, Brav, Bussi, Dupont, Joyce, Meinhardt and Szendrői in a series of papers [2;
5; 6; 7; 22]. They use orientations on .X ; !�

X
/ to define natural perverse sheaves,

D–modules, mixed Hodge modules, and motives on X . A similar idea first appeared
in Kontsevich and Soibelman [26, Section 5] as “orientation data” needed to define
motivic Donaldson–Thomas invariants of Calabi–Yau 3–folds.

This paper concerns �2–shifted symplectic derived schemes, and 4–Calabi–Yau moduli
spaces. It turns out that there is a parallel notion of orientation in the �2–shifted case,
needed to construct virtual cycles.

To define this, note that determinant line bundles det.E�/ of perfect complexes E�

satisfy detŒ.E�/_� Š Œdet.E�/��1 , and det.E�Œk�/ Š Œdet.E�/�.�1/
k

. If .X ; !�
X
/

is a k–shifted symplectic derived C–scheme, then TX ' LX Œk�, where TX '
.LX /

_ . Restricting to X and taking determinant line bundles gives det.LX jX /�1 Š
det.LX jX /.�1/

k

. If k is odd this is trivial, but for k even, this gives a canonical
isomorphism of line bundles on X :

(4) �X ;!�X
W Œdet.LX jX /�˝

2

!OX ŠO˝
2

X :

The next definition is new, so far as the authors know.

Definition 2.12 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme (or more

generally k–shifted symplectic, for k < 0 with k � 2 mod 4). An orientation for
.X ; !�

X
/ is a choice of isomorphism oW det.LX jX /!OX such that o˝ oD �X ;!�X ,

for �X ;!�X as in (4).

Writing Xan for the complex analytic topological space of X , the obstruction to
existence of orientations for .X ; !�

X
/ lies in H 1.XanIZ2/, and if the obstruction

vanishes, the set of orientations is a torsor for H 0.XanIZ2/.

This definition makes sense for k–shifted symplectic derived C–schemes with k even,
but when k� 0 mod 4 (including the classical symplectic case kD 0) there is a natural
choice of orientation o, so we restrict to k � 2 mod 4.
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At a point x 2Xan , we have a canonical isomorphism

det.LX jx/ŠƒtopH 0.LX jx/˝ Œƒ
topH�1.LX jx/�

�
˝ƒtopH�2.LX jx/:

Now H�1.LX jx/ŠH
1.TX jx/

� , and !0
X
jx gives H 0.LX jx/ŠH

�2.LX jx/
� , so we

see that ƒtopH 0.LX jx/Š Œƒ
topH�2.LX jx/�

� . Thus we have a canonical isomorphism

(5) det.LX jx/ŠƒtopH 1.TX jx/:

Write Qx for the nondegenerate, symmetric C–bilinear pairing

(6) H 1.TX jx/�H
1.TX jx/

Qx WD!
0
X jx ��������!C:

The determinant detQx is an isomorphism ŒƒtopH 1.TX jx/�
˝2! C , and detQx

corresponds to �X ;!�X jx under the isomorphism (5). There is a natural bijection

(7) forientations on .X ; !�X / at x g Š fC–orientations on .H 1.TX jx/;Qx/g:

To see this, note that if .e1; : : : ; en/ is an orthonormal basis for .H 1.TX jx/;Qx/ then
e1 ^ � � � ^ en lies in ƒtopH 1.TX jx/ with detQx W Œe1 ^ � � � ^ en�˝

2

7! 1. Orientations
for .X ; !�

X
/ at x give isomorphisms �W ƒtopH 1.TX jx/!C with �2 D detQx , and

these correspond to orientations for .H 1.TX jx/;Qx/ such that �W e1 ^ � � � ^ en 7! 1

if .e1; : : : ; en/ is an oriented orthonormal basis.

2.5 Kuranishi atlases

We now define our notion of Kuranishi atlases on a topological space X . These are a
simplification of m-Kuranishi spaces in [21, Section 4.7], which in turn are based on
the “Kuranishi spaces” of Fukaya, Oh, Ohta and Ono [14; 15].

Definition 2.13 Let X be a topological space. A Kuranishi neighbourhood on X is a
quadruple .V;E; s;  / such that:

(a) V is a smooth manifold.

(b) � W E! V is a real vector bundle over V , called the obstruction bundle.

(c) sW V !E is a smooth section of E , called the Kuranishi section.

(d)  is a homeomorphism from s�1.0/ to an open subset RD Im in X , where
Im D f .x/ j x 2 s�1.0/g is the image of  .

If S � X is open, by a Kuranishi neighbourhood over S , we mean a Kuranishi
neighbourhood .V;E; s;  / on X with S � Im �X .
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Definition 2.14 Let .VJ ; EJ ; sJ ;  J /, .VK ; EK ; sK ;  K/ be Kuranishi neighbour-
hoods on a topological space X , and S � Im J \ Im K �X be open. A coordinate
change ˆJK W .VJ ; EJ ; sJ ;  J / ! .VK ; EK ; sK ;  K/ over S is a triple ˆJK D

.VJK ; �JK ; y�JK/ satisfying:

(a) VJK is an open neighbourhood of  �1J .S/ in VJ .

(b) �JK W VJK ! VK is a smooth map.

(c) y�JK W EJ jVJK ! ��JK.EK/ is a morphism of vector bundles on VJK .

(d) y�JK.sJ jVJK /D �
�
JK.sK/.

(e)  J D  K ı�JK on s�1J .0/\VJK .

(f) If x 2 S , and we set vJ D  �1J .x/ 2 VJ and vK D  �1K .x/ 2 VK , then the
following is an exact sequence of real vector spaces:

(8) 0! TvJVJ
dsJ jvJ˚d�JK jvJ
�����������!EJ jvJ˚TvKVK

�y�JK jvJ˚dsK jvK
�����������!EK jvK ! 0:

We can compose coordinate changes: if

ˆJK D .VJK ; �JK ; y�JK/W .VJ ; EJ ; sJ ;  J /! .VK ; EK ; sK ;  K/;

ˆKL D .VKL; �KL; y�KL/W .VK ; EK ; sK ;  K/! .VL; EL; sL;  L/

are coordinate changes over SJK , SKL , then

ˆKL ıˆJK WD .VJK \�
�1
JK.VKL/; �KL ı�JK j���; �

�
JK.
y�KL/ ı y�JK j���/W

.VJ ; EJ ; sJ ;  J /! .VL; EL; sL;  L/

is a coordinate change over SJK \SKL .

Definition 2.15 A Kuranishi atlas K of virtual dimension n on a topological space X
is data KD .A; �; .VJ ; EJ ; sJ ;  J /J2A; ˆJK;J�K2A/, where:

(a) A is an indexing set (not necessarily finite).

(b) � is a partial order on A, where by convention J �K only if J ¤K.

(c) .VJ ; EJ ; sJ ;  J / is a Kuranishi neighbourhood on X for each J 2 A, with
dimVJ � rankEJ D n.

(d) The images Im J � X for J 2 A have the property that if J;K 2 A with
J ¤K and Im J \ Im K ¤¿ then either J �K or K � J .

(e) ˆJK D .VJK ; �JK ; y�JK/W .VJ ; EJ ; sJ ;  J /! .VK ; EK ; sK ;  K/ is a coordi-
nate change for all J;K 2 A with J �K , over S D Im J \ Im K .

(f) ˆKL ıˆJK DˆJL for all J;K;L 2 A with J �K � L.

(g)
S
J2A Im J DX .
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We call K a finite Kuranishi atlas if the indexing set A is finite.

If X has a Kuranishi atlas then it is locally compact. In applications we invariably
impose extra global topological conditions on X , for instance X might be assumed
to be compact and Hausdorff; or Hausdorff and second countable; or metrizable; or
Hausdorff and paracompact.

We will also need a relative version of Kuranishi atlas in Section 3.7. Suppose Z is a
manifold, and � W X!Z a continuous map. A relative Kuranishi atlas for � W X!Z

is a Kuranishi atlas K on X as above, together with smooth maps $J W VJ ! Z

for J 2A, such that $J js�1J .0/D � ı J W s
�1
J .0/!Z for all J 2A, and $J jVJK D

$K ı�JK W VJK !Z for all J �K in A.

Definition 2.16 Let X be a topological space with a Kuranishi atlas K (Definition 2.15).
For each J 2 A we can form the C1 real line bundle ƒtopT �VJ ˝ƒ

topEJ over VJ ,
where ƒtop. � � � / means the top exterior power. Thus we can form the restriction

.ƒtopT �VJ ˝ƒ
topEJ /js�1J .0/! s�1J .0/;

considered as a topological real line bundle over the topological space s�1J .0/.

If J �K in A then for each vJ in s�1J .0/\VJK with �JK.vJ /D vK in s�1K .0/ we
have an exact sequence (8). Taking top exterior powers in (8) (and using a suitable
orientation convention) gives an isomorphism

ƒtopT �vJVJ ˝ƒ
topEJ jvJ Šƒ

topT �vKVK ˝ƒ
topEK jvK :

This depends continuously on vJ , vK , and so induces an isomorphism of topological
line bundles on s�1J .0/\VJK

.ˆJK/�W .ƒ
topT �VJ ˝ƒ

topEJ /js�1J .0/\VJK
! �JK j

�
���.ƒ

topT �VK ˝ƒ
topEK/:

If J � K � L in A then as ˆKL ıˆJK D ˆJL by Definition 2.15(f), we see that
.ˆKL/� ı .ˆJK/� D .ˆJL/� in topological line bundles over s�1J .0/\VJK \VJL .

An orientation on .X;K/ is a choice of orientation on the fibres of the topological real
line bundle .ƒtopT �VJ ˝ƒ

topEJ /js�1J .0/ on s�1J .0/ for all J 2A, such that .ˆJK/�
is orientation-preserving on s�1J .0/\VJK for all J �K in A.

An equivalent way to think about this is that there is a natural topological real line
bundle KX !X called the canonical bundle with given isomorphisms

�J W .ƒ
topT �VJ ˝ƒ

topEJ /js�1J .0/!  �J .KX /

for J 2A, such that �J js�1J .0/\VJK D �
�
JK.�K/ ı .ˆJK/� for all J �K in A, and an

orientation on .X;K/ is an orientation on the fibres of KX .
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Remark 2.17 (a) Our Kuranishi atlases are based on Joyce’s “m-Kuranishi spaces”
[21, Section 4.7]. They are similar to Fukaya, Oh, Ohta and Ono’s “good coordi-
nate systems” [14, Lemma A1.11; 15, Definition 6.1], and McDuff and Wehrheim’s
“Kuranishi atlases” [28; 29]. Our orientations are based on [15, Definition 5.8] and [14,
Definition A1.17].

There are two important differences with [14; 15; 28; 29]. Firstly, [14; 15; 28; 29]
use Kuranishi neighbourhoods .V;E; �; s;  /, where � is a finite group acting equi-
variantly on V , E , s and  maps s�1.0/=� ! X . This is because their Kuranishi
spaces are a kind of derived orbifolds, not derived manifolds.

Secondly, [14; 15; 28; 29] each use a more restrictive notion of coordinate change
ˆJK D .VJK ; �JK ; y�JK/, in which �JK W VJK ,! VK must be an embedding, and
y�JK W EJ jVJK ,!��JK.EK/ an embedding of vector bundles, so that dimVJ 6 dimVK
and rankEJ 6 rankEK . In the Kuranishi atlases we construct later, �JK W VJK! VK
will be a submersion, and y�JK W EJ jVJK ! ��JK.EK/ will be surjective, so that
dimVJ > dimVK and rankEJ > rankEK . That is, our coordinate changes actually
go the opposite way to those in [14; 15; 28; 29].

(b) Similar structures to Kuranishi atlases are studied [14; 15; 21; 28; 29] because it
is natural to construct them on many differential-geometric moduli spaces. Broadly
speaking, any moduli space of solutions of a smooth nonlinear elliptic PDE on a
compact manifold should admit a Kuranishi atlas. References [14; 15; 28; 29] concern
moduli spaces of J –holomorphic curves in symplectic geometry.

2.6 Derived smooth manifolds and virtual classes

Readers of this paper do not need to know what a derived manifold is. Here is a brief
summary of the points relevant to this paper:

� “Derived manifolds” are derived versions of smooth manifolds, where “derived” is
in the sense of derived algebraic geometry.

� There are several different versions, due to Spivak [32], Borisov and Noel [3; 4] and
Joyce [18; 19; 20; 21], which form 1–categories or 2–categories. They all include
ordinary manifolds Man as a full subcategory.

� All these versions are roughly equivalent. There are natural one-to-one correspon-
dences between equivalence classes of derived manifolds in each theory.

� Much of classical differential geometry generalizes nicely to derived manifolds:
submersions, orientations, transverse fibre products, . . . .
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� Given a Hausdorff, second countable topological space X with a Kuranishi atlas K
of dimension n, we can construct a derived manifold X with topological space X
and dimension vdimX D n, unique up to equivalence. Orientations on .X;K/ are in
one-to-one correspondence with orientations on X .

� Compact, oriented derived manifolds X have virtual classes ŒX �virt in homology or
bordism, generalizing the fundamental class ŒX�2HdimX .X IZ/ of a compact oriented
manifold X .

� These virtual classes are used to define enumerative invariants such as Gromov–
Witten, Donaldson, and Donaldson–Thomas invariants. Such invariants are unchanged
under deformations of the underlying geometry.

� Given a compact Hausdorff topological space X with an oriented Kuranishi atlas K ,
we could construct the virtual class ŒX �virt directly from .X;K/, as in [14; 15; 28; 29],
without going via the derived manifold X .

Readers who do not want to know more details can now skip forward to Section 3.

2.6.1 Different definitions of derived manifold The earliest reference to derived
differential geometry we are aware of is a short final paragraph by Jacob Lurie [27,
Section 4.5]. Broadly following [27, Section 4.5], Lurie’s student David Spivak [32] con-
structed an1–category DerManSpi of “derived manifolds”. Borisov and Noël [4] gave
a simplified version, an 1–category DerManBoNo , and showed that DerManSpi '

DerManBoNo .

Joyce [18; 19; 20] defined 2–categories dMan of “d-manifolds” (a kind of derived
manifold), and dOrb of “d-orbifolds” (a kind of derived orbifold), and also strict
2–categories of d-manifolds and d-orbifolds with boundary dManb , dOrbb and with
corners dManc , dOrbc , and studied their differential geometry in detail. Borisov [3]
constructed a 2–functor F W �2.DerManBoNo/! dMan, where �2.DerManBoNo/ is
the 2–category truncation of DerManBoNo , and proved that F is close to being an
equivalence of 2–categories.

All of [3; 4; 18; 19; 20; 27; 32] use “C1–algebraic geometry”, as in Joyce [17], a
version of (derived) algebraic geometry in which rings are replaced by “C1–rings”,
and define derived manifolds to be special kinds of “derived C1–schemes”.

In [21; 23; 24], Joyce gave an alternative approach to derived differential geometry based
on the work of Fukaya et al [14; 15]. He defined 2–categories of “m-Kuranishi spaces”
mKur, a kind of derived manifold, and “Kuranishi spaces” Kur, a kind of derived
orbifold. Here m-Kuranishi spaces are similar to a pair .X;K/ of a Hausdorff, second
countable topological space X and a Kuranishi atlas K in the sense of Section 2.5.
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Joyce [24] will define equivalences of 2–categories dMan'mKur and dOrb'Kur,
showing that the two approaches to derived differential geometry of [18; 19; 20]
and [21] are essentially the same.

2.6.2 Orientations on derived manifolds Derived manifolds have a good notion
of orientation, which behaves much like orientations on ordinary manifolds. Some
references are Joyce [20, Section 4.8; 19, Section 4.8; 18, Section 4.6] for d-manifolds,
Joyce [24] for m-Kuranishi spaces, and Fukaya, Oh, Ohta and Ono [15, Section 5; 14,
Section A1.1] for Kuranishi spaces in their sense.

For any kind of derived manifold X , we can define a (topological or C1 ) real line
bundle KX over the topological space X called the canonical bundle. It is the deter-
minant line bundle of the cotangent complex LX . For each x 2 X we can define a
tangent space TxX and obstruction space OxX , and then

KX jx Šƒ
topT �x X ˝Rƒ

topOxX :

An orientation on X is an orientation on the fibres of KX . In a similar way to (7), at a
single point x 2X we have a natural bijection

(9) forientations on X at x g Š forientations on T �x X ˚OxX g:

If .V;E; s;  / is a Kuranishi neighbourhood on X and v 2 s�1.0/� V with  .v/D
x 2X , then there is a natural exact sequence

(10) 0 // TxX // TvV
dsjv // Ejv // OxX // 0:

Taking top exterior powers in (10) gives an isomorphism

KX jx Šƒ
topT �x X ˝Rƒ

topOxX Šƒ
topT �v V ˝Rƒ

topEjv;

and thus, with a suitable orientation convention, a natural bijection

forientations on X at x g Š forientations on T �v V ˚Ejv g:

2.6.3 Kuranishi atlases and derived manifolds The next theorem relates topolog-
ical spaces with Kuranishi atlases to derived manifolds. The assumption that X is
Hausdorff and second countable is just to match the global topological assumptions in [4;
18; 19; 20; 21; 32]. For the last part we restrict to (a) and (b) as orientations have not been
written down for the theories of (c) and (d), although this would not be very difficult.

Theorem 2.18 Let X be a Hausdorff, second countable topological space with a
Kuranishi atlas K of dimension n in the sense of Section 2.5. Then we can construct

(a) an m-Kuranishi space X in the sense of Joyce [21, Section 4.7];
(b) a d-manifold X in the sense of Joyce [18; 19; 20];
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(c) a derived manifold in the sense of Borisov and Noël [4]; and

(d) a derived manifold in the sense of Spivak [32].

In each case X has topological space X and dimension vdimX D n, and X is
canonical up to equivalence in the 2–categories mKur, dMan or 1–categories
DerManBoNo , DerManSpi . In cases (a) and (b) there is a natural one-to-one cor-
respondence between orientations on K, and orientations on X in Joyce [18; 19; 20;
24].

If also Z is a manifold, � W X !Z is continuous, and .K; f$J j J 2 Ag/ is a relative
Kuranishi atlas for � W X !Z, then we can construct a morphism of derived manifolds
�W X !Z, canonical up to 2–isomorphism, with continuous map � .

Proof Part (a) follows from [21, Theorem 4.67] in the m-Kuranishi space case,
and part (b) from [20, Theorem 4.16], in each case with topological space X , and
vdimX D n, and X canonical up to equivalence in mKur, dMan. Part (c) then
follows from (b) and Borisov [3], and part (d) from (c) and Borisov and Noël [4]. The
one-to-one correspondences of orientations can be proved by comparing Definition 2.16
with Section 2.6.2. The last part also follows from [20, Theorem 4.16].

2.6.4 Bordism for derived manifolds We now discuss bordism, following [20, Sec-
tion 4.10], [19, Section 15] and [18, Section 13].

Definition 2.19 Let Y be a manifold, and k 2N . Consider pairs .X; f /, where X
is a compact, oriented manifold with dimX D k , and f W X ! Y is a smooth map.
Define an equivalence relation � on such pairs by .X; f /� .X 0; f 0/ if there exists a
compact, oriented .kC1/–manifold with boundary W , a smooth map eW W !Y , and a
diffeomorphism of oriented manifolds j W �XtX 0!@W , such that f tf 0D eıiW ıj ,
where �X is X with the opposite orientation, and iW W @W ,!W is the inclusion map.

Write ŒX; f � for the �–equivalence class (bordism class) of a pair .X; f /. Define
the bordism group Bk.Y / of Y to be the set of all such bordism classes ŒX; f � with
dimX D k . It is an abelian group, with zero 0Y D Œ¿;¿�, addition ŒX; f �CŒX 0; f 0�D
ŒX tX 0; f tf 0�, and inverses �ŒX; f �D Œ�X; f �.

Define …hom
bo W Bk.Y /!Hk.Y IZ/ by …hom

bo W ŒX; f � 7! f�.ŒX�/, where H�.�IZ/ is
singular homology, and ŒX� 2Hk.X IZ/ is the fundamental class.

When Y is the point �, the maps f W X !�, eW W !� are trivial, and we can omit
them, and consider Bk.�/ to be the abelian group of bordism classes ŒX� of compact,
oriented, k–dimensional manifolds X .

Geometry & Topology, Volume 21 (2017)



Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds 3251

As in Conner [11, Section I.5], bordism is a generalized homology theory. Results of
Thom, Wall and others in [11, Section I.2] compute the bordism groups Bk.�/. We
define d-manifold bordism by replacing manifolds X in ŒX; f � by d-manifolds X :

Definition 2.20 Let Y be a manifold, and k 2 Z. Consider pairs .X ;f /, where
X 2 dMan is a compact, oriented d-manifold with vdimX D k , and f W X ! Y is a
1–morphism in dMan.

Define an equivalence relation � between such pairs by .X ;f /� .X 0;f 0/ if there is a
compact, oriented d-manifold with boundary W with vdimW D kC1, a 1–morphism
eW W ! Y in dManb , an equivalence of oriented d-manifolds j W �X tX 0! @W ,
and a 2–morphism �W f t f 0 ) e ı iW ı j , where iW W @W ! W is the natural
1–morphism.

Write ŒX ;f � for the �–equivalence class (d-bordism class) of a pair .X ;f /. De-
fine the d-bordism group dBk.Y / of Y to be the set of d-bordism classes ŒX ;f �
with vdimX D k . As for Bk.Y /, it is an abelian group, with zero 0Y D Œ¿;¿�,
addition ŒX ;f �C ŒX 0;f 0� D ŒX tX 0;f t f 0�, and �ŒX ;f � D Œ�X ;f �. Define
…dbo

bo W Bk.Y /! dBk.Y / for k > 0 by …dbo
bo W ŒX; f � 7! ŒX; f �. When Y is a point �,

we can omit f W X !�, and consider dBk.�/ to be the abelian group of d-bordism
classes ŒX � of compact, oriented d-manifolds X .

In [18, Section 13.2] we show that B�.Y / and dB�.Y / are isomorphic. See [32,
Theorem 2.6] for an analogous (unoriented) result for Spivak’s derived manifolds.

Theorem 2.21 For any manifold Y , we have that dBk.Y / D 0 for k < 0 and that
…dbo

bo W Bk.Y /! dBk.Y / is an isomorphism for k > 0.

The main idea of the proof of Theorem 2.21 is that (compact, oriented) d-manifolds X
can be turned into (compact, oriented) manifolds zX by a small perturbation. By
Theorem 2.21, we may define a projection …hom

dbo W dBk.Y /! Hk.Y IZ/ for k > 0

by …hom
dbo D …hom

bo ı .…
dbo
bo /
�1. We think of …hom

dbo as a virtual class map, and call
ŒX �virt D…

hom
dbo .ŒX ;f �/ the virtual class. Virtual classes are used in several areas of

geometry to construct enumerative invariants using moduli spaces, for example in [14,
Section A1; 15, Section 6] for Fukaya, Oh, Ohta and Ono’s Kuranishi spaces, and in
Behrend and Fantechi [1] in algebraic geometry.

2.6.5 Virtual classes for derived manifolds in homology If X is a compact, ori-
ented derived manifold of dimension k 2Z we can also define a virtual class ŒX �virt in
the homology Hk.X IZ/ of the underlying topological space X , for a suitable homology
theory. By [20, Corollary 4.30] or [19, Corollary 4.31] or [18, Theorem 4.29], we
can choose an embedding f W X ,! Rn for n� 0. If Y is an open neighbourhood
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of f .X/ in Rn then Section 2.6.4 defines …hom
dbo .ŒX ;f �/ in Hk.Y IZ/. We also have

a pushforward map f�W Hk.X IZ/!Hk.Y IZ/.

If X is a Euclidean neighbourhood retract (ENR), we can choose Y so that it retracts
onto f .X/, and then f�W Hk.X IZ/!Hk.Y IZ/ is an isomorphism, so we can define
the virtual class ŒX �virt D .f�/

�1 ı…hom
dbo .ŒX ;f �/ in ordinary homology Hk.X IZ/.

This ŒX �virt is independent of the choices of f , n, Y .

General derived manifolds may not be ENRs. In this case we use a trick that the
authors learned from McDuff and Wehrheim [29, Section 7.5]. Choose a sequence
Rn � Y1 � Y2 � � � � of open neighbourhoods of f .X/ in Rn with f .X/D

T
i>1 Yi .

Now Steenrod homology H St
� .�IZ/ (see Milnor [30]) is a homology theory with

the nice properties that (i) H St
� .Yi IZ/ Š H�.Yi IZ/ as Yi is a manifold and (ii) as

f .X/D
T
i>1 Yi there is an isomorphism with the inverse limit:

(11) H St
k .f .X/IZ/Š lim

 �
i>1H

St
k .Yi IZ/:

Čech homology LH�.�IQ/ over Q (the dual Q–vector spaces to Čech cohomology
LH�.�IQ/) has the same limiting property. Then writing fi D f W X ! Yi , so that
…hom

dbo .ŒX ;fi �/ 2Hk.Yi IZ/ŠH
St
k
.Yi IZ/, using (11) we may form the inverse limit

lim
 �

i>1…
hom
dbo .ŒX ;fi �/ in H St

k
.f .X/IZ/, so that

ŒX �virt WD .f�/
�1
�
lim
 �

i>1…
hom
dbo .ŒX ;fi �/

�
is a virtual class in H St

k
.X IZ/, or similarly in LHk.X IQ/. Here ŒX �virt is independent

of the choices of f , n, Yi .

For the examples in this paper, X is the complex analytic topological space of a proper
C–scheme, and therefore an ENR. Then H St

k
.X IZ/ŠHk.X IZ/ and LHk.X IQ/Š

Hk.X IQ/, and the virtual class lives in ordinary homology.

3 The main results

We now give our main results. We begin in Section 3.1 with a general existence result
for a special kind of atlas for �W X !Z , where X is a separated derived C–scheme
and Z a smooth affine classical C–scheme, an atlas in which the charts are spectra
of standard form cdgas, the coordinate changes are quasifree, and composition of
coordinate changes is strictly associative.

Sections 3.2–3.5 build up to our primary goal, Theorems 3.15 and 3.16 in Section 3.5,
which show that to a separated, �2–shifted symplectic derived C–scheme .X ; !�

X
/

with vdimC X D n and complex analytic topological space Xan , we can build a
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Kuranishi atlas K on Xan , and so construct a derived manifold Xdm with topological
space Xan , with vdimRXdmD n. In Section 3.6 we show that orientations on .X ; !�

X
/

and on .Xan;K/ and on Xdm correspond, and prove that for .X ; !�
X
/ proper and

oriented, the bordism class ŒXdm� 2 dBn.�/ is a “virtual cycle” independent of choices.

Section 3.7 extends Sections 3.2–3.6 to families .�W X!Z; Œ!X=Z �/ over a connected
base C–scheme Z , and shows that the bordism class ŒXzdm� 2 dBn.�/ associated to
a fibre ��1.z/ is independent of z 2Zan . Finally, Sections 3.8–3.9 discuss applying
our results to define Donaldson–Thomas style invariants “counting” coherent sheaves
on Calabi–Yau 4–folds, and motivation from gauge theory.

3.1 Zariski homotopy atlases on derived schemes

Derived schemes and stacks, discussed in Section 2.2, are very abstract objects, and
difficult to do computations with. But standard form cdgas A� , B� and quasifree
morphisms ˆW A�!B� in Section 2.1 are easy to work with explicitly. Our first main
result, proved in Section 4, constructs well-behaved homotopy atlases for a derived
scheme X , built from standard form cdgas and quasifree morphisms.

Theorem 3.1 Let X be a separated derived C–scheme, ZDSpecB be a smooth clas-
sical affine C–scheme for B a smooth C–algebra of pure dimension, and �W X !Z

be a morphism. Suppose we are given data f.A�i ;˛i ; ˇi / j i 2I g, where I is an indexing
set and for each i 2 I , A�i 2 cdgaC is a standard form cdga, and ˛i W SpecA�i ,!X is
a Zariski open inclusion in dSchC , and ˇi W B!A0i is a smooth morphism of classical
C–algebras such that the following diagram homotopy commutes in dSchC W

(12)

SpecA�i

Specˇi
,,

˛i

// X

�
��

SpecB DZ

Here we regard ˇi as a morphism B! A�i . Then we can construct the following data:

(i) For all finite subsets ¿¤ J � I , a standard form cdga A�J 2 cdgaC , a Zariski
open inclusion ˛J W SpecA�J ,! X , with image Im˛J D

T
i2J Im˛i , and a

smooth morphism of classical C–algebras ˇJ W B!A0J , such that the following
diagram homotopy commutes in dSchC W

(13)

SpecA�J

SpecˇJ
,,

˛J

// X

�
��

SpecB DZ

When J D fig for i 2 I we have A�
fig
D A�i , ˛fig D ˛i , and ˇfig D ˇi .
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(ii) For all inclusions of finite subsets ¿ ¤ K � J � I , a quasifree morphism of
standard form cdgas ˆJK W A�K ! A�J with ˇJ D ˆJK ı ˇK W B ! A0J , such
that the following diagram homotopy commutes in dSchC W

(14)
SpecA�J

˛J ,,

SpecˆJK
// SpecA�K

˛K
��

X

If ¿¤ L�K � J � I then ˆJL DˆJK ıˆKLW A�L! A�J .

3.2 Interpreting Zariski atlases using complex geometry

Given a �2–shifted symplectic derived C–scheme .X ; !�
X
/ satisfying certain con-

ditions, we will construct a derived manifold structure Xdm on the complex analytic
topological space Xan underlying X . To do this, we need a change of language: we
have to pass from talking about derived schemes X , cdgas A� , etc, to talking about
smooth manifolds V , vector bundles E! V , smooth sections sW V !E , as Xdm will
be built by gluing together such local Kuranishi models .V;E; s/.

Therefore we now rewrite part of the output A�J , ˇJ W B! A0J , ˆJK W A�J ! A�K of
Theorem 3.1 in terms of complex manifolds V , holomorphic vector bundles E! V ,
and holomorphic sections sW V !E . In Section 3.5 we will pass to certain real vector
bundles EC DE=E� to define Xdm .

First we interpret standard form cdgas A� 2 cdgaC using holomorphic data. We discuss
only data from degrees 0, �1, �2 in A� , as this is all we need, but one could also
define vector bundles G;H; : : : over V corresponding to M�3;M�4; : : : , and many
vector bundle morphisms, satisfying certain equations.

Definition 3.2 Let A� D . � � � ! A�2 d
�! A�1 d

�! A0/ be a standard form cdga
over C , as in Section 2.1. Then A0 is a finitely generated smooth C–algebra, so
V alg WD SpecA0 is a smooth affine C–scheme, assumed of pure dimension, as in
Section 2.1. Now any C–scheme S has an underlying complex analytic space San ,
which is a complex manifold if S is smooth and of pure dimension.

Write V for the complex manifold .V alg/an associated to V alg D SpecA0 .

As A� is of standard form, the graded C–algebra A� is freely generated over A0 by a
series of finitely generated free A0–modules M�1 � A�1 , M�2 � A�2; : : : . Thus
A�1 ŠM�1 , A�2 ŠM�2˚ƒ2

A0
M�1 , and so on, giving

(15) M�1 D A�1; M�2 Š A�2=ƒ2
A0
A�1; : : : :
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Hence, the M i are determined by A� as A0–modules up to canonical isomorphism,
although for i 6 �2 the inclusions M i ,! Ai involve an arbitrary choice.

Now finitely generated free A0–modules M are those of the form M Š H 0.C alg/

for C alg ! V alg D SpecA0 a trivial algebraic vector bundle. Write Ealg ! V alg ,
F alg! V alg for the trivial algebraic vector bundles (unique up to canonical isomor-
phism) with M�1 Š H 0..Ealg/�/, M�2 Š H 0..F alg/�/. That is, we set Ealg D

Spec Sym�
A0
.M�1/, and so on. Write E ! V , F ! V for the holomorphic vector

bundles corresponding to Ealg , F alg .

We now have isomorphisms

(16)

A0 ŠH 0.OV alg/;

A�1 ŠH 0..Ealg/�/;

A�2 ŠH 0..F alg/�/˚H 0.ƒ2.Ealg/�/:

Thus dW A�1 ! A0 is identified with an A0–module morphism H 0..Ealg/�/ !

H 0.OV alg/, that is, a morphism .Ealg/�!OV alg of algebraic vector bundles, which
is dual to a morphism OV alg Š O�V alg ! Ealg , ie a section salg 2 H 0.Ealg/ of Ealg .
Write s 2H 0.E/ for the corresponding holomorphic section.

Similarly, write t algW Ealg! F alg for the algebraic vector bundle morphism dual to
the component of dW A�2! A�1 mapping H 0..F alg/�/!H 0..Ealg/�/ under (16),
and write t W E! F for the corresponding morphism of holomorphic vector bundles.
Then d ı dD 0 implies that t ı s D 0W OV ! F .

We should also consider how this data E , F , s , t depends on the choice of inclusion
M�2 ,!A�2 . Here E , F are independent of choices up to canonical isomorphism, and
s is independent of choices. Changing the inclusion M�2 ,!A�2 is equivalent to choos-
ing an algebraic vector bundle morphism  algW ƒ2Ealg! F alg and identifying M�2

with the image of id˚. alg/�W H 0..F alg/�/ ,!H 0..F alg/�/˚H 0.ƒ2.Ealg/�/. Writ-
ing  W ƒ2E! F for the corresponding holomorphic morphism, this changes t to zt ,
where

(17) zt D t C  ı .�^ s/:

Notice that t jvW Ejv! F jv is independent of choices at v 2 V with s.v/D 0.

Next suppose X is a derived C–scheme and ˛W SpecA� ,! X a Zariski open in-
clusion. Write X D t0.X/ for the classical C–scheme, and Xan for the set of C–
points of X equipped with the complex analytic topology. (One can give Xan the
structure of a complex analytic space, but we will not use this.) Then t0.SpecA�/
is the C–subscheme .salg/�1.0/ � V alg , so ˛ D t0.˛/ is a Zariski open inclusion
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.salg/�1.0/ ,!X . Write  W s�1.0/ ,! Xan for the corresponding map of C–points.
Then  is a homeomorphism with an open set RD Im �Xan . Note that .V;E; s;  /
is a Kuranishi neighbourhood on Xan , in the sense of Section 2.5.

As we explained in Sections 2.1–2.2, if A� is a standard form cdga then it is easy
to compute the cotangent complex LA� '�1A� , and this also can be identified with
the cotangent complex LSpecA� of the derived scheme SpecA� . Let v 2 s�1.0/� V
with  .v/ D x 2 Xan . Then v is a C–point of SpecA� and x a C–point of X
with ˛.v/ D x , so L˛jvW LX jx ! LSpecA� jv is a quasi-isomorphism, and induces
an isomorphism on cohomology. One can show that LSpecA� jv is represented by the
complex of C–vector spaces

(18) � � � // F j�v
t j�v // Ej�v

dsj�v // T �v V
// 0;

with T �v V in degree 0. Dualizing to tangent complexes and taking cohomology, we
get canonical isomorphisms

H 0.T˛jv/W Ker.dsjvW TvV !Ejv/!H 0.TX jx/;(19)

H 1.T˛jv/W
Ker.t jvW Ejv! F jv/

Im.dsjvW TvV !Ejv/
!H 1.TX jx/:(20)

Now suppose that ZDSpecB is a smooth classical affine C–scheme of pure dimension,
�W X ! Z is a morphism, and ˇW B ! A0 is a smooth morphism of C–algebras,
such that as for (12)–(13) the following homotopy commutes:

(21)
SpecA�

Specˇ ,,

˛
// X
�
��

SpecB DZ

Then Zan is a complex manifold, and � alg WD SpecˇW V alg ! Z is a smooth mor-
phism of C–schemes, and � WD .� alg/anW V ! Zan is a holomorphic submersion of
complex manifolds. We can form the relative cotangent complexes LX=Z , LSpecA�=Z
and dual relative tangent complexes TX=Z , TSpecA�=Z , and (21) gives morphisms
L˛W LX=Z! LSpecA�=Z , T˛W TSpecA�=Z! TX=Z .

Write T .V=Zan/DKer.d� W TV !��.TZan// for the relative tangent bundle of V=Zan .
It is a holomorphic vector subbundle of TV of rank dimV �dimZ , as � is a holomor-
phic submersion. Let v2 s�1.0/�V with  .v/Dx 2Xan and �.v/D�.x/D z 2Zan .
Then as in (18), LSpecA�=Z jv is represented by the complex of C–vector spaces

� � � // F j�v
t j�v // Ej�v

dsj�v // T �v .V=Zan/ // 0;
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with T �v .V=Zan/ in degree 0. As for (19)–(20) we get canonical isomorphisms

H 0.T˛jv/W Ker.dsjvW Tv.V=Zan/!Ejv/!H 0.TX=Zjx/;(22)

H 1.T˛jv/W
Ker.t jvW Ejv! F jv/

Im.dsjvW Tv.V=Zan/!Ejv/
!H 1.TX=Zjx/:(23)

Example 3.3 Suppose .A�; !A�/ is in �2–Darboux form, in the sense of Definition 2.9,
with coordinates x1; : : : ; xm , y1; : : : ; yn , z1; : : : ; zm , and 2–form !A� in (1), depend-
ing on invertible functions q1; : : : ; qn 2 A0 .

Let V , E , F , s , t be as in Definition 3.2. Then V is a smooth C–scheme of
dimension m, with étale coordinates .x1; : : : ; xm/, so that TV is a trivial vector
bundle with basis of sections @=@x1; : : : ; @=@xm . Also E is a trivial vector bundle of
rank n, with basis e1 WD @=@y1; : : : ; en WD @=@yn , and F is trivial of rank m, with
basis @=@z1; : : : ; @=@zm . Using the first line of !A� in (1), it is natural to identify
F Š T �V by identifying @=@zi Š ddRxi for i D 1; : : : ; m.

The natural section s 2H 0.E/ is sD s1e1C� � �Csnen . Write �1; : : : ; �n for the basis
of sections of E� dual to e1; : : : ; en , so that �j Š ddRyj . Motivated by the second
line of !A� in (1), define Q D q1�1 ˝ �1 C � � � C qn�n ˝ �n in H 0.S2E�/. Then
Q is a natural nondegenerate quadratic form on the fibres of E , and (2) implies that
Q.s; s/D 0.

Identifying F D T �V , from (3) we see that t W E! F is given by

(24) t .ej /D

mX
iD1

�
2qj

@sj

@xi
C sj

@qj

@xi

�
ddRxi D 2qj ddRsj C sj ddRqj

for j D 1; : : : ; n. Then t ı s D 0 follows from applying ddR to Q.s; s/D 0.

What will matter later is that we have a complex manifold V , a holomorphic vector
bundle E!V , a section s 2H 0.E/, and a nondegenerate holomorphic quadratic form
Q 2H 0.S2E�/ with Q.s; s/D 0, such that the classical complex analytic topological
space .SpecH 0.A�//an is s�1.0/� V .

Next we interpret quasifree morphisms of standard form cdgas ˆJK W A�K ! A�J , as in
Theorem 3.1(ii), in terms of complex geometry.

Definition 3.4 Let ˆJK W A�K!A�J be a quasifree morphism of standard form cdgas
over C , as in Section 2.1. Let V alg

J , Ealg
J , F alg

J , salg
J , t alg

J , VJ , EJ , FJ , sJ , tJ be as
in Definition 3.2 for A�J , and let V alg

K , Ealg
K ; : : : ; tK be as for A�K .

Then �alg
JK WD Specˆ0JK W V

alg
J D SpecA0J ! V

alg
K D SpecA0K is a C–scheme mor-

phism. Write �JK W VJ ! VK for the corresponding holomorphic map. The quasifree
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condition on ˆJK implies d�alg
JK W .�

alg
JK/
�.T �V

alg
K /! T �V

alg
J is injective, and thus

d�JK W ��JK.T
�VK/! T �VJ is injective, that is, �JK W VJ ! VK is a submersion of

complex manifolds.

Now ˆ�1JK W A
�1
K ! A�1J induces an A0J –linear map

.ˆ�1JK/�W A
�1
K ˝A0K

A0J ! A�1J ;

which under (16) corresponds to an algebraic vector bundle morphism

.�
alg
JK/
�..E

alg
K /�/! .E

alg
J /
�:

Write �alg
JK W E

alg
J ! .�

alg
JK/
�.E

alg
K / for the dual morphism, and �JK W EJ ! ��JK.EK/

for the corresponding morphism of holomorphic vector bundles. It is surjective, as
ˆJK is quasifree. Then d ıˆ�1JK Dˆ

0
JK ı d implies that

(25) �JK.sJ /D �
�
JK.sK/ 2H

0.��JK.EK//:

By (15) we have a natural composition of morphisms

H 0..F
alg
K /�/ŠM�2K ŠA

�2
K =ƒ2

A0K
A�1K

.ˆ�2JK/�����!A�2J =ƒ2
A0J
A�1J ŠM

�2
J ŠH

0..F
alg
J /�/:

The induced A0J –linear map corresponds to a natural algebraic vector bundle morphism
.�

alg
JK/
�..F

alg
K /�/! .F

alg
J /� . Write �alg

JK W F
alg
J ! .�

alg
JK/
�.F

alg
K / for the dual morphism,

and �JK W FJ ! ��JK.FK/ for the corresponding morphism of holomorphic vector
bundles. It is surjective, as ˆJK is quasifree.

These �alg
JK , �JK are independent of choices, as they depend on the canonical isomor-

phism M�2ŠA�2=ƒ2
A0
A�1 rather than on the noncanonical inclusion M�2 ,!A�2

in Definition 3.2. However, ˆ�2JK need not map M�2K � A�2K to M�2J � A�2J , and
so under the isomorphisms (16) need not map H 0..F

alg
K /�/!H 0..F

alg
J /�/. Write

ı
alg
JK W ƒ

2E
alg
J ! .�

alg
JK/
�.F

alg
K / for the algebraic vector bundle morphism dual to the

component of ˆ�2JK mapping H 0..F
alg
K /�/! H 0.ƒ2.E

alg
J /
�/, and ıJK W ƒ2EJ !

��JK.FK/ for the corresponding morphism of vector bundles. Then dıˆ�2JK Dˆ
�1
JK ıd

implies that

(26) �JK ı tJ C ıJK ı .�^ sJ /D �
�
JK.tK/ ı�JK W EJ ! ��JK.FK/:

Therefore �JK , �JK do not strictly commute with tJ , tK , which is not surprising,
since tJ , tK depend on arbitrary choices as in (17). But notice that �JK jv ı tJ jv D
tK j�JK.v/ ı�JK jv at v 2 VJ with sJ .v/D 0.

Next suppose that we are given Zariski open inclusions ˛J W SpecA�J ,! X and
˛K W SpecA�K ,!X into a derived C–scheme X , such that (14) homotopy commutes,
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and let

 J W s
�1
J .0/ ,!Xan;  K W s

�1
K .0/ ,!Xan

be as in Definition 3.2. As the classical truncation of (14) commutes, we see that

(27)  J D  K ı�JK js�1J .0/W s
�1
J .0/!Xan:

Suppose vJ 2 s�1J .0/ � VJ with �JK.vJ / D vK 2 s
�1
K .0/ � VK and  J .vJ / D

 K.vK/D x 2Xan . As (14) homotopy commutes, the corresponding morphisms of
tangent complexes TSpecA�J

, TSpecA�K
, TX commute up to homotopy, so restricting

to vJ , vK , x and taking homology gives strictly commuting diagrams. Thus using
(19)–(20), we see that the following diagrams commute:

Ker.dsJ jvJ W TvJVJ !EJ jvJ /

.d�JK jvJ /jKer.���/

��

H0.T˛J jvJ /

**

Ker.dsK jvK W TvKVK !EK jvK /
H0.T˛K jvK /

// H 0.TX jx/

(28)

Ker.tJ jvJ W EJ jvJ ! FJ jvJ /

Im.dsJ jvJ W TvJVJ !EJ jvK /

.�JK jvJ /�
��

H1.T˛J jvJ /

))Ker.tK jvK W EK jvK ! FK jvK /

Im.dsK jvK W TvKVK !EK jvK /

H1.T˛K jvK /
// H 1.TX jx/

(29)

Now suppose that ZDSpecB is a smooth classical affine C–scheme of pure dimension,
�W X !Z is a morphism, and ˇJ W B! A0J , ˇK W B! A0K are smooth morphisms
of C–algebras, such that (13) homotopy commutes for J , K, and ˇJ DˆJK ıˇK . As
in Definition 3.2 we have holomorphic submersions �J W VJ !Zan , �K W VK !Zan ,
with �J D �K ı �JK W VJ ! Zan as ˇJ D ˆJK ı ˇK . Let vJ 2 s�1J .0/ � VJ with
�JK.vJ / D vK 2 s

�1
K .0/ � VK , and  J .vJ / D  K.vK/ D x 2 Xan , and �J .vJ / D

�K.vK/D �.x/D z 2Zan . Then using (22)–(23), we see that the following diagrams
commute:

Ker.dsJ jvJ W TvJ .VJ =Zan/!EJ jvJ /

.d�JK jvJ /jKer.���/

��

H0.T˛J jvJ /

++

Ker.dsK jvK W TvK .VK=Zan/!EK jvK /
H0.T˛K jvK /

// H 0.TX=Z jx/

(30)
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Ker.tJ jvJ W EJ jvJ ! FJ jvJ /

Im.dsJ jvJ W TvJ .VJ =Zan/!EJ jvK /

.�JK jvJ /�
��

H1.T˛J jvJ /

**
Ker.tK jvK W EK jvK ! FK jvK /

Im.dsK jvK W TvK .VK=Zan/!EK jvK /

H1.T˛K jvK /
// H 1.TX=Z jx/

(31)

Applying Definitions 3.2 and 3.4 to the conclusions of Theorem 3.1 yields:

Corollary 3.5 In the situation of Theorem 3.1, write Xan for the set of C–points
of X D t0.X/, regarded as a topological space with the complex analytic topology.
Then we obtain the following data in complex geometry:

(i) For all finite subsets ¿ ¤ J � I , a complex manifold VJ , a holomorphic sub-
mersion �J W VJ ! Zan, holomorphic vector bundles EJ ; FJ ! VJ , a holomorphic
section sJ W VJ ! EJ , and a homeomorphism  J W s

�1
J .0/ ! RJ � Xan, where

RJ � Xan is open, with � ı J D �J js�1J .0/W s
�1
J .0/!Zan . These image subsets

satisfy RJ D
T
i2J Rfig .

By making an additional arbitrary choice we also obtain a morphism of holomorphic
vector bundles tJ W EJ ! FJ , with tJ ı sJ D 0. Different choices tJ , ztJ are related
by (17). The restrictions tJ jvJ W EJ jvJ ! FJ jvJ for vJ 2 s�1J .0/ are independent of
choices. For each vJ 2 s

�1
J .0/ with  J .vJ /D x 2 Xan, there are canonical isomor-

phisms (19)–(20) writing H i .TX jx/ for i D 0; 1 and (22)–(23) writing H i .TX=Z jx/
for i D 0; 1 in terms of VJ , EJ , FJ , sJ , tJ , �J at vJ .

(ii) For all inclusions of finite subsets ¿¤K � J � I , a holomorphic submersion
�JK W VJ ! VK , and surjective morphisms of holomorphic vector bundles �JK W EJ !
��JK.EK/ and �JK W FJ ! ��JK.FK/. These satisfy �J D �K ı�JK W VJ !Zan, and
�JK.sJ /D �

�
JK.sK/, and  J D  K ı�JK js�1J .0/W s

�1
J .0/!Xan .

If tJ , tK are possible choices in (i) then �JK , �JK , tJ , tK are related as in (26). If
vJ 2 s

�1
J .0/ with �JK.vJ /D vK 2 s�1K .0/, this implies that

�JK jvJ ı tJ jvJ D tK jvK ı�JK jvJ W EJ jvJ ! FK jvK :

If vJ 2 s�1J .0/� VJ with �JK.vJ /D vK 2 s�1K .0/� VK and  J .vJ /D K.vK/D
x 2Xan, then (28)–(31) commute.

If ¿¤L�K � J � I then �JLD�KLı�JK , �JLD��JK.�KL/ı�JK , and �JLD
��JK.�KL/ ı �JK .
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3.3 Subbundles E� �E and Kuranishi neighbourhoods

Throughout Sections 3.3–3.6, when we apply Theorem 3.1 we take B DC , so that Z
is the point � D Spec C , and the data � , ˇi , ˇJ , �J is trivial, so we omit it.

Suppose .X ; !�
X
/ is a �2–shifted symplectic derived C–scheme, A� a standard form

cdga over C , and ˛W SpecA� ! X a Zariski open inclusion. Then Definition 3.2
defines complex geometric data V , E , F , s , t ,  , R , such that .V;E; s;  / is a
Kuranishi neighbourhood on the topological space Xan of X .

However these are not the Kuranishi neighbourhoods we want: they depend only
on X , not on !�

X
, and in general two such neighbourhoods .VJ ; EJ ; sJ ;  J / and

.VK ; EK ; sK ;  K/ are not compatible over their intersection RJ \RK in Xan (eg the
virtual dimensions dimR VJ � rankREJ and dimR VK � rankREK may be different),
so we cannot glue them to make Xan into a derived manifold.

The basic problem is that the rank of E may be too large; for instance, we can modify A�

to replace E , F , s , t by zE D E ˚G , zF D F ˚G , zs D s ˚ 0, zt D t ˚ idG for
some holomorphic vector bundle G ! V . Our solution is to choose a real vector
subbundle E� �E satisfying some conditions involving !�

X
, and set EC DE=E�

to be the quotient bundle and sC D sCE� in C1.EC/ to be the quotient section.
The conditions on E� imply that s�1.0/ D .sC/�1.0/, so .V;EC; sC;  C/ is also
a Kuranishi neighbourhood on Xan . Under good conditions we can make two such
.VJ ; E

C

J ; s
C

J ;  
C

J /, .VK ; E
C

K ; s
C

K ;  
C

K / compatible over RJ\RK , and glue these local
models to make Xan into a derived manifold.

We define the class of subbundles E� �E we are interested in:

Definition 3.6 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with

virtual dimension vdimC X D n, and suppose A� 2 cdgaC is of standard form and
˛W A� ,! X is a Zariski open inclusion. Define complex geometric data V , E , F ,
s , t and  W s�1.0/ Š�!R �Xan as in Definition 3.2, and suppose R¤¿. Then for
each v 2 s�1.0/ with  .v/D x 2Xan , (20) gives an isomorphism from a vector space
depending on V , E , F , s , t at v to H 1.TX jx/.

Equation (6) defined a quadratic form Qx on H 1.TX jx/. Define

(32) zQvW
Ker.t jvW Ejv! F jv/

Im.dsjvW TvV !Ejv/
�

Ker.t jvW Ejv! F jv/

Im.dsjvW TvV !Ejv/
!C

to be the nondegenerate complex quadratic form identified with Qx in (6) by the
isomorphism H 1.T˛jv/ in (20).
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Consider pairs .U;E�/, where U � V is open and E� is a real vector subbundle
of EjU . Given such .U;E�/, we write ECDEjU =E� for the quotient vector bundle
over U , and sC 2C1.EC/ for the image of sjU under the projection EjU!EC , and
 C WD js�1.0/\U W s

�1.0/\U!Xan . We say that .U;E�/ satisfies condition .�/ if:

.�/ For each v 2 s�1.0/\U , we have

Im.dsjvW TvV !Ejv/\E
�
jv D f0g in Ejv;(33)

t jv.E
�
jv/D t jv.Ejv/ in F jv;(34)

and the natural real linear map

(35) …vW E
�
jv \Ker.t jvW Ejv! F jv/!

Ker.t jvW Ejv! F jv/

Im.dsjvW TvV !Ejv/
;

which is injective by (33), has image Im…v a real vector subspace of dimension
exactly half the real dimension of Ker.t jv/= Im.dsjv/, and the real quadratic
form Re zQv on Ker.t jv/= Im.dsjv/ from (32) restricts to a negative definite real
quadratic form on Im…v .

We say .U;E�/ satisfies condition .�/ if

.�/ .U;E�/ satisfies condition .�/ and s�1.0/\U D .sC/�1.0/� U .

In this case, .U;EC; sC;  C/ is a Kuranishi neighbourhood on Xan .

Observe that if v 2 s�1.0/\U with  .v/Dx 2Xan then using (19)–(20) and (33)–(35)
we find there is an exact sequence

(36) 0 // H l.TX jx/ // TvU // ECjv // H l.TX jr/= Im…v // 0:

Hence

(37) dimR U�rankRE
C
D dimRH

0.TX jx/�dimRH
1.TX jx/CdimR Im…v

D 2 dimCH
0.TX jx/�dimCH

1.TX jx/

D dimCH
0.TX jx/�dimCH

1.TX jx/CdimCH
2.TX jx/

D vdimC X D n:

Here in the second step we use dimR…v D
1
2

dimRH
1.TX jx/ by .�/ and (20),

in the third that H 0.TX jx/ Š H 2.TX jx/
� as .X ; !�

X
/ is �2–shifted symplectic

(or �2–shifted presymplectic will do), and in the fourth that TX is perfect in the
interval Œ0; 2� as .X ; !�

X
/ is �2–shifted symplectic (or presymplectic).

Equation (37) says that the Kuranishi neighbourhood .U;EC; sC;  C/ has real virtual
dimension dimU � rankEC D nD vdimC X D

1
2

vdimRX . Note that this is half the
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virtual dimension we might have expected, and the real virtual dimension can be odd,
even though X , V , E , s; : : : are all complex.

Here are some important properties of such U , E� , EC , sC , proved in Section 5.

Theorem 3.7 In the situation of Definition 3.6, with X , !�
X

, A� , ˛, V , E , F ,
s , t ,  fixed, we have:

(a) If the conditions in .�/ hold at some v 2 s�1.0/\U , then they also hold for
all v0 in an open neighbourhood of v in s�1.0/\U .

(b) Suppose C �V is closed, and .U;E�/ satisfies condition .�/ with C � U � V .
(We allow C D U D ¿.) Then there exists . zU ; zE�/ satisfying .�/ with
C [ s�1.0/� zU � V , and an open neighbourhood U 0 of C in U \ zU such
that E�jU 0 D zE�jU 0 .

(c) If .U;E�/ satisfies .�/, the closed subsets s�1.0/\U and .sC/�1.0/ in U �V
coincide in an open neighbourhood U 0 of s�1.0/\U in U . Hence .U 0; E�jU 0/
satisfies condition .�/, and .U 0; ECjU 0 ; s

CjU 0 ;  
C/ is a Kuranishi neighbour-

hood on Xan . Thus, we can make .U;E�/ satisfying .�/ also satisfy .�/ by
shrinking U , without changing RD Im in Xan .

The next example proves Theorem 3.7(c) near v 2 s�1.0/\U in a special case, when
.A�; !A�/ is in �2–Darboux form and minimal at v . The general case in Section 5.3
is proved by reducing to Example 3.8.

Example 3.8 Suppose that .X ; !�
X
/ is a �2–shifted symplectic derived C–scheme

and that x 2 Xan . Then Theorem 2.10 gives a pair .A�; !A�/ in �2–Darboux form
and a Zariski open inclusion ˛W SpecA� ,!X which is minimal at x 2 Im˛, with
˛�.!�

X
/' !A� in A2;cl

C .SpecA�;�2/.

Example 3.3 describes the data V , E , F , s , t associated to A� in Section 3.2,
and defines a nondegenerate quadratic form Q 2 H 0.S2E�/ with Q.s; s/ D 0

using !A� . As x 2 Im˛ there is v 2 s�1.0/ � V with ˛.v/ D x , and .A�;˛/

minimal at x means that dsjv D 0, so that t jv D 0 by (24). Thus in (20) we have
Ker.t jv/= Im.dsjv/DEjv , identified with H 1.TX jx/. Since ˛�.!�

X
/' !A� , the

quadratic form zQv on Ker.t jv/= Im.dsjv/DEjv in (32) is Qjv .

Given a pair .U;E�/ as in Definition 3.6 with v 2 U , the map …v in (35) is just the
inclusion E�jv ,!Ejv . So .�/ at v says that E�jv is a real vector subspace of Ejv
with dimRE

�jv D
1
2

dimREjv D dimC Ejv , such that ReQjv is negative definite
on E�jv .
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As this is an open condition, there exists an open neighbourhood U 0 of v in U such that
ReQjU 0 is negative definite on E�jU 0 . Define a real vector subbundle zEC of EjU 0 to
be the orthogonal subbundle of E�jU 0 with respect to the nondegenerate real quadratic
form ReQjU 0 . Then EjU 0 D zEC ˚E�jU 0 , so we can write sjU 0 D zsC ˚ s� , for
zsC2C1. zEC/ and s�2C1.E�jU 0/. The projection EjU 0!ECjU 0DEjU 0=E

�jU 0

restricts to an isomorphism zEC!ECjU 0 , which maps zsC 7! sCjU 0 .

Because ReQ is the real part of a complex form, it has the same number of positive
as negative eigenvalues. Thus ReQjU 0 is positive definite on zEC . Now

(38) 0DReQ.s; s/jU 0 DReQ.zsCCs�; zsCCs�/DReQ.zsC; zsC/CReQ.s�; s�/;

using ReQ.zsC; s�/D 0 as zEC , E�jU 0 are orthogonal with respect to ReQjU 0 .

For each u 2 U 0 , we now have

sC.u/D 0 ” zsC.u/D 0 ” ReQ.zsC; zsC/ju D 0

” ReQ.s�; s�/ju D 0 ” zsC.u/D s�.u/D 0 ” s.u/D 0;

using zEC ! ECjU 0 an isomorphism mapping zsC 7! sCjU 0 in the first step, ReQ
positive definite on zEC in the second, (38) in the third, ReQ negative definite on E�jU 0
in the fourth, and sjU 0 D zsC˚ s� in the fifth.

This proves there exists an open neighbourhood U 0 of v in U such that s�1.0/\U 0D
.sC/�1.0/\U 0 , which is Theorem 3.7(c), except that U 0 is a neighbourhood of v
rather than of s�1.0/\U .

Remark 3.9 Pairs .U;E�/ satisfying .�/ will be used to prove our main result,
constructing a derived manifold structure Xdm on the complex analytic topological
space Xan of a �2–shifted symplectic derived C–scheme .X ; !�

X
/.

Our construction apparently uses less than the full �2–shifted symplectic structure !�
X

on X . In particular, conditions .�/ and .�/ only involve the nondegenerate pair-
ings !0

X
jx on H 1.TX jx/ in (6), which depend only on the presymplectic structure !0

X
,

not the symplectic structure !�
X
D .!0

X
; !1
X
; : : : /. The proofs of Theorem 3.7(a),(b)

in Sections 5.1–5.2 also use only !0
X

rather than !�
X

.

However, the proof of Theorem 3.7(c) in Section 5.3 involves !�
X

, as it uses the
existence of a minimal �2–Darboux form presentation for .X ; !�

X
/ near each x 2Xan ,

as in Theorem 2.10. The authors do not know whether Theorem 3.7(c) holds for
�2–shifted presymplectic .X ; !0

X
/ which are not symplectic.

Geometry & Topology, Volume 21 (2017)



Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds 3265

3.4 Comparing .UJ ;E�J /, .UK ;E
�

K
/ under ˆJK

Section 3.3 discussed how to use standard form charts ˛W SpecA�!X on .X ; !�X /
to choose pairs .U;E�/, and so define Kuranishi neighbourhoods .U;EC; sC;  C/
on Xan . We now explain how to pull back such pairs .UK ; E�K/ along a quasifree
morphism ˆJK W A

�

K ! A�J , and construct coordinate changes between the Kuranishi
neighbourhoods .UJ ; ECJ ; s

C

J ;  
C

J /, .UK ; E
C

K ; s
C

K ;  
C

K /.

Definition 3.10 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with

vdimC X D n, and suppose ˆJK W A
�

K ! A�J is a quasifree morphism of stan-
dard form cdgas over C and ˛J W SpecA�J ,! X , ˛K W SpecA�K ,! X are Zariski
open inclusions such that (14) homotopy commutes. Define complex geometric data
VJ , EJ , FJ , sJ , tJ ,  J , RJ , VK , EK , FK , sK , tK ,  K , RK , �JK , �JK , �JK
in Definitions 3.2 and 3.4, and suppose RJ ¤¿, so RK ¤¿ as RJ �RK �Xan .

Consider pairs .UJ ; E�J / for A�J and .UK ; E�K/ for A�K satisfying condition .�/ in
Definition 3.6. We say that .UJ ; E�J / and .UK ; E�K/ are compatible if �JK.UJ /�UK
and �JK jUJ .E

�
J /� �JK j

�
UJ
.E�K/� �JK j

�
UJ
.EK/.

For compatible pairs .UJ ; E�J / and .UK ; E
�
K/, define a vector bundle morphism

�CJK W E
C

J ! �JK j
�
UJ
.ECK / on UJ by the commutative diagram with exact rows:

0 // E�J

�JK jE�
J

��

// EJ jUJ

�JK jUJ
��

// ECJ
//

�
C

JK
��

0

0 // �JK j
�
UJ
.E�K/

// �JK j
�
UJ
.EK/ // �JK j

�
UJ
.ECK /

// 0

Let vJ 2 s�1J .0/ � UJ � VJ with �JK.vJ / D vK 2 s
�1
K .0/ � UK � VK and

 J .vJ /D K.vK/Dx 2Xan . Consider the diagram, with rows (36) for .UJ ; E�J /, vJ
and .UK ; E�K/, vK :

(39)

0 // H 0.TX jx/

id
��

// TvJUJ
dsCJ jvJ

//

d�JK jvJ
��

ECJ jvJ

�
C

JK jvJ
��

// H 1.TX jx/= Im…vJ

id
��

// 0

0 // H 0.TX jx/ // TvKUK
dsCK jvK

// ECK jvK
// H 1.TX jx/= Im…vK

// 0

Here if we regard Im…vJ , Im…vK from (35) as subspaces of H 1.TX jx/ using (20),
compatibility �JK.E

�
J jvJ / � E�K jvK and (29) imply that Im…vJ � Im…vK , so

Im…vJ D Im…vK as they have the same dimension by .�/, and the right-hand
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column of (39) makes sense. From (25), (28) and (29) we see that (39) commutes.
Elementary linear algebra then gives an exact sequence

(40) 0! TvJUJ
dsCJ jvJ˚d�JK jvJ
�����������!ECJ jvJ˚TvKUK

��
C

JK jvJ˚dsCK jvK
�����������!ECK jvK! 0:

From (40) and Definition 2.14, we deduce:

Corollary 3.11 In the situation of Definition 3.10, if .UJ ; E�J / and .UK ; E
�
K/ are

compatible and satisfy .�/ then, in the sense ofSection 2.5,

.UJ ; �JK jUJ ; �
C

JK/W .UJ ; E
C

J ; s
C

J ;  J /! .UK ; E
C

K ; s
C

K ;  K/

is a coordinate change of Kuranishi neighbourhoods on Xan .

Lemma 3.12 In the situation of Definition 3.10, fix .UK ; E
�
K/ satisfying .�/ for

A�K , ˛K . Set U 0JK D ��1JK.UK/ � VJ . Then E 0JK WD �JK j
�1
U 0JK

.E�K/ is a vector
subbundle of EJ jU 0JK , as �JK is surjective. Choose a complementary real vector
subbundle E 00JK , so that EJ jU 0JK DE

0
JK ˚E

00
JK .

Choose a connection r on EJ , so that rsJ W TVJ !EJ is a vector bundle morphism.
Now Ker.d�JK W TVJ ! ��JK.TVK// is a vector subbundle of TVJ , as d�JK is sur-
jective, and rsJ is injective on Ker d�JK near s�1J .0/, so E 000JK WD .rsJ /ŒKer d�JK �
is a vector subbundle of EJ near s�1J .0/ in VJ .

Then .UJ ; E�J / satisfies .�/ for A�J , ˛J and is compatible with .UK ; E
�
K/ if and

only if UJ is open in U 0JK , and E�JK is a vector subbundle of E 0JK jUJ satisfy-
ing EJ jUJ D E�JK ˚E

00
JK jUJ ˚E

000
JK jUJ near s�1J .0/ \ UJ in UJ . Alternatively,

identifying E 0JK with EJ jU 0JK=E
00
JK , this condition may be written as E 0JK jUJ D

E�JK ˚ Œ.E
00
JK ˚E

000
JK/=E

00
JK �jUJ near s�1J .0/\UJ .

Proof We deduce rsJ is injective on Ker d�JK at vJ 2 s�1J .0/ using (28), check
that .�/ for UJ , E�J is equivalent to EJ DE�JK˚E

00
JK˚E

000
JK at each vJ 2 s�1J .0/,

and note that both are open conditions.

Lemma 3.12 shows we can always pull back .UK ; E�K/ satisfying .�/ along submer-
sions �JK W VJ!VK : we just have to choose a complement E�J to .E 00JK˚E

000
JK/=E

00
JK

in E 0JK on some small open neighbourhood UJ of s�1J .0/ in U 0JK , for instance, the
orthogonal complement with respect to any metric on E 0JK . By Theorem 3.7(c),
making UJ smaller, we can suppose .UJ ; E�J / satisfies .�/.

3.5 Constructing Kuranishi atlases and derived manifolds

Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with vdimC X D n in Z,

and write Xan for the complex analytic topological space. Suppose X is separated and
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Xan is a paracompact topological space. (Paracompactness is automatic if X is proper,
or quasicompact, or of finite type, or if Xan is second countable.) We will construct a
Kuranishi atlas on Xan , in the sense of Section 2.5.

First choose a family f.A�i ;˛i / j i 2 I g, where A�i 2 cdgaC is a standard form cdga, and
˛i W SpecA�i ,!X a Zariski open inclusion in dSchC for each i in I , an indexing set,
such that fRi WD .Im˛i /an j i 2 I g is an open cover of the complex analytic topological
space Xan . This is possible by Theorem 2.5. If X is quasicompact (since X is locally
of finite type, this is equivalent to X being of finite type) then we can take I to be
finite.

Apply Theorem 3.1 to get data A�J 2 cdgaC , ˛J W SpecA�J ,!X for finite ¿¤ J � I
and quasifree ˆJK W A�K ! A�J , for all finite ¿¤K � J � I .

Use the notation of Section 3.2 to rewrite A�J , ˆJK in terms of complex geometry. As
in Corollary 3.5, this gives data VJ , EJ , FJ , sJ , tJ ,  J , RJ for all finite ¿¤J � I ,
and �JK , �JK , �JK for all finite ¿¤K � J � I .

For brevity we write AD fJ j¿¤ J � I and J is finiteg. The proof of the next result
in Section 6.1 is based on McDuff and Wehrheim [29, Lemma 7.1.7].

Proposition 3.13 Suppose Z is a paracompact, Hausdorff topological space and
fRi j i 2 I g an open cover of Z . Then we can choose closed subsets CJ �Z for all
finite ¿¤ J � I , satisfying:

(i) CJ �
T
i2J Ri for all J .

(ii) Each z 2Z has an open neighbourhood Uz �Z with Uz \CJ ¤¿ for only
finitely many J .

(iii) CJ \CK ¤¿ only if J �K or K � J .

(iv)
S

¿¤ J � I finite CJ DZ .

In our case, Xan is Hausdorff and second countable. It is also locally compact, as
it is locally homeomorphic to closed subsets s�1J .0/ of complex manifolds VJ . But
Hausdorff, locally compact and second countable imply that X is paracompact and
normal. Thus Proposition 3.13 applies to Z DXan with the open cover fRi j i 2 I g,
and we can choose closed subsets CJ �RJ D

T
i2J Ri �Xan for all J 2A satisfying

conditions (i)–(iv).

The next proposition, proved in Section 6.2 using Theorem 3.7 and Lemma 3.12,
chooses pairs .UJ ; E�J / satisfying .�/, as in Section 3.3, with .UJ ; E�J /, .UK ; E

�
K/

compatible near CJ \CK under the quasifree morphism ˆJK W A
�

K ! A�J .
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Proposition 3.14 In the situation above, we can choose .UJ ; E�J / satisfying condi-
tion .�/ for VJ ; EJ ; : : : for each J 2 A, such that  �1J .CJ /� UJ � VJ , and setting
SJ D  J .s

�1
J .0/\ UJ / so that SJ is an open neighbourhood of CJ in Xan, then

for all J;K 2 A, we have SJ \ SK ¤ ¿ only if J � K or K � J , and if K ¨ J

then there exists open UJK � UJ with s�1J .0/\ UJK D  
�1
J .SJ \ SK/ such that

.UJK ; E
�
J jUJK / is compatible with .UK ; E�K/, in the sense of Section 3.4.

We can now prove two of the central results of this paper.

Theorem 3.15 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with

complex virtual dimension vdimC X D n in Z, and write Xan for the set of C–points
of X D t0.X/ with the complex analytic topology. Suppose that X is separated,
and Xan is a paracompact topological space. Then we can construct a Kuranishi
atlas K on Xan of real dimension n, in the sense of Section 2.5. If X is quasicompact
(equivalently, of finite type) then we can take K to be finite.

Proof In the discussion from the beginning of Section 3.5 up to Proposition 3.14, we
have the following:

(i) A Hausdorff, paracompact topological space Xan .

(ii) An indexing set I , where we write AD fJ j¿¤ J � I and J is finiteg.

(iii) An open cover fSJ j J 2 Ag of Xan , such that SJ \SK ¤¿ for J;K 2 A only
if J �K or K � J .

(iv) For each J 2 A, a Kuranishi neighbourhood .UJ ; ECJ ; s
C

J ;  
C

J / on Xan with
dimUJ � rankECJ D n, constructed as in Section 3.3 from .UJ ; E

�
J / satisfying .�/,

with Im CJ D SJ �Xan .

(v) For all J;K 2 A with K ¨ J , a coordinate change of Kuranishi neighbourhoods
over SJ \SK , as in Corollary 3.11,

.UJK ; �JK jUJK ; �
C

JK/W .UJ ; E
C

J ; s
C

J ;  
C

J /! .UK ; E
C

K ; s
C

K ;  
C

K /;

since .UJK ; E�J jUJK / is compatible with .UK ; E�K/.

(vi) For all J;K;L2A with L¨K¨J , Corollary 3.5 implies that �JLD�KLı�JK
and �CJL D �

�
JK.�

C

KL/ ı�
C

JK on UJK \UJL\��1JK.UKL/.

This is a Kuranishi atlas K in the sense of Definition 2.15, where the partial order �
on A is J �K if K ¨ J . If X is quasicompact then we can take I finite, so A and K
are finite.
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Combining Theorems 2.18 and 3.15 yields:

Theorem 3.16 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with

complex virtual dimension vdimC X D n in Z, and write Xan for the set of C–points
of X D t0.X/ with the complex analytic topology. Suppose that X is separated, so
that Xan is Hausdorff, and also that Xan is a second countable topological space, which
holds if and only if X admits a Zariski open cover fXc j c 2C g with C countable and
each Xc a finite type C–scheme.

Then we can make the topological space Xan into a derived manifold Xdm with real
virtual dimension vdimRXdmD n, in any of the senses (a) Joyce’s m-Kuranishi spaces
mKur [21, Section 4.7], (b) Joyce’s d-manifolds dMan [18; 19; 20], (c) Borisov
and Noël’s derived manifolds DerManBoNo [3; 4], or (d) Spivak’s derived manifolds
DerManSpi [32], all discussed in Section 2.6.

We will discuss the dependence of Xdm on choices made in the constructions in
Section 3.6. Note that Xdm in Theorem 3.16 has dimension vdimRXdmD vdimC X D
1
2

vdimRX , which is exactly half what we might have expected.

3.6 Orientations, bordism classes and virtual classes

Work in the situation of Theorems 3.15 and 3.16, so that we have a �2–shifted
symplectic derived C–scheme .X ; !�

X
/ with complex analytic topological space Xan ,

a Kuranishi atlas K on Xan , and a derived manifold Xdm . The next proposition, proved
in Section 6.3, justifies our notions of orientation in Sections 2.4–2.6.

Proposition 3.17 In the situation of Theorems 3.15 and 3.16, there are canonical
one-to-one correspondences between

(a) orientations on .X ; !�
X
/ in the sense of Section 2.4;

(b) orientations on .Xan;K/ in the sense of Section 2.5; and
(c) orientations on Xdm in the sense of Section 2.6.2.

Next we consider how the derived manifold Xdm in Theorem 3.16 depends on choices
made in the construction. Once we have chosen the Kuranishi atlas K in Theorem 3.15,
Theorem 2.18 shows thatXdm is determined uniquely up to equivalence in its 2–category
or 1–category. However, constructing K involves many arbitrary choices, and the
next proposition, proved in Section 6.4 using the material of Section 3.7, explains how
Xdm depends on these.

Proposition 3.18 In the situation of Theorem 3.16, for .X ; !�
X
/ and n fixed, the

derived manifold Xdm depends on choices made in the construction only up to bordisms
of derived manifolds which fix the underlying topological space Xan .
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That is, if Xdm , X 0dm are possible derived manifolds in Theorem 3.16, then we can
construct a derived manifold with boundary Wdm with topological space Xan � Œ0; 1�

and vdimWdm D nC 1, and an equivalence of derived manifolds @Wdm 'Xdm tX
0
dm,

topologically identifying Xdm with Xan�f0g and X 0dm with Xan�f1g. We regard Wdm

as a bordism from Xdm to X 0dm .

This bordism Wdm is compatible with orientations in Proposition 3.17. That is, given
an orientation on .X ; !�

X
/, we get natural orientations on Xdm , X 0dm , Wdm, and an

equivalence of oriented derived manifolds @Wdm'�XdmtX
0
dm, where �Xdm is Xdm

with the opposite orientation.

Combining this with material in Sections 2.6.4–2.6.5 yields:

Corollary 3.19 Suppose .X ; !�
X
/ is a proper �2–shifted symplectic derived C–

scheme, with vdimC X D n, and with an orientation in the sense of Section 2.4. Then
Theorem 3.16 constructs a compact derived manifold Xdm with vdimRXdm D n, and
Proposition 3.17 defines an orientation on Xdm .

Although Xdm depends on arbitrary choices, the d-bordism class ŒXdm�dbo in Bn.�/
from Section 2.6.4 and the virtual class ŒXdm�virt in Hn.XanIZ/ from Section 2.6.5 are
independent of these, and depend only on .X ; !�

X
/ and its orientation.

3.7 Working relative to a smooth base C–scheme Z

Let Z D SpecB be a smooth classical affine C–scheme, which we now assume is
connected. Then the set Zan of C–points of Z is a complex manifold, and hence a real
manifold. In this section we will show that all of Sections 3.1–3.6 also works relatively
over the base Z . To do this, we will need a notion of a family .�W X !Z;!X=Z/ of
�2–shifted symplectic derived C–schemes over the base Z .

To understand the next definition, recall from Remark 3.9 that if .X ; !�
X
/ is �2–shifted

symplectic, then the derived manifold Xdm constructed in Section 3.5 does not de-
pend on the whole sequence !�

X
D .!0

X
; !1
X
; : : : /, but only on the nondegenerate

pairings !0
X
jx on H 1.TX jx/ for x 2 Xan , and therefore only on the cohomology

class Œ!0
X
� 2H�2.LX /. We require that choices of !1

X
; !2
X
; : : : should exist (they

are needed to apply Theorem 2.10, which is used in the proof of Theorem 3.7(c)), but
Xdm does not depend on them.

Definition 3.20 Let X be a derived C–scheme, Z D SpecB a smooth, connected,
classical affine C–scheme, and �W X ! Z a morphism. A family of �2–shifted
symplectic structures on X=Z is Œ!X=Z � 2H�2.LX=Z/, such that if z 2Zan , writing
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XzD��1.z/DX�h
�;Z;z� for the fibre of � over z and Œ!X=Z �jXz 2H�2.LXz / for

the restriction of Œ!X=Z � to Xz , then there should exist a �2–shifted symplectic struc-
ture !�

Xz
D .!0

Xz
; !1
Xz
; : : : / on Xz such that Œ!X=Z �jXz D Œ!0Xz � in H�2.LXz /.

That is, a family of �2–shifted symplectic structures on X=Z is a �2–shifted rela-
tive 2–form Œ!X=Z � on X=Z , which on each fibre Xz extends to a closed 2–form
which is �2–shifted symplectic. We will explain how to extend the arguments of
Sections 3.3–3.6 to the relative case. Here is the analogue of Definition 3.6:

Definition 3.21 Let X be a derived C–scheme, ZDSpecB a smooth, classical, affine
C–scheme of pure dimension, �W X !Z a morphism, and Œ!X=Z � in H�2.LX=Z/
a family of �2–shifted symplectic structures on X=Z . Write dimC Z D k and
vdimC X D n C k . Suppose A� 2 cdgaC is of standard form, ˛W A� ,! X is a
Zariski open inclusion, and ˇW B! A0 is a smooth morphism of C–algebras, such
that (21) homotopy commutes. Define complex geometric data V , � , E , F , s , t
and  W s�1.0/ Š�! R � Xan as in Definition 3.2, and suppose R ¤ ¿. Then for
each v 2 s�1.0/ with  .v/ D x 2 Xan and �.v/ D �.x/ D z 2 Zan , (23) gives
an isomorphism from a vector space depending on V , � , Zan , E , F , s , t , � at v
to H 1.TX=Zjx/.

As in (6), the relative 2–form Œ!X=Z � induces a pairing

(41) H 1.TX=Z jx/�H
1.TX=Zjx/

Qx WD!
0
X=Z jx �

����������!C;

which is nondegenerate because Qx , under the equivalence TX=Z jx ' TXz jx , is
identified with the pairing induced by a �2–shifted symplectic form !�

Xz
on Xz , as

in Definition 3.20. Define

(42) zQvW
Ker.t jvW Ejv! F jv/

Im.dsjvW Tv.V=Zan/!Ejv/
�

Ker.t jvW Ejv! F jv/

Im.dsjvW Tv.V=Zan/!Ejv/
!C

to be the nondegenerate complex quadratic form identified with Qx in (41) by the
isomorphism H 1.T˛jv/ in (23).

Consider pairs .U;E�/, where U � V is open and E� is a real vector subbundle
of EjU . Given such .U;E�/, we write ECDEjU =E� for the quotient vector bundle
over U , and sC 2C1.EC/ for the image of sjU under the projection EjU!EC , and
 C WD js�1.0/\U W s

�1.0/\U !Xan . We say that .U;E�/ satisfies condition .�/ if

.�/ For each v 2 s�1.0/\U , we have

Im.dsjvW Tv.V=Zan/!Ejv/\E
�
jv D f0g in Ejv;(43)

t jv.E
�
jv/D t jv.Ejv/ in F jv;(44)
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and the natural real linear map

(45) …vW E
�
jv \Ker.t jvW Ejv! F jv/!

Ker.t jvW Ejv! F jv/

Im.dsjvW Tv.V=Zan/!Ejv/
;

which is injective by (43), has image Im…v a real vector subspace of dimension
exactly half the real dimension of Ker.t jv/= Im.dsjv/, and the real quadratic
form Re zQv on Ker.t jv/= Im.dsjv/ from (42) restricts to a negative definite real
quadratic form on Im…v .

We say .U;E�/ satisfies condition .�/ if

.�/ .U;E�/ satisfies condition .�/ and s�1.0/\U D .sC/�1.0/� U .

In this case, .U;EC; sC;  C/ is a Kuranishi neighbourhood on Xan .

Observe that if v 2 s�1.0/\U with  .v/Dx 2Xan then using (22)–(23) and (43)–(45)
we find as for (36) that there is an exact sequence

(46) 0 // H 0.TX=Z jx/ // Tv.V=Zan/ // ECjv // H 1.TX=Z jx/= Im…v // 0:

Hence as for (37) we have

dimR U � dimRZan� rankRE
C

D dimRH
0.TX=Zjx/� dimRH

1.TX=Zjx/C dimR Im…v

D 2 dimC H
0.TX=Z jx/� dimC H

1.TX=Z jx/

D dimC H
0.TX=Zjx/� dimC H

1.TX=Z jx/C dimC H
2.TX=Zjx/

D vdimC X � dimC Z D n:

Thus the Kuranishi neighbourhood .U;EC; sC;  C/ has virtual dimension

dimU � rankEC D nC 2k D 1
2
.vdimRX � dimRZan/C dimRZan;

which is the real dimension of the base Zan , plus half the real virtual dimension of the
fibres Xz .

Note that essentially the only important difference between Definitions 3.6 and 3.21 is
that TvV in (32), (33) and (35) is replaced by Tv.V=Zan/ in (42), (43) and (45).

Theorem 3.22 Theorem 3.7 holds with Definition 3.21 in place of Definition 3.6.

Proof In the proofs of Theorem 3.7(a),(b) in Sections 5.1–5.2, we replace dsjvW TvV !
Ejv by dsjvW Tv.V=Zan/!Ejv throughout, and no other changes are needed.
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For part (c), fix z 2Zan , so that Definition 3.20 gives a �2–shifted symplectic derived
C–scheme .Xz; !�

Xz
/ with Œ!X=Z �jXzD Œ!0Xz � in H�2.LXz /. Consider the complex

submanifolds V z D ��1.z/ in V and U z D U \V z in U , and write Ez, F z, sz, tz

for the restrictions of E , F , s , t to V z , and E˙z , sCz ,  Cz for the restrictions
of E˙ , sC ,  C to U z . Then .Xz; !�

Xz
/, V z , Ez; : : : satisfy Definition 3.6, so

Theorem 3.7(c) shows .sz/�1.0/\U z and .sCz/�1.0/ coincide near .sz/�1.0/\U z

in U z . Hence .s�1.0/ \ U/ \ ��1.z/ and ..sC/�1.0// \ ��1.z/ coincide near
.s�1.0/\U/\ ��1.z/ in U . As this holds for all z 2Zan ,we have that s�1.0/\U
and .sC/�1.0/ coincide near s�1.0/\U in U , and the theorem follows.

When we extend Section 3.4 to the relative case, in the analogue of Definition 3.10 we
also include data �W X!ZD SpecB and smooth ˇJ W B!A0J , ˇK W B!A0K with
ˇJ D ˆJK ı ˇK and (13) homotopy commuting for J , K. We obtain an analogue
of (39) with rows (46) rather than (36), and so as for (40) we get an exact sequence

0!TvJ.UJ =Zan/
dsCJ jvJ˚d�JK jvJ
����������!ECJ jvJ˚TvK.UK=Zan/

��
C

JK jvJ˚dsCK jvK
����������!ECK jvK!0:

But by taking the direct sum of this with idW TzZan! TzZan in the second and third
positions, we see that this implies (40) is exact, and the analogue of Corollary 3.11
follows. The relative analogue of Lemma 3.12, in which we replace TVJ , TVK by
T .VJ =Zan/, T .VK=Zan/, is immediate.

For Section 3.5, we prove the following relative analogue of Theorem 3.15:

Theorem 3.23 Let X be a separated derived C–scheme, Z D SpecB a smooth,
connected, classical affine C–scheme, �W X !Z a morphism, and Œ!X=Z � a family
of �2–shifted symplectic structures on X=Z, with dimC Z D k and vdimC X D

nC k . Write Xan , Zan for the sets of C–points of X D t0.X/, Z with the complex
analytic topology, and suppose Xan is paracompact. Then we can construct a relative
Kuranishi atlas .K; f$J j J 2 Ag/ for �anW Xan ! Zan of real dimension nC 2k,
as in Definition 2.15, with $J W UJ ! Zan a submersion. If X is quasicompact
(equivalently, of finite type) then we can take K to be finite.

Proof First choose a family f.A�i ;˛i ; ˇi / j i 2 I g, where A�i 2 cdgaC is a standard
form cdga, and ˛i W SpecA�i ,! X is a Zariski open inclusion in dSchC for each i
in I , an indexing set, and ˇi W B! A0i is a smooth morphism of classical C–algebras
such that (12) homotopy commutes, with fRi WD .Im˛i /an j i 2 I g an open cover of
the complex analytic topological space Xan . This is possible by a relative version of
Theorem 2.5, easily proved by modifying the proof of [6, Theorem 4.1] to work over the
base Z D SpecB . Apply Theorem 3.1 to get data A�J 2 cdgaC , ˛J W SpecA�J ,!X ,
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ˇJ W B!A0J for finite ¿¤ J � I and quasifree morphisms ˆJK W A�K!A�J , for all
finite ¿¤K � J � I .

Use the notation of Section 3.2 to rewrite A�J , ˇJ , ˆJK in terms of complex geom-
etry. As in Corollary 3.5, this gives data VJ , �J , EJ , FJ , sJ , tJ ,  J , RJ for all
finite ¿¤ J � I , and �JK , �JK , �JK for all finite ¿¤K � J � I . Note that the
holomorphic submersions �J W VJ ! Zan with �J D �K ı �JK for K � J were not
used in Sections 3.3–3.6 as there Zan was the point �, but now we need them.

Proposition 3.14 now also holds in our relative situation. Its proof in Section 6.2
uses Theorem 3.7 and Lemma 3.12, which as above hold in the relative situation
with Definition 3.21 and T .VJ =Zan/ in place of Definition 3.6 and TVJ . As in
the proof of Theorem 3.15, we have now constructed a Kuranishi atlas K on Xan ,
with dimension nC 2k . Setting $J WD �J jUJ W UJ ! Zan for J 2 A, we see that
.K; f$J j J 2 Ag/ is a relative Kuranishi atlas for �an , with $J a submersion. If X
is quasicompact we can take I finite, so A and K are finite.

We then deduce the following relative analogue of Theorem 3.16:

Theorem 3.24 (i) Let X be a separated derived C–scheme, Z D SpecB a smooth,
connected, classical affine C–scheme, �W X!Z a morphism, and Œ!X=Z � a family of
�2–shifted symplectic structures on X=Z, with dimC Z D k and vdimC X D nC k .
Write Xan , Zan for the sets of C–points of X D t0.X/, Z with the complex analytic
topology, and suppose Xan is second countable.

Then we can make the topological space Xan into a derived manifold Xdm with real
virtual dimension vdimRXdm D nC 2k, in any of the senses (a) Joyce’s m-Kuranishi
spaces mKur [21, Section 4.7], (b) Joyce’s d-manifolds dMan [18; 19; 20], (c) Borisov
and Noël’s derived manifolds DerManBoNo [3; 4], or (d) Spivak’s derived manifolds
DerManSpi [32], all discussed in Section 2.6.

(ii) We can also define a morphism of derived manifolds �dmW Xdm ! Zan, with
underlying continuous map �anW Xan!Zan .

(iii) For each z 2 Zan, the fibre Xzdm D �
�1
dm .z/ D Xdm ��dm;Zan;z � is a derived

manifold with vdimRX
z
dmD n. From Definition 3.20, XzD��1.z/ has a �2–shifted

symplectic structure !�
Xz

, and both Xzdm , Xz have (complex analytic) topological
space ��1an .z/�Xan . Then Xzdm is up to equivalence a possible choice for the derived
manifold associated to .Xz; !�

Xz
/ in Theorem 3.16.

Proof Parts (i) and (ii) follow from Theorems 2.18 and 3.23. For (iii), if z 2Zan then
as �J W VJ !Zan is a holomorphic submersion for J 2 A, the fibre V zJ WD �

�1
J .z/ is
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a complex submanifold of VJ . Setting U zJ D UJ \V
z
J and writing EzJ , F zJ , szJ , tzJ

for the restrictions of EJ , FJ , sJ , tJ to V zJ , and E�zJ , ECzJ , sCzJ ,  CzJ for the
restrictions of E�J , ECJ , sCJ ,  CJ to U zJ , we see I , A, V zJ , EzJ , F zJ , szJ , tzJ , U zJ ; : : :
are a possible choice for the data I , A, VJ , EJ ; : : : in the application of Theorems
3.15 and 3.16 to .Xz; !�

Xz
/. But from facts about fibre products of derived manifolds

in [18; 19; 20; 24] we see that the derived manifold Xzdm DXdm ��dm;Zan;z � may be
constructed from the data I , A, U zJ , ECzJ , sCzJ ,  CzJ ; : : : , as above. The theorem
follows.

Next we discuss orientations, generalizing Section 2.4 and Section 3.6 to the relative
case. Here is the analogue of Definition 2.12:

Definition 3.25 Let X be a derived C–scheme, Z D SpecB a smooth, connected,
classical affine C–scheme, �W X ! Z a morphism, and Œ!X=Z � 2 H�2.LX=Z/ a
family of �2–shifted symplectic structures on X=Z . Then as in (4), Œ!X=Z � induces
a canonical isomorphism of line bundles on X D t0.X/:

�X=Z;!X=Z W Œdet.LX=Z jX /�
˝2
!OX ŠO˝

2

X :

An orientation for .�W X ! Z; Œ!X=Z �/ is an isomorphism oW det.LX=Z jX /! OX
such that o˝ oD �X=Z;!X=Z .

Here is the relative analogue of Proposition 3.17. In parts (b) and (c), we could also
use notions of relative orientation for .Xan;K/! Zan and Xdm! Zan . But as Zan

is a complex manifold with a natural orientation, these are equivalent to absolute
orientations for .Xan;K/, Xdm , so we do not bother. The proof is an easy modification
of that in Section 6.3.

Proposition 3.26 In the situation of Theorems 3.23 and 3.24, there are canonical
one-to-one correspondences between

(a) orientations on .�W X !Z; Œ!X=Z �/ in the sense of Definition 3.25;

(b) orientations on .Xan;K/ in the sense of Section 2.5; and

(c) orientations on Xdm in the sense of Section 2.6.2.

The relative analogue of Proposition 3.18 does hold, but we will not prove it, as we
do not need it. The next theorem says that the virtual classes ŒXdm�dbo , ŒXdm�virt

of a proper oriented �2–shifted symplectic derived C–scheme .X ; !�
X
/ defined in

Corollary 3.19 are unchanged under deformation in families. Note that it is essential
that the base C–scheme Z be connected in Theorem 3.27.
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Theorem 3.27 Let X be a separated derived C–scheme, Z D SpecB a smooth,
connected, classical affine C–scheme, �W X ! Z a proper morphism, and Œ!X=Z �

a family of �2–shifted symplectic structures on X=Z, equipped with an orientation,
with dimC Z D k and vdimC X D nC k .

For each z 2 Zan we have a proper, oriented �2–shifted symplectic C–scheme
.Xz; !�

Xz
/ with vdimXz D n, and thus Corollary 3.19 defines a d-bordism class

ŒXzdm�dbo 2 dBn.�/ and a virtual class ŒXzdm�virt 2 Hn.X
z
anIZ/, which depend only

on .Xz; !�
Xz
/. Then ŒXzdm�dbo D ŒXz

0

dm�dbo and {z�.ŒX
z
dm�virt/ D {z

0

� .ŒX
z0

dm�virt/ for
all z; z0 2 Zan, where {z�.ŒX

z
dm�virt/ 2 Hn.XanIZ/ is the pushforward under the in-

clusion {z W Xzan ,!Xan .

Proof Theorem 3.24 constructs a derived manifold Xdm with vdimXdmDnC2k and
a morphism �dmW Xdm!Zan , which is proper as � is proper, and Proposition 3.26
gives an orientation on Xdm .

Let z; z0 2Zan . As Z is connected we can choose a smooth map  W Œ0; 1�!Zan with
.0/D z and .1/D z0 . The fibre product

Wdm DXdm ��dm;Zan; Œ0; 1�

exists as a derived manifold with boundary by [19, Section 7.5; 18, Section 7.6] and
Joyce [24], with vdimWdmD nC1, and Wdm is compact as Œ0; 1� is and �dm is proper,
and oriented since Xdm , Zan , Œ0; 1� are. As @Xdm D @Zan D¿, the boundary is

@Wdm DXdm ��dm;Zan; @Œ0; 1�DX
z
dm tX

z0

dm;

where Xzdm , Xz
0

dm are the fibres of �dmW Xdm!Zan at z , z0 .

Since @Œ0; 1�D �f0g t f1g in oriented 0–manifolds, we have @Wdm D �X
z
dm tX

z0

dm
in oriented derived manifolds. Therefore Definition 2.20 gives ŒXzdm�dbo D ŒX

z0

dm�dbo

in dBn.�/. By Theorem 3.22(c), Xzdm , Xz
0

dm are outcomes of Theorem 3.16 applied
to .Xz; !�

Xz
/, .Xz

0

; !�
Xz
0 /, so ŒXzdm�dbo , ŒXz

0

dm�dbo are the d-bordism classes associated
to .Xz; !�

Xz
/, .Xz

0

; !�
Xz
0 / in Corollary 3.19. A similar argument works for the

homology classes.

Remark 3.28 The assumptions that Z is smooth, classical and affine, and X is
separated, in Theorem 3.27 are easily removed; we can work over a base Z which is a
general classical or derived C–scheme, provided it is connected.

To see this, suppose �W X !Z is a proper morphism of derived C–schemes with Z
connected, and Œ!X=Z �2H�2.LX=Z / is a family of �2–shifted symplectic structures
on X=Z equipped with an orientation, extending Definitions 3.20 and 3.25 to general Z
in the obvious way.
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Suppose z; z0 2Zan . As Z is connected we can find a sequence zDz0; z1; : : : ; zNDz0

of points in Zan , and a sequence of smooth, connected, affine curves C 1; : : : ; CN

over C with morphisms � i W C i ! Z , such that � i .C i / contains zi�1 , zi for
i D 1; : : : ; N . Then X i DX �h

�;Z ;�i
C i is a derived C–scheme, and Œ!X=Z � pulls

back to a family Œ!X i=C i � of oriented �2–shifted symplectic structures on X i=C i .
Applying Theorem 3.27 to .X i ! C i ; Œ!X i=C i �/ we see ŒXzi�1dm �D ŒX

zi
dm� in dBn.�/

for i D 1; : : : ; N , so that

ŒXzdm�dbo D ŒX
z0
dm�dbo D ŒX

z1
dm�dbo D � � � D ŒX

zN
dm �dbo D ŒX

z0

dm�dbo:

The same argument works for virtual classes ŒXzdm�virt in homology.

We took Z to be smooth above to avoid defining families �dmW Xdm!Z of derived
manifolds over a base Z which is not a (derived) manifold.

3.8 “Holomorphic Donaldson invariants” of Calabi–Yau 4–folds

We now outline how the results of Sections 3.1–3.7 can be used to define new enu-
merative invariants of (semi)stable coherent sheaves on Calabi–Yau 4–folds Y , which
we could call “holomorphic Donaldson invariants”, and which should be unchanged
under deformations of Y . A related programme using gauge theory has recently been
proposed by Cao and Leung [8; 9; 10], which we discuss in Section 3.9.

We begin by discussing Donaldson–Thomas invariants DT˛.�/ of Calabi–Yau 3–folds,
introduced by Thomas [33]. Suppose Z is a Calabi–Yau 3–fold over C with an
ample line bundle OZ.1/, which defines a Gieseker stability condition � on coherent
sheaves on Z , and ˛ 2H even.ZIQ/. Then one can form coarse moduli C–schemes
M˛

st.�/, M˛
ss.�/ of �–(semi)stable coherent sheaves on Z of Chern character ˛ , with

M˛
st.�/�M˛

ss.�/ Zariski open, and M˛
ss.�/ proper.

Thomas [33] showed that M˛
st.�/ carries an “obstruction theory” �W E�! LM˛

st .�/

of virtual dimension 0, in the sense of Behrend and Fantechi [1]. Thus, if there are
no strictly �–semistable sheaves in class ˛ , so that M˛

st.�/DM˛
ss.�/ and M˛

st.�/ is
proper, then [1] gives a virtual count DT˛.�/D ŒM˛

st.�/�virt 2 Z. Thomas proved that
DT˛.�/ is unchanged under continuous deformations of Z .

Later, Joyce and Song [25] extended the definition of DT˛.�/ to invariants DT˛.�/2Q
for all ˛ 2H even.ZIQ/, dropping the condition that there are no strictly �–semistable
sheaves in class ˛ , and proved a wall-crossing formula for DT˛.�/ under change
of stability condition � . At about the same time, Kontsevich and Soibelman [26]
defined a motivic generalization of Donaldson–Thomas invariants (assuming existence
of “orientation data” as in Section 2.4), and proved their own wall-crossing formula
under change of � .
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Thomas [33] called his invariants DT˛.�/ “holomorphic Casson invariants”, though
they are now generally known as Donaldson–Thomas invariants. Here Casson invariants
are integer invariants of oriented real 3–manifolds ZR which are homology 3–spheres,
which “count” flat connections on ZR .

This followed a programme of Donaldson and Thomas [13], which starting with some
well-known geometry in real dimensions 2, 3 and 4, aimed to find analogues in complex
dimensions 2, 3 and 4; so the complex analogues of homology 3–spheres, and flat
connections upon them, are Calabi–Yau 3–folds, and holomorphic vector bundles (or
coherent sheaves) upon them.

Donaldson invariants [12] are invariants of compact, oriented 4–manifolds YR , defined
by “counting” moduli spaces M˛

inst of SU.2/–instantons E on YR with c2.E/D ˛ 2
Z. In contrast to Casson and Donaldson–Thomas invariants, the (virtual) dimension
d˛ of M˛

inst need not be zero. Oversimplifying/lying a bit, one first constructs an
orientation on M˛

inst [12, Section 5.4]. Then we have a virtual class ŒM˛
inst�virt 2

Hd˛ .M˛
instIZ/. For each ˇ 2 H2.YRIZ/ we construct a natural cohomology class

�.ˇ/ 2 H 2.M˛
instIZ/, with �.ˇ1 C ˇ2/ D �.ˇ1/C �.ˇ2/. Then if d˛ D 2k , we

define Donaldson invariants D˛.ˇ1; : : : ; ˇk/D .�.ˇ1/[� � �[�.ˇk// � ŒM˛
inst�virt 2Z

for all ˇ1; : : : ; ˇk 2H2.YRIZ/. We can think of D˛ as a Z–valued homogeneous
degree-k polynomial on H2.YRIZ/.

We propose, following [13], to define “holomorphic Donaldson invariants” of Calabi–
Yau 4–folds. The gauge theory ideas which were the primary focus of [13] will be
discussed in Section 3.9; here we work in the world of (derived) algebraic geometry.
Suppose Y is a Calabi–Yau 4–fold over C (ie Y is smooth and projective with
H i .OY /DC if i D 0; 4 and H i .OY /D 0 otherwise), and ˛D .˛0; ˛2; ˛4; ˛6; ˛8/2
H even.Y IQ/. As above we can form coarse moduli C–schemes M˛

st.�/ �M˛
ss.�/

of Gieseker (semi)stable coherent sheaves on Y of Chern character ˛ , with M˛
ss.�/

proper.

To make contact with the work of Sections 3.1–3.7, we need to show:

Claim 3.29 There is a �2–shifted symplectic derived C–scheme .M˛
st.�/; !

�/,
natural up to equivalence, with classical truncation t0.M˛

st.�// D M˛
st.�/, of vir-

tual dimension vdimC M˛
st.�/ D d˛ WD 2 � deg.˛ [ x̨ [ td.TY //8, where x̨ D

.˛0;�˛2; ˛4;�˛6; ˛8/, and td.�/ is the Todd class.

Pantev et al [31, Section 2.1] prove the analogue of Claim 3.29 in the context of
(derived) Artin stacks, but we want to reduce to (derived) schemes. Roughly this
means factoring out the C� stabilizer groups at each point of the �–stable derived
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moduli stack. Actually, it should not be difficult to extend Sections 3.1–3.7 to derived
algebraic C–spaces rather than derived C–schemes, and then it would be enough to
construct M˛

st.�/ as a derived algebraic C–space.

Next we would need to answer:

Question 3.30 Does .M˛
st.�/; !

�/ in Claim 3.29 have a natural orientation, in the
sense of Section 2.4, possibly depending on some choice of data on Y ?

Following the argument of Donaldson [12, Section 5.4], Cao and Leung prove an
orientability result [10, Theorem 2.2], which should translate to the statement that if the
Calabi–Yau 4–fold Y has holonomy SU.4/ with H�.Y IZ/ torsion-free, and M˛

st.�/

is a derived moduli scheme of coherent sheaves on Y , then orientations on M˛
st.�/

exist, though they do not construct a natural choice.

If both these problems are solved, then Theorem 3.16 makes M˛
st.�/an into a derived

manifold M˛
st.�/dm of real virtual dimension d˛ , which is oriented by Proposition 3.17.

If there are no strictly �–semistable sheaves in class ˛ then M˛
st.�/dm is also compact,

and has a d-bordism class ŒM˛
st.�/dm�dbo in dBd˛ .�/ and virtual class ŒM˛

st.�/dm�virt

in Hd˛ .M˛
st.�/anIZ/.

If d˛D0 then ŒM˛
st.�/dm�dbo2dB0.�/ŠZ is the virtual count we want. But if d˛>0

we should aim to find suitable cohomology classes on M˛
st.�/an and integrate them

over ŒM˛
st.�/dm�virt , as for Donaldson invariants above.

Claim 3.31 One can define natural cohomology classes �.ˇ/ on M˛
st.�/an depending

on homology classes ˇ on Y , which can be combined with ŒM˛
st.�/dm�virt to give

integer invariants, in a similar way to Donaldson invariants.

If M˛
st.�/ is a fine moduli space, there is a universal sheaf E on M˛

st.�/�Y , with Chern
classes ci .E/ 2H 2i .M˛

st.�/an�Y IQ/Š
L
kH

2i�k.M˛
st.�/anIQ/˝Hk.Y IQ/, and

we can make �i .ˇ/ 2H 2i�k.M˛
st.�/anIQ/ by contracting ci .E/ with ˇ 2Hk.Y IQ/.

Using the results of Section 3.7, we should be able to prove that the resulting invariants
are unchanged under continuous deformations of Y .

This would take us to the same point as Thomas [33] in the Calabi–Yau 3–fold case:
we could “count” moduli spaces M˛

st.�/ for those classes ˛ containing no strictly
�–semistable sheaves, and get a deformation-invariant answer. Many questions would
remain, for instance, how to count strictly �–semistables, wall-crossing formulae as
in [25; 26], computation in examples, and so on.

We hope to return to these issues in future work.
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3.9 Motivation from gauge theory and “SU.4/ instantons”

Finally we discuss some ideas of Donaldson and Thomas [13], which were part of the
motivation for this paper, and the work of Cao and Leung [8; 9; 10].

Let Y be a Calabi–Yau 4–fold over C , regarded as a compact real 8–manifold Y
with complex structure J , Ricci-flat Kähler metric g , Kähler form ! and holomorphic
volume form �. Fix a complex vector bundle E! Y of rank r > 0 with Hermitian
metric h and Chern character ch.E/ D ˛ , and as in [8; 9] assume for simplicity
that c1.E/ D 0. Consider connections r on E preserving h that have curvature
F 2 C1.End.E/˝C .ƒ

2T �Y ˝R C//. The splitting

ƒ2T �Y ˝R C D h!iC˚ƒ
1;1
0 T �Y ˚ƒ2;0T �Y ˚ƒ0;2T �Y

induces a corresponding decomposition F D F ! ˚F 1;10 ˚F 2;0˚F 0;2 .

We call r a Hermitian–Einstein connection if F ! D F 2;0 D F 0;2 D 0. There is a
splitting r D @E ˚ N@E , where N@E gives E the structure of a holomorphic vector
bundle on .Y; J /, as F 0;2 D 0. The Hitchin–Kobayashi correspondence says that
if .E; N@E / is a holomorphic vector bundle and is slope-stable, then N@E extends to a
unique Hermitian–Einstein connection r D @E˚ N@E preserving h. Also, holomorphic
vector bundles on Y are algebraic. Thus, studying moduli spaces M˛

alg-vb of stable
algebraic vector bundles is roughly equivalent to studying moduli spaces M˛

HE of
Hermitian–Einstein connections, modulo gauge.

As a system of PDEs, the Hermitian–Einstein equations are overdetermined: there are
8r2 unknowns, 13r2 equations and r2 gauge equivalences, with 8r2� 13r2� r2 < 0.
Algebraically, this corresponds to the fact that the natural obstruction theory on Malg-vb

is not perfect, so we cannot form virtual classes.

Using �, g we can define real splittings

ƒ2;0T �Y Dƒ
2;0
C
T �Y ˚ƒ2;0� T �Y and ƒ0;2T �Y Dƒ

0;2
C
T �Y ˚ƒ0;2� T �Y

and corresponding decompositions

F 2;0 D F
2;0
C
˚F 2;0� and F 0;2 D F

0;2
C
˚F 0;2� :

Following Donaldson and Thomas [13, Section 3], we call r an SU.4/–instanton
if F ! D F 2;0

C
D F

0;2
C
D 0. This gives 8r2 unknowns, 7r2 equations and r2 gauge

equivalences, with 8r2� 7r2� r2 D 0. It is a determined elliptic system, so that we
can hope to define virtual classes. This is special to Calabi–Yau 4–folds, a complex
analogue of instantons on real 4–manifolds.
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Writing M˛
SU.4/ for the moduli space of SU.4/–instantons, we have M˛

HE �M˛
SU.4/ ,

as the SU.4/ instanton equations are weaker than the Hermitian–Einstein equations.
Now ˛ D ch.E/ 2

L4
pD0H

p;p.Y / if E admits Hermitian–Einstein connections.
Conversely, as in [13, page 36], if ˛ 2

L
pH

p;p.Y / then one can use L2–norms
of components of F to show that any SU.4/–instanton is Hermitian–Einstein. Thus,
either M˛

HE DM˛
SU.4/ , or M˛

HE D¿.

However, the equality M˛
HE DM˛

SU.4/ holds only at the level of sets, or topological
spaces. Since M˛

HE is defined by more equations, if we regard M˛
HE , M˛

SU.4/ as
(derived) C1–schemes, for instance, then M˛

HE ¨ M˛
SU.4/ .

In the setting of Sections 3.1–3.6, we should compare M˛
HE (a Calabi–Yau 4–fold

moduli space, without a virtual class, equivalent to an algebraic moduli scheme M˛
alg-vb )

with the �2–shifted symplectic derived C–scheme .X ; !�
X
/, and M˛

SU.4/ (an elliptic
moduli space, hopefully with a virtual class, equal to M˛

HE on the level of topological
spaces) with the derived manifold Xdm . It was these ideas from Donaldson and
Thomas [13] that led the authors to believe that one could modify a �2–shifted
symplectic derived C–scheme to get a derived manifold with the same topological
space, and so define a virtual class.

Donaldson and Thomas [13] envisaged using gauge theory to define invariants of
Calabi–Yau 4–folds “counting” moduli spaces M˛

SU.4/ , and also invariants of compact
Spin.7/–manifolds “counting” moduli spaces of “Spin.7/–instantons”.

This would require finding suitable compactifications M˛
SU.4/ of the moduli spaces

M˛
SU.4/ , and giving them a nice enough geometric structure to define virtual classes,

which is a formidably difficult problem in gauge theory in dimensions > 4. A huge
advantage of our approach is that, working in algebraic geometry, with moduli spaces
of coherent sheaves rather than vector bundles, we often get compactness of moduli
spaces for free, without doing any work.

Cao and Leung [8; 9; 10] also aim to define enumerative invariants of Calabi–Yau
4–folds Y , which they call “DT4–invariants”, and their ideas overlap with ours. As
for our outline in Section 3.8, their general theory is still rather incomplete, but they
prove many partial results, and do computations in examples.

Given a vector bundle moduli space M˛
alg-vb ŠM˛

HE ŠM˛
SU.4/ in topological spaces,

assuming it is compact, and with an orientation (compare Question 3.30), Cao and Leung
[9, Section 5] define a virtual class ŒM˛

SU.4/�virt for M˛
SU.4/ , and contract this with some

cohomology classes �.ˇ/ (compare Claim 3.31) to get integer invariants, which they
prove are unchanged under deformations of Y . All this involves fairly standard material
from gauge theory.
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They also discuss the case in which one has a compact moduli space of coherent sheaves
M˛

coh-sh , which contains the vector bundle moduli space M˛
alg-vb as an open subset.

They want to define a virtual class for M˛
coh-sh , as we want to, and they can do this

under the assumptions that either M˛
coh-sh is smooth, or (in our language) that the

�2–shifted symplectic derived scheme .M˛
coh-sh; !

�/ is locally of the form T �X Œ2�

for X a quasismooth derived C–scheme.

To compare our work with theirs, given M˛
alg-vb � M˛

coh-sh as above, assuming
Claim 3.29, our Theorem 3.16 gives M˛

coh-sh the structure of a derived manifold, but
one depending on arbitrary choices. By topologically identifying M˛

alg-vb ŠM˛
SU.4/ ,

in effect Cao and Leung make M˛
alg-vb into a derived manifold, canonically up to

equivalence (though depending on the Kähler metric g and holomorphic volume
form �). However, there seems no reason why their derived manifold structure
on M˛

alg-vb �M˛
coh-sh should extend smoothly to M˛

coh-sh . This is a reason why our
approach may in the end be more effective.

4 Proof of Theorem 3.1

In this proof we write cdgaC for the ordinary category of cdgas over C , and cdga1C
for the 1–category of cdgas over C , defined using the model structure on cdgaC .
All objects in cdgaC are fibrant. A cdga A is cofibrant if it is a retract of a cdga A0

which is almost-free, that is, free as a graded commutative algebra. If �W A ! B

is a morphism in cdgaC then �W A! B is also a morphism in cdga1C . However,
morphisms �W A!B in cdga1C may not correspond to morphisms A!B in cdgaC

unless A is cofibrant.

The spectrum functor Spec maps .cdgaC/
op! dSchC and .cdga1C /

op! dSchC , and
.cdga1C /

op! dSchC is an equivalence with the full 1–subcategory of dSchC with
affine objects. So, morphisms �W A! B in cdga1C are essentially the same thing as
morphisms SpecB! SpecA in dSchC .

Let �W X ! Z D SpecB and f.A�i ;˛i ; ˇi / j i 2 I g be as in Theorem 3.1. Our
task is to construct a standard form cdga A�J D .A�J ; d/, a Zariski open inclusion
˛J W SpecA�J ,! X , and a morphism ˇJ W B ! A0J for all finite ¿ ¤ J � I , and a
quasifree morphism ˆJK W A

�

K!A�J for all finite ¿¤K � J � I , satisfying certain
conditions. We will do this by induction on increasing k D jJ j. Here is our inductive
hypothesis:

Hypothesis 4.1 Let k D 1; 2; : : : be given. Then:

(a) We are given finite subsets SnJ for all ¿ ¤ J � I with jJ j 6 k and for all
nD�1;�2; : : : .
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(b) For all ¿ ¤ J � I with jJ j 6 k we have A0J D
Nover B
i2J A0i as a smooth C–

algebra of pure dimension, where the tensor products are over B using ˇi W B! A0i
to make A0i into a B–algebra, so that if J D fi1; : : : ; ij g then

(47) A0J D Ai1 ˝B Ai2 ˝B � � � ˝B Aij :

The morphism ˇJ W B!A0J is induced by (47) and the ˇi W B!A0i for i 2 J , and is
smooth as the ˇi are.

(c) For all ¿¤ J � I with jJ j6 k , as a graded C–algebra, A�J is freely generated
over A0J by generators

F
¿¤K�J S

n
K in degree n for nD�1;�2; : : : .

(d) For all ¿¤K � J � I with jJ j6 k , the morphism ˆ0JK W A
0
K!A0J in degree 0

is the morphism

A0K D
O

B
i2K

A0i D

�O
B

i2K

A0i

�
˝B

� O
B

i2JnK

B

�
!

O
B

i2J

A0i D A
0
J

induced by the morphisms idW A0i ! A0i for i 2 K and ˇi W B ! A0i for i 2 J nK.
Then ˆJK W A�K ! A�J is the unique morphism of graded C–algebras acting by ˆ0JK
in degree 0, and mapping ˆJK W  7!  for each  2 SnL for ¿¤L�K � J � I and
nD�1;�2; : : : , so that  is a free generator of both A�K over A0K and A�J over A0J .

Note that ˆ0JK W A
0
K ! A0J is a smooth morphism of C–algebras of pure relative

dimension, since idW A0i ! A0i and ˇi W B ! A0i are. Also ˆJK maps independent
generators

F
¿¤L�K S

n
L of A�K over A0K to independent generators of A�J over A0J .

Hence ˆJK W A�K ! A�J is quasifree.

Clearly ˇJ Dˆ0JK ıˇK DˆJK ıˇK W B! A0J .

Also, if ¿¤L�K�J � I with jJ j6K then clearly ˆ0JLDˆ
0
JKıˆ

0
KLW A

0
L!A0J ,

and ˆJL DˆJK ıˆKLW A�L! A�J .

(e) For all ¿ ¤ J � I with jJ j 6 k and all n D �1;�2; : : : , we are given
maps ınJ W S

n
J ! AnC1J .

(f) Let ¿¤ J � I with jJ j6 k . Define dW A�J ! A�C1J uniquely by the conditions
that d satisfies the Leibnitz rule, and

(48) d DˆJK ı ınK./ for all ¿¤K � J; n6 �1 and  2 SnK :

We require that d ı dD 0W A�J ! A�C2J , so that A�J D .A
�
J ; d/ is a cdga.

This defines A�J D .A
�
J ; d/ as a standard form cdga over C . Observe if ¿¤K�J � I

with jJ j 6 k then as ˆJK W A�K ! A�J is a morphism of graded C–algebras with
ˆJK ıdD dıˆJK./ for all  in the generating sets

F
¿¤L�K S

n
L for A�K over A0K ,
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we have ˆJK ı dD d ıˆJK W A�K ! A�C1J , and so ˆJK W A�K ! A�J is a morphism
of cdgas.

(g) For all ¿ ¤ J � I with jJ j 6 k , we are given a Zariski open inclusion
˛J W SpecA�J ,! X , with image Im˛J D

T
i2J Im˛i , such that (13) homotopy

commutes.

If ¿¤K � J � I with jJ j6 k then (14) homotopy commutes.

Remark 4.2 (i) In Hypothesis 4.1, the only actual data required are the finite sets SnJ
in (a), the maps ınJ W S

n
J !AnC1J in (e), and the morphisms ˛J W SpecA�J ,!X in (g).

Also, the only statements requiring proof are that d ı d D 0 in (f), and that ˛J is
a Zariski open inclusion with image

T
i2J Im˛i , and that (13) and (14) homotopy

commute in (g). All of (b), (c), (d) are definitions and deductions.

(ii) Most of the conclusions of Theorem 3.1 are immediate from the definitions
in (a)–(g): that A�J is a standard form cdga, and ˇJ W B ! A0J is smooth, and
ˆJK W A

�

K ! A�J is quasifree, and ˇJ DˆJK ıˇK , and ˆJL DˆJK ıˆKL .

For the first step in the induction, we prove Hypothesis 4.1 when k D 1. Then the
only subsets ¿ ¤ J � I with jJ j 6 k are J D fig for i 2 I , and the only subsets
¿¤K � J � I with jJ j6 k are J DK D fig for i 2 I .

As in Theorem 3.1 we are given data f.A�i ;˛i ; ˇi / j i 2 I g, where A�i is a standard
form cdga, so that A�i is freely generated over A0i by finitely many generators in each
degree nD�1;�2; : : : , as in Definition 2.1. For each i 2 I and each nD�1;�2; : : :
choose a subset Sn

fig
�Ani , as in part (a) for J D fig, such that A�i is freely generated

over A0i by
F
n6�1 S

n
fig

. Set A�
fig
D A�i and ˇfig D ˇi , so that parts (b) and (c) hold

for J D fig.

Part (d) is a definition, and when k D 1 only says that when J DK D fig we have
ˆfigfig D idW A�

fig
! A�

fig
. For (e), define

ın
figW S

n
fig! AnC1

fig
D AnC1i by ın

fig./D d;

using d in the cdga A�i D .A
�
i ; d/. Given (e), part (f) says that the differentials d in

A�
fig
D .A�

fig
; d/ and A�i D .A

�
i ; d/ agree, consistent with setting A�

fig
D A�i , so that

d ı dD 0 in A�
fig

as A�i is a cdga.

For (g), if i 2 I define ˛fig D ˛i W A
�

fig
D A�i ! X . Then the assumptions on

f.A�i ;˛i ; ˇi / j i 2 I g in Theorem 3.1 imply that ˛fig is a Zariski open inclusion,
with image Im˛fig D Im˛i , and (13) homotopy commutes for J D fig as (12)
does. The only ¿¤ K � J � I with jJ j 6 k D 1 are J D K D fig, and then (14)
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homotopy commutes as ˛J D˛KD˛fig and ˆJKD id. This completes Hypothesis 4.1
when k D 1. Note that our definitions A�

fig
D A�i , ˛fig D ˛i , and ˇfig D ˇi for i 2 I

are as required in Theorem 3.1(i).

Next we prove the inductive step. Let l > 1 be given, and suppose Hypothesis 4.1
holds with k D l . Keeping all the data in parts (a), (e), (g) for jJ j6 l the same, we
will prove Hypothesis 4.1 with kD lC1. To do this, for each J � I with jJ j D lC1,
we have to construct the data of finite sets SnJ for nD�1;�2; : : : in (a), and maps
ınJ W S

n
J ! AnC1J in (e), and the morphism ˛J W SpecA�J ,!X in (g), and then prove

the claims in (f) that d ı d D 0, and in (g) that ˛J is a Zariski open inclusion with
image

T
i2J Im˛i , and that (13) and (14) homotopy commute.

Note that as Hypothesis 4.1 involves no compatibility conditions between data for
distinct J; J 0 � I with jJ j D jJ 0j D k , we can do this independently for each J � I
with jJ j D l C 1, that is, it is enough to give the proof for a single such J . So fix a
subset J � I with jJ j D l C 1.

We first define a standard form cdga zA�J which is an approximation to the cdga A�J
that we want, and morphisms žJ W B! zA0J , ẑJK W A�K! zA�J for all ¿¤K ¨ J , so
that jKj6 l and A�K is already defined:

� Define zA0J D A
0
J and žJ D ˇJ W B! zA0J D A

0
J as in Hypothesis 4.1(b).

� Define zA�J to be the graded C–algebra freely generated over A0J by generatorsF
¿¤K¨J S

n
K in degree n for n D �1;�2; : : : . This is the same as for A�J in

Hypothesis 4.1(c), except that we do not include generators SnJ , since SnJ is not
yet defined.

� If ¿ ¤ K ¨ J , so that A�K is defined, define ˆ0JK W A
0
K ! A0J D

zA0J as in
Hypothesis 4.1(d), and define ẑJK W A�K ! zA�J to be the unique morphism of graded
C–algebras acting by ˆ0JK in degree 0, and mapping ˆJK W  7!  for each  2 SnL
for ¿¤ L�K and nD�1;�2; : : : .

� The differential dW zA�J ! zA�C1J in the cdga zA�J D . zA
�
J ; d/ is determined uniquely

as in (48) by

d D ẑJK ı ınK./ for all ¿¤K ¨ J; n6 �1 and  2 SnK :

Then ẑJK W A�K! zA
�

J is a cdga morphism for all ¿¤K ¨ J , as in Hypothesis 4.1(f)
for ˆJK .

That is, zA�J is the colimit in the ordinary category cdgaC of the commutative diagram �

with vertices the objects B and A�K for all K with ¿¤K¨J , and edges the morphisms
ˇK W B ! A�K and ˆK1K2 W A

�

K2
! A�K1 for ¿¤K2 ¨K1 ¨ J , and žJ W B ! zA�J ,
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ẑ
JK W A

�

K !
zA�J are the projections to the colimit. Since all the morphisms in �

are almost-free in negative degrees and smooth in degree 0, these morphisms are
sufficiently cofibrant to compute the homotopy colimits as well. Indeed, having such a
morphism A�! C � we can factor it into A�! A�˝A0 C

0! C �: Each one of these
morphisms is flat, and hence homotopy pullbacks can be computed without resolving.
Finally we notice that the colimit of the entire diagram � can be calculated as a
sequence of pullbacks. So zA�J is also the homotopy colimit of � in the 1–category
cdga1C . Hence Spec zA�J is the homotopy limit of Spec� in the 1–category dSchC .

For ¿¤K¨J , consider
T
i2K Im˛i as an open derived C–subscheme of X . Then by

Hypothesis 4.1(g), ˛K W SpecA�K!
T
i2K Im˛i is an equivalence in dSchC . We also

have the open derived C–subscheme
T
i2J Im˛i in X , which is affine by Definition 2.6

as X has affine diagonal and Im˛i 'SpecA�i is affine for i 2J . Thus we may choose
a standard form cdga yA�J and an equivalence y̨J W Spec yA�J ,!

T
i2J Im˛i .

Define morphisms y̌J W Spec yA�J!ZDSpecB by y̌J D�ıy̨J , and y�JK W Spec yA�J!
SpecA�K for ¿¤K ¨ J as the composition

Spec yA�J
y̨J //

T
i2J Im˛i

� � //
T
i2K Im˛i

˛�1K // SpecA�K ;

where ˛�1K is a quasi-inverse for the equivalence ˛K W SpecA�K !
T
i2K Im˛i .

By the homotopy limit property of Spec zA�J , there exists a morphism  W Spec yA�J !
Spec zA�J in dSchC unique up to homotopy, with homotopies y̌J ' Spec žJ ı  
and y�JK ' Spec ẑJK ı  for ¿ ¤ K ¨ J . We can then write  ' Spec‰ for
‰W zA�J !

yA�J a morphism in cdga1C , unique up to homotopy. However, we do not
yet know that ‰ descends to a morphism in cdgaC . The definitions of y̌J , y�JK and
 ' Spec‰ give homotopies

(49)
� ı y̨J ' Spec žJ ıSpec‰W Spec yA�J !Z;

y̨J ' ˛K ıSpec ẑJK ıSpec‰W Spec yA�J !X for ¿¤K ¨ J:

Consider the composition of morphisms of classical C–algebras

(50) A0J
zA0J

// H 0. zA�J /
H0.‰/

// H 0. yA�J /:

Here SpecH 0.‰/ is the natural morphism

(51) SpecH 0.‰/W XJ !
Y

Z

¿¤K¨J

XK ;

writing XK for the open C–subscheme
T
k2K t0.Im˛k/ in X . This is the restriction

of the multidiagonal �2
jJ j�2

X W X!X �ZX �Z � � ��ZX , with 2jJ j�2 copies of X on
the right. Because X is separated, �2X W X ! X �Z X is a closed immersion, and
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thus �2
jJ j�2

X is a closed immersion. Also the domain XJ of (51) is the preimage
under �2

jJ j�2

X of the target, since XJ D
T

¿¤K¨J XK as jJ j> 2.

Hence (51) is a closed immersion, so H 0.‰/ in (50) is surjective. Also zA0J!H 0. zA�J /

is surjective, so the composition (50) is surjective. Therefore we can replace yA�J by
an equivalent object in cdga1C , such that yA0J D zA

0
J , and the following homotopy

commutes in cdga1C :

(52)

zA0J

��

yA0J

��

zA�J
‰
// yA�J

Now ‰W zA�J !
yA�J is a morphism in cdga1C . For this to descend to a morphism in

cdgaC , the simplest condition is that zA�J should be cofibrant and yA�J fibrant in the
model category cdgaC . Here the object yA�J is fibrant, as all objects are, but zA�J may
not be cofibrant, ie a retract of an almost-free cdga. However, zA�J is cofibrant as an
zA0J –algebra, as it is free in negative degrees, and (52) says that ‰ does descend to a

morphism in cdgaC in degree 0. Together these imply that ‰ descends to a morphism
‰W zA�J !

yA�J in cdgaC .

Next, by induction on decreasing nD�1;�2; : : : we will choose the data SnJ , ınJ in
parts (a) and (e) of Hypothesis 4.1. Here is our inductive hypothesis:

Hypothesis 4.3 Let N D 0;�1;�2; : : : be given. Then:

(a) We are given finite subsets SnJ for nD�1;�2; : : : ; N . Write

A�J;N D
zA�J ŒS

1
J ; : : : ; S

N
J �

for the graded C–algebra freely generated over zA�J by the sets of extra generators SnJ
in degree n for all nD�1;�2; : : : ; N .

(b) We are given maps ınJ W S
n
J ! AnC1J;N for nD�1;�2; : : : ; N . Define

dW A�J;N ! A�C1J;N

uniquely by the conditions that d satisfies the Leibnitz rule, and d is as in zA�J D
. zA�J ; d/ on zA�J � A

�
J;N , and on the extra generators  2 SnJ for nD�1;�2; : : : ; N ,

we have d D ınJ ./ 2 A
nC1
J;N . We require that d ı d D 0W A�J;N ! A�C2J;N , so that

A�J;N D .A
�
J;N ; d/ is a cdga.

(c) We are given maps �nJ W S
n
J !

yAnJ for nD�1;�2; : : : ; N . Define

„N W A
�
J;N !

yA�J

to be the morphism of graded C–algebras such that „N D‰ on zA�J � A
�
J;N , and on

the extra generators  2SnJ for nD�1;�2; : : : ; N , we have „N ./D �nJ ./2 yA
n
J;N .
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We require that „N ıdD dı„N W A�J;N ! yA
�C1
J , so that „N W A�J;N ! yA

�

J is a cdga
morphism.

We also require that Hn.„N /W H
n.A�J;N /!Hn. yA�J / should be an isomorphism for

nD 0;�1;�2; : : : ; N C 1, and surjective for nDN .

For the first step N D 0, there is no data SnJ , ınJ , �nJ , and A�J;0 D zA
�

J , and „0 D‰ ,
and the only thing to prove is that

H 0.‰/W H 0. zA�J /!H 0. yA�J /

is surjective, which holds as ‰0D idW zA0J ! zA
0
J D

yA0J from above. So Hypothesis 4.3
holds for N D 0.

For the inductive step, let mD 0;�1;�2; : : : be given, and suppose Hypothesis 4.3
holds with N Dm. Keeping all the data SnJ , ınJ , �nJ for nD�1; : : : ; m the same, we
will prove Hypothesis 4.3 with N Dm�1. Note that with S�1J ; : : : ; SmJ the same, the
graded C–algebras A�J;m , A�J;m�1 agree in degrees 0;�1; : : : ; m, so it makes sense
to say that

ınJ W S
n
J ! AnC1J;m and ınJ W S

n
J ! AnC1J;m�1

are equal for nD�1;�2; : : : ; m. We must choose data Sm�1J , ım�1J W Sm�1J !AmJ;m�1
and �m�1J W Sm�1J ! yAm�1J , and verify the last two conditions of Hypothesis 4.3(c).

Choose a finite subset PSm�1J of Ker.Hm.„m/W H
m.A�J;m/!Hm. yA�J // which gener-

ates Ker. � � � / as an H 0.A�J;m/–module, and a finite subset RSm�1J of Hm�1. yA�J / such
that RSm�1J and Im.Hm�1.„m/W H

m�1.A�J;m/!Hm�1. yA�J // generate Hm�1. yA�J /

as an H 0. yA�J /–module. Finite subsets suffice in each case since A�J;m , yA�J are
of standard form, so that the modules Hn.A�J;m/, H

n. yA�J / are finitely generated
over H 0.A�J;m/, H

0. yA�J / for all n. Set

Sm�1J D PSm�1J t RSm�1J :

Then Hypothesis 4.3(a) defines A�J;m�1 as a graded C–algebra, with AnJ;m�1DA
n
J;m in

degrees n>m. For all  2 PSm�1J , choose a representative ım�1J ./ in AmJ;m�1DA
m
J;m

for the cohomology class  in Hm.A�J;m/, so that

d.ım�1J .//D 0 in AmC1J;m :

Define ım�1J ./D0 in AmJ;m�1 for all  2 RSm�1J . This defines ım�1J W Sm�1J !AmJ;m�1
in Hypothesis 4.3(b), and hence dW A�J;m�1! A�C1J;m�1 .

To see that d ı d D 0W A�J;m�1 ! A�C2J;m�1 , note that A�J;m�1 D A
�
J;mŒS

m�1
J �, so d

on A�J;m�1 is determined by d on A�J;m , which already satisfies dıdD 0 by induction,
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and d on the extra generators Sm�1J , which satisfy dıdD 0 as for  2 PSm�1J we have
d ı d D d.ım�1J .//D 0, and for  2 RSm�1J we have d D 0 so d ı d D 0. Hence
A�J;m�1 D .A

�
J;m�1; d/ is a cdga, as we have to prove.

For all  2 PSm�1J , because ım�1J ./ 2 AmJ;m represents a cohomology class in
Ker.Hm.„m/W H

m.A�J;m/!Hm. yA�J //, we see that „m ı ım�1J ./ is exact in yA�J ,
so we can choose an element �m�1J ./ 2 yAm�1J with d ı �m�1J ./D„m ı ı

m�1
J ./.

For all  2 RSm�1J �Hm�1. yA�J /, choose an element �m�1J ./ 2 yAm�1J representing  ,
so that d ı �m�1J ./D 0. This defines �m�1J W Sm�1J ! yAm�1J .

Hypothesis 4.3(c) now defines „m�1W A�J;m�1! yA
�
J . To prove „m�1ıdD dı„m�1 ,

note that A�J;m�1DA
�
J;mŒS

m�1
J �, and on A�J;m�A

�
J;m�1 we have „m�1D„m , and

„mıdD dı„m by induction. So it is enough to prove that „m�1ıd./D dı„m�1./
for all  2 Sm�1J . If  2 PSm�1J then

„m�1 ı d./D„m�1 ı ım�1J ./D„m ı ı
m�1
J ./D d ı �m�1J ./D d ı„m�1./;

as we want. Similarly, if  2 RSm�1J then

„m�1 ı d./D„m�1 ı ım�1J ./D 0D d ı �m�1J ./D d ı„m�1./:

Therefore „m�1 ı dD d ı„m�1 , and „m�1W A�J;m�1! yA�J is a cdga morphism.

Finally we have to show that Hn.„m�1/W H
n.A�J;m�1/!Hn. yA�J / is an isomorphism

for n D �1;�2; : : : ; m, and surjective for n D m� 1. Since „mW A�J;m! yA�J and
„m�1W A

�

J;m�1!
yA�J coincide in degrees 0;�1; : : : ; m, in cohomology they coincide

in degrees 0;�1; : : : ; mC1, so Hn.„m�1/ is an isomorphism for nD0;�1; : : : ; mC1
as Hn.„m/ is, by induction.

Because Hm.„m/W H
m.A�J;m/ ! Hm. yA�J / is surjective, and the added genera-

tors PSm�1J in A�J;m�1 span Ker.Hm.„m//, adding the generators PSm�1J makes
Hm.„m�1/W H

m.A�J;m�1/!Hm. yA�J / into an isomorphism. Also, since the added
generators RSm�1J together with Im.Hm�1.„m// generate Hm�1. yA�J /, adding RSm�1J

makes Hm�1.„m�1/W H
m�1.A�J;m�1/!Hm�1. yA�J / surjective.

This proves Hypothesis 4.3 for N Dm�1, so by induction Hypothesis 4.3 holds for all
N D 0;�1;�2; : : : . Taking the limit limN!�1A�J;N gives the cdga A�J defined in
Hypothesis 4.1 using the data SnJ , ınJ for all nD�1;�2; : : : from parts (a) and (b) of
Hypothesis 4.3 as N !�1. The data �nJ for nD�1;�2; : : : from part (c) defines a
morphism „D limN!�1„N W A�J ! yA�J , where „, A�J agree with „N , A�J;N in
degrees 0;�1; : : : ; N for all N 6 0.

Hence Hn.„/W Hn.A�J /!Hn. yA�J / agrees with Hn.„N /W H
n.A�J;N /!Hn. yA�J /

for all nD 0;�1; : : : ; N C 1, so Hn.„/ is an isomorphism for all n6 0 by part (c)
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of Hypothesis 4.3, and „W A�J ! yA�J is a quasi-isomorphism in cdgaC , and hence
an equivalence in cdga1C . Thus Spec„W Spec yA�J ! SpecA�J is an equivalence
in dSchC . So we can choose a quasi-inverse �W SpecA�J ! Spec yA�J in dSchC .

Write �W zA�J ,!A�J for the inclusion. Then ‰D„ı �W zA�J ! yA
�

J , since „N j zA�J D‰ ,
so taking the limit as N !�1 gives „j zA�J D‰ . Also the definitions of ˇJ W B!A�J
and ˆJK W A�K ! A�J for ¿¤ K ¨ J in parts (b) and (d) of Hypothesis 4.1 satisfy
ˇJ D � ı žJ and ˆJK D � ı ẑJK .

Define ˛J D y̨J ı�W SpecA�J !X . Since y̨J is a Zariski open inclusion with imageT
i2J Im˛i , and � is an equivalence, ˛J W SpecA�J !X is a Zariski open inclusion

with image
T
i2J Im˛i , as in Hypothesis 4.1(g). Then we have

� ı˛J D � ı y̨J ı�

' Spec žJ ıSpec‰ ı�

' Spec žJ ıSpec � ıSpec„ ı�' Spec žJ ıSpec �D SpecˇJ ;
using (49) in the second step, ‰ D„ ı � in the third, Spec„, � quasi-inverse in the
fourth, and ˇJ D � ı žJ in the fifth. Thus (13) homotopy commutes.

Similarly, if ¿¤K ¨ J then

˛J D y̨J ı�

' ˛K ıSpec ẑJK ıSpec‰ ı�

' ˛K ıSpec ẑJK ıSpec � ıSpec„ ı�' ˛K ıSpecˆJK ;

using (49) in the second step, ‰D„ı� in the third, and ˆJKD �ı ẑJK and Spec„, �
quasi-inverse in the fourth. Hence (14) homotopy commutes.

This proves that Hypothesis 4.1 holds with k D l C 1, and completes the inductive
step begun shortly after Remark 4.2. Hence by induction, Hypothesis 4.1 holds for
all kD 1; 2; : : : so Hypothesis 4.1 holds for kD1. Theorem 3.1 follows, since all the
conclusions of Theorem 3.1(i)–(ii) are either part of Hypothesis 4.1, or for A�fig D A

�

i ,
˛fig D ˛i , ˇfig D ˇi in part (i) were included in the first step of the induction. This
completes the proof.

5 Proof of Theorem 3.7

5.1 Theorem 3.7(a): .�/ is an open condition

Suppose X , !�
X

, A� , ˛, V , E , F , s , t ,  are as in Definition 3.6, and suppose
that U � V is open, E� is a real vector subbundle of EjU , and v 2 s�1.0/ \ U ,
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such that the assumptions on E�jv in condition .�/ hold at v . We must show that
these assumptions also hold for all v0 in an open neighbourhood of v in s�1.0/\U .
Suppose for a contradiction that this is false. Then we can choose a sequence .vi /1iD1
in s�1.0/\U such that vi ! v as i !1, and the assumptions on E�jvi in .�/ do
not hold for any i D 1; 2; : : : .

By passing to a subsequence of .vi /1iD1 , we can assume dim Im dsjvi and dim Ker t jvi
are independent of i D 1; 2; : : : . By trivializing E near v , we can regard .Im dsjvi /

1
iD1

and .Ker t jvi /
1
iD1 as sequences in complex Grassmannians, which are compact. Thus,

passing to a subsequence of .vi /1iD1 , we can assume they converge, and there are
complex vector subspaces Iv; Kv �Ejv such that Im dsjvi ! Iv and Ker t jvi !Kv
as i !1.

Because t ı ds D 0 on s�1.0/ we have Im dsjvi � Ker t jvi , and so Iv � Kv . Also
Im dsjv � Iv , since if w 2 TvV we can find wi 2 TviV with wi !w as i!1, and
then dsjvi .wi /! dsjv.w/ as i !1. Similarly Kv � Ker t jv .

We now have a quotient vector space .Ker t jv/=.Im dsjv/, which as in (32) carries a
nondegenerate quadratic form zQv . There are subspaces satisfying Iv=.Im dsjv/ �
Kv=.Im dsjv/ � .Ker t jv/=.Im dsjv/. Also, for each i > 1 we have a quotient space
.Ker t jvi /=.Im dsjvi / with quadratic forms zQvi . As i !1 we have

(53) .Ker t jvi /=.Im dsjvi /!Kv=Iv Š ŒKv=.Im dsjv/�=ŒIv=.Im dsjv/�:

One can prove using a representative !A� for ˛�.!0
X
/ that

Iv=.Im dsjv/D fe 2 .Ker t jv/=.Im dsjv/ j zQv.e; k/D 0 for all k 2Kv=.Im dsjv/g;

that is, Iv=.Im dsjv/ and Kv=.Im dsjv/ are orthogonal subspaces with respect to zQv .
Hence the restriction of zQv to Kv=.Im dsjv/ is null along Iv=.Im dsjv/, and descends
to a nondegenerate quadratic form LQv on ŒKv=.Im dsjv/�=ŒIv=.Im dsjv/� Š Kv=Iv .
Then under the limit (53), we have zQvi ! LQv as i !1.

By .�/ for .U;E�/ at v , we have Im.dsjv/\E�jv D f0g, and the map …v in (35),
…vW E

�jv\Ker.t jv/! .Ker t jv/=.Im dsjv/, has image Im…v of half the total dimen-
sion, with Re zQv negative definite on Im…v . Since zQv is zero on Iv=.Im dsjv/, it
follows that Im…v \ .Iv=.Im dsjv//D f0g, and thus

(54) E�jv \ Iv D f0g:

Condition (34), that t jv.E�jv/D t jv.Ejv/, is equivalent to E�jvCKer.t jv/DEjv ,
in subspaces of Ejv . As Im…v is a maximal negative definite subspace for Re zQv in
.Ker t jv/=.Im dsjv/, andKv=.Imdsjv/ is the orthogonal to a null subspace Iv=.Imdsjv/
with respect to Re zQv , it follows that Im…vCKv=.Im dsjv/D .Ker t jv/=.Im dsjv/.
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Lifting to Ker t jv gives ŒE�jv \ .Ker t jv/� C Kv D Ker t jv . Thus the subspace
E�jv CKv in Ejv contains E�jv and Ker t jv , so, as E�jv CKer.t jv/ D Ejv , we
see that

(55) E�jvCKv DEjv:

Write L…vW E�jv\Kv!Kv=Iv for the natural projection. It is injective by (54). Using
(54)–(55) and the facts that Im…v has half the dimension of .Ker t jv/=.Im dsjv/, and

dimŒIv=.Im dsjv/�C dimŒKv=.Im dsjv/�D dimŒ.Ker t jv/=.Im dsjv/�

as Iv=.Im dsjv/;Kv=.Im dsjv/ are orthogonal subspaces, by a dimension count we
find that Im L…v has half the total dimension of Kv=Iv . Also, since the quadratic
form LQv on Kv=Iv Š ŒKv=.Im dsjv/�=ŒIv=.Im dsjv/� descends from the restriction
of zQv to Kv=.Im dsjv/, and Im L…v descends from Im…v \ ŒKv=.Im dsjv/�, and
Re zQv is negative definite on Im…v , we see that Re LQv is negative definite on Im L…v .

Because E�jvi !E�jv and Im dsjvi ! Iv as i !1, we see from (54) that

(56) E�jvi \ .Im dsjvi /D f0g for i � 0:

Since E�jvi !E�jv and Ker t jvi !Kv as i !1, we see from (55) that we have
E�jvi CKer t jvi DEjvi for i � 0. But this is equivalent to

(57) t jvi .E
�
jvi /D t jvi .Ejvi / in F jvi for i � 0.

Using (56)–(57), the same dimension count as above implies that Im z…vi has half
the dimension of .Ker t jvi /=.Im dsjvi / for i � 0. Under the limit (53), we have
zQvi !

LQv and Im z…vi ! Im L…v . Thus, as Re LQv is negative definite on Im L…v , we
see that Re zQvi is negative definite on Im z…vi for i � 0. Together with (56)–(57),
this shows that the assumptions on E�jvi in .�/ hold for i � 0, which contradicts
the choice of sequence .vi /1iD1 . This proves Theorem 3.7(a).

5.2 Theorem 3.7(b): extending pairs .U;E�/ satisfying .�/

Suppose X , !�
X

, A� , ˛, V , E , F , s , t ,  are as in Definition 3.6, and .U;E�/
satisfying .�/ is as in Definition 3.6, and C � V is closed with C �U . Our goal is to
construct . zU ; zE�/ satisfying .�/ for V;E; : : : with C [ s�1.0/� zU � V , such that
E�jU 0 D zE

�jU 0 for U 0 an open neighbourhood of C in U \ zU .

Using the notation of Section 3.2, s�1.0/alg is a finite type closed C–subscheme
of V alg , and the maps v 7!dim Ker dsjv and v 7!dim Ker t jv are upper semicontinuous,
algebraically constructible functions s�1.0/alg! N , noting that t jv is independent
of choices for v 2 s�1.0/alg . Therefore by some standard facts about constructible
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sets in algebraic geometry, we can choose a stratification of Zariski topological spaces
s�1.0/alg D

F
a2AW

alg
a , where A is a finite indexing set, and W

alg
a is a smooth,

connected, locally closed C–subscheme of s�1.0/alg � V alg for each a 2 A, with
closure W alg

a in s�1.0/alg a finite union of strata Wb , such that v 7! dim Ker dsjv
and v 7! dim Ker t jv are both constant functions on W alg

a .

Writing Wa � s�1.0/� V for the set of C–points of W alg
a , each Wa is a connected,

locally closed complex submanifold of V lying in s�1.0/, with closure Wa a finite
union of submanifolds Wb , such that s�1.0/ D

F
a2AWa . On each Wa , the maps

v 7! dim Ker dsjv and v 7! dim Ker t jv are constant. This implies that Ker dsjWa
is a holomorphic vector subbundle of TV jWa , and Im dsjWa a holomorphic vector
subbundle of EjWa , and Ker t jWa a holomorphic vector subbundle of EjWa , and
Im t jWa a holomorphic vector subbundle of F jWa . Since t ı ds D 0 on s�1.0/, we
have Im dsjWa � Ker t jWa �EjWa .

Thus we have a holomorphic vector bundle .Ker t jWa/=.Im dsjWa/ over Wa , whose
fibre at v 2 Wa is identified with H 1.TX jx/ for x D  .v/ by (20). As in (6)
we have a quadratic form Qx on H 1.TX jx/, and as in (32) zQv is the quadratic
form on .Ker t jWa/=.Im dsjWa/jv identified with Qx by (20). One can prove using a
representative !A� for ˛�.!0

X
/ that zQv depends holomorphically on v 2Wa . Hence

zQvD zQajv for zQa 2H 0.S2Œ.Ker t jWa/=.Im dsjWa/�
�/, a nondegenerate holomorphic

quadratic form on the fibres of .Ker t jWa/=.Im dsjWa/.

The idea of the proof is to choose zE� near Wa by induction on increasing dimWa ,
starting with a 2 A with dimWa D 0, then a 2 A with dimWa D 1, and so on.
Since dim.Wa nWa/ < dimWa , we see that Wa nWa is a finite union of Wb with
dimWb < dimWa , so when we choose zE� near Wa we will already have chosen zE�

near Wa nWa , and the extension over Wa should be compatible with this.

Our inductive hypothesis .�/m for mD 0; 1; 2; : : : is:

.�/m For all a 2A with dimWa 6m we have chosen a pair . LUa; LE�a / satisfying .�/
for V , E , F , s , t; : : : with Wa � LUa � V , such that there is an open neigh-
bourhood yUa of C \ LUa in U \ LUa with E�j yUa D LE

�
a j yUa , and if b 2 A with

Wb � Wa nWa (which implies that dimWb < dimWa 6 m, so . LUb; LE�b / is
defined), then there is an open neighbourhood yUab of Wb in LUb such that
LE�a j LUa\ yUab D

LE�
b
j LUa\ yUab .

First consider how to choose . LUa; LE�a / satisfying .�/ with Wa � LUa � V for a 2 A
with no compatibility conditions, either with .U;E�/ near C , or with . LUb; LE�b / for
Wb �Wa nWa . We can do this as follows:
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(i) Choose a real vector subbundle PEa of .Ker t jWa/=.Im dsjWa/, whose real rank
is half the real rank of .Ker t jWa/=.Im dsjWa/, such that Re zQa is negative definite
on PEa .

(ii) Lift PEa to a real vector subbundle REa of Ker t jWa . That is, the projection
Ker t jWa ! .Ker t jWa/=.Im dsjWa/ induces an isomorphism REa! PEa .

(iii) Choose a real vector subbundle «Ea of EjWa with EjWa D «Ea˚Ker t jWa .

(iv) Set LE�a jWa D REa˚ «Ea . Then LE�a jWa is a real vector subbundle of EjWa , and
the assumptions on LE�a jv in condition .�/ in Section 3.3 hold for all v 2Wa .

(v) Choose any real vector subbundle LE�a of Ej LUa on a small open neighbourhood LUa
of Wa in V , extending the given LE�a jWa D REa˚ «Ea on Wa .

Observe that by Theorem 3.7(a), proved in Section 5.1, condition .�/ holds for LE�a on
an open neighbourhood of Wa . So by making LUa smaller, we can suppose . LUa; LE�a /
satisfies .�/.

All of these steps are possible. Any . LUa; LE�a / satisfying .�/ with Wa � LUa � V arises
from steps (i)–(v) (though «Ea in (iii) is not uniquely determined by LE�a ). Furthermore
(taking germs in (v)), the space of choices in each step is contractible.

Now suppose mD0; 1; : : : and .�/m�1 holds if m>0, and a2A with dimWaDm. To
choose . LUa; LE�a / with the compatibility conditions required in .�/m , we follow (i)–(v),
but modified as follows. In step (i), we choose PEa with

(58) PEajWa\ yUa
D Œ..E�\Ker t /j

Wa\ yUa
/C .Im dsj

Wa\ yUa
/�=.Im dsj

Wa\ yUa
/;

for some small open neighbourhood yUa of C \Wa in U , and if b 2 A with Wb �
Wa nWa then

(59) PEajWa\ LUab
D Œ.. LE�b \Ker t j

Wa\ yUab
//C .Im dsj

Wa\ yUab
/�=.Im dsj

Wa\ yUab
/;

for some small open neighbourhood yUab of Wb in LUb .

To see this is possible, first note that the first part of .�/m�1 with b in place of a
implies that (58) and (59) are compatible, that is they prescribe the same value for PEa
on Wa \ yUa \ yUab , provided the open neighbourhoods yUa , yUab are small enough.
Also given distinct b; b0 2 A with Wb; Wb0 � Wa nWa , either (a) Wb0 � Wb nWb ,
or (b) Wb � Wb0 nWb0 , or (c) Wb \Wb0 D Wb \Wb0 D ¿. In cases (a) and (b)
we can use the second part of .�/m�1 to show that (59) for b , b0 are compatible
provided yUab , yUab0 are small enough, and in case (c) we can choose yUab , yUab0 with
yUab \ yUab0 D¿, so compatibility is trivial.
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Thus, if yUa and yUab for all b are small enough then (58) and (59) for all b are
compatible, and can be combined into a single equation prescribing PEa on LWa WD
Wa \ . yUa [

S
b
yUab/. We then have to extend PEa from LWa to Wa , satisfying the

required conditions. This may not be possible: if we have chosen E� or LE�
b

badly
near the “edge” of LWa in Wa , then the prescribed values of PEa may not extend
continuously to the closure LWa of LWa in Wa . However, we can deal with this problem
by shrinking all the yUa , yUab , such that the closure LWa of the new LWa lies inside the
old LWa . Then it is guaranteed that the prescribed value of PEa on LWa extends smoothly
to an open neighbourhood of LWa in Wa , so we can choose PEa on Wa satisfying all
the required conditions (58)–(59).

In a similar way, for each of steps (ii)–(v) we can show that making the open neigh-
bourhoods yUa , yUab smaller if necessary, we can make choices consistent with the
compatibility conditions on . LUa; LE

�
a / in .�/m . So by induction, .�/m holds for

all mD 0; 1; : : : . Fix data . LUa; LE�a /, yUa , yUab satisfying .�/m for mD dimV .

Next, choose open neighbourhoods U 0 of C in U � V and zUa of Wa in LUa for
each a 2 A, such that U 0\ zUa � yUa for a 2 A, and zUa \ zUb � yUab if a; b 2 A with
Wb �Wa nWa , and zUa \ zUb D¿ if a; b 2 A with Wa \Wb DWa \Wb D¿. This
is possible provided U 0 and zUa for a 2 A are all small enough.

Define zU D U 0 [
S
a2A
zUa , which is an open neighbourhood of C [

S
a2AWa D

C [ s�1.0/ in V . Define a vector subbundle zE� of Ej zU by zE�jU 0 D E�jU 0 and
zE�j zUa D

LE�a j zUa for a 2A. These values agree on the overlaps U 0\ zUa and zUa\ zUb
by construction, so zE� is well defined. Also . zU ; zE�/ satisfies .�/, since .U;E�/
and the . LUa; LE�a / do, and U 0 is an open neighbourhood of C in U \ zU with E�jU 0 D
zE�jU 0 by definition. This proves Theorem 3.7(b).

5.3 Theorem 3.7(c): s�1.0/D .sC/�1.0/ locally in U

In Section 3.4 we explained how to pull back pairs .UK ; E�K/ satisfying .�/ along a
quasifree ˆJK W A�K ! A�J . We can also push forward .UJ ; E�J / along ˆJK .

Definition 5.1 Let X , !�
X

, n, ˆJK W A�K ! A�J and VJ , EJ ; : : : ; �JK , �JK be as
in Definition 3.10, and suppose .UJ ; E�J / satisfies .�/ for A�J . Our goal is to construct
.UK ; E

�
K/ satisfying .�/ for A�K , with  J .s�1J .0/\UJ /D K.s

�1
K .0/\UK/�Xan ,

and if .UJ ; E�J /, .UK ; E
�
K/ also satisfy .�/, a coordinate change of Kuranishi neigh-

bourhoods, as in Section 2.5:

(60) .UK ; �KJ ; �KJ /W .UK ; E
C

K ; s
C

K ;  
C

K /! .UJ ; E
C

J ; s
C

J ;  
C

J /:
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Let vJ 2 s�1J .0/\UJ with �JK.vJ /D vK 2 s�1K .0/� VK and  J .vJ /D K.vK/D
x 2Xan . We claim that we can choose splittings of real vector spaces

(61)
TvJVJ D

zTvJVJ ˚T
0
vJ
VJ ; EJ jvJ D

zEJ jvJ ˚E
0
J jvJ ˚E

00
J jvJ ;

E�J jvJ D
zE�J jvJ ˚

zE 00J jvJ ; FJ jvJ D
zFJ jvJ ˚F

00
J jvJ ˚F

000
J jvJ ;

fitting into a commutative diagram of the form

(62)

E�J jvJ D
zE�J jvJ˚

zE 00J jvJ

inc

��

tJ jE�
J
jvJ

&&

0 //
zTvJVJ˚
T 0vJVJ

d�JK jvJ
��

dsJ jvJ
//

zEJ jvJ˚
E 0J jvJ˚

E 00J jvJ

�JK jvJ

��

tJ jvJ
//

zFJ jvJ˚
F 00J jvJ˚

F 000J jvJ

//

�JK jvJ

��

� � �

0 // TvKVK
dsK jvK

// EK jvK
tK jvK

// FK jvK
// � � �

where

incD

0@� �0 �
0 �

1A; tJ jE�J jvJ
D

0@� 00 Š

0 0

1A; dsJ jvJD

0B@BdsK jvK 0

� Š

0 0

1CA; tJ jvJD

0@AtK jvK 0 0

0 0 Š

0 0 0

1A;
d�JK jvJD

�
Š 0

�
; �JK jvJD

�
Š 0 0

�
; �JK jvJD

�
Š 0 0

�
:

To prove this, note that the rows of (62) are TSpecA�J
jvJ ;TSpecA�K

jvK , and are com-
plexes, and the lower columns are induced by ˆJK , are surjective as ˆJK is quasifree,
and induce isomorphisms on cohomology as in Section 3.2. Then:

(i) Define T 0vJVJ D Ker d�JK jvJ .

(ii) Choose arbitrary zTvJVJ with TvJVJ Š zTvJVJ˚T
0
vJ
VJ . Then zTvJVJ ŠTvKVK

as d�JK is surjective.

(iii) Define E 0J jvJ D dsJ jvJ ŒT
0
vJ
VJ �. Then E 0J jvJ Š T

0
vJ
VJ as the columns of (62)

are isomorphisms in cohomology, and E 0J jvJ � Ker.�JK jvJ / as the left-hand square
of (62) commutes.

(iv) Choose E 00J jvJ with Ker.�JK jvJ /DE
0
J jvJ ˚E

00
J jvJ .

(v) Since the columns of (62) are isomorphisms on cohomology, tJ jvJ is injective
on E 00J jvJ . Define F 00J jvJ D tJ jvJ ŒE

00
J jvJ �. Then F 00J jvJ Š E

00
J jvJ . Also F 00J jvJ �

Ker �JK jvJ , as the right-hand square of (62) commutes.
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(vi) Choose F 000J jvJ with Ker �JK jvJ D F
00
J jvJ ˚F

000
J jvJ .

(vii) Since the columns of (62) are isomorphisms on cohomology, we have

F 00J jvJ D tJ jvJ ŒE
0
J jvJ ˚E

00
J jvJ �D tJ jvJ ŒKer�JK jvJ �

D Ker �JK jvJ \ Im tJ jvJ D .F
00
J jvJ ˚F

000
J jvJ /\ Im tJ jvJ :

Thus we may choose zFJ jvJ with FJ jvJ D zFJ jvJ ˚F
00
J jvJ ˚F

000
J jvJ and Im tJ jvJ �

zFJ jvJ ˚ F
00
J jvJ . So the third row of tJ jvJ in (62) is zero. Also zFJ jvJ Š FK jvK

by (vi) as �JK is surjective.

(viii) Set zE�J jvJ DE
�
J jvJ \ tJ j

�1
vJ
. zFJ jvJ /. We claim �JK jvJ is injective on zE�J jvJ .

To see this, note that we have an exact sequence

0 // E�J jvJ \Ker tJ jvJ // zE�J jvJ
// tJ jvJ ŒE

�
J jvJ �\

zFJ jvJ
// 0;

since Ker tJ jvJ � tJ j
�1
vJ
. zFJ jvJ /. The last part of .�/ implies that �JK jvJ maps

E�J jvJ \Ker tJ jvJ injectively into Ker tK jvK . Also �JK jvJ is injective on zFJ jvJ , and
the right square of (62) commutes, so the claim follows.

(ix) Choose zEJ jvJ �EJ jvJ such that

zE�J jvJ �
zEJ jvJ and EJ jvJ D

zEJ jvJ ˚Ker.�JK jvJ /
.iv/
D zEJ jvJ ˚E

0
J jvJ ˚E

00
J jvJ

and tJ jvJ Œ zEJ jvJ � � zFJ jvJ . This is possible as �JK jvJ is injective on zE�J jvJ , and
using (v), (vii) and (viii). Then zEJ jvJ ŠEK jvK as �JK is surjective.

(x) Choose zE 00J jvJ such that E�J jvJ D zE
�
J jvJ ˚

zE 00J jvJ and tJ jvJ Œ zE
00
J jvJ �� F

00
J jvJ .

This is possible by (viii) and because Im tJ jvJ �
zFJ jvJ ˚F

00
J jvJ .

Since tJ jvJ .E
�
J jvJ / D tJ jvJ .EJ jvJ / by (34) and F 00J jvJ D tJ jvJ ŒE

00
J jvJ �, we see

that tJ jvJ Œ zE
00
J jvJ � D F

00
J jvJ . Also tJ jvJ W zE

00
J jvJ ! F 00J jvJ is injective, as, by (viii),

Ker tJ jE�J jvJ �
zE�J jvJ . Hence zE 00J jvJ Š F

00
J jvJ .

We can do all this, not just at one vJ 2 s�1J .0/\UJ , but in an open neighbourhood U 0J
of s�1J .0/\UJ in UJ . That is, we can choose U 0J , and splittings

(63)
TVJ jU 0J

D zTVJ ˚T
0VJ ; EJ jU 0J

D zEJ ˚E
0
J ˚E

00
J jvJ ;

E�J jU 0J
D zE�J ˚

zE 00J ; FJ jU 0J
D zFJ ˚F

00
J ˚F

000
J ;

with zE�J � zEJ , such that (62) holds at each vJ 2 s�1J .0/\UJ . To see this, note that the
argument above can be carried out on s�1J .0/\UJ regarded as a C1–subscheme of UJ ,
in the sense of C1–algebraic geometry in [17], and the splittings (63) with zE�J � zEJ
can then be extended from s�1J .0/\UJ to an open neighbourhood U 0J . Making U 0J
smaller, we can suppose that the component of �JK mapping zEJ ! �JK j

�
U 0J
.EK/
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is an isomorphism. We can also choose the splittings so that away from s�1J .0/\UJ ,
the map tJ jU 0J has the form

(64) tJ jU 0J
D

0@� � 0

� � Š

� � 0

1AW zEJ jvJ ˚E 0J ˚E 00J ! zFJ ˚F 00J ˚F 000J :
Write sJ jU 0J D zsJ ˚ s

0
J ˚ s

00
J , for zsJ 2 C1. zEJ /, s0J 2 C

1.E 0J / and s00J 2 C
1.E 00J /.

Then (64) and tJ ı sJ D 0 together imply that s00J D 0. From (62) we see that
ds0J jvJ W TvJVJ ! E 0J jvJ is surjective and d�JK jvJ W Ker.ds0J jvJ /! TvKVK is an
isomorphism, at each vJ 2 s�1J .0/\ UJ . Hence s0J is transverse near vJ , so that
.s0J /

�1.0/ is an embedded submanifold of VJ near vJ with tangent space Ker.ds0J jvJ /
at vJ , and �JK j.s0J /�1.0/W .s

0
J /
�1.0/! VK is a local diffeomorphism near vJ . Thus,

making U 0J smaller, we can suppose that s0J is transverse on U 0J , so that .s0J /
�1.0/

is an embedded submanifold of U 0J , and �JK j.s00J /�1.0/W .s
0
J /
�1.0/! VK is a local

diffeomorphism. But �JK is injective on s�1J .0/\UJ , so making U 0J smaller, we
can also suppose �JK j.s0J /�1.0/ is a diffeomorphism with an open set UK in VK ,
with inverse �KJ W UK Š�! .s0J /

�1.0/� U 0J � UJ .

We now have a vector bundle ��KJ .EJ / over UK , and we have vector subbundles
��KJ .

zEJ ; E
0
J ; E

00
J ; E

�
J ;
zE�J ;
zE 00J / with ��KJ .EJ /D �

�
KJ .
zEJ /˚�

�
KJ .E

0
J /˚�

�
KJ .E

00
J /,

��KJ .E
�
J /D �

�
KJ .
zE�J /˚ �

�
KJ .
zE 00J / and ��KJ . zE

�
J / � �

�
KJ .
zEJ /. Since �JK ı �KJ D

idUK , pulling back �JK W EJ!��JK.EK/ by �KJ gives a surjective vector bundle mor-
phism ��KJ .�JK/W �

�
KJ .EJ /!EK jUK , where ��KJ .�JK/ restricts to an isomorphism

��KJ .
zEJ /!EK . We also have a section ��KJ .sJ / of ��KJ .EJ /, whose components

in ��KJ . zEJ /, �
�
KJ .E

0
J /, �

�
KJ .E

00
J / are ��KJ .zsJ /, 0, 0. Applying ��KJ to (25) and

using E 00J � Ker�JK shows that

(65) ��KJ .�JK/Œ�
�
KJ .sJ /�D �

�
KJ .�JK/Œ�

�
KJ .zsJ /�D sK jUK :

Define a vector subbundle E�K � EK jUK by E�K D �
�
KJ .�JK/Œ�

�
KJ .
zE�J /�. This is

valid as ��KJ . zE
�
J /� �

�
KJ .
zEJ /, and ��KJ .�JK/ is an isomorphism on ��KJ . zEJ /. We

claim that .UK ; E�K/ satisfies condition .�/. To see this, let vK 2 s�1K .0/\UK , and set
vJ D �KJ .vK/. Then vJ 2 s�1J .0/\U 0J with �JK.vJ /D vK , so (61)–(62) hold, with
the columns of (62) isomorphisms on cohomology. From this and .�/ for .UJ ; E�J /
at vJ , we can deduce .�/ for .UK ; E�K/ at vK .

Writing ECJ D EJ jUJ =E
�
J , sCJ D sJ CE

�
J 2 C

1.ECJ /, and similarly for ECK , sCK ,
define a vector bundle morphism

�KJ W E
C

K ! ��KJ .E
C

J /; �KJ W eK CE
�
K 7! ��KJ .�JK/j

�1

��KJ .
zEJ /
ŒeK �C �

�
KJ .E

�
J /:
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This is well defined as ��KJ .�JK/j��KJ . zEJ /W �
�
KJ .
zEJ /!EK is an isomorphism, with

inverse
��KJ .�JK/j

�1

��KJ .
zEJ /
W EK ! ��KJ .

zEJ /;

which, by definition of E�K , maps E�K ! ��KJ .
zE�J / � �

�
KJ .E

�
J /. Also (65) implies

that �KJ .sCK / D ��KJ .s
C

J /. Using (62) we can also show that the analogue of (8)
for �KJ , �KJ at vK is exact. Therefore, if .UJ ; E�J /, .UK ; E

�
K/ also satisfy .�/, then

.UK ; �KJ ; �KJ / in (60) is a coordinate change. This completes Definition 5.1.

We now prove Theorem 3.7(c). Suppose X , !�
X

, A� , ˛, V , E , F , s , t ,  and .U;E�/
satisfying .�/ are as in Definition 3.6. Then X 0 WD ˛.SpecA�/ � X is an affine
derived C–subscheme of X . Let v 2 s�1.0/\U , and set x D  .v/ 2 Xan . Write
.A�1;˛1/D .A

�;˛/, V1 D V , E1 D E , v1 D v and so on. Applying Theorem 2.10
to .X 0; !�

X
jX 0/ at x gives a pair .A�2; !A�2/ in �2–Darboux form and a Zariski open

inclusion ˛2W SpecA�2 ,!X
0�X which is minimal at x 2 Im˛2 with ˛�2.!

�
X /'!A�2

.
Section 3.2 applied to A�2 , ˛2 gives V2 , E2 , s2; : : : . Set v2D �12 .x/2 s�12 .0/� V2 .

Applying Theorem 3.1 to the derived C–scheme X 0 with I D f1; 2g and initial
data f.A�1;˛1/; .A

�

2;˛2/g gives .A�12;˛12/ with image Im˛12 D Im˛1\ Im˛2 and
quasifree morphisms ˆ12;1W A�1! A�12 , ˆ12;2W A�2! A�12 such that (14) homotopy
commutes in dSchC . Section 3.2 applied to A�12 gives V12 , E12 , s12; : : : and to
ˆ12;1 and ˆ12;2 gives �12;1W V12 ! V1 D V , �12;1 , �12;1 and �12;2W V12 ! V2 ,
�12;2 , �12;2 , simplifying notation a little. Set v12 D  �112 .x/ 2 s

�1
12 .0/� V12 , so that

�12;1.v12/D v1 and �12;2.v12/D v2 .

We have .U;E�/ satisfying .�/ for A�1 , ˛1 , V1 , E1 , s1; : : : . Thus by Lemma 3.12,
we can choose .U12; E�12/ satisfying .�/ for V12 , E12 , s12; : : : and compatible
with .U;E�/ under �12;1 and �12;1 in the sense of Section 3.4, such that v12 2
s�112 .0/\�

�1
12;1.U /� U12 � V12 . Also Section 3.4 defines �C12;1 such that if .U;E�/

and .U12; E�12/ satisfy .�/ (we do not assume this), then

.U12; �12;1jU12 ; �
C
12;1/W .U12; E

C
12; s

C
12;  

C
12/! .U;EC; sC;  C/

is a coordinate change of Kuranishi neighbourhoods, as in Corollary 3.11.

Now apply Definition 5.1 to push forward .U12; E�12/ in V12 , E12 , s12; : : : along
�12;2 , �12;2 , �12;2 . This yields .U2; E�2 / satisfying .�/ for V2 , E2 , s2; : : : with
�12;2.s

�1
12 .0/\U12/� U2 � V2 , so in particular v2 2 U2 , and data �2;12 , �2;12 such

that if .U2; E�2 / and .U12; E�12/ satisfy .�/ (we do not assume this), then

(66) .U2; �2;12; �2;12/W .U2; E
C
2 ; s
C
2 ;  

C
2 /! .U12; E

C
12; s

C
12;  

C
12/

is a coordinate change of Kuranishi neighbourhoods, as in (60).

Geometry & Topology, Volume 21 (2017)



3300 Dennis Borisov and Dominic Joyce

Since .A�2; !A�2/ is in �2–Darboux form and minimal at x , Example 3.8 proves
that there exists an open neighbourhood U 02 of v2 in U2 such that s�12 .0/\ U 02 D

.sC2 /
�1.0/\U 02 . Then .U 02; E

�
2 jU

0
2
/ satisfies .�/. The construction in Definition 5.1

implies that �2;12 identifies s�12 .0/ near v2 with s�112 .0/ near v12 , and identifies
.sC2 /

�1.0/ near v2 with .sC12/
�1.0/ near v12 (the second follows from the fact that the

analogue of (8) for �2;12 , �2;12 at v2 , v12 is exact, so (66) is a coordinate change of
Kuranishi neighbourhoods near v2 , v12 ). Since s�12 .0/D .sC2 /

�1.0/ near v2 , it follows
that s�112 .0/D .s

C
12/
�1.0/ near v12 . That is, there exists an open neighbourhood U 012

of v12 in U12 such that s�112 .0/\U
0
12 D .s

C
12/
�1.0/\U 012 .

Similarly, we have that �12;1 identifies s�112 .0/ near v12 with s�1.0/ near v , and
identifies .sC12/

�1.0/ near v12 with .sC/�1.0/ near v , so there exists an open neigh-
bourhood U 0v of v in U such that s�1.0/\U 0v D .s

C/�1.0/\U 0v . This holds for
all v 2 s�1.0/\U . Define U 0 D

S
v2s�1.0/ U

0
v . Then U 0 is an open neighbourhood

of s�1.0/\U in U , and s�1.0/\U 0 D .sC/�1.0/\U 0 . Theorem 3.7(c) follows.

6 Proofs of some auxiliary results

Next we prove Propositions 3.13, 3.14 and 3.17.

6.1 Proof of Proposition 3.13

Let Z be a paracompact, Hausdorff topological space and fRi j i 2 I g an open cover
of Z . By paracompactness we can choose a locally finite refinement fSi j i 2 I g. That
is, Si �Ri �Z is open with

S
i2I Si DZ , and each z 2Z has an open z 2Uz �Z

with Uz \Si ¤¿ for only finitely many i 2 I .

By a standard result in topology known as the shrinking lemma, we can choose open
sets T 1i � Z with closures T 1i � Z for i 2 I such that T 1i � T

1
i � Si for i 2 I

and
S
i2I T

1
i D Z . The next part of the proof broadly follows that of McDuff and

Wehrheim [29, Lemma 7.1.7], who prove a similar result with Z compact and I finite.
By induction on k D 2; 3; : : : choose open T ik �Z with

(67) Ti � T
1
i � T

2
i � T

2
i � T

3
i � T

3
i � � � � � Si �Z

for i 2 I . Here to choose T ki we note that Z is normal as it is paracompact and
Hausdorff, so we can choose open T ki ; U � Z with T k�1i � T ki , Z n Si � U and
T ki \U D¿. Then T ki �Z nU � Si , and Z nU is closed, so we have T ki � Si .

Now for each finite ¿¤ J � I , define a closed subset CJ �Z by

(68) CJ D
\
j2J

T jJ jj n
\
i2InJ

T jJ jC1i :
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Then part (i) of the proposition follows from T jJ jj �Sj �Rj for j 2J by (67), and (ii)
from fSi j i 2 I g locally finite with CJ �

T
i2I Si . For (iii), suppose ¿¤ J;K � I

are finite with J 6� K and K 6� J . Without loss of generality, suppose jJ j 6 jKj.
Then there exists j 2 J nK, and (68) gives CJ � T jJ jj and CK �Z nT jKjC1j , which
forces CJ \CK D¿ as T jJ jj � T

jKjC1
j by (67).

For part (iv), if z 2Z , define

(69) Jz D
[

J � I finite
z 2

T
j2JT

jJ j
j

J:

Then Jz is finite since fSi j i 2 I g is locally finite, so z 2 Sj for only finitely
many j 2 I , and Jz is nonempty as fT 1i j i 2 I g covers Z , so z 2 T 1i � T

2
i for

some i 2 I , and J D fig is a possible set in the union (69). If j 2 Jz then j 2 J
for some J in the union (69), so that z 2 T jJ jj � T

jJz j
j as jJ j 6 jJzj. If i 2 I n Jz

then we have that z …
T
j2Jz[fig

T jJz jC1j , as Jz [fig is not one of the sets J in (69),
but z 2

T
j2Jz

T jJz jC1j , so we conclude that z … T jJz jC1i . Hence z 2CJz by (68), and
part (iv) follows. This completes the proof of Proposition 3.13.

6.2 Proof of Proposition 3.14

We work in the situation of Section 3.5 just after Remark 3.28, so that we have data
Xan , I , VJ , EJ , sJ ,  J and CJ � RJ D

T
i2J Ri � Xan for all J 2 A, and

�JK , �JK for all J;K 2 A with K ¨ J . We will first prove the following inductive
hypothesis .C/m , by induction on mD 1; 2; : : : :

.C/m For all J 2 A with jJ j6m, we can choose . zUJ ; zE�J / satisfying condition .�/
for A�J , VJ , EJ , FJ , sJ , tJ ,  J ; : : : such that  �1J .CJ / � zUJ � VJ ,
and if J;K 2 A with K ¨ J and 0 < jKj < jJ j 6 m then there exists open
zUJK � zUJ with  �1J .CJ \CK/� zUJK such that, in the sense of Section 3.4,
. zUJK ; zE

�
J j zUJK / is compatible with . zUK ; zE�K/. That is, �JK. zUJK/� zUK �VK

and �JK j zUJK . zE
�
J j zUJK /� �JK j

�
zUJK

. zE�K/� �JK j
�
zUJK

.EK/.

For the first step, to prove .C/1 for all J D fig with i 2 I , we choose . zUJ ; zE�J /
for A�J , VJ , EJ ; : : : satisfying .�/ with s�1J .0/ � zUJ , so that  �1J .CJ / � zUJ , by
applying Theorem 3.7(b) with C DU D¿. The second part of .C/1 is trivial, as there
are no J;K 2 A with 0 < jKj< jJ j6 1.

For the inductive step, suppose .C/m�1 holds for some m > 1. We will prove that
.C/m holds. Using the existing choices of . zUJ ; zE�J / and zUJK for J;K 2 A with
jJ j; jKj<m from .C/m�1 , it remains to choose . zUJ ; zE�J / when jJ j Dm, and zUJK
when 0 < jKj< jJ j Dm. So fix J � I with jJ j Dm.
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Then .C/m�1 gives . zUK ; zE�K/ satisfying .�/ for all ¿¤K ¨ J . Using the notation
of Lemma 3.12, set zU 0JK D �

�1
JK.
zUK/� VJ , and define

zE 0JK D �JK j
�1
zU 0JK

. zE�K/;

a vector subbundle of EJ j zU 0JK . Then zU 0JK is an open neighbourhood of  �1J .CK/

in VJ , by (27).

If ¿¤ L¨K ¨ J then by .C/m�1 we have that there exists open zUKL � zUK with
 �1K .CK \CL/� zUKL such that

�KL. zUKL/� zUL and �KLj zUKL
. zE�K/� �KLj

�
zUKL

. zE�L /� �KLj
�
zUKL

. zEL/:

Pulling back by �JK , applying �JK , and using the last part of Corollary 3.5(ii) then
shows that we have an open neighbourhood zU 0JKL D �

�1
JK.
zUKL/ of  �1J .CK \CL/

in zU 0JK \ zU
0
JL � VJ , such that

zE 0JK j zU 0JKL
� zE 0JLj zU 0JKL

�EJ j zU 0JKL
:

As in Lemma 3.12, choose vector subbundles zE 00JK �EJ j zU 0JK with

EJ j zU 0JK
D zE 0JK ˚

zE 00JK on zU 0JK for all ¿¤K ¨ J:

Choose a connection r on EJ . As in Lemma 3.12, zE 000JK WD .rsJ /ŒKer d�JK � is a
vector subbundle of EJ near s�1J .0/ in VJ , for all ¿ ¤ K ¨ J . Making the open
neighbourhoods zU 0JK , zU 0JKL smaller, we can suppose zE 000JK is a vector subbundle
of EJ j zU 0JK . If ¿¤ L¨K ¨ J � I then Ker d�JK�Ker d�JL , as �JLD�KLı�JK ,
and so

zE 000JK j zU 0JKL
� zE 000JLj zU 0JKL

�EJ j zU 0JKL
:

Next, by reverse induction on l D m� 1;m� 2; : : : ; 1, we will prove the following
inductive hypothesis .�/J;l :
.�/J;l For all ¿¤ L¨ J with l 6 jLj we can choose an open neighbourhood yUJL

of  �1J .CJ \CL/ in zUJL and a vector subbundle yE�JL of E 0JLj yUJL such that

(70) EJ j yUJL D
yE�JL˚E

00
JLj yUJL ˚E

000
JLj yUJL ;

or equivalently, identifying E 0JL with EJ =E 00JL on yUJL ,

(71) E 0JLj yUJL
D yE�JL˚ Œ.E

00
JL˚E

000
JL/=E

00
JL�j yUJL

;

and such that if ¿ ¤ L ¨ K ¨ J with l 6 jLj < jKj then there exists
an open neighbourhood yUJKL of  �1J .CJ \ CK \ CL/ in yUJK \ yUJL
with yE�JLj yUJKL D yE

�
JK j yUJKL .
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For the first step l Dm� 1, for each L¨ J with jLj Dm� 1 we take yUJL D zUJL
and take yE�JL to be an arbitrary complement to Œ.E 00JL˚E

000
JL/=E

00
JL� in E 0JLj zUJL ,

as in (71), which implies (70). The second part of .�/J;m�1 is trivial as there are
no K, L with m� 16 jLj< jKj< jJ j Dm.

For the inductive step, suppose .�/J;lC1 holds for some 16 l <m�1, and fix L¨ J

with jLj D l . Choose open neighbourhoods yUJKL of  �1J .CJ \CK \CL/ in VJ for
all L¨K ¨ J with the properties that:

(a) yUJKL � yUJK \ zUJL , where yUJK is already chosen by .�/J;lC1 .

(b) If L¨K1; K2 ¨ J with K1 ¨K2 and K2 ¨K1 then yUJK1L\ yUJK2L D¿.

(c) If L ¨ K2 ¨ K1 ¨ J then yUJK1L \ yUJK2L � yUJK1K2 , where yUJK1K2 is
already chosen by .�/J;lC1 .

This is possible, using Proposition 3.13(iii) to ensure (b).

Next, we have to choose an open neighbourhood yUJL of  �1J .CJ \CL/ in zUJL and
choose a vector subbundle yE�JL of E 0JLj yUJL satisfying (70)–(71), such that for all K
with L¨K ¨ J we have that yUJKL � yUJL and yE�JLj yUJKL D yE

�
JK j yUJKL .

First note from Lemma 3.12 that (70)–(71) near  �1J .CJ \ CL/ are equivalent to
. yUJL; yE

�
JL/ near  �1J .CJ \CL/ satisfying .�/ and being compatible with . zUL; zE�L /.

By .�/J;lC1 we already know that yE�JK j yUJKL near  �1J .CJ \CL/ satisfies .�/ and
is compatible with . zUK ; zE�K/, and thus yE�JK j yUJKL is compatible with . zUL; zE�L / near
 �1J .CJ \CL/ since . zUK ; zE�K/ is compatible with . zUL; zE�L / by .C/m�1 . Thus the
prescribed value yE�JK j yUJKL for yE�JL on yUJKL satisfies (70)–(71) near  �1J .CJ\CL/,
and making yUJKL smaller, we can suppose yE�JK j yUJKL satisfies (70)–(71) on yUJKL .
This proves that (70)–(71) are compatible with the conditions yE�JLj yUJKL D yE

�
JK j yUJKL

for all ¿¤ L¨K ¨ J .

Next, observe that the prescribed values yE�JK j yUJKL for yE�JL on yUJKL for different
K1 , K2 with L¨K1 , K2 ¨ J agree on the overlaps yUJK1L\ yUJK2L . This follows
from (b) and (c) above and yE�JK1 j yUJK1K2 D

yE�JK2 j
yUJK1K2

, which holds by .�/J;lC1 .
Therefore the last part of .�/J;l can be rewritten to say that we have one prescribed
value for yE�JL on the subset PUJL WD

S
fKjL¨K¨J g

yUJKL , which satisfies (70)–(71)
on PUJL .

So, we are given a prescribed value of yE�JL on an open set PUJL � VJ satisfying (71),
and we have to extend it to a larger open set yUJL � VJ containing both PUJL and
 �1J .CJ \CK \CL/. This may not be possible: if we have chosen previous values
of yE�JK badly near the “edge” of PUJL in VJ , then the prescribed values of yE�JL may
not extend continuously to the closure PUJL of PUJL in VJ , and in particular, may not
extend continuously over points in Œ �1J .CJ \CK \CL/�\ Œ PUJL n PUJL�. However,
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we can deal with this problem by shrinking all the open sets yUJKL , such that the
closure PUJL of the new PUJL lies inside the old PUJL . Then it is guaranteed that the
prescribed value of yE�JL on PUJL extends smoothly to an open neighbourhood of PUJL
in VJ , so we can choose . yUJL; yE�JL/ satisfying all the required conditions. As this
holds for all L¨ J with jLj D l , this completes the inductive step, and .�/J;l holds
for all l Dm� 1;m� 2; : : : ; 1.

Fix data yUJL , yE�JL , yUJKL as in .�/J;1 . For all ¿ ¤ K ¨ J , choose open neigh-
bourhoods LUJK of  �1J .CJ \ CK/ in yUJK such that if K1 ¨ K2 and K2 ¨ K1
then LUJK1 \ LUJK2 D ¿, and if ¿ ¤ L ¨ K ¨ J then LUJK \ LUJL � yUJKL . This
is possible provided the LUJK are small enough, using Proposition 3.13(iii) to en-
sure LUJK1 \ LUJK2 D¿.

Define
LUJ D

[
fKj¿¤K¨J g

LUJK :

The set LUJ is an open neighbourhood of the closed set LCJ in VJ , where LCJ DS
fKj¿¤K¨J g  

�1
J .CJ \CK/ in VJ . Define a vector subbundle LE�J of EJ j LUJ by

LE�J j LUJK D
yE�JLj LUJK for all ¿¤K ¨ J:

These prescribed values for different K1 , K2 are compatible, by construction, on the
overlap LUJK1 \ LUJK2 , so LE�J is well defined.

Now apply Theorem 3.7(b) to A�J , VJ , EJ , sJ ; : : : , with closed set LCJ � VJ and
pair . LUJ ; LE�J / satisfying .�/ with LCJ � LUJ . This shows that there exists a pair
. zUJ ; zE

�
J / satisfying .�/ for A�J , VJ , EJ , sJ ; : : : , and an open neighbourhood LU 0J

of LCJ in LUJ \ zUJ such that LE�J j LU 0J D
zE�J j LU

0
J

. Set

zUJK D LU
0
J \
LUJK for all ¿¤K ¨ J:

Then zUJK is an open neighbourhood of  �1J .CJ \ CK/ in VJ , and zE�J j zUJK D
LE�J j zUJK D

yE�JK j zUJK , which is compatible with . zUK ; zE�K/ by definition. This com-
pletes the proof of the inductive step of .C/m . So by induction, .C/m holds for
all mD 1; 2; : : : .

Fix data . zUJ ; zE�J / for all J 2 A and zUJK for all J;K 2 A with K ¨ J as in .C/m
as m!1 (or mD jI j if I is finite). For all J 2A, choose open neighbourhoods UJ
of  �1J .CJ / in zUJ , such that setting E�J D zE

�
J jUJ and SJ D  J .s�1J .0/\UJ /, so

that SJ is an open neighbourhood of CJ in Xan , then .UJ ; E�J / satisfies condition .�/,
and for all J;K 2 A, if J 6�K and K 6� J then SJ \SK D¿, and if K ¨ J then
 �1J .SJ \ SK/ � zUJK . If K ¨ J , we define UJK D zUJK \UJ \ ��1JK.UK/. Then
s�1J .0/\UJK D 

�1
J .SJ \SK/, and .UJK ; E�J jUJK / is compatible with .UK ; E�K/.
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To see that we can choose UJ for all J 2 A satisfying all these conditions, note that
by Theorem 3.7(c), if UJ is small enough then .UJ ; E�J / satisfies .�/, as . zUJ ; zE�J /
satisfies .�/. If J 6�K and K 6�J then Proposition 3.13(iii) implies that SJ \SK D¿
provided both UJ , UK are sufficiently small. Similarly, if K ¨ J then we have
 �1J .SJ \ SK/ � zUJK provided both UJ , UK are sufficiently small. Now if I is
infinite, it is possible that an individual set UJ may have to satisfy infinitely many
smallness conditions, for compatibility with infinitely many sets ¿¤K � I . However,
the local finiteness condition Proposition 3.13(ii) means that in an open neighbourhood
of any vJ 2  �1J .CJ /, only finitely many smallness conditions on UJ are relevant, so
we can solve them. This completes the proof of Proposition 3.14.

6.3 Proof of Proposition 3.17

Let .X ; !X�/, Xan , K and Xdm be as in Theorems 3.15 and 3.16, and use the notation
of Section 3.5. First we relate orientations on .X ; !X�/ and Xdm at one point x 2Xan .
Pick J 2 A with x 2 SJ D Im CJ . From (7) and (9) we have

forientations on .X ; !�X / at xg Š fC–orientations on .H 1.TX jx/;Qx/g;(72)

forientations on Xdm at xg Š forientations on T �x Xdm˚OxXdmg;(73)

where Qx D !0X � is the nondegenerate complex quadratic form on H 1.TX jx/ in (6).
There is a unique vJ in s�1J .0/\UJ D .s

C

J /
�1.0/� UJ � VJ with  J .vJ / D x .

Equation (20) gives an isomorphism of complex vector spaces

(74) H 1.T˛J jvJ /W
Ker.tJ jvJ W EJ jvJ ! FJ jvJ /

Im.dsJ jvJ W TvJVJ !EJ jvJ /
!H 1.TX jx/:

Write zQvJ for the complex quadratic form on Ker.tJ jvJ /= Im.dsJ jvJ / identified
with Qx by (74), as in Definition 3.6. Then by (72) we have

(75) forientations on .X ; !�X / at x g

Š
˚
C–orientations on

�
Ker.tJ jvJ /= Im.dsJ jvJ /; zQvJ

�	
:

Condition .�/ for .UJ ; E�J / at vJ requires that

…vJ W E
�
J jvJ \Ker.tJ jvJ W EJ jvJ ! FJ jvJ /!

Ker.tJ jvJ W EJ jvJ ! FJ jvJ /

Im.dsJ jvJ W TvJVJ !EJ jvJ /

should be injective, with image Im…vJ a real vector subspace of half the real dimension
of Ker.tJ jvJ /= Im.dsJ jvJ /, on which the real quadratic form Re zQvJ is negative
definite. As .UJ ; ECJ ; s

C

J ;  J js
�1
J .0/\UJ / is a Kuranishi neighbourhood on Xdm by

the proof of Theorem 3.16, equation (10) gives an exact sequence

0 // TxXdm // TvJVJ
dsCJ jvJ // ECJ jvJ

// OxXdm // 0:
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Condition .�/ implies that Ker.dsJ jvJ /D Ker.dsCJ jvJ /, so we have

(76) TxXdm Š Ker.dsJ jvJ W TvJVJ !EJ jvJ /:

Also from .�/ we see there is a canonical isomorphism

(77) OxXdm Š
Ker.tJ jvJ /= Im.dsJ jvJ /

Im…vJ
:

By (76), TxXdm is a complex vector space, so TxXdm and T �x Xdm have natural
orientations as real vector spaces. Thus by (77) we have a bijection

(78) forientations on T �x Xdm˚OxXdmg

Š forientations on ŒKer.tJ jvJ /= Im.dsJ jvJ /�= Im…vJ g:

Suppose we are given a complex basis e1; : : : ; ek of Ker.tJ jvJ /= Im.dsJ jvJ /ŠCk

that is orthonormal with respect to zQvJ . As e1; : : : ; ek are orthonormal with respect to
zQvJ , the real quadratic form Re zQvJ is positive definite on the real span he1; : : : ; ekiR ,

and Re zQvJ is negative definite on Im…vJ , and thus he1; : : : ; ekiR\ Im…vJ D f0g.
Therefore e1C Im…vJ ; : : : ; ekC Im…vJ are linearly independent in the real vector
space ŒKer.tJ jvJ /= Im.dsJ jvJ /�= Im…vJ ŠRk , so they are a basis as Im…vJ has
half the real dimension of Ker.tJ jvJ /= Im.dsJ jvJ /. Define an identification

(79)
˚
C–orientations on

�
Ker.tJ jvJ /= Im.dsJ jvJ /; zQvJ

�	
Š forientations on ŒKer.tJ jvJ /= Im.dsJ jvJ /�= Im…vJ g;

such that orientations on both sides are identified if, whenever e1; : : : ; ek is an oriented
orthonormal complex basis for

�
Ker.tJ jvJ /= Im.dsJ jvJ /; zQvJ

�
, then we have that

e1CIm…vJ ; : : : ;ekCIm…vJ is an oriented basis for ŒKer.tJ jvJ /=Im.dsJ jvJ /�=Im…vJ .
Combining equations (73), (75), (78) and (79) gives an identification

(80) forientations on .X ; !�X / at x g Š forientations on Xdm at x g:

It is not difficult to show that the isomorphism (80) is independent of the choice
of J 2 A with x 2 SJ , and depends continuously on x 2 Xan . Thus we get a
canonical one-to-one correspondence between the sets in Proposition 3.17(a),(c). The
last part of Theorem 2.18 gives a one-to-one correspondence between the sets in
Proposition 3.17(b),(c). This completes the proof.

6.4 Proof of Proposition 3.18

Suppose .X ; !�
X
/ is a separated, �2–shifted symplectic derived C–scheme with

virtual dimension vdimC X D n, whose complex analytic topological space Xan is
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second countable. Let K , K0 be different possible Kuranishi atlases constructed in
Theorem 3.15, and Xdm , X 0dm the corresponding derived manifolds in Theorem 3.16.

As in Section 3.5, let K be constructed using the family f.A�i ;˛i / j i 2 I g, and
data A�J , ˛J for J 2 A, ˆJK for K � J in A from Theorem 3.1, where A D
fJ j¿¤ J � I and J is finiteg, and as in Section 3.2, use notation VJ , EJ , FJ , sJ ,
tJ ,  J and RJ D

T
i2J Ri � Xan from A�J , ˛J and �JK , �JK , �JK from ˆJK .

Let K be defined using closed subsets CJ �Xan for J 2 A in Proposition 3.13 and
pairs .UJ ; E�J / and open subsets UJK � UJ in Proposition 3.14. Similarly, let K0 be
constructed using f.A0�i 0 , ˛

0
i 0/ j i

0 2 I 0g, A0�J 0 , ˛
0
J 0 , V

0
J 0 , E

0
J 0 ; : : : ; U

0
J 0K0 � U

0
J 0 .

We must build a derived manifold with boundaryWdm with topological space Xan� Œ0; 1�

and vdimWdm D nC 1, and an equivalence @Wdm 'Xdm tX
0
dm topologically identi-

fying Xdm with Xan � f0g and X 0dm with Xan � f1g.

Write z�W zX!Z to be the projection �A1 W X �A1!A1 , so that Z DA1D SpecB
with B DCŒz�, and Zan DC . Define ! zX=Z D ��X .!

0
X
/. Then ! zX=Z is a family of

�2–shifted symplectic structures on X=Z in the sense of Section 3.7, the constant
family over Z D A1 with fibre .X ; !�

X
/. We now carry out the programme of

Section 3.7 for z�W zX !Z;! zX=Z , choosing data as follows:

(a) Set zI D I t I 0 , the disjoint union of I and I 0 .

(b) Define . zA�i ; z̨i ; ži / for i 2 I by

zA�i D A
�

i ˝C CŒz; .z� 1/�1�;

so that Spec zA�i D .SpecA�i /� .A
1 n f1g/, and

z̨i D ˛i � incW .SpecA�i /� .A
1
n f1g/!X �A1;

and
ž
i W CŒz�! A0i ˝C CŒz; .z� 1/�1� by ži W z 7! 1˝ z:

Similarly, define . zA0�i 0 ; z̨i 0 ; ži 0/ for i 0 2 I 0 by zA�i 0 DA
0�
i 0 ˝C CŒz; z�1�, so Spec zA0�i 0 D

.SpecA0�i 0/� .A
1 n f0g/, and z̨i 0 D ˛0i 0 � incW .SpecA0�i 0/� .A

1 n f0g/!X �A1 , and
ž0
i 0 W CŒz�! A00i 0 ˝C CŒz; z�1� by ž0i 0 W z 7! 1˝ z .

(c) Write zAD f zJ j¿¤ zJ � zI and zJ is finiteg. Then A� zA and A0 � zA.

(d) When we apply Theorem 3.1 to choose zA�
zJ
, z̨ zJ , žzJ for zJ 2 zA and ẑ zJ zK

for zK � zJ , we make these choices so that

zA�J D A
�

J ˝C CŒz; .z� 1/�1� and zA�J 0 D A
0�
J 0 ˝C CŒz; z�1�;

z̨J D ˛J � incW .SpecA�J /� .A
1
n f1g/!X �A1;
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z̨J 0 D ˛
0
J 0 � incW .SpecA0�J 0/� .A

1
n f0g/!X �A1;

ž
J W z 7! 1˝ z and ž

J 0 W z 7! 1˝ z;

ẑ
JK DˆJK ˝ idW A�K ˝C CŒz; .z� 1/�1�! A�J ˝C CŒz; .z� 1/�1�;

ẑ
J 0K0 Dˆ

0
J 0K0 ˝ idW A0�K0 ˝C CŒz; z�1�! A0�J 0 ˝C CŒz; z�1�;

for all K � J in A and K 0 � J 0 in A0 . This is clearly possible. Note that this does
not determine zA�

zJ
, z̨ zJ , žzJ or ˆ zJ zK if zJ 2 zA n .AtA0/.

(e) When we translate to complex geometry using Section 3.2, part (d) implies
that zVJ D VJ � .C n f1g/ for J 2 A � zA. Also zEJ , zFJ , zsJ , ztJ , z�JK , z�JK
for J;K 2 A are obtained from EJ ; : : : ; �JK by taking products with C n f1g.
Similarly, zVJ 0 , zEJ 0 , zFJ 0 , zsJ 0 , ztJ 0 , z�J 0K0 , z�J 0K0 for J 0; K 0 2 A0 � zA are obtained
from VJ 0 ; : : : ; �J 0K0 by taking products with C n f0g.

(f) When we choose data zC zJ , . zU zJ ; zE
�
zJ
/ for zJ 2 zA, we do this so that

zCJ \ .Xan � f0g/D CJ � f0g; zUJ \VJ � f0g D UJ � f0g;

zE�J jUJ�f0g DE
�
J � 0;

zCJ 0 \ .Xan � f1g/D C
0
J 0 � f1g;

zUJ 0 \V
0
J 0 � f1g D U

0
J 0 � f1g;

zE�J 0 jU 0J 0�f1g
DE 0�J 0 � 1;

whenever J 2 A and J 0 2 A0 . This is clearly possible.

Theorem 3.23 constructs a relative Kuranishi atlas zK for �CW Xan � C ! C , of
dimension nC2. By construction, over Xan�f0g this restricts to the Kuranishi atlas K ,
and over Xan � f1g it restricts to K0 .
Theorem 3.24 gives a derived manifold zX dm with vdim zX dm D nC 2 and topological
space Xan�C , with a morphism z�dmW zX dm!C . From Theorem 3.24(iii) we see that
zX0dm D z�

�1
dm .0/'Xdm and zX1dm D z�

�1
dm .1/'X

0
dm .

Now define Wdm D zX dm �z�dm;C;inc Œ0; 1�, as a fibre product in the 2–category dManc

of d-manifolds with corners from [18; 19; 20], where incW Œ0; 1� ,!C is the inclusion.
By properties of fibre products in dManc from [18; 19; 20], this has topological
space Xan � Œ0; 1� and vdimWdm D nC 1, and boundary

(81) @Wdm ' zX dm �z�dm;C;inc @Œ0; 1�' zX dm �z�dm;C;inc f0; 1g 'Xdm tX
0
dm:

This proves the first part of Proposition 3.18.

For the last part, orientations on .X ; !�X / correspond naturally to orientations for
z�W zX !Z;! zX=Z , by pullback along zX !X , and these correspond to orientations
on zX dm by Proposition 3.26, and thus (using oriented fibre products) to orientations
on Wdm . Since @Œ0; 1�D�f0g t f1g in oriented manifolds, we see that as in (81) that
@Wdm '�Xdm tX

0
dm in oriented derived manifolds. This completes the proof.
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Koszul duality patterns in Floer theory

TOLGA ETGÜ

YANKI LEKILI

We study symplectic invariants of the open symplectic manifolds X� obtained by
plumbing cotangent bundles of 2–spheres according to a plumbing tree � . For any
tree � , we calculate (DG) algebra models of the Fukaya category F.X�/ of closed
exact Lagrangians in X� and the wrapped Fukaya category W.X�/ . When � is a
Dynkin tree of type An or Dn (and conjecturally also for E6;E7;E8 ), we prove that
these models for the Fukaya category F.X�/ and W.X�/ are related by (derived)
Koszul duality. As an application, we give explicit computations of symplectic
cohomology of X� for � D An;Dn , based on the Legendrian surgery formula of
Bourgeois, Ekholm and Eliashberg.

57R58; 16E45

1 Introduction

Let us begin by recalling a simple example that we learned from Blumberg, Cohen
and Teleman [14]. Consider a simply connected smooth compact manifold S and
its cotangent bundle M D T �S with its canonical symplectic structure. The zero
section S is a Lagrangian submanifold. We choose a basepoint x 2 S and consider
the corresponding cotangent fiber LD T �x S . This is another Lagrangian submanifold,
a noncompact one. Throughout, our Lagrangian submanifolds will be equipped with
a brane structure. This means that they will be given an orientation, a spin structure
(in particular, we assume here that S is spinnable) and they will be equipped with a
grading in the sense of Seidel [59].

Fix a coefficient field K. Lagrangian Floer theory gives us Z–graded A1–algebras
over K

A D CF�.S;S/; B D CW�.L;L/:

Indeed, S is an object of F.M /, the Fukaya category of closed exact Lagrangian
branes in the Liouville manifold M (see Seidel [61]). The endomorphisms of the
object S in this category are given by the Fukaya–Floer A1–algebra CF�.S;S/.
On the other hand, L is an object of W.M /, the wrapped Fukaya category of M
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3314 Tolga Etgü and Yankı Lekili

(see Abouzaid and Seidel [6]). The endomorphisms of the object L in this category
are given by the wrapped Floer cochain complex CW�.L;L/, which again has an
associated A1–structure (well-defined up to quasi-isomorphism).

Now, in this setting, by construction, there exists a full and faithful embedding

F.M /!W.M /

since by definition W.M / allows certain noncompact Lagrangians in M with con-
trolled behavior at infinity, in addition to the exact compact Lagrangians in M . Fur-
thermore, it is a general fact (see Abouzaid [2]) that a cotangent fiber generates the
wrapped Fukaya category in the derived sense. Hence, in particular, one has a Yoneda
functor to the DG-category of A1–modules over B ,

YW F.M /!Bmod;

which is a cohomologically full and faithful embedding. This sends an exact compact
Lagrangian T to the (right) A1–module YT DCW�.L;T / over B . As a consequence,
one can compute A via its quasi-isomorphic image under Y :

(1) A ' homB.K;K/;

where we write K for the right A1–module over B with underlying vector space
K � x D CW�.L;S/. Equipping S and L with suitable brane structures, one can
arrange that the degree jxj is 0. The only nontrivial module map is the multiplication
by the idempotent element in CW0.L;L/ D K � e , which acts as the identity. The
other products (including the higher products) are necessarily trivial. This can be seen
from the fact that CW�.L;L/ is supported in nonpositive degrees (as we shall see
below). Note that we are following the conventions of [61], where, for example, the
A1–module maps are given by Floer products

CW�.L;S/˝CW�.L;L/˝k
! CW�.L;S/Œ1� k�; k D 0; : : : :

Throughout, upwards shift of grading by n is written as Œ�n�.

On the other hand, CW�.L;S/ is also a (left) A1–module over CF�.S;S/, where
A1–module maps are given by Floer products

CF�.S;S/˝k
˝CW�.L;S/! CW�.L;S/Œ1� k�; k D 0; : : : :

To be in line with the conventions of [61], we prefer to view this as a right A op–module
(which entails slightly different sign conventions). In fact, in our setting, it turns out
that A is quasi-isomorphic to A op .

Geometry & Topology, Volume 21 (2017)
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Somewhat more surprisingly, one can also compute B as

(2) Bop
' homA op.K;K/:

This is an instance of Koszul duality.

Figure 1: A picture of Koszul duality

To see this, we observe that both A and B have topological models due to Abouzaid
[3; 4]. Indeed, there are A1–equivalences

A ' C �.S IK/ and B ' C��.�xS IK/;

where �xS is the based loop space of S at x . Notice the cohomological grading in
place. In particular, A is supported in nonnegative degrees and B is supported in
nonpositive degrees.

Now, (1) becomes an Eilenberg–Moore equivalence (of DGA’s)

RHomC��.�xS/.K;K/' C �.S IK/;

and (2) is Adams’ cobar equivalence (see Adams [8] and Jones and McCleary [44])

RHomC �.S/ op.K;K/' C��.�xS/op

(op operations get removed from both sides if one considers K as a left C �.S/–module).

This duality is relevant to us because it induces an isomorphism at the level of Hochschild
cohomology. Namely, by a general result of Keller [47] (see also Félix, Menichi and
Thomas [36]) one obtains an isomorphism of Gerstenhaber algebras (in fact, of B1–
algebras at the chain level)

HH�.C �.S/;C �.S//Š HH�.C��.�xS/;C��.�xS//:

In view of Abouzaid’s generation result [4], the right-hand side is in turn isomorphic
to HH�.W.M // as a Gerstenhaber algebra. On the other hand, the work of Bourgeois,
Ekholm and Eliashberg [17] can be interpreted, over a field K of characteristic 0, to
give an isomorphism of Gerstenhaber algebras

HH�.W.M //Š SH�.M /:

Geometry & Topology, Volume 21 (2017)



3316 Tolga Etgü and Yankı Lekili

The group on the right-hand side is called symplectic cohomology. Strictly speaking,
the results of [17] relate symplectic and Hochschild homologies. However, in our
computations, we will use an explicit DG-algebra as a model for W.M /, which has an
(open) Calabi–Yau property (in the sense of Ginzburg [39]) implying an isomorphism
between Hochschild homology and cohomology. This allows us to use the cohomo-
logical statement above that we find more convenient. Symplectic (co)homology of a
Liouville manifold is a symplectic invariant based on an extension of Hamiltonian Floer
(co)homology to noncompact symplectic manifolds. It was introduced by Viterbo [70] in
its current form. We recommend Seidel [60] for an excellent introduction to symplectic
cohomology and the recent manuscript Abouzaid [5] for more. Briefly, this is a very
interesting invariant of a Stein manifold that is sensitive to the underlying symplectic
structure (cf Eliashberg and Gromov [31]). Symplectic cohomology is in general
difficult to calculate explicitly. However, Bourgeois, Ekholm and Eliashberg [16; 17]
recently outlined a proof of a surgery formula for symplectic (co)homology. Combining
this with the very recent work of Ekholm and Ng [28], one obtains a purely combinatorial
description of symplectic cohomology of any 4–dimensional Weinstein manifold. (In
the absence of 1–handles and when the coefficient field is Z2 , one had Chekanov [19] as
a precursor to [28].) This combinatorial description is in general still highly complicated.
It involves noncommutative and infinite-dimensional chain complexes.

In the above setting, assuming that A D C �.S/ is a formal DG-algebra, that is, it is
quasi-isomorphic to its homology ADH�.S/, we get a promising way of computing
symplectic cohomology. Namely, one has

HH�.H�.S/;H�.S//D SH�.M /:

By a famous result of Deligne, Griffiths, Morgan and Sullivan [25], the formality
assumption holds if S is a Kähler manifold and K has characteristic 0. Note that as
a consequence of formality of C �.S/, one has a bigrading on HH�.C �.S/;C �.S//;
there is a cohomological grading r associated with the Hochschild cochain complex
and there is an internal grading s coming from the grading on H�.S/. To get an
isomorphism to SH�.M /, where the grading is given by a Conley–Zehnder type index,
one has to consider the grading of the total complex corresponding to r C s .

Let us note that one could arrive at the same conclusion by combining theorems of
Viterbo [70] and Cohen and Jones [20].

In this paper, we give a generalization of the above (in dimension 4) to Liouville
manifolds M DX� obtained via plumbings of T �S2 according to a plumbing tree � .
We will work over semisimple rings k of the form

kD
M
v

Kev;

Geometry & Topology, Volume 21 (2017)
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where e2
v D ev and evew D 0 for v ¤ w and the index set of the sum is the vertex

set �0 of � .

To wit, using Floer complexes over K, we set

A� D
M
v;w

CF�.Sv;Sw/;

where the Sv are the Lagrangian spheres corresponding to the zero sections of the
cotangent bundles T �S2 that we are plumbing, and similarly we have

B� D

M
v;w

CW�.Lv;Lw/;

where Lv is a cotangent fiber at a chosen basepoint on Sv (away from the plumbing
region).

In fact, assuming char KD 0, it turns out that A� tends to be a formal DG-algebra (we
can prove this when � is of type An or Dn , and conjecture it for E6;E7;E8 ), hence,
in such cases, we may replace it with A� DH�.A�/. Furthermore, very early on, we
will replace B� with a quasi-isomorphic DG-algebra (see [17, Proposition 4.11 and
Theorem 5.8]) which has a combinatorial description. Namely, we will use Chekanov’s
DG-algebra [19], with the cohomological grading, associated to a Legendrian link
ƒ� D

S
ƒv giving a Legendrian surgery diagram for X� where the components are

indexed by vertices v of � and each component ƒv is a Legendrian unknot in R3

(see Figure 3). In the context of [17], the homologically graded version of this is also
called the Legendrian contact homology algebra.

At this point, one obtains an explicit description of the DG-algebra B� . A careful
choice of the surgery diagram (with suitable decorations) enables us to observe that
the DG-algebra B� is a deformation of Ginzburg’s (cohomologically graded) DG-
algebra G� associated with the tree � (see Theorem 8).1 Note that Ginzburg [39]
associates a CY3 DG-algebra to any graph � and a potential function. In this paper,
� is a tree and the potential function vanishes. On the other hand, since we are plumbing
copies of T �S2 , our DG-algebras are CY2. This generalization of the construction
of Ginzburg’s DG-algebra in order to obtain a CY2 DG-algebra appears in Van den
Bergh [12]. (See Definition 5 for the definition of G� .)

The observation that B� is a deformation of the corresponding Ginzburg DG-algebra G�
enables us to use the vast literature on the study of Ginzburg’s DG-algebras to study
symplectic invariants of X� . Now, our discussion branches into two according to
whether the underlying tree � is of Dynkin type or not.

1An earlier version of this manuscript claimed an isomorphism between B� and G� , due to our
blindness to some higher energy curves. We are indebted to the referee for opening our eyes.
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3318 Tolga Etgü and Yankı Lekili

Dynkin case For � of type An or Dn , we prove the following theorem:

Theorem 1 For � D An and K arbitrary field, or � D Dn and K a field with
char K¤ 2, there is a quasi-isomorphism of DG-algebras

B� ' G� :

For � D An , this result follows from a direct computation of B� . However, for
� DDn , direct computation only shows that B� is a certain deformation of G� . We
then appeal to standard deformation theory arguments to show that this deformation
is trivial when char K ¤ 2. In fact, we also prove that B� and G� are not quasi-
isomorphic when � DDn and char KD 2 by showing that the relevant obstruction
class in HH2.G�/ is nontrivial.

We conjecture that B� ' G� for � D E6;E7 if char K ¤ 2; 3 and for � D E8 if
char K¤ 2; 3; 5, but we leave the study of these exceptional cases to a future work.

Assuming for brevity char K¤ 2, and � DAn or Dn , we can now write B� ' G� .
For � of type ADE, G� turns out to be nonformal; see Hermes [41]. Its cohomology
has locally finite grading. Indeed, for an (algebraically closed) field with characteristic
0, it was computed in [41] that

H�.G�/Š…� Ì� kŒu�

as a k–algebra, where …� is the preprojective algebra associated with the tree � ,
juj D �1, and the multiplication is twisted by the Nakayama automorphism � of …� .
This is an involution, which is induced by an involution of the underlying Dynkin graph
(see Section 3).

Because G� is not formal, it is not immediately clear how to compute Hochschild
cohomology of G� . To help with this, we prove in Section 5 the following:

Theorem 2 Let K be any field. For any tree � , the associative algebra A� is Koszul
dual to the DG-algebra G� , in the sense that there are DG-algebra isomorphisms

RHomG�
.k; k/'A� and RHomA

op
�
.k; k/' G

op
�
:

Therefore, by Keller’s result [47], we can use this to compute SH�.X�/ as

SH�.X�/Š HH�.G�/Š HH�.A�/:

Since A� is a rather small finite-dimensional algebra over k, one can find a minimal
projective resolution to compute the latter group. Indeed, Brenner, Butler and King [18]
give a minimal periodic (graded) resolution for A� . However, we will find a shortcut

Geometry & Topology, Volume 21 (2017)
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to compute HH�.A�/ as a bigraded algebra for � DAn;Dn over a field K of arbitrary
characteristic. An explicit presentation of HH�.A�/ as a (graded) commutative K–
algebra is provided in Theorem 40 for An and in Theorem 44 for Dn .

As we noted above in the case �DDn and when char KD 2, B� is indeed a nontrivial
deformation of G� . In this case A� is not formal and indeed B� and A� are Koszul
dual in the above sense. Therefore, it appears that a natural statement (that applies in
all characteristics) may be that A� and B� are Koszul dual when � is a Dynkin tree.

Non-Dynkin case In this case, we only know that B� is a deformation of G� and even
at the formal level there are many nontrivial deformations of G� since HH2.G� ;G�/

is big (see Theorem 30) and HH3.G� ;G�/ D 0. Hence, it is not clear whether the
deformation corresponding to B� is trivial or not. On the other hand, as B� (being a
model for the wrapped Fukaya category of X� ) is also a Calabi–Yau (CY) algebra,
one can see the deformation of G� to B� as a deformation of CY2-algebras. In
characteristic 0, this allows one to conclude that the corresponding formal deformation
is trivial as follows.

G� is in a sense simpler for � non-Dynkin. Namely, in this case, the homology
H�.G�/ turns out to be concentrated in degree 0 and

H 0.G�/Š…�

is the preprojective algebra associated with the tree � . For a non-Dynkin tree � ,
working over K of characteristic 0, Hermes [41] proved that G� is formal, that is, G�
is quasi-isomorphic to its homology …� (see also Corollary 26 for another proof that
works over any field). Furthermore, it is well-known that …� is Koszul in the classical
sense (cf [54; 10]) over k. The quadratic dual to …� is given by the associative algebra
A� DH�.A�/ — the zigzag algebra associated with the tree � [43].

The Gerstenhaber algebra structure of the Hochschild cohomology of the preprojective
algebra …� in the non-Dynkin case has already been computed by Crawley-Boevey,
Etingof and Ginzburg in [23] when K has characteristic zero, and by Schedler [57]
in general. HH�.…�/ ¤ 0 only for � D 0; 1; 2. We give a brief review of these
computations of HH�.…�/ for completeness; see Section 6.1 for a full description.
Now, B� can be seen as a deformation of the CY2 algebra …� . If we consider the
corresponding formal deformation, then the associated Kodaira–Spencer class lives in
Ker.�W HH2.…�/! HH1.…�//, where � is the BV-operator (see for example [35]).
Now, it can be observed from the description given in Section 6.1 that this kernel
is trivial if char K D 0. This result does not hold in arbitrary characteristic; see
Remark 15 (cf Remark 33) for a proof that this deformation is nontrivial over a field K
of characteristic 2.

Geometry & Topology, Volume 21 (2017)



3320 Tolga Etgü and Yankı Lekili

Finally, let us remark that the above argument only shows that the associated formal
deformation is trivial. This does not mean that B� is quasi-isomorphic to G� —
such a quasi-isomorphism holds only after a certain completion. As was shown in
our subsequent work [33], H 0.B�/ is isomorphic to the multiplicative preprojective
algebra associated with � , introduced by Crawley-Boevey and Shaw [24]. On the other
hand H 0.G�/ is isomorphic to the additive preprojective algebra …� . It is known that
additive and multiplicative preprojective algebras are isomorphic only when char KD 0

and � is Dynkin, and in general, they are isomorphic when char K D 0 only after
completion, as follows from the above deformation theory argument.

In Section 2, we provide geometric preliminaries on plumbings of cotangent bundles.
In Section 3, we give a computation of Legendrian contact homology of the Legendrian
link ƒ� associated to a tree � , show that it is isomorphic to a deformation of the
corresponding CY2 Ginzburg DG-algebra G� (Theorem 8) and that this deformation is
trivial for � DAn or Dn , when char K¤ 2 in the latter case (Theorem 13). Section 4
computes the Floer cohomology algebra A� of the spheres in X� . The main result
appears in Section 5, where we show that G� and A� DH�.A�/ are Koszul duals for
any tree � . Finally, as an application of our main result, in Section 6, we explicitly
compute Hochschild cohomology of G� , hence also of B� for � D An and Dn ,
assuming char K¤ 2 if � DDn .

Convention Throughout, we adhere to the following conventions. K is a field,
of arbitrary characteristic unless otherwise specified, and k is a semisimple ring,
generated over K by finitely many mutually orthogonal idempotents. Letters A;B; : : :

denote associative algebras over k. All our modules are right modules and all our
multiplications are read from right to left. Letters A ;B; : : : denote A1– or DG-
algebras over k. We follow the sign conventions as given in Seidel [61, Chapter 1]
and its sequel Seidel [63]. In particular, an A1–algebra A over k is a Z–graded
k–module with a collection of k–linear maps

�d
W A ˝d

! A Œ2� d � for d � 1;

where Œ2�d � means �d lowers the degree by d�2. These maps are required to satisfy
the A1–relationsX
m;n

.�1/ja1jC���Cjanj�n�d�mC1.ad ; : : : ; anCmC1; �
m.anCm; : : : ; anC1/; an; : : : a1/

D 0:

A DG-algebra over k is an A1–algebra over k such that �d D 0 for d � 3. In this
case, we put

(3) daD .�1/jaj�1.a/; a2a1 D .�1/ja1j�2.a2; a1/:

Geometry & Topology, Volume 21 (2017)



Koszul duality patterns in Floer theory 3321

With this convention the A1–equation for d D 2 gives us the usual graded Leibniz
rule

d.a2a1/D .da2/a1C .�1/ja2ja2.da1/:

A op denotes the opposite of an A1–algebra A and its operations are given by

�d
A op.ad ; : : : ; a1/D .�1/ja1jC���Cjad j�d�d

A .a1; : : : ; ad /:

With the above conventions, a DG-algebra and its opposite are related via

dop.a/D .�1/jaj�1da; a2a1 D a1a2:

All our complexes are cohomological, ie the differential increases the grading by 1. It
often happens that our complexes are bigraded. In this case, we denote these gradings
by the pair .r; s/, where r refers to a cohomological (or length) grading and s refers to
an internal grading (the notation jaj is used to denote the internal grading of a specific
element). The grading rCs is referred to as the total degree. If a second grading is not
specified in the notation, for example as in HH�.A�/, it is understood that the grading
� refers to the total degree.

The notation HH�.A/ is used to denote Hochschild cohomology of a graded K–
algebra A with coefficients in A. It is a bigraded algebra over K. We write deg.x/ for
the total degree rCs of a specific element. There are two binary K–linear operations: an
associative graded commutative product of bidegree .0; 0/ and a Lie bracket of bidegree
.�1; 0/. These are called the cup product and Gerstenhaber bracket, respectively. The
product is graded commutative:

xy D .�1/deg.x/ deg.y/yx:

The Gerstenhaber bracket is graded antisymmetric on HH�.A/Œ1�, that is,

Œx;y�D�.�1/.deg.x/�1/.deg.y/�1/Œy;x�:

Finally, Hochschild cohomology of a (formal) Calabi–Yau algebra can be equipped
with a Batalin–Vilkovisky operator � of bidegree .�1; 0/, and we have the following
compatibility equation between these structures:

Œx;y�D .�1/jxj�.xy/� .�1/jxj�.x/y �x�.y/:

Acknowledgements Lekili is partially supported by a Royal Society Fellowship and
the NSF grant DMS-1509141. We thank Mohammed Abouzaid, Ben Antieau, Georgios
Dimitroglou Rizell, Tobias Ekholm, Sheel Ganatra, Travis Schedler, Paul Seidel and
Ivan Smith. We are especially grateful to the referee for a careful reading of the
manuscript: in an earlier version of this paper, we used a more complicated Lagrangian
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projection than the one given in Figure 4, which resulted in higher energy curves being
immersed and elusive. We are indebted to the referee for communicating to us the
existence of these higher-order contributions to the differential of B� .

2 Plumbing of cotangent bundles of 2–spheres

Let � be a finite tree. In the body of the paper, we will study Weinstein manifolds that
are given by a plumbing of cotangent bundles of the 2–sphere according to the tree � .
These are exact symplectic manifolds with a convexity condition at infinity. We briefly
recall the construction of these manifolds (cf [3]).

Associated to each vertex of � , we prepare a copy of D�S2 , the unit cotangent
bundle of the 2–sphere with its canonical symplectic structure. Now, say we have an
edge that connects the vertices v and w , and let us write D�Sv and D�Sw for the
corresponding copies of T �S2 and choose basepoints sv 2 Sv and sw 2 Sw . Near
sv and sw one can find real coordinates p1;p2; q1; q2 where the coordinates q1; q2

correspond to variations on the base and the coordinates p1;p2 correspond to variations
in the fiber direction. Furthermore, on these neighborhoods symplectic form can be
identified with dp^ dq . We then glue D�Sv and D�Sw together near sv and sw via
a symplectomorphism that sends .q;p/ to .p;�q/.

This leads to a symplectic manifold which has a boundary with corners. One then
smoothens the boundary and completes it to obtain a Weinstein manifold. The precise
details of this construction are somewhat technical; we refer to [3, Section 2.3] (see
also [37, Section 7.6]).

An alternative description of X� can be given via Legendrian surgery à la Eliash-
berg [29] and Gompf [40], which we will take as primary.2 In this description, we
exhibit X� as a surgery along a Legendrian link ƒ on .S3; �std/ such that the vertices v
of � correspond to the components ƒv of this link, which are Legendrian unknots.
Two such Legendrian unknots are “plumbed together” if there is an edge in � between
the corresponding vertices. To be precise, by choosing a vertex as the root of our tree,
we put our tree � in a standard form as in Figure 2, and the corresponding Legendrian
unknots in a standard form in .R3; dz�y dx/, which when projected to .x; z/ (front
projection) gives the surgery diagram as in Figure 3.

The surgery construction equips X� with a Weinstein structure (in fact, a Stein structure)
by extending the standard Weinstein structure on D4 via attaching 2–handles [73]

2Both the plumbing and surgery constructions lead to homotopic Weinstein manifolds but we do not
check this here. Throughout, we use the surgery construction and appeal to the plumbing picture only for
differential topological aspects.
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Figure 2: Standard form of �

1
2

3
4 10

789
5 6

Figure 3: X� as given by Legendrian surgery along ƒ

along Legendrian unknots ƒi . Each such Legendrian unknot bounds an embedded
Lagrangian disk in D4 and another capping disk given by the attaching disk of the
corresponding Weinstein 2–handle. These fit together, as can be seen from the case
of T �S2 , to give the Lagrangian spheres Sv in X� corresponding to the vertices
of � , whereas the edges of � encode the intersection pattern of these spheres. The
symplectic form ! on X� is exact and it can be written as a primitive of a one-form �

for which the embedding of each sphere Sv is an exact Lagrangian submanifold of X� .
Both of these are easy facts since H2.X� IZ/ is generated by the Lagrangian spheres
Sv and H 1.SvIZ/D 0.

Furthermore, the cocores of the 2–handles give noncompact (exact) Lagrangians Lv
which are asymptotically Legendrian. The Lagrangian Lv intersects Sw only if vDw ,
in which case the intersection is transverse at a unique point xv . In the plumbing
description, the Lv correspond to the cotangent fibers T �xv

Sv � T �Sv , where the xv
are basepoints on each Sv away from the plumbing regions.

In the next section, we will be concerned with Reeb chords between the components
of ƒ in .R3; dz � y dx/. The Reeb flow is in the direction of the vector field @=@z ,
hence it is more convenient for computations to consider the Lagrangian projection, ie
the projection to .x;y/ as in Figure 4. Then the crossings of the projection ƒ are in
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3324 Tolga Etgü and Yankı Lekili

one-to-one correspondence with Reeb chords from ƒ to itself. There is some freedom
in drawing the Lagrangian projection; we prefer the one given in Figure 4 as it makes
enumeration of holomorphic curves manifest. (Notice that the diagram has the property
that each component links at most one other component on its left. Clearly this is an
artifact of the way we put our tree in a standard form and is not necessary.)

In Figure 4, besides a basepoint on each component, we also indicated an orientation on
our Legendrian link ƒ by putting an arrow on each component. This, in turn, induces
orientations on the Lagrangian spheres Sv . Notice that

Sv �Sw DC1

if v and w are adjacent vertices. This ensures that the Floer complex CF�.Sv;Sw/ is
supported at an odd degree (see [59, Section 2d]).

We orient the noncompact Lagrangians Lv so that the algebraic intersection number
Lv �Sv is given by

Lv �Sv D�1:

As above, this ensures that the Floer complex CF�.Lv;Sv/ is supported at an even
degree (which we will fix below to be 0 by picking suitable grading structures).

The classical topology of X� is easy to study via the plumbing description, which
shows that X� deformation retracts onto a wedge of spheres formed by the union of
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Figure 4: Lagrangian projection of ƒ decorated with orientations and basepoints
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the Sv . In particular, X� is simply connected and the nonzero cohomology groups
of X� are given by

H 0.X� IK/DK; H 2.X� IK/D
M
v

K � ŒSv �
_:

The noncompact end of X� is a symplectization of a contact 3–manifold Y� which is
topologically a plumbing of circle bundles over S2 with Euler number �2. By abuse
of notation, we will write @X� D Y� .

To equip our Lagrangians with a brane structure, so as to have Z–gradings, we need:

Lemma 3 c1.X� ; !/D 0.

Proof We have hc1.X�/; ŒSv �i D rot.ƒv/ (see [40, Proposition 2.3]). Now, each ƒv
is an oriented Legendrian unknot in .S3; �std/ and as such its rotation number can be
computed to be rot.ƒv/D 0.

Therefore, the canonical bundle KDƒ2
C.T

�X�/ representing �c1.X�/ is trivial. To
define Z–gradings in various Floer type invariants, one needs to fix a trivialization
of K˝2 . Of course, since H 1.X�/D 0, there is actually only one homotopy class of
trivializations. We can induce a trivialization by picking a complexified volume form
� 2ƒ2

C.T
�X�/.

In this setup, a grading structure on a Lagrangian L can be thought of as a lift of the
squared-phase map

˛LW L! S1; ˛L.x/D
�.TxL/2

j�.TxL/2j

to a map z̨LW L! R. The fact that Sv and Lv are simply connected ensures that
such a lift exists for our Lagrangians.

A grading structure allows one to associate an absolute Maslov index in Z to an intersec-
tion point x 2 Sv \Sw (see [59, Section 2d]). In our situation, all our Lagrangians Sv
are simply connected, and if any two of them intersect they do so at a unique point.
If x is the intersection point of Sv and Sw , then for any given d 2 Z we can ensure
that x 2 CF�.Sv;Sw/ lies in degree d by shifting the grading structure on, say, Sw .
When viewed as a generator of CF�.Sw;Sv/, the same intersection point would then
be forced to have degree 2� d by Poincaré duality in Floer cohomology of compact
Lagrangians (see [61, Section 12e]). Furthermore, since � is a tree, we can grade
our Lagrangians inductively using the standard form of � as in Figure 2. Therefore
we can grade all of our Lagrangians Sv at once such that for any pair of intersecting
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Lagrangians Sv and Sw we are free to pick the gradings .d; 2� d/ as we would like.
Collapsing a grading structure on a Lagrangian to a Z2–grading, we get an orientation
of the underlying Lagrangian. To be compatible with the above choice of orientations
for the Lagrangian spheres Sv , we will need to demand that the gradings d be odd.
Throughout, a convenient choice will be to simply demand that d D 1, that is,

CF�.Sv;Sw/DKŒ�1� if v;w are adjacent:

Having graded the Lagrangian spheres Sv for all v , we now pick grading structures
for the noncompact Lagrangians Lv . As Lv is simply connected as well, we have the
freedom to choose a grading such that

CF�.Lv;Sv/DKŒ0�:

This is compatible with our choice of orientations on Lv and Sv as given before.

These considerations fix the orientations and the grading data up to an overall shift
(which does not change the degrees of intersection points) on our Lagrangians. (Note
that there is a unique choice of Spin structures as our Lagrangians are simply connected.)

Somewhat more nontrivially, these choices force that if v and w are adjacent vertices,
then we have the following.

Lemma 4 For v and w adjacent vertices of the tree � , the shortest Reeb chord
between Lv and Lw lies in the degree 0 part of CW�.Lv;Lw/. Furthermore, for any
pair v;w , the complex CW�.Lv;Lw/ is supported in nonpositive degrees.

Proof The first claim follows from a rigidity of a certain holomorphic square that
contributes to the higher multiplication

�3
W HF0.Lv;Sv/˝HW0.Lw;Lv/˝HF2.Sw;Lw/! HF1.Sw;Sv/;

as explained in [7, Section 4.2]. The second claim is a consequence of the first by
additivity properties of the Maslov grading (see [7, Lemma 4.11]).

We do not use the above result in our computations below. We have stated and proved
it as it helps motivate various grading choices (see also Remark 10). Let us also note
that Theorem 23 below provides an indirect check of this lemma.

3 Ginzburg DG-algebra of � and Legendrian cohomology
DG-algebra of ƒ�

3.1 Ginzburg DG-algebra of �

A quiver Q is a directed graph with a vertex set Q0 and an arrow set Q1 . A rooted
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tree � in a standard form, as in Figure 2, gives rise to a quiver by orienting the edges
so that they point away from the root. We will denote this quiver again by � unless
otherwise specified. Recall that the path algebra K� of quiver � is defined as a vector
space having all the paths in the quiver as basis (including, for each vertex v of the
quiver � , a trivial path ev of length 0), and multiplication is given by concatenation of
paths. As mentioned before, throughout we concatenate paths from right to left, when
we express them as a product.

The cohomologically graded 2–Calabi–Yau Ginzburg DG-algebra G� of � (with zero
potential) is defined as follows (see [39; 12; 41]).

Definition 5 Consider the extended quiver y� with vertices y�0 D �0 and arrows y�1

consisting of

� the original arrows g in �1 in bidegree .1;�1/;

� the opposite arrows g� to g in �1 in bidegree .1;�1/;

� loops hv at the vertex v 2 �0 of bidegree .1;�2/.

We define G� to be the DG-algebra over the semisimple ring kD
L
v2�0

Kev given by
the path algebra Ky� with the differential d of bidegree .1; 0/ defined as a k–bimodule
map by

dg D dg� D 0 and dhD
X

g2�1

g�g�gg�;

where hD
P
v2�0

hv .

In the notation .r; s/ for bigraded complexes, r corresponds to the path-length grading
and as usual we will call r C s the total degree. In particular, the notation H�.G / will
stand for the cohomology graded by the total degree. Note also that with respect to the
total grading G� is supported in nonpositive degrees.

The way we chose to orient the edges of � has only a minor effect on G� . Namely,
different choices change the signs in the formula for the differential. Our choice is to
ensure the consistency with the choice of orientations of the Lagrangians L� , as we
shall see in the next section. In particular, let �op be the quiver obtained from � by
reversing the orientation of all edges of � . Then the associated Ginzburg algebra gives
G

op
�

, the opposite of the Ginzburg algebra G� associated to the original quiver � . In
other words,

G�op D G
op
�
:
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Definition 6 The cohomology in total degree 0 of G� is called the preprojective
algebra …� WD H 0.G�/. It is the quotient of the path algebra KD� by the ideal
generated by X

g2�1

g�g�gg�;

where D� denotes the double of � , obtained by adding the opposite arrow g� for
every g 2 �1 .

It turns out that the nature of the DG-algebra G� depends on whether � is of Dynkin
type or not, as shown in the following theorem. It was first proven by Hermes [41] under
the assumption that K is algebraically closed and characteristic 0. In Corollary 26, we
give a proof of the first part of the theorem over an arbitrary field.

Theorem 7 (Hermes [41] and also Corollary 26) (1) Suppose � is non-Dynkin.
Then H�.G�/D…� is supported in degree 0 and is quasi-isomorphic to G� . In
other words, G� is formal.

(2) Suppose � is Dynkin and K is characteristic 0 and algebraically closed. Then

H�.G�/Š…� Ì� kŒu�; juj D �1

as a k–algebra, where the multiplication is twisted by the Nakayama automor-
phism � on …� . Furthermore, G� is not formal and there is an A1–structure
.�n/n�2 on the twisted polynomial algebra …� Ì� kŒu� making it a minimal
model of G� . Moreover, this A1–structure is u–equivariant, and �n D 0 for
n¤ 2; 3.

The Nakayama automorphism �W …� !…� in the above theorem refers to the auto-
morphism defined by

�.gwv/D

�
g�.w/�.v/ if gwv 2 � or g�.w/�.v/ 2 �;

�g�.w/�.v/ if gvw;g�.v/�.w/ 2 �;

where gwv denotes the arrow from the vertex v to w in …� , and � denotes either
the natural involution of the Dynkin graph (precisely when � is of type An;D2nC1

or E6 ) or the identity. We will abuse the notation and always denote the arrow from
v to w by gwv regardless of where it is considered, in the quiver � , its double D� ,
the extended quiver y� or in the algebras G� and …� , for that matter. In particular,
gvw D g�wv if gwv belongs to � . Note that � has order at most 2 and it is the identity
if and only if � is of type A1 or it is of type D2n;E7 or E8 and the base field K is
of characteristic 2 (see [18, Definition 4.6]).
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3.2 Legendrian cohomology DG-algebra of ƒ�

We recall the definition of the Z–graded Chekanov–Eliashberg DG-algebra of the Leg-
endrian link ƒ� D

S
ƒv following [17, Section 4], where it is denoted as LHA.ƒ�/.

It was originally introduced in [30; 19].

Let R denote the finite set of Reeb chords from ƒ� to itself. Recall from Section 2
that R is in bijection with the set of crossings in the Lagrangian projection of ƒ�
(Figure 4). We endow the vector space KhRi with a k–bimodule structure by declaring

ewRev

to be the set of Reeb chords from ƒw to ƒv . As a k–module, LHA.ƒ/ is the tensor
algebra over the semisimple ring k given by

LHA�.ƒ�/ WD
1M

iD0

KhRi˝ki :

After decorating ƒ� with extra data by orienting each component and picking a
basepoint at each component as in Figure 4, the chords c 2 R acquire a kind of
Conley–Zehnder grading by Z which we denote by jcj. The subscript in the notation
of LHA�.ƒ�/ denotes the induced grading on the tensor algebra. Elements ev 2 k
have degree 0; however, in general there may also be Reeb chords which have degree 0.
The differential DW LHA�.ƒ�/! LHA��1.ƒ�/ is defined as a map DW KhRi�!
LHA��1.ƒ�/ and extended by the graded Leibniz rule to LHA�.ƒ/.

Note that in general the differential is not compatible with the path-length grading
corresponding to the index i in the definition of LHA�.ƒ/.

As we follow the cohomological convention to be consistent with the literature on
Fukaya categories, instead of LHA�.ƒ/ we will use the cohomologically graded
DG-algebra LCA�.ƒ/. As a k–module, it is given by

LCA�.ƒ�/ WD LHA��.ƒ�/:

The differential DW LCA�.ƒ�/! LCA�C1.ƒ�/ is just carried over from the one on
LHA�.ƒ�/.

Let us describe the Legendrian cohomology DG-algebra of ƒ� more explicitly. The
underlying algebra of LCA�.ƒ�/ is the tensor algebra of the k–bimodule KhRi
generated by the Reeb chords (ie crossings in Figure 4):

RD fcwv; cvw W gwv 2 �1g[ fcv W v 2 �0g;
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where cv is the Reeb chord at the unique self-crossing of the component ƒv , and for
every two adjacent vertices v and w of the tree �, cwv corresponds to the unique
Reeb chord from ƒw to ƒv , ie the chord at the unique crossing between ƒv and ƒw
where ƒw is the undercrossing component.

Notice the remarkable coincidence of the k–bimodule structure on LCA�.ƒ�/ and the
k–bimodule structure on G� from Definition 5. Next, we will see that the differentials
do not agree in general. Nonetheless the Legendrian cohomology DG-algebra is
isomorphic to a deformation of the Ginzburg algebra.

Theorem 8 If ƒ� is the Legendrian link in the standard form associated to the tree �
with Lagrangian projection in Figure 4 with the grading decoration as indicated, then
there is an isomorphism between .LCA�.ƒ�/;D/ and a deformation of .G� ; d/ as DG-
algebras. More precisely, there is a graded derivation dW G� ! G� with homogeneous
components d D d3 C d5 C � � � C d2m�1 for some m � 1, d2i�1 having bidegree
.2i � 1; 2� 2i/, and there is an isomorphism of DG-algebras

.LCA�.ƒ�/;D/' .G� ; d C d/

such that the Conley–Zehnder degree on the left-hand side agrees with the total degree
on the right-hand side.

Proof Generators The natural one-to-one correspondence, ie gwv$ cwv , hv$ cv ,
between the arrow set y�1 of the extended quiver y� and the set R of Reeb chords
provides the isomorphism of the underlying k–algebras, the path algebra Ky� and the
tensor algebra of KhRi. Note that the Reeb orientation of the chord cwv is from ƒw
to ƒv , whereas the arrow gwv goes from the vertex v to w .

Gradings It suffices to identify the gradings of the generators. We first recall the
definition for an arbitrary Legendrian link ƒ� .S3; �std/.

According to the original combinatorial description [19], LCA has a Z=rZ–grading,
where r is the gcd of the rotation numbers of the components. In our case, each
component of ƒ� is an unknot with rotation number 0, providing a Z–grading on
LCA�.ƒ�/.

Let z˙ be the endpoints of a Reeb chord c of an oriented Legendrian link ƒ equipped
with basepoints on every component, zC being the one with the greater z–coordinate.
Let ˙ be the shortest paths in ƒ, from z˙ to the basepoint of the corresponding
component, in the direction of the orientation of ƒ. The grading of c in LCA is defined
to be 2r�� 2rCC

1
2

, where r˙ 2Q is the number of counterclockwise rotations the
tangent vector of ˙ makes (in the xy–plane). It is straightforward to verify that the
grading of every generator of the form cv of LCA.ƒ�/ is �1 and that of the form
cwv is 0.
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Differential We briefly recall the definition of the differential of LCA for any Legen-
drian link in the standard contact S3 , and then compute the differentials on the set R
of generators of LCA�.ƒ�/. The rest will be determined by the Leibniz rule.

To simplify the definition, we arrange that at every crossing of the Lagrangian projection,
the understrand and the overstrand have slopes C1 and �1, respectively. We also use
the same notation for a crossing in the Lagrangian projection as the corresponding
Reeb chord.

First of all, each quadrant around a crossing in the Lagrangian projection is decorated
with a Reeb sign. The right and left quadrants at a crossing have positive signs whereas
the top and bottom quadrants have negative signs.

There is also a second set of signs, orientation signs, for these quadrants. Every quadrant
has orientation sign C1 except for the bottom and right quadrants at an even-graded
crossing, which are decorated with �1, as in Figure 5. In fact, the choice of orientation
signs for a given diagram depends on an isotopy of the diagram near the crossing so
that the strand with a positive slope goes under the strand with a negative slope, as in
Figure 5. We indicated our choice in the upper left diagram of Figure 6. This affects
the signs, but different choices give isomorphic DG-algebras (see [28, page 80]).

C C

�

�

C1 .�1/jcjC1

C1

.�1/jcjC1

Figure 5: Reeb signs (left) and orientation signs (right) at a crossing c

On a generator, the differential is given by a count of immersed polygons and it is
extended by the graded Leibniz rule. The polygons taken into account are in the
xy–plane with boundary on the Lagrangian projection of the link and vertices at the
crossings. It is also required that at all but one vertex of the polygon, the quadrant
included in the polygon should have a negative Reeb sign. Suppose that � is such an
immersed polygon whose positive vertex is at c and the negative vertices c1; c2; : : : ; cm

are in order as we traverse the boundary of � counterclockwise starting at c . Note that
m may be 0 and the ci are not necessarily distinct. If b is the total number of times the
boundary of � passes through basepoints of the Legendrian link, the orientation sign
�

�
is defined to be .�1/b times the product of the orientation signs at the vertices.

With this setup, we have
dc D

X
�

�
�

cmcm�1 � � � c1

Geometry & Topology, Volume 21 (2017)



3332 Tolga Etgü and Yankı Lekili

for any generator c . Observe that the differential of a generator of the form cwv
vanishes since it has grading 0 and LCA�.ƒ�/ is nonpositively graded. Again for
grading reasons, any negative vertex of an immersed polygon which contributes to the
differential of a generator cv is of type cuw .

In the rest of the proof we will show that

D.cv/D�
X

uWgvu2�1

cvucuvC

X
i�1

X
w1;:::;wi

gwj v2�1

w1<���<wi

cvw1
cw1v � � � cvwi

cwiv;

where the ordering in the last summation refers to the clockwise ordering of the
components of ƒ� which are linked to v from the right in the Lagrangian projection in
Figure 4, eg the natural ordering of the integers associated to components in Figure 4.
Note that the second sum not only corresponds to higher-order terms in the length
filtration, it also contributes terms of word-length 2 of the form cvw1

cw1v . Indeed, all
the terms of word-length 2 that appear in the image of D.cv/ precisely correspond to
d.cv/ in G� . In particular, the first sum has at most one term as long as our Legendrian
link is associated to a tree in the standard form.

We will prove that all the terms in the above differential are induced by embedded
polygons as indicated in Figure 6, the relevant piece of the Lagrangian projection

�
�

�
�

�� ��
�
�

�
�

��

�
�

F
F

F

F

Figure 6: The polygons which correspond to the words in the differential
D.cv/: (from top left in clockwise order) a triangle (with a negative orienta-
tion sign), a triangle, a pentagon, and a heptagon (all with positive orientation
signs). The quadrants with negative orientation signs and the basepoints are
indicated in the upper left diagram.
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given in Figure 4, together with the orientation signs at the crossings. There are also
two unigons with a unique vertex at cv , one to the left and the other to the right with
canceling contributions to the differential D.cv/ since they come with opposite signs.

C C

cv

C
�

cuv

C
�

cvu

�
C

�
C

�

C

�

C

�
C

�

C

Figure 7: Reeb signs

We now prove that there are no other immersed polygons which contribute to the
differential D.cv/. To begin with, any such polygon has a (Reeb-) positive vertex at cv
(see Figure 7 for the Reeb signs at the relevant crossings). Start traversing its boundary
in the counterclockwise direction assuming that the polygon includes the left quadrant
at cv . If it has a vertex other than cv , ie if it is not the unigon canceled by a similar
unigon to the right, then the only option for an initial negative vertex is at cuv because
of the configuration of the Reeb signs. Moreover, this vertex has to be followed (as we
continue traversing the boundary) by a vertex at cvu since otherwise the polygon would
intersect the region outside the Lagrangian projection, which is prohibited. Similar
considerations imply that a polygon which includes the right quadrant at cv can only
have vertices at the crossings of ƒv with other components of ƒ as shown in Figure 6
above so as not to intersect the noncompact region.

Remark 9 A relation between Ginzburg’s construction of CY3 DG-algebras associ-
ated with quivers (with potentials) and Fukaya categories of certain quasiprojective
3–folds also appears in the work of Smith [69].

Remark 10 Recall that LCA�.ƒ�/ is associated to the Legendrian attaching spheres
ƒv of Weinstein 2–handles. Stated results of [17] provide a dual picture given in
terms of the wrapped Floer cohomology of the cocores Lv of these handles induced
by cobordism maps associated to the handle attachments. Namely, there is a grading-
preserving quasi-isomorphism of A1–algebras

LCA�.ƒ�/'
M
v;w

CW�.Lv;Lw/:
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A rigorous justification of the equivalence of these two dual pictures is not fully
established at this time. However, a detailed sketch of proof based on the results
of [17] has recently appeared in [27, Theorem 2]. We must emphasize that we do not
make use of this correspondence anywhere in our computations. Rather, this appealing
geometric picture serves us as a guide to find the correct algebraic statement to be
proven rigorously.

3.2.1 Recourse to deformation theory of DG-algebras As a consequence of the
explicit computation given above we can see the Legendrian cohomology DG-algebra
LCA�.ƒ�/ as a deformation of the Ginzburg DG-algebra G� . Therefore, it is natural to
check whether this deformation is trivial or not (up to equivalence). We recall here the
basics of deformation theory of DG-algebras and exploit it to determine the relationship
between our computation of LCA�.ƒ�/ and the Ginzburg DG-algebra G� . A classical
reference for this material is [38]. A recent exposition close to our purpose appears in
[65, Appendix A].

Unfortunately, these methods do not help directly as they apply in the setting of formal
deformations (such as a deformation over kŒŒt ��) whereas here we have that LCA�.ƒ�/
is a global deformation of G� (over kŒt �). Nonetheless, it is helpful to start at the formal
level and observe that we can arrange for a globalization in certain cases.

There is a decreasing, exhaustive, bounded-above filtration on the complex LCA�.ƒ�/:

F0
WD LCA�.ƒ�/� F1

WD

1M
iD1

KhRi˝
i
k � � � � � Fp

WD

1M
iDp

KhRi˝
i
k � � � � :

Let us write .LCA�.ƒ�/;D/D .G� ; d1C d2C � � �C dm/, for some finite m, where
di W Fp!FpCi is the i th homogeneous piece of the differential. Observe that d1D d

can be identified as the differential in the Ginzburg DG-algebra. It follows from k–
linearity of the differential that in fact di is identically zero for even i . Note also that
since G� is bigraded, this complex is doubly graded. Denoting the second grading
by s , we have s.d2i�1/D 2� 2i .

Now, the first nontrivial di for i > 1 is possibly d3 . Because D2 D 0, using the
filtration, we deduce that

d1d3C d3d1 D 0:

Recall that the reduced bar complex .homk.TG� ;G�/; ı D ı0 C ı1/ can be used to
compute Hochschild cohomology of G� . Here, we only need the explicit form of the
Hochschild differential for elements � 2 homk.G� ;G�/ (see formula in [61, Equa-
tion (1.8)], which we adapted using DG-algebra conventions given in the introduction).

Geometry & Topology, Volume 21 (2017)



Koszul duality patterns in Floer theory 3335

For such � , we have

.�1/j�jCjbj.ı0�/.a˝k b/D a�.b/C .�1/j�jjbj�.a/b��.ab/;

.�1/j�jCjaj.ı1�/.a/D d�.a/��.da/:

By definition, G� is bigraded and its differential has bidegree .1; 0/, so the Hochschild
cochain complex CC�.G� ;G�/ D homk.TG� ;G�/ has three gradings: the cohomo-
logical degree, the degree induced by the total degree r C s on G� and the internal
grading induced by the second grading s on G� . However, the Hochschild differential
ıDı0Cı1 is homogeneous (of degree 1) with respect to the sum of the first two gradings
and it also preserves the internal degree, hence we get a bigrading on HH�.G� ;G�/,
which we write as

(4) HH�.G� ;G�/Š
M
r;s

HHr .G� ;G� Œs�/;

where r is the total degree (the sum of the cohomological degree and the degree induced
by the total degree on G� ) and s is the internal grading induced by the internal grading
on G� .

Now, the fact that d3 is a degree-1 derivation which anticommutes with d1 means that
the sign-modified map zd3 2 hom1

k.G� ;G�/, defined by

zd3aD .�1/jajd3a;

is closed under the Hochschild differential. This yields the first obstruction class of the
deformation:

Œ zd3� 2 HH2.G� ;G� Œ�2�/:

If this class is trivial, choosing a trivializing class �2 2 hom0
k.G� ;G� Œ�2�/, we get a

map �2 for which we have

d3 D d�2��2d:

Note that �2 is induced by a map KhRi !KhRi˝k3 . Therefore, we can consider an
algebra map

ˆ2 D IdC�2W G� ! G�

defined initially as a map on KhRi ! G� and then extended to an algebra map.

Then, we would like to define a new differential D0 on G� of the form

D0 D d C d 05C � � �
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so that ˆ2W .G� ;D
0/! .G� ;D/ is a chain map (in addition to being an algebra map).

The obvious candidate for D0 is given by

D0 D .Id��2C�
2
2 � � � � / ıD ı .IdC�2/:

However, the alternating sum .Id��2C�
2
2
� � � � / will in general be an infinite series;

therefore, to make sense of this we need to consider the completion of G� with respect
to the length filtration F� : �G� D lim

 ��
p

G�=FpG� :

The differential D of LCA�.ƒ�/ extends naturally to �G� . We write the resulting
complex as

bLCA.ƒ�/D .�G� ;D/
Concretely, we can write the underlying k–bimodule as bLCA.ƒ�/DKhRiŒŒt ��, where
t is a formal parameter in degree 0. In other words, we now allow formal power series
in Reeb chords.

We can now proceed with the construction mentioned above. Notice that since �2

increases the length by 2, there is no convergence issue for the series .Id��2C�
2
2
�� � � /

on �G� . Therefore, we have a filtered DG-algebra map

ˆ2W .�G� ;D0/! .�G� ;D/
which by construction is a chain map with an inverse, hence is in particular a quasi-
isomorphism.

We can then focus on the complex .�G� ;D0 D d C d 0
5
C � � � /. As before, we have that

d 0
5

is a derivation which anticommutes with d , hence the sign-twisted map zd 0
5

leads to
an obstruction class Œ zd 0

5
� 2 HH2.G� ;G� Œ�4�/. If this vanishes we can continue along

and find a quasi-isomorphism of the form IdC�4 . Iterating this argument infinitely
many times (which we can do as each quasi-isomorphism increases the length), we
obtain the following lemma (cf [65, Lemma A.5]).

Lemma 11 Suppose that HH2.G� ;G� Œs�/ D 0 for all s < 0. Then there exists a
quasi-isomorphism of completed DG-algebras

.�G� ; d/' . bLCA.ƒ�/;D/:

We next apply these ideas to the case where � DDn and show that all the obstructions
vanish in this case. Furthermore, we prove that one can truncate the above quasi-
isomorphism, eliminating the need for completions. Here, we make use of the results
of Section 6.2.3, where HH�.G� ;G�/ is computed for � D Dn . We would like to
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point out that the computation given there is independent of the conclusions we are
drawing here.

The following lemma is the key technical result that we will use to truncate the quasi-
isomorphism given on completions by the above deformation theory argument.

Lemma 12 Let F� denote the length filtration on LCA�.ƒDn
/. For each grading k ,

there exists a p.k/ such that for all p � p.k/ we have that

FpH k.LCA.ƒDn
//D Im

�
H k.Fp LCA.ƒDn

//!H k.LCA.ƒDn
//
�
D 0:

In particular, for all k , the filtration on H k.LCA.ƒDn
// induced by F� is complete

and Hausdorff.

2

1

3 4 n. . .

Figure 8: Lagrangian projection of a Legendrian link associated to the Dn tree

Proof Consider the Lagrangian projection in Figure 8. The proof of Theorem 8 gives
us the following description of the differential on .LCA�.ƒDn

/;D/:

Dc1 D c13c31;

Dc2 D c23c32;

Dc3 D�c31c13� c32c23C c34c43� c31c13c32c23;

Dc4 D�c43c34C c45c54;
:::

Dcn�1 D�c.n�1/.n�2/c.n�2/.n�1/C c.n�1/ncn.n�1/;

Dcn D�cn.n�1/c.n�1/n;

where the gradings are given by jci jD�1 and jcij jD0. In particular, H�.LCA.ƒDn
//

is supported in nonpositive degrees.

Notice that DD d1Cd3 , where d1 is the differential on the Ginzburg DG-algebra GDn

and d3 is zero on all the generators except c3 , and we have

d3.c3/D�c31c13c32c23:
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We shall first establish the result for H 0.LCA.ƒDn
// by direct computation. The goal

here is to take any word in cij and prove that if the word is long enough, then it is
actually null-homologous.

Note that we have a decomposition

H 0.LCA.ƒDn
//Š

nM
i;jD1

eiH
0.LCA.ƒDn

//ej :

Letting x D c31c13 , y D c32c23 and z D c34c43 we obtain

e3H 0.LCA.ƒDn
//e3 ŠKhx;y; zi=.x2;y2; zn�2;xCyCxy � z/

(cf [57, Proposition 11.3.2(i)]). Indeed, we have

x2
DD.c31c1c13/; y2

DD.c32c2c23/; xCyCxy � z DD.�c3/:

Next, observe that for 4 � i � n � 1, we have ci.i�1/c.i�1/i D ci.iC1/c.iC1/i 2

H 0.LCA.ƒDn
// since their difference is precisely Dci . Consequently, we get

zn�2
D c34.c43c34/

n�3c43 D c34.c45c54/
n�3c43 D c34c45.c56c65/

n�4c54c43 D � � �

D c34c45 � � � c.n�1/ncn.n�1/c.n�1/ncn.n�1/ � � � c54c43

DD.�c34c45 : : : c.n�1/ncncn.n�1/ : : : c54c43/:

Furthermore, any word in e3H 0.LCA.ƒDn
//e3 is cohomologous to a word in x;y; z

which is of the same length (note that the lengths of x , y and z are 2). Namely,
whenever a word w has terms which goes along the long branch of the Dn tree, it has
to return back at some point, hence it will include a subword of the form ci.iC1/c.iC1/i

which can be replaced with ci.i�1/c.i�1/i applying the relation Dci . This can be
repeated until we replace each subword that lies in the long branch by a power of z .

Arguing similarly, one can see why it suffices to consider e3H 0.LCA.ƒDn
//e3 to

prove the statement in the lemma for the zeroth cohomology. Indeed, the relations
given by Dc4;Dc5; : : : ;Dcn can be used to show that any sufficiently long word in
LCA0.ƒDn

/ can be replaced by a word which contains a sufficiently long subword in
e3 LCA0.ƒDn

/e3 . More precisely, for any word w 2 hcij j i; j D 1; ni we can write

w D ˛vˇChIm Di

such that v lies in e3 LCA0.ƒDn
/e3 and is sufficiently long. In fact, since we only

use the preprojective relations, Dci for i ¤ 3, one can show that the analogue of [57,
Proposition 11.3.2(ii)] holds in this case.
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We can simplify the presentation of e3H 0.LCA.ƒDn
//e3 further by eliminating the z

variable and write

e3H 0.LCA.ƒDn
//e3 ŠKhx;yi=.x2;y2; .xCyCxy/n�2/:

Let us define two-sided ideals

In D .x
2;y2; .xCyCxy/n�2/ and Jn D .x

2;y2; .xCy/n�2/

in Khx;yi and claim that they are equal for n� 4. Note that in Khx;yi=Jn any word
that is long enough is trivial; in particular, this is a finite-dimensional vector space. This
is because the only words that are not killed by the relations x2 D y2 D 0 are words
alternating in x and y , and sufficiently long such words are killed by x.xCy/n�2y

and y.xCy/n�2x . Therefore the result for H 0.LCA.ƒDn
// follows from the claim

In D Jn .

To prove this claim, first observe that AD xCy and B D xCyCxy satisfy

B2
D .1Cx/A2.1Cy/ 2Khx;yi=.x2;y2/:

Moreover, since .1C x/.1 � x/ D 1 D .1C y/.1 � y/ the above identity leads to
A2D .1�x/B2.1�y/ and together they show I4D J4 . We similarly obtain I5D J5 ,
using the observation

B3
D .1Cx/A3.1Cx/.1Cy/ 2Khx;yi=.x2;y2/:

The fact that A2 is in the center of Khx;yi=.x2;y2/ implies

B2k
D .B2/k D .1Cx/A2k.1Cy/.1Cx/ � � � .1Cy/;

B2kC1
D B3.B2/k�1

D .1Cx/A2kC1.1Cy/.1Cx/ � � � .1Cy/;

proving In D Jn for every n� 4.

Alternatively, one can check that a noncommutative Gröbner basis (with respect to the
lexicographical order) for both In and Jn is given by the collection of the following
three elements:

fx2;y2;xyxy � � � Cyxyx � � � g

where the lengths of the words in the last element are n� 2.

This completes the proof of the lemma for H 0.LCA.ƒDn
//. It is much harder to

directly compute H i.LCA.ƒDn
// for i < 0 and verify Hausdorffness of the length

filtration. Fortunately, there is an alternative way to go about this, making use of
a recent result of Dimitroglou Rizell [26] which in turn exploits the weak division
algorithm in free noncommutative algebras due to P M Cohn [22]. This is a general
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result about Legendrian cohomology DG-algebras which states that the natural algebra
homomorphism

H�.LCA.ƒ�//! LCA�.ƒ�/=hIm Di

induced by inclusion is injective, where hIm Di denotes the two-sided ideal in the
tensor algebra LCA�.ƒ�/ generated by the image of the differential. In view of this,
it suffices to show that for each k there exists a p.k/ such that if w is a word in cij of
length greater than p.k/ containing exactly k instances of ci , then w is in hIm Di.

This is, however, quite straightforward given what we have already proven. Namely, in
any such word, since the number of degree �1 generators, ci , is precisely k as soon
as the length is sufficiently large, we can find a sufficiently long subword consisting of
degree 0 generators cij only. Now, we proved above that any sufficiently long word in
the degree 0 generators cij is in the image of D . Thus, the result follows.

Note that the corresponding result also holds true for GDn
but this is much simpler.

The cohomology H�.GDn
/ is a graded filtered algebra, where the filtered subalgebras

FpH�.GDn
/ for p � 0 are induced by the length filtration on GDn

. We claim that this
filtration on H�.GDn

/ is complete and Hausdorff. To see this, observe the image of the
differential of GDn

consists of homogeneous terms (with respect to length filtration),
hence the filtration is Hausdorff. The filtration is complete because H�.GDn

/ is
finite-dimensional at each degree. To see this, when K is algebraically closed and of
characteristic 0, one can use the result by Hermes (see Theorem 7) that H i.GDn

/Š…Dn

for every i�0, and the well-known fact that the preprojective algebra of a Dynkin quiver
is finite-dimensional. Alternatively, for any field, H 0.GDn

/D…Dn
by definition, hence

we can appeal to the argument given in the last part of the above lemma to conclude.
(Note that the result of [26] requires an action filtration on the chain complex respected
by the differential. This is automatic for LCA�.ƒ�/ as the relevant filtration is given
by the geometric action functional. On the other hand, if the complex is supported in
nonpositive (or nonnegative) degrees, then one can easily construct an action filtration
of the required type inductively, hence the main result of [26] is applicable to G� as
well for any � .)

We are now ready to prove the main result of this section:

Theorem 13 Let � DAn or Dn , and assume that char K¤ 2 if � DDn . Then there
exists a quasi-isomorphism

LCA�.ƒ�/' G� :

Furthermore, if char K D 2 and � D Dn , then LCA�.ƒ/ and G� are not quasi-
isomorphic.
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(We conjecture that LCA�.ƒ/' G� for � DE6;E7 if char K¤ 2; 3 and for � DE8

if char K¤ 2; 3; 5.)

Proof The case when � DAn is immediate since LCA�.ƒ�/ and G� are identical
in this case. So we will focus on the case � DDn .

When char K¤ 2, we will construct a chain map ˆW G� ! LCA�.ƒ�/ which is of
the form

ˆD IdC h:o:t:;

where h:o:t: stands for higher-order terms in terms of the length filtration F� on
LCA�.ƒ�/.

In Section 6.2.3, we computed

HH�.G� ;G�/Š HH�.A� ;A�/;

where A� is the Koszul dual to G� as proven in Theorem 23. Note that the isomorphism
between the Hochschild cohomologies of G� and A� is a consequence of the Koszul
duality given by Theorem 23, which also states that the Koszul duality functor sends
the internal grading of G� to those of A� , implying that the internal gradings on their
Hochschild cohomologies match as well. In particular, we have

HH2.G� ;G� Œs�/Š HH2�s.A� ;A� Œs�/:

Let us warn the reader of a potentially confusing point in our notation. On the right-hand
side, r D 2� s refers to the length grading in Hochschild cohomology, and s refers to
the internal grading induced from the internal grading of the algebra A� . This group is
a summand of HH2.A� ;A�/ where 2D r C s is the total degree. On the other hand,
HH2.G� ;G� Œs�/ is a summand of HH2.G� ;G�/ where s refers to the second grading
on G� (as was explained after (4)).

The computation given in Section 6.2.3 implies that for � DDn and when char K¤ 2,
we have

HH2.G� ;G� Œs�/D 0 for s < 0:

Therefore, from Lemma 11, we deduce that there exists a quasi-isomorphism

ˆW �G� ! bLCA
�
.ƒ�/:

Now, let N be an integer large enough that FN H 0.LCA.ƒ�//D 0; such an N exists,
as we proved above in Lemma 12. We then consider the truncation of ˆ at length N

to define an algebra map between uncompleted algebras

ˆN
W G� ! LCA�.ƒ�/:
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The apparent problem with ˆN is that it is not a chain map, though it fails to be a
chain map only at large length. So, we can correct it as follows. For each vertex v , let
us find a chain ˛v such that

DˆN .hv/�ˆ
N .dhv/DD˛v:

Note that the left-hand side is automatically D–closed since it lies in LCA0.ƒ�/.

We then define a new algebra map by setting

‰.hv/ WDˆ
N .hv/C˛v; ‰.gvw/ WDˆ

N .gvw/:

We now have a filtered chain map G�!LCA�.ƒ�/ which respects the length filtrations
on each side. Note that the E2–pages of the associated spectral sequences are identical:

E
p;q
2
Š FpG�=FpC2;G�

with the differential induced from the differential on the Ginzburg DG-algebra. Fur-
thermore, the length filtration is not only complete and Hausdorff on both sides by
Lemma 12 and the discussion following its proof, but also easily seen to be weakly
convergent. Therefore the spectral sequences converge strongly to H�.GDn

/ and
H�.LCA.ƒDn

//, respectively. Moreover, since

‰ D IdC h:o:t:;

where h:o:t: refers to a higher-order term that sends F� to F�C2 , it induces an isomor-
phism on the E2–page, therefore we conclude that it induces a quasi-isomorphism of
chain complexes by [15, Theorem 2.6]. This completes the proof that LCA�.ƒDn

/

and GDn
are quasi-isomorphic over a field of characteristic ¤ 2.

Next suppose that K is a field of characteristic 2. Let us write D D d C d3 for the
differential on LCA�.ƒDn

/ where, in the notation of Lemma 12, we have

d3.c3/D�c31c13c32c23:

We want to show that there is no degree 0 derivation �2 which increases length by 2

and solves d3 D d�2 � �2d . For � D D4 , this is equivalent to the following set of
linear equations:

0D d�2.c1/��2.c13/c31� c13�2.c31/;

0D d�2.c2/��2.c23/c32� c23�2.c32/;

�c31c13c32c23 D d�2.c3/C�2.c31c13C c32c23� c34c43/;

0D d�2.c4/C�2.c43/c34C c43�2.c34/:
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(Although we are working over characteristic 2 here, we have kept the signs in their
general form for reference.)

Since �2 is supposed to preserve the degree and increase the length by 2, there are
only a few possibilities. The general form of the possibilities is as follows:

�2.c1/ 2Kc1c13c31˚Kc13c31c1˚Kc13c3c31;

�2.c2/ 2Kc2c23c32˚Kc23c32c2˚Kc23c3c32;

�2.c3/ 2Kc3c31c13˚Kc31c13c3˚Kc3c32c23˚Kc32c23c3˚Kc3c34c43

˚Kc34c43c3˚Kc31c1c13˚Kc32c2c23˚Kc34c4c43;

�2.c4/ 2Kc4c43c34˚Kc43c34c4˚Kc43c3c34;

�2.c13/ 2Kc13c31c13˚Kc13c32c23˚Kc13c34c43;

�2.c31/ 2Kc31c13c31˚Kc32c23c31˚Kc34c43c31;

�2.c23/ 2Kc23c32c23˚Kc23c31c13˚Kc23c34c43;

�2.c32/ 2Kc32c23c32˚Kc31c13c32˚Kc34c43c32;

�2.c43/ 2Kc43c34c43˚Kc43c31c13˚Kc43c32c23;

�2.c34/ 2Kc34c43c34˚Kc31c13c34˚Kc32c23c34:

This leads to a system of 18 linear equations of 36 variables. It is straightforward, if
tedious, to verify directly (or with the help of a computer) that none of the possibilities
gives a solution when KDZ2 . This, in turn, implies that the class of Œ zd3� is nontrivial
over any field K of characteristic 2 by the universal coefficient theorem.

This implies that there is a nonvanishing obstruction for constructing a chain map
between GD4

and LCA�.ƒ/ over a field of characteristic 2 for D4 . In other words,
the class Œ zd3� 2HH2.GD4

;GD4
Œ�2�/ is nontrivial. (Compare this with our computation

of HH2.GD4
;GD4

Œ�2�/ given later on in Table 4, where this group is shown to be
nontrivial only in characteristic 2.) Now, the class of Œ zd3� for � D Dn restricts to
the class of � D D4 under the restriction map. (Note that in general Hochschild
cohomology does not have good functoriality properties; however, there is a full and
faithful inclusion of the GD4

to GDn
, and there is a restriction map on Hochschild

cohomology in this case.) Hence, it cannot vanish for � DDn either.

Remark 14 Over a field of characteristic ¤ 2, and for � D D4 , we constructed
an explicit chain map between GD4

and LCA�.ƒD4
/ as a check on our arguments

above. The complication in this also displays the effectiveness of the deformation
theory argument given above. (Notice the factors of 1

2
, which are indeed necessary.)

The map is given as follows:
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h1 7! c1�
1
2
.c13c31c1C c13c3c31C c1c13c32c23c31/;

h2 7! c2�
1
2
.c23c32c2C c23c3c32C c23c31c13c32c2/

C
1
4

�
c23c34c43c3c32C c23c34c4c43c32

C c23c34c43c32c2C c23c34c43c31c13c32c2

�
;

h3 7! c3�
1
4

�
c31c13c3c34c43C c31c1c13c34c43

C c31c13c34c4c43C c31c1c13c32c23c34c43

�
;

h4 7! c4�
1
2

�
c4c43c34C c43c3c34� c43c3c32c23c34� c43c32c2c23c34

� c4c43c32c23c34� c43c31c13c32c2c23c34

�
;

g13 7! c13C
1
2
.c13c32c23� c13c34c43/;

g31 7! c31;

g23 7! c23�
1
2
c23c34c43;

g32 7! c32C
1
2
c31c13c32;

g34 7! c34�
1
2
.c32c23c34C c31c13c34/;

g43 7! c43:

Remark 15 One can deduce from the argument given in the last part of the proof of
Theorem 13 that for any tree � which is not of type An , we have that B� WDLCA�.ƒ�/
is a nontrivial deformation of G� over a field of characteristic 2 since any such tree
has a subtree of the form D4 (see also Remark 33).

4 Floer cohomology algebra of the spheres in X�

We next consider the A1–algebra over k given by the Floer cochain complexes:

A� WD
M
v;w

CF�.Sv;Sw/:

Recall that the Lagrangian 2–spheres Sv and Sw intersect only if the vertices v and w
are connected by an edge, in which case Sv\Sw is a unique point. Recall also that we
made choices of grading structures on the sphere Sv in Section 2 so that CF�.Sv;Sw/
is concentrated in degree 1 if v;w are adjacent vertices. On the other hand, the self-
Floer cochain complex CF�.Sv;Sv/ is quasi-isomorphic to the singular chain complex
C �.Sv/ since Sv is an exact Lagrangian sphere in X� . Therefore, we can take a model
for A� such that the differential on A� necessarily vanishes for degree reasons.

Let us put A� D H�.A�/ for the corresponding associative algebra. We can think
of A� as a minimal A1–structure .�n/n�2 on the associative algebra A� . As before,
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by choosing a root, we make � into a directed graph such that oriented edges point
away from the root. Let D� denote the double of the quiver � , formed by introducing
a new oriented edge avw from w to v for every oriented edge awv from v to w .

Proposition 16 Suppose � ¤ A1 . The graded k–algebra A� is isomorphic to the
zigzag algebra of � given by the path algebra KD� equipped with the path-length
grading modulo the homogeneous ideal generated by the following elements:

� auvavw such that u¤ w , where v is adjacent to both u; w .

� avwawv � avuauv , where v is adjacent to both u; w .

If � DA1 , then A� ŠH�.S2/DKŒx�=.x2/ with jxj D 2.

Proof Note that Sv intersects Sw for w ¤ v if and only if v and w are adjacent
vertices, in which case the intersection is transverse at a unique point. Furthermore,
we have chosen the grading structures on the Lagrangians Sv so as to ensure that for
v;w adjacent CF�.Sv;Sw/ is of rank 1 and concentrated in degree 1. We let avw
be a generator for this 1–dimensional vector space. Finally, the algebra structure is
determined by the general Poincaré duality property of Floer cohomology (see [61,
Section 12e]).

The algebra A� only depends on the underlying tree � ; different ways of orienting its
edges results in the same algebra. We call the algebra A� the zigzag algebra of � ,
following Khovanov and Huerfano [43], who studied properties of this algebra and its
appearances in a variety of areas related to representation theory and categorification.
On the other hand, the case where � is the An quiver appeared in an earlier paper
of Seidel and Thomas [67] in the context of Floer cohomology (as it does here) and
mirror symmetry. In the context of Koszul duality (see [54; 10]), the algebras A� were
studied much earlier by Martínez-Villa in [52]. This remarkable work is the first paper,
as far as we know, which draws attention to the fact that A� is a Koszul algebra if and
only if � is not Dynkin or � DA1 .

We will next discuss formality of A� , ie the question of whether there is a quasi-
isomorphism between A� and A� DH�.A�/. In the case when � is the An quiver,
the formality was proven by Seidel and Thomas [67, Lemma 4.21] based on the notion
of intrinsic formality.

Definition 17 A graded algebra A is called intrinsically formal if any A1–algebra A

with H�.A /ŠA is quasi-isomorphic to A.

Geometry & Topology, Volume 21 (2017)



3346 Tolga Etgü and Yankı Lekili

Furthermore, Seidel and Thomas give a useful method to recognize intrinsically formal
algebras. Recall that for a graded algebra A, HH�.A/ has two gradings: the cohomo-
logical grading r and the grading s coming from the grading of the algebra A. To
specify the decomposition into graded pieces, we write

HH�.A/D
M
�DrCs

HHr .A;AŒs�/:

Notice that the superscript denotes the diagonal grading, as usual. It is also the grading
that survives, if A is more generally a DG-algebra or an A1–algebra.

Theorem 18 (Kadeishvili [45]; see also Seidel and Thomas [67]) Let A be an
augmented graded algebra. If

HH2�s.A;AŒs�/D 0 for all s < 0;

then A is intrinsically formal.

As mentioned above, Seidel and Thomas proved intrinsic formality of A� where � is
the An quiver by showing the vanishing of HH2�s.A� ;A� Œs�/ for s < 0. In a similar
vein, we prove in Theorem 44 that A� is intrinsically formal if � is the Dn quiver
and the characteristic of the ground field is not 2.

We have the following conjecture for the remaining Dynkin types.

Conjecture 19 Working over a ground field K of characteristic 0, let � be a tree of
type E6;E7 or E8 . Then the corresponding zigzag algebra A� is intrinsically formal.

Unlike the An case, some restriction on the characteristic of K is necessary as we have
checked that the zigzag algebras are not intrinsically formal in type Dn , n� 4, over
characteristic 2, in type E6 and E7 over characteristic 2 or 3, and in the type E8 , over
characteristic 2, 3 or 5. It is very likely that these are the only “bad” characteristics
(cf [57]).

5 Koszul duality

By combining the work of Bourgeois, Ekholm and Eliashberg [17] with Abouzaid’s
generation criteria [1], one might suspect that the Lagrangians Lv split-generate the
wrapped Fukaya category W.X�/. Now, there exists a full and faithful embedding

F.X�/!W.X�/
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of the exact Fukaya category of compact Lagrangians. Therefore, in view of Remark 10,
we would conclude that there is a quasi-isomorphism of DG-algebras

(5) RHomB�
.k; k/' A� :

The right-hand side is in turn quasi-isomorphic to A� if one checks that A� is formal
(for example this is known if � is of type An [67] and we prove it in Theorem 44 for
type Dn over a field of characteristic ¤ 2). We will provide an alternative independent
approach via a purely algebraic argument based on Koszul duality theory for DG- or
A1–algebras (see [51]) to stay within the algebraic framework of this paper (and avoid
the technicalities that go into the discussion in Remark 10).

In fact, as we shall see below, Koszul duality theory allows us to work directly with
A� DH�.A�/, hence in this way we bypass formality questions for A� .

We now give a brief review of Koszul duality, first in the case of associative algebras
and then for A1–algebras.

5.1 Quadratic duality and Koszul algebras

To begin with, we review quadratic duality for associative algebras following [64,
Section 2.1] which has an explicit discussion of signs in the context relevant here. The
original reference is [54], and see also the excellent exposition in [10].

Let kD
L
v Kev be the commutative semisimple ring of orthogonal primitive idempo-

tents over the base field K, as before. Let V be a finite-dimensional graded K–vector
space with a k–bimodule structure. We write

TkV WD
M1

iD0
V ˝ki

for the tensor algebra over k. A quadratic graded algebra A is an associative unital
graded k–algebra that is a quotient

A WD TkV =J

of TkV by the two-sided ideal generated by a graded k–submodule J � V ˝k V . In
fact, this makes A into a bigraded algebra: it has an internal grading coming from
the graded vector space V , denoted by s or jxj if for a specific element, and a length
grading coming from the tensor algebra, denoted by r . The reference [51] refers to s

as Adams grading.

Let V _ D HomK.V;K/ be the linear dual of V viewed naturally as a k–bimodule, ie
eiV
_ej is the dual of ej Vei . Next, we consider the orthogonal dual J? � V _˝k V _
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with respect to the canonical pairing given by

V _˝k V _˝k V ˝k V ! k; v_2 ˝k v
_
1 ˝k v1˝k v2 7! .�1/jv2jv_2 .v2/v

_
1 .v1/:

The quadratic dual to A is defined as

A!
D Tk.V

_Œ�1�/=J?Œ�2�:

As does A, the graded quadratic algebra A! has two natural gradings: one internal
grading coming from the internal grading of the vector space V _Œ�1�, denoted by s

or jx!j for a specific element, and the length grading coming from the tensor algebra,
denoted by r .

The Koszul complex of a quadratic algebra is the graded right A–module A!˝k A with
the differential3

(6) x!
˝k x!

X
i
.�1/jxjx!a_i ˝k aix;

where the sum is over a basis of faig of V , and fa_i g is the dual basis in V _Œ�1�.
This should be thought of as an .r; s/–bigraded complex, where the grading r is the
path-length grading in the A! factor and the total grading r C s corresponds to the
natural grading jx!jC jxj. In particular, one has ja_i jC jai j D 1 for all i , hence the s

grading is preserved by the differential.

A Koszul algebra A is a quadratic algebra for which the Koszul complex is acyclic (ie
homology is isomorphic to kŒ0�). Taking the dual by applying the left exact functor
HomA. � ;A/, we get a resolution of k as a graded right Aop–module (see [10, Section 2]
for more details).

In fact, if A is Koszul, considering k as a simple module in the abelian category of
graded right Aop–modules, one has a canonical isomorphism of bigraded rings

A!
Š Ext�Aop.k; k/:

Since A is bigraded, a priori Ext�Aop.k; k/ is triply graded (by the cohomological degree
and by the length and internal gradings, derived from the corresponding ones in A).
One characterization of Koszulity is that the cohomological degree, which we denote
by r , agrees with the grading induced by length. Finally, we denote the internal grading
by s . With this understood, we have the graded identifications

A!
r;s Š ExtrAop.k; kŒs�/:

3[10] prefers to use the graded left module A˝k
_.A!/ ; the two graded modules are related by the

right module isomorphism A! ˝A ' HomA.A˝k
_.A!/;A/ and the sign .�1/jxj coming from this

dualization.
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If A is Koszul, then its Koszul dual A! is also Koszul and .A!/! ŠA.

Finally, for a Koszul algebra A, the Hochschild cohomology can be computed via the
Koszul bimodule resolution of A. The resulting complex which computes Hochschild
cohomology is

(7) .A!
˝k A/diag D

M
v

evA
!
˝k Aev

with the differential

x!
˝k x!

X
i

.�1/jxjx!a_i ˝k aix� .�1/.jai jC1/.jxjCjx!j/a_i x!
˝k xai :

It is often the case, as in this paper, that V is generated either by odd elements or
even elements; this simplifies the signs in the above formula. For Koszul algebras, the
homology of this complex coincides with the bigraded Hochschild cohomology groups
HHr .A;AŒs�/, where rC s corresponds to the natural grading on .A!˝A/diag , that is,
an element x!˝k x has grading jx!jC jxj. The length grading r corresponds to the
path-length grading in the A! factor.

Example 20 Let A� DKŒx�=.x2/ with jxj D 2 be the zigzag algebra associated with
a single vertex, ie � is of type A1 . It is easy to see that this is a Koszul algebra and
we have A!

�
DKŒx_�, the free algebra with jx_j D �1. One can compute Hochschild

cohomology using the Koszul bimodule complex. This has generators .x_/i ˝ 1 and
.x_/i ˝x for i � 0. The differential can be computed as

d..x_/i ˝ 1/D .1C .�1/iC1/.x_/iC1
˝x;

d..x_/i ˝x/D 0:

Therefore, whenever char K D 2, the differential vanishes, and as a consequence
HH�.A�/ has a basis .x_/i˝1, for i �0, in bigrading .r; s/D .i;�2i/ and .x_/i˝x ,
for i � 0, in bigrading .r; s/D .i; 2� 2i/.

If char K¤ 2, then HH�.A�/ has a basis .x_/2i˝1, for i � 0, in bigrading .r; s/D
.2i;�4i/ and .x_/2iC1˝x , for i � 0, in bigrading .r; s/D .2iC1;�4i/ and 1˝x

in bigrading .0; 2/.

In view of the discussion in the introduction, this result computes SH�.T �S2/ for
� D r C s . For convenient access, we record a finite portion of this calculation in
Table 1.

By Viterbo’s isomorphism [70; 5], this computation also gives H2��.LS2/, where
LS2 is the free loop space of S2 . This was previously computed as a ring by Cohen,
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Jones and Yan [21] over Z to be

H2��.LS2
IZ/Š .ƒb˝ZŒa; v�/=.a2; ab; 2av/; jaj D 2; jbj D 1; jvj D �2

using the fibration �xS2! LS2! S2 . From this, one can deduce that

H2��.LS2
IK/Šƒa˝KŒu�; jaj D 2; juj D �1

if char KD 2, and

H2��.LS2
IK/Š .ƒb˝KŒa; v�/=.a2; ab; av/; jaj D 2; jbj D 1; jvj D �2r

if char K¤ 2, in agreement with our computation.

r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8

2 1 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 x 0 0 0 0 0 0

�1 0 0 0 0 x 0 1 0 0 0 0

�2 0 0 0 0 0 0 1 0 x 0 0

Table 1: � DA1 ; x is 1 if char KD 2 , 0 otherwise

5.2 Koszul duality for A1–algebras

We now review Koszul duality for A1–algebras. Our primary reference for this
material is [51]. The discussion in Œ51� is about A1–algebras over a field K, but as in
classical Koszul duality, the proofs extend readily to A1–algebras over a semisimple
ring k (see also [58]). The extension of Koszul duality theory to DG- or A1–algebras
has appeared earlier (see eg [46]).

Suppose AD
L

i�0 Ai is a positively graded associative algebra over A0 D k. Then,
as before, the complex

RHomAop.k; k/

inherits a bigrading by cohomological and length gradings. However, it usually happens
that at the level of homology these two gradings do not agree, that is, A is not Koszul as
an associative algebra, and passing to the homology of this complex yields an associative
algebra Ext�Aop.k; k/ from which one cannot recover A. In this case, the idea is that
rather than passing to homology, one thinks of the DG-algebra RHomAop.k; k/ as
the DG-Koszul dual of A. To be able to carry this out, one is led to work with DG-
or A1–algebras from the beginning. So, let A be a Z–graded A1–algebra over k
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together with an augmentation �W A ! k, making k into a right A1–module over A op .
One defines

A !
D RHomA op.k; k/:

Note that the Yoneda image of k given by RHomA op.A op; k/ makes k into a right
.A !/op–module. Now, the obvious concern is whether .A !/! gets back to A (up
to quasi-isomorphism). This is not quite the case in general; one recovers a certain
completion of A (see [58] for a beautiful geometric description of this construction).
However, suppose that A has an additional s grading (called Adams grading in [51])
which is required to be preserved by the A1–operations. Furthermore, assume that
A is connected and locally finite with respect to this grading; this means that A is
either nonnegatively or nonpositively graded and the s–homogeneous subspace of A

is of finite dimension for each s (see [51, Definition 2.1]). Then it is true that .A !/! is
quasi-isomorphic to A . We state this as:

Theorem 21 (Lu, Palmieri, Wu and Zhang [51, Theorem 2.4]4) Suppose A is an
augmented A1–algebra over the semisimple ring k with a bigrading for which �k has
degree .2� k; 0/ and suppose A is connected and locally finite with respect to the
second grading. Let

A !
D RHomA op.k; k/

be its Koszul dual as an A1–algebra. Then there is a quasi-isomorphism of A1–
algebras

A ' RHom.A !/op.k; k/:

Below, we will apply this result for A DA� viewed as a formal A1–algebra.

Example 22 To see the importance of the connectedness and finiteness assumptions,
let us consider ADKŒx;x�1� with x in bigrading .0; 0/, the (trivially graded) algebra
of Laurent polynomials. Consider the augmentation �W Aop!K given by mapping x

to 1 2 K, which makes K into a right A–module. Then one can check that A! D

RHomAop.K;K/ is quasi-isomorphic to the exterior algebra KŒx!�=..x!/2/ with x! in
bigrading .0; 1/. However, RHom.A!/op.K;K/ Š KŒŒy�� gives the power series ring
with y in bigrading .0; 0/. Hence, dualizing twice does not get us back in this case.

4The proof of [51, Theorem 2.4] uses [51, Lemma 1.15] which omits a necessary hypothesis. Namely, in
the notation of [51, Lemma 1.15], one should further assume B1augR is locally finite. By [51, Lemma 2.2],
this requirement holds under our hypothesis.
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5.3 Koszul dual of G�

We next prove that the DG-algebras G� and A� (viewed as a formal A1–algebra)
are related by Koszul duality. We remind the reader that we always work with right
modules (as we follow the sign conventions from [61]).

We have the following analogue of [39, Proposition 2.9.5] in our setting:

Theorem 23 Consider k D A
op
�
=.A

op
�
/>0 as a right A

op
�

–module. There is a DG-
algebra isomorphism

RHomA
op
�
.k; k/' G�op

such that the cohomological (resp. internal) grading on the left-hand side agrees with
the path-length (resp. internal) grading on the right-hand side.

Proof First, let us clarify the multiplication on A
op
�

, which we view as a formal
A1–algebra. We identify the elements of A

op
�

with the elements of A� which are
given by the symbols avw and avwawv as before. Since jawvj D 1 for all w adjacent
to v , the product is given by

�2
A

op
�

.awv; avw/D .�1/jawv jCjavw j�2
A�
.avw; awv/D .�1/javw javwawv D�avwawv

for w adjacent to v (see [61, Section (1a)] for signs used in defining the opposite of
an A1–algebra).

We use the reduced bar resolution of k as a right A
op
�

–module to calculate RHomA
op
�
.k;k/,

which takes the form

RHomAop.k; k/' homAop..A˝k T xA/op; k/;

where ADA� , xADA�=k, and T xA is the tensor algebra of xA� over k.

The fact that k D A0 allows us to identify xA with the positive graded subalgebra
A1˚A2 of A. We follow the conventions in [61, Section (1j)] for the DG-algebra
structure of homAop..A˝k T xA/op; k/. However, we view homAop..A˝k T xA/op; k/ as
a DG-algebra rather than an A1–algebra with �k D 0 for k > 2 since G� is always
viewed as a DG-algebra. The difference is in the signs, and this was explained in the
introduction (see (3)).

More precisely, a generator t 2 homAop..A˝k T xA/op; k/ of bidegree .r; s/ is an Aop–
module homomorphism t W A˝k xA

˝r ! k of internal degree jt j D s . Observe that
any such t maps an element .arC1; ar ; : : : ; a1/ to 0 unless arC1 2A0 because of the
Aop–module structure of k.
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The differential and the product on the DG-algebra homAop..A˝kT xA/op; k/ are defined
by

.dt/.ev; arC1; : : : ; a1/

D

rX
nD1

.�1/|Cjt jt.ev; arC1; : : : anC2; �
2
Aop.anC1; an/; an�1; : : : ; a1/

and if t1 and t2 are two generators of lengths r1; r2 , then

.t2 � t1/.ev; ar2Cr1
; : : : ; a1/D .�1/}Cjt1jt2.t1.ev; ar2Cr1

; : : : ; ar2C1/; ar2
; : : : ; a1/;

where |D
PrC1

iDn .jai j � 1/ and }D
Pr2Cr1

iDr2C1
.jai j � 1/.

We now construct a chain map

ˆW G�op ! homAop..A˝k T xA/op; k/

that respects the cohomological and internal gradings, first by defining it on the gen-
erators gwv and hv of the underlying tensor algebra of G�op , and then extending by
mapping the product p2p1 of two elements p2 and p1 in G�op to the homomorphism
ˆ.p2/ �ˆ.p1/ 2 homAop..A˝k T xA/op; k/.

Indeed, let us define ˆ.gwv/ and ˆ.hv/ to be A–module homomorphisms each of
which is nonzero only on a 1–dimensional subspace of A˝k T xA, given by

ˆ.gwv/W .ev; awv/ 7! �wvew and ˆ.hv/W .ev; avwawv/ 7! �vev;

for any vertex w adjacent to v in � . Here the signs �wv , �v are determined as follows.
For a vertex v 2�0 , we set �vD .�1/ıv , where ıv is the distance from the root of � to
the vertex v . If gwv is an arrow in the quiver �op , then define �wvD �v and �vwDC1.
Note that �wv�vw=�v is C1 if and only if gwv is an arrow in the quiver �op .

Observe that the internal gradings are

jˆ.gwv/j D �jawvj D �1 and jˆ.hv/j D �javwawvj D �2;

respectively. Note also that ˆ takes the path-length grading on G� to the cohomological
grading on homAop..A˝k T xA/op; k/, hence ˆ respects the bigraded structure of both
sides.

The differentials on the DG-algebras G�op and homAop..A˝kT xA/op; k/ obey the graded
Leibniz rule, hence it suffices to check that

d.ˆ.gwv//Dˆ.dgwv/D 0 and d.ˆ.hv//Dˆ.dhv/

to verify that ˆ is a DG-algebra homomorphism.
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The first identity follows immediately since both gwv and ˆ.gwv/ are in total degree 0

and the differential vanishes here. To check the second identity, observe that d.ˆ.hv//

is nonzero only on the subspace of A˝k T xA spanned by

f.ev; awv; avw/ W w is adjacent to vg;

and for every w adjacent to v ,

.d.ˆ.hv///.ev; awv; avw/D .�1/jˆ.hv/jC.jawv j�1/C.javw j�1/ˆ.hv/.ev;�avwawv/

D��vev:

Note that the appearance of the extra sign here is precisely the point where the use
of A

op
�

rather than A� takes effect.

On the other hand,

ˆ.dhv/Dˆ

�X
w

�wv�vw

�v
gvwgwv

�
D

X
w

�wv�vw

�v
ˆ.gvw/ �ˆ.gwv/:

For each w adjacent to v , ˆ.gvw/ �ˆ.gwv/ is nonzero only on the subspace spanned
by .ev; awv; avw/, and

.ˆ.gvw/ �ˆ.gwv//.ev; awv; avw/

D .�1/jˆ.gwv/jC.jawv j�1/ˆ.gvw/..ˆ.gwv/.ev; awv//; avw/

D��wv�vwev:

Indeed, we also have an extra sign here, and hence the second identity holds.

To prove the bijectivity of ˆ, consider a generator .ev; ar ; : : : ; a1/ of A˝k xA
˝r . Note

that such a generator is uniquely determined by the initial and terminal points of ai

considered as paths in A� which in turn determine a unique path gr � � �g1 of length r

in G� , so that the initial and terminal points of each arrow gi in the extended quiver y�
match those of arC1�i . It is straightforward to check that

.ˆ.gr � � �g1//.ev; ar ; : : : ; a1/D˙ew;

where w is the terminal point of a1 . This proves that ˆ is injective since the algebra
underlying G� is the path algebra generated by the arrows in y� . Moreover, the
observation that ˆ.gr � � �g1/ is nonzero only on the subspace of A˝k T xA spanned
by .ev; ar ; : : : ; a1/ shows that ˆ is surjective as well.

Remark 24 As can be seen from the proof of Theorem 23, we could arrange the
definition of the DG-algebra isomorphism ˆ so as to obtain an isomorphism

RHomA�
.k; k/' G� ;
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where kDA�=.A�/>0 is viewed as a right A�–module. This is because there happens
to be an isomorphism of algebras between A� and A

op
�

. We have opted to use A
op
�

to
be consistent with the general framework of Koszul duality (see [10, Theorem 2.10.1]).

The following corollary is immediate from Theorem 23 and Theorem 21:

Corollary 25 Consider k D G�=.G�/r>0 as a right G�–module, and A� as a DG-
algebra with trivial differential. There is a quasi-isomorphism of DG-algebras

RHomG�
.k; k/'A�

such that the cohomological and internal gradings on the left-hand side coincide with
each other and they agree with the path-length grading on the right-hand side.

Proof In view of Theorem 23 and Theorem 21, we only need to check the hypothesis in
Theorem 21, but this is straightforward. Certainly, A� is positively graded and the local
finiteness condition holds since A� is finite-dimensional (see [51, Definition 2.1]).

Since A� is known to be Koszul in the classical sense for non-Dynkin � , we easily
get an alternative proof of the formality result mentioned in Theorem 7(1).

Corollary 26 For � non-Dynkin, G� is formal, that is, it is quasi-isomorphic to the
preprojective algebra …� DH 0.G�/.

Proof Recall that the differential on the complex RHomA
op
�
.k; k/ has bidegree .1; 0/.

Therefore, after applying the homological perturbation lemma, we obtain a minimal
A1–structure on Ext�Aop.k; k/ such that �d has bidegree .2 � d; 0/. On the other
hand, Koszulity of A� means that the two gradings agree at the level of cohomology.
Therefore, it is impossible to have a nontrivial �d for d ¤ 2.

Note that if � is a Dynkin-type graph, G� is not quasi-isomorphic to the preprojective
algebra …� . Our result above can be described as stating that G� and A� are A1–
Koszul dual. This should be seen as the natural extension to all � of the classical
Koszul duality between …� and A� which only worked when � is non-Dynkin.

Finally, in view of the Theorem 23 and Corollary 25, we conclude from Keller’s
theorem [47] that there is an isomorphism of Hochschild cohomologies as Gerstenhaber
algebras. Besides this isomorphism, the following theorem also uses the fact that
HH2��.G�/Š HH�.G�/ by the Calabi–Yau property [39], together with [17] which
applies over K of characteristic 0, and Theorem 13.
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Theorem 27 For any tree �, there is an isomorphism of Gerstenhaber algebras over K

HH�.G�/Š HH�.A�/:

If � is of Dynkin type An or Dn (and conjecturally also for E6;E7;E8 ) and K is of
characteristic 0, then we have

SH�.X�/Š HH�.G�/Š HH�.A�/:

Remark 28 Note that all of the Gerstenhaber algebras appearing in the above theorem
are induced from a natural underlying Batalin–Vilkovisky (BV) algebra structure. In
the case of symplectic cohomology, BV-algebra structure is given by a geometric
construction reminiscent of the loop rotation in string topology and in the cases of G�
and A� , it is induced by the underlying Calabi–Yau structure on these DG-algebras,
which allows one to dualize the Connes differential B on Hochschild homology.
However, the above theorem does not claim an isomorphism of the underlying Batalin–
Vilkovisky structures. We believe that this can be achieved, however, it requires a finer
investigation of Calabi–Yau structures. On the other hand, we explain in Remark 33
that for � non-Dynkin and non-extended Dynkin, we have an isomorphism of Batalin–
Vilkovisky algebras between HH�.G�/ and HH�.A�/ as it turns out that there is a
unique way of equipping this Gerstenhaber algebra with a BV-algebra structure.

Remark 29 It is well-known that in the case when � is Dynkin, the exact Lagrangian
spheres Sv split-generate the Fukaya category F.X�/ of compact exact Lagrangians —
this follows for example by combining [59, Lemma 4.15] and [61, Corollary 5.8].
Furthermore, as mentioned in the beginning of Section 5, one expects that the noncom-
pact Lagrangians Lv split-generate the wrapped Fukaya category. Hence, one could
interpret the above result as showing that

HH�.F.X�//Š HH�.W.X�//:

On the other hand, it is by no means the case that D�F.X�/ and D�W.X�/ are
equivalent as triangulated categories. (Here, we mean an equivalence between the
Karoubi-completed triangulated closures of F.X�/ and W.X�/.) This is clear from
the fact that the latter category has objects with infinite-dimensional endomorphisms
(over K) but every object in the former has finite-dimensional endomorphisms. More
strikingly, the monotone Lagrangian tori studied in [49] give objects in D�W.X�/ for
� D An with finite-dimensional endomorphisms and yet these do not belong to the
category D�F.X�/. One has to collapse the grading to Z2 in order to admit these
objects in F.X�/.

In the next section, we compute HH�.A�/ for all trees � except E6;E7;E8 .
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6 Hochschild cohomology computations

6.1 Non-Dynkin case

In this section we assume that � is a non-Dynkin tree and describe the Hochschild
cohomology HH�.G�/ of the associated Ginzburg DG-algebra. Note, however, that as
explained in the introduction, when � is non-Dynkin, B� is a nontrivial deformation
of G� , and so this computation does not directly give enough information to compute
HH�.B�/, and thus SH�.X�/. However, at least away from characteristic 0, the
computation of HH�.G�/Š HH�.A�/ is still of geometric significance as it controls
the deformations of the compact Fukaya category F.X�/.

Recall that for non-Dynkin � , the cohomology H�.G�/Š…� is supported in total
degree 0 and moreover G� is formal, ie it is quasi-isomorphic to the preprojective
algebra …� . Therefore we have an isomorphism of Gerstenhaber algebras

HH�.G�/Š HH�.…�/;

where …� is to be considered as a trivially graded algebra. For any non-Dynkin
quiver � , the Gerstenhaber structure of the Hochschild cohomology of …D…� is
described in [57] (and previously in [23] when char KD 0). We do not have anything
new to say here, we simply review some of the results of [23] and [57] to give a flavor of
what’s known. For an impressive amount of further information, see the comprehensive
work of Schedler [57].

The Hochschild cohomology HH�.…�/ turns out to be trivial in every grading except
for 0; 1 and 2. A way to see this is to use the Koszul bimodule resolution given in (7).
Recall that for � non-Dynkin, …� is Koszul in the classical sense with Koszul dual
ADA� . The latter has a decomposition into its graded pieces as ADA0˚A1˚A2 .
Hence, the Koszul bimodule resolution takes the form

0!
M

v
ev…ev!

M
v

evA1˝k…ev!
M

v
evA2˝k…ev! 0:

Moreover, it is well known that … is Calabi–Yau of dimension 2 (see [39, Defi-
nition 3.2.3]), hence a duality result of Van den Bergh [11] applies and we have a
canonical isomorphism

HH�.…/Š HH2��.…/:

For the K–vector space structure of the Hochschild cohomology let us recall some
general facts (see eg [50]) which apply to any algebra (with trivial grading and differ-
ential). The zeroth cohomology HH0.…/ is given by the center Z.…/, and HH1.…/

is given by outer derivations Der.…/= Inn.…/. Recall that a derivation is a linear map
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DW …!… satisfying the Leibniz rule, and each a 2… defines an inner derivation by
Da.b/D ab�ba. The zeroth homology HH0.…/ is isomorphic to …cyc WD…=Œ…;…�,
where Œ…;…��… is the K–linear subspace spanned by the commutators.

Theorem 30 [56, Corollary 10.1.2; cf 23, Theorem 8.4.1] The K–vector space struc-
ture of the Hochschild cohomology HH�.…/ of the preprojective algebra associated to
a non-Dynkin quiver is as follows.

(1) If � is extended Dynkin, then HH0.…/ Š Z.…/ Š ev0
…ev0

, where v0 is
a vertex in � whose complement is Dynkin. Otherwise the center Z.…/ is
isomorphic to K.

(2) HH1.…/ŠDer.…/= Inn.…/ŠZ.…/˚.F˝ZK/˚
�
T˝Z

L
p HomZ.Fp;K/

�
,

where F and T are the free and torsion parts of …Z
cyc , respectively, and …Z is

the preprojective Z–algebra associated to � .

(3) HH2.…/Š HH0.…/Š…cyc .

Remark 31 In the extended Dynkin case, by the McKay correspondence Z.…/ is
isomorphic to the ring of invariant polynomials in KŒx;y� under the action of the
corresponding finite subgroup G � SL2.K/ as long as K has jGjth roots of unity (see
[56, Theorem 9.1.1]). Furthermore, in this case T is trivial and hence HH�.…/ is
determined by Z.…/ and …cyc , unless the characteristic of K is a “bad prime” for � ,
ie 2 for zDn , 2 or 3 for zE6 and zE7 , and 2; 3 or 5 for zE8 [57]. Note that the Hilbert
series of Z.…/ and …cyc , as algebras graded by path-length, are given in [34] and [57].

The quotient …cyc can be considered as a graded Lie algebra with the path-length
grading and the Lie bracket induced by the necklace Lie bracket f � ; � g on …, given by

fp; qg D
X

gwv2�1

.@vwq/.@wvp/� .@wvq/.@vwp/:

Here, for any path p 2… and adjoint pair .v; w/ in � , @wvp is given as the sumX
i
gi�1 � � �g1gl � � �giC1;

taken over all i for which the i th arrow gi in the path p D gl � � �g1 is gwv .

Note that the Lie bracket ŒD;D0�DD ıD0 �D0 ıD on Der.…/= Inn.…/ coincides
with the Gerstenhaber bracket on HH1.…/ in favorable cases, eg if char KD 0 and �
is not extended Dynkin.

The Lie brackets above are used to describe the (cup) product as well as the Gerstenhaber
bracket on HH�.…/ in [23], when char KD 0. We now recall the description of the
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Gerstenhaber algebra structure of HH�.…/ in [57], for arbitrary char K, using the
BV operator � dual to the Connes differential (see eg [50]) on HH�.…/. The Euler
derivation eu on …cyc is defined as multiplication by l on each path of length l ,
and the derivation u, called half Euler derivation in [57], multiplies each path by the
number of edges from � that it contains. Note that we have euD 2u as elements of
HH1.…/. In other words, their difference is an inner derivation. The first summand of
HH1.…/ in Theorem 30 consists of multiples of u by Z.…/.

Theorem 32 [56, Theorem 10.3.1] As a BV-algebra, HH�.…/ is determined by the
following properties.

(1) The graded-commutative product

[W HHi.…/˝HHj .…/! HHiCj .…/

is given as follows:
(a) If �; � 0 2 Der.…/= Inn.…/ Š HH1.…/ and � 0 belongs to the F ˝Z K

summand of HH1.…/, then � [ � 0 is obtained by considering � 0 as an
element of …cyc and applying the derivation � to it.

(b) If none of �; � 0 2HH1.…/ belongs to the F˝ZK summand, then �[� 0D0.
(c) If ij D 0, then [ is given by multiplication in ….

(2) The BV-operator
�W HHi.…/! HHi�1.…/

dual to the Connes differential is given as follows.
(a) We have

�.u/D 1; �.z[ �/D �.z/C z�.�/

for every z 2HH0.…/ŠZ.…/, � 2Der.…/= Inn.…/ŠHH1.…/. The BV-
operator vanishes on the

�
T ˝Z

L
p HomZ.Fp;K/

�
summand of HH1.…/.

(b) The operator �W HH2.…/Š…cyc! Der.…/= Inn.…/Š HH1.…/ maps to
the F ˝Z K summand and it is given by

�.gl � � �g1/D
Xl

iD1
˙@g�

i
.�/gi�1 � � �g1gl � � �giC1;

where each gi is an arrow in the double of the quiver � and the sign is
positive if and only if gi 2 � .

Remark 33 A word of caution is in order. For � non-Dynkin, the BV-algebra structure
on HH�.…�/ is induced by the 2–Calabi–Yau structure (in the sense of Ginzburg [39],
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also known as smooth Calabi–Yau structure) on the homologically smooth algebra …� .
This means that we have an isomorphism of …�–bimodules

…� ' RHom…��…�
.…� ;…� ˝…�/Œ2�;

where the bimodule structure on the right is with respect to the inner bimodule struc-
ture on …� ˝…� and RHom is taken with respect to the outer bimodule structure
on …� ˝…� . Two such 2–Calabi–Yau structures differ by an invertible element
in HH0.…�/. The effect by such an invertible � is to replace � by ��1�� [66,
Remark 4.8].

We can consider the Koszul dual notion. Namely, by Koszul duality, for � non-
Dynkin, we have HH�.…�/ Š HH�.A�/ and then the BV-algebra structure can be
seen as naturally arising from a weak Calabi–Yau structure on A� . Recall that a
weak Calabi–Yau structure (also known as Frobenius structure or compact Calabi–Yau
structure) of dimension 2 on the finite-dimensional algebra A� is a quasi-isomorphism
of A�–bimodules

A� 'A_� Œ�2�;

where A_
�

is the K–linear dual of A� . Two such Calabi–Yau structures again differ
by an invertible element in HH0.A�/.

In any case, if � is non-Dynkin and non-extended Dynkin, then by Theorem 30,
HH0.…�/ŠHH0.A�/ŠK is rank-1 generated by the identity, hence there exists (up
to scaling) at most one (Ginzburg) Calabi–Yau structure on …� and at most one (weak)
Calabi–Yau structure on A� . These Calabi–Yau structures can either be constructed
algebraically as in [39] or symplectically as a manifestation of Poincaré duality for
the Fukaya category of compact Lagrangians or the open Calabi–Yau property of the
wrapped Fukaya category.

Now, suppose B� ' G� . Then, since G� is formal, we would have an isomorphism
SH�.X�/ŠHH�.B�/ŠHH�.…�/. Under this isomorphism, the natural BV-algebra
structure on SH�.X�/ given by the loop rotation operator �W SH�.X�/!SH��1.X�/

has to coincide with the algebraically constructed BV-algebra structure on HH�.…�/
in the case that � is non-Dynkin and non-extended Dynkin.

On the other hand, combining the results from [53] and [5] one deduces that

SH�.T �S2/Š HH�.C2��.�S2//Š HH�.C �.S2//
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does not admit a dilation over a field of characteristic 2.5 Recall that a dilation is an
element b 2 SH1.X�/ such that

�b D 1;

where �W SH�.X�/ ! SH��1.X�/ is the BV-operator in symplectic cohomology.
Furthermore, since T �S2 can be embedded as a Liouville subdomain of X� , one has a
restriction map, SH�.X�/! SH�.T �S2/ which is a map of BV-algebras. Therefore,
a dilation on X� can be restricted to a dilation on T �S2 . On the other hand, we see
from the above theorem that there is a class u 2 HH1.…�/ that is sent to the identity
by the BV-operator induced from the Calabi–Yau structure on …� . Hence, we arrive
at a contradiction.

This is in agreement with Remark 15 where we have seen that B� is a nontrivial
deformation of G� over a field of characteristic 2.

6.2 Dynkin case

In this section we compute the Hochschild cohomology of the zigzag algebra A�
associated with a Dynkin tree. If the underlying tree � is of type A1 , ie a single
vertex, then A� DKŒx�=.x2/ with jxj D 2 and it is a Koszul algebra. Its Hochschild
cohomology was computed in Example 20 above. Thus, hereafter we assume � ¤A1 .
It turns out that if the underlying tree � is of Dynkin type but not a single vertex, then
A� is an almost-Koszul algebra (in the sense of [18]). In this situation, the Koszul
complex leads to a construction of a minimal periodic resolution. We first review the
basics of quadratic algebras and the associated Koszul complexes.

6.2.1 Zigzag algebra A� as a trivial extension Recall that for any � , the zigzag
algebra A� is defined as the quotient of the path algebra KD� of the double quiver D�
by the ideal J generated by the elements

� auvavw such that u¤ w , where v is adjacent to both u; w , and
� avwawv � avuauv where v is adjacent to both u; w .

Clearly, this is an example of a quadratic algebra over k where V is the K–vector
space generated by the edges awv of D� and supported in grading 1. The path-length
grading on KD� descends to A� where it is supported in degrees 0; 1 and 2. It is
straightforward to verify that:

Proposition 34 For any tree � the quadratic dual A!
�

of the zigzag algebra A� is the
preprojective algebra …� , when both are equipped with path-length grading.

5An independent verification of this fact based on a Morse–Bott computation of BV-operator on
SH�.T �S2/ was communicated to us by P. Seidel.
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As mentioned before, when � is a single vertex, or not a Dynkin-type tree, A� is
a Koszul algebra. For these cases, we have already computed HH�.A�/ above (see
Section 6.1 and Example 20). Henceforth, we will assume that � is Dynkin, but not a
single vertex. These are the only cases when A!

�
D…� is finite-dimensional.

Let us drop � from the notation for the moment and write

ADA0˚A1˚A2 and …D…0˚…1˚ � � �˚…h�2

for the graded pieces of A and …. Here h stands for the Coxeter number of the Dynkin
tree and it is equal to nC 1, 2n� 2, 12, 18 and 30, for An , Dn , E6 , E7 and E8 ,
respectively [18].

It turns out that, in this case, A� is not Koszul and its Koszul complex (6) is not acyclic.
Indeed, the Koszul complex is given by

0!A� !…1˝k A� ! � � � !…h�2˝k A� ! 0(8)

and it fails to be exact at the right end but only there [18]. Nonetheless, in [18] the
authors are able to modify the Koszul bimodule complex to obtain a .2h�2/–periodic
complex that computes Hochschild cohomology of A� . Indeed, the algebras A�
belong to a class of periodic algebras which are almost Koszul.

We will, however, now turn to a slightly different approach, which makes use of the
fact that A� is isomorphic to a trivial extension algebra.

Definition 35 Let B be a finite-dimensional algebra over the field K. Let B_ WD

HomK.B;K/ be the linear dual of B , viewed naturally as a B–bimodule. The trivial
extension algebra of B , denoted by T .B/, is the vector space B˚B_ equipped with
the multiplication

.x; f / � .y;g/D .xy;xgCfy/:

If B is graded, to get a CY2 algebra, we grade T .B/ so that T .B/D B˚B_Œ�2�.

Let A! D K�=J be the quotient of the path algebra of a quiver with respect to an
arbitrary orientation of the edges modulo the ideal generated by paths of length 2.
The following proposition appears in [43, Proposition 9] and results from an easy
computation.

Proposition 36 A� is isomorphic to the trivial extension algebra T .A!/.

In particular, if we orient � so that each vertex is either a sink or a source, then there
are no paths of length 2, hence A� is a trivial extension algebra of the path algebra K�
in the bipartite orientation.
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Remark 37 There is a way to understand the above proposition in terms of symplectic
topology. Namely, one can consider a Lefschetz fibration f W C3! C , .x;y; z/ 7!
f .x;y; z/ given by perturbing the simple singularities

An W x2
Cy2

C znC1 for n� 1;

Dn W x2
C zy2

C zn�1 for n� 4;

E6 W x2
Cy3

C z4;

E7 W x2
Cy3

Cyz3;

E8 W x2
Cy3

C z5:

One can then identify the surface X� with a regular fiber of these fibrations, ie the
Milnor fiber of the singularity. The spheres Sv can be identified with the vanishing
spheres and the corresponding thimbles generate the Fukaya–Seidel category of f by a
famous result of Seidel [61]. For a suitable choice of grading structures and ordering of
objects, the Floer endomorphism algebra A! of these thimbles in the Fukaya–Seidel
category of f coincides with the path algebra of K� modulo the ideal generated by
length 2 paths. The algebra isomorphism

A� DA!˚A!Œ�2�

follows from the general relationship between the Fukaya–Seidel category of a Lefschetz
fibration and the Fukaya category of its fiber (see [62, Section 4]).

We next recall the following theorem about trivial extension algebras, which we will
apply to path algebras of quivers whose underlying graph is a tree. Note that by a
well-known result of Bernšteı̆n, Gel’fand and Ponomarev [13], the path algebras KQ

of quivers Q obtained by orienting edges of the same tree in different ways are derived
equivalent algebras.

Theorem 38 (Rickard [55]) Suppose C and D are derived equivalent algebras.
Then their trivial extensions T .C / and T .D/ are also derived equivalent. In particular,
HH�.T .C // and HH�.T .D// are isomorphic as Gerstenhaber algebras.

Our strategy will be to apply the above theorem to T .A!/DA� to pass to another
algebra whose Hochschild cohomology is previously computed. However, it is impor-
tant to note that the above theorem is for trivially graded algebras. On the other hand,
we need to compute HH�.A�/ as a bigraded algebra. What’s worse, since A� has
elements in both even and odd degrees, we cannot simply forget about the grading and
reinstate it afterwards, as in a graded resolution, odd elements affect the signs.
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We next explain how to deal with this tricky point. Namely, recall from Proposition 16
that A� is the graded algebra obtained as

A� D
M
v;w

HF�.Sv;Sw/:

On the other hand, given integers �v 2 Z for every vertex v , we can define another
graded algebra

zA� D
M
v;w

Hom.Sv Œ�v �;Sw Œ�w �/D
M
v;w

HF�.Sv;Sw/Œ�w � �v �;

where Sv Œnv � denotes a graded object whose grading is shifted down by nv . Clearly,
A� and zA� are graded Morita equivalent (in particular, derived equivalent). Therefore,
the (graded) Hochschild cohomologies of A� and zA� are canonically isomorphic
(see for example [64, Section (1c)]). Hence, for the purpose of computing Hochschild
cohomology of A� , we can choose the shifts �v so that the shifted algebra is supported
in even degrees. In fact, using the standard tree form of � as in Figure 2, we simply
shift the object Sv up Sv Œ�ıv �, where ıv is the distance from the root to the vertex v .
In this way, any arrow in the double D� is in degree 0 or 2 according to whether it
points towards or away from the root.

Summary To compute HH�.A�/ as a graded Gerstenhaber algebra, we follow this
procedure:

� First check that it is possible to shift gradings so that A� is supported in even
degrees.

� Forget the grading altogether and treat A� as an ungraded algebra.

� Compute the algebra structure of the Hochschild cohomology of the ungraded
algebra by relating it to previous computations using derived equivalences of
ungraded algebras in Theorem 38. This algebra will have only the cohomological
grading r .

� Finally, reinstate the s–grading on HH�.A�/ by finding explicit (graded) cocy-
cles for the generators of Hochschild cohomology as an algebra.

6.2.2 Type A Throughout this section, � is the Dynkin tree An , n> 1. We describe
the Hochschild cohomology ring of the zigzag algebra A� in detail. We follow the
strategy outlined in the previous section. Namely, we first determine the Hochschild
cohomology of A� as an ungraded algebra. The result will be singly graded with the
cohomological grading r . We then reinstate the s–grading by explicitly identifying
generators.
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As was mentioned in Proposition 36, A� is isomorphic to the trivial extension algebra
of the path algebra KQ of the quiver Q with the underlying tree � DAn and oriented
with the bipartite orientation (see Figure 9). Furthermore, as explained above, the
derived equivalence class of a path algebra of a quiver, and hence by Theorem 38, the
derived equivalence class of trivial extensions of KQ, does not depend on the choice
of the orientation of the edges of the underlying tree.

. . .

Figure 9: An quiver in bipartite orientation

Let B� be the trivial extension algebra of the path algebra of � D An where the
underlying quiver is now oriented in the linear orientation (see Figure 10).

. . .

Figure 10: An quiver in linear orientation

Let zAn�1 be the extended Dynkin quiver of type An�1 , namely the quiver with cyclic
orientation whose underlying graph is a simple cycle with n vertices and n edges (see
Figure 11), and let us denote the ideal generated by paths of length � nC 1 by JnC1 .

Figure 11: Cyclic quiver zAn�1

The following well-known fact (cf [18]) can be verified by identifying K� with its image
under the natural inclusion K�!K zAn�1=JnC1 , and observing that the subspace of
K zAn�1=JnC1 spanned by paths containing the unique arrow in the complement of �
in zAn�1 is canonically isomorphic to the linear dual of K� as a K�–bimodule.

Lemma 39 B� is isomorphic to the truncated algebra K zAn�1=JnC1 .

The derived equivalence between A� and B� implies an isomorphism between the
Hochschild cohomology rings. On the other hand, the Hochschild cohomology of
the (trivially graded) algebra B� is studied in [42; 32; 9]. In particular, the algebra
structure of HH�.B�/ over a field of arbitrary characteristic was already known. Our
contribution is to determine the internal s–grading coming from the grading of A� .
We have the following result:
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Theorem 40 As a (graded) commutative K–algebra, the .r; s/–bigraded Hochschild
cohomology algebra

HH�.A�/D
M

rCsD�

HHr .A� ;A� Œs�/;

of the graded k–algebra A� is given by the following generators and relations. (The
subscripts of the generators, except for si , refer to total degrees.)

� Suppose char K − nC1. We have generators labeled along with their bidegrees
.r; s/ given by

s1; : : : ; sn .0; 2/;

t1 .1; 0/;

t0 .2;�2/;

t�2 .2n;�2n� 2/

and relations
sisj D si tj D t2

1 D tn
0 D 0:

� Suppose char K j nC1. We have generators labeled along with their bidegrees
.r; s/ given by

s1; : : : ; sn .0; 2/;

t1 .1; 0/;

t0 .2;�2/;

u�1 .2n� 1;�2n/;

t�2 .2n;�2n� 2/

and relations

sisj D si t1 D si t0 D t2
1 D 0;

siu�1 D t1tn�1
0 ;

si t�2 D tn
0 ;

t0u�1 D t1t�2;

t1u�1 D ˛tn
0 ;

u2
�1 D ˇtn�1

0 t�2;

where ˛ D ˇ D 1 if char KD 2 and 4 − nC1, otherwise ˛ D ˇ D 0.
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Proof The presentation of HH�.A�/ given above is adapted from the presentation of
HH�.B�/ as a K–algebra graded by the cohomological grading, which was calculated
in [42, Theorems 8.1 and 8.2] and [32, Theorem 5.19]. In view of the isomorphism
between HH�.A�/ and HH�.B�/ as K–algebras graded with respect to the cohomo-
logical r–gradings, it remains to determine the s–gradings. In particular, the rank of
HHr .B�/Š

L
s HHr .A� ;A� Œs�/ is given explicitly in [42; 32] for each r and it can

be recovered from the presentations in the statement. We will make extensive use of
this information in the following arguments.

In what follows, we describe generators as elements of the reduced bar-resolution

(9) CC�.A;A/ WD homk.T xA;A/;

where ADA� and xADA=k. The grading on A gives a decomposition

CC�.A;A/D
M
�DrCs

CCr .A;AŒs�/;

where the Hochschild differential ı is of bidegree .1; 0/. We find explicit cocycles
for r D 0; 1; 2 and show that the s–gradings of other generators are determined by the
relations given above.

As a graded algebra, A� DA0˚A1˚A2 , with components given by

A0 D

nM
iD1

Kei ; A1 D

n�1M
iD1

Kai ˚

n�1M
iD1

Kbi ; A2 D

nM
iD1

Ksi ;

where eiC1aiei D ai , eibieiC1 D bi and siC1 D aibi D biC1aiC1 .

The Hochschild differential ı in the complex (9) is given by the formula in [61,
Equation (1.8)] (recall also the convention in (3)). We will only need the differentials
on CCr .A;AŒs�/ for r D 0; 1; 2. These are given by

ı.c/.x1/D �
2.x1; c/C .�1/.s�1/.jx1j�1/�2.c;x1/;

ı.c/.x2;x1/D �
2.x2; c.x1//C .�1/.s�1/.jx1j�1/�2.c.x2/;x1/

C .�1/sc.�2.x2;x1//;

ı.c/.x3;x2;x1/D �
2.x3; c.x2;x1//C .�1/.s�1/.jx1j�1/�2.c.x3;x2/;x1/

C .�1/sc.x3; �
2.x2;x1//C .�1/sCjx1j�1c.�2.x3;x2/;x1/

for c 2 CC0.A;AŒs�/, for c 2 CC1.A;AŒs�/, and for c 2 CC2.A;AŒs�/, respectively.
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r D 0 The 0–cocycles are given by central elements. The identity elementX
j

ej 2 CC0.A;AŒ0�/

and the elements
si 2 CC0.A;AŒ2�/ for i D 1; : : : ; n

give a basis of the center of A over K.

r D 1 The 1–cocycles are given by derivations. We define a 1–cocycle �1 2

CC1.A;AŒ0�/ by

�1.ai/D�ai ; �1.bi/D 0; �1.si/D si

for all i D 1; : : : ; n. It is straightforward to check that �1 is a derivation but not an inner
derivation, so it is a nontrivial element of

L
s HH1.A;AŒs�/, which is 1–dimensional

for any K. Therefore, any generator of this group, in particular t1 , must have the same
s–grading as �1 .

r D 2 We define a 2–cocycle �0 2 CC2.A;AŒ�2�/ given by

�0.ai ; bi/D .�1/ieiC1;

�0.ai ; si/D .�1/iC1ai ;

�0.si ; bi/D .�1/ibi ;

�0.si ; si/D .�1/iC1si

for all i D 1; : : : ; n. Applying the Hochschild differential we get

.ı.�0//.x3;x2;x1/D .�1/jx1jCjx2jx3�0.x2;x1/� �0.x3;x2/x1

C .�1/jx1j�0.x3;x2x1/� .�1/jx1jCjx2j�0.x3x2;x1/:

It is straightforward (if tedious) to check that this expression vanishes identically
on xA˝3 . On the other hand, �0 cannot be a coboundary, since any � 2CC1.A;AŒ�2�/

has to be of the form
�.si/Dmiei for some mi 2K

and the Hochschild differential takes the form

.�1/jx1j.ı.�//.x2;x1/D x2�.x1/C �.x2x1/� .�1/jx1j�.x2/x1;

which gives, in particular, that ı.�/.si ; si/D 0 and ı.�/.ai ; si/Dmiai .

Hence, �0 cannot be of the form ı.�/ and therefore it represents a nontrivial element
of the group

L
s HH2.A;AŒs�/. But we know that this group is 1–dimensional over
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any field K, consequently any generator of this group over an arbitrary field K must
have the same s–grading as �0 .

It is harder to find explicit cocycles representing the elements u�1 and t�2 given in the
statement of the theorem. Fortunately, for the purpose of determining the s–gradings
we do not need explicit cocycles for these.

The element u�1 appears only if char K j nC1, and it satisfies the equation

siu�1 D t1tn�1
0 :

Since the s–gradings of si , t1 and t0 are 2; 0 and �2, respectively, it follows that the
projection u0

�1
of u�1 to HH2n�1.A;AŒ�2n�/ must be nonzero. A priori u�1 is not

necessarily homogeneous with respect to the s–grading, but it has r–grading 2n�1, andL
s HH2n�1.A;AŒs�/ is 2–dimensional with generators u�1 and t1tn�1

0
. Therefore,

u�1 has a decomposition u0
�1
C�t1tn�1

0
into .r; s/–homogeneous elements for some

� 2K. On the other hand, the relations in the statement of the theorem which involve
u�1 are satisfied by u�1 if and only if they are satisfied by u0

�1
D u

�1
� �t1tn�1

0
.

Therefore, we may freely replace u
�1

by u0
�1

and hence assume that it is homogeneous
with s–grading �2n.

Similarly, if char K j nC1, then t�2 2
L

s HH2n.A;AŒs�/ appears in the relation

si t�2 D tn
0

and
L

s HH2n.A;AŒs�/ is 2–dimensional with generators t�2 and tn
0

. As a conse-
quence, t�2 has a decomposition t�2 D t 0

�2
C�tn

0
into .r; s/–homogeneous elements

for some � 2K and t 0
�2
¤ 0. The argument we used for u�1 applies here as well and

we may assume that t�2 is homogeneous with s–grading �2n� 2.

Finally, we need to determine the s–grading of t�2 over a field K for which char K −
nC1. Since A can be defined over Z, its Hochschild cohomology groups can also be
defined over Z. Furthermore, since A has finite rank as a Z–module, the bar-complex
over Z is just a chain complex of finitely generated free abelian groups. So we can
apply the universal coefficient theorem

(10) 0!
M

s

HHr
Z.A;AŒs�/˝K!

M
s

HHr
K.A˝K;AŒs�˝K/

! Tor
�M

s

HHrC1
Z .A;AŒs�/;K

�
! 0:

Now, it follows from the presentation given in the statement that the middle group for
r D 2nC1 has rank 1 for any field K and we know that it is supported in internal degree
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s D �2n� 2 if char K j nC1. Therefore, we deduce from the universal coefficient
theorem (by testing KD Fp for infinitely many primes p ) thatM

s

HH2nC1
Z .A;AŒs�/D ZŒ2nC 2�;

hence, in particular, M
s

HH2nC1
K .A;AŒs�/DKŒ2nC 2�:

Finally, observe that the element

t1t�2 2

M
s

HH2nC1.A;AŒs�/DKŒ2nC 2�

is a generator of the Hochschild cohomology group in grading r D 2nC 1 over an
arbitrary field K, and hence t�2 must have s–grading �2n � 2 over an arbitrary
field K.

Remark 41 Over the finite field F3 of characteristic 3, the group algebra F3S3 of
the symmetric group in three letters is isomorphic to the algebra A� for � DA2 . A
presentation for the Hochschild cohomology ring of this group algebra was given in
[68, Theorem 7.1]. This agrees with the presentation given above.

As a consequence of Theorem 40 we conclude that the group
L

rCsD�HHr .A� ;A� Œs�/

is nontrivial if and only if ��2. If char K − nC1, the rank is n at each ��2, otherwise
the rank is n for � D 2; 1 and nC 1 for � � 0.

Recall that we have proved in Theorem 27 that there is an isomorphism of Gerstenhaber
algebras

SH�.X�/Š HH�.A�/

over a field K of characteristic 0, where the Conley–Zehnder grading on the left
corresponds to the total grading r C s on the right. Having computed HH�.A�/ as
a bigraded algebra, we immediately get a description of the algebra structure of the
symplectic cohomology. Let us also record its rank.

Corollary 42 The symplectic cohomology group SH�.X�/ over a field K of charac-
teristic 0 is of rank n if � � 2 and it is trivial otherwise.

We have also performed computer-aided checks on our calculations. Tables 2 and 3 list
the ranks (of a finite portion) for the cases A2 and A3 .
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r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8

2 2 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 x 0 0 0 0

�1 0 0 0 0 0 0 x 0 1 0 1

�2 0 0 0 0 0 0 0 0 1 0 1

Table 2: � DA2 ; x is 1 if char KD 3 , 0 otherwise

r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8

2 3 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 1 0 x 0 0

�1 0 0 0 0 0 0 0 0 x 0 1

�2 0 0 0 0 0 0 0 0 0 0 1

Table 3: � DA3 ; x is 1 if char KD 2 , 0 otherwise

6.2.3 Type D In this section we consider the case where � is the Dynkin tree Dn ,
n � 4. Most of the arguments in the previous section apply verbatim or with minor
modifications. So we will focus on the differences and provide details as necessary.

Considering the quiver based on � with the orientation of the arrows given by Figure 12,
we obtain the following result.

. . .a1 a2 a3 an�3

an�2

an�1

Figure 12: Dn quiver

Lemma 43 The trivial extension algebra B� of the path algebra K� is isomorphic
to the quotient KQ=I , where Q is the quiver given in Figure 13 and I is the ideal
generated by the elements

ˇn�1n�1�ˇnn; ˛i � � �˛1ˇnn˛n�3 � � �˛i ;

n˛n�3 � � �˛1ˇn�1; n�1˛n�3 � � �˛1ˇn:

Proof Using the identifications ai $ ˛i for 1 � i � n � 3 and aj $ jC1 for
j D n� 2 and n� 1, we can consider K� as a subalgebra of KQ=I . Observe that
KQ=I decomposes as a direct sum K�˚V and V is generated by ˇn�1 and ˇn as a
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. . .˛1 ˛2 ˛3 ˛n�3

ˇn�1

ˇn

n�1

n

Figure 13: The quiver Q

K�–bimodule. Moreover, as K�–bimodules, V and the dual of K� are isomorphic via

 W V ! .K�/_;

ˇn�1 7! .an�2an�3 � � � a2a1/
_;

ˇn 7! .an�1an�3 � � � a2a1/
_:

It is straightforward to check that this map is a well-defined isomorphism.

In fact, .K�/_ can also be considered as a subalgebra of KQ=I by identifying the
dual p_ of a path p 2K� with the path q 2KQ=I such that

q �p D � t .ˇnn˛n�3 � � �˛1/D �
t .ˇn�1n�1˛n�3 � � �˛1/ 2KQ=I;

where � denotes the simple rotation action on the cycles and t is the distance between
the initial points of p and ˛1 .

As a consequence of this lemma and the discussions in the previous section, there
is an isomorphism between the Hochschild cohomology rings of the zigzag algebra
A� and B� . On the other hand, the Hochschild cohomology of B� as a trivially
graded algebra was described in detail in [72; 71]. As in the case of � D An (see
Theorem 40), we determine the internal grading s induced by the zigzag algebra and
obtain the following result. This extra information does not appear in [72; 71] and the
determination of this grading is the main contribution given in the following theorem.

Theorem 44 Let � D Dn , n � 4. The .r; s/–bigraded Hochschild cohomology
algebra

HH�.A�/D
M

rCsD�

HHr .A� ;A� Œs�/

of the graded k–algebra A� is (graded) commutative and given by the following
generators and relations. (The subscripts of the generators, except for the si , refer to
total degrees.)
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(1) Suppose char K ¤ 2. We have generators labeled along with their bidegrees
.r; s/ given by

s1; : : : ; sn .0; 2/;

t1 .1; 0/;

r1 .2n� 3;�2nC 4/;

t0 .4;�4/;

r0 .2n� 4;�2nC 4/;

t�2 .4n� 6;�4nC 4/

and relations

sisj D si tj D sirj D t2
1 D t1r1 D r2

1 D tn�1
0 D 0;

together with

if n is even if n is odd

t1r0 D
�

n
2

�
t1t
.n�2/=2
0

� .n� 1/r1

�
n�1

2

�
r1

2t0r1 D t1t
n=2
0

0

2r1r0 D 0 t1tn�2
0

2t0r0 D t
n=2
0

0

2r2
0
D

�
n
2

�
tn�2
0

�
n�1

2

�
tn�2
0

(2) Suppose char K D 2. We have generators labeled along with their bidegrees
.r; s/ given by

s1; : : : ; sn .0; 2/;

t1 .1; 0/;

u1 .3;�2/;

t0 .4;�4/;

r0 .2n� 4;�2nC 4/;

u0

�
4
�

n
2

˘
;�4

�
n
2

˘�
;

u�1

�
4
�

n�1
2

˘
C 1;�4

�
n�1

2

˘
� 2

�
;

t�2 .4n� 6;�4nC 4/
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and relations

sisj D si t1 D siu1 D siu0 D 0;

t2
1 D u2

1 D u2
0 D u1u0 D 0;

t
bn

2
c

0
D u1t

bn�1
2
c

0
D 0;

r2
0 D

�
n
2

˘
u0t
bn�3

2
c

0
;

sj t0 D t1u1

together with

if n is even if n is odd

u2
�1
D t�2 t�2t0

u1u�1 D u0 u0t0

t0r0 D u1u�1 t1u�1

u1r0 D 0 t1u0

sj u�1 D

(�
n�2

2

�
t1t
.n�2/=2
0

C t1r0 if j � n� 1;�
n
2

�
t1t
.n�2/=2
0

C t1r0 if j D n
u1r0

sj r0 D

(
t1u1t

.n�4/=2
0

if j � n� 1;

0 if j D n
0

u�1r0 D t1t�2

t1r0 D
�

n�1
2

�
u1t

.n�3/=2
0

sj t�2 D r0u0

Proof The presentation of the algebra structure of HH�.B�/ in [71, Theorem 4]
provides all the generators with their r–gradings and relations. The derived equivalence
between A� and B� gives

HHr .B�/Š
M

s

HHr .A� ;A� Œs�/:

Therefore it suffices to determine the s–gradings of the generators in the statement.
Extending the notation in Figure 12, we consider the decomposition of the graded
algebra A� into homogeneous K–subspaces A0 , A1 and A2 , spanned by

fe1; : : : ; eng; fa1; b1; : : : ; an�1; bn�1g and fs1; : : : ; sng;
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respectively, where

eiC1aiei D ai ; eibieiC1 D bi ; enan�1en�2 D an�1; en�2bn�1en D bn�1;

s1 D b1a1; siC1 D aibi D biC1aiC1; sn�2 D an�3bn�3 D bj aj ; sjC1 D aj bj

for 1� i � n� 4 and j D n� 2, n� 1.

As in the proof of Theorem 40, we will again use the reduced bar-resolution associated
to ADA� and denote the Hochschild differential by ı . Consequently, the discussion
for r D 0; 1 is exactly the same as in the proof of Theorem 40. We identify the
s–gradings of s1; : : : ; sn and t1 as in the statement.

For every nonnegative integer r , the dimension of
L

s HHr .A;AŒs�/ Š HHr .B�/

can be deduced from the presentation in the statement and it is explicitly given in
[71, Theorem 3]. We will make extensive use of this information. To begin with,
note that

L
s HH2.A;AŒs�/ is trivial over any field K, and

L
s HH3.A;AŒs�/ is 1–

dimensional if char KD 2 and trivial otherwise. Over a field K of characteristic 2, for
c 2 CC3.A;AŒs�/, the Hochschild differential ı is given by

ı.c/.x4;x3;x2;x1/D x4c.x3;x2;x1/C c.x4;x3;x2/x1C c.x4x3;x2;x1/

C c.x4;x3x2;x1/C c.x4;x3;x2x1/:

We claim that, if char K D 2, there is a cocycle �1 2 CC3.A;AŒ�2�/ which is not
the coboundary of any � 2 CC2.A;AŒs�/. This and the fact that

L
s HH3.A;AŒs�/ is

1–dimensional imply that the s–grading of u1 must be �2, the same as �1 . To describe
the graded homomorphism �1W

xA˝3!AŒ�2� uniquely, it suffices to list the generators
of xA˝3 on which �1 is nonzero. It necessarily vanishes on any element of degree 5

or 6 in xA˝3 since A is supported in gradings between 0 and 2. We declare �1 to be
nonzero exactly on those nontrivial elements .x3;x2;x1/ 2 xA

˝3 which satisfy one of
the following conditions:

� One of x1 , x2 and x3 is of the form ai and the other two is of the form bi ,
possibly with different indices, and .x3;x2;x1/¤ .bn�1; an�1; bn�2/.

� Exactly one of x1 , x2 and x3 is of the form sk , and the initial point of x1

matches the terminal point of x3 .

� .x3;x2;x1/D .an�2; bn�1; an�1/.

It is straightforward to check that �1 is a cocycle. To see that it is not a coboundary,
suppose that c 2 CC2.A;AŒ�2�/. Then

ı.�/..b2; a2; s2/C .a2; s2; b2/C .s2; b2; a2//

D b2�.a2; s2/C a2�.s2; b2/C �.a2; s2/b2C �.s2; b2/a2
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after cancellations. Observe that the right-hand side is either s2C s3 or 0, depending
on the values of �.a2; s2/ and �.s2; b2/. Since

�1..b2; a2; s2/C .a2; s2; b2/C .s2; b2; a2//D s3;

�1 cannot be a coboundary.

Next we determine the s–grading of t0 . Consider the case char KD 2. If nD 4, thenL
s HH4.A;AŒs�/ has generators t0; r0 and t1u1 . Note that any relation satisfied by

t0 and r0 is also satisfied by t0�  t1u1 and r0�  t1u1 , respectively, for any  2K.
Therefore, without loss of generality, we may assume that there are s–homogeneous
generators t 0

0
, r 0

0
and constants ˛; ˇ 2K such that

t0 D t 00C˛r 00 and r0 D r 00Cˇt 00:

From the relations regarding snr0 and snt0 we obtain

0D snr0 D snr 00Cˇsnt 00 and 0¤ u1t1 D snt0 D snt 00C˛snr 00:

Since the gradings of u1; t1 and sn are established above, the second equation implies
that at least one of t 0

0
and r 0

0
has s–grading �4; in fact they both do, as the following

arguments show. If snr 0
0
¤ 0, then the first equation proves that r 0

0
and t 0

0
have the

same s–grading, which is necessarily �4. So suppose snr 0
0
D 0. Now the second

equation gives snt 0
0
¤ 0. Moreover, the first equation implies ˇ D 0, which means

r0D r 0
0

; in particular, r0 is s–homogeneous. So we can use the relation s1r0D t1u1 to
establish the s–grading of r 0

0
as �4. On the other hand, under the assumption snr 0

0
D 0,

the second equation becomes snt 0
0
D u1t1 , implying that t 0

0
has s–grading �4 as well.

Therefore, regardless of the value of snr 0
0

, the s–gradings of t0 and r0 are both �4.

If n>4 and char KD2, then
L

s HH4.A;AŒs�/ has rank 2 with generators t0 and t1u1 ,
hence we may assume that there is an s–homogeneous generator t 0

0
and ˛ 2K such

that t0 D t 0
0
C˛t1u1 . The relation snt0 D t1u1 implies that the s–grading of t 0

0
is �4.

The s–grading of t1u1 is �2 by previous computations. If n is even, then any relation
in the statement holds for t0 if and only if it holds for t 0

0
. Therefore, without loss of

generality, we may assume that t0 D t 0
0

is s–homogeneous with grading �4, at least
when n is even. The same conclusion holds for odd n as well, but we will not prove
(nor use) it until Case 3 below.

Let us now consider the s–grading of t0 when char K ¤ 2. Regardless of whether
n D 4 or not, the argument uses the universal coefficient theorem (10) as in the
proof of Theorem 40. First of all, considering that

L
s HH2.A;AŒs�/ is trivial for any

field K and using (10) for r D 2, we conclude that
L

s HH3
Z.A;AŒs�/ has no torsion.

Since
L

s HH3.A;AŒs�/ is trivial when char K¤ 2, applying the universal coefficient
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theorem (10) for r D 3 implies that
L

s HH3
Z.A;AŒs�/ has no free component either,

hence it is trivial. Moreover, the same exact sequence and the fact that for char KD 2,L
s HH3.A;AŒs�/ is generated by u1 whose s–grading is computed as �2 above,

establish the torsion of
L

s HH4
Z.A;AŒs�/ as Z2Œ2�.

The argument above for char K D 2 shows that
L

s HH4.A;AŒs�/ Š Kd Œ4�˚KŒ2�,
where d D 2 if n D 4 and d D 1 otherwise. Using the fact that

L
s HH4.A;AŒs�/

is d–dimensional for any field K with char K¤ 2, and applying the universal coef-
ficient theorem (10) for r D 4 to infinitely many characteristics, we conclude thatL

s HH4
Z.A;AŒs�/ is in fact Zd Œ4�˚Z2Œ2�. In particular,

L
s HH4.A;AŒs�/ is sup-

ported in s–grading �4 whenever char K¤ 2, and the s–grading of t0 is �4 unless n

is odd and char KD 2.

The rest of the argument varies slightly according to the parity of n and the characteristic
of the base field.

Case 1 (n even and char KD 2)

We need to determine the s–gradings of the rest of the generators, namely u�1; t�2;u0

and r0 . Since
fu�1; t1r0; t1t

.n�2/=2
0

g

forms a basis of
L

s HH2n�3.A;AŒs�/,

u�1 D u0
�1C˛t1r0Cˇt1t

.n�2/=2
0

for some s–homogeneous u0
�1
¤ 0 and some ˛; ˇ 2 K. Observe that any relation

satisfied by u�1 is satisfied by u0
�1

as well. Therefore, without loss of generality, we
may assume that u�1 D u0

�1
and its s–grading is �2nC 2 as a result of the relation

snu�1� s1u�1 D t1t
.n�2/=2
0

:

Moreover, by the relations u0 D u1u�1 and t�2 D u2
�1

, both u0 and t�2 are s–
homogeneous with gradings �2n and �4nC 4, respectively. Regarding r0 , note
that

fr0; t
.n�2/=2
0

; t1u1t
.n�4/=2
0

g

forms a basis of
L

s HH2n�4.A;AŒs�/. Hence

r0 D r 00C˛t
.n�2/=2
0

Cˇt1u1t
.n�4/=2
0

for some s–homogeneous r 0
0
¤ 0 and some ˛; ˇ 2K. It is straightforward to check

that any relation satisfied by r0 is also satisfied by r0 � ˇt1u1t
.n�4/=2
0

, so we may
assume that r0 D r 0

0
C ˛t

.n�2/=2
0

. Moreover, the relation u0 D t0r0 D t0r 0
0

implies
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that the s–grading of r 0
0

is �2nC 4, the same as that of t
.n�2/=2
0

. Therefore, r0 is
s–homogeneous with this grading as well.

Case 2 (n even and char K¤ 2)

We have a single argument for the s–grading of r0 and r1 which belong to 2–
dimensional spaces

L
s HH2n�4.A;AŒs�/ and

L
s HH2n�3.A;AŒs�/, respectively. We

take s–homogeneous elements r 0
0
¤ 0 and r 0

1
¤ 0 such that

r0 D r 00C˛t
.n�2/=2
0

and r1 D r 01Cˇt1t
.n�2/=2
0

:

Suppose that char K − n � 1. By way of contradiction, assume that r0 is not s–
homogeneous, ie ˛ ¤ 0 and the s–grading of r 0

0
is not �2n C 4. Then t1r0 D�

n
2

�
t1t
.n�2/=2
0

� .n� 1/r1 implies that �.n� 1/r 0
1
D t1r 0

0
for grading reasons. Conse-

quently, the s–gradings of r 0
0

and r 0
1

should match. Moreover, since 2t0r1 D t1t
n=2
0

,
and again for grading reasons, ˇ ¤ 0. But then, ˛ˇt1tn�2

0
¤ 0 and its s–grading

does not match with the s–grading of any other term in the product r1r0 contradicting
with r1r0 D 0. Therefore r0 is s–homogeneous, and so is r1 , in fact with the same
s–grading, as a consequence of

t1r0 D
�

1
2
n
�
t1t
.n�2/=2
0

� .n� 1/r1:

In order to account for the possibility that char K j .n=2/, instead of the relation above
we use the relation 2t0r0 D t

n=2
0

to obtain the common s–grading of r0 and r1 .

For a field K with char K¤ 2, both
L

s HH2n�3.A;AŒs�/ and
L

s HH2n�4.A;AŒs�/

are 2–dimensional, and moreover we just proved that when char K − n�1, each of these
spaces are supported in s D�2nC 4. By using the universal coefficient theorem (10)
for r D 2n� 4 we conclude that, as long as char K¤ 2 (even if char K divides n� 1)
both

L
s HH2n�3.A;AŒs�/ and

L
s HH2n�4.A;AŒs�/ are supported in s D�2nC 4.

In particular, the common s–grading of r0 and r1 is �2nC 4.

The s–grading of the remaining generator t�2 is obtained by the following argument,
which applies to odd n as well. First of all, t�2 is s–homogeneous as it belongs to the
1–dimensional space

L
s HH4n�6.A;AŒs�/. On the other hand,

L
s HH4n�5.A;AŒs�/

is 1–dimensional over any field K and it is generated by t1t�2 . Since we already have
the s–grading of t1t�2 for char KD 2 from the previous case, we obtain the s–grading
of t�2 over any field using the universal coefficient theorem (10) for r D 4n� 5.

Case 3 (n odd and char KD 2)

In this case, the s–grading of r0 can be obtained by an argument which works regard-
less of char K. Over any K,

L
s HH2n�4.A;AŒs�/ is 1–dimensional and generated

by r0 , which is therefore s–homogeneous. Applying the universal coefficient theorem
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(10) for r D 2n� 4 and infinitely many different characteristics, we conclude thatL
s HH2n�4

Z .A;AŒs�/Š Z and to establish the s–grading of this group, it suffices to
use the relation 2r2

0
D
�

n�1
2

�
tn�2
0

over a field of characteristic 0. In particular, r0 has
s–grading �2nC 4 for any field K.

The generator u0 belongs to the 1–dimensional space
L

s HH2n�2.A;AŒs�/, hence it
is s–homogeneous, and its s–grading is determined by the relation u1r0 D t1u0 .

Next we consider u�1 . It belongs to
L

s HH2n�1.A;AŒs�/ which is generated by u�1

and u1r0 . So u�1 D u0
�1
C ˛u1r0 for some ˛ 2 K and s–homogeneous u0

�1
¤ 0.

Observe that any relation which involves u�1 is satisfied by u0
�1

as well. Hence we
may assume that u�1 is s–homogeneous. Its s–grading is obtained from

t1u�1 D t0r0 D t 00r0:

Note that we have not established the s–homogeneity of t0 in this case yet, and that is
why we had to refer to t 0

0
in the relation above and use the fact that t0r0 � t 0

0
r0 D 0

since it is a multiple of t1u1r0 D sj t0r0 D 0.

Finally, we determine the s–gradings of t0 and t�2 simultaneously. In the case we
consider, they belong to 2–dimensional spacesM

s

HH4.A;AŒs�/ and
M

s

HH4n�6.A;AŒs�/;

with respective bases ft0; t1u1g and ft�2; r0u0g. So there are s–homogeneous elements
t 0
0

and t 0
�2

with constants ˛; ˇ 2K such that

t0 D t 00C˛t1u1 and t�2 D t 0
�2Cˇr0u0 :

In fact, the s–gradings of t 0
0

and t 0
�2

are �4 and �4nC4, respectively, since sj t 0
0
D t1u1

and sj t 0
�2
D r0u0 . It is straightforward to check that any relation in the statement,

except for u2
�1
D t�2t0 , holds for t0 and t�2 if and only if it holds for t 0

0
and t 0

�2
. To

check that the remaining relation holds, we use

u2
�1 D t�2t0 D t 0

�2t 00C˛t 0
�2t1u1Cˇt 00r0u0C˛ˇt1u1r0u0

and observe that the only term on the right-hand side of the above relation whose
s–grading matches that of u2

�1
is t 0
�2

t 0
0

. Therefore, without loss of generality, we may
assume that t0 D t 0

0
and t�2 D t 0

�2
.

Case 4 (n is odd and char K¤ 2)

The s–gradings of t�2 and r0 are already obtained in Cases 2 and 3 above.

The remaining generator r1 is s–homogeneous since it belongs to the 1–dimensional
space

L
s HH2n�3.A;AŒs�/ and its s–grading is determined by the relation 2r1r0 D

t1tn�2
0

.
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Using Theorem 18, which is due to Seidel and Thomas, one gets the following conse-
quence of the computation above.

Corollary 45 If char K¤ 2 and � is of type Dn , n� 4, then the zigzag algebra A�
is intrinsically formal.

One can write explicit bases for the relevant K–vector subspaces of HH�.A�/ as
follows.

If char K ¤ 2, then
L

rCsD2 HHr .A;AŒs�/ is spanned by fs1; : : : ; sng, and for any
nonnegative integer m and i D 0; 1, a basis of

L
rCsDi�2m HHr .A;AŒs�/ is given by

fri t
m
�2; t

i
1tk

0 tm
�2 W 0� k � n� 2g:

When char KD 2, the increase in the dimensions of these spaces is immediate from
the statement of Theorem 44. The subspace

L
rCsD2 HHr .A;AŒs�/ is spanned by˚

sj ; t1u1tk
0 D sntkC1

0
W 1� j � n; 0� k �

�
n�4

2

˘	
;

and depending on the parity of n,
L

rCsD1 HHr .A;AŒs�/ is spanned by˚
u1tk

0 ; t1t l
0; t1r0t l

0 W 0� k � n�4
2
; 0� l � n�2

2

	
if n is even, and by ˚

u1t l
0; t1t l

0; t1u0t l
0 W 0� l � n�3

2

	
if n is odd.

If n is even and m is nonnegative, then a basis of
L

rCsD�m HHr .A;AŒs�/ can be
given as ˚

t l
0um
�1; r0t l

0um
�1; t1t l

0umC1
�1

; r0t1t l
0umC1
�1
W 0� l � n�2

2

	
:

If n is odd and m is nonnegative, thenM
rCsD�2m

HHr .A;AŒs�/ and
M

rCsD�2m�1

HHr .A;AŒs�/

are spanned by ˚
t l
0tm
�2; r0t l

0tm
�2;u0t l

0tm
�2;u0r0t l

0tm
�2 W 0� l � n�3

2

	
and ˚

u�1t l
0tm
�2;u�1r0t l

0tm
�2;u�1u0t l

0tm
�2;u�1u0r0t l

0tm
�2 W 0� l � n�3

2

	
;

respectively.

Therefore, the group
L

rCsD�HHr .A� ;A� Œs�/ is nontrivial if and only if � � 2. If
the ground field has characteristic 2, the rank is nC

�
n�2

2

˘
for �D 2; 1 and 4

�
n
2

˘
for
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� � 0. Otherwise the rank is n at each � � 2. Therefore, it follows from Theorem 27
that we have:

Corollary 46 The symplectic cohomology group SH�.X�/ over a field of character-
istic 0 is of rank n if � � 2 and it is trivial otherwise.

As before, for convenient access, we give tables listing the ranks of a truncated piece
of our calculation. As mentioned in Section 6.2.1, A� has a graded periodic resolution
as a graded bimodule, from which it follows easily that for � DDn , n� 4, the ranks
of the Hochschild cohomology groups obeys the following periodicity:

rank HHr .A;AŒs�/D rank HHrC.4n�6/.A;AŒs� .4n� 4/�/ for r > 0:

In this presentation, multiplication by the generator t�2 gives rise to this periodicity.
The tables below give the truncation, which includes a fundamental domain of the
period in the cases � DD4 , D5 , D6 . We have also performed computer-aided checks
in these cases.

r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

2 4 0 0 0 x 0 0 0 0 0 0 0 0

1 0 0 1 0 x 0 2 0 0 0 1 0 0

0 0 0 1 0 0 0 2 0 x 0 1 0 2x

�1 0 0 0 0 0 0 0 0 x 0 0 0 2x

Table 4: � DD4 ; x is 1 if char KD 2 , 0 otherwise

rCs # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14

2 5 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 x 0 1 0 1 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 1 0 1 0 x 0 1 0 x

�1 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 x

Table 5: � DD5 ; x is 1 if char KD 2 , 0 otherwise

Remark 47 As a result of the computation for �DDn , we have HH2.A� ;A� Œs�/D0

for all s over any field K. This rigidity has a useful implication in Floer theory: namely,
if one has a Dn–configuration of Lagrangian spheres Sv in a symplectic 4–manifold M ,
then the Floer cohomology algebra

L
v;w HF�M .Sv;Sw/ is isomorphic to A� , ie it

is independent of the symplectic manifold M . Furthermore, if char K¤ 2, intrinsic
formality implies that in fact the A1–algebra

L
v;w CF�M .Sv;Sw/ is quasi-isomorphic

to A� .
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7 Conclusion

7.1 Comparison with geometric viewpoint

We would like to discuss the algebraic computations given in Section 6.2.2 in terms of
the symplectic geometry of the Milnor fiber X� . We shall omit some of the details,
but the geometric setup that we are about to lay out is taken from [59]. Consider C3

with its standard symplectic form d˛ , where

˛ D�1
4
dc.jz1j

2
Cjz2j

2
Cjz3j

2/:

Let pW C3!C be the polynomial

p.z1; z2; z3/D znC1
1
C z2

2 C z2
3 ;

which has an isolated singularity at the origin of type An . Consider also the Hamiltonian
function H W C3!R given by

H.z1; z2; z3/D 2jz1j
2
C .nC 1/jz2j

2
C .nC 1/jz3j

2:

Let  be a cutoff function such that  .t2/D 1 for t � 1
3

and  .t2/D 0 for t � 2
3

.
For u 2Cnf0g with 0< juj< � for sufficiently small � , we consider the Milnor fiber

fz 2C3
W p.z/D  .H.z//ug:

For sufficiently small � , this is a symplectic submanifold of C3 and can be symplec-
tically identified with X� . For r � 2

3
, we let Lr D F \ fH D rg be the link of the

singularity. In other words, for such r , we have

Lr D fz 2C3
W 2jz1j

2
C .nC 1/jz2j

2
C .nC 1/jz3j

2
D r;p.z/D 0g:

r C s # s! 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8

2 6 0 0 0 x 0 0 0 x 0 0

1 0 0 1 0 x 0 1 0 x 0 2

0 0 0 1 0 0 0 1 0 0 0 2

�1 0 0 0 0 0 0 0 0 0 0 0

r C s # s! �9 �10 �11 �12 �13 �14 �15 �16 �17 �18

2 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0

0 0 x 0 1 0 x 0 1 0 2x

�1 0 x 0 0 0 x 0 0 0 2x

Table 6: � DD6 ; x is 1 if char KD 2 , 0 otherwise
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For r > 0, Lr inherits a contact structure ˛jLr
and outside of a compact set X� can

be identified with the positive symplectization of Lr . The appealing feature of this
setup is that the Reeb vector field Rr on Lr has a periodic flow given by

t � .z1; z2; z3/D .e
4it=r z1; e

2.nC1/it=r z2; e
2.nC1/it=r z3/:

Thus, all the Reeb orbits are along the circle direction of a Seifert fibered structure on
the lens space Lr ŠL.nC 1; n/. Furthermore, since the Reeb flow is explicit, we can
actually write down all the orbits. Let us take Y� DL1 as our contact boundary. There
are two types of simple orbits:

� Generic simple orbits of period �
2nC2

lcm.2; nC 1/. These are orbits through
points .z1; z2; z3/2Y� such that z1¤ 0. The N th multiple cover of these orbits
have Conley–Zehnder index 2N if n is odd, 4N if n is even.

� Exceptional simple orbits of period �
nC1

. These are orbits through points
.0; z2; z3/ 2 Y� . The N th multiple cover of this orbit has Conley–Zehnder
index 2

�
2N
nC1

˘
C 1 except when 2N DM.nC 1/ for some M 2 Z, in which

case the index is 2M .

For each N 2 ZC , we can consider N –fold multiple covers of generic simple orbits
together with .nC1/N –fold

�
resp. .nC1/N

2
–fold

�
for n even (resp. n odd) multiple

covers of exceptional orbits as parametrized by the manifold L.nC 1; n/ and the N –
fold cover of exceptional orbits for each N 2 ZC not divisible by nC 1

�
resp. nC1

2

�
for n even (resp. n odd) as parametrized by S1 tS1 . This leads to a standard Morse–
Bott-type spectral sequence converging to SH�.X�/ (see [60] and/or [48] for a more
recent exposition). For example, for nD 2, the E1 page is given by

(11) E
pq
1
D

8̂̂̂<̂
ˆ̂:

H q.X� IK/ if p D 0;

H q�p�2..S1 tS1/IK/ if p D 2l C 1< 0;

H q�p.L.3; 2/IK/˚H q�p�2..S1 tS1/IK/ if p D 2l < 0;

0 if p > 0:

The higher differentials come from contributions of holomorphic cylinders counted in
the differential of symplectic cohomology. A finite truncation of the E1 page of this
spectral sequence is shown in Table 7.

Comparing this with our results from Section 6.2.2, which correspond to a calculation of
the total complex at the E1 page of the spectral sequence, gives us information about
the holomorphic cylinders contributing to the differential of symplectic cohomology.
For example, if char KD 3, the spectral sequence has to be degenerate but otherwise
there has to be a nontrivial differential. See also the appendix of [48] for a similar
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r C s # s! 2 1 0 �1 �2 �3 �4

2 2 0 0 0 0 0 0

1 2 0 0 0 0 0 0

0 0 2 1 0 0 0 0

�1 0 3 0 0 0 0 0

�2 0 0 xC2 0 0 0 0

�3 0 0 2 x 0 0 0

�4 0 0 0 2 1 0 0

�5 0 0 0 3 0 0 0

�6 0 0 0 0 xC2 0 0

�7 0 0 0 0 2 x 0

�8 0 0 0 0 0 2 1

Table 7: E1 page of the Morse–Bott spectral sequence for � DA2 ; x is 1 if
char KD 3 , 0 otherwise.

spectral sequence obtained via another natural choice of a contact form on the lens
space L.nC 1; n/.

In conclusion, even though this geometric point of view leads to an appealing description
of the generators of the chain complex, it seems harder to determine the cohomology
this way, let alone its multiplicative structure. However, it is reassuring that the algebraic
approach taken in this paper and the geometric picture just outlined are compatible.

7.2 Generalizations

In this paper, we have studied Legendrian links ƒ� .S3; �std/ which are obtained by
plumbing Legendrian unknots according to a plumbing tree � . One might wonder what
Koszul duality has to say when ƒ is a more general Legendrian submanifold. Of course,
one can study this plumbing construction in higher dimensions. Both the Ginzburg
DG-algebra and the zigzag algebra have analogues corresponding to higher-dimensional
plumbings, and we expect that our calculations can be extended in a straightforward way.

Perhaps a more interesting direction to pursue is the following. One of our main
observations was that the Legendrian cohomology DG-algebra of ƒ admits a certain
natural augmentation �W LCA�.ƒ/! k such that

(12) RHomLCA�.ƒ/op.k; k/

is quasi-isomorphic to a finite-dimensional associative algebra A, whose Hochschild
complex is isomorphic to that of LCA�.ƒ/ by an A1–version of Koszul duality.

One could contemplate generalizing this construction to an arbitrary Legendrian link
ƒ whose LCA�.ƒ/ admits an augmentation � . In general, one cannot expect to have
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the connectedness and the finiteness conditions required in Theorem 21. Furthermore,
in general, LCA�.ƒ/ is not graded over Z but over Z=N for some N > 0. These
pose important restrictions, analogous to the assumption of simple connectedness that
appears in the classical story discussed in the introduction. One could partially extend
Koszul duality to these more general situations if one takes completions with respect
to the augmentation ideal.
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A complex hyperbolic Riley slice

JOHN R PARKER

PIERRE WILL

We study subgroups of PU.2; 1/ generated by two noncommuting unipotent maps A

and B whose product AB is also unipotent. We call U the set of conjugacy classes of
such groups. We provide a set of coordinates on U that make it homeomorphic to R2 .
By considering the action on complex hyperbolic space H 2

C of groups in U , we
describe a two-dimensional disc Z in U that parametrises a family of discrete groups.
As a corollary, we give a proof of a conjecture of Schwartz for .3; 3;1/–triangle
groups. We also consider a particular group on the boundary of the disc Z where
the commutator ŒA;B� is also unipotent. We show that the boundary of the quotient
orbifold associated to the latter group gives a spherical CR uniformisation of the
Whitehead link complement.

20H10, 22E40, 51M10; 57M50

1 Introduction

1.1 Context and motivation

The framework of this article is the study of the deformations of a discrete subgroup �
of a Lie group H in a Lie group G containing H . This question has been addressed in
many different contexts. A classical example is the one where � is a Fuchsian group,
H DPSL.2;R/ and GDPSL.2;C/. When � is discrete, such deformations are called
quasi-Fuchsian. We will be interested in the case where � is a discrete subgroup of
H D SO.2; 1/ and G is the group SU.2; 1/ (or their natural projectivisations over R
and C , respectively). The geometrical motivation is very similar: In the classical case
mentioned above, PSL.2;C/ is the orientation-preserving isometry group of hyperbolic
3–space H 3 and a Fuchsian group preserves a totally geodesic hyperbolic plane H 2

in H 3 . In our case GD SU.2; 1/ is (a triple cover of) the holomorphic isometry group
of complex hyperbolic 2–space H 2

C , and the subgroup H D SO.2; 1/ preserves a
totally geodesic Lagrangian plane isometric to H 2 . A discrete subgroup � of SO.2; 1/
is called R–Fuchsian. A second example of this construction is where G is again
SU.2; 1/ but now H D S.U.1/�U.1; 1//. In this case H preserves a totally geodesic
complex line in H 2

C . A discrete subgroup of H is called C–Fuchsian. Deformations of
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either R–Fuchsian or C–Fuchsian groups in SU.2; 1/ are called complex hyperbolic
quasi-Fuchsian. See Parker and Platis [24] for a survey of this topic.

The title of this article refers to the so-called Riley slice of Schottky space (see [19; 1]).
Riley considered the space of conjugacy classes of subgroups of PSL.2;C/ generated
by two noncommuting parabolic maps. This space may be identified with C � f0g
under the map that associates the parameter � 2C�f0g with the conjugacy class of
the group �� , where

�� D

��
1 1

0 1

�
;

�
1 0

� 1

��
:

Riley was interested in the set of those parameters � for which �� is discrete. He was
particularly interested in the (closed) set where �� is discrete and free, which is now
called the Riley slice of Schottky space; see Keen and Series [19]. This work has been
taken up more recently by Akiyoshi, Sakuma, Wada and Yamashita. In their book [1]
they illustrate one of Riley’s original computer pictures,1 Figure 0.2a, and their version
of this picture, Figure 0.2b. Riley’s main method was to construct the Ford domain
for �� . The different combinatorial patterns that arise in this Ford domain correspond
to the differently coloured regions in these figures from [1]. Riley was also interested
in groups �� that are discrete but not free. In particular, he showed that when � is
a complex sixth root of unity then the quotient of hyperbolic 3–space by �� is the
figure-eight knot complement.

1.2 Main definitions and discreteness result

The direct analogue of the Riley slice in complex hyperbolic plane would be the set
of conjugacy classes of groups generated by two noncommuting, unipotent parabolic
elements A and B of SU.2; 1/. (Note that in contrast to PSL.2;C/, there exist
parabolic elements in SU.2; 1/ that are not unipotent. In fact, there is a 1–parameter
family of parabolic conjugacy classes; see for instance Goldman [15, Chapter 6].) This
choice would give a four-dimensional parameter space, and we require additionally
that AB be unipotent, making the dimension drop to 2. Specifically, we define

(1) U D f.A;B/ 2 SU.2; 1/2 WA;B;AB all unipotent and AB ¤ BAg=SU.2; 1/:

Following Riley, we are interested in the (closed) subset of U where the group hA;Bi
is discrete and free and our main method for studying this set is to construct the Ford
domain for its action on complex hyperbolic space H 2

C . We shall also indicate various
other interesting discrete groups in U but these will not be our main focus.

1Parker has one of Riley’s printouts of this picture dated 26th March 1979.

Geometry & Topology, Volume 21 (2017)
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In Section 3.1, we will parametrise U so that it becomes the open square
�
�
�
2
; �

2

�2 .
The parameters we use will be the Cartan angular invariants ˛1 and ˛2 of the triples of
(parabolic) fixed points of .A;AB;B/ and .A;AB;BA/, respectively (see Section 2.6
for the definitions). Note that the invariants ˛1 and ˛2 are defined to lie in the closed
interval

�
�
�
2
; �

2

�
. Our assumption that A and B don’t commute implies that neither

˛1 nor ˛2 can equal ˙�
2

(see Section 3.1).

When ˛1 and ˛2 are both zero, that is, at the origin of the square, the group hA;Bi is
R–Fuchsian. The quotient of the Lagrangian plane preserved by hA;Bi is a hyperbolic
thrice-punctured sphere where the three (homotopy classes of) peripheral elements are
represented by (the conjugacy classes of) A, B and AB . The space U can thus be
thought of as the slice of the SU.2; 1/–representation variety of the thrice-punctured
sphere group defined by the conditions that the peripheral loops are mapped to unipotent
isometries.

We can now state our main discreteness result.

Theorem 1.1 Suppose that �DhA;Bi is the group associated to parameters .˛1; ˛2/

satisfying D.4 cos2 ˛1; 4 cos2 ˛2/ > 0, where D is the polynomial given by

D.x;y/D x3y3
� 9x2y2

� 27xy2
C 81xy � 27x� 27:

Then � is discrete and isomorphic to the free group F2 . This region is Z in Figure 1.

Note that at the centre of the square, we have D.4; 4/ D 1225 for the R–Fuchsian
representation. The region Z where D>0 consists of groups � whose Ford domain has
the simplest possible combinatorial structure. It is the analogue of the outermost region
in the two figures from Akiyoshi, Sakuma, Wada and Yamashita [1] mentioned above.

1.3 Decompositions and triangle groups

We will prove in Proposition 3.3 that all pairs .A;B/ in U admit a (unique) decompo-
sition of the form

(2) AD ST and B D TS;

where S and T are order-three regular elliptic elements (see Section 2.2). In turn, the
group generated by A and B has index three in the one generated by S and T . When
either ˛1 D 0 or ˛2 D 0 there is a further decomposition making hA;Bi a subgroup
of a triangle group.

Deformations of triangle groups in PU.2; 1/ have been considered in many places,
including Goldman and Parker [16], Parker, Wang and Xie [25], Pratoussevitch [28]
and Schwartz [32]. A complex hyperbolic .p; q; r/–triangle is one generated by three
complex involutions about (complex) lines with pairwise angles �

p
, �

q
, and �

r
, where

Geometry & Topology, Volume 21 (2017)
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4

5
6

7 7 P

2
10

3 Z

2

7

6
5

4
7

0 R–Fuchsian representation of the 3–punctured sphere group.
1 Horizontal segment corresponding to even word subgroups of ideal triangle groups; see

Goldman and Parker [16] and Schwartz [30; 31; 33].
2 Last ideal triangle group, contained with index three in a group uniformising the White-

head link complement obtained by Schwartz [30; 31; 33].
3 Vertical segment corresponding to bending groups that have been proved to be discrete

by Will [37].
4 .3; 3; 4/–group uniformising the figure-eight knot complement. Obtained by Deraux

and Falbel [8].
5 .3; 3; n/–groups, proved to be discrete by Parker, Wang and Xie [25]. On this picture,

46 n6 8 .
6 Uniformisation of the Whitehead link complement we obtain in this work.
7 Subgroup of the Eisenstein–Picard lattice; see Falbel and Parker [14].

Figure 1: The parameter space for U . The exterior curve P corresponds to
classes of groups for which ŒA;B� is parabolic. The central dashed curve
bounds the region Z where we prove discreteness. The labels correspond
to various special values of the parameters. Points with the same labels are
obtained from one another by symmetries about the coordinate axes. The
results of Section 3.3 imply that they correspond to groups conjugate in
Isom(H 2

C ).

p , q and r are integers or 1 (when one of them is 1 the corresponding angle
is 0). Groups generated by complex reflections of higher order are also interesting;
see Mostow [22] for example, but we do not consider them here. For a given triple
.p; q; r/ with minfp; q; rg> 3, the deformation space of the .p; q; r/–triangle group

Geometry & Topology, Volume 21 (2017)
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is one-dimensional, and can be thought of as the deformation space of the R–Fuchsian
triangle group. Schwartz [32] develops a series of conjectures about which points
in this space yield discrete and faithful representations of the triangle group. For a
given triple .p; q; r/, Conjecture 5.1 of [32] states that a complex hyperbolic .p; q; r/–
triangle group is a discrete and faithful representation of the Fuchsian one if and only
if the words IiIj Ik and IiIj IkIj (with i , j and k pairwise distinct) are nonelliptic.
Moreover, depending on p , q and r , he predicts which of these words one should
choose.

We now explain the relationship between triangle groups and groups on the axes of
our parameter space U . First consider groups with ˛2 D 0. Let I1 , I2 and I3 be
the involutions fixing the complex lines spanned by the fixed points of .A; B/, of
.A; AB/ and of .B; AB/, respectively. If ˛2D0 then A and B may be decomposed as
AD I2I1 and BD I1I3 , and also hA;Bi has index 2 in hI1; I2; I3i (Proposition 3.8).
Since I2I1DA, I1I3DB and I2I3DAB are all unipotent, we see that hI1; I2; I3i

is a complex hyperbolic ideal triangle group, as studied by Goldman and Parker [16]
and Schwartz [30; 31; 33]. Their results gave a complete characterisation of when such
a group is discrete. (Our Cartan invariant ˛1 is the same as the Cartan invariant A
used in these papers.)

Theorem 1.2 [16; 31; 33] Let I1 , I2 and I3 be complex involutions fixing distinct,
pairwise asymptotic complex lines. Let A be the Cartan invariant of the fixed points of
I1I2 , I2I3 and I3I1 .

(1) The group hI1; I2; I3i is a discrete and faithful representation of an .1;1;1/–
triangle group if and only if I1I2I3 is nonelliptic. This happens when

jAj � arccos
p

3=128:

(2) When I1I2I3 is elliptic the group is not discrete. In this case,

arccos
p

3=128< jAj< �
2
:

When ˛1 D 0 we get an analogous result. In this case, it is the order-three maps S

and T from (2) which decompose into products of complex involutions. Namely,
if ˛1 D 0, there exist three involutions I1 , I2 and I3 , each fixing a complex line,
such that S D I2I1 and T D I1I3 have order 3 and ST D A D I2I3 is unipotent
(Proposition 3.8). Furthermore, writing B D TS D I1I3I2I1 we have ŒA;B� D
.ST �1/3 D .I2I1I3I1/

3 . A corollary of Theorem 1.1 is a statement analogous to
Theorem 1.2 for .3; 3;1/–triangle groups, proving a special case of Schwartz [32,
Conjecture 5.1]. Compare with the proof of this conjecture for .3; 3; n/–triangle groups
given by Parker, Wang and Xie [25].

Geometry & Topology, Volume 21 (2017)
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Theorem 1.3 Let I1 , I2 and I3 be complex involutions fixing distinct complex
lines and such that S D I2I1 and T D I1I3 have order three and AD ST D I2I3 is
unipotent. Let A be the Cartan invariant of the fixed points of A, SAS�1 and S�1AS .
The group hI1; I2; I3i is a discrete and faithful representation of the .3; 3;1/–triangle
group if and only if I2I1I3I1 D ST �1 is nonelliptic. This happens when

jAj � arccos
p

3=8:

Theorem 1.3 follows directly from Theorem 1.1 by restricting it to the case where
.˛1; ˛2/D .0;A/. These groups are a special case of those studied by Will [37] from a
different point of view. There, using bending, he proved that these groups are discrete
as long as jAj D j˛2j �

�
4

. The gap between the vertical segment in Figure 1 and the
curve where ŒA;B� is parabolic illustrates the nonoptimality of the result of [37].

1.4 Spherical CR uniformisations of the Whitehead link complement

The quotient of H 2
C by an R– or C–Fuchsian punctured surface group is a disc bundle

over the surface. If the surface is noncompact, this bundle is trivial. Its boundary at
infinity is a circle bundle over the surface. Such three-manifolds appearing on the
boundary at infinity of quotients of H 2

C are naturally equipped with a spherical CR
structure, which is the analogue of the flat conformal structure in the real hyperbolic
case. These structures are examples of .X;G/–structure, with X D S3 D @H 2

C
and G D PU.2; 1/. To any such structure on a three-manifold M are associated a
holonomy representation �W �1.M /! PU.2; 1/ and a developing map D D zM !X .
This motivates the study of representations of fundamental groups of hyperbolic three-
manifolds in PU.2; 1/ and PGL.3;C/ initiated by Falbel [11], and continued by Falbel,
Guilloux, Koseleff, Rouillier and Thistlethwaite [12; 13] (see also Heusener, Munoz
and Porti [18]). Among PU.2; 1/ representations, uniformisations (see Deraux [6,
Definition 1.3]) are of special interest. There, the manifold at infinity is the quotient of
the discontinuity region by the group action.

For parameter values in the open region Z , the manifold at infinity of H 2
C=hS;T i

is a Seifert fibre space over a .3; 3;1/–orbifold. This is obviously true in the case
where ˛1 D ˛2 D 0 (the central point on Figure 1). Indeed, for these values the group
hS;T i preserves H 2

R (it is R–Fuchsian) and the fibres correspond to boundaries of real
planes orthogonal to H 2

R . As the combinatorics of our fundamental domain remains
unchanged in Z , the topology of the quotient is constant in Z .

Things become interesting if we deform the group in such a way that a loop on the
surface is represented by a parabolic map: the topology of the manifold at infinity can
change. A hyperbolic manifold arising in this way was first constructed by Schwartz:

Geometry & Topology, Volume 21 (2017)
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Theorem 1.4 [30] Let I1 , I2 and I3 be as in Theorem 1.2. Let A be the Cartan
invariant of the fixed points of I1I2 , I2I3 and I3I1 and let S be the regular elliptic
map cyclically permuting these points. When I1I2I3 is parabolic, the quotient of H 2

C
by the group hI1I2;Si is a complex hyperbolic orbifold with isolated singularities
whose boundary at infinity is a spherical CR uniformisation of the Whitehead link
complement. These groups have Cartan invariant AD˙ arccos

p
3=128.

Schwartz’s example provides a uniformisation of the Whitehead link complement.
More recently, Deraux and Falbel [8] described a uniformisation of the complement
of the figure-eight knot. Deraux [7] proved that this uniformisation was flexible: he
described a one-parameter deformation of the uniformisation described by Deraux and
Falbel [8], each group in the deformation being a uniformisation of the figure-eight
knot complement.

Our second main result concerns the .3; 3;1/–triangles group from Theorem 1.3, and
it states that when I2I1I3I1 is parabolic the associated groups give a uniformisation
of the Whitehead link complement which is different from Schwartz’s one. Indeed in
our case the cusps of the Whitehead link complement both have unipotent holonomy.
In Schwartz’s case, one of them is unipotent whereas the other is screw-parabolic. The
representation of the Whitehead link group we consider here was identified from a
different point of view by Falbel, Koseleff and Rouillier [13, page 254] in their census
of PGL.3;C/ representations of knot and link complement groups.

Theorem 1.5 Let I1 , I2 and I3 be as in Theorem 1.3 and define S D I2I1 and
A D I2I3 . Let A be the Cartan invariant of the fixed points of A, SAS�1 and
S�1AS . When I2I1I3I1 is parabolic, the quotient of H 2

C by hA;Si is a complex
hyperbolic orbifold with isolated singularities whose boundary is a spherical CR uni-
formisation of the Whitehead link complement. These groups have Cartan invariant
AD˙ arccos

p
3=8.

Schwartz’s uniformisation of the Whitehead link complement corresponds to each of
the endpoints of the horizontal segment, marked 2 in Figure 1, and our uniformisation
corresponds to each of the points on the vertical axis, marked 6 in that figure.

It should be noted that the image of the holonomy representation of our uniformisation
of the Whitehead link complement is the group generated by S and T , which is
isomorphic to Z3 �Z3 . We note in Proposition 3.4 that the fundamental group of the
Whitehead link complement surjects onto Z3 �Z3 . Furthermore, the group Z3 �Z3 is
the fundamental group of the (double) Dehn filling of the Whitehead link complement
with slope �3 at each cusp in the standard marking (the same as in SnapPy). This Dehn
filling is nonhyperbolic, as can be easily verified using the software SnapPy [5] (it also
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follows from Martelli and Petronio [20, Theorem 1.3]). This fact should be compared
with Deraux’s remark in [6] that all known examples of noncompact finite volume
hyperbolic manifold admitting a spherical CR uniformisation also admit an exceptional
Dehn filling which is a Seifert fibre space over a .p; q; r/–orbifold with p; q; r > 3.

1.5 Ideas of the proofs

Proof of Theorem 1.1 The rough idea of this proof is to construct fundamental
domains for the groups corresponding to parameters in the region Z . To this end, we
construct their Ford domains, which can be thought of as a fundamental domain for a
coset decomposition of the group with respect to a parabolic element (here, this element
is AD ST ). The Ford domain is invariant by the subgroup generated by A and we
obtain a fundamental domain for the group by intersecting the Ford domain with a
fundamental domain for the subgroup generated by A. The sides of the Ford domain
are built out of pieces of isometric spheres of various group elements (see Sections 2.4
and 4) This method is classical, and is described in the case of the Poincaré disc in of
Beardon [2, Section 9.6].

We thus have to consider a 2–parameter family of such polyhedra, and the polynomial
D controls the combinatorial complexity of the Ford domain within our parameter space
for U in the following sense. The null-locus of D is depicted on Figure 1 as a dashed
curve, which bounds the region Z . In the interior of this curve, the combinatorics of
our domain is constant, and stays the same as it is for the R–Fuchsian group. On the
boundary of Z the isometric spheres of the elements S , S�1 and T have a common
point. More precisely, the isometric spheres of S�1 and T intersect for all values of ˛1

and ˛2 , but inside Z their intersection is contained in one of the two connected com-
ponents of the complement of the isometric sphere of S in H 2

C . When one reaches the
boundary curve of Z , one of their intersection points lies on the isometric sphere of S .

We believe that it should be possible to mimic Riley’s approach and to construct regions
in our parameter space where the Ford domain is more complicated. However, as with
Riley’s work, this may only be accessible via computer experiments.

Proof of Theorem 1.5 The groups where ŒA;B�D .I2I1I3I1/
3 is parabolic are the

focus of Section 6 and Theorem 1.5 will follow from Theorem 6.4. In order to prove this
result, we analyse in detail our fundamental domain, and show that it gives the classical
description of the Whitehead link complement from an ideal octahedron equipped with
face identifications. The Whitehead link is depicted in Figure 2. We refer to Ratcliffe
[29, Section 10.3] and Thurston [35, Section 3.3] for classical information about the
topology of the Whitehead link complement and its hyperbolic structure.
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Figure 2: The Whitehead link

1.6 Further remarks

Other discrete groups appearing in U As well as the ideal triangle groups and
bending groups discussed above, there are some other previously studied discrete
groups in this family. We give them in .˛1; ˛2/ coordinates and illustrate them in
Figure 1.

(1) The groups corresponding to ˛1D 0 and ˛2D˙ arccos
p

1=8 have been studied
in great detail by Deraux and Falbel [8], who proved that they give a spherical
CR uniformisation of the figure-eight knot complement. This illustrates the
fact that there is no statement for Theorem 1.3 analogous to the second part
of Theorem 1.2: the group from [8] is contained in a discrete (nonfaithful)
.3; 3;1/–triangle group where I2I1I3I1 is elliptic.

(2) The groups with parameters ˛1D0 and for which ST �1 has order n correspond
to the .3; 3; n/–triangle groups studied by Parker, Wang and Xie [25]. The
corresponding value of ˛2 is given by

˛2 D˙ arccos
q

1
8

�
4 cos2

�
�
n

�
� 1

�
:

(3) The groups where ˛1D˙
�
6

and ˛2D˙
�
3

are discrete, since they are subgroups
of the Eisenstein–Picard lattice PU.2; 1IZŒ!�/, where ! is a cube root of unity.
That lattice has been studied by Falbel and Parker [14].

Comparison with the classical Riley slice There is, conjecturally, one extremely
significant difference between the classical Riley slice and our complex hyperbolic
version. The boundary of the classical Riley slice is not a smooth curve and has a
dense set of points where particular group elements are parabolic (see for instance
the beautiful picture in the introduction of Keen and Series [19]). On the other hand,
we believe that in the complex hyperbolic case, discreteness is completely controlled
by the commutator ŒA;B�, or equivalently ST �1 , as is true for the two cases where

Geometry & Topology, Volume 21 (2017)



3400 John R Parker and Pierre Will

˛1 D 0 or ˛2 D 0 described above. If this is true, then the boundary of the set of
(classes of) discrete and faithful representations in SU.2; 1/ of the three punctured
sphere group with unipotent peripheral holonomy is piecewise smooth, and it is given
by the simple closed curve P in Figure 1. This curve provides a one-parameter family
of (conjecturally discrete) representations that connects Schwartz’s uniformisation of
the Whitehead link complement to ours. We believe that all these representations
give uniformisations of the Whitehead link complement as well, but we are not able
to prove this with our techniques. What seems to happen is that if one deforms our
uniformisation by following the curve P , the number of isometric spheres contributing
to the boundary at infinity of the Ford domain becomes too large to be understood using
our techniques. Possibly, this is because deformations of fundamental domains with
tangencies between bisectors are complicated. This should be compared to Deraux’s
construction [7] of deformations of the figure-eight knot complement mentioned above.
There, he had to use a different domain to the one by Deraux and Falbel [8], which
also has tangencies between the bisectors.

1.7 Organisation of the article

This article is organised as follows. In Section 2 we present the necessary background
facts on complex hyperbolic space and its isometries. In Section 3, we describe
coordinates on the space of (conjugacy classes of) group generated by two unipotent
isometries with unipotent product. Section 4 is devoted to the description of the
isometric spheres that bound our fundamental domains. We state and apply the Poincaré
polyhedron theorem in Section 5. In Section 6, we focus on the specific case where the
commutator becomes parabolic, and prove that the corresponding manifold at infinity
is homeomorphic to the complement of the Whitehead link. In Section 7, we give the
technical proofs which we have omitted for readability in the earlier sections.
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2 Preliminary material

Throughout we will work in the complex hyperbolic plane using a projective model and
will therefore pass from projective objects to lifts of them. Our convention is that the
same letter will be used to denote a point in CP2 and a lift of it to C3 with a bold font
for the lift. As an example, each time p is a point of H 2

C , p will be a lift of p to C3 .

2.1 The complex hyperbolic plane

The standard reference for complex hyperbolic space is Goldman’s book [15]. A lot of
information can also be found in Chen and Greenberg’s paper [3]; see also the survey
articles [24; 38].

Let H be the matrix

H D

240 0 1

0 1 0

1 0 0

35 :
The Hermitian product on C3 associated to H is given by hx;yi D y�Hx . The
corresponding Hermitian form has signature .2; 1/, and we denote by V� (resp. V0

and VC ) the associated negative (resp. null and positive) cones in C3 .

Definition 2.1 The complex hyperbolic plane H 2
C is the image of V� in CP2 by

projectivisation and its boundary @H 2
C is the image of V0 in CP2 . The complex

hyperbolic plane is endowed with the Bergman metric

ds2
D
�4

hz; zi2
det
�
hz; zi hdz; zi

hz; dzi hdz; dzi

�
:

The Bergman metric is equivalent to the Bergman distance function � defined by

cosh2

�
�.m; n/

2

�
D
hm;nihn;mi

hm;mihn;ni
;

where m and n are lifts of m and n to C3 .

Let zD Œz1; z2; z3�
T be a (column) vector in C3�f0g. Then z 2 V� (resp. V0 ) if and

only if 2 Re.z1xz3/Cjz2j
2< 0 (resp. D 0). Vectors in V0 with z3D 0 must have z2D 0

as well. Such a vector is unique up to scalar multiplication. We call its projectivisation
the point at infinity q1 2 @H

2
C . If z3¤ 0 then we can use inhomogeneous coordinates

with z3 D 1. Writing hz; zi D �2u, we give H 2
C [ @H

2
C � fq1g horospherical

coordinates .z; t;u/ 2C�R�R�0 , defined as follows: a point q 2H 2
C [ @H

2
C with
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horospherical coordinates .z; t;u/ is represented by the following vector, which we
call its standard lift:

(3) q D

24�jzj2�uC i t

z
p

2

1

35 if q ¤ q1; q1 D

241

0

0

35 if q D q1:

Points of @H 2
C �fq1g have uD 0 and we will abbreviate .z; t; 0/ to Œz; t �.

Horospherical coordinates give a model of complex hyperbolic space analogous to the
upper half-plane model of the hyperbolic plane. The Cygan metric dCyg on @H 2

C�fq1g

plays the role of the Euclidean metric on the upper half-plane. It is defined by the
distance function

(4) dCyg.p; q/D jhp; qij
1=2
D
ˇ̌
jz�wj2C i.t � sC Im.z xw//

ˇ̌1=2
;

where p and q have horospherical coordinates Œz; t � and Œw; s�. We may extend this
metric to points p and q in H 2

C with horospherical coordinates .z; t;u/ and .w; s; v/
by writing

dCyg.p; q/D
ˇ̌
jz�wj2Cju� vjC i.t � sC Im.z xw//

ˇ̌1=2
:

If (at least) one of p and q lies in @H 2
C then the formula dCyg.p; q/D jhp; qij

1=2 is
still valid.

2.2 Isometries

Since the Bergman metric and distance function are both given solely in terms of the
Hermitian form, any unitary matrix preserving this form is an isometry. Similarly,
complex conjugation of points in C3 leaves both the metric and the distance function
unchanged. Hence, complex conjugation is also an isometry.

Define U.2; 1/ to be the group of unitary matrices preserving the Hermitian form and
PU.2; 1/ to be the projective unitary group obtained by identifying nonzero scalar
multiples of matrices in U.2; 1/. We also consider the subgroup SU.2; 1/ of matrices
in U.2; 1/ with determinant 1.

Proposition 2.2 Every Bergman isometry of H 2
C is either holomorphic or antiholo-

morphic. The group of holomorphic isometries is PU.2; 1/, acting by projective
transformations. Every antiholomorphic isometry is complex conjugation followed by
an element of PU.2; 1/.

Elements of SU.2; 1/ fall into three types, according to the number and type of the
fixed points of the corresponding isometry. Namely, an isometry is loxodromic (resp.
parabolic) if it has exactly two fixed points (resp. one fixed point) on @H 2

C . It is
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called elliptic when it has (at least) one fixed point inside H 2
C . An elliptic element

A 2 SU.2; 1/ is called regular elliptic whenever it has three distinct eigenvalues, and
special elliptic if it has a repeated eigenvalue. The following criterion distinguishes the
different isometry types:

Proposition 2.3 [15, Theorem 6.2.4] Let F be the polynomial given by F.z/ D
jzj4� 8 Re.z3/C 18jzj2� 27, and A be a nonidentity matrix in SU.2; 1/. Then:

(1) A is loxodromic if and only if F.trA/ > 0.
(2) A is regular elliptic if and only if F.trA/ < 0.
(3) If F.trA/D 0, then A is either parabolic or special elliptic.

We will be especially interested in elements of SU.2; 1/ with trace 0 or trace 3.

Lemma 2.4 [15, Section 7.1.3] (1) A matrix A in SU.2; 1/ is regular elliptic of
order three if and only if its trace is equal to zero.

(2) Let .p; q; r/ be three pairwise distinct points in @H 2
C , not contained in a common

complex line. Then there exists a unique order-three regular elliptic isometry E

such that E.p/D q and E.q/D r .

Suppose that T 2 SU.2; 1/ has trace equal to 3. Then all eigenvalues of T equal 1,
that is, T is unipotent. If T is diagonalisable then it must be the identity; if it is
nondiagonalisable then it must fix a point of @H 2

C . Conjugating within SU.2; 1/ if
necessary, we may assume that T fixes q1 . This implies that T is upper triangular
with each diagonal element equal to 1.

Lemma 2.5 [15, Section 4.2] Suppose that Œw; s� 2 @H 2
C � fq1g. Then there is a

unique TŒw;s� 2 SU.2; 1/ taking the point Œ0; 0� 2 @H 2
C to Œw; s�. As a matrix this map

is

(5) TŒw;s� D

241 �xw
p

2 �jwj2C is

0 1 w
p

2

0 0 1

35 :
Moreover, composition of such elements gives @H 2

C�fq1g the structure of the Heisen-
berg group

Œw; s� � Œz; t �D ŒwC z; sC t � 2Im.z xw/�

and TŒw;s� acts as left Heisenberg translation on @H 2
C �fq1g.

The action of TŒw;s� on horospherical coordinates is

TŒw;s�W .z; t;u/ 7! .wC z; sC t � 2Im.z xw/;u/:

An important observation is that this is an affine map, namely a translation and shear.
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We can restate Lemma 2.5 in an invariant way. This result is actually true for any
parabolic conjugacy class, as a special case of [26, Proposition 3.1].

Proposition 2.6 Let .p1;p2;p3/ be a triple of pairwise distinct points in @H 2
C . Then

there is a unique unipotent element of PU.2; 1/ fixing p1 and taking p2 to p3 .

Proof We can choose A 2 SU.2; 1/ taking p1 to q1 and p2 to Œ0; 0�. The result
then follows from Lemma 2.5.

2.3 Totally geodesic subspaces

Maximal totally geodesic subspaces of H 2
C have real dimension 2, and they fall into

two types. Complex lines are intersections with H 2
C of projective lines in CP2 . By

Hermitian duality, any complex line L is polar to a point in CP2 that is outside the
closure of H 2

C . Any lift of this point is called a polar vector to L. Any two distinct
points p and q in the closure of H 2

C belong to a unique complex line, and a vector
polar to this line is given by p� q D Hp^ q . This can be verified directly using
hx;yi D y�Hx and the fact that, here, H 2 D 1. A more general description of
cross-products in Hermitian vector spaces can be found in [15, Section 2.2.7].

The other type of maximal totally geodesic subspace is a Lagrangian plane. Lagrangian
planes are PU.2; 1/ images of the set of real points H 2

R � H 2
C . In particular, real

planes are fixed points sets of antiholomorphic isometric involutions (sometimes called
real symmetries). The symmetry fixing H 2

R is complex conjugation. In turn, the
symmetry about any other Lagrangian plane M �H 2

R , where M 2 SU.2; 1/, is given by
z 7!M M�1 xzDM .M�1z/. Note that the matrix N DM M�1 satisfies N N D id:
this reflects the fact that real symmetries are involutions. We refer the reader to [15,
Chapters 3 and 4].

2.4 Isometric spheres

Definition 2.7 For any B 2 SU.2; 1/ that does not fix q1 , the isometric sphere of B

(denoted by I.B/) is defined to be

(6) I.B/D
˚
p 2H 2

C [ @H
2
C W jhp; q1ij D jhp;B

�1.q1/ij D jhB.p/; q1ij
	
;

where p is the standard lift of p 2H 2
C [ @H

2
C given in (3).

The interior of I.B/ is the component of its complement in H 2
C [ @H

2
C that does not

contain q1 , namely,˚
p 2H 2

C [ @H
2
C W jhp; q1ij> jhp;B

�1.q1/ij
	
:

The exterior of I.B/ is the component that contains the point at infinity q1
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Suppose B is written as a matrix as

(7) B D

24a b c

d e f

g h j

35 :
Then B�1.q1/D Œ Nj ; Nh; Ng�

T . Thus B fixes q1 if and only if g D 0. If B does not
fix q1 (that is, g ¤ 0) the horospherical coordinates of B�1.q1/ are

B�1.q1/D

�
Nh

Ng
p

2
; Im

�
Nj

Ng

��
:

Lemma 2.8 [15, Section 5.4.5] Let B 2 PU.2; 1/ be an isometry of H 2
C not fix-

ing q1 .

(1) The transformation B maps I.B/ to I.B�1/, and the interior of I.B/ to the
exterior of I.B�1/.

(2) For any A 2 PU.2; 1/ fixing q1 and such that the corresponding eigenvalue has
unit modulus, we have I.B/D I.AB/.

Using the characterisation (4) of the Cygan metric in terms of the Hermitian form, the
following lemma is obvious:

Lemma 2.9 Suppose that B 2 SU.2; 1/ written in the form (7) does not fix q1 . Then
the isometric sphere I.B/ is the Cygan sphere in H 2

C [ @H
2
C with centre B�1.q1/

and radius rA D 1=jgj1=2 .

The importance of isometric spheres is that they form the boundary of the Ford polyhe-
dron. This is the limit of Dirichlet polyhedra as the centre point approaches @H 2

C ; see
[15, Section 9.3]. The Ford polyhedron D for a discrete group � is the intersection of
the (closures of the) exteriors of all isometric spheres for elements of � not fixing q1 .
That is,

D� D
˚
p 2H 2

C[@H
2
C W jhp; q1ij� jhp;B

�1q1ij for all B 2� with B.q1/¤ q1
	
:

Of course, just as for Dirichlet polyhedra, to construct the Ford polyhedron one must
check infinitely many equalities. Therefore our method will be to guess the Ford
polyhedron and check this using the Poincaré polyhedron theorem. When q1 is either
in the domain of discontinuity or is a parabolic fixed point, the Ford polyhedron is
preserved by �1 , the stabiliser of q1 in � . It is a fundamental polyhedron for the
partition of � into �1–cosets. In order to obtain a fundamental domain for � , one
must intersect the Ford domain with a fundamental domain for �1 .
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2.5 Cygan spheres and geographical coordinates

We now give some geometrical results about Cygan spheres. They are, in particular,
applicable to isometric spheres. The Cygan sphere SŒ0;0�.r/ of radius r > 0 with centre
the origin Œ0; 0� is the (real) hypersurface of H 2

C [ @H
2
C described in horospherical

coordinates by

(8) SŒ0;0�.r/D f.z; t;u/ W .jzj2Cu/2C t2
D r4
g:

From (8) we immediately see that when written in horospherical coordinates the interior
of SŒ0;0�.r/ is convex. The Cygan sphere SŒw;s�.r/ of radius r with centre Œw; s� is
the image of SŒ0;0�.r/ under the Heisenberg translation TŒw;s� . Since Heisenberg
translations are affine maps in horospherical coordinates, we see that the interior of
any Cygan sphere is convex. This immediately gives:

Proposition 2.10 The intersection of two Cygan spheres is connected.

Cygan spheres are examples of bisectors (otherwise called spinal hypersurfaces) and
their intersection is an example of what Goldman calls an intersection of covertical
bisectors. Thus Proposition 2.10 is a restatement of [15, Theorem 9.2.6]. There is a
natural system of coordinates on bisectors in terms of totally geodesic subspaces; see
[15, Section 5.1]. In particular for Cygan spheres, these are defined as follows:

Definition 2.11 Let SŒ0;0�.r/ be the Cygan sphere with centre the origin Œ0; 0� and
radius r >0. The point g.˛; ˇ;w/ of SŒ0;0�.r/ with geographical coordinates .˛; ˇ;w/
is the point whose lift to C3 is

(9) g.˛; ˇ;w/D

24 �r2e�i˛

rwei.�˛=2Cˇ/

1

35 ;
where ˇ 2 Œ0; �/, ˛ 2

�
�
�
2
; �

2

�
and w 2 Œ�

p
2 cos˛;

p
2 cos˛ �,

Let SŒz;t �.r/ be the Cygan sphere with centre Œz; t � and radius r . Then geographical
coordinates on SŒz;t �.r/ are obtained from the ones on SŒ0;0�.r/ by applying the
Heisenberg translation TŒz;t � to the vector (9).

We will only be interested in geographical coordinates on SŒ0;0�.1/, the unit Cy-
gan sphere centred at the origin. Note that for the point g.˛; ˇ;w/ of this sphere,
hg.˛; ˇ;u/;g.˛; ˇ;u/i D w2 � 2 cos˛ . Therefore the horospherical coordinates of
g.˛; ˇ;w/ are �

1p
2
wei.�˛=2Cˇ/; sin˛; cos˛� 1

2
w2
�
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In particular, the points of SŒ0;0�.1/ on @H 2
C are those with w D˙

p
2 cos˛ .

The level sets of ˛ and ˇ are totally geodesic subspaces of H 2
C ; see [15, Example 5.1.8].

Proposition 2.12 Let SŒw;s�.r/ be a Cygan sphere with geographical coordinates
.˛; ˇ;w/.

(1) For each ˛0 2
�
�
�
2
; �

2

�
, the set of points L˛0

Dfg.˛; ˇ;w/2SŒw;s�.r/ W˛D˛0g

is a complex line, called a slice of SŒw;s�.r/.

(2) For each ˇ0 2 Œ0; �/, the set of points Rˇ0
D fg.˛; ˇ;w/ 2 SŒw;s�.r/ W ˇ D ˇ0g

is a Lagrangian plane, called a meridian of SŒw;s�.r/.

(3) The set of points with wD 0 is the spine of SŒw;s�.r/. It is a geodesic contained
in every meridian.

Remark 2.13 From (8), it is easy to see that projections of boundaries of Cygan
spheres onto the z–factor are closed Euclidean discs in C . This corresponds to the
vertical projection onto C in the Heisenberg group. This fact is often useful to prove
that two Cygan spheres are disjoint.

2.6 Cartan’s angular invariant

Élie Cartan defined an invariant of triples of pairwise distinct points p1 , p2 , p3

in @H 2
C ; see [15, Section 7.1]. For any lifts pj of pj to C3 , this invariant is defined

by arg.�hp1;p2ihp2p3ihp3;p1i/, where the argument is chosen to lie in .��; ��.
We state here some important properties of A.

Proposition 2.14 [15, Sections 7.1.1 and 7.1.2] (1) ��
2
�A.p1;p2;p3/�

�
2

for
any triple of pairwise distinct points p1 , p2 , p3 .

(2) A.p1;p2;p3/D˙
�
2

if and only if p1 , p2 , p3 lie on the same complex line.

(3) A.p1;p2;p3/D 0 if and only if p1 , p2 , p3 lie on the same Lagrangian plane.

(4) Two triples p1 , p2 , p3 and q1 , q2 , q3 have A.p1;p2;p3/DA.q1; q2; q3/ if
and only if there exists A 2 SU.2; 1/ such that A.pj /D qj for j D 1; 2; 3.

(5) Two triples p1 , p2 , p3 and q1 , q2 , q3 have A.p1;p2;p3/D �A.q1; q2; q3/

if and only if there exists an antiholomorphic isometry A such that A.pj /D qj

for j D 1; 2; 3.

The following proposition will be useful to us when we parametrise the family of
classes of groups � .
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Proposition 2.15 Let .˛1; ˛2/ 2
�
�
�
2
; �

2

�2 . Then there exists a unique PU.2; 1/–
class of quadruples .p1;p2;p3;p4/ of pairwise distinct boundary points of H 2

C such
that:

(1) The complex lines L12 and L34 respectively spanned by .p1;p2/ and .p3;p4/

are orthogonal.

(2) A.p1;p3;p2/D ˛1 and A.p1;p3;p4/D ˛2 .

Proof Since PU.2; 1/ acts transitively on pairs of distinct points of @H 2
C , we may

assume using the Siegel model, that the points pi are given in Heisenberg coordinates
by

(10) p1 D q1; p2 D Œ0; 0�; p3 D Œ1; t �; p4 D Œz; s�:

Using the standard lifts given in Section 2.1 (denoted by pi ), we see by a direct
computation using the Hermitian cross-product that

hp1�p2;p3�p4i D jzj
2
� 1C i.t � s/:

Thus the condition L12 ?L34 gives jzj D 1 and t D s . We thus write z D ei� with
� 2 Œ0; 2�/. Now computing the triple products we see that

A.p1;p3;p2/D arg.1� i t/;

A.p1;p3;p4/D arg.1�xz/D arg
�
2iei�=2 sin

�
1
2
�
��
:

In particular, ˛1 and ˛2 determine the values of t and � .

3 The parameter space

3.1 Coordinates

Our space of interest is the following:

Definition 3.1 Let U be the set of PU.2; 1/–conjugacy classes of nonelementary pairs
.A;B/ such that A, B and AB are unipotent.

Here, by nonelementary, we mean that the two isometries A and B have no common
fixed point in @H 2

C . In fact, a slightly stronger statement will follow from Theorem 3.2
below. Namely A and B do not preserve a common complex line and so they have
no common fixed point in CP2 (see Section 2.3). Another way to see this is that if A

in PU.2; 1/ is unipotent and preserves a complex line, then its action on that complex
line is via a unipotent element of SL.2;R/ (that is, parabolic with trace C2). It is
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well known that if A and B are unipotent elements of SL.2;R/ whose product is also
unipotent then A and B must share a fixed point (if A, B and AB are all parabolic
with distinct fixed points, at least one of them should have trace �2).

Note that BADA�1.AB/ADB.AB/B�1 and so if AB is unipotent then so is BA.
If pAB and pBA in @H 2

C are the fixed points of AB and BA then we have A.pBA/D

pAB and B.pAB/DpBA . From Proposition 2.6 this means that A and B are uniquely
determined by the fixed points of A, B , AB and BA. We describe a set of coordinates
on U expressed in terms of the Cartan invariants of triples of these fixed points.

Theorem 3.2 There is a bijection between U and the open square .˛1; ˛2/2
�
�
�
2
; �

2

�2 ,
which is given by the map

ƒW .A;B/ 7! .A.pA;pAB;pB/;A.pA;pAB;pBA//;

where pA , pB , pAB and pBA are the parabolic fixed points of the corresponding
isometries.

This result can be see as a special case of the main result of [26]. For completeness,
we include here a direct proof.

Proof First, the two quantities ˛1 D A.pA;pAB;pB/ and ˛2 D A.pA;pAB;pBA/

are invariant under PU.2; 1/–conjugation and thus the map ƒ is well-defined. Let us
first prove that the image of ƒ is contained in

�
�
�
2
; �

2

�2 . In other words, we must
show ˛1 ¤˙

�
2

and ˛2 ¤˙
�
2

.

Fix a choice of lifts pA , pB , pAB and pBA for the fixed points of A, B , AB

and BA. Since the fixed points are assumed to be distinct, we see that the Hermitian
product of each pair of these vectors does not vanish. The conditions A.pBA/D pAB

and B.pAB/D pBA imply that there exist two nonzero complex numbers � and �
satisfying

ApBA D �pAB and BpAB D �pBA:

As AB is unipotent, its eigenvalue associated to pAB is 1, and therefore ��D1. More-
over, using the fact that pA and pB are eigenvectors of A and B with eigenvalue 1,
we have

(11)
hpBA;pAi D hApBA;ApAi D �hpAB;pAi;

hpAB;pBi D hBpAB;BpBi D �hpBA;pBi:

Using �� D 1 and (11), it is not hard to show that n1 D �pAB � pBA is a polar
vector for the complex line L1 spanned by pA and pB (see Section 2.3). Moreover,
hpAB;n1i D �hpAB;pBAi ¤ 0. Thus pAB does not lie on L1 . That is, the three
points pA; pB; pAB do not lie on the same complex line and so ˛1 ¤˙

�
2

.
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Likewise, again using ��D1 and (11) we find that n2DhpB;pABipA�hpA;pABipB

is a polar vector for L2 and hpA;n2i D �hpA;pABihpA;pBi ¤ 0. Hence pA does
not lie on L2 and so ˛2¤˙

�
2

. We remark that, by construction, we have hn1;n2iD 0

and so in fact L1 and L2 are orthogonal.

To see that ƒ is surjective, fix .˛1; ˛2/ in
�
�
�
2
; �

2

�2 and define

(12) x1 D
p

2 cos˛1 and x2 D
p

2 cos˛2 for ˛i 2
�
�
�
2
; �

2

�
;

so x1; x2 2R�C . Now consider the elements of SU.2; 1/

(13) AD

241 �x1x2
2
�x2

1
x2

2
e�i˛2

0 1 x1x2
2

0 0 1

35 and B D

24 1 0 0

x1x2
2
e�i˛1 1 0

�x2
1
x2

2
ei˛2 �x1x2

2
ei˛1 1

35 ;
Clearly, A and B are unipotent, and AB is also unipotent since tr.AB/D 3. The four
fixed points can be lifted to the vectors

(14) pA D

241

0

0

35 ; pB D

240

0

1

35 ; pAB D

24�ei˛1

x1ei˛2

1

35 ; pBA D

24 �ei˛1

�x1e�i˛2

1

35 :
They satisfy A.pA;pAB;pB/ D ˛1 and A.pA;pAB;pBA/ D ˛2 . Note that when
either ˛1 or ˛2 tends to ˙�

2
(that is, x1 or x2 , respectively, tends to 0), A and B

both tend to the identity matrix.

To see that ƒ is injective, it suffices to prove that the quadruple .pA;pB;pAB;pBA/

is uniquely determined by .˛1; ˛2/ up to isometry. Indeed, once this quadruple is
fixed, A and B are uniquely determined by Proposition 2.6. The above discussion has
proved that for any pair .A;B/ in U the two complex lines spanned by .pA;pB/ and
.pAB;pBA/, respectively, are orthogonal. The result then follows straightforwardly
from Proposition 2.15.

From now on, we will identify any conjugacy class of pair in U with its representative
given by (13). We will repeatedly use the notation xi D

p
2 cos˛i from (12) and,

when necessary, we will freely combine xi with trigonometric notation. It should be
noted that the unipotent isometry A given by (13) is equal to the Heisenberg translation
TŒ`A;tA� (see Lemma 2.5), where

(15)
`A D

1p
2
x1x2

2 D 2 cos˛1 cos2 ˛2;

tA D x2
1x2

2 sin˛2 D 4 cos˛1 cos˛2 sin˛2:
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pBA T S pAB

pA

pB

Figure 3: Action of S and T on the tetrahedron .pA;pB;pAB;pBA/

3.2 Products of order-3 elliptics

The following proposition gives a decomposition of pairs in U that we will use in the
rest of this work.

Proposition 3.3 For any pair .A;B/ 2 U , there exists a unique pair of isometries
.S;T / such that:

(1) Both S and T have order three, and they cyclically permute .pA;pAB;pB/ and
.pA;pB;pBA/, respectively.

(2) AD ST and B D TS .

Proof The first item is a direct consequence of Lemma 2.4 (note that neither of the
triples .pA;pAB;pB/ or .pA;pB;pBA/ is contained in a complex line by Theorem 3.2).
The action of S and T is summed up on Figure 3. From this, we see that ST (resp. TS )
fixes pA (resp. pB ) and maps pBA to pAB (resp. pAB to pBA ). Provided that ST

and TS are unipotent, this suffices to prove the second item by Proposition 2.6. To
see that ST and TS are indeed unipotent, we can use the lifts of pA , pB , pAB and
pBA given by (14). In this case we have

(16)

S D e�i˛1=3

24 ei˛1 x1ei˛1�i˛2 �1

�x1ei˛2 �ei˛1 0

�1 0 0

35 ;
T D ei˛1=3

24 0 0 �1

0 �e�i˛1 �x1e�i˛1�i˛2

�1 x1ei˛2 e�i˛1

35 ;
where, as usual, xi D

p
2 cos˛i ; see (12). Computing the products ST and TS gives

the result.

We will use the notation S and T for these order-three symmetries throughout the paper.

A more geometric proof of the existence of order-three elliptic isometries decomposing
pairs of parabolics as above can be found in a slightly more general context in [26].
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One consequence of the existence of this decomposition as a product of order-three
elliptics is that any group generated by a pair .A;B/ in U is the image of the funda-
mental group of the Whitehead link complement by a morphism to PU.2; 1/. This
follows directly from the following:

Proposition 3.4 The free product Z3 �Z3 is a quotient of the fundamental group of
the Whitehead link complement.

Proof The fundamental group of the Whitehead link complement is presented by
� D hu; v j rel.u; v/i, where

rel.u; v/D Œu; v� � Œu; v�1� � Œu�1; v�1� � Œu�1; v�:

Making the substitution uD st and vD tst , we observe rel.st; tst/D Œst; s�1t�3s�2�.
This relation is trivial whenever s3 D t3 D 1. Therefore, one defines a morphism
�W �!Z3 �Z3 by setting �.u/D st and �.v/D tst . The morphism � is surjective:
t is the image of vu�1 and s the image of u2v�1 .

3.3 Symmetries of the moduli space

The parameters .˛1; ˛2/ determine � up to PU.2; 1/ conjugation. We now show that
there is an antiholomorphic conjugation that changes the sign of both ˛1 and ˛2 .

Proposition 3.5 There is an antiholomorphic involution � with the properties:

(1) � interchanges pA and pB and interchanges pAB and pBA .

(2) � conjugates S to T and A to B (and vice versa).

(3) � conjugates the group � with parameters .˛1; ˛2/ to the group with parameters
.�˛1;�˛2/.

Proof The action on C3 of � is

� W

24z1

z2

z3

35 7!
24 xz3

e�i˛1xz2

xz1

35 :
It is easy to see that �2 is the identity and that � sends pA to pB and sends pAB to
.�e�i˛1/pBA . Projectivising gives the first part.

Since A is the unique unipotent map fixing pA and sending pBA to pAB , we see
�A� is the unique unipotent map fixing �.pA/ D pB and sending �.pBA/ D pAB to
�.pAB/D pBA . Thus �A�DB and so �B�DA. Applying Proposition 3.3 we see that
�S �D T and �T �D S , proving the second part.
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The parameters for the group ��� are A.�pA; �pAB; �pB/D A.pB;pBA;pA/D �˛1

and A.�pA; �pAB; �pBA/DA.pB;pBA;pAB/D�˛2 . This completes the proof.

There are other symmetries of the parameter space U that, in general, do not arise from
conjugation by isometries.

Proposition 3.6 Let �hW .˛1; ˛2/ 7! .˛1;�˛2/ and �vW .˛1; ˛2/ 7! .�˛1; ˛2/ denote
the symmetries about the horizontal and vertical axes of the .˛1; ˛2/–square. Then
�h ı�v induces the conjugation by � given in Proposition 3.5. Moreover:

(1) The symmetry �h induces the changes of generators .S;T / 7! .T �1;S�1/ and
.A;B/ 7! .A�1;B�1/.

(2) The symmetry �v induces the changes of generators .S;T / 7! .S�1;T �1/ and
.A;B/ 7! .B�1;A�1/,

Proof Applying the change �h to the points in (14) and multiplying by the diago-
nal element diag.1; �1; 1/ 2 PU.2; 1/ fixes pA and pB and swaps pAB and pBA .
Therefore it sends S to the map cyclically permuting .pA;pBA;pB/, which is T �1 .
Similarly it sends T to S�1 .

It is clear that the change of generators .S;T / 7! .T �1;S�1/ sends A D ST to
T �1S�1 DA�1 and B D TS to S�1T �1 D B�1 .

The change of generators .A;B/ 7! .A�1;B�1/ fixes pA and pB . Since it sends AB

to A�1B�1D .BA/�1 , it sends pAB to pBA , and similarly sends pBA to pAB . From
this we can calculate the new Cartan invariants and we obtain the symmetry �h .

Hence all three conditions in the first part are equivalent. The second part then follows
the first part and Proposition 3.5 by first applying �h and then conjugating by �.

The fixed-point sets of these automorphisms are related to R–decomposability and
C–decomposability of � .

Definition 3.7 (compare Will [36]) A pair .S;T / of elements in PU.2; 1/ is R–
decomposable if there exist three antiholomorphic involutions .�1; �2; �3/ such that
S D �2�1 and T D �1�3 .

A pair .S;T / of elements in PU.2; 1/ is C–decomposable if there exists three involu-
tions .I1; I2; I3/ in PU.2; 1/ such that S D I2I1 and T D I1I3 .

The properties of R– and C–decomposability have also been studied (in the special
case of pairs of loxodromic isometries) from the point of view of traces in SU.2; 1/
in [36], and (in the general case) using cross-ratios in [27]. We could take either point
of view here, but instead we choose to argue directly with fixed points.
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Proposition 3.8 Let .A;B/ be in U and .S;T / be the corresponding elliptic isome-
tries.

(1) If ˛1 D 0, then the pair .S;T / is C–decomposable and the pair .A;B/ is
R–decomposable. In particular, hS;T i has index 2 in a .3; 3;1/–triangle
group.

(2) If ˛2 D 0, then the pair .S;T / is R–decomposable and the pair .A;B/ is
C–decomposable. In particular, hA;Bi has index two in a complex hyperbolic
ideal triangle group.

Proof Consider the antiholomorphic involution �1W Œz1; z2; z3� 7! Œxz1; �xz2; xz3�. Ap-
plying �1 to the points in (14) with ˛1 D 0, we see that �1 fixes pA and pB and
interchanges pAB and pBA . Therefore �1 conjugates A to A�1 and B to B�1 .
Hence A�1A�1 and �1B�1B are the identity. That is, �2 D A�1 and �3 D �1B are
involutions. Hence .A;B/ is R–decomposable.

Again assuming ˛1 D 0, consider the holomorphic involution defined by I1 D �1�

(where � is the involution defined in Proposition 3.5). Then I1 fixes pAB and pBA

and interchanges pA and pB . Therefore, it conjugates S to S�1 and T to T �1 . This
means I2 D SI1 and I3 D I1T are involutions. Hence .S;T / is C–decomposable.

Now consider the holomorphic involution I 0
1
W Œz1; z2; z3� 7! Œz1; �z2; z3�. This fixes

pA and pB and when ˛2 D 0 it interchanges pAB and pBA . As above this means
I 0

2
D AI 0

1
and I 0

3
D I 0

1
B are involutions and .A;B/ is C–decomposable. Finally,

define �0
1
D I 0

1
�. Arguing as above, again with ˛2 D 0, we see that �0

2
D S �0

1
and

�0
3
D �0

1
T are involutions. Hence .S;T / is R–decomposable.

As indicated above, when ˛1 D 0 the group generated by .I1; I2; I3/ is a .3; 3;1/
reflection triangle group. This group can be thought of as a limit as n tends to infinity
of the .3; 3; n/–triangle groups which have been studied by Parker, Wang and Xie [25].
The special case .3; 3; 4/ has been studied by Falbel and Deraux [8]. Both [8] and [25]
constructed Dirichlet domains, and the Ford domain we construct can be seen as a limit
of these. Moreover, R–decomposability of the pair .A;B/ when ˛1 D 0 can be used
to show that these groups correspond to the bending representations of the fundamental
group of a 3–punctured sphere that have been studied in [37]. Ideal triangle groups
have been studied in great detail in [16; 31; 30; 33; 34].

3.4 Isometry type of the commutator

The isometry type of the commutator will play an important role in the rest of this paper.
It is easily described using the order-three elliptic maps given by Proposition 3.3.
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Proposition 3.9 The commutator ŒA;B� has the same isometry type as ST �1 . More
precisely, consider G.x4

1
;x4

2
/D G.4 cos2 ˛1; 4 cos2 ˛2/, where

G.x;y/D x2y4
� 4x2y3

C 18xy2
� 27:

Then ŒA;B� is loxodromic (resp. parabolic, elliptic) if and only if G.x4
1
;x4

2
/ is positive

(resp. zero, negative).

Proof First, from AD ST , B D TS and the fact that S and T have order 3, we
see that

ŒA;B�DABA�1B�1
D ST TST �1S�1S�1T �1

D .ST �1/3:

This implies that ŒA;B� has the same isometry type as ST �1 unless ST �1 is elliptic
of order three, in which case ŒA;B� is the identity. This would mean that A and B

commute, which cannot be because their fixed point sets are disjoint.

Representatives of S and T in SU.2; 1/ are given in (16). A direct calculation using
these matrices shows that tr.ST �1/D x2

1
x4

2
ei˛1=3 . The function G.x4

1
;x4

2
/ above is

obtained by plugging this value in the function F given in Proposition 2.3.

The null locus of G.4 cos2 ˛1; 4 cos2 ˛2/ in the square
�
�
�
2
; �

2

�2 is a curve, which
we will refer to as the parabolicity curve and denote by P . It is depicted on Figure 4.
Similarly, the region where G is positive (thus ŒA;B� loxodromic) will be denoted
by L. It is a topological disc, which is the connected component of the complement
of the curve P that contains the origin. The region where ŒA;B� is elliptic will be
denoted by E .

4 Isometric spheres and their intersections

4.1 Isometric spheres for S , S�1 and their A–translates

In this section we give details of the isometric spheres that will contain the sides of our
polyhedron D . The polyhedron D is our guess for the Ford polyhedron of � , subject
to the combinatorial restriction discussed in Section 4.2.

We start with the isometric spheres I.S/ and I.S�1/ for S and its inverse. From the
matrix for S given in (16), using Lemma 2.9 we see that I.S/ and I.S�1/ have radius
1=j�e�i˛1=3j1=2 D 1 and centres S�1.q1/D pB and S.q1/D pAB , respectively;
see (14). In particular, I.S/ is the Cygan sphere SŒ0;0�.1/ of radius 1 centred at the
origin; see (8). In our computations we will use geographical coordinates in I.S/ as in
Definition 2.11. The polyhedron D will be the intersection of the exteriors of I.S˙1/

and all their translates by powers of A. We now fix some notation:
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Definition 4.1 For k 2 Z let IC
k

be the isometric sphere I.AkSA�k/ D AkI.S/
and let I�

k
be the isometric sphere I.AkS�1A�k/DAkI.S�1/.

With this notation, we have:

Proposition 4.2 For any integer k 2 Z, the isometric sphere IC
k

has radius 1 and
is centred at the point with Heisenberg coordinates Œk`A; ktA�, where `A and tA are
as in (15). Similarly, the isometric sphere I�

k
has radius 1 and centre the point with

Heisenberg coordinates Œk`AC
p

cos˛1ei˛2 ;� sin˛1�.

Proof As A is unipotent and fixes q1 , it is a Cygan isometry, and thus preserves
the radius of isometric spheres. This gives the part about radius. Moreover, it follows
directly from (13) that Ak acts on the boundary of H 2

C by left Heisenberg multiplication
by Œk`A; ktA�. This gives the part about centres by a straightforward verification.

The following proposition describes a symmetry of the family fI˙
k
W k 2Zg which will

be useful in the study of intersections of the isometric spheres I˙
k

.

Proposition 4.3 Let ' be the antiholomorphic isometry S � D �T , where � is as in
Proposition 3.5. Then '2 DA, and ' acts on the Heisenberg group as a screw motion
preserving the affine line parametrised by

(17) �' D
˚
ı'.x/D

�
xC i

2

p
cos˛1 sin˛2;x

p
cos˛1 sin˛2�

1
2

sin˛1

�
W x 2R

	
:

Moreover, ' acts on isometric spheres as '.IC
k
/DI�

k
and '.I�

k
/DIC

kC1
for all k 2Z.

Proof Using the fact that T D �S � we see that A D ST D S �S � D '2 . Moreover,
'.pA/D S �.pA/D S.pB/D pA . Hence ' is a Cygan isometry. It follows by direct
calculation that ' sends ı'.x/ to ı'

�
xC 1

2
`A
�
, and so preserves �' . Moreover,

'.pBA/D S �.pBA/D S.pAB/D pB; '.pB/D S �.pB/D S.pA/D pAB:

Hence, ' sends I�
�1

to IC
0

since it is a Cygan isometry mapping the centre of I�
�1

to
the centre of IC

0
. Similarly, ' sends IC

0
to I�

0
. The action on other isometric spheres

follows since '2 DA.

4.2 A combinatorial restriction

The following section is the crucial technical part of our work. As most of the proofs
are computational, we will omit many of them here; they will be provided in Section 7.
We are now going to restrict our attention to those parameters in the region L such
that the three isometric spheres IC

0
D I.S/, I�

0
D I.S�1/ and I�

�1
D I.T / have no
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E

L Z

R

P

Figure 4: The parameter space, with the parabolicity curve P and the regions
E and L . The region Z is the central region, which is contained in the
rectangle R .

triple intersection. We will describe the region we are interested in by an inequality on
˛1 and ˛2 . Prior to stating it, let us fix a little notation.

We let ˛lim
2
D arccos

p
3=8. The two points .0;˙˛lim

2
/ are the cusps of the curve P ;

they satisfy G.4 cos2 0; 4 cos2 ˛lim
2
/D G

�
4; 3

2

�
D 0 (see Figure 4). Now, let R be the

rectangle (depicted in Figure 4) defined by

(18) RD
˚
.˛1; ˛2/ W j˛1j6 �

6
; j˛2j6 ˛lim

2

	
:

We remark that in Lemma 7.3 we will prove that when .˛1; ˛2/ 2R, the commutator
ŒA;B� is nonelliptic. This means that R is contained in the closure of L.

Definition 4.4 Let Z be the subset of R where the triple intersection IC
0
\I�
�1
\I�

0

is empty.

The following proposition characterises those points .˛1; ˛2/ that lie in Z :

Proposition 4.5 A parameter .˛1; ˛2/ 2R is in Z if and only if it satisfies

D.x4
1 ;x

4
2/D D.4 cos2 ˛1; 4 cos2 ˛2/ > 0;

where D is the polynomial given by

D.x;y/D x3y3
� 9x2y2

� 27xy2
C 81xy � 27x� 27:

The region Z is depicted in Figure 4; it is the interior of the central region of the figure.
In fact, Z is the region in all of L where IC

0
\ I�
�1
\ I�

0
is empty, but, as proving

this is more involved, we restrict ourselves to the rectangle R. This provides a priori
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bounds on the parameters ˛1 and ˛2 that will make our computations easier. We will
prove Proposition 4.5 in Section 7.3. It relies on Proposition 4.6, describing the set of
points where D.x4

1
;x4

2
/ > 0, and on Proposition 4.7, which gives geometric properties

of the triple intersection. Proofs of Propositions 4.6 and 4.7 will be given in Sections
7.2 and 7.1, respectively.

Proposition 4.6 The region Z is an open topological disc in R, symmetric about the
axes and intersecting them in the intervals˚

˛2 D 0; ��
6
< ˛1 <

�
6

	
and f˛1 D 0; �˛lim

2 < ˛2 < ˛
lim
2 g:

Moreover, the intersection of the closure of Z with the parabolicity curve P consists
of the two points .0;˙˛lim

2
/.

Proposition 4.7 (1) The triple intersection IC
0
\ I�

0
\ I�
�1

is contained in the
meridian m of IC

0
defined in geographical coordinates by ˇ D 1

2
.� �˛1/.

(2) If the triple intersection IC
0
\I�

0
\I�
�1

is nonempty, it contains a point in @H 2
C .

The second part of Proposition 4.7 is not true for general triples of bisectors. It will allow
us to restrict ourselves to the boundary of H 2

C to prove Proposition 4.5. Restricting
ourselves to the region Z will considerably simplify the combinatorics of the family
of isometric spheres fI˙

k
W k 2 Zg. The following fact will be crucial in our study;

compare Figure 5.

Proposition 4.8 Fix a point .˛1; ˛2/ in Z . Then the isometric sphere IC
0

is contained
in the exterior of the isometric spheres I˙

k
for all k , except for IC

1
, IC
�1

, I�
0

and I�
�1

.

The proof of Proposition 4.8 will be detailed in Section 7.4. We can give more
information about the intersections I˙

0
with these four other isometric spheres; compare

Figure 5.

Proposition 4.9 If .˛1; ˛2/ 2 Z , then the intersection I�
�1
\ I�

0
is contained in the

interior of IC
0

.

Proof Since the point pB is the centre of IC
0

, it lies in its interior. Moreover, pB lies
on both I�

�1
and I�

0
; indeed, hpAB;pBi D hpBA;pBi D 1. By convexity of Cygan

spheres (see Proposition 2.10), the intersection of the latter two isometric spheres is
connected. This implies that I�

�1
\I�

0
is contained in the interior of IC

0
, for otherwise

IC
0
\ I�
�1
\ I�

0
would not be empty.

Using Proposition 4.3, applying powers of ' to Propositions 4.8 and 4.9 gives the
following results describing all pairwise intersections:
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I�
�2

I�
�1

I�
0

I�
1

I�
2

I�
3

IC
�2

IC
�1

IC
0

IC
1

IC
2

IC
3

Figure 5: Vertical projections of the isometric spheres I˙
k

for small values
of k at the point .˛1; ˛2/D .0:4; 0:3/

Corollary 4.10 Fix .˛1; ˛2/ 2 Z . Then for all k 2 Z:

(1) ICk is contained in the exterior of all isometric spheres in fI˙
k
W k 2 Zg except

IC
k�1

, I�
k�1

, I�
k

and IC
kC1

. Moreover, IC
k
\ I�

k�1
\ I�

k
D∅ and IC

k
\ IC

k�1

(resp. IC
k
\ IC

kC1
) is contained in the interior of I�

k�1
(resp. I�

k
).

(2) I�
k

is contained in the exterior of all isometric spheres in fI˙
k
W k 2 Zg except

I�
k�1

, IC
k

, IC
kC1

, and I�
kC1

. Moreover, I�
k
\ I�

k
\ I�

kC1
D∅ and I�

k
\ I�

k�1

(resp. I�
k
\ I�

kC1
) is contained in the interior of IC

k
(resp. IC

kC1
).

Proposition 4.8 and Corollary 4.10 are illustrated in Figure 5.

5 Applying the Poincaré polyhedron theorem inside Z

5.1 The Poincaré polyhedron theorem

For the proof of our main result we need to use the Poincaré polyhedron theorem for
coset decompositions. The general principle of this result is described in [2, Section 9.6]
in the context of the Poincaré disc. A generalisation to the case of H 2

C has already
appeared in Mostow [22] and Deraux, Parker and Paupert [9]. In these cases the
stabiliser of the polyhedron was assumed to be finite. In our case the stabiliser is the
infinite cyclic group generated by the unipotent parabolic map A. There are two main
differences from the version given in [9]. First, we allow the polyhedron D to have
infinitely many facets; the stabiliser group ‡ is also infinite, but we require that there
are only finitely many ‡ –orbits of facets. Secondly, we allow the boundary D to
intersect @H 2

C in an open set, which we refer to as the ideal boundary of D . In fact, the
version we need has many things in common with the version given by Parker, Wang and
Xie [25]. A more general statement will appear in Parker’s book [23]. In what follows
we will adapt our statement of the Poincaré theorem to the case we have in mind.

The polyhedron and its cell structure Let D be an open polyhedron in H 2
C and

let D denote its closure in H 2
C DH 2

C [ @H
2
C . We define the ideal boundary @1D of

D to be the intersection of D with @H 2
C . This polyhedron has a natural cell structure
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which we suppose is locally finite inside H 2
C . We suppose that the facets of D of all

dimensions are piecewise smooth submanifolds of H 2
C . Let Fk.D/ be the collection

of facets of codimension k having nontrivial intersection with H 2
C . We suppose that

facets are closed subsets of H 2
C . We write f ı to denote the interior of a facet f , that

is, the collection of points of f that are not contained in @H 2
C or any facet of a lower

dimension (higher codimension). Elements of F1.D/ and F2.D/ are called sides and
ridges of D , respectively. Since D is a polyhedron, F0.D/DD and each ridge in
F2.D/ lies in exactly two sides in F1.D/. Similarly, the intersection of facets of D

with @H 2
C gives rise to a polyhedral structure on a subset of @1D . We let IFk.D/

denote the ideal facets of @1D of codimension k such that each facet in IFk.D/

is contained in some facet of F`.D/ with ` < k . In particular, we will also need to
consider ideal vertices in IF4.D/. These are either the endpoints of facets in F3.D/

or else they are points of @H 2
C contained in (at least) two facets of D that do not

intersect inside H 2
C . Note that, since we have defined ideal facets to be subsets of

facets, it may be that @H 2
C contains points of @1D not contained in any ideal facet. In

the case we consider, there will be one such point, namely the point at 1 fixed by A.

The side pairing We suppose that there is a side pairing � W F1.D/ ! PU.2; 1/
satisfying the following conditions:

(1) For each side s 2 F1.D/ with �.s/ D S there is another side s� 2 F1.D/

such that S maps s homeomorphically onto s� preserving the cell structure.
Moreover, �.s�/D S�1 . Furthermore, if s D s� then S D S�1 and S is an
involution. In this case, we call S2 D id a reflection relation.

(2) For each s 2 F1.D/ with �.s/D S we have

D\S�1.D/D s and D\S�1.D/D∅:

(3) For each w in the interior sı of s there is an open neighbourhood U.w/�H 2
C

of w contained in D[S�1.D/.

In the example we consider, D will be the Ford domain of a group. In particular,
each side s will be contained in the isometric sphere I.S/ of S D �.s/. Indeed,
s D I.S/\D . By construction we have S W I.S/ 7! I.S�1/ and in this case s� D

I.S�1/\D . The polyhedron D will be the (open) infinite-sided polyhedron formed
by the intersection of the exteriors of all the I.S/ where S D �.s/ and s varies
over F1.D/. By construction, the sides of D are smooth hypersurfaces (with boundary)
in H 2

C .

Suppose that D is invariant under a group ‡ that is compatible with the side pairing
map in the sense that for all P 2 ‡ and s 2 F1.D/ we have P .s/ 2 F1.D/ and
�.Ps/DP�.s/P�1 . We call the latter a compatibility relation. We suppose that there
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are finitely many ‡ –orbits of facets in each Fk.D/. Since P 2 ‡ cannot fix a side
s 2 F1.D/ pointwise, subdividing sides if necessary, we suppose that if P 2 ‡ maps
a side in F1.D/ to itself then P is the identity. In particular, given sides s1 and s2

in F1.D/, there is at most one P 2 ‡ sending s1 to s2 . In the example of a Ford
domain, ‡ will be �1 , the stabiliser of the point 1 in the group � .

Ridges and cycle relations Consider a ridge r1 2 F2.D/. Then r1 is contained in
precisely two sides of D , say s�

0
and s1 . Consider the ordered triple .r1; s

�
0
; s1/. The

side pairing map �.s1/D S1 sends s1 to the side s�
1

preserving its cell structure. In
particular, S1.r1/ is a ridge of s�

1
, say r2 . Let s2 be the other side, containing r2 . Then

we obtain a new ordered triple .r2; s
�
1
; s2/. Now apply �.s2/D S2 to r2 and repeat.

Because there are only finitely many ‡ –orbits of ridges, we eventually find an m

such that the ordered triple .rmC1; s
�
m; smC1/ D .P

�1r1;P
�1s�

0
;P�1s1/ for some

P 2‡ (note that, by hypothesis, P is unique). We define a map �W F2.D/! PU.2; 1/
called the cycle transformation by �.r1/D P ıSm ı � � � ıS1 . (Note that for any ridge
r1D s�

0
\s1 , the cycle transformation map �.r1/DR depends on a choice of one of the

sides s�
0

and s1 . If we choose the other one then the ridge cycle becomes R�1 . This
follows from the fact that then �.s�j /D �.sj /

�1 and from the compatibility relations.)
By construction, the cycle transformation RD �.r1/ maps the ridge r1 to itself setwise.
However, R may not be the identity on r1 , nor on H 2

C . Nevertheless, we suppose that
R has order n. The relation Rn D id is called the cycle relation associated to r1 .

Writing the cycle transformation �.r1/DR in terms of P and the Sj , we let C.r1/

be the collection of suffix subwords of Rn . That is,

C.r1/D fSj ı � � � ıS1 ıRk
W 0� j �m� 1; 0� k � n� 1g:

We say that the cycle condition is satisfied at r1 provided:

(1) r1 D
T

C2C.r1/
C�1.D/.

(2) If C1; C2 2 C.r1/ with C1 ¤ C2 , then C�1
1
.D/\C�1

2
.D/D∅.

(3) For each w 2 rı
1

there is an open neighbourhood U.w/ of w such that

U.w/�
[

C2C.r1/

C�1.D/:

Ideal vertices and consistent horoballs Suppose that the set IF4.D/ of ideal ver-
tices of D is nonempty. In our applications, there are no edges (that is, F3.D/ is empty)
and the only ideal vertices arise as points of tangency between the ideal boundaries of
ridges in F2.D/. In order to simplify our discussion below, we will only treat this case.
We require that there is a system of consistent horoballs based at the ideal vertices and
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their images under the side pairing maps (see [10, page 152] for the definition). For
each ideal vertex � 2 IF4.D/, the consistent horoball H� is a horoball based at � with
the following property: Let � 2 IF4.D/ and let s 2F1.D/ be a side with � 2 s . Then
the side pairing S D �.s/ maps � to a point �� in s� . Note that �� is not necessarily
an ideal vertex (since it could be that � is a point of tangency between two sides whose
closures in H 2

C are otherwise disjoint and �� may be a point of tangency between
two nested bisectors only one of which contributes a side of D ). In our case this does
not happen and so we may assume �� also lies in IF4.D/ and so has a consistent
horoball H�� . In order for these horoballs to form a system of consistent horoballs we
require that for each ideal vertex � and each side s with � 2 s the side pairing map
�.s/ should map the horoball H� onto the horoball H�� . In particular, any cycle of
side pairing maps sending � to itself must also send H� to itself.

Statement of the Poincaré polyhedron theorem We can now state the version of
the Poincaré polyhedron theorem that we need (compare [22] or [9]).

Theorem 5.1 Let D be a smoothly embedded polyhedron D in H 2
C together with a

side pairing � W F1.D/! PU.2; 1/. Let ‡ < PU.2; 1/ be a group of automorphisms
of D compatible with the side pairing and suppose that each Fk.D/ contains finitely
many ‡ –orbits. Fix a presentation for ‡ with generating set P‡ and relations R‡ .
Let � be the group generated by P‡ and the side pairing maps f�.s/g. Suppose that
the cycle condition is satisfied for each ridge in F2.D/ and that there is a system of
consistent horoballs at all the ideal vertices of D (if any). Then:

(1) The images of D under the cosets of ‡ in � tessellate H 2
C . That is, H 2

C �S
A2� A.D/ and D\A.D/D∅ for all A 2 � �‡ .

(2) The group � is discrete and a fundamental domain for its action on H 2
C is

obtained from the intersection of D with a fundamental domain for ‡ .
(3) A presentation for � (with respect to the generating set P‡ [ f�.s/g) has the

following set of relations: the relations R‡ in ‡ , the compatibility relations
between � and ‡ , the reflection relations and the cycle relations.

5.2 Application to our examples

We are now going to apply Theorem 5.1 to the group generated by S and A. Explicit
matrices for these transformations are provided in (13) and (16). Our aim is to prove:

Theorem 5.2 Suppose that .˛1; ˛2/ is in Z . That is, D.4 cos2 ˛1; 4 cos2 ˛1/ > 0,
where D.x;y/ is the polynomial defined in Proposition 4.5. Then the group �DhS;Ai
associated to the parameters .˛1; ˛2/ is discrete and has the presentation

(19) hS;A W S3
D .A�1S/3 D idi:
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We obtain the presentation hS;T W S3 D T 3 D idi by changing generators to S and
T DA�1S .

Definition of the polyhedron and its cell structure The infinite polyhedron we con-
sider is the intersection of the exteriors of all the isometric spheres in fI˙

k
W k 2 Zg.

Definition 5.3 We call D the intersection of the exteriors of all isometric spheres IC
k

and I�
k

with centres AkS�1.q1/ and AkS.q1/, respectively:

(20) D D fq 2H 2
C W dCyg.q;A

kS˙1.q1// > 1 for all k 2 Zg:

The set of sides of D is F1.D/ D fs
C

k
; s�

k
W k 2 Zg, where sC

k
D IC

k
\ D and

s�
k
D I�

k
\D .

Using Corollary 4.10 we can completely describe sC
k

and s�
k

.

Proposition 5.4 The side s˙
k

is topologically a solid cylinder in H 2
C [ @H

2
C . More

precisely, s˙
k

is a product D � Œ0; 1�, where for each t 2 Œ0; 1�, the fibre D � ftg is
homeomorphic to a closed disc in H 2

C whose boundary is contained in @H 2
C . The

intersection of @sC
k

(resp. @s�
k

) with H 2
C is the disjoint union of the topological discs

sC
k
\ s�

k�1
and sC

k
\ s�

k
(resp. s�

k
\ sC

k
and s�

k
\ s�

kC1
).

Proof Since sCk is contained in IC
k

, its only possible intersections with other sides are
contained in IC

k�1
, I�

k�1
, IC

kC1
and I�

kC1
by Corollary 4.10. Since IC

k
\ IC

k�1
and

ICk \ ICkC1 are contained in the interiors of other isometric spheres, the intersections
sC
k
\ sC

k�1
and sC

k
\ sC

kC1
are empty. Also, IC

k
\ I�

k�1
\ I�

k
D∅ and so sC

k
\ s�

k�1

and sC
k
\ s�

k
are disjoint. Since isometric spheres are topological balls and their

pairwise intersections are connected, the description of sC
k

follows. A similar argument
describes s�

k
.

The side pairing � W F1.D/! PU.2; 1/ is defined by

(21) �.sC
k
/DAkSA�k ; �.s�k /DAkS�1A�k :

Let ‡ D hAi be the infinite cyclic group generated by A. By construction the side
pairing � is compatible with ‡ . Furthermore, using Proposition 5.4 the set of ridges is
F2.D/D fr

C

k
; r�

k
W k 2 Zg, where rC

k
D sC

k
\ s�

k
and r�

k
D sC

k
\ s�

k�1
. We can now

verify that � satisfies the first condition of being a side pairing.

Proposition 5.5 The side pairing map �.sC
k
/DAkSA�k is a homeomorphism from

sC
k

to s�
k

. Moreover, �.sC
k
/ sends rC

k
D sC

k
\ s�

k
to itself and sends r�

k
D sC

k
\ s�

k�1

to r�
kC1
D s�

k
\ sC

kC1
.
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Proof By applying powers of A we need only need to consider the case where k D 0.
First, the ridge rC

0
D sC

0
\ s�

0
D I.S/\ I.S�1/ is defined by the triple equality

(22) jhz; q1ij D jhz;S
�1q1ij D jhz;Sq1ij:

The map S cyclically permutes pB D S�1.q1/, pA D q1 and pAB D S.q1/, and
so maps rC

0
to itself. Similarly, consider r�

0
D sC

0
\ s�
�1

. The side pairing map S

sends A�1S.q1/, the centre of I�
�1

, to

S.A�1S/.q1/D S.T �1S�1/S.q1/D ST 2.q1/

D .ST /S�1.ST /.q1/DAS�1.q1/;

which is the centre of IC
1

, where we have used A�1 D T �1S�1 , T �1 D T 2 and
ST .q1/D q1 . Therefore, r�

0
D sC

0
\ s�
�1

is sent to r�
1
D s�

0
\ sC

1
, as claimed. The

rest of the result follows from our description of s˙
k

in Proposition 5.4.

Local tessellation We now prove local tessellation around the sides and ridges of D .

� s˙
k

Since �.s˙
k
/D AkS˙1A�1 sends the exterior of I˙

k
to the interior of I�

k

we see that D and AkS˙1A�k.D/ have disjoint interiors and cover a neighbourhood
of each point in s

�

k
. Together with Proposition 5.5 this means � satisfies the three

conditions of being a side pairing.

� rC
0

Consider the case of rC
0
D sC

0
\ s�

0
D I.S/ \ I.S�1/, which is given

by (22). Observe that rC
0

is mapped to itself by S . Using Proposition 5.5, we see
that when constructing the cycle transformation for rC

0
we have one ordered triple

.rC
0
; s�

0
; sC

0
/ and the cycle transformation �.rC

0
/D S . The cycle relation is S3 D id

and C.rC
0
/D fid; S; S2g. Consider an open neighbourhood UC

0
of rC

0
that intersects

no other ridge. The intersection of D with UC
0

is the same as the intersection of
UC

0
with the Ford domain DS for the order-three group hSi. Since S has order

three, this Ford domain is the intersection of the exteriors of I.S/ and I.S�1/. For z

in DS , jhz; q1ij is the smallest of the three quantities in (22). Applying S D �.sC
0
/

and S�1 D �.s�
0
/ gives regions S.DS / and S�1.DS / where one of the other two

quantities is the smallest. Therefore UC
0
\S.UC

0
/\S.U�

0
/ is an open neighbourhood

of rC
0

contained in D[S.D/[S�1.D/. This proves the cycle condition at rC
0

.

� r�
0

Now consider r�
0
D sC

0
\ s�
�1

. When constructing the cycle transformation
for r�

0
we start with the ordered triple .r�

0
; s�
�1
; sC

0
/. Applying S D �.sC

0
/ to r�

0

gives the ordered triple .r�
1
; s�

0
; sC

1
/, which is simply .Ar�

0
;As�
�1
;AsC

0
/. Thus the

cycle transformation of r�
0

is �.r�
0
/DA�1S D T �1 , which has order 3. Therefore

the cycle relation is .A�1S/3 D id, and C.r�
0
/D fid; A�1S; .A�1S/2g. Noting that

IC
0

has centre S�1.q1/D S�1A.q1/D T .q1/ and I�
�1

has centre A�1S.q1/D

Geometry & Topology, Volume 21 (2017)



A complex hyperbolic Riley slice 3425

T �1.q �1/, we see IC
0
D I.T �1/ and I�

0
D I.T /. Therefore a similar argument

involving the Ford domain for hT i shows that the cycle condition is satisfied at r�
0

.

� r˙
k

Using compatibility of the side pairings with the cyclic group ‡ D hAi,
we see that �.rC

k
/ D AkSA�k with cycle relation .AkSA�k/3 D AkS3A�k D id

and that the cycle condition is satisfied at rC
k

. Likewise, r�
k

is mapped by � to
Ak.A�1S/A�k D Ak�1SA�k and .Ak�1SA�k/3 D Ak.A�1S/A�k D id, so the
cycle condition is satisfied at r�

k
.

This is sufficient to prove Theorem 5.2 by applying the Poincaré polyhedron theorem
when D has no ideal vertices, that is, to all groups � in the interior of Z . In par-
ticular, � is generated by the generator A of ‡ and the side pairing maps. Using
the compatibility relations, there is only one side pairing map up to the action of ‡ ,
namely S . There are no reflection relations, and (again up to the action of ‡ ) the only
cycle relations are S3D id and .A�1S/3D id. Thus the Poincaré polyhedron theorem
gives the presentation (19). This completes the proof of Theorem 5.2.

For groups on the boundary of Z the same result is also true. This follows from the
fact (Chuckrow’s theorem) that the algebraic limit of a sequence of discrete and faithful
representations of a nonvirtually nilpotent group in Isom(H n

C ) is discrete and faithful
(see for instance [4, Theorem 2.7] or [21] for a more general result in the framework
of negatively curved groups).

We do not need to apply the Poincaré polyhedron theorem for these groups. However, to
describe the manifold at infinity for the limit groups, we will need to know a fundamental
domain, and we will have to go through a similar analysis in the next section.

6 The limit group

In this section, we consider the group � lim , and unless otherwise stated, the parameters
˛1 and ˛2 will always be assumed to be equal to 0 and ˛lim

2
, respectively. We know

already that � lim is discrete and isomorphic to Z3 �Z3 . Our goal is to prove that its
manifold at infinity is homeomorphic to the complement of the Whitehead link. For
these values of the parameters, the maps S�1T and ST �1 are unipotent parabolic
(see the results of Section 3.4), and we denote by VS�1T and VST �1 , respectively, the
sets of (parabolic) fixed points of conjugates of S�1T and ST �1 by powers of A.

(1) As in the previous section, we apply the Poincaré polyhedron theorem, this time
to the group � lim . We obtain an infinite A–invariant polyhedron, still denoted
by D , which is a fundamental domain for A–cosets. This polyhedron is slightly
more complicated than the one in the previous section due to the appearance of
ideal vertices that are the points in VS�1T and VST �1 .
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(2) We analyse the combinatorics of the ideal boundary @1D of this polyhedron.
More precisely, we will see that the quotient of @1Dn.fpAg[VS�1T [VST �1/

by the action of the group hS;T i is homeomorphic the complement of the
Whitehead link, as stated in Theorem 6.4.

6.1 Matrices and fixed points

Before going any further, we provide specific expressions for the various objects we
consider at the limit point. When ˛1 D 0 and ˛2 D ˛

lim
2

, the map ' described in
Proposition 4.3 is given in Heisenberg coordinates by

(23) 'W Œz; t � 7!
�
xzC

p
3=8C i

p
5=8;�t Cx

p
5=2Cy

p
3=2
�
:

In particular its invariant line �' is parametrised by

(24) �' D
˚
ı'.x/D

�
xC i

p
5=32; x

p
5=8
�
W x 2R

	
:

The parabolic map AD '2 acts on �' as AW ı'.x/ 7! ı'
�
xC

p
3=2
�
. As a matrix it

is given by

(25) AD

2641 �
p

3 �3
2
C

i
p

15
2

0 1
p

3

0 0 1

375 :
We can decompose A into the product of regular elliptic maps S and T , where

S D

264 1
p

3
2
�

i
p

5
2
�1

�

p
3

2
�

i
p

5
2

�1 0

�1 0 0

375 ; T D

264 0 0 �1

0 �1 �

p
3

2
C

i
p

5
2

�1
p

3
2
C

i
p

5
2

1

375 :
These maps cyclically permute .pA;pAB;pB/ and .pA;pB;pBA/, where

(26) pAD

241

0

0

35 ; pBD

240

0

1

35 ; pABD

264 �1
p

3
2
C

i
p

5
2

1

375 ; pBAD

264 �1

�

p
3

2
C

i
p

5
2

1

375 :
Using ˛1 D 0, we will occasionally use the facts from Proposition 3.8 that .S;T / is
C–decomposable and .A;B/ is R–decomposable.

As mentioned above, in the group � lim the elements ST �1 , S�1T , TST , STS

and the commutator ŒA;B�D .ST �1/3 are unipotent parabolic. For future reference,
we provide here lifts of their fixed points, both as vectors in C3 and in terms of

Geometry & Topology, Volume 21 (2017)



A complex hyperbolic Riley slice 3427

geographical coordinates g.˛; ˇ/ (we omit the w coordinate — since we are on the
boundary at infinity, it is equal to

p
2 cos˛ ):

(27)

pST �1 D

264�
1
4
C

i
p

15
4p

3
4
C

i
p

5
4

1

375D g
�
arccos 1

4
; �

2

�
;

pS�1T D

264�
1
4
�

i
p

15
4

�

p
3

4
C

i
p

5
4

1

375D g
�
� arccos 1

4
; �

2

�
;

pTST D

264 �1

�
3
p

3
4
C

i
p

5
4

1

375D g
�
0;� arccos

p
27=32

�
;

pSTS D

264 �1
3
p

3
4
C

i
p

5
4

1

375D g
�
0; arccos

p
27=32

�
:

It follows from (23) that ' acts on these parabolic fixed points as follows:

(28) � � �!pT �1STST

'
!pTST

'
!pS�1T

'
!pST �1

'
!pSTS

'
!pSTSTS�1!� � � :

6.2 The Poincaré theorem for the limit group

The limit group has extra parabolic elements. Therefore, in order to apply the Poincaré
theorem, we must construct a system of consistent horoballs at these parabolic fixed
points (see Section 5.1).

Lemma 6.1 The isometric spheres IC
1

and I�
�1

are tangent at pST �1 . The isometric
spheres IC

�1
and I�

0
are tangent at pS�1T .

Proof It is straightforward to verify that jhpST �1 ;pBAij D jhpST �1 ;A.pB/ij D 1,
and therefore pST �1 belongs to both I�

�1
and IC

1
. Projecting vertically — see

Remark 2.13 — we see that the projections of I�
�1

and IC
1

are tangent discs and,
as they are strictly convex, their intersection contains at most one point. This gives the
result. The other tangency is along the same lines.

A consequence of Lemma 6.1 is that the parabolic fixed points are tangency points of
isometric spheres. The following lemma is proved in Section 7.1.

Lemma 6.2 For the group � lim the triple intersection IC
0
\I�

0
\I�
�1

contains exactly
two points, namely the parabolic fixed points pST �1 and pS�1T .
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Applying powers of ' , we see that these triple intersections are actually quadruple
intersections of sides and triple intersections of ridges.

Corollary 6.3 The parabolic fixed point Ak.pST �1/ lies on I�
k�1
\ IC

k
\ I�

k
\ IC

k
.

In particular, it is the triple ridge intersection r�
k
\ rC

k
\ r�

kC1
. Similarly, Ak.pS�1T /

lies on IC
�1
\ I�
�1
\ IC

0
\ I�

0
. In particular it is rC

k�1
\ r�

k
\ rC

k
.

To construct a system of consistent horoballs at the parabolic fixed points we must inves-
tigate the action of the side pairing maps on them. First, pS�1T 2 I

C

�1
\I�
�1
\IC

0
\I�

0
:

we have
�.sC
�1
/DA�1SAW pS�1T 7! pT �1STST ;

�.s�
�1/DA�1S�1AW pS�1T 7! pTST ;

�.sC
0
/D S W pS�1T 7! pST �1 ;

�.s�0 /D S�1
W pS�1T 7! pSTS :

Likewise, pST �1 2 I�
�1
\ IC

0
\ I�

0
\ IC

1
: we have

�.s�
�1/DA�1S�1AW pST �1 7!A�2.pST �1/;

�.sC
0
/D S W pST �1 7! pSTS ;

�.s�0 /D S�1
W pST �1 7! pS�1T ;

�.sC
1
/DASA�1

W pST �1 7!A2.pST �1/:

We can combine these maps to show how the points Ak.pST �1/ and Ak.pS�1T / are
related by the side pairing maps. This leads to an infinite graph, a section of which is:

(29)

A�1SA
// pST �1

ASA�1
//

S

&&

A2.pST �1/ //

pT �1STST
oo

A�1SA
��

pS�1T
A�1SA
oo

S

OO

pSTS
S

oo

ASA�1

��

A2.pS�1T /
ASA�1
oo

A2SA�2

OO

oo

// pTST
S

//
A�1SA

77

pSTSTS�1

A2SA�2

//
ASA�1

66

From this it is clear that all the cycles in the graph (29) are generated by triangles and
quadrilaterals. Up to powers of A, the triangles lead to the word S3 , which is the
identity. Up to powers of A the quadrilaterals lead to words cyclically equivalent to
the one coming from

pS�1T
S�1

// pSTS
ASA�1

// pSTSTS�1
S�1

// pTST
A�1SA

// pS�1T :
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I�
�1

I�
0

I�
0

IC
0

I�
�1

Figure 6: Two realistic views of the isometric spheres IC0 , IC1 and I�0 for
the limit group � lim . The thin bigon is BC

0
(defined in Proposition 6.5).

Compare with Figures 7 and 12

In other words, pS�1T is fixed by .A�1SA/.S�1/.ASA�1/.S�1/D .T �1S/3 . This
is parabolic and so preserves all horoballs based at pS�1T .

Therefore, we can define a system of horoballs as follows. Let UC
0

be a horoball based
at pS�1T , disjoint from the closure of any side not containing pS�1T in its closure.
Now define horoballs UC

k
and U�

k
by applying the side pairing maps to UC

0
. Since

every cycle in the graph (29) gives rise either to the identity map or to a parabolic
map, this process is well-defined and gives rise to a consistent system of horoballs.
Therefore we can apply the Poincaré polyhedron theorem for the two limit groups.
Using the same arguments as we did for groups in the interior of Z , we see that � has
the presentation (19).

6.3 The boundary of the limit orbifold

Theorem 6.4 The manifold at infinity of the group � lim is homeomorphic to the
Whitehead link complement.

The ideal boundary of D is made up of those pieces of the isometric spheres I˙
k

that
are outside all other isometric spheres in fI˙

k
W k 2Zg. Recall that the (ideal boundary

of) the side s˙
k

is the part of @I˙
k

which is outside (the ideal boundary of) all other
isometric spheres. In this section, when we speak of sides and ridges we implicitly
mean their intersection with @H 2

C .

We will see that each isometric sphere in fI˙
k
Wk 2Zg contributes a side s˙

k
made up of

one quadrilateral, denoted by Q˙
k

, and one bigon B˙
k

. A very similar configuration of
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isometric spheres has been observed by Deraux and Falbel [8]. We begin by analysing
the contribution of IC

0
.

Proposition 6.5 The side .sC
0
/ı of D has two connected components:

(1) One of them is a quadrilateral, denoted by QC
0

, whose vertices are points pST �1 ,
pS�1T , pSTS and pTST (all of which are parabolic fixed points)

(2) The other is a bigon, denoted by BC
0

, whose vertices are pST �1 and pS�1T

Proof Since isometric spheres are strictly convex, the ideal boundaries of the ridges
rC
0
DIC

0
\I�

0
and r�

0
DIC

0
\I�
�1

are Jordan curves on IC
0

. We still denote them by r˙
0

.
The interiors of these curves are respectively the connected components containing
pAB and pBA . By Lemma 6.2 in Section 7.1, rC

0
and r�

0
have two intersection points,

namely pS�1T and pST �1 , and their interiors are disjoint. As a consequence the
common exterior of the two curves has two connected components, and the points
pS�1T and pST �1 lie on the boundary of both.

To finish the proof, consider the involution �1 defined in the proof of Proposition 3.8.
(Note that since ˛1 D 0, this involution conjugates � lim to itself.) In Heisenberg
coordinates it is defined by �1W Œz; t � 7! Œ�xz;�t � and is clearly a Cygan isometry. As
in Proposition 3.8, �1 fixes pA and pB and it interchanges pAB and pBA . Thus it
conjugates S to T �1 , and so it interchanges pST �1 and pS�1T and it interchanges
pSTS and pTST . Moreover, since it is a Cygan isometry, �1 preserves IC

0
and

interchanges I�
�1

and I�
0

and thus it also exchanges the two curves rC
0

and r�
0

. Again,
since it is a Cygan isometry, it maps interior to interior and exterior to exterior for both
curves. As a consequence, the two connected components of the common exterior are
either exchanged or both preserved.

Now consider the point with Heisenberg coordinates Œi; 0�. It is fixed by �1 , and
belongs to the common exterior of both rC

0
and r�

0
. This implies that both connected

components are preserved. Finally, since pSTS 2 IC
0
\ I�

0
and pTST 2 IC

0
\ I�
�1

are exchanged by �1 , these two points belong to the closure of the same connected
component. As a consequence, one of the two connected components has pST �1 ,
pS�1T , pSTS and pTST on its boundary. This is the quadrilateral. The other one has
pST �1 and pS�1T on its boundary. This is the bigon.

We now apply powers of A to get a result about all the isometric sphere intersections
in the ideal boundary of D . Define Q�

0
D '.QC

0
/ and B�

0
D '.BC

0
/. Then applying

powers of A we define quadrilaterals Q˙
k
DAk.Q˙

0
/ and bigons B˙

k
DAk.B˙

0
/. The

action of the Heisenberg translation A and the glide reflection ' are:
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pSTS

rC
0 pS�1T

pAB

pBA

pST �1

r�
0

pT ST

Figure 7: Intersections of the isometric spheres I�
0

, I�
�1

, IC
1

and IC
�1

with
IC0 in the boundary of H 2

C , viewed in geographical coordinates. Recall
that rC

0
D IC

0
\ I�

0
and r�

0
D IC

0
\ I�
�1

. Here ˛ 2
�
�
�
2
; �

2

�
is the vertical

coordinate, and ˇ 2 Œ��; �� the horizontal one. The vertical dash-dotted
segments ˇ D ˙�

2
are the two halves of the boundary of the meridian m .

The bigon between the two curves rC
0

and r�
0

is BC
0

(see Proposition 6.5).
Compare to [8, Figure 2].

Corollary 6.6 For the group � lim , the (ideal boundary of) the side s˙
k

is the union of
the quadrilateral Q˙

k
and the bigon B˙

k
. The action of A and ' are as follows:

(1) A maps Q˙
k

to Q˙
kC1

and B˙
k

to B˙
kC1

.

(2) ' maps QC
k

to Q�
k

, Q�
k

to QC
kC1

, BC
k

to B�
k

and B�
k

to BC
kC1

.

In order to understand the combinatorics of the sides of D , we describe the edges of
the faces lying in IC

0
. The three points pS�1T , pST �1 and pSTS lie on the ridge

rC
0
D IC

0
\ I�

0
. Likewise, the points pST �1 , pS�1T and pTST lie on the ridge

r�
0
D IC

0
\ I�
�1

. Indeed, these points divide (the ideal boundaries of) these ridges
into three segments. We have listed the ideal vertices in positive cyclic order (see
Figure 7). Using the graph (29), the action of the cycle transformations �.sC

0
/D S

and �.r�
0
/DA�1S D T �1 on these ideal vertices, and hence on the segments of the

ridges, is

pS�1T

S
// pST �1

S
// pSTS

S
// pS�1T ;

pST �1

A�1S
// pS�1T

A�1S
// pTST

A�1S
// pST �1 :

Furthermore, S maps pTST to pSTSTS�1 .

The quadrilateral QC
0

has two edges ŒpS�1T ;pTST �[ ŒpTST ;pST �1 � in the ridge r�
0

and two edges ŒpST �1 ;pSTS �[ ŒpSTS ;pS�1T � in the ridge rC
0

. It is sent by S to
the quadrilateral Q�

0
with two edges ŒpST �1 ;pSTSTS�1 �[ ŒpSTSTS�1 ;pSTS � in r�

1
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A
pTST pST �1 pSTSTS�1

pT �1STST pT �1S pSTS

pTST pST �1 pSTSTS�1

QC
�1

B�
�1 QC

0
B�

0 QC
1

BC
�1

F�1

Q�
�1 BC

0

F0

Q�
0 BC

1
Q�

1

cC
�1

cC
0

c�
�1 c�0

Figure 8: A combinatorial picture of @D . The top and bottom lines are identified.

and two edges ŒpSTS ;pS�1T �[ ŒpS�1T ;pST �1 � in rC
0

. Similarly, the edges of the
bigon BC

0
are the remaining segments in r�

0
and rC

0
, both with endpoints pS�1T

and pST �1 . It is sent by S to the bigon B�
0

with vertices pST �1 and pSTS .

Applying powers of A gives the other quadrilaterals and bigons. As usual, the image
under Ak can be found by adding k to each subscript and conjugating each side pairing
map and ridge cycle by Ak . The combinatorics of D is summarised on Figure 8.

Lemma 6.7 The line �' given in (24) is contained in the complement of D .

Proof As noted above, A acts on �' as a translation through
p

3=2. We claim that
the segment of �' with parameter x 2

�
�
p

3=8;
p

3=8
�

in contained in the interior
of IC

0
. Applying powers of A we see that each point of �' is contained in IC

k
for

some k . Hence the line is in the complement of D .

Consider ı'.x/ 2 �' with x2 �
3
8

. The Cygan distance between pB and ı'.x/

satisfies

dCyg.pB; ı'.x//
4
D
ˇ̌
�x2
�

5
32
C ix

p
5=8
ˇ̌2
D x4

C
15
16

x2
C

25
1
� 24� 529

1024
:

Since dCyg.pB; ı'.x// < 1 this means ı'.x/ is in the interior of IC
0

, as claimed.

The following result, which will be proved in Section 7.5, is crucial for proving
Theorem 6.4.

Proposition 6.8 There exists a homeomorphism ‰W R3! @H 2
C �fq1g mapping the

exterior of S1 �R, that is, f.x;y; z/ W x2Cy2 � 1g, homeomorphically onto D and
such that ‰.x;y; zC 1/DA‰.x;y; z/, that is, ‰ is equivariant with respect to unit
translation along the z axis and A.
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pST

pTST pT �1S

pST �1
pSTS

pTS

pST

pTST

pTS

pSTS

pST

pST pST �1 pT �1S
pST

Top pyramid: PC

QC
0

B�
0 Bottom pyramid: S�1.P�/

S�1.BC
0
/

Figure 9: A combinatorial picture of the octahedron

As a consequence of Proposition 6.8, D admits an A–invariant 1–dimensional foliation,
the leaves being the images of radial lines f.r cos �0; r sin �0; z0/ W r � 1g that foliate
the exterior of S1 �R. Each of these leaves is a curve connecting a point of @D
with q1 . We can now prove Theorem 6.4.

Proof of Theorem 6.4. The union QC
0
[ BC

0
[Q�

0
[ B�

0
is a fundamental domain

for the action of A on the boundary cylinder @D . As the foliation obtained above is
A–invariant, the cone to the point q1 built over it via the foliation is a fundamental
domain for the action of A over D , and thus it is a fundamental domain for the action
of � lim on the region of discontinuity �.� lim/.

This fundamental domain is the union of two pyramids PC and P� , with respective
bases QC

0
[B�

0
and Q�

0
[BC

0
, and common vertex q1DpST . The two pyramids share

a common face, which is a triangle with vertices pSTS , pT �1S and pST . Cutting
and pasting, consider the union PC [ S�1.P�/. It is again a fundamental domain
for � lim . The apex of S�1.P�/ is S�1.q1/D pB D pTS . The image under S�1 of
Q�

0
is QC

0
, and the bigon BC

0
is mapped by S�1 to another bigon connecting pT �1S

to pSTS . Since B�
0
D S.BC

0
/, this new bigon is the image of B�

0
under S�2 D S .

The resulting object is a is a polyhedron (a combinatorial picture is provided on
Figure 9), whose faces are triangles and bigons. The faces of this octahedron are paired
as follows:
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TS W .pTS ;pT �1S ;pSTS / 7! .pTS ;pTST ;pTS�1/;

ST W .pST ;pTST ;pT �1S / 7! .pST ;pST �1 ;pSTS /;

T W .pST ;pTST ;pST �1/ 7! .pTS ;pT �1S ;pTST /;

S W .pTS ;pST �1 ;pSTS / 7! .pST ;pSTS ;pS�1T /;

S W .pST �1 ;pSTS / 7! .pSTS ;pS�1T /:

The last line is the bigon identification between B�
0

and S�1.BC
0
/. As the triangle

.pTS ;pST �1 ;pSTS / and the bigon B�
0

share a common edge and have the same face
pairing, they can be combined into a single triangle, as well as their images. Thus
the last two lines may be combined into a single side with side pairing map S . We
therefore obtain a true combinatorial octahedron. The face identifications given above
make the quotient manifold homeomorphic to the complement of the Whitehead link
(compare for instance [35, Section 3.3]).

7 Technicalities

7.1 The triple intersections: proofs of Proposition 4.7 and Lemma 6.2

In this section we first prove Proposition 4.7, which states that the triple intersection
must contain a point of @H 2

C , and then we analyse the case of the limit group � lim ,
giving a proof of Lemma 6.2. First recall that the isometric spheres I�

0
and I�

�1
are

the unit Heisenberg spheres with centres given respectively in geographical coordinates
by (see Section 2.5)

(30)
pAB D S.1/D g

�
�˛1;�

1
2
˛1C˛2;

p
2 cos˛1

�
;

pBA DA�1S.1/D g
�
�˛1;�

1
2
˛1�˛2C�;

p
2 cos˛1

�
:

Consider the two functions of points q D g.˛; ˇ;w/ 2 IC
0

defined by

f Œ0�˛1;˛2
.q/D 2 cos2

�
1
2
˛� 1

2
˛1

�
C cos.˛�˛1/

� 4wx1 cos
�

1
2
˛� 1

2
˛1

�
cos
�
ˇC 1

2
˛1�˛2

�
Cw2x2

1 ;

f Œ�1�
˛1;˛2

.q/D 2 cos2
�

1
2
˛� 1

2
˛1

�
C cos.˛�˛1/

C 4wx1 cos
�

1
2
˛� 1

2
˛1

�
cos
�
ˇC 1

2
˛1C˛2

�
Cw2x2

1 :

These functions characterise those points on IC
0

that belong to I�
0

and I�
�1

.

Lemma 7.1 A point q on IC
0

lies on I�
0

(resp. in its interior or exterior) if and only
if it satisfies f Œ0�˛1;˛2

.q/ D 0 (resp. is negative or is positive). Similarly, a point q on
IC

0
lies on I�

�1
(resp. in its interior or exterior) if and only if it satisfies f Œ�1�

˛1;˛2
.q/D 0

(resp. is negative or is positive).
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Proof A point q 2 IC
0

lies on I�
0

(resp. in its interior or exterior) if and only if its
Cygan distance from the centre of I�

0
, which is the point pAB , equals 1 (resp. is

less than 1 or greater than 1). Equivalently (see Section 2.4), the following quantity
vanishes (resp. is positive or negative):

(31) jhq;pABij
2
�1

D j�e�i˛
Cwx1e�i˛=2Ciˇ�i˛2�e�i˛1 j

2
�1

D
ˇ̌
�2 cos

�
1
2
˛� 1

2
˛1

�
Cwx1eiˇCi˛1=2�i˛2

ˇ̌2
�1

D 4 cos2
�

1
2
˛� 1

2
˛1

�
�1Cw2x2

1�4 cos
�

1
2
˛� 1

2
˛1

�
wx1 cos

�
ˇC 1

2
˛1�

1
2
˛
�

D f Œ0�˛1;˛2
.q/:

On the last line we used 2 cos2
�

1
2
˛ � 1

2
˛1

�
D 1C cos.˛ � ˛1/. This proves the first

part of the lemma and the second is obtained by a similar computation.

Corollary 7.2 For given .˛1; ˛2/, if the sum f
Œ0�
˛1;˛2

C f
Œ�1�
˛1;˛2

is positive for all q ,
then the triple intersection IC

0
\ I�

0
\ I�
�1

is empty.

See Figure 7. We can now prove Proposition 4.7.

Proof of Proposition 4.7 To prove the first part, note that a necessary condition for a
point q 2 IC

0
to be in the intersection I�

0
\I�
�1

is that f Œ0�˛1;˛2
.q/�f

Œ�1�
˛1;˛2

.q/D 0. By
a simple computation, we see that this difference is

f Œ0�˛1;˛2
.q/�f Œ�1�

˛1;˛2
.q/D�8wx1 cos

�
1
2
˛� 1

2
˛1

�
cos
�
ˇC 1

2
˛1

�
cos˛2:

Since ˛1 and ˛2 lie in
�
�
�
2
; �

2

�
and ˛ 2

�
�
�
2
; �

2

�
, the only solutions are

cos
�
ˇC 1

2
˛1

�
D 0 or w D 0:

Thus either p D g.˛; ˇ;w/ lies on the meridian m, or on the spine of IC
0

, and hence
on every meridian, in particular on m (compare with Proposition 2.12).

To prove the second part of Proposition 4.7, assume that the triple intersection contains
a point q D g

�
˛; �

2
�

1
2
˛1; w

�
inside H 2

C , that is, such that w2 < 2 cos˛ , and

f Œ0�˛1;˛2
.q/Cf Œ�1�

˛1;˛2
.q/D 0:

In view of Corollary 7.2, we only need to prove that there exists a point on @m where
the above sum is nonpositive, and use the intermediate value theorem. To do so, let z̨
be defined by the condition 2 cos z̨ D w2 and such that z̨ and ˛1 have opposite signs.
Since w2 < 2 cos˛ , these conditions imply that jz̨j > j˛j. We claim that the point
zq D g

�
z̨; � � 1

2
˛1; w

�
is satisfactory. Indeed, the conditions on z̨ give

j˛�˛1j � j˛jC j˛1j< jz̨jC j˛1j D jz̨ �˛1j;
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where the last inequality follows from the fact that z̨ and ˛1 have opposite signs.
Therefore,

(32) cos
�

1
2
z̨ �

1
2
˛1

�
< cos

�
1
2
˛� 1

2
˛1

�
:

On the other hand, we have

(33) f Œ0�˛1;˛2
.q/Cf Œ�1�

˛1;˛2
.q/

D 4 cos2
�

1
2
˛�1

2
˛1

�
C2 cos.˛�˛1/�8wx1 cos

�
1
2
˛�1

2
˛1

�
sin˛2C2w2x2

1

D 8 cos2
�

1
2
˛�1

2
˛1

�
�2�8wx1 cos

�
1
2
˛�1

2
˛1

�
sin˛2C2w2x2

1 :

We claim this is an increasing function of cos
�

1
2
˛� 1

2
˛1

�
. In order to see this, observe

that its derivative with respect to this variable is

16 cos
�

1
2
˛� 1

2
˛1

�
� 8wx1 sin˛2 > 16 cos

�
1
2
˛� 1

2
˛1

�
� 16
p

cos˛ cos˛1 � 0;

where we used x1 D
p

2 cos˛1 , w <
p

2 cos˛ and sin˛2 � 1. Therefore,

0D f Œ0�˛1;˛2
.q/Cf Œ�1�

˛1;˛2
.q/

D 8 cos2
�

1
2
˛� 1

2
˛1

�
� 2� 8wx1 cos

�
1
2
˛� 1

2
˛1

�
sin˛2C 2w2x2

1

> 8 cos2
�

1
2
z̨ �

1
2
˛1

�
� 2� 8wx1 cos

�
1
2
z̨ �

1
2
˛1

�
sin˛2C 2w2x2

1

D f Œ0�˛1;˛2
.zq/Cf Œ�1�

˛1;˛2
.zq/:

This proves our claim.

We now prove Lemma 6.2, w,hich completely describes the triple intersection at the
limit point.

Proof of Lemma 6.2 From the first part of Proposition 4.7 we see that any point
q D g.˛; ˇ;w/ in IC

0
\ I�

0
\ I�
�1

must lie on m, that is, ˇ D 1
2
.� � ˛1/. For such

points it is enough to show that f Œ0�
0;˛lim

2

.q/C f
Œ�1�

0;˛lim
2

.q/D 0. Substituting ˛1 D 0 and
sin˛2 D

p
5=8, this becomes

f
Œ0�

0;˛lim
2

.q/Cf
Œ�1�

0;˛lim
2

.q/D 4 cos2
�

1
2
˛
�
C cos˛� 4

p
5w cos

�
1
2
˛
�
C 4w2

D
�
2 cos

�
1
2
˛
�
�
p

5w
�2
C .2 cos˛�w2/:

In order to vanish, both terms must be zero. Hence w2 D 2 cos˛ and 2 cos
�

1
2
˛
�
D

p
5w D

p
10 cos˛ , noting w cannot be negative since ˛ 2

�
�
�
2
; �

2

�
. This means

˛D˙ arccos 1
4

and wD
p

2 cos˛D 1p
2

. Therefore, the only points in IC
0
\I�

0
\I�
�1

have geographical coordinates g
�
˙ arccos 1

4
; �

2
; 1p

2

�
. Using (27), we see these points

are pST �1 and pS�1T .
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7.2 The region Z is an open disc in the region L: proof of Proposition 4.6

Consider the group �˛1;˛2
and, as before, write x4

1
D 4 cos2 ˛1 and x4

2
D 4 cos2 ˛2 .

Recall, from Proposition 3.9, that .˛1; ˛2/ is in L (resp. P ) if G.x4
1
;x4

2
/>0 (resp. D0),

where

(34) G.x;y/D x2y4
� 4x2y3

C 18xy2
� 27:

Recall this means ŒA;B� is loxodromic (resp. parabolic). Also .˛1; ˛2/ is in the
rectangle R if and only if .x4

1
;x4

2
/ 2 Œ3; 4��

�
3
2
; 4
�
. From Proposition 4.5, the point

.˛1; ˛2/ 2R is in Z (resp. @Z ) if D.x4
1
;x4

2
/ > 0 (resp. D 0), where

(35) D.x;y/D x3y3
� 9x2y2

� 27xy2
C 81xy � 27x� 27:

Lemma 7.3 Suppose .˛1; ˛2/ 2R. Then .˛1; ˛2/ 2 L[P , that is, the commutator
ŒA;B� is loxodromic or parabolic (see Section 3.4). Moreover, .˛1; ˛2/2P if and only
if .˛1; ˛2/D .0;˙˛

lim
2
/.

Proof We first claim that the function G.x;y/ has no critical points in .0;1/�.0;1/.
Indeed, the first partial derivatives of G.x;y/ are

Gx.x;y/D 2y2.xy2
� 4xyC 9/; Gy.x;y/D 4xy.xy2

� 3xyC 9/:

These are not simultaneously zero for any positive values of x and y . As a consequence,
the minimum of G on Œ3; 4��

�
3
2
; 4
�

is attained on the boundary of this rectangle. We
then have

G
�
x; 3

2

�
D

27
16
.4�x/.5x� 4/; G.x; 4/D 9.32x� 3/;

G.3;y/D 9.y � 1/.y3
� 3y2

C 3yC 3/; G.4;y/D .2yC 1/.2y � 3/3:

It is a simple exercise to check that under the assumptions that .x;y/ 2 Œ3; 4��
�

3
2
; 4
�
,

all four of these terms are positive, except for when .x;y/ D
�
4; 3

2

�
, in which case

G
�
4; 3

2

�
D 0. Then .x4

1
;x4

2
/D

�
4; 3

2

�
if and only if .˛1; ˛2/D .0;˙˛

lim
2
/; compare

to Figure 4.

Lemma 7.4 The region Z is an open topological disc in R symmetric about the axes
and intersecting them in the intervals˚

˛2 D 0; �
6
< ˛1 <

�
6

	
and f˛1 D 0; �˛lim

2 < ˛2 < ˛
lim
2 g:

Moreover, the only points of @Z that lie in the boundary of R are .˛1; ˛2/D .0;˙˛
lim
2
/

and .˛1; ˛2/D
�
˙
�
6
; 0
�
.

Proof First we examine the values of D.x;y/ on the boundary of Œ3; 4��
�

3
2
; 4
�
:

Geometry & Topology, Volume 21 (2017)



3438 John R Parker and Pierre Will

(36)
D
�
x; 3

2

�
D

27
8
.x� 4/.x2

� 2xC 2/; D.x; 4/D .x� 3/.3C 8x/2;

D.3;y/D 27.y � 4/.y � 1/2; D.4;y/D .16y � 15/.2y � 3/2:

We claim that, for any y0 2
�

3
2
; 4
�
, the polynomial D.x;y0/ has exactly one root

in Œ3; 4�. Indeed, we have D.3;y0/� 0�D.4;y0/ and thus D.x;y0/ has at least one
such root. The x–derivative of D is

@xD.x;y/D 3.x� 3/y2.xyC 3y � 6/C 27.y � 1/3;

which is positive when x 2 Œ3; 4� and y 2
�

3
2
; 4
�
. Thus D.x;y0/ is increasing, and the

root is unique.

Similarly, we claim that, for any x0 2 Œ3; 4�, the polynomial D.x0;y/ has a unique root
in
�

3
2
; 4
�
. It is clear from (36) when x0 D 4; there the root is y D 3

2
. Now suppose

3� x0 < 4. Arguing as before, we have D
�
x0;

3
2

�
< 0� D.x0; 4/. However, it is not

true that D.x0;y/ is a monotone function of y . The partial derivative of D.x;y/ with
respect to y is

@yD.x;y/D 3x.x2y2
� 6xy � 18yC 27/:

Therefore, for a fixed x0 2 Œ3; 4/ we have @yD
�
x0;

3
2

�
D

27
4

x2
0
.x0 � 4/ < 0. Since

D.x0;y/ is a cubic with leading coefficient x3
0
> 0 and such that both D

�
x0;

3
2

�
and

@yD
�
x0;

3
2

�
are negative, we see that D.x0;y/ has exactly one zero in

�
3
2
;1

�
. Since

D.x0; 4/� 0, this zero must lie in
�

3
2
; 4
�
, as claimed.

Thus the zero-locus of D.x;y/ in Œ3; 4��
�

3
2
; 4
�

is the graph of a continuous bijection
connecting the two points .3; 4/ and

�
4; 3

2

�
. The polynomial D.x;y/ is positive in the

part of Œ3; 4��
�

3
2
; 4
�

above the zero-locus, that is, containing the point .x;y/D .4; 4/
(see Figure 10). Likewise, it is negative in the part below the zero locus, that is,
containing the point .x;y/D

�
3; 3

2

�
. Changing coordinates to .˛1; ˛2/, we see that the

zero locus of D.4 cos2 ˛1; 4 cos2 ˛2/ in the rectangle
�
0; �

6

�
� Œ0; ˛lim

2
� is the graph of a

Figure 10: The null locus of D.x;y/ in the rectangle Œ3; 4��
�

3
2
; 4
�
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continuous bijection connecting the points .˛1; ˛2/D
�
�
6
; 0
�

and .0; ˛lim
2
/. Moreover,

D is positive on the part below this curve, in particular on the interval ˛1 D 0 and
0 � ˛2 < ˛

lim
2

and the interval ˛2 D 0 and 0 � ˛1 <
�
6

. The region Z is the union
of the four copies of this region by the symmetries about the horizontal and vertical
coordinate axes. It is clearly a disc and contains the relevant parts of the axes. This
completes the proof.

Combining Lemmas 7.3 and 7.4 proves Proposition 4.6.

7.3 Condition for no triple intersections: proof of Proposition 4.5

In this section we find a condition on .˛1; ˛2/ that characterises the set Z where the
triple intersection of isometric spheres IC

0
\ I�

0
\ I�
�1

is empty.

Lemma 7.5 The triple intersection IC
0
\I�

0
\I�
�1

is empty if and only if f˛1;˛2
.˛/>0

for all ˛ 2
�
�
�
2
; �

2

�
, where

(37) f˛1;˛2
.˛/D 4 cos2

�
1
2
˛� 1

2
˛1

�
C 2 cos.˛�˛1/C 8 cos˛ cos˛1

� 16
p

cos˛ cos˛1 cos
�

1
2
˛� 1

2
˛1

�
jsin˛2j:

Proof By Corollary 7.2, it is enough to show that f Œ0�˛1;˛2
C f

Œ�1�
˛1;˛2

> 0. This sum is
made explicit in (33). In view of the second part of Proposition 4.7, we can restrict our at-
tention to showing that the triple intersection IC

0
\I�

0
\I�
�1

contains no points of @H 2
C .

That is, we may assume w D˙
p

2 cos˛ . Using the first part of Proposition 4.7 we
restrict our attention to points m in the meridian m where ˇ D 1

2
.� �˛1/. The triple

intersection is empty if and only if the sum f
Œ0�
˛1;˛2

.q/C f
Œ�1�
˛1;˛2

.q/ is positive for any
value of ˛ , where q D g

�
˛; � � 1

2
˛1;˙

p
2 cos˛

�
. When w sin˛2 is negative, all

terms in (33) are positive. Therefore we may suppose w sin˛2D
p

2 cos˛1 jsin˛2j�0.
Substituting these values in the expression for f Œ0�˛1;˛2

.q/C f
Œ�1�
˛1;˛2

.q/ given in (33)
gives the function f˛1;˛2

.˛/ in (37).

We want to convert (37) into a polynomial expression in a function of ˛ . The numerical
condition given in the statement of Proposition 4.5 will follow from the next lemma.

Lemma 7.6 If ˛ 2
�
�
�
2
; �

2

�
is a zero of f˛1;˛2

then T˛ D tan
�

1
2
˛
�
2 Œ�1; 1� is a root

of the quartic polynomial L˛1;˛2
.T /, where

(38) L˛1;˛2
.T /D T 4.2x4

1x4
2�4x2

1x4
2Cx4

1C10x2
1C1/�8T 3 sin˛1.x

2
1x4

2�x2
1�1/

�2T 2.2x4
1x4

2C3x4
1�9/C8T sin˛1.x

2
1x4

2�x2
1C1/

C.2x4
1x4

2C4x2
1x4

2Cx4
1�10x2

1C1/:
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Proof Squaring the two lines of (37) and using
p

2 cos˛1 jsin˛2j � 0, we see that
the condition f˛1;˛2

.˛/D 0 is equivalent to

(39) .1C2 cos.˛�˛1/C4 cos˛ cos˛1/
2
D 64 cos˛ cos˛1 cos2

�
1
2
.˛�˛1/

�
sin2 ˛2:

After rearranging and expanding, we obtain the following polynomial equation in cos˛
and sin˛ :

0D 4.8 cos2 ˛1 cos2 ˛2C 2 cos2 ˛1� 1/ cos2 ˛

C 8 cos˛1 sin˛1.4 cos2 ˛2� 1/ cos˛ sin˛

C 4 cos˛1.8 cos2 ˛2� 5/ cos˛C 4 sin˛1 sin˛� 4 cos2 ˛1C 5:

Substituting tan
�

1
2
˛
�
D T , 2 cos˛1 D x2

1
and 2 cos˛2 D x2

2
into this equation gives

L˛1;˛2
.T /.

Before proving Proposition 4.5, we analyse the situation on the axes ˛1D 0 and ˛2D 0.

Lemma 7.7 Let L˛1;˛2
.T / be given by (38).

(1) When ˛2D 0 and ��
6
< ˛1 <

�
6

, the polynomial L˛1;0.T / has two real double
roots T� and TC , where T� < �1 and TC > 1, and no other roots.

(2) When ˛1 D 0 and 0< ˛2 < ˛
lim
2

or �˛lim
2
< ˛2 < 0, the polynomial L0;˛2

.T /

has no real roots.

Proof First, substituting ˛2 D 0 in (38) we find L.˛1;0/ DM˛1
.T /2 , where

M˛1
.T /D T 2.3x2

1 � 1/� 4T sin˛1� .3x2
1 C 1/:

The condition on ˛1 guarantees that 3x2
1
� 1 > 0 and so, as T tends to ˙1, also

M˛1
.T / tends to C1. On the other hand,

M˛1
.�1/D 4 sin˛1� 2< 0; M˛1

.1/D�4 sin˛1� 2< 0:

Therefore M˛1
.T / has two real roots T� < �1 and TC > 1, as claimed. Since

M˛1
.T / is quadratic, it cannot have any more roots. In particular, it is negative for

�1� T � 1.

Secondly, we substitute ˛1 D 0 in (38), giving

L0;˛2
.T /D

�
5T 2
�

1
5
.8x4

2 C 3/
�2
C

32
25
.2x4

2 � 3/.4�x4
2/:

When ˛2 2 .�˛
lim
2
; ˛lim

2
/ and ˛2 ¤ 0, we have x4

2
D 4 cos2 ˛2 2

�
3
2
; 4
�
. In particular,

this means that .2x4
2
� 3/.4�x4

2
/ > 0 and so L0;˛2

.T / has no real roots, proving the
second part.

We note that if ˛1 D ˛2 D 0 then L0;0.T / has double roots at T D ˙
p

7=5 and, if
˛1 D 0 and ˛2 D˙˛

lim
2

, then L0;˙˛lim
2
.T / has double roots at T D˙

p
3=5.
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Lemma 7.8 If .˛1; ˛2/2Z then the polynomial L˛1;˛2
.T / has no roots T in Œ�1; 1�.

Proof We analyse the number, type (real or nonreal) and location of roots of the poly-
nomial L˛1;˛2

.T / when .˛1; ˛2/ 2R. As L˛1˛2
.T / has real coefficients, whenever

it has only simple roots, its root set is of one of the following types:

(a) two pairs of complex conjugate nonreal simple roots,

(b) a pair of nonreal complex conjugate simple roots and two simple real roots,

(c) four simple real roots.

But the set of roots of a polynomial is a continuous map (in bounded degree) for
the Hausdorff distance on compact subsets of C . In particular, the root set type of
L˛1;˛2

.T / is a continuous function of ˛1 and ˛2 . This implies that it is not possible
to pass from one of the above types to another without passing through a polynomial
having a double root.

We compute the discriminant �˛1;˛2
of L˛1;˛2

.T / (a computer may be useful to do
so):

(40) �˛1;˛2
D216x4

1.x
4
1C1/2.2x2

1.2�x2
1/.4�x4

2/C.3x2
1�1/2/.4�x4

2/
2
�D.x4

1 ;x
4
2/;

where D.x;y/ is as in Proposition 4.5, and xiD
p

2 cos˛i . The polynomial L˛1;˛2
.T /

has a multiple root in C if and only if �˛1˛2
D 0. Let us examine the different factors.

� The first two factors x4
1

and .x4
1
C 1/2 are positive when .˛1; ˛2/ 2

�
�
�
2
; �

2

�2 .
� Note that .2� x2

1
/.4� x4

2
/ � 0 and .3x2

1
� 1/2 > 0 when

p
3 � x2

1
� 2 and

x4
2
� 4, and so the third factor is positive.

Thus, the only factors of �˛1;˛2
that can vanish on R are .4 � x4

2
/2 D 16 sin4 ˛2

and D.x4
1
;x4

2
/. In particular L˛1;˛2

.T / has a multiple root in C if and only if one
of these two factors vanishes. We saw in Proposition 4.6 that the subset of R where
D.x4

1
;x4

2
/ > 0 is a topological disc Z , symmetric about the ˛1 and ˛2 axes and inter-

secting them in the intervals
˚
˛2D 0; ��

6
<˛1<

�
6

	
and f˛1D 0; �˛lim

2
<˛2<˛

lim
2
g.

Therefore, the rectangle R contains two open discs on which �˛1;˛2
> 0, namely

ZC D f.˛1; ˛2/ 2 Z W ˛2 > 0g; Z� D f.˛1; ˛2/ 2 Z W ˛2 < 0g:

These two sets each contain an open interval of the ˛2 axis. We saw in the second part
of Lemma 7.7 that on both these intervals L˛1;˛2

.T / has no real roots, that is its roots
are of type (a). Therefore it has no real roots on all of ZC and Z� .

Only those points of Z in the interval
˚
˛2 D 0; ��

6
< ˛1 <

�
6

	
still need to be

considered. We saw in the first part of Lemma 7.7 that, for such points, L˛1;˛2
.T / has

no roots with �1� T � 1. This completes the proof of Proposition 4.5.
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7.4 Pairwise intersection: proof of Proposition 4.8

Proposition 4.8 will follow from the next lemma.

Lemma 7.9 If 0< x � 4 and D.x;y/� 0 then xy � 6, with equality if and only if
.x;y/D

�
4; 3

2

�
.

Proof Substituting y D 6=x in (35) and simplifying, we obtain

D
�
x;

6

x

�
D�

27.x�4/.x�9/

x
:

When 0< x � 4 we see immediately that this is nonpositive and equals zero if and only
if xD 4. This means that xy�6 has a constant sign on the region where D.x;y/ > 0.
Checking at .x;y/D .4; 4/, we see that it is positive.

Proof of Proposition 4.8 To prove the disjointness of the given isometric spheres we
calculate the Cygan distance between their centres. Since all the isometric spheres have
radius 1, if we can show their centres are a Cygan distance at least 2 apart, then the
spheres are disjoint. (Note that the Cygan distance is not a path metric, so it may be
the distance is less than 2 but the spheres are still disjoint. This will not be the case in
our examples.)

The centre of IC
k

is

Ak.pB/D
�

1p
2
kx1x2

2 ; kx2
1x2

2 sin˛2

�
I

see Proposition 4.2. We will show that dCyg.A
k.pB/;pB/

4 > 16 when k2 � 4 and
.˛1; ˛2/ 2R, that is, .x4

1
;x4

2
/ 2 Œ3; 4��

�
3
2
; 4
�
:

dCyg.A
k.pB/;pB/

4
D

1
4
.k4x4

1x8
2 C k2x4

1x4
2.4�x4

2//�
27
16

k4:

This number is greater than 16 when k�2 or k��2 as claimed. Using Proposition 4.2
again, the centre of I�

k
is

Ak.pAB/D
�

1p
2
.kx1x2

2 Cx1ei˛2/;� sin˛1

�
:

We suppose that the pair .x4
1
;x4

2
/ 2 Œ3; 4��

�
3
2
; 4
�

satisfies x4
1
x4

2
� 6, which is valid

for .˛1; ˛2/ 2 Z by Lemma 7.9. Then

dCyg.A
k.pAB/;pB/

4
D

1
4
..k.kC 1/x2

1x4
2 Cx2

1/
2
C 4�x4

1/

D 1C 1
4
.k2.kC 1/2x4

1x8
2 C 2k.kC 1/x4

1x4
2/

�
�

3
2
k.kC 1/C 1

�2
:

This number is at least 16 when k � 1 or k � �2, as claimed. Moreover, we have
equality exactly when k D 1 or k D �2 and when x4

1
x4

2
D 6 and x4

2
D

3
2

; that is,
when .x4

1
;x4

2
/D

�
4; 3

2

�
.
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I�
�1

I�
0

I�
1

�'

IC
�1 IC0 IC1

F0

F�1

Figure 11: Vertical projection and realistic view of the isometric spheres and
the fans F0 and F�1 for the parameter values ˛1 D 0 , ˛2 D ˛

lim
2 . Compare

with Figure 5.

7.5 The ideal boundary @1D is a cylinder: proof of Proposition 6.8

To prove Proposition 6.8, we adopt the following strategy:

Step 1 First, we intersect D with a fundamental domain DA for the action of A on
the Heisenberg group. The domain DA is bounded by two parallel vertical planes F�1

and F0 that are boundaries of fans in the sense of [17]. These two fans are such that
A.F�1/ D F0 (see Figure 11 for a view of the situation in vertical projection). We
analyse the intersections of F0 and F�1 with D , and show that they are topological
circles, denoted by c�1 and c0 with A.c�1/D c0 .

Step 2 Secondly, we consider the subset of the complement of D which is contained
in DA , and prove that it is a 3–dimensional ball that intersects F�1 and F0 along
topological discs (bounded by c�1 and c0 ). This proves that D\DA is the complement
a solid tube in DA , which is unknotted using Lemma 6.7. Finally, we prove that, gluing
together copies by powers of A of D \DA , we indeed obtain the complement of a
solid cylinder.

We construct a fundamental domain DA for the cyclic group hAi of Heisenberg
translations. The domain DA will be bounded by two fans, chosen to intersect as few
bisectors as possible. The fan F0 will pass through pST �1 and will be tangent to
both IC

1
and I�

�1
; compare Figure 11. Similarly, F�1 DA�1.F0/ will pass through

A�1.pST �1/D pTST and be tangent to both IC
0

and I�
�2

. We first give F0 and F�1
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in terms of horospherical coordinates and then we give them in terms of their own
geographical coordinates (see [17]). In horospherical coordinates they are

F0 D
˚
ŒxC iy; t � W 3x

p
3�y

p
5D

p
2

2

	
;(41)

F�1 D fŒxC iy; t � W 3x
p

3�y
p

5D�4
p

2g:(42)

This leads to the definition of DA :

(43) DA D
˚
ŒxC iy; t � W �4

p
2� 3x

p
3�y

p
5�

p
2

2

	
:

We choose geographical coordinates .�; �/ on F0 : the lines where � is constant
(resp. � is constant) are boundaries of complex lines (resp. Lagrangian planes). These
coordinates correspond to the double foliation of fans by real planes and complex lines,
which is described in [17, Section 5.2]. The particular choice is made so that the origin
is the midpoint of the centres of IC

0
and I�

0
. Doing so gives the fan F0 as the set of

points f .�; �/:

f .�; �/D
˚�

1

4
p

2
.
p

5�C
p

3C 3i
p

3�C i
p

5/; �� �
4

�
W �; � 2R

	
:

The standard lift of f .�; �/ is given by

f .�; �/D

264��2�

p
15
4
� � 1

4
C i�� i

4
�

p
5

4
�C

p
3

4
C

3i
p

3
4
�C i

p
5

4

1

375 :
Using the convexity of Cygan spheres, we see that their intersection with F0 (or F�1 )
is one of: empty, a point or a topological circle. For the particular fans and isometric
spheres of interest to us, the possible intersections are summarised in the following
result:

Proposition 7.10 The intersections of the fans F�1 and F0 with the isometric spheres
I˙

k
are empty, except for those indicated in the following table:T

I�
�2

IC
�2

I�
�1

IC
�1

I�
0

IC
0

I�
1

IC
1

F0 ∅ ∅ fpST �1g ∅ a circle a circle ∅ fpST �1g

F�1 fpTST g ∅ a circle a circle ∅ fpTST g ∅ ∅

Moreover, the point pS�1T belongs to the interior of DA . The parabolic fixed
points Ak.pST �1/ lie outside DA for all k � 1 and k � �1; parabolic fixed points
Ak.pS�1T / lie outside DA for all k ¤ 0.
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A direct consequence of this proposition is that the only point in the closure of the
quadrilateral Q�

�1
and the bigon B�

�1
that lie on F0 is their vertex pTST .

Proof The part about intersections of fans and isometric spheres is proved easily by
projecting vertically onto C , as in the proof of Proposition 4.8 (see Figure 11). Note
that as isometric spheres are strictly convex, their intersections with a plane is either
empty or a point or a topological circle. The part about the parabolic fixed points is a
direct verification using (41) as well as (27).

We need to be slightly more precise about the intersection of F0 with IC
0

and I�
0

.

Proposition 7.11 The intersection of F0 with IC
0
[ I�

0
(and thus with @D ) is a

topological circle c0 , which is the union of two topological segments cC
0

and c�
0

,
where the segment c˙

0
is the part of F0 \ I˙

0
that is outside I�

0
. The two segments

cC
0

and c�
0

have the same endpoints; one of them is pST �1 , and we will denote the
other by q0 . Moreover, the point q0 lies on the segment ŒpSTS ;pS�1T � of IC

0
\ I�

0
.

The point q0 appears in Figures 12, 13 and 14.

Proof The point f .�; �/ of the fan F0 lies on IC
0

whenever 1 D jhf .�; �/;pBij

and on I�
0

whenever 1D jhf .�; �/;pABij. We first find all points on F0\ IC
0
\ I�

0
.

These correspond to simultaneous solutions to

(44) 1D jhf .�; �/;pBij D jhf .�; �/;pABij

Computing these products and rearranging, we obtain

jhf .�; �/;pBij
2
D
�
�2
C

1
4

�2
C �2

C �2
C

1
2
�
�p

15�2
C

p
15
4
� �

�
;

jhf .�; �/;pABij
2
D
�
�2
C

1
4

�2
C �2

C �2
�

1
2
�
�p

15�2
C

p
15
4
� �

�
:

Q0C0

F0\ IC
0

T C0

pSTS

q0 pS�1T

pST �1

pT ST

Figure 12: The intersection of F0 with IC
0

drawn on IC
0

in geographical coordinates
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IC
0
\F0

pST �1

c�
0

I�
0
\F0

q0
cC

0

Figure 13: The intersection of F0 with IC0 \ I�
0

. The disc D0 is the interior
of c0 D cC

0 \ c�0 . The two segments cC
0

and c�
0

are the thicker parts of
F0\ IC

0
and F0\ I�

0
.

Subtracting, we see that solutions to (44) must either have � D 0 or �D
p

15
�
�2C

1
4

�
.

Substituting these solutions into 1D jhf .�; �/;pBij
2 , we see first that � D 0 implies

1D �2C
1

16
, and secondly that �D

p
15
�
�2C

1
4

�
implies

1D
�
�2
C

1
4

�2
C �2

C 15
�
�2
C

1
4

�2
D .4�2

C 1/2C �2:

Clearly the only solution to this equation is � D 0. So both cases lead to the solu-
tions .�; �/D

�
0;˙

p
15
4

�
. Thus the only points satisfying (44), that is, the points in

F0\ IC
0
\ I�

0
, are

f
�
0;
p

15
4

�
D
�p

3Ci
p

5

4
p

2
;
p

15
4

�
and f

�
0;�

p
15
4

�
D
�p

3Ci
p

5

4
p

2
;�
p

15
4

�
:

Note that the first of these points is pST �1 . We call the other point q0 .

These two points divide F0 \ IC
0

and F0 \ I�
0

into two arcs. It remains to decide
which of these arcs is outside the other isometric sphere. Clearly

jhf .�; �/;pBij> jhf .�; �/;pABij if and only if �
�p

15�2
C

p
15
4
� �

�
> 0:

Close to �D�
p

15
4

we see this quantity changes sign only when � does. This means
that if f .�; �/ 2 I�

0
with � > 0 then f .�; �/ is in the exterior of IC

0
. Similarly, if

f .�; �/ 2 IC
0

with � < 0 then f .�; �/ is in the exterior of I�
0

. In other words, cC
0

is
the segment of F0\ IC

0
where � < 0 and c�

0
is the segment of F0\ I�

0
where � > 0.

Finally, consider the involution I2DSI1 in PU.2; 1/ from the proof of Proposition 3.8.
(Note that since ˛1 D 0, this involution conjugates � lim to itself.) The involution I2

preserves F0 , acting on it by sending f .�; �/ to f .��; �/, and hence interchanging
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pTST pST �1

pST �1pTST

cC
0

q0

c�0c�
�1

q�1

cC
�1

T C
�1

Q0��1

B�
�1

Q0C0

T �
0

BC
0

pS�1T

Figure 14: A combinatorial picture of the intersection of @D with DA . The
top and bottom lines are identified. The curve c0 corresponds to the right-
hand side of the figure.

the components of its complement. In Heisenberg coordinates I2 is given by

(45) I2W ŒxC iy; t � !
�
�x� iyC

p
3=8C i

p
5=8; t �

p
5=2 xC

p
3=2 y

�
:

As I2 is elliptic and fixes the point q1 , it is a Cygan isometry (see Section 2.4). Since it
interchanges pB and pAB , it also interchanges IC

0
and I�

0
. Hence their intersection is

preserved setwise. The involution I2 also interchanges pS�1T and pSTS contained in
IC

0
\I�

0
(but not on F0 ). Therefore, these two points lie in different components of the

complement of F0 . Hence there must be a point of F0 on the segment ŒpS�1T ;pSTS �.
This point cannot be pST �1 , and so must be q0 (see Figure 12).

Let Dc denote the closure of the complement of D in @H 2
C �fq1g.

Proposition 7.12 The closure of the intersection Dc \DA is a solid tube homeomor-
phic to a 3–ball.

Proof We describe the combinatorial cell structure of Dc\DA ; see Figure 14. Using
Proposition 7.11, it is clear Dc intersects F0 in a topological disc whose boundary
circle is made up of two edges c˙

0
and two vertices pST �1 and q0 . Combinatorially,

this is a bigon. Applying A�1 we see Dc intersects F�1 in a bigon with boundary
made up of edges c˙

�1
and two vertices pTST and q�1 .

Moreover, Proposition 7.11 immediately implies that c0 cuts Q˙
0

into a quadrilat-
eral and a triangle, which we denote by Q0˙0 and T ˙

0
. Since DA contains pS�1T

and pTST , we see that DA contains Q0C0 and T �
0

. These have vertex sets

fpST �1 ; pTST ; pS�1T ; q0g and fpS�1T ; pST �1 ; q0g;

respectively. Applying A�1 we see that c�1 cuts Q˙
�1

into a quadrilateral, denoted
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by Q0˙�1 , and a triangle, denoted by T ˙
�1

. Of these, the quadrilateral Q0��1 and the
triangle T C

�1
lie in DA . Finally, the bigons BC

0
and B�

�1
also lie in DA .

In summary, the boundary of Dc \DA has a combinatorial cell structure with five
vertices fpST �1 ; pS�1T ; pTST ; q0; q�1g and eight faces,

fQ0C0 ; Q
0�

�1; T
�

0 ; T
C

�1
; BC

0
; B�
�1; F0\Dc ; F�1\Dc

g:

These are respectively two quadrilaterals, two triangles and four bigons. Therefore, in
total the cell structure has 1

2
.2� 4C 2� 3C 4� 2/D 11 edges. Therefore the Euler

characteristic of @.Dc \DA/ is

�.@.Dc
\DA//D 5� 11C 8D 2:

Hence @.Dc \DA/ is indeed a sphere. This means Dc \DA is a ball, as claimed.

Remark 7.13 The combinatorial structure described on Figure 14 is quite simple.
However, the geometric realisation of this structure is much more intricate. As an
example, there are fans F parallel to F0 and F�1 whose intersections with Dc are
disconnected. This means that the foliation described right after Proposition 6.8 that is
used in the proof of Theorem 6.4 is actually quite “distorted”.

Proposition 7.14 There is a homeomorphism ‰AW R
2 � Œ0; 1�! DA that satisfies

‰A.x;y; 1/DA‰A.x;y; 0/ and such that ‰A restricts to a homeomorphism from the
exterior of S1 � Œ0; 1�, that is, f.x;y; z/ W x2Cy2 � 1; 0� z � 1g, to D\DA .

Proof We have shown in Proposition 7.12 that Dc\DA is a solid tube homeomorphic
to a 3–ball and (using Proposition 7.11) that Dc intersects @DA in two discs, one in
F0 bounded by c0 and the other in F�1 bounded by c�1 . This means we can construct
a homeomorphism ‰c

A
from the solid cylinder f.x;y; z/ W x2Cy2 � 1; 0� z � 1g to

Dc\DA such that the restriction of ‰c
A

to S1�Œ0; 1� is a homeomorphism to @D\DA ,
with ‰c

A
W S1 � f0g 7! c�1 and ‰c

A
W S1 � f1g 7! c0 . Adjusting ‰c

A
if necessary, we

can assume that ‰c
A
.x;y; 1/DA‰c

A
.x;y; 0/.

Furthermore, in Lemma 6.7, we showed that Dc contains the invariant line �'
of ' . This means that the cylinder Dc \DA is a thickening of �' \DA and so,
in particular, it cannot be knotted. Hence ‰c

A
can be extended to a homeomorphism

‰AW R
2 � Œ0; 1�!DA satisfying ‰A.x;y; 1/DA‰A.x;y; 0/. In particular, ‰ maps

f.x;y; z/ W x2Cy2 � 1; 0� z � 1g homeomorphically to D\DA , as claimed.

Finally, we prove Proposition 6.8 by extending ‰AW R
2�Œ0; 1�!DA equivariantly to a

homeomorphism ‰W R3 7! @H 2
C�fq1g. That is, if .x;y; zCk/2R3 with k 2Z and

z 2 Œ0; 1�, we define ‰.x;y; zC k/D Ak.x;y; z/. Since ‰.x;y; 1/D A‰.x;y; 0/,
there is no ambiguity at the boundary.
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The nilpotence theorem for the algebraic K –theory
of the sphere spectrum

ANDREW J BLUMBERG

MICHAEL A MANDELL

We prove that in the graded commutative ring K�.S/ , all positive degree elements
are multiplicatively nilpotent. The analogous statements also hold for TC�.S/^p
and K�.Z/ .

19D10

1 Introduction

Much of the most exciting work in algebraic K–theory over the past 15 years has
been aimed at the verification of the Quillen–Lichtenbaum conjecture. The successful
affirmation of this conjecture has led to the identification of the homotopy types of the K–
theory of the integers Z and the K–theory of the sphere spectrum S at regular primes;
see Dwyer and Mitchell [15], Rognes [29; 30] and Rognes and Weibel [31]. Since HZ
and S are E1 ring spectra, K.Z/ and K.S/ are E1 ring spectra and the graded
rings K�.S/D ��K.S/ and K�.Z/D ��K.Z/ are commutative. However, almost
nothing is known about the multiplicative structure. The only work in this direction so
far is the investigation of Bergsaker and Rognes [4] of the Dyer–Lashof operations on
TC�.S/ at the prime 2. In this paper, we begin the study of the multiplicative structure
on the homotopy groups of K.S/ by proving the analogue of Nishida’s nilpotence
theorem.

Theorem 1 Positive degree elements of K�.S/ are nilpotent.

On the way to proving the preceding theorem, we show the corresponding nilpotence
result for K�.Z/. We deduce this by observing that K2n.p�1/.Z/˝Z.p/ D 0 for odd
primes p and n> 0; it can also be deduced from the multiplicative properties of the
Quillen–Lichtenbaum spectral sequence.

Theorem 2 Positive degree elements of K�.Z/ are nilpotent.

Much of the interest in K.S/ comes from its identification as A.�/, Waldhausen’s
algebraic K–theory of the one-point space. Work of Waldhausen and collaborators
shows that A.X / controls high-dimensional manifold theory (eg see Waldhausen,
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3454 Andrew J Blumberg and Michael A Mandell

Jahren and Rognes [37] and Weiss and Williams [40]) via the connection to the stable
pseudoisotopy spectrum Wh.X /. Rognes shows that the infinite loop space structure
on Wh.�/ that is relevant to the Hatcher–Waldhausen map G=O!�Wh.�/, where
G=O denotes the classifying spectrum for smooth normal invariants, is induced by the
ring structure on A.�/; see Rognes [28]. Moreover, A.X / is a module over A.�/;
more generally, for any ring spectrum (or even any Waldhausen category that admits
factorization; see Blumberg and Mandell [7; 8]), the algebraic K–theory spectrum is a
module over A.�/.

Theorem 1 also has direct implications in the context of Kontsevich’s noncommutative
motives. The work of Blumberg, Gepner and Tabuada [5; 6] produces a candidate
category of spectral motives Motex , which is a symmetric monoidal category with
objects the smooth and proper small stable idempotent-complete 1–categories. The
category of spectral motives is stable, which in particular implies that it has a tensor-
triangulated homotopy category and is enriched over spectra; the mapping spectra are
essentially bivariant algebraic K–theory. The endomorphism spectrum of the unit is
precisely K.S/ (as an E1 ring spectrum).

The Devinatz–Hopkins–Smith nilpotence theorem and the Hopkins–Smith thick subcat-
egory theorem teach us that to understand a triangulated category, we should look to its
thick subcategories, which play the role of prime ideals in derived algebraic geometry;
see Hopkins [21], Neeman [25] and Thomason [35]. More recently, Balmer [1; 2]
proposes a systematic study of this in the setting of “tensor-triangulated geometry”,
defining the triangulated spectrum to be the space of prime proper thick triangulated
tensor ideals (with the Zariski topology). Balmer observes that there is a canonical map
from the triangulated spectrum to the spectrum of the graded ring of endomorphisms
of the unit and that in many known examples, the spectrum of the endomorphism
ring controls the triangulated spectrum of the tensor-triangulated category. Our main
theorem is the first step in realizing this program for spectral motives.

In a different direction, Morava has developed a conjectural program for studying
a homotopy-theoretic analogue of Kontsevich’s Grothendieck–Teichmüller group —
see Kitchloo and Morava [22] and Morava [24] — in terms of homotopical descent
for the category of spectral motives. These ideas revolve around understanding the
structure of S^L

K.S/S , which of course depends on the ring structure of K.S/. Morava
notes that the calculation of this object is straightforward rationally and results in
a concise description as a polynomial algebra on even degree generators: it is the
polynomial algebra on the free Lie coalgebra Lhx6;x10;x14; : : : i on generators in
degrees 6, 10, 14, etc. (It is a Hopf algebra with coalgebra the tensor coalgebra on
��†Wh.�/Q Š ��†6koQ , where Wh.�/ is the fiber of the map K.S/! S .) Our
results give the first progress in the direction of the torsion part of this theory.
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2 Reduction of Theorems 1 and 2

Consider the arithmetic square

K.S/ //

��

Q
p

K.S/^p

��

K.S/Q //
�Q

p
K.S/^p

�
Q

where .�/^p denotes p–completion (localization with respect to the mod p Moore
spectrum) and .�/Q denotes rationalization. To prove Theorem 1, it suffices to prove
the analogous nilpotence results for K.S/Q and K.S/^p for each prime p ; this is
easy to see for K.S/ because ��K.S/ is finitely generated in each degree [14, 1.2],
which implies that ��.K.S/^p/�D .��K.S//˝Z^p ; see [12, 2.5]. (Similar observations
apply to K.Z/ for Theorem 2; see [27].). The rational part is well understood: the
natural map K.S/Q!K.Z/Q is an equivalence [36, 2.3.8], and classical results of
Borel [11, 12.2] imply that the positive degree elements of ��K.Z/Q are concentrated
in odd degrees and therefore square to zero. It remains to study the situation after
p–completion.

Our strategy for studying the multiplicative structure on K.S/^p uses the cyclotomic
trace map, which is a map of E1 ring spectra from K.S/ to the topological cyclic
homology TC.S/. The homotopy type of TC.S/^p (as a spectrum) is known by work
of [9].

Theorem 2.1 [9, 5.16] There is an equivalence of p–complete spectra

TC.S/^p ' S^p _ hofib.†.†1CCP1/! S/^p ' S^p _ .CP1
�1/
^
p :

The Devinatz–Hopkins–Smith nilpotence theorems provide a criterion for determining
when elements in the homotopy groups of a ring spectrum R are multiplicatively
nilpotent. Specifically, an element x 2 ��R is nilpotent if and only if the Hurewicz
map takes it to a nilpotent element of K.n/�R for all 0� n�1 (and all primes p ).
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Although the previous theorem only identifies the homotopy type of the underlying
spectrum and says nothing about the multiplication, it is enough to deduce a nilpotence
result for TC.S/^p .

Proposition 2.2 Let p be a prime, let 0� n�1, and let �TC.SIp/ be the homotopy
fiber of the augmentation map TC.S/^p ! S^p (obtained from the canonical map
TC.S/^p ! THH.S/^p ' S^p ). Then K.n/�. �TC.SIp// is concentrated in odd degrees.

Proof As a consequence of Theorem 2.1, �TC.SIp/ ' †.CP1
�1
/^p . The spectrum

CP1
�1

is the Thom spectrum of the virtual bundle � , for  the tautological line
bundle over CP1 . The spectra K.n/ are all complex oriented; the proposition now
follows from the Thom isomorphism.

Since ��.TC.S/^p/ splits as ��S^p ˚�� �TC.SIp/, with the first factor the image of
the inclusion of the unit, we obtain the following as an immediate corollary of the
previous proposition and the nilpotence theorem.

Theorem 2.3 For any prime p , all the nonzero degree elements of ��TC.S/^p are
nilpotent.

In light of the previous result, Theorem 1 becomes an immediate consequence of the
following lemma. We prove this lemma for odd p in later sections; for p D 2 it is a
special case of [29, 3.16].

Lemma 1 For p D 2, let d D 8, and for p odd, let d D 2.p � 1/. The homotopy
fiber of the cyclotomic trace map trcpW K.S/^p! TC.S/^p has trivial homotopy groups
in degrees kd for k > 0.

Proof of Theorem 1 from Lemma 1 Given x 2 �kK.S/^p , xd 2 �kdK.S/^p . When
k > 0, we then know that for some power n, .xd /n maps to zero in �kdn.TC.S/^p/
under the trace map by Theorem 2.3. By Lemma 1, the kernel of the trace is zero in
degree kdn, and so xkdn D 0.

As we used in the proof, Lemma 1 implies that the cyclotomic trace K.S/! TC.S/
is injective in certain degrees. In fact, for odd regular primes, the cyclotomic trace
is injective in all degrees. This follows from the work of Rognes on Wh.�/ at odd
regular primes, specifically [30, 3.6 and 3.8]. In the case of irregular primes, we expect
that the trace fails to be injective; we hope to return to this question in a future paper.

On the way to proving Lemma 1, we also prove the following lemma. It is well known
that �4kK.Z/˝ Z.p/ D 0 at regular primes, including p D 2 (see [39, 10.1], for
example), and this combined with the following lemma now proves Theorem 2.

Lemma 2 For p an odd prime, �2.p�1/kK.Z/˝Z.p/ D 0 for k > 0.
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3 Reduction of Lemmas 1 and 2

The basic strategy for the proof of Lemmas 1 and 2 is to reduce the study of the
homotopy fiber of the cyclotomic trace K.S/^p ! TC.S/^p to the study of the p–
completion map ZŒ1=p�!Q^p in étale cohomology. (This is now a fairly standard
approach; for instance, see [30, Sections 2–3; 17; 19].) As indicated above, from here
on we assume that p is odd (though all of what we say would also apply in the case
p D 2 until (3.6)). First, we apply Dundas’ theorem [13] about the cyclotomic trace:
the square

K.S/^p //

trcp

��

K.Z/^p

trcZ
p

��

TC.S/^p // TC.Z/^p

is homotopy cocartesian, where the horizontal maps arise from linearization. As a
consequence, we have the following lemma:

Proposition 3.1 (Dundas [13]) The induced map hofib.trcp/! hofib.trcZ
p / is an

equivalence.

To understand hofib.trcZ
p /, consider the commutative diagram

K.Z/^p
cmp

//

trcZ
p

��

K.Z^p/
^
p

trc
Z^

p
p

��

TC.Z/^p
cmpTC

// TC.Z^p/
^
p

where the horizontal maps cmp and cmpTC are induced by the map of rings Z! Z^p .
By work of Hesselholt and Madsen [20], the bottom map is a weak equivalence [20,
Addendum 6.2] and the right-hand map induces a weak equivalence [20, Theorem D]

(3.2) K.Z^p/
^
p ! TC.Z^p/

^
p Œ0;1/

(where Œ0;1/ denotes the connective cover). Thus, up to passing to a connective cover,
we can identify the trace map trcZ

p as the map cmpW K.Z/^p ! K.Z^p/
^
p . We then

have the following relationship between hofib.trcp/' hofib.trcZ
p / and hofib.cmp/.

Proposition 3.3 There is a cofiber sequence

hofib.cmp/! hofib.trcp/!†�2HZ^p !† � � �

Geometry & Topology, Volume 21 (2017)
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Proof Using the equivalence of hofib.trcp/ and hofib.trcZ
p / above, we get a diagram

of cofiber sequences

hofib.cmp/ //

��

K.Z/^p
cmp
// K.Z^p/

^
p

//

trc
Z^

p
p
��

† hofib.cmp/

��

hofib.trcp/ // K.Z/^p // TC.Z^p/
^
p

// † hofib.trcp/

identifying the right-hand square as homotopy (co)cartesian. Since ��1TC.Z/^p DZ^p
and �nTC.Z/^p D 0 for n<�1, the homotopy cofiber of the map trcZ^

p
p in the diagram

is †�1HZ^p . Desuspending, we see that the homotopy cofiber of

hofib.cmp/! hofib.trcp/

is †�2HZ^p .

For Lemma 1 then, hofib.cmp/ works just as well as hofib.trcp/. Quillen’s localization
sequence [26] gives cofiber sequences

(3.4)

K.Z=p/ //

id
��

K.Z/ //

��

K.ZŒ1=p�/ //

��

† � � �

K.Z=p/ // K.Z^p/ // K.Q^p/ // † � � �

from which we can see that hofib.cmp/ is equivalent to the homotopy fiber of the map

cmp0W K.ZŒ1=p�/^p !K.Q^p/
^
p :

Proposition 3.5 There is a homotopy equivalence hofib.cmp/! hofib.cmp0/.

The advantage of this approach is that étale cohomology methods at the prime p can
be applied in rings where p is a unit. Let R denote either ZŒ1=p� or Q^p ; then R

satisfies the “mild extra hypotheses” of Thomason [34, 0.1], which gives a spectral
sequence

(3.6) E
s;t
2
DH s

ét
�
Spec RIZ=pn

�
1
2
t
��
D) �t�s.Két.R/IZ=p

n/

from étale cohomology to the mod pn homotopy groups of (Dwyer–Friedlander) étale
K–theory. In the formula above

Z=pn
�

1
2
t
�
D

�
�
˝.t=2/
pn if t is even;

0 if t is odd;
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where �pn denotes the .pn/th roots of 1 (ie �pn.A/ D fx 2 A j xpn

D 1g, a sheaf
in the étale topology). In this case the affirmed Quillen–Lichtenbaum conjecture [39,
VI.8.2] identifies

��.K.R/IZ=p
n/D ��.Két.R/IZ=p

n/

for � � 2. Also, because we have assumed that p is odd, H�ét.RIZ=p
n.k// D 0

for �> 2 [32, Section III.1.3], and the spectral sequence collapses to give an isomor-
phism and a short exact sequence

�2k�1.K.R/IZ=p
n/ �DH 1

ét.Spec RIZ=pn.k//;

(3.7) 0!H 2
ét.Spec RIZ=pn.kC 1//! �2k.K.R/IZ=p

n/

!H 0
ét.Spec RIZ=pn.k//! 0

for k > 1. In fact, the calculation of the H 0
ét term is well known:

Proposition 3.8 Let R D ZŒ1=p� or Q^p . Then H 0
ét.Spec RIZ=pn.k// D 0 unless

.p � 1/ j k . If k D m.p � 1/, then H 0
ét.Spec RIZ=pn.k// �D �

˝k

pi . xQ/, where pi D

gcd.jmjp;pn/ (and i D n if m D 0) and xQ is the algebraic closure of the field of
fractions of R.

Proof The inclusion of the generic point Spec Q! Spec ZŒ1=p� induces an isomor-
phism

H 0
ét.Spec ZŒ1=p�;Z=pn.k//!H 0

ét.Spec Q;Z=pn.k//I

see [32, Proposition 1]. This reduces to the case QDQ or Q^p and the étale cohomology
H 0

ét.Spec QIZ=pn.k// becomes the Galois cohomology H 0
Gal.QI�

˝k
pn . xQ//. (We will

now fix xQ and write �pn for �pn. xQ/.) Letting G D Gal.Q.�pn/=Q/, the action
of Gal. xQ=Q/ on �˝k

pn factors through G , and we can identify H 0
Gal.QI�

˝k
pn / as the

G–fixed point subgroup of �˝k
pn . We have a canonical isomorphism G D .Z=pn/�

given by letting r 2 .Z=pn/� act on ˛ 2 �pn by ˛ 7! ˛r ; then r acts on �˝k
pn by the

rk power map (ie multiplication by rk when we write the group operation additively).
Choosing r to be a generator of .Z=pn/� , the G–fixed point subgroup of �˝k

pn is
the subset where r acts by the identity, or equivalently, the subset ˛ 2 �˝k

pn such that
˛rk�1 D 1. If p� 1 does not divide k , then rk � 1 is not congruent to 0 mod p , and
the only fixed point is the identity. On the other hand, rm.p�1/� 1 is divisible by pi

(and for i < n not piC1 ) where pi D gcd.jmjp;pn/ (for m¤ 0 or i D n if mD 0),
and the G –fixed point subgroup is exactly the subgroup �˝k

pi .

Defining H�ét.�IZ
^
p.k// as the inverse limit of H�ét.�IZ=p

n.k//, we see from the
preceding proposition that for RD ZŒ1=p� or Q^p , we have H 0

ét.RIZ
^
p.k//D 0 for

Geometry & Topology, Volume 21 (2017)
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k ¤ 0. Since in these cases the homotopy groups of K.R/ are finitely generated Z^p –
modules in each degree (see [14, Section 4; 20, Theorem D; 10, 0.7]), ��K.R/^p �D
lim��.K.R/IZ=pn/. Combining these observations and the left exactness of lim, we
then get isomorphisms

(3.9)
�2k�1.K.R/

^
p/
�DH 1

ét.Spec RIZ^p.k//;

�2k.K.R/
^
p/
�DH 2

ét.Spec RIZ^p.kC 1//;

for k > 1. Combining these isomorphisms with the fact that

�2m.p�1/ hofib.trcp/ �D �2m.p�1/ hofib.cmp/ �D �2m.p�1/ hofib.cmp0/

and �2m.p�1/ hofib.cmp0/ fits in an exact sequence

�2m.p�1/C1K.ZŒ1=p�/^p // �2m.p�1/C1K.Q^p/
^
p

..
�2m.p�1/ hofib.cmp0/ // �2m.p�1/K.ZŒ1=p�/

^
p ;

Lemma 1 is now an immediate consequence of the following pair of lemmas, proved
in the next section.

Lemma 3 Let p be an odd prime. The map of rings ZŒ1=p� ! Q^p induces a
surjection

H 1
ét
�
Spec ZŒ1=p�IZ^p.m.p� 1/C 1/

�
!H 1

ét
�
Spec Q^p IZ

^
p.m.p� 1/C 1/

�
for all m> 0.

Lemma 4 Let p be an odd prime. H 2
ét.Spec ZŒ1=p�IZ^p.m.p� 1/C 1//D 0 for all

m> 0.

We can also deduce Lemma 2: Quillen’s computation of the K–theory of finite fields
implies in particular that K.Z=p/^p 'HZ^p . It then follows from Quillen’s localiza-
tion sequence (3.4) that the map K.Z/^p !K.ZŒ1=p�/^p induces an isomorphism in
homotopy groups above degree 1. Lemma 2 now follows from the isomorphisms (3.9)
and Lemma 4.

4 Proof of Lemmas 3 and 4

In this section, we prove Lemmas 3 and 4. Lemma 3 is about the p–completion map
in étale cohomology and the basic tool for studying this is the Tate–Poitou duality
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long exact sequence [33]. (Again, for examples applied to K–theory, see [30, 3.1; 17,
Section 4; 19].)

In our context, the Tate–Poitou sequence takes the following form. Let M be a finite
abelian p–group with an action of the Galois group G of the maximal extension
of Q unramified except at p (eg M D Z=pn.k/) and let .�/� denote the Pontryagin
dual, A� D Hom.A;Q=Z/; then M �.1/ is the G–module Hom.M; �1/, where
�1 denotes the G–module of all roots of 1 in the algebraic closure of Q. The low-
dimensional part of Tate–Poitou duality in the case at hand is then summarized by the
following long exact sequence [33, 3.1]:

(4.1)

0 // H 0
ét.ZŒ1=p�IM / // H 0

ét.Q
^
p IM / //

�
H 2

ét.ZŒ1=p�;M
�.1//

��
// H 1

ét.ZŒ1=p�IM / // H 1
ét.Q

^
p IM / //

�
H 1

ét.ZŒ1=p�;M
�.1//

��
// H 2

ét.ZŒ1=p�IM / // H 2
ét.Q

^
p IM / //

�
H 0

ét.ZŒ1=p�;M
�.1//

��
// 0

When M D Z=pn.k/, the first map in the sequence above,

H 0
ét.ZŒ1=p�IZ=p

n.k//!H 0
ét.Q

^
p IZ=p

n.k//;

is an isomorphism by Proposition 3.8. Likewise, when M D Z=pn.k/ for k > 1, we
see from (3.7) that H i

ét.RIZ=p
n.k// is finite for RD ZŒ1=p� or Q^p , and it follows

that the above is an exact sequence of finite groups. Taking the inverse limit over n is
then exact and we get the following Tate–Poitou sequence:

(4.2)

0 //
�
H 2

ét.ZŒ1=p�;Z=p
1.1� k//

��
// H 1

ét.ZŒ1=p�IZ
^
p.k//

// H 1
ét.Q

^
p IZ

^
p.k//

//
�
H 1

ét.ZŒ1=p�;Z=p
1.1� k//

��
// H 2

ét.ZŒ1=p�IZ
^
p.k//

// H 2
ét.Q

^
p IZ

^
p.k//

//
�
H 0

ét.ZŒ1=p�;Z=p
1.1� k//

�� // 0
For Lemmas 3 and 4, we apply (4.2) with k Dm.p� 1/C 1, combined with the main
theorem of Bayer and Neukirch [3], which relates the values of the Iwasawa p–adic
�–function with the size of étale cohomology groups. In the following theorem, j � jp
denotes the p–adic valuation on Q^p , normalized so that jpnujp D p�n , where u is a
unit in Z^p .

Theorem 4.3 (Bayer and Neukirch [3, 6.1]) Let �I .!0; s/ denote the Iwasawa zeta
function of [3, 5.1] associated to the trivial character !0 and the field Q. Let k D
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m.p�1/C1 for m¤ 0. If �I .!0; k/¤ 0 then the groups H�ét.ZŒ1=p�IZ=p
1.1�k//

are all finite (zero for � � 2) and

j�I .!
0; k/jp D

#
�
H 0

ét.ZŒ1=p�IZ=p
1.1� k//

�
#
�
H 1

ét.ZŒ1=p�IZ=p
1.1� k//

� :
The following computation of j�I .!0;m.p� 1/C 1/jp is well known.

Proposition 4.4 For m¤ 0 and k Dm.p� 1/C 1,

j�I .!
0; k/jp D

ˇ̌̌
1

mp

ˇ̌̌
p
:

Proof The Iwasawa zeta function used by Bayer and Neukirch [3, 5.1] depends on a
choice of q 2 Z^p with q � 1 mod p . For the trivial character, the formula is then

�I .!
0; s/D

p�0g0.q
1�s � 1/

1� q1�s
;

where, for Q (and any abelian extension thereof), �0 D 0 as a case of the Iwasawa
“�D0” conjecture proved by Ferrero and Washington [16] (see [3, 5.3]) and g0.x/ is the
characteristic polynomial of the action of T 2Z^p ŒŒT ��

�Dƒ on a ƒ–module denoted as
e0M in [3]. (Here ƒ is the Iwasawa algebra [38, 7.1] for Z^p

�D� <Gal.Q.�p1/=Q/
with topological generator  $ 1CT acting by ˛ 7! ˛q for x 2 �p1 .) Since, for
k Dm.p� 1/C 1 with m¤ 0,

j1� q1�k
jp D j1� q�m.p�1/

jp D j1� qjmj.p�1/
jp D

ˇ̌̌
1

m.p�1/p

ˇ̌̌
p
D

ˇ̌̌
1

mp

ˇ̌̌
p
;

it suffices to show that g0.x/ D 1. This is a special case of the main conjecture
of Iwasawa theory [23, Section 6, Conjecture] for the trivial character. Though the
exposition preceding [23, Section 9, Theorem] makes the statement appear ambiguous
in the case of the trivial character, this case was known at least as far back as [18], as
we now discuss for the benefit of those (like the authors) not expert in this theory.

Washington [38, 15.37] denotes e0M as �0X and �0X1 and shows that

g0.q.1CT /�1
� 1/D f .T /u.T /

in Z^p ŒŒT �� for u.T / a unit power series and f .x/ the characteristic polynomial of �1X ,
where X is the inverse limit of Xn and Xn

�D An is the p–Sylow subgroup of the
class group of Q.�pn/. Greenberg [18] denotes X as XK , �1X as X

Œ1�
K

, and defines
V Œ1�D �1X˝Z^

p
�p where �pDQp is the algebraic closure of Qp . The characteristic

polynomial of �1X and V Œ1� are therefore equal, and Greenberg [18, Corollary 1]
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shows that V Œ1� D 0. Thus, f .x/ D 1 and we conclude that g0.x/ D 1. (In fact,
�1X D 0 and �1XnD 0 for all n as can be seen from [38, 6.16, 13.22] and Nakayama’s
lemma.)

We can also compute H 0
ét.ZŒ1=p�IZ=p

1.1� k// using Proposition 3.8, and for k D

m.p� 1/C 1 we get

H 0
ét.ZŒ1=p�IZ=p

1.1� k//DH 0
ét
�
ZŒ1=p�IZ=p1.�m.p� 1//

�
D �

˝.1�k/

pi .Q/ �D Z^p=.mp/;

where mpDpir for r relatively prime to p , or more concisely, pi D j1=.mp/jp . The
following proposition is now immediate.

Proposition 4.5 H 1
ét.ZŒ1=p�IZ=p

1.1� k//D 0 for m¤ 0 and k Dm.p� 1/C 1.

Combining the previous proposition with the Tate–Poitou sequence (4.2), the proof of
Lemma 3 is now clear. For Lemma 4, we need the following K–theory computation of
Bökstedt and Madsen [10] and Hesselholt and Madsen [20].

Theorem 4.6 (Hesselholt and Madsen [20, Theorem D], Bökstedt and Madsen
[10, 0.7]) For m> 0,

�2m.p�1/.K.Q
^
p/
^
p/
�D Z^p=.mp/:

Proof of Lemma 4 Let k Dm.p � 1/C 1. By the previous theorem and (3.9), we
have

#
�
H 2

ét.Q
^
p IZ

^
p.k//

�
D

ˇ̌̌
1

mp

ˇ̌̌
p

and by Proposition 3.8, we have

#
��

H 0
ét.ZŒ1=p�IZ=p

1.1� k//
���
D #

�
H 0

ét.ZŒ1=p�IZ=p
1.1� k//

�
D

ˇ̌̌
1

mp

ˇ̌̌
p
:

Because the map

H 2
ét.Q

^
p IZ

^
p.k//!

�
H 0

ét.ZŒ1=p�IZ=p
1.1� k//

��
in the Tate–Poitou sequence (4.2) is surjective and the groups are the same finite
cardinality, it must therefore also be injective. The map�

H 1
ét.ZŒ1=p�IZ=p

1.1� k//
��
!H 2

ét.ZŒ1=p�IZ
^
p.k//

is therefore surjective, and Proposition 4.5 then shows that H 2
ét.ZŒ1=p�IZ

^
p.k// is

zero.
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Quasi-isometric classification of right-angled Artin groups
I: The finite out case

JINGYIN HUANG

Let G and G0 be two right-angled Artin groups. We show they are quasi-isometric if
and only if they are isomorphic, under the assumption that the outer automorphism
groups Out.G/ and Out.G0/ are finite. If we only assume Out.G/ is finite, then
G0 is quasi-isometric to G if and only if G0 is isomorphic to a subgroup of finite
index in G . In this case, we give an algorithm to determine whether G and G0 are
quasi-isometric by looking at their defining graphs.

20F65, 20F67, 20F69

1 Introduction

1.1 Backgrounds and summary of results

Given a finite simplicial graph � with vertex set fvigi2I , the right-angled Artin
group (RAAG) with defining graph �, denoted by G.�/, is given by the following
presentation:

fvi for i 2 I j Œvi ; vj �D 1 if vi and vj are joined by an edgeg:

We call fvigi2I a standard generating set for G.�/; see Section 2.4.

The class of RAAGs enjoys a balance between simplicity and complexity. On one hand,
RAAGs have many nice geometric, combinatorial and group theoretic properties (see
Charney [16] for a summary); on the other hand, this class inherits the full complexity
of the collection of finite simplicial graphs, and even a single RAAG could have very
complicated subgroups (see, for example, Bestvina and Brady [8]).

In recent years, RAAGs have become important models to understand other unknown
groups, either by (virtually) embedding the unknown groups into some RAAGs (such a
program is outlined in Wise [61, Section 6]; see also Agol [2], Hagen and Wise [31; 32],
Haglund and Wise [36], Ollivier and Wise [52], Przytycki and Wise [54; 55] and
Wise [60; 62]), or by finding embedded copies of RAAGs in the unknown groups (see
Baik, Kim and Koberda [3], Clay, Leininger and Mangahas [19], Kim and Koberda [44],
Koberda [48] and Taylor [59]).
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In this paper, we study the asymptotic geometry of RAAGs and classify a particular class
of RAAGs by their quasi-isometric types. Previously, the quasi-isometric classification
of RAAGs has been done for the following two classes:

(1) Tree groups It is shown by Behrstock and Neumann [7] that for any two
trees �1 and �2 with diameter � 3, the RAAGs G.�1/ and G.�2/ are quasi-
isometric. Higher-dimensional analogs of tree groups are studied by Behrstock,
Januszkiewicz and Neumann [5].

(2) Atomic groups A RAAG is atomic if its defining graph � is connected and
does not contain valence-one vertices, cycles of length <5 and separating closed
stars. It is shown by Bestvina, Kleiner and Sageev [9] that two atomic RAAGs
are quasi-isometric if and only if they are isomorphic.

Note that atomic groups are much more “rigid” than tree groups. We define the
dimension of G.�/ to be the maximal n such that G.�/ contains a Zn subgroup, and
it coincides with the cohomological dimension of G.�/. All atomic groups are 2–
dimensional; hence it is natural to ask what higher-dimensional RAAGs satisfy similar
rigidity properties as atomic RAAGs. This is the starting point of the current paper.

Since we are looking for RAAGs which are rigid, those with small quasi-isometry
groups would be reasonable candidates. However, even in the atomic case, the quasi-
isometry group QI.G.�// is huge; see the discussion of quasi-isometry flexibility in [9,
Section 11]. Then we turn to the outer automorphism group Out.G.�// for guidance.

Now we ask whether those RAAGs with “small” outer automorphism groups are also
geometrically rigid in an appropriate sense. Actually, “small” outer automorphism
groups and (quasi-isometric or commensurability) rigidity results come together in
several other cases: for example, higher rank lattices (Eskin [25], Eskin and Farb [26],
Kleiner and Leeb [45] and Mostow [51]), mapping class groups (Behrstock, Kleiner,
Minsky and Mosher [6] and Hamenstädt [37]), Out.Fn/ (Farb and Handel [27]), etc.
Our first result is about the quasi-isometric classification for RAAGs with finite outer
automorphism group.

Theorem 1.1 Pick G.�1/ and G.�2/ such that Out.G.�i // is finite for i D 1; 2.
Then they are quasi-isomeric if and only if they are isomorphic.

This theorem is proved in Section 4. See Theorem 4.13 for a more detailed version.

The collection of RAAGs with finite outer automorphism group is a reasonably large
class. Recall that there is a one-to-one correspondence between finite simplicial graphs
and RAAGs (see Droms [23]); thus it makes sense to talk about a random RAAG by
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considering the Erdös–Rényi model for random graphs. If the parameters of the model
are in the right range, then almost all RAAGs have finite outer automorphism group;
see Charney and Farber [18] and Day [22].

The class of 2–dimensional RAAGs with finite outer automorphism group is strictly
larger than the class of atomic RAAGs; moreover, there are plenty of higher-dimensional
RAAGs with finite outer automorphism group.

Whether Out.G.�// is finite or not can be easily read from �. We defined the closed
star of a vertex v in �, denoted by St.v/, to be the full subgraph (see Section 2.1)
spanned by v and vertices adjacent to v . Similarly, lk.v/ is defined to be the full
subgraph spanned by vertices adjacent to v . Note that this definition is slightly different
from the usual one.

By results from Laurence [49] and Servatius [57], Out.G.�// is generated by the
following four types of elements (we identify the vertex set of � with a standard
generating set of G.�/):

(1) Given a vertex v 2 �, the group automorphism defined by sending v! v�1 and
fixing all other generators.

(2) Graph automorphisms of �.

(3) If lk.w/ � St.v/ for vertices w; v 2 �, sending w! wv and fixing all other
generators induces a group automorphism, called a transvection. It is an adjacent
transvection when d.v;w/D 1, and a nonadjacent transvection otherwise.

(4) Suppose � nSt.v/ is disconnected. Then one obtains a group automorphism by
picking a connected component C and sending w! vwv�1 for each vertex
w 2 C (all other generators are fixed). It is called a partial conjugation.

Elements of type (3) or (4) have infinite order in Out.G.�// while elements of type
(1) or (2) are of finite order. Out.G.�// is finite if and only if � does not contain
any separating closed star and there do not exist distinct vertices v;w 2 � such that
lk.w/� St.v/.

Theorem 1.2 Suppose Out.G.�1// is finite. Then the following are equivalent:

(1) G.�2/ is quasi-isometric to G.�1/.

(2) G.�2/ is isomorphic to a subgroup of finite index in G.�1/.

(3) �e2 is isomorphic to �e1 .

Geometry & Topology, Volume 21 (2017)
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Here �e denotes the extension graph introduced by Kim and Koberda in [42]; see
Definition 2.11. Extension graphs can be viewed as “curve graphs” for RAAGs; see
Kim and Koberda [43]. This analog carries on to the aspect of quasi-isometric rigidity.
Namely, if G is a mapping class group and qW G0! G is a quasi-isometry, then it
is shown in [6] that G0 naturally acts on the curve graph associated with G . This is
still true if G is a RAAG with some restriction on its outer automorphism group, for
example, if Out.G/ is finite.

However, in general, there exists a pair of commensurable RAAGs with different
extension graphs; see Example 3.22. There also exists a pair of RAAGs, not quasi-
isometric, with isomorphic extension graphs; see Huang [38, Section 5.3].

Motivated by Theorem 1.2(2), we now look at finite-index RAAG subgroups (ie sub-
groups which are also RAAGs) of G.�1/.

Given a RAAG G.�/ (not necessarily having a finite outer automorphism group) with
a standard generating set S , let dS be the word metric on G.�/ with respect to S .
A subset K �G.�/ is S –convex if for any three points x; y 2K and z 2G.�/ such
that dS .x; y/ D dS .x; z/C dS .z; y/, we must have z 2 K . Every finite S –convex
subset K naturally gives rise to a finite-index RAAG subgroup G �G.�/ such that K
is the fundamental domain of the left action GÕG.�/. For example, if G.�/DZ˚Z
and K is a rectangle of size n by m, then the corresponding subgroup is of the form
nZ˚mZ. The detailed construction in the more general case is given in Section 6.1.
G is called an S –special subgroup of G.�/. A subgroup of G.�/ is special if it is
S –special for some standard generating set S . A similar construction in the case of
right-angled Coxeter groups is in Haglund [34].

Here is an alternative description in terms of the canonical completion introduced by
Haglund and Wise [35]. Let S.�/ be the Salvetti complex of G.�/ (see Section 2.4)
and let X.�/ be the universal cover. We pick an identification between G.�/ and
the 0–skeleton of X.�/. The above subset K gives rise to a convex subcomplex
xK �X.�/. Then the corresponding special subgroup is the fundamental group of the

canonical completion with respect the local isometry xK! S.�/.

Our next result says if Out.G.�// is finite, then this is the only way to obtain finite-index
RAAG subgroups of G.�/.

Theorem 1.3 Suppose Out.G.�// is finite, and let S be a standard generating set
for G.�/. Then all finite-index RAAG subgroups are S –special. Moreover, there is
a one-to-one correspondence between nonnegative finite S –convex subsets of G.�/
based at the identity and finite-index RAAG subgroups of G.�/.

See Theorem 6.13 for a slight reformulation of Theorem 1.3.
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We need to explain two terms: nonnegative and based at the identity. For example, take
G D nZ˚mZ inside Z˚Z; then any n by m rectangle could be the fundamental
domain for the action of G . We naturally require the rectangle to be in the first quadrant
and contain the identity, which would give us a unique choice. Similar things can be
done in all RAAGs, and these two terms will be defined precisely in Section 6.

The most simple example is when G.�/D Z; we have a one-to-one correspondence
between finite-index subgroups of the form nZ and intervals of the form Œ0; n� 1�.

Corollary 1.4 If Out.G.�1// is finite, then G.�2/ is quasi-isometric to G.�1/ if and
only if G.�2/ is isomorphic to a special subgroup of G.�1/.

It turns out that there is an algorithm to enumerate the defining graphs of all special
subgroups of a RAAG:

Theorem 1.5 If Out.G.�// is finite, then G.� 0/ is quasi-isometric to G.�/ if and
only if � 0 can be obtained from � by finitely many GSEs. In particular, there is an
algorithm to determine whether G.� 0/ and G.�/ are quasi-isometric by looking at the
graphs � and � 0.

A GSE is a generalized version of a star extension in [9, Example 1.4]; see also [42,
Lemma 50]. It will be defined in Section 6.

A question motivated by Theorem 1.2 is the following:

Question 1.6 Let G.�/ be a RAAG such that Out.G.�// is finite, and let H be a
finitely generated group quasi-isometric to G.�/. What can we say about H ?

As a partial answer to this question, we have the following:

Theorem 1.7 (Huang and Kleiner [40]) Let G.�/ and H be as in Question 1.6. Then
the induced quasi-action H ÕX.�/ is quasi-isometrically conjugate to a geometric
action H ÕX 0 . Here X 0 is a CAT.0/ cube complex which is closely related to X.�/.

1.2 Comments on the proof

1.2.1 Proof of Theorem 1.1 We start by introducing notation. The Salvetti complex
of G.�/ is denoted by S.�/, the universal cover of S.�/ is denoted by X.�/, and
flats in X.�/ that cover standard tori in S.�/ are called standard flats. See Section 2.4
for precise definition of these terms.

Let qW X.�/! X.� 0/ be a quasi-isometry. The proof of Theorem 1.1 follows the
scheme of the proof of the main theorem in [9]. Similar schemes can also be found
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in [6; 45]. There are three steps in [9]. First they show that q maps top-dimensional
flats to top-dimensional flats up to finite Hausdorff distance. However, the collection
of all top-dimensional flats is too large to be linked directly to the combinatorics of
RAAGs, so the second step is to show that quasi-isometries preserve standard flats up
to finite Hausdorff distance. The third step is to straighten the quasi-isometry such that
it actually maps standard flats to standard flats exactly, not just up to finite Hausdorff
distance, and the conclusion follows automatically.

In our case, the first step has been done in Huang [39], where we show q still preserves
top-dimensional flats up to finite Hausdorff distance in the higher-dimensional case.
No assumption on the outer automorphism group is needed for this step.

The second step consists of two parts. First we show q preserves certain top-dimensional
maximal products up to finite Hausdorff distance. Then one wishes to pass to standard
flats by intersecting these top-dimensional objects. However, in the higher-dimensional
case, a lower-dimensional standard flat may not be the intersection of top-dimensional
objects, and even when it is an intersection, one may not be able to read this information
directly from the defining graph �. This is quite different from the 2–dimensional
situation in [9] and relies on several new ingredients.

A necessary condition for q to preserve the standard flats is that every element in
Out.G.�// does so, which implies there could not be any transvections in Out.G.�//.
This condition is also sufficient.

Theorem 1.8 Suppose Out.G.�// is transvection-free. Then there exists a positive
constant D D D.L;A; �/ such that for any standard flat F � X.�/, there exists a
standard flat F 0 �X.� 0/ such that dH .q.F /; F 0/ < D .

Here dH denotes the Hausdorff distance.

In Step 3, we introduce an auxiliary simplicial complex P.�/, which serves as a link be-
tween the asymptotic geometry of X.�/ and the combinatorial structure of X.�/. More
precisely, on one hand, P.�/ can be viewed as a simplified Tits boundary for X.�/; on
the other hand, one can read certain information about the wall space structure of X.�/
from P.�/. This complex turns out to coincide with the extension graph introduced
in [42], where it was motivated from the viewpoint of the mapping class group.

Denote the Tits boundary of X.�/ by @T .X.�//, and let T .�/ � @T .X.�// be the
union of Tits boundaries of standard flats in X.�/. Then T .�/ has a natural simplicial
structure. However, T .�/ contains redundant information; this can be seen in the
similar situation where the link of the base point of S.�/ looks more complicated
than �, but they essentially contain the same information.
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This redundancy can be resolved by replacing the spheres in T .X/ that arise from
standard flats by simplexes of the same dimension. This gives rise to a well-defined sim-
plicial complex P.�/ since for any standard flats F1 and F2 with @TF1\ @TF2 ¤∅,
there exists a standard flat F such that @TF D @TF1 \ @TF2 . See Section 4.1 for
more properties of P.�/.

By Theorem 1.8, if both Out.G.�// and Out.G.� 0// are transvection-free, then q
induces a boundary map @qW P.�/! P.� 0/, which is a simplicial isomorphism. Next
we want to consider the converse and reconstruct a map X.�/! X.� 0/ from the
boundary map @q in the following sense. Pick a vertex p 2X.�/, and let fFigniD1 be
the collection of maximal standard flats containing p . By Theorem 1.8, for each i ,
there exists a unique maximal standard flat F 0i �X.� 0/ such that dH .q.Fi /; F 0i / <1.
One may wish to map p , which turns out to be the intersection of the Fi , to the
intersection of all the F 0i . However, in general,

Tn
iD1 F

0
i may be empty, or it may

contain more than one point; hence our map may not be well defined.

It turns out that if we also rule out partial conjugations in Out.G.�//, then
Tn
iD1 F

0
i

is exactly a point. This give rises to a well-defined map xqW X.�/.0/!X.� 0/.0/ which
maps vertices in a standard flat to vertices in a standard flat. If Out.G.� 0// is also finite,
then we can define an inverse map of xq , and this is enough to deduce Theorem 1.1.

1.2.2 Proof of Theorem 1.2 If only Out.G.�// is assumed to be finite, we can
still recover the fact that @q is a simplicial isomorphism (this is nontrivial, since
Theorem 1.8 does not say that for any standard flat F 0 �X.� 0/, we can find a standard
flat F � X.�/ such that dH .q.F /; F 0/ < 1). Hence we can define xq as before.
However, the inverse of xq does not exist in general.

The next step is to trying to extend xq to a cubical map (Definition 2.1) from X.�/

to X.� 0/. There are obvious obstructions: though xq maps vertices in a standard
geodesic to vertices in a standard geodesic, xq may not preserve the order of these
vertices. A typical example is given in Figure 1, where one can permute the green level
and the red level in a tree; then the order of vertices in the black line is not preserved.

A remedy is to “flip backwards”. Namely we will precompose xq with a sequence of
permutations of “levels” such that the resulting map restricted to each standard geodesic
respects the order. Then we can extend xq to a cubical map. This argument relies on
the understanding of quasi-isometric flexibility, namely how much room we have to
perform these flips. One formulation of this aspect is the following.

Theorem 1.9 If Out.G.�// is finite, then Aut.P.�//Š Isom.G.�/; dr/.

Here dr denotes the syllable metric, defined in Section 4.3; see also [43, Section 5.2].
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�!

Figure 1: Flipping of levels

Theorem 1.2, Theorem 1.3, Corollary 1.4 and Theorem 1.5 rely on the cubical map xq .
In particular, xq�1.x/ (x 2 X.� 0/ is a vertex) is a compact convex subcomplex, and
this is how we obtain the S –convex subset in Theorem 1.3.

1.3 Organization of the paper

Section 2 contains basic notation used in this paper and some background material
about CAT.0/ cube complexes and RAAGs. In particular, Section 2.3 collects several
technical lemmas about CAT.0/ cube complexes. One can skip Section 2.3 on first
reading and come back when needed.

In Section 3, we prove Theorem 1.8. Section 3.1 is about the stability of top-dimensional
maximal product subcomplexes under quasi-isometries, and Section 3.2 deals with
lower-dimensional standard flats. In Section 4, we prove Theorem 1.1. We will construct
the extension complex from our viewpoint in Section 4.1 and explain how is this object
is related to Tits boundary, flat space and contact graph. In Section 4.2, we describe
how to reconstruct the quasi-isometry.

Sections 5.1 and 5.2 are devoted to proving Theorem 1.2. We prove Theorem 1.3,
Corollary 1.4 and Theorem 1.5 in Section 6.
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2 Preliminaries

2.1 Notation and conventions

All graphs in this paper are simple.

The flag complex of a graph � is denoted by F.�/; ie F.�/ is a flag complex whose
1–skeleton is �.

A subcomplex K 0 in a combinatorial polyhedral complex K is full if K 0 contains all
the subcomplexes of K which have the same vertex set as K 0 . If K is 1–dimensional,
then we also call K 0 a full subgraph.

We use “�” to denote the join of two simplicial complexes and “ı” to denote the join
of two graphs. Let K be a simplicial complex or a graph. By viewing the 1–skeleton
as a metric graph with edge length D 1, we obtain a metric defined on the 0–skeleton,
which we denote by d . Let N � K be a subcomplex. We define the orthogonal
complement of N , denoted by N? , to be the set fw 2 K.0/ j d.w; v/ D 1 for any
vertex v 2 N g; define the link of N , denoted by lk.N /, to be the full subcomplex
spanned by N? ; and define the closed star of N , denoted by St.N /, to be the full
subcomplex spanned by N [lk.N /. Suppose L is a subcomplex such that N �L�K .
We denote the closed star of N in L by St.N;L/. If L is a full subcomplex, then
St.N;L/D St.N /\L. We can define lk.N;L/ in a similar way. Let M �K be an
arbitrary subset. We denote the collection of vertices inside M by v.M/.

We use id to denote the identity element of a group, and we use Id to denote the
identity map from a space to itself.

Let .X; d/ be a metric space. The open ball of radius r centered at p in X will be
denoted by B.p; r/. Given subsets A;B �X , the open r –neighborhood of a subset A
is denoted by Nr.A/. The diameter of A is denoted by diam.A/. The Hausdorff
distance between A and B is denoted by dH .A;B/. We will also use the adapted
notation of coarse set theory introduced in [50], displayed in the following table:

symbol meaning

A�r B A�Nr.B/

A�1 B 9r > 0 such that A�Nr.B/

A
r
D B dH .A;B/� r

A
1
D B dH .A;B/ <1

A\r B Nr.A/\Nr.B/
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2.2 CAT.0/ space and CAT.0/ cube complex

The standard reference for CAT.0/ spaces is [13].

Let .X; d/ be a CAT.0/ space. Pick x; y 2X , we denote the unique geodesic segment
joining x and y by xy . For y; z 2X n fxg, denote the comparison angle between xy
and xz at x by †x.y; z/ and the Alexandrov angle by †x.y; z/.

The boundary of X , denoted by @X , is the collection of asymptotic classes of geodesic
rays. The boundary @X has an angular metric, which is defined by

†.�1; �2/D lim
t;t 0!1

†p.l1.t/; l2.t
0//;

where l1 and l2 are unit speed geodesic rays emanating from a base point p such
that li .1/ D �i for i D 1; 2. This metric does not depend on the choice of p , and
the length metric associated to the angular metric, denoted by dT , is called the Tits
metric. The Tits boundary, denoted by @TX , is the CAT.1/ space .@X; dT /; see [13,
Chapters II.8 and II.9].

Given two metric spaces .X1; d1/ and .X2; d2/, denote the Cartesian product of X1
and X2 by X1�X2 , ie d D

p
d21 C d

2
2 on X1�X2 . If X1 and X2 are CAT.0/, then

so is X1 �X2 .

An n–flat in a CAT.0/ space X is the image of an isometric embedding En! X .
Note that any flat is convex in X .

Pick a convex subset C �X ; then C is also CAT.0/. We use �C to denote the nearest
point projection from X to C ; it is well defined and 1–Lipschitz. Moreover, pick
x 2 X n C ; then †�C .x/.x; y/ �

�
2

for any y 2 C such that y ¤ �C .x/; see [13,
Proposition II.2.4].

If C 0�X is another convex set, then C 0 is parallel to C if d. � ; C /jC 0 and d. � ; C 0/jC
are constant functions. There is a natural isomorphism between C � Œ0; d.C; C 0/� and
the convex hull of C and C 0 in this case. We define the parallel set of C , denoted
by PC , to be the union of all convex subsets of X parallel to C . If C has the
geodesic extension property, or more generally, C is boundary-minimal (see [14,
Section 3.C]), then PC is a convex subset in X . Moreover, PC admits a canonical
splitting PC D C �C? , where C? is also a CAT.0/ space.

Now we turn to CAT.0/ cube complexes. All cube complexes in this paper are assumed
to be finite dimensional.

A cube complex X is obtained by gluing a collection of unit Euclidean cubes isometri-
cally along their faces, see [13, Definition II.7.32] for a precise definition. Then the
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cube complex has a natural piecewise Euclidean metric. This metric is complete and
geodesic if X is finite dimensional [13, I.7.19] and is nonpositively curved if the link
of each vertex is a flag complex [29]. If in addition X is simply connected, then this
metric is CAT.0/ and X is said to be a CAT.0/ cube complex. We can put a different
metric on the 1–skeleton X .1/ by considering it as a metric graph with all edge lengths
1. This is called the `1 metric. We use d for the CAT.0/ metric on X and d`1 for the
`1 metric on X .1/ . The natural injection .X .1/; d`1/ ,! .X; d/ is a quasi-isometry;
see [13, I.7.31] or [15, Lemma 2.2]. In this paper, we will mainly use the CAT.0/
metric unless otherwise specified. Also any notions which depend on the metric, like
geodesic, convex subset, convex hull etc, will be understood automatically with respect
to the CAT.0/ metric unless otherwise specified.

Definition 2.1 [15, Section 2.1] A cellular map between CAT.0/ cube complexes is
cubical if its restriction � ! � between cubes factors as � ! �! � , where the first
map � ! � is a natural projection onto a face of � and the second map �! � is an
isometry.

A geodesic segment, geodesic ray or geodesic line in X is an isometric embedding of
Œa; b�, Œ0;1/ or R into X with respect to the CAT.0/ metric. A combinatorial geo-
desic segment, combinatorial geodesic ray or combinatorial geodesic is an `1–isometric
embedding of Œa; b�, Œ0;1/ or R into X .1/ such that its image is a subcomplex.

Let X be a CAT.0/ cube complex and let Y �X be a subcomplex. Then the following
are equivalent (see [34]):

(1) Y is convex with respect to the CAT.0/ metric.

(2) Y is a full subcomplex and Y .1/ �X .1/ is convex with respect to the `1 metric.

(3) Lk.p; Y / (the link of p in Y ) is a full subcomplex of Lk.P;X/ for every vertex
p 2 Y .

The collection of convex subcomplexes in a CAT.0/ cube complex enjoys the following
version of Helly’s property [28]:

Lemma 2.2 Let X be as above, and let fCigkiD1 be a collection of convex subcom-
plexes. If Ci \Cj ¤∅ for any 1� i ¤ j � k , then

Tk
iD1 Ci ¤∅.

Lemma 2.3 Let X1 and X2 be two CAT.0/ cube complexes, and let K �X1 �X2
be a convex subcomplex. Then K admits a splitting K D K1 �K2 , where Ki is a
convex subcomplex of Xi for i D 1; 2.

The lemma is clear when X1Š Œ0; 1�, and the general case follows from this special case.
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Now we come to the notion of hyperplane, which is the cubical analog of “track”
introduced in [24]. A hyperplane h in a cube complex X is a subset such that:

(1) h is connected.

(2) For each cube C �X , either h\C is empty or it is a union of mid-cubes of C .

(3) h is minimal; ie if there exists h0 � h satisfying (1) and (2), then hD h0 .

Recall that a mid-cube of C D Œ0; 1�n is a subset of the form f �1i
�
1
2

�
, where fi is one

of the coordinate functions.

If X is a CAT.0/ cube complex, then the following are true (see [56]):

(1) Each hyperplane is embedded; ie h\C is either empty or a mid-cube of C (in
more general cube complexes, it is possible that h\C contains two or more
mid-cubes of C ).

(2) h is a convex subset in X , and h with the induced cell structure from X is also
a CAT.0/ cube complex.

(3) X n h has exactly two connected components; they are called halfspaces. The
closure of a halfspace is called closed halfspace, which is also convex in X with
respect to the CAT.0/ metric.

(4) Let Nh be the smallest subcomplex of X that contains h. Then Nh is a convex
subcomplex of X , and there is a natural isometry i W Nh! h� Œ0; 1� such that
i.h/D h�

˚
1
2

	
. Nh is called the carrier of h.

(5) For every edge e �X , there exists a unique hyperplane he which intersects e
in its midpoint. In this case, we say he is the hyperplane dual to e and e is an
edge dual to the hyperplane he .

(6) Lemma 2.2 is also true for a collection of hyperplanes.

Now it is easy to see an edge path ! � X is a combinatorial geodesic segment if
and only if there do not exist two different edges of ! such that they are dual to the
same hyperplane. Moreover, for two vertices v;w 2X , their `1 distance is exactly the
number of hyperplanes that separate v from w .

Pick an edge e �X , and let �eW X ! e Š Œ0; 1� be the CAT.0/ projection. Then:

(1) The hyperplane dual to e is exactly ��1e
�
1
2

�
.

(2) ��1e .t/ is convex in X for any 0 � t � 1; moreover, if 0 < t < t 0 < 1, then
��1e .t/ and ��1e .t 0/ are parallel.

(3) Let Nhe be the carrier of the hyperplane dual to e . Then Nhe is the closure of
��1e .0; 1/. Alternatively, we can describe Nhe as the parallel set of e .
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2.3 Coarse intersections of convex subcomplexes

Lemma 2.4 [39, Lemma 2.10] Let X be a CAT.0/ cube complex of dimension n,
and let C1 , C2 be convex subcomplexes. Put � D d.C1; C2/. Let Y1 D fy 2 C1 j
d.y; C2/D�g and Y2 D fy 2 C2 j d.y; C1/D�g. Then:

(1) Y1 and Y2 are not empty.

(2) Y1 and Y2 are convex; �C1 maps Y2 isometrically onto Y1 and �C2 maps Y1
isometrically onto Y2 ; the CAT.0/ convex hull of Y1 [ Y2 is isometric to
Y1 � Œ0;�� (since we are taking the CAT.0/ convex hull, it does not has to be a
subcomplex).

(3) Y1 and Y2 are subcomplexes, and �C2 jY1 is a cubical isomorphism from Y1
to Y2 with its inverse given by �C1 jY2 .

(4) For any � > 0, there exists AD A.�; n; �/ such that if d.p1; Y1/� � > 0 and
d.p2; Y2/� � > 0 for p1 2 C1 and p2 2 C2 , then

(2-1) d.p1; C2/��CAd.p1; Y1/ and d.p2; C1/��CAd.p2; Y2/:

Remark 2.5 Equation (2-1) implies for any r > 0, we have .C1 \r C2/ �r 0 Yi
(i D 1; 2), where r 0 D min.1; .2r � �/=A/ C r and A D A.�; n; 1/. Moreover,
@TC1\ @TC2 D @T Y1 D @T Y2 .

The remark implies Y1
1
D Y2

1
D .C1\r C2/ for r large enough. We use I.C1; C2/D

.Y1; Y2/ to describe this situation, where I stands for the word “intersect”. The next
lemma gives a combinatorial description of Y1 and Y2 .

Lemma 2.6 Let X , C1 , C2 , Y1 and Y2 be as above. Pick an edge e in Y1 (or Y2 ),
and let h be the hyperplane dual to e . Then h\Ci ¤∅ for i D 1; 2. Conversely, if
a hyperplane h0 satisfies h0 \Ci ¤ ∅ for i D 1; 2, then h0 is the dual hyperplane of
some edge e0 in Y1 .or Y2/. Moreover, I.h0\C1; h0\C2/D .h0\Y1; h0\Y2/.

Proof The first part follows from Lemma 2.4. Let I.h0 \C1; h0 \C2/ D .Y 01; Y 02/.
Pick x 2 Y 01 and let x0D�h0\C2.x/2 Y

0
2 . Then �h0\C1.x

0/D x . Let Nh0 D h0� Œ0; 1�
be the carrier of h0 . Then .h0\Ci /�

�
1
2
� �; 1

2
C �

�
D Ci \

�
h0 �

�
1
2
� �; 1

2
C �

��
for

i D 1; 2 and � < 1
2

. Thus for any y 2 C2 , we have †x0.x; y/ � �
2

, which implies
x0D�C2.x/. Similarly, xD�C1.x

0/D�C1 ı�C2.x/; hence x 2 Y1 and Y 01� Y1 . By
the same argument, Y 02� Y2 ; thus Y 0i D Yi \h0 for i D 1; 2, and the lemma follows.

Lemma 2.4, Remark 2.5 and Lemma 2.6 can also be applied to CAT.0/ rectangle
complexes of finite type, whose cells are of the form

Qn
iD1Œ0; ai �. “Finite type” means

there are only finitely many isometry types of rectangle cells in the rectangle complex.
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Lemma 2.7 Let X;C1; C2; Y1 and Y2 be as above. If h is a hyperplane separating C1
from C2 , then there exists a convex set Y � h such that Y is parallel to Y1 (or Y2 ).

Proof Let �D d.C1; C2/, and let M D Y1� Œ0;�� be the convex hull of Y1 and Y2 .
We want to prove M \ hD Y1 � ftg � Y1 � Œ0;�� for some t 2 Œ0;��. It suffices to
show for any edge e � Y1 , we have .e� Œ0;��/\ hD e� ftg for some t .

Pick a point x 2 e , and consider the point fxg � ftg in M D Y1 � Œ0;��. Since
e� ftg and e are parallel, e� ftg sits inside a cube and is parallel to an edge of this
cube. Thus either e � ftg � h or e � ftg is parallel to some edge dual to h. But the
second case implies that h is dual to e and h \ Y1 ¤ ∅, which is impossible, so
e � ftg � .e � Œ0;��/\ h. Now we are done since .fxg � Œ0;��/\ h is exactly one
point for each x 2 e .

2.4 Right-angled Artin groups

Pick a finite simplicial graph �. Let G.�/ be a RAAG. A generating set S �G.�/ is
called a standard generating set if all relators in the associated group presentation are
commutators. Each standard generating set S determines a graph �S whose vertices
are elements in S , and two vertices are adjacent if the corresponding group elements
commute. It follows from [23] that the isomorphism type of �S does not depend on
the choice of the standard generating set S ; in particular, �S is isomorphic to �.

Let S be a standard generating set for G.�/. We label the vertices of � by elements
in S . The RAAG G.�/ has a nice Eilenberg–Mac Lane space S.�/, called the Salvetti
complex; see [17; 16]. This is a nonpositively curved cube complex. The 2–skeleton of
S.�/ is the usual presentation complex of G.�/. If the presentation complex contains
a copy of 2–skeleton of a 3–torus, then we attach a 3–cell to obtain a 3–torus. We
can build S.�/ inductively in this manner, and this process will stop after finitely
many steps. The closure of each k–cell in S.�/ is a k–torus. A torus of this kind is
called a standard torus. There is a one-to-one correspondence between the k–cells
(or standard tori of dimension k ) in S.�/ and k–cliques (complete subgraphs of k
vertices) in � ; thus dim.S.�//D dim.F.�//C 1. We define the dimension of G.�/
to be the dimension of S.�/.

Denote the universal cover of S.�/ by X.�/, which is a CAT.0/ cube complex. Our
previous labeling of vertices of � induces a labeling of the standard circles of S.�/,
which lifts to a labeling of edges of X.�/. We choose an orientation for each standard
circle of S.�/, and this gives us a directed labeling of the edges in X.�/. If we pick a
base point v 2X.�/ (v is a vertex), then there is a one-to-one correspondence between
words in G.�/ and edge paths in X.�/ which start at v .
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Each full subgraph � 0 � � gives rise to a subgroup G.� 0/ ,!G.�/. A subgroup of
this kind is called a S –standard subgroup and a left coset of an S –standard subgroup
is called an S –standard coset (we will omit S when the generating set is clear). There
is also an embedding S.� 0/ ,! S.�/ which is locally isometric. Let pW X.�/! S.�/

be the covering map. Then each connected component of p�1.S.� 0// is a convex
subcomplex isometric to X.� 0/. We will call these components standard subcomplexes
with defining graph � 0. A standard k–flat is a standard complex which covers a
standard k–torus in S.�/. When k D 1, we also call it a standard geodesic.

We pick an identification of the Cayley graph of G.�/ with the 1–skeleton of X.�/;
hence G.�/ is identified with the vertices of X.�/. Let v 2X.�/ be the base vertex
which corresponds to the identity in the Cayley graph of G.�/. Then for any h2G.�/,
the convex hull of fhgvgg2G.� 0/ is a standard subcomplex associated with � 0. Thus
there is a one-to-one correspondence between standard subcomplexes with defining
graph � 0 in X.�/ and left cosets of G.� 0/ in G.�/.

Note that for every edge e 2X.�/, there is a vertex in � which shares the same label
as e , and we denote this vertex by Ve . If K �X.�/ is a subcomplex, we define VK
to be fVe j e is an edge in Kg and �K to be the full subgraph spanned by VK . This
subgraph is called the support of K . In particular, if K is a standard subcomplex, then
the defining graph of K is �K .

Every finite simplicial graph � admits a canonical join decomposition

� D �1 ı�2 ı � � � ı�k;

where �1 is the maximal clique join factor and �i does not allow any nontrivial join
decomposition and is not a point, for 2 � i � k . The graph � is irreducible if this
join decomposition is trivial. This decomposition induces a product decomposition
X.�/ D En �

Qk
iD2X.�i /, which is called the De Rahm decomposition of X.�/.

This is consistent with the canonical product decomposition of CAT.0/ cube complex
discussed in [15, Section 2.5].

We turn to the asymptotic geometry of RAAGs. A right-angled Artin group G.�/
is one-ended if and only if � is connected. Moreover, the n–connectivity at infinity
of G.�/ can be read off from � ; see [11]. In order to classify all RAAGs up to
quasi-isometry, it suffices to consider those one-ended RAAGs. This follows from the
main results in [53]. Moreover, we deduce the following lemma from [53, Lemma 3.2].

Lemma 2.8 If qW X.�/ ! X.� 0/ is an .L;A/–quasi-isometry, then there exists
D DD.L;A/ > 0 such that for any connected component �1 � � where �1 is not
a point and any standard subcomplex K1 � X.�/ with defining graph �1 , there is a
unique connected component � 01 � � 0 and a unique standard subcomplex K 01 �X.� 0/
with defining graph � 01 such that dH .q.K1/;K 01/ < D .

Geometry & Topology, Volume 21 (2017)



3482 Jingyin Huang

It is shown in [4] and [1] that G.�/ has linear divergence if and only if � is either a
join or a point, which implies � being a join is a quasi-isometric invariant. Moreover,
their results together with Theorem B of [41] implies that the De Rahm decomposition
is stable under quasi-isometry:

Theorem 2.9 Given XDX.�/ and X 0DX.� 0/, let XDRn�
Qk
iD1X.�i / and X 0D

Rn
0

�
Qk0

jD1X.�
0
j / be the corresponding De Rahm decompositions. If �W X !X 0 is

an .L;A/–quasi-isometry, then nDn0 , kDk0 and there exist constants L0DL0.L;A/,
A0DA0.L;A/ and DDD.L;A/ such that after reindexing the factors in X 0 , we have
.L0; A0/–quasi-isometry �i W X.�i /!X.� 0i / with d.p0 ı�;

Qk
iD1 �i ıp/ <D , where

pW X !
Qk
iD1X.�i / and p0W X 0!

Qk
iD1X.�

0
i / are the projections.

Thus in order to study the quasi-isometric classification of RAAGs, it suffices to
study those RAAGs which are one-ended and irreducible, but this will rely on finer
quasi-isometric invariants of RAAGs.

Recall that in the case of Gromov hyperbolic spaces, quasi-isometries map geodesics
to geodesics up to finite Hausdorff distance, hence induce a well-defined boundary
map. The analog of this fact for 2–dimensional RAAGs has been established in [10], ie
quasi-isometries map 2–flats to 2–flats up to finite Hausdorff distance. The following
is a higher-dimensional generalization of [10, Theorem 3.10].

Theorem 2.10 [39, Theorem 5.20] If �W X.�1/ ! X.�2/ is an .L;A/–quasi-
isometry, then dim.X.�1// D dim.X.�2//, and there is a constant D D D.L;A/

such that for any top-dimensional flat F1 �X.�1/, there is a unique flat F2 �X.�2/
with dH .�.F1/; F2/ < D .

For each right-angled Artin group G.�/, there is a simplicial graph �e, called the
extension graph, which is introduced in [42]. Extension graphs can be viewed as “curve
graphs” for RAAGs [43].

Definition 2.11 [42, Definition 1] The vertex set of �e consists of words in G.�/ that
are conjugate to elements in S (recall S is a standard generating set for G.�/), and two
vertices are adjacent in �e if and only if the corresponding words commute in G.�/.

The flag complex of the extension graph is called the extension complex.

Since the curve graph captures the combinatorial pattern of how Dehn twist flats
intersect in a mapping class group, it plays an important role in the quasi-isometric
rigidity of a mapping class group [37; 6]. Similarly, we will see in Section 4 that
the extension graph captures the combinatorial pattern of the coarse intersection of a
certain collection of flats in a RAAG, and it is a quasi-isometric invariant for certain
classes of RAAGs.
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3 Stable subgraph

We now study the behavior of certain standard subcomplexes under quasi-isometries.

3.1 Coarse intersection of standard subcomplexes and flats

Lemma 3.1 Let � be a finite simplicial graph and let K1 , K2 be two standard
subcomplexes of X.�/. If .Y1; Y2/D I.K1; K2/, then Y1 and Y2 are also standard
subcomplexes.

Proof The lemma is clear if K1\K2¤∅. Now we assume d.K1; K2/D c > 0. Pick
a vertex v1 2K1 . By Lemma 2.4, there exists a vertex v2 2K2 such that d.v1; v2/D c .
Let l W Œ0; c�!X.�/ be the unit speed geodesic from v1 to v2 . We can find a sequence
of cubes fBigNiD1 and 0D t0 < t1 < � � �< tN�1 < tN D c such that each Bi contains
fl.t/ j ti�1 < t < tig as interior points.

Let Vl D
SN
iD1 VBi (recall that VBi is the collection of the labels of edges in Bi ; see

Section 2.4) and let Vi D VKi for i D 1; 2. Put V 0 D V1\V2 \V ?l (recall that V ?
l

denotes the orthogonal complement of Vl ; see Section 2.1) and let � 0 be the full
subgraph spanned by V 0. Let Y 01 be the standard subcomplex that has defining graph � 0

and contains v1 (if V 0 is empty, then Y 01 D v1 ). We claim Y1 D Y
0
1 .

Pick an edge e � K1 such that v1 2 e and Ve 2 V 0. Let h be the hyperplane dual
to e and Nh Š h � Œ0; 1� be the carrier of h. Since d.Ve; w/ D 1 for any w 2 Vl ,
we can assume l � h� f1g � Nh . By our definition of V 0, there is an edge e0 2K2
with v2 2 e0 and h dual to e0 ; thus e and e0 cobound an isometrically embedded flat
rectangle (one side of the rectangle is l ), which implies e � Y1 . Let l 0 be the side of
the rectangle opposite to l . We can define Vl 0 similarly as we define Vl ; then Vl 0 D Vl .
Now let ! be any edge path starting at v1 such that Ve0 2 V 0 for any edge e0 � ! .
Then it follows from the above argument and induction on the combinatorial length
of ! that ! � Y1 , thus Y 01 � Y1 .

For the other direction, since Y1 is a convex subcomplex by Lemma 2.4, it suffices to
prove every vertex of Y1 belongs to Y 01 . By the induction argument as above, we only
need to show that, for an edge e1 with v1 2 e1 , if e1 � Y1 , then e1 � Y 01 . Lemma 2.4
implies that there exists an edge e2 � Y2 such that e1 and e2 cobound an isometrically
embedded flat rectangle (one side of the rectangle is l ). So l is in the carrier of the
hyperplane dual to e1 . It follows that Ve1 2 V

0 and e1 � Y 01 .

Corollary 3.2 Let K1; K2; Y1 and Y2 be as above. Let h be a hyperplane separating
K1 and K2 and let e be an edge dual to h. Then Ve 2 V ?Y1 D V

?
Y2

. In particular, pick a
vertex v 2 �. Then v 2 VY1 if and only if
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(1) v 2 VK1 \VK2 , and

(2) for any hyperplane h0 separating K1 from K2 and any edge e0 dual to h0 ,
d.v; Ve0/D 1.

Proof Let l and Vl be as in the proof of Lemma 3.1. Let V 0l be a collection of vertices
of � such that v 2 V 0l if and only if v D Ve0 for some edge e0 �X.�/ satisfying (2).
It suffices to prove V 0l D Vl .

It is clear that V 0l �Vl since if a hyperplane h separates K1 from K2 , then l intersects h
transversally at one point. To see Vl � V

0
l , it suffices to show h\Ki D∅ for i D 1; 2,

where h is a hyperplane that intersects l transversally. Let x D l \ h. Suppose
h\K1 ¤ ∅ and let x0 D �h\K1.x/. Now consider the triangle �.v1; x; x0/ (recall
that v1 D l.0/). We have †v1.x; x

0/� �
2

(since �K1.x/D v1 ), †x0.v1; x/� �
2

(see
the proof of Lemma 2.6) and †x.v1; x0/ > 0, which is a contradiction, so h\K1D∅.
Similarly, h\K2 D∅.

Remark 3.3 Recall that a standard coset of G.�/ is a left coset of a standard subgroup
of G.�/. Lemma 3.1 implies that for each pair of standard cosets of G.�/, we can
associated another standard coset which captures the coarse intersection of the pair.
Moreover, we can also define a notion of distance between two standard cosets, which
takes values in G.�/.

Recall that �K is the support of K (see Section 2.4), and that lk.�K/ is the full
subgraph spanned by V ?K (see Section 2.1).

Lemma 3.4 Let K �X.�/ be a convex subcomplex and let � 0 D lk.�K/. Then the
parallel set PK of K is a convex subcomplex and canonically splits as K �X.� 0/.

Note that we do not require K to satisfy the geodesic extension property.

Proof Pick a vertex v 2 K . Let � 00 D �K and let P1 be the unique standard
subcomplex that passes through v and has defining graph � 0ı� 00 (recall that ı denotes
the graph join). Then K � P1 . Let P 0 be the natural copy of K �X.� 0/ inside P1 . It
is clear that P 0 � PK .

Let K 0 be a convex subset parallel to K , and let �W K!K 0 be the isometry induced
by CAT.0/ projection onto K 0 . Pick a vertex v 2K , and let l be the geodesic segment
connecting v and �.v/. We define Vl as in the proof of Lemma 3.1 (note that �.v/ is
not necessarily a vertex). Let e be any edge such that v 2 e �K . Then there is a flat
rectangle with e , �.e/ and l as its three sides. Thus l is contained in the carrier of
the hyperplane dual to e , and Vl � V ?e . Note that if l 0 is the side opposite to l , then
Vl 0 D Vl . For any given edge e0 �K , we can find an edge path ! �K such that e is
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the first and e0 is the last edge in ! . By induction on the combinatorial length of w
and the same argument as above, we can show Vl � V

?
e0 , thus Vl � V ?K and K 0 � P 0 .

It follows that PK � P 0 , so PK D P 0 .

Remark 3.5 The following is a generalization of the above lemma for general CAT.0/
cube complexes. Let X be a CAT.0/ cube complex. A convex set K �X is regular
if for any x 2K , the space of direction †xK of x in K [13, Chapter II.3] satisfies:

(1) †xK is a subcomplex of †xX with respect to the canonical all-right spherical
complex structure on †xX .

(2) There exists r > 0 such that B.x; r/\K is isometric to the r –ball centered at
the cone point in the Euclidean cone over †xK .

If K � X is a regular convex subset, then PK is convex and admits a splitting
PK ŠK �N , where N has an induced cubical structure from X (N is CAT.0/).

Lemma 3.6 Let qW X.�1/!X.�2/ be an .L;A/–quasi-isometry and let F �X.�1/
be a subcomplex isometric to Ek. Suppose nD dim.X.�1//D dim.X.�2//. If there
exist R1; R2 > 0 and top-dimensional flats F1 and F2 such that

F
R2
D F1\R1 F2 and F

1
D F1\R F2

for any R �R1 , then:

(1) There exist a constant D DD.L;A;R1; R2; n/ and a subcomplex F 0 �X.�2/
isometric to Ek such that q.F / DD F 0 .

(2) There exists a constant D0 DD0.L;A/ such that q.PF /
D0
D PF 0 .

Proof By Theorem 2.10, there exist top-dimensional flats F 01; F 02 �X.�2/ such that
q.Fi /

D1
D F 01 for D1DD1.L;A/ and iD1; 2. Thus there exist R0DR0.L;A;R1; R2/

and R3DR3.L;A;R1; R2/>R1 such that q.F1\R1F2/�F
0
1\R0F

0
2�q.F1\R3F2/;

this and Remark 2.5 imply

(3-1) q.F1\R1 F2/
D2
D F 01\R0 F

0
2

for D2 DD2.n; d.F1; F2//DD2.L;A;R1; R2; n/.

Let .Y1; Y2/D I.F 01; F 02/. Then there exists D3 DD3.L;A;R1; R2; n/ such that

(3-2) Y1
D3
D F 01\R0 F

0
2:

From (3-1) and (3-2), we have

(3-3) q.F /
D4
D Y1
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for D4 D D4.L;A;R1; R2; n/. By Lemma 2.4, Y1 is a convex subcomplex of F 01 .
This together with (3-3) implies Y1 D F 0 �

Qk0

iD1Ii , where F 0 is isometric to Ek and
fIig

k0

iD1 are finite intervals. Moreover, by (3-3), diam
�Qk0

iD1Ii
�

must be bounded in
terms of D4; L and A; thus (1) follows.

Let fF�g�2ƒ be the collection of top-dimensional flats in X.�1/ which are contained
in the parallel set PF of F . Lemma 3.4 implies

(3-4) dH

�[
�2ƒ

F�; PF

�
� 1:

For � 2ƒ, there exists R� > 0 such that F �R� F� . Let F 0� be the top-dimensional
flat in X.�2/ such that q.F�/

D1
D F 0� . Then by (1), there exists R0� > 0 such that

F 0 �R0� .F
0
�/. This and Lemma 2.4 imply F 0� � PF 0 for any � 2ƒ. Thus by (3-4),

there exists D0 DD0.L;A/ such that q.PF / �D0 PF 0 . And (2) follows by running
the same argument for the quasi-isometry inverse of q .

A tree product is a convex subcomplex K �X.�/ such that K splits as a product of
trees, ie there exists a cubical isomorphism K Š

Qn
iD1 Ti where the Ti are trees. A

standard tree product is a tree product which is also a standard subcomplex.

One can check that K is a standard tree product if and only if the defining graph �K
of K has a join decomposition �K D �1 ı �2 ı � � � ı �n , where each �i is discrete.
Thus one can choose the above Ti to be standard subcomplexes of K . Note that every
standard flat is a standard tree product, and every subcomplex isometric to Ek is a
tree product.

Lemma 3.7 Suppose dim.X.�// D n. Let qW X.�/! X.� 0/ be a quasi-isometry.
Let K D

Qn
iD1 Ti be a top-dimensional tree product with its tree factors. Then there

exists a standard tree product K 0 in X.� 0/ such that q.K/�1 K 0 .

The proof essentially follows [9, Theorem 4.2].

Proof For 1� i � n, let Vi D VTi 2 � be the collection of labels of edges in Ti . The
case where all the Vi are consist of one point follows from Theorem 2.10. If each Vi
contains at least two points, then by Lemma 3.6, for any geodesic l � Ti , there exists
a subcomplex l 0 �X.� 0/ isometric to R such that q.l/1D l 0 . Since l 0 is unique up to
parallelism, the collection of labels of edges in l 0 does not depend on the choice of l 0

and will be denoted by Vq.l/ . For 1� i � n, define V 0i D
S
l�Ti

Vq.l/ where l varies
among all geodesics in Ti .
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We claim V 0i � .V
0
j /
? for i¤ j . To see this, pick geodesic li 2Ti and let F D

Qn
iD1 li .

Then there exist top-dimensional flat F 0 and geodesic lines fl 0igniD1 (each l 0i is a
subcomplex) in X.� 0/ such that q.F / 1D F 0 and q.li /

1
D l 0i . Since l 0i �1 F 0 , by

Lemma 2.4, we can assume l 0i is a subcomplex of F 0 . Pick i ¤ j . Since li and lj
are orthogonal, they have infinite Hausdorff distance. Thus l 0i and l 0j have infinite
Hausdorff distance. By our assumption, l 0i and l 0j are isometric to E1 , and they are
convex subcomplexes of F 0 Š En . Thus either l 0i and l 0j are parallel, or they are
orthogonal. The former is impossible since l 0i and l 0j have infinite Hausdorff distance.
Thus fl 0igniD1 is a mutually orthogonal collection.

Let � 01D V 01 ıV 02 ı� � �ıV 0n�� 0. Then each V 0i has to be a discrete full subgraph by our
dimension assumption. Let fF�g�2ƒ be the collection of top-dimensional flats in K and
let F 0� be the unique flat such that q.F�/

1
D F 0� . Note that for arbitrary F�1 and F�2 ,

there exists a finite chain in fF�g�2ƒ which starts with F�1 and ends with F�2 such
that the intersection of adjacent elements in the chain contains a top-dimensional orthant.
Thus the collection fF 0�g�2ƒ also has this property. Then

S
�2ƒ F

0
� is contained in a

standard subcomplex of X.� 0/ with defining graph � 01 .

It remains to deal with the case where there exist i ¤ j such that jVi j D 1 and jVj j � 2.
We suppose jVi j D 1 for 1� i �m and jVi j � 2 for i > m. By applying Lemma 3.6
with F D

Qm
iD1 Ti , we can reduce to a lower-dimensional case, and the lemma follows

by induction on dimension.

Corollary 3.8 Let qW X.�/ ! X.� 0/ be a quasi-isometry, and let K be a top-
dimensional maximal standard tree product; ie K is not properly contained in another
tree product. Then there exists a standard tree product K 0�X.� 0/ such that q.K/1DK 0.

3.2 Standard flats in transvection-free RAAGs

Up to now, we have only dealt with top-dimensional standard subcomplexes. The next
goal is to study those standard subcomplexes which are not necessarily top dimensional.
In particular, we are interested in whether quasi-isometries will preserve standard
flats up to finite Hausdorff distance. The answer turns out to be related to the outer
automorphism group of G.�/.

One direction is obvious: namely, if every quasi-isometry qW X.�/!X.� 0/ maps any
standard flat in X.�/ to a standard flat in X.� 0/ up to finite Hausdorff distance, then
Out.G.�// must be transvection-free (ie Out.G.�// does not contain any transvec-
tions). The converse is also true. Now we set up several necessary tools to prove the
converse.

In this section, � will always be a finite simplicial graph.
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Definition 3.9 A subgraph �1 � � is stable in � if the following are true:

(1) �1 is a full subgraph.

(2) Let K �X.�/ be a standard subcomplex such that �K D �1 , and let � 0 be a
finite simplicial graph such that, for some L and A, there is an .L;A/–quasi-
isometry qW X.�/!X.� 0/. Then there exists D DD.L;A; �1; �/ > 0 and a
standard subcomplex K 0 �X.� 0/ such that dH .q.K/;K 0/ < D .

For simplicity, we will also say the pair .�1; �/ is stable in this case. A standard
subcomplex K �X.�/ is stable if it arises from a stable subgraph of �.

We claim the defining graph �K0 of K 0 is stable in � 0. To see this, pick any graph � 00

so that there is an .L;A/–quasi-isometry q0W X.� 0/!X.� 00/, and pick any standard
subcomplex K 01 � X.� 0/ with defining graph �K0 . Note that there is an isometry
i W X.� 0/!X.� 0/ such that i.K 0/DK 01 . Since the map q0 ı i ı q is a quasi-isometry
from X.�/ to X.� 00/, we have that q0 ı i ı q.K/ is Hausdorff close to a standard
subcomplex in X.� 00/ by the stability of �1 ; hence the same is true for q0.K 01/. It
follows from this claim that one can obtain quasi-isometric invariants by identifying
certain classes of stable subgraphs.

It is immediate from the definition that for finite simplicial graphs �1 � �2 � �3 , if
.�1; �2/ is stable and .�2; �3/ is stable, then .�1; �3/ is stable. However, it is not
necessarily true that if .�1; �3/ and .�2; �3/ are stable, then .�1; �2/ is stable. In the
sequel, we will investigate several other properties of stable subgraphs. The following
lemma is an easy consequence of Lemma 3.1 and Remark 2.5:

Lemma 3.10 Suppose �1 and �2 are stable in �. Then �1\�2 is also stable in �.

The following result follows from Lemma 2.8.

Lemma 3.11 If �1 is stable in �, then every connected component of �1 that contains
more than one point is also stable in �.

Lemma 3.12 Suppose �1 is stable in �. Let V be the vertex set of �1 and let �2 be
the full subgraph spanned by V and the orthogonal complement V ? . Then �2 is also
stable in �.

Proof Let K2 �X.�/ be a standard subcomplex with defining graph �K2 D �2 , and
let K1 �K2 be any standard subcomplex satisfying �K1 D �1 . Lemma 3.4 implies
K2DPK1DK1�K

?
1 . For a vertex x2K?1 , let KxDK1�fxg. Let qW X.�/!X.� 0/
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be an .L;A/–quasi-isometry. Then there exists standard subcomplex K 0x such that
dH .q.Kx/;K

0
x/ < D DD.L;A; �1; �/. Thus K 0x

1
DK 0y for vertices x; y 2 K?1 . It

follows from Lemma 3.1 that K 0x and K 0y are parallel. Thus q.PK1/ �R PK0x for
RDDCLCA. Moreover, PK0x is also a standard subcomplex by Lemma 3.4. By
considering the quasi-isometry inverse and repeating the previous argument, we know
q.PK1/

1
D PK0x ; thus �2 is also stable in �.

Lemma 3.13 Suppose �1 is stable in �. Pick a vertex v … �1 . Then the full subgraph
spanned by v?\�1 is stable in �.

Proof We use �2 to denote the full subgraph spanned by v?\�1 . Let K2 �X.�/
be a standard subcomplex such that �K2 D �2 , and let K1 � X.�/ be the unique
standard subcomplex such that �K1 D �1 and K2 �K1 . Pick a vertex x 2K2 , and
let e � X.�/ be the edge such that Ve D v and x 2 e . Suppose xx is the other end
point of e . Let xKi be the standard subcomplex that contains xx and has defining
graph �i for i D 1; 2. Denote the hyperplane dual to e by h. Since v … �1 , we have
h\K1 D∅ and h\ xK1 D∅; thus h separates K1 and xK1 , and d.K1; xK1/D 1. It
follows from Corollary 3.2 that I.K1; xK1/D .K2; xK2/; in particular K2

D
DK1\R xK1

for D depending on R and the dimension of X.�/. Now the lemma follows since �1
is stable.

The next result is a direct consequence of Corollary 3.8.

Lemma 3.14 If �1 is stable in �, then there exists �2 which is stable in �1 such that

(1) �2 is a graph join x�1 ı x�2 ı � � � ı x�k , where x�i is discrete for 1� i � k ;

(2) k D dim.X.�1//.

Lemma 3.15 Let � be a finite simplicial graph such that there do not exist vertices
v¤w of � with v?�St.w/. Then every stable subgraph of � contains a stable vertex.

Proof Let �1 be a minimal stable subgraph; ie it does not properly contain any stable
subgraph of �. It suffices to show �1 is a point. We argue by contradiction and
assume �1 contains more than one point.

First we claim �1 cannot be discrete. Suppose the contrary is true. Pick vertices
v;w 2 �1 and pick a vertex u 2 v? nSt.w/. By Lemma 3.13, u?\�1 is also stable.
Note that v 2 u?\�1 and w … u?\�1 , which contradicts the minimality of �1 .

We claim �1 must be a clique. Since �1 is not discrete, by Lemma 3.14, we can find a
stable subgraph

(3-5) �2 D x�1 ı x�2 ı � � � ı x�m � �1;
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where fx�igmiD1 are discrete full subgraphs and m � 2. Then �2 D �1 . Suppose
some x�i contains more than one point, and let �3 be the join of the remaining join
factors. Then Theorem 2.9 implies that �3 is stable, contradicting the minimality of �1 .
Therefore, �1 is a clique.

Pick distinct vertices v1; v2 2 �1 . By our assumption, there exists a vertex w 2

v?1 nSt.v2/. Since �1 is a clique, �1� St.v2/, so w …�1 . Let �4 be the full subgraph
spanned by w?\�1 . Then �4 is stable by Lemma 3.13. Moreover, �4 ¨ �1 (since
v2 … �4 ), which yields a contradiction.

Lemma 3.16 Let � be as in Lemma 3.15 and let �1 be a stable subgraph of �. Then
for any vertex w 2 �1 , there exists a stable vertex v 2 �1 such that d.v;w/� 1.

Proof Denote the combinatorial distances in � and �1 by d and d1 , respectively.
Since �1 is a full subgraph, d.x; y/D 1 if and only if d1.x; y/D 1, and d.x; y/� 2
if and only if d1.x; y/� 2, for vertices x; y 2 �1 . If w is isolated in �1 , then we can
use the argument in the second paragraph of the proof of Lemma 3.15 to get rid of all
vertices in �1 except w , which implies w is a stable vertex. If w is not isolated, we
can assume �1 is connected by Lemma 3.11.

By Lemma 3.15, there exists a stable vertex u 2 �1 . If d1.u;w/� 1, then we are done.
Otherwise, let ! be a geodesic in �1 connecting u and w (note that ! might not be a
geodesic in � ), and let fvigniD0 be the consecutive vertices in ! ; here v0Dw , vnD u
and nD d1.w; u/.

Since u is stable, by Lemma 3.12, St.u/ is also stable. Note that d1.vn�2; u/D 2, so
d.vn�2; u/D 2 and vn�2 … St.u/. Lemma 3.13 implies v?n�2\St.u/ is stable, and by
Lemma 3.10, v?n�2\St.u/\�1 is also stable. Note that v?n�2\St.u/\�1¤∅ since
it contains vn�1 . Lemma 3.15 implies there is a stable vertex u0 2 v?n�2\St.u/\�1 ,
and it is easy to see d1.w; u0/D n� 1. Now the lemma follows by induction.

Lemma 3.17 Let � be as in Lemma 3.15. Then every vertex of � is stable.

Proof Let �w be the intersection of all the stable subgraphs that contain w . By
Lemma 3.10, �w is the minimal stable subgraph that contains w . It suffices to prove
�w D fwg. We argue by contradiction and denote the vertices in �w nfwg by fvigkiD1 .
The minimality of �w implies we cannot use Lemma 3.13 to get rid of some vi while
keeping w ; thus w? nSt.vi /� fv1; : : : ; vi�1; viC1; : : : ; vkg for any i . In other words,

(3-6) w? � St.vi /[fv1; : : : ; vi�1; viC1; : : : ; vkg

for 1� i � k . Then there does not exist i such that �w � St.vi /: otherwise, we would
have w? � St.vi / by (3-6).
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On the other hand, Lemma 3.16 implies there exists a stable vertex u 2 �w with
d.w; u/D1. Then St.u/ is stable (Lemma 3.12) and St.u/\�w is stable (Lemma 3.10).
Note that w 2 St.u/\ �w . By the minimality of �w , we have �w � St.u/, which
yields a contradiction.

Lemma 3.18 Let � be a finite simplicial graph, and pick stable subgraphs �1; �2
of �. Let x� be the full subgraph spanned by V and V ? , where V D V�1 . If �2 � x� ,
then the full subgraph spanned by �1[�2 is stable in �.

To simplify notation, in the following proof, we will write q.K/� K 0 , where q;K
and K 0 are as in Definition 3.9. We will also assume without loss of generality that
q.K/�K 0 .

Proof Let qW X.�/ ! X.� 0/ be an .L;A/–quasi-isometry. Suppose K1 and K

are standard subcomplexes in X.�/ such that �K1 D �1 , �K D x� and K1 � K .
Put K 0 � q.K/, K 01 � q.K1/, K D K1 � K

?
1 and K 0 D K 01 � K

0?
1 . The proof

of Lemma 3.12 implies there exist a quasi-isometry q0W K?1 ! K 0?1 and a constant
D1 DD1.L;A; �1; �/ such that

(3-7) d.q0 ıp2.x/; p
0
2 ı q.x// < D1

for any x 2K , where p2W K!K?1 and p02W K 0!K 0?1 are projections.

Let �2D�21ı�22 , where �21D�1\�2 , and let K22; K2 be standard subcomplexes
such that �K22 D �22 , �K2 D �2 and K22 �K2 �K . By (3-7), it suffices to prove
there exist a standard subcomplex K 022 �K 0 and a constant D DD.L;A; �1; �2; �/
such that dH .p02 ıq.K22/;K

0
22/ <D . Let K 02� q.K2/. Then K 02 �K 0 , and p02.K

0
2/

is a standard subcomplex. By (3-7), p02 ı q.K22/
1
D p02 ı q.K2/

1
D p02.K

0
2/; thus we

can take K 022 D p02.K
0
2/.

Remark 3.19 In general, the full subgraph spanned by �1 [ �2 is not necessarily
stable even if �1 and �2 are stable; see Remark 3.26.

The next theorem follows from Lemma 3.17 and Lemma 3.18.

Theorem 3.20 Given a finite simplicial graph �, the following are equivalent:

(1) Out.G.�// is transvection-free.

(2) For any .L;A/–quasi-isometry qW X.�/! X.� 0/, there exists a positive con-
stant D DD.L;A; �/ such that for any standard flat F �X.�/, there exists a
standard flat F 0 �X.� 0/ with dH .q.F /; F 0/ < D .
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3.3 Standard flats in general RAAGs

At this point, we have the following natural questions:

(1) In Theorem 3.20, is it true that every standard flat in X.� 0/ comes from some stan-
dard flat in X.�/? A related question could be, is condition (1) in Theorem 3.20
a quasi-isometric invariant for right-angled Artin groups?

(2) What can we say about the stable subgraphs of � if we drop condition (1) in
Theorem 3.20?

We will first give a negative answer to question (1) in Example 3.22 below. Then we
will prove Theorem 3.21, which answers question (2). Section 4 and, in particular,
the proof of Theorem 1.1 will not depend on this subsection. However, we will need
Theorem 3.21 and Lemma 3.23 for Section 5.

Theorem 3.21 Let � be an arbitrary finite simplicial graph. A clique �1�� is stable
if and only if there do not exist vertices w 2 �1 and v 2 � n�1 such that w? � St.v/.

In other words, the clique �1 is stable if and only if the corresponding Zn subgroup
of G.�1/ is invariant under all transvections.

Example 3.22 Let �1 and �2 be as indicated in Figure 2. It is easy to see Out.G.�1//
is transvection-free while Out.G.�2// contains nontrivial transvection (�2 has a dead
end at vertex u). We claim G.�1/ and G.�2/ are commensurable and, in particular,
quasi-isometric.

�1 �2v

w

z

k

u

Figure 2: Out.G.�1// is transvection-free while Out.G.�2// contains non-
trivial transvection.

Let � � �1 be the pentagon on the left side and let Y be the Salvetti complex of �.
Suppose X1 D Y tY t .S1 � Œ0; 1�/=�; here the two boundary circles of the annulus
are identified with two standard circles which are in different copies of Y . Then
�1.X1/DG.�1/. Define the homomorphism h1W G.�/! Z=2 by sending w to the
nontrivial element in Z=2 and other generators to the identity element. Let Y 0 be the
2–sheeted cover of Y with respect to ker.h1/.
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Y 0X Y 0
h:e: X 0

2 W 1

Y YX1

Figure 3

Define the homomorphism h2W G.�1/! Z=2 by sending w and k to the nontrivial
element in Z=2 and other generators to the identity element. Let X be the 2–sheeted
cover of X1 with respect to ker.h2/. Then X is made of two copies of Y 0 and two
annuli with the boundaries of the annuli identified with the v–circles in Y 0 (each Y 0

has two v–circles which cover the v–circle in Y ); see Figure 3.

The cover X is homotopy equivalent to a Salvetti complex. To see this, let Sw be the
circle in Y 0 which covers the w–circle in Y two times and let Sz _Sv be a wedge of
the two circles in Y 0 which covers the wedge of the z–circle and the v–circle in Y .
There is a copy of Sw � .Sz _Sv/ inside Y 0 . Let I be a segment in Sw such that its
end points are mapped to the base point of Y under the covering map. We collapse
I � .Sz_Sv/ to fptg� .Sz_Sv/ inside each copy of Y 0 in X , and collapse one of the
annuli in X to a circle by killing the interval factor. Denote the resulting space by X 0 .
Then X 0 is homotopy equivalent to X , and the uncollapsed annulus in X becomes a
torus in X 0 . It is not hard to see X 0 is a Salvetti complex with defining graph �2 .

Any standard geodesic in X.�2/ which comes from vertex u is not Hausdorff close to
a quasi-isometric image of some standard geodesic in X.�1/, since u is not a stable
vertex while every vertex in �1 is stable.

Here is a generalization of the above example. Suppose � is a finite simplicial
graph with vertices v1; v2 2 � such that d.v1; v2/D 2 and they are separated by the
intersection of links lk.v1/\ lk.v2/. Define a homomorphism hW G.�/! Z=2 by
sending v1 and v2 to the nontrivial element in Z=2 and killing all other generators.
Then ker.h/ is also a right-angled Artin group by the same argument as before. To find
its defining graph, let fCigniD1 be the components of � n.lk.v1/\ lk.v2//, and suppose
v1 2C1 . Define �1DC1[.lk.v1/\ lk.v2// and �2D

�Sn
iD2 Ci

�
[.lk.v1/\ lk.v2//.

Then �1 and �2 are full subgraphs of �; moreover, St.vi / 2 Ci . For i D 1; 2, let � 0i
be the graph obtained by gluing two copies of �i along St.vi /, and let � 03 be the join
of one point and lk.v1/\ lk.v2/. Then the defining graph of ker.h/ can be obtained
by gluing � 01 , � 02 and � 03 along lk.v1/\ lk.v2/.
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Note that we are taking advantage of separating closed stars while constructing the
counterexample. If separating closed stars are not allowed in �, then we have a positive
answer to question (1); see Section 5.

In the rest of this subsection, we will prove Theorem 3.21. � will be an arbitrary finite
simplicial graph in the rest of this subsection. Theorem 3.21 is actually a consequence
of the following more general result.

Lemma 3.23 Pick a vertex w 2 � , and let �w be the intersection of all stable sub-
graphs of � that contain w . Define W D fw0 2 � j w? � St.w0/g. Then �w is the
full subgraph spanned by W .

In other words, G.�w/�G.�/ is the minimal standard subgroup containing w with
the property that G.�w/ is invariant under any transvection.

Now we show how to deduce Theorem 3.21 from Lemma 3.23

Proof of Theorem 3.21 The “only if” part can be proved by contradiction (choose
a transvection which does not preserve the subgroup G.�1/). For the converse, let
fvig

n
iD1 be the vertex set of �1 , and let �vi be the minimal stable subgraph that

contains vi for 1 � i � n. By our assumption and Lemma 3.23, �vi � �1 . Thus
the full subgraph spanned by

Sn
iD1 �vi is stable by Lemma 3.18, which means �1

is stable.

It remains to prove Lemma 3.23. We first set up two auxiliary lemmas.

Lemma 3.24 Let v 2 � be a vertex which is not isolated. Then at least one of the
following is true:

(1) v is contained in a stable discrete subgraph with more than one vertex.

(2) v is contained in a stable clique subgraph.

(3) There is a stable discrete subgraph with more than one vertex whose vertex set is
in v?.

(4) There is a stable clique subgraph whose vertex set is in v?.

Proof Since v is not isolated, we can assume � is connected by Lemma 3.11. By
Lemma 3.14, we can find a stable subgraph �1D x�1 ı x�2 ı � � � ı x�n where fx�igniD1 are
discrete full subgraphs and nD dim.X.�//. If v 2 �1 , then by the third paragraph of
the proof of Lemma 3.15, we know either (1), (2) or (4) is true.
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Suppose d.v; �1/D 1. Let �2 be the full subgraph spanned by v?\�1 . Then �2 is
stable by Lemma 3.13. The proof of Lemma 3.15 implies every stable subgraph of �
contains either a stable discrete subgraph or a stable clique subgraph (this does not
depend on the v? ª St.w/ assumption); thus either (3) or (4) is true.

Suppose d.v; �1/ � 2. Pick vertex u 2 �1 such that d.v; u/ D d.v; �1/ D n, and
let ! be a geodesic connecting v and u. Suppose fvigniD0 are the consecutive vertices
in ! such that v0 D v and vn D u. Let � 0 be the full subgraph spanned by v?n�1\� ,
and let � 00 be the full subgraph spanned by V and V ? , where V D V� 0 (the vertex set
of � 0 ). Then � 0 is stable by Lemma 3.13, and � 00 is stable by Lemma 3.12. Note that
d.v; x/ � n for any vertex x 2 V , so d.v; y/ � n� 1 for any vertex y 2 V ? . Thus
d.v; � 00/ � n� 1. However, vn�1 2 � 00. So d.v; � 00/ D n� 1. Now we can induct
on n and reduce to the d.v; �1/D 1 case.

It is interesting to see that if � has large diameter, then there are a lot of nontrivial
stable subgraphs.

We record the following lemma which is an easy consequence of Theorem 2.9.

Lemma 3.25 Suppose � D �1 ı�2 , where �1 is the maximal clique join factor of �.
If � 02 is stable in �2 , then �1 ı� 02 is stable in �.

Now we are ready to prove Lemma 3.23.

Proof of Lemma 3.23 By Lemma 3.10, �w is the minimal stable subgraph that
contains w . If there exists vertex w0 2W such that w0 … �w , then sending w! ww0

and fixing all other vertices would induce a group automorphism, which gives rise to a
quasi-isometry from X.�/ to X.�/. The existence of such a quasi-isometry would
contradict the stability of �w ; thus W � �w .

Let W 0 be the vertex set of �w . It remains to prove W 0 �W . Suppose W ¨W 0 and
let u 2 W 0 nW . Then ∅ ¤ w? n St.u/. The minimality of �w implies we cannot
use Lemma 3.13 to get rid of u while keeping w ; thus w? n St.u/�W 0 n fu;wg. In
summary,

(3-8) ∅¤ w? nSt.u/�W 0 n fu;wg:

In particular, w is not isolated in �w , and

(3-9) �w ª St.u/:

Now we apply Lemma 3.24 to �w and w , and recall that if a subgraph is stable in �w ,
then it is stable in �. If case (1) in Lemma 3.24 is true, then we will get a contradiction
since w is not isolated in �w . If case (2) is true, then �w sits inside some clique,
which is contradictory to (3-9).
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�1 �2

Figure 4: Failure of Theorem 3.21 in the more general case; see Remark 3.26

If case (3) is true, let �1 � �w be the corresponding stable discrete subgraph. Let
V1 D V�1 , and let V 01 D fu 2 �w j d.u; v/ D 1 for any v 2 V1g. Suppose � 0w is
the full subgraph spanned by V1 and V 01 . Then � 0w is stable by Lemma 3.12; hence
� 0w D �w . Let �w D x�1 ı x�2 ı � � � ı x�k be the join decomposition induced by the
De Rahm decomposition of X.�w/. Then k � 2 and u does not sit inside the clique
factor by (3-9).

If there is no clique factor, then each join factor is stable by Theorem 2.9, and w is
inside one of the join factors, which contradicts the minimality of �w . If the clique
factor exists and w sits inside the clique factor, then by Theorem 2.9, the clique factor
is stable, and we have the same contradiction as before. If the clique factor exists and w
sits outside the clique factor, this reduces to the next case.

If case (4) is true, let �2 � �w be the corresponding stable clique subgraph. We can
also assume without loss of generality that w is not contained in a stable clique. Let
V2 D V�2 and V 02 D fu 2 �w j d.u; v/ D 1 for any v 2 V2g. Suppose � 00w is the
full subgraph spanned by V2 and V 02 . Then � 00w D �w as before. Let �w D � 01 ı� 02
where � 01 corresponds to the Euclidean De Rahm factor of X.�w/. Note that � 02 is
nontrivial, and w; u 2 � 02 as in the discussion of case (3). Equation (3-8) implies that
w? ª St.u/ is still true if we take the orthogonal complement of w and the closed
star of u in � 02 ; in particular, w is not isolated in � 02 . Moreover, dim.X.� 02// <
dim.X.�w//� dim.X.�//.

If dim.X.�//D 2, then � 02 has to be discrete, which is contradictory to the fact that
w is not isolated in � 02 . If dim.X.�//D n > 2, then by induction, we can assume the
lemma is true for all lower-dimensional graphs. Then there exists x�w stable in � 02
such that w 2 x�w and u … x�w . By Lemma 3.25, x�w ı� 01 is stable in �w , hence in �,
which contradicts the minimality of �w .

Remark 3.26 It is nature to ask whether Theorem 3.21 is still true if we do not
require �1 to be a clique. It turns out there are counterexamples. Let �1 and �2 be as
indicated in Figure 4. Then G.�1/ is quasi-isometric to G.�2/ by the discussion in Sec-
tion 11 of [9]. Let qW X.�2/!X.�1/ be a quasi-isometry, and let K be a standard sub-
complex in X.�2/ such that its defining graph �K is a pentagon in �2 . Suppose q.K/ is
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Hausdorff close to a standard subcomplex K 0 in X.�/. Then �K0 must be a connected
proper subgraph of �1 , hence a tree. But this is impossible by the results in [7].

4 From quasi-isometries to isomorphisms

4.1 The extension complexes

4.1.1 Extension complexes and standard flats Let qW X.�/! X.� 0/ be a quasi-
isometry. Usually q does not induce a well-defined boundary map; see [20]. However,
Theorem 3.20 implies we still have control on a subset of the Tits boundaries when
Out.G.�// and Out.G.� 0// are transvection-free. In this subsection, we will reorganize
this piece of information in terms of extension complexes.

Recall that we identify the vertex set of � with a standard generating set S of G.�/.
We also label the standard circles in the Salvetti complex by elements in S . By choosing
an orientation for each standard circle, we obtain a directed labeling of edges in X.�/.

Denote the extension complex of � by P.�/. We give an alternative definition of
P.�/ here, which is natural for our purposes. The vertices of P.�/ are in one-to-one
correspondence with the parallel classes of standard geodesics in X.�/ (two standard
geodesics are in the same parallel class if they are parallel). Two distinct vertices
v1; v2 2P.�/ are connected by an edge if and only if we can find standard geodesics li
in the parallel classes associated with vi (i D 1; 2) such that l1 and l2 span a standard
2–flat. The next observation follows from Lemmas 3.1 and 2.4:

Observation 4.1 If v1 ¤ v2 , then v1 and v2 are joined by an edge if and only if
there exist l 0i in the parallel classes associated with vi (i D 1; 2) and R > 0 such that
l 01 �NR.Pl 02

/.

We define P.�/ to be the flag complex of its 1–skeleton.

Lemma 4.2 P.�/ is isomorphic to the extension complex of �.

Proof It suffices to show the 1–skeleton of P.�/ is isomorphic to the extension
graph �e. Pick vertex v 2 P.�/, and let l be a standard geodesic in the parallel
class associated with v . We identify l with R in an orientation-preserving way (the
orientation in l is induced by the directed labeling). Recall that G.�/ÕX.�/ by deck
transformations. Let ˛v 2G.�/ be the element such that ˛v.l/D l and ˛v.x/D xC1
for any x 2 l . It is easy to see ˛v is conjugate to an element in S ; thus ˛v gives rise
to a vertex ˛v 2 �e by Definition 2.11. Note that ˛v does not depend the choice of l
in the parallel class, so we have a well-defined map from the vertex set of P.�/ to the
vertex set of �e. Moreover, if v1 and v2 are adjacent, then ˛v1 and ˛v2 commute.
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Now we define an inverse map. Pick ˛ D gsg�1 2 �e (s 2 S ). Then all standard
geodesics which are stabilized by ˛ are in the same parallel class. Let v˛ be the vertex
in P.�/ associated with this parallel class. We map the vertex ˛ of �e to the vertex v˛ .
Now we show this map extends to the 1–skeleton. For i D 1; 2, let ˛i D gisig�1i 2 �

e.
By the centralizer theorem of [58], ˛1 and ˛2 commute if and only if Œs1; s2� D 1
and there exists g 2 G.�/ such that ˛i D gsig�1 . Thus v˛1 and v˛2 are adjacent
in P.�/.

Since every edge in the standard geodesics of the same parallel class has the same label,
the labeling of the edges of X.�/ induces a labeling of the vertices of P.�/. Moreover,
since G.�/ÕX.�/ by label-preserving cubical isomorphisms, we obtain an induced
action G.�/ Õ P.�/ by label-preserving simplicial isomorphisms. Moreover, the
unique label-preserving map from the vertices of P.�/ to the vertices of F.�/ extends
to a simplicial map

(4-1) � W P.�/! F.�/:

Pick an arbitrary vertex p 2X.�/; one can obtain a simplicial embedding ip from the
flag complex F.�/ of � to P.�/ by considering the collection of standard geodesics
passing through p . We will denote the image of ip by .F.�//p . Note that for each
vertex p 2X.�/, the composition � ı ipW F.�/! F.�/ is the identity map.

Pick a .k�1/–simplex in P.�/ with vertex set fvigkiD1 , and pick a standard geodesic li
in the parallel class associated with vi for each 1 � i � k . Since Pli \Plj ¤∅ for
1� i ¤ j � k , by Lemma 2.2,

Tk
iD1Pli ¤∅. By Corollary 3.2 and Lemma 3.4, there

exist standard geodesics fl 0igkiD1 satisfying:

(1) l 0i is parallel to li for each i .

(2) The convex hull of fl 0igkiD1 is a standard k–flat denoted by Fk .

(3)
Tk
iD1 Pli D PFk .

Thus we have a one-to-one correspondence between the .k�1/–simplexes of P.�/ and
parallel classes of standard k–flats in X.�/. In particular, maximal simplexes in P.�/,
namely those simplexes which are not properly contained in some larger simplexes
of P.�/, are in one-to-one correspondence with maximal standard flats in X.�/. For
standard flat F �X.�/, we denote the simplex in P.�/ associated with the parallel
class containing F by �.F /.

Observation 4.3 Let �1 , �2 be two simplexes in P.�/ such that �D�1\�2¤∅.
For i D 1; 2, let Fi �X.�/ be a standard flat such that �.Fi /D�i . Set .F 01; F 02/D
I.F1; F2/. Then �.F 01/D�.F 02/D�.
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We define the reduced Tits boundary, denoted x@T .X.�//, to be the subset of @T .X.�//
which is the union of Tits boundaries of standard flats in X.�/. For a standard flat
F �X.�/, we triangulate @TF into all-right spherical simplexes which are the Tits
boundaries of orthant subcomplexes in F . Pick another standard flat F 0 �X.�/; then
@TF \ @TF

0 is a subcomplex in both @TF and @TF 0 by Lemma 3.1 and Remark 2.5.
Thus we can endow x@T .X.�// with the structure of an all-right spherical complex.

Now we look at the relation between x@T .X.�// and P.�/. For each standard flat
F � X.�/, we can associate @TF with �.F / � P.�/. This induces a surjective
simplicial map sW x@T .X.�//! P.�/ (s can be defined by induction on dimension).
Note that the inverse image of each simplex in P.�/ under s is a sphere in x@T .X.�//.
Then one can construct x@T .X.�// from P.�/ as follows. We start with a collection
of the S0 which are in one-to-one correspondence to vertices of P.�/ and form a
join of n copies of the S0 if and only if the corresponding n vertices in P.�/ span
an .n�1/–simplex. In other words, x@T .X.�// is obtained by applying the spherical
complex construction in the sense of [12, Definition 2.1.22] to P.�/.

Let K1 �X.�/ be a standard subcomplex. We define x@T .K1/ to be the union of Tits
boundaries of standard flats in K1 . Note that x@T .K1/ D x@T .X.�//\ @TK1 , and it
descends to a subcomplex in P.�/, which will be denoted by �.K1/.

Lemma 4.4 Let K1 and K2 be two standard subcomplexes of X.�/. Put .K 01; K 02/D
I.K1; K2/. Then �.K 01/D�.K 02/D�.K1/\�.K2/.

Proof By Remark 2.5, we have @TK 01 D @TK 02 D @TK1 \ @TK2 ; hence x@TK 01 D
x@TK

0
2 D
x@TK1\x@TK2 and �.K 01/D�.K 02/D�.K1/\�.K2/.

Now we study how the extension complexes behave under quasi-isometries.

Lemma 4.5 Pick �1 and �2 such that Out.G.�i // is transvection-free for i D 1; 2.
Then any quasi-isometry qW X.�1/ ! X.�2/ induces a simplicial isomorphism
q�W P.�1/ ! P.�2/. If only Out.G.�1// is assumed to be transvection-free, we
still have a simplicial embedding q�W P.�1/! P.�2/.

Proof We prove the case when both Out.G.�1// and Out.G.�2// are transvection-
free. The other case is similar. By Theorem 3.20, every vertex in �1 is stable; thus
q sends any parallel class of standard geodesics in X.�1/ to another parallel class
of standard geodesics in X.�2/ up to finite Hausdorff distance. This induces a well-
defined map q� from the 0–skeleton of P.�1/ to the 0–skeleton of P.�2/. The map
q� is a bijection by considering the quasi-isometry inverse. Moreover, Observation 4.1
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implies two vertices in P.�1/ are adjacent if and only if their images under q� are
adjacent. So we can extend q� to be a graph isomorphism between the 1–skeleton of
P.�1/ and the 1–skeleton of P.�2/. Since both P.�1/ and P.�2/ are flag complexes,
we can extend the isomorphism to the whole complex.

4.1.2 Extension complexes and their relatives Now we discuss the relation be-
tween P.�/ with several other objects in the literature. The material in this subsection
will not be used later.

We can endow F.�/ with the structure of complex of groups, which gives us an
alternative definition of P.�/. More specifically, P.�/ D F.�/ � G.�/=�; here
St.v/� g1 and St.v/� g2 (v 2 F.�/ is a vertex) are identified if and only if there
exists an integer m such that g�11 g2 D v

m (we also view v as one of the generators
of G.�/). Hence for k–simplex �k � F.�/ with vertex set fvigkiD1 , we have that
St.�k/ � g1 and St.�k/ � g2 are identified if and only if g�11 g2 belongs to the
Zk subgroup of G.�/ generated by fvigkiD1 . One can compare this with a similar
construction for a Coxeter group in [21].

There is another important object associated with a right-angled Artin group, called the
modified Deligne complex in [17] and the flat space in [9].

Definition 4.6 Let P .�/ be poset of left cosets of standard abelian subgroups of G.�/
(including the trivial subgroup) such that the partial order is induced by inclusion of
sets. Then the modified Deligne complex is defined to be the geometric realization of
the derived poset of P .�/.

Recall that elements in the derived poset of a poset P are totally ordered finite chains
in P . It can be viewed as an abstract simplex.

The extension complex P.�/ can be viewed as a coarse version of the modified Deligne
complex. Let A and B be two subsets of a metric space. We say A and B are coarsely
equivalent if A1D B , and A is coarsely contained in B if A�1 B . Let P 0.�/ be the
poset whose elements are coarsely equivalent classes of left cosets of nontrivial standard
abelian subgroups of G.�/, and the partial order is induced by coarse inclusion of sets.

Observation 4.7 The poset P 0.�/ is an abstract simplicial complex, and it is isomor-
phic to P.�/.

Roughly speaking, P .�/ captures the combinatorial pattern of how standard flats in
X.�/ intersect with each other, and P.�/ is about how they coarsely intersect with
each other; thus P .�/ contains more information than P.�/. However, in certain
cases, it is possible to recover information about P .�/ from P.�/, and this enable us
to prove quasi-isometric classification/rigidity results for RAAGs.
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We can define the poset P 0.�/ for an arbitrary Artin group by considering the collection
of coarse equivalent classes of spherical subgroups in an Artin group under coarse
inclusion. Then the geometric realization of the derived poset of P 0.�/ would be a
natural candidate for the extension complex of an Artin group. It is interesting to ask
how much of the results in [43] can be generalized to this context.

There is also a link between P.�/ and the structure of hyperplanes in X.�/. Recall
that for every CAT.0/ cube complex X , the crossing graph of X , denoted by C.X/,
is a graph whose vertices are in one-to-one correspondence to the hyperplanes in X ,
and two vertices are adjacent if and only if the corresponding hyperplanes intersect.
The contact graph, introduced in [30] and denoted by C.X/, has the same vertex set as
C.X/, and two vertices are adjacent if and only if the carriers of the corresponding
hyperplanes intersect.

There is a natural surjective simplicial map pW C.X.�//!�e defined as follows. Pick
a vertex v 2 C.X.�// and let h be the corresponding hyperplane. Since all standard
geodesics which intersect h at one point are in the same parallel class, we define p.v/
to be the vertex in �e associated with this parallel class; see Lemma 4.2. It is clear
that if v1; v2 2 C.X.�// are adjacent vertices, then p.v1/ and p.v2/ are adjacent, so
p extends to a simplicial map. Pick a vertex w 2 �e ; then p�1.e/ is the collection of
hyperplanes dual to a standard geodesic.

Theorem 4.8 [42; 30] If � is connected, then C.X.�//, C.X.�// and P.�/ are
quasi-isometric to each other; moreover, they are quasi-isometric to a tree.

From this viewpoint, P.�/ captures both the geometric information of X.�/ (the
standard flats) and the combinatorial information (the hyperplanes).

4.2 Reconstruction of quasi-isometries

We show the boundary map q�W P.�/! P.� 0/ in Lemma 4.5 induces a well-defined
map from G.�/ to G.� 0/.

Lemma 4.9 Let F1 and F2 be two maximal standard flats in X.�/ and let �1 and �2
be the corresponding maximal simplexes in P.�/. If F1 and F2 are separated by a
hyperplane h, then there exist vertices vi 2�i for i D 1; 2 and v 2 P.�/ such that v1
and v2 are in different connected components of P.�/ nSt.v/.

Proof Let e be an edge dual to h and let l be the standard geodesic that contains e .
Set v D�.l/ 2 P.�/. By Lemma 3.4, the parallel set Pl of l is isometric to h�E1 .
Thus every standard geodesic parallel to l must have nontrivial intersection with h.
Since F1\ hD∅, we see that F1 cannot contain any standard geodesic parallel to l ,
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which means v …�1 . Moreover, �1ªSt.v/ since �1 is a maximal simplex. Similarly,
�2 ª St.v/; thus we can find vertices vi 2�i nSt.v/ for i D 1; 2. We claim v1 , v2
and v are the vertices we are looking for.

If there is a path ! � P.�/ nSt.v/ connecting v1 and v2 , we can assume ! consists
of a sequence of edges feigkiD1 with v1 2 e1 and v2 2 ek . For each ei , pick a
maximal simplex �0i that contains ei , and let F 0i be the maximal standard flat such
that �.F 0i /D�0i . Then v …�0i for 1� i � k ; hence F 0i \ hD∅.

Set �00 D�1 , �0kC1 D�2 , F 00 D F1 and F 0kC1 D F2 . Since �0i \�0iC1 contains a
vertex in ! , we have

(4-2) .�0i \�
0
iC1/ nSt.v/¤∅

for 0� i � k . Since F 00 and F 0kC1 are in different sides of h, there exists i0 such that
h separates F 0i0 and F 0i0C1 . Let .F 00i0 ; F

00
i0C1/ D I.F 0i0 ; F

0
i0C1/. By Observation 4.3,

�.F 00i0/ D �.F
00
i0C1/ D �

0
i \�

0
iC1 . However, by Lemma 2.7, there exists a convex

subset of h parallel to F 00i0 ; thus F 00i0 �1 h� Pl . It follows from Observation 4.1 that
�0i \�

0
iC1 � St.v/, which contradicts (4-2).

Denote the Cayley graph of G.�/ with respect to the standard generating set S by C.�/.
We pick an identification between C.�/ and the 1–skeleton of X.�/. Thus G.�/ is
identified with the vertex set of X.�/.

Lemma 4.10 Let �1 be a simple graph such that:

(1) There is no separating closed star in F.�1/.

(2) F.�1/ is not contained in a union of two closed stars.

Then any simplicial isomorphism sWP.�1/!P.�2/ induces a unique map s0WG.�1/!
G.�2/ such that for any maximal standard flat F1 �X.�1/, vertices in F1 are mapped
by s0 to vertices lying in a maximal standard flat F2�X.�2/ with �.F2/D s0.�.F1//.

Proof Pick a vertex p 2G.�1/. Let fFigkiD1 be the collection of maximal standard
flats containing p . For 1� i �k , define �i D�.Fi / and �0i D s.�i /. Let F 0i �X.�2/
be the maximal standard flat such that �.F 0i /D�0i . Let Kp D .F.�1//p D

Sk
iD1�i

(recall that Kp Š F.�1/). We claim

(4-3)
k\
iD1

F 0i ¤∅:

The lemma will then follow from (4-3). To see this, we deduce from condition (2) thatTk
iD1�i D∅. Hence

Tk
iD1 Fi D fpg. It follows that

Tk
iD1�

0
i D∅. This together
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with (4-3) imply that
Tk
iD1 F

0
i is exactly one point. We define s0 by sending p to this

point. One readily verifies that s0 has the required properties.

It remains to prove (4-3).

Suppose that (4-3) is not true. Then by Lemma 2.2, there exist i1 and i2 such that
F 0i1 \ F

0
i2 D ∅. Thus F 0i1 and F 0i2 are separated by a hyperplane. It follows from

Lemma 4.9 that there exist vertices v0 2 P.�2/, v01 2�0i1 and v02 2�
0
i2 such that v01

and v02 are in different connected components of P.�2/ n St.v0/. Let v D s�1.v0/,
v1 D s�1.v01/ and v2 D s�1.v02/. Then Kp n .Kp \ St.v// is disconnected (since
v1; v2 2Kp and they are separated by St.v/).

If v 2Kp , then Kp would contain a separating closed star, which yields a contradiction;
thus (4-3) is true in this case.

Suppose v …Kp . Pick a standard geodesic l such that �.l/D v and let fhigniD1 be
the collection of hyperplanes in X.�/ such that each hi separates p from the parallel
set Pl of l (note that p … Pl ). For 1� i � n, pick an edge ei dual to hi and let wi
be the unique vertex in Kp that has the same label as ei . Let w0 2Kp be the unique
vertex which has the same label as v . We claim

(4-4) St.v/\Kp D
n\
iD0

.St.wi /\Kp/:

For every u 2 Kp , let lu be the unique standard geodesic such that �.lu/ D u and
p 2 lu .

Pick u 2 St.v/ \ Kp . Observation 4.1 implies I.lu; Pl/ D .lu; l
0
u/, where l 0u is

some standard geodesic in Pl . Then for 1 � i � n, the hyperplane hi separates lu
from Pl , otherwise hi \ lu ¤ ∅ and Lemma 2.6 implies hi \ Pl ¤ ∅, which is a
contradiction. It follows from Corollary 3.2 that u and wi are adjacent for 0� i � n;
thus u 2

Tn
iD0.St.wi /\Kp/. Therefore, St.v/\Kp �

Tn
iD0.St.wi /\Kp/.

Pick u 2
Tn
iD0.St.wi /\Kp/. First we show lu\Pl D∅. Suppose there is a vertex z

in lu \Pl . Since v and w0 have the same label and u 2 St.w0/, it follows that the
edge in lu which contains z belongs to the parallel set Pl . Then lu�Pl , contradicting
the fact that p … Pl . Therefore, lu\Pl D∅.

Now we pick an edge path ! of shortest combinatorial length that travels from lu to Pl .
Let ffj gmjD1 be the consecutive edges in ! such that f1\ lu¤∅. For each fj , let xhj
be the hyperplane dual to fj . Then xhj separates lu from Pl (otherwise ! would not be
the shortest edge path), hence separates p from Pl . This and u 2

Tn
iD0.St.wi /\Kp/

imply that d.�.u/; Vfj / � 1 for each j , where � is the map in (4-1) and Vfj is the
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label of the edge fj . It follows that ! is contained in the parallel set Plu , and hence the
intersection Plu \Pl contains some vertex z . Again, since u 2 St.w0/, and since w0
has the same label as v , we find that the standard geodesic l 0u�Plu that is parallel to lu
and passes through z is contained in Pl . Therefore, u 2 St.v/\Kp , and (4-4) follows.

By condition (2) of Lemma 4.10, we have

(4-5) .St.w0/\Kp/[
� n\
iD1

.St.wi /\Kp/
�
¨Kp:

Let A D Kp n .St.w0/\Kp/, and let B D Kp n
�Tn

iD1.St.wi /\Kp/
�
. Then (4-5)

implies A\B ¤∅. Thus we have the following Mayer–Vietoris sequence for reduced
homology:

� � � ! zH0.A\B/! zH0.A/˚ zH0.B/! zH0.A[B/! 0:

Recall that Kp n .Kp \ St.v// is disconnected, we deduce that zH0.A[B/ is non-
trivial from (4-4). Thus zH0.A/ ˚ zH0.B/ is nontrivial, which implies that eitherTn
iD1.St.wi /\Kp/ or St.w0/\Kp would separate Kp . Thus we can induct on n

to deduce that there exists i0 such that St.wi0/ \Kp separates Kp . This yields a
contradiction to condition (1) of Lemma 4.10.

There are counterexamples if we only assume (1) in Lemma 4.10. For example, let �1
and �2 be discrete graphs made of two points. Then P.�1/ and P.�2/ are discrete
sets. Now it is not hard to construct a permutation of a discrete set to itself which does
not satisfy the conclusion of Lemma 4.10. If we go back to the proof of Lemma 4.10,
then the step using the Mayer–Vietoris sequence will fail, since we need A\B ¤∅
in order to use the reduced version of Mayer–Vietoris sequence.

Corollary 4.11 Suppose that G.�1/ and G.�2/ both satisfy the assumption of
Lemma 4.10. Then they are isomorphic if and only if P.�1/ and P.�2/ are isomorphic
as simplicial complexes.

Proof The “only if” direction follows from the fact that G.�1/ and G.�2/ are
isomorphic if and only if �1 and �2 are isomorphic; see [23]. It remains to prove the
“if” direction. Pick an isomorphism sW P.�1/! P.�2/, and let s0W G.�1/!G.�2/

be the map in Lemma 4.10. Pick a vertex p 2 G.�1/ and let q D s.p/. We define
.F.�1//p � P.�1/ and .F.�2//q � P.�2/ as in the first paragraph of the proof of
Lemma 4.10. Then (4-3) implies s..F.�1//p/ � .F.�2//q . This induces a graph
embedding �1 ,! �2 . By repeating the previous discussion for s�1 , we obtain another
graph embedding �2 ,! �1 . Since both �1 and �2 are finite simplicial graphs, they
are isomorphic. Hence G.�1/ŠG.�2/.
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Lemma 4.12 Let G.�/ be a RAAG such that Out.G.�// is finite and G.�/ © Z.
Then F.�/ satisfies the assumption of Lemma 4.10.

Proof It is clear that F.�/ should satisfy condition (1) of Lemma 4.10 since no
nontrivial partial conjugation is allowed. If F.�/ is contained in a closed star, then �
is a point. So if (2) is not true, then F.�/D St.v/[St.w/ for distinct vertices v;w 2�.
Since the orthogonal complement v? satisfies v? ª St.w/, there exists u 2 v? such
that d.u;w/� 2. Pick any edge e such that u 2 e ; then e ª St.w/, and so e � St.v/.
This implies u?� St.v/; hence Out.G.�// is infinite, which yields a contradiction.

By Lemma 4.5, Lemma 4.12 and Corollary 4.11, we have following result, which in
particular establishes Theorem 1.1 of the introduction.

Theorem 4.13 Let �1 and �2 be two finite simplicial graphs such that Out.G.�i //
is finite for i D 1; 2. Then G.�1/ and G.�2/ are quasi-isometric if and only if they
are isomorphic. Moreover, for any .L;A/–quasi-isometry qW X.�1/!X.�2/, there
exist a bijection q0W G.�1/!G.�2/ and a constant D DD.L;A; �1/ such that:

(1) d.q.v/; q0.v// < D for any v 2G.�1/.

(2) For any standard flat F1 �X.�1/, there exists a standard flat F2 �X.�2/ such
that q0 induces a bijection between F1\G.�1/ and F2\G.�2/.

If G.�1/¤ Z, then such a q0 is unique.

Proof It suffices to look at the case where G.�1/ ¤ Z. Then G.�2/ ¤ Z. In this
case, every vertex v in �1 or �2 is the intersection of maximal cliques that contain v
(otherwise there exists a vertex w such that w ¤ v and v? � St.w/). It follows
that every standard geodesic in X.�1/ or X.�2/ is the intersection of finitely many
maximal standard flats, and so is every standard flat. Let q�W P.�1/ ! P.�2/ be
the map in Lemma 4.5. We apply Lemma 4.10 to q� and q�1� to obtain q0 with the
required properties. Note that each vertex of X.�/ is the intersection of maximal
standard flats that contain it; thus q0 is unique.

4.3 The automorphism groups of extension complexes

Suppose Out.G.�// is finite; by Theorem 4.13, each element in the simplicial auto-
morphism group Aut.P.�// of P.�/ induces a bijection G.�/! G.�/. However,
this bijection does not extend to an isomorphism from X.�/ to itself in general. We
start by looking at the following example which was first pointed out in [9, Section 11]
in a slightly different form.
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Example 4.14 Let l � X.�/ be a standard geodesic, and let �l W X.�/! l be the
CAT.0/ projection. We identify the vertex set of l with Z. Let X .0/.�/ be the vertex
set of X.�/. Then the above projection induces a map �l W X .0/.�/! Z.

Recall that each edge of X.�/ is oriented and labeled, and G.�/ acts on X.�/

by transformations that preserve labels and orientations. There is a unique element
˛ 2G.�/ such that ˛ translates l one unit in the positive direction.

We want to define a bijection qW X .0/.�/! X .0/.�/ which basically flips ��1
l
.0/

and ��1
l
.1/. More precisely,

q.x/D

8<:
x if �l.x/¤ 0; 1;
˛.x/ if x 2 ��1

l
.0/;

˛�1.x/ if x 2 ��1
l
.1/:

One can check the following:

(1) q is a quasi-isometry.

(2) q does not respect the word metric.

(3) q maps vertices in a standard flat to vertices in another standard flat. Thus q
induces an element in Aut.P.�//.

The above example implies that, in general, elements in Aut.P.�// do not respect
the order along the standard geodesics of X.�/. There is another metric on G.�/
which “forgets about” the ordering. Following [43], we define the syllable length of a
word ! to be the minimal l such that ! can be written as a product of l elements of
the form vkii , where vi is a standard generator and ki is an integer.

An alternative definition is the following. Let fhigkiD1 be the collection of hyperplanes
separating ! 2 G.�/ and the identity element (recall that we have identified G.�/
with the 0–skeleton of X.�/). For each i , pick a standard geodesic li dual to hi .
Then the syllable length of ! is the number of elements in f�.li /gkiD1 . The syllable
length induces a left invariant metric on G.�/, which will be denoted by dr . Note that
the map in Example 4.14 is an isometry with respect to dr .

Denote the word metric on G.�/ with respect to the standard generators by dw .

Corollary 4.15 Let � be a graph such that Out.G.�// is finite, and denote the
simplicial automorphism group of P.�/ by Aut.P.�//. Then

Aut.P.�//Š Isom.G.�/; dr/:

Proof Let Perm.G.�// be the permutation group of elements in G.�/. We have
a group homomorphism h1W Aut.P.�//! Perm.G.�// by Lemma 4.10. Take � 2
Aut.P.�//; by Lemma 4.12, ' D h1.�/ and '�1 D h1.��1/ satisfy the conclusion
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of Lemma 4.10. Since every standard geodesic is the intersection of finitely many
maximal standard flats, points in a standard geodesic are mapped to points in a standard
geodesic by � , which implies dr.'.v1/; '.v2// � dr.v1; v2/ if dr.v1; v2/ � 1. By
the triangle inequality, we have dr.'.v1/; '.v2//� dr.v1; v2/ for any v1; v2 2G.�/.
Similarly, dr.'�1.v1/; '�1.v2// � dr.v1; v2/. Thus ' 2 Isom.G.�/; dr/, and we
have a homomorphism h1W Aut.P.�//! Isom.G.�/; dr/.

Now pick ' 2 Isom.G.�/; dr/. Let v1; v2; v3 2 G.�/ such that dr.v1; vi / D 1 for
i D 2; 3. We claim

(4-6) †v1.v2; v3/D
�
2
() †'.v1/.'.v2/; '.v3//D

�
2
:

If †v1.v2; v3/D
�
2

, then we can find v4 2G.�/ such that fvig4iD1 are the vertices of
a flat rectangle in X.�/. Note that

dr.v1; v4/D dr.v2; v3/D 2 and dr.v4; v2/D dr.v4; v3/D 1;

so

dr.'.v1/;'.v4//Ddr.'.v2/;'.v3//D2 and dr.'.v4/;'.v2//Ddr.'.v4/;'.v3//D1:

Now we consider the 4–gon formed by '.v1/'.v2/, '.v2/'.v4/, '.v4/'.v3/ and
'.v3/'.v1/. Then the angles at the four vertices of this 4–gon are bigger or equal to �

2
.

It follows from CAT.0/ geometry that the angles are exactly �
2

and the 4–gon actually
bounds a flat rectangle. Thus one direction of (4-6) is proved; the other direction is
similar.

We need another observation as follows. If three points v1; v2; v3 2 G.�/ satisfy
dr.vi ; vj / D 1 for 1 � i ¤ j � 3, then the angle at each vertex of the triangle
�.v1; v2; v3/ could only be 0 or � ; thus fvig3iD1 are inside a standard geodesic. It
follows from this observation that points in a standard geodesic are mapped by ' to
points in a standard geodesic.

We define �W P.�/! P.�/ as follows. For vertex w 2 P.�/, let l be a standard
geodesic such that �.l/D w . Suppose l 0 �X.�/ is the standard geodesic such that
�.v.l// � l 0 (v.l/ denotes the vertex set of l ). Suppose w0 D �.l 0/. We define
w0 D �.w/; (4-6) implies w0 does not depend on the choice of l , and �.w1/ and
�.w2/ are adjacent if vertices w1; w2 2 P.�/ are adjacent. Thus � is a well-defined
simplicial map. Note that '�1 also induces a simplicial map from P.�/ to itself in
a similar way, so � 2 Aut.P.�//. We define � D h2.'/. One readily verifies that
h2W Isom.G.�/; dr/!Aut.P.�// is a group homomorphism, and h2ıh1Dh1ıh2D Id.
Thus the corollary follows.
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Remark 4.16 If we drop the assumption in the above corollary about �, then
there is still a monomorphism hW Isom.G.�/; dr/ ! Aut.P.�//; moreover, any
' 2 Isom.G.�/; dr/ maps vertices in a standard flat to vertices in a standard flat
of the same dimension. The homomorphism h is surjective if Out.G.�// is finite.

Remark 4.17 For any finite simplicial graphs �1 and �2 , we have G.�1/ŠG.�2/
if and only if .G.�1/; dr/ and .G.�2/; dr/ are isometric as metric spaces. The “only
if” direction follows from [23; 49]. For the other direction, let 'W .G.�1/; dr/ !
.G.�2/; dr/ be an isometry. Pick v 2 G.�1/, and let fligkiD1 be the collection of
standard geodesics passing through v . Pick vi 2 G.�1/ such that vi 2 li n fvg.
Then dr.v; vi / D 1 for 1 � i � k , and dr.vi ; vj / D 2 for 1 � i ¤ j � k . So
dr.'.v/; '.vi // D 1 for 1 � i � k , and dr.'.vi /; '.vj // D 2 for 1 � i ¤ j � k ,
and †v.vi ; vj /D �

2
if and only if †'.v/.'.vi /; '.vj //D �

2
by (4-6). This induces a

graph embedding �1! �2 . By considering '�1 , we obtain another graph embedding
�2! �1 . Hence �1 and �2 are isomorphic.

Corollary 4.18 If Out.G.�// is finite and QI.G.�// is the quasi-isometry group
of G.�/, then we have the following commutative diagram, where i1 , i2 and i3 are
injective homomorphisms:

Isom.G.�/; dw/ QI.G.�// Isom.G.�/; dr/.
i1 i2

i3

Proof The homomorphisms i1 and i3 are obvious, and i2 is given by Lemma 4.5
and Corollary 4.15. It is clear that i2 is a group homomorphism and i3 D i2 ı i1 . Note
that i3 is injective, so i1 is injective. Pick ˛ 2QI.G.�//; by Corollary 4.15, we know
i2.˛/D Id implies the image of every standard flat under ˛ is uniformly Hausdorff
close to itself; thus ˛ is of bounded distance from the identity map.

5 Quasi-isometries and special subgroups

Let G.�/ be a RAAG with finite outer automorphism group. In this section, we
characterize all other RAAGs quasi-isometric to G.�/.

5.1 Preservation of extension complex

Lemma 5.1 Let � be a finite simplicial graph. Pick a vertex w 2 � , and let �w be
the minimal stable subgraph containing w . Denote �1 D lk.w/ and �2 D lk.�1/ .see
Section 2.1 for the definition of links/. Then exactly one of the following is true:

(1) �w is a clique. In this case, St.w/ is a stable subgraph.
(2) Both �1 and �1 ı�2 are stable subgraphs of �. Moreover, �2 is disconnected.
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Recall that we use .� 0/? to denote the orthogonal complement of the subgraph � 0��
(see Section 2.1), and we assume .∅/? D �.

Proof If �w � St.w/, then �w is a clique by Lemma 3.23. We also deduce from
Lemma 3.23 that each vertex of St.w/ n �w is in �?w . Moreover, �?w � w

? since
w 2 �w . Thus St.w/ is the full subgraph spanned by vertices in �w and �?w . So
St.w/ is stable by Lemma 3.12.

If �w ª St.w/, let �11 be the full subgraph spanned by vertices in �w \ lk.w/,
and let � 02 be the full subgraph spanned by vertices in �w n �11 . By Lemma 3.23,
�w D�11 ı�

0
2 and � 02D�2 . Note that �2 is disconnected with isolated point w 2�2 ,

and �11 may be empty.

Let Vw D v.�w/ be the vertex set of �w and let �12 be the full subgraph spanned
by V ?w . Then �w ı �12 D �11 ı �2 ı �12 is stable by Lemma 3.12. Pick a vertex
v2�1n�11 ; then v2w?�St.u/ for any vertex u2�w by Lemma 3.23. Thus v2�12
and �1��11ı�12 . On the other hand, w 2�2 , so �11ı�12��1 and �1D�11ı�12 .
Since �2 does not contain any clique factor and �11 ı�2 ı�12 D �1 ı�2 is stable,
we know �1 is stable in � by Theorem 2.9.

Remark 5.2 In the above proof, �12 may be empty. But if �12 ¤ ∅, then it does
not contain any clique join factor. Thus �11 is the maximal clique join factor of
�11 ı�2 ı�12 .

The next result answers the question at the end of Example 3.22.

Theorem 5.3 Suppose Out.G.�// is finite and let qW X.�/ ! X.� 0/ be a quasi-
isometry. Then q induces a simplicial isomorphism q�W P.�/! P.� 0/; in particular,
Out.G.� 0// is transvection-free.

In the following proof, we identify � with the one-skeleton of F.�/, which is the flag
complex of �. Also recall that there are label-preserving projections � W P.�/!F.�/

and � W P.� 0/! F.� 0/.

Proof By Lemma 4.5, there is a simplicial embedding q�W P.�/! P.� 0/. Note that
q�.P.�// is a full subcomplex in P.� 0/. To see this, pick a simplex �0 � P.� 0/ with
its vertices in q�.P.�//. Then each vertex of �0 comes from a stable standard geodesic
line in X.� 0/. Thus there exists a stable standard flat F 0�X.� 0/ such that �.F 0/D�0

by Lemma 3.18. By considering the quasi-inverse of q , we know F 0 is Hausdorff close
to the q–image of a stable standard flat in X.�/. Thus �.F 0/D�0 � q�.P.�//.
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Pick a vertex p 2 X.�/, and let f�igkiD1 , fFigkiD1 , f�0igkiD1 and fF 0i gkiD1 be as in
the proof of Lemma 4.10. We claim

(5-1)
k\
iD1

F 0i ¤∅:

Suppose (5-1) is not true. Then there exist 1� i1 ¤ i2 � k and hyperplane h0 �X.�/
such that h0 separates F 0i1 and F 0i2 . Let l 0 be a standard geodesic that intersects h0

transversely, and let v0 D�.l 0/. By the discussion in Lemma 4.9, we can find vertices
v01 2�

0
i1 and v02 2�

0
i2 such that v01 and v02 are separated by St.v0/. If there exists i0

such that F 0i0\h¤∅, then v0 2 q�.P.� 0//, and we can prove (5-1) as in Lemma 4.10.
Now we assume F 0i \ h0 D ∅ for any i . Let w0 D �.v0/ 2 � 0 , and let �w 0 be the
minimal stable subgraph of � 0 that contains w0 .

We apply Lemma 5.1 to w0 2 � 0 ; if case (1) is true, let F 0 be the standard flat in
X.� 0/ such that l 0 � F 0 and �F 0 D �w 0 . Since �w 0 is stable, �.F 0/ � q�.P.� 0//;
in particular, v0 2 q�.P.� 0//, and we can prove (5-1) as in Lemma 4.10.

If case (2) is true, let � 01 D lk.w0/ and let � 02 D lk.� 01/. Take K 01 and K 0 to be
the standard subcomplexes in X.� 0/ such that: (a) the defining graphs �K01 and �K0
of K 01 and K 0 satisfy �K01 D �

0
1 and �K0 D � 01 ı� 02 ; (b) l 0 �K 0 and K 01 �K 0 . Set

M 01 D�.K
0
1/ and M 0 D�.K 0/. Let K 02 be an orthogonal complement of K 01 in K 0 ;

ie K 02 is a standard subcomplex such that �K02 D �
0
2 and K 0 DK 01 �K 02 . It follows

that M 0 DM 01 �M 02 for M 02 D�.K 02/. By construction, v0 2M 0 and lk.v0/DM 01 .

Since K 0 and K 01 are stable, there exist stable standard subcomplexes K and K1 in
X.�/ such that q.K/1DK 0 and q.K1/

1
DK 01 . Moreover, by applying Theorem 2.9 to

the quasi-isometry between K and K 0 , there exists a standard subcomplex K2�K such
that K DK1 �K2 , and K2 is quasi-isometric to K 02 . Thus �K2 is also disconnected.
Let Mi D �.Ki / � P.�/ for i D 1; 2, and let M D M1 �M2 D �.K/. Then
q�.M1/�M

0
1 (at this stage we may not know q�.M1/DM

0
1 ), and

(5-2) q�1� .M 01/DM1:

To see this, pick a simplex �� P.�/ with q�.�/�M 01 . Suppose �D�.F / for a
stable standard flat F �X.�/. Then q.F /�1 K 01 ; hence F �1 K1 and ��M1 .

Let LD
Sk
iD1�i and L0D

Sk
iD1�

0
i . By the proof of Lemma 4.10, L0n.St.v0/\L0/

is disconnected; thus Lnq�1� .St.v0/\L0/ is disconnected. Recall that lk.v0/DM 01 , and
we are assuming v0 …L0 . Thus .St.v0/\L0/�M 01 . Then q�1� .St.v0/\L0/�q�1� .M 01/;
hence q�1� .St.v0/\L0/�M1 by (5-2).

Let N D �.q�1� .St.v0/\L0//, and let Ni D �.Mi / for i D 1; 2. Then N separates
F.�/, N �N1 and N2 is disconnected. Pick vertices u1; u2 in different connected
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components of N2 ; then d.u1; u2/ � 2 (since N2 is the full subcomplex spanned
by �K2 ). Since �.M/D N1 �N2 � F.�/, we have N � St.ui / n fuig for i D 1; 2.
Let fCj gdjD1 be the connected components of F.�/ nN . Then at most one of Cj
is contained in St.u1/. If d � 3, then St.u1/ would separate F.�/, which is a
contradiction. Now we suppose d D 2. Note that for i D 1; 2, there must exist j such
that Cj � St.ui /: otherwise, St.ui / would separate F.�/. Moreover, if Cj � St.ui /,
then ui 2 Cj . So we can assume without loss of generality that C1 � St.u1/ and
C2�St.u2/, which implies F.�/DSt.u1/[St.u2/, and again we have a contradiction
by Lemma 4.12. Thus case (2) is impossible, and (5-1) is true.

Let fF�g�2ƒ be the collection of maximal standard flats in X.�/. Then X.�/ DS
�2ƒ F� . For each �, let F 0� be the unique maximal standard flat in X.� 0/ such that

q.F�/
1
D F 0� . Then

(5-3) X.� 0/
1
D

[
�2ƒ

F 0�:

Let h � X.� 0/ be an arbitrary hyperplane. Then h\
�S

�2ƒ F
0
�

�
¤ ∅: otherwise,S

�2ƒ F
0
� would stay on one side of the hyperplane since it is a connected set by (5-1),

and this contradicts (5-3). Pick any standard geodesic r � X.� 0/, and let hr be a
hyperplane dual to r . Then there exists � 2 ƒ such that F 0� \ hr ¤ ∅. It follows
that r �1 F 0� . So �.r/ 2�.F 0�/� q�.P.�//, which implies q� is surjective on the
vertices. However, q�.P.�// is a full subcomplex in P.� 0/, so q� is surjective.

5.2 Coherent ordering and coherent labeling

Throughout this section, we assume that Out.G.�// is finite and G.�/ © Z. If
qW G.�/!G.� 0/ is a quasi-isometry, then G.� 0/ has a quasi-action (see [46, Defini-
tion 2.2]) on G.�/, which induces a group homomorphism

H W G.� 0/! QI.G.�//:

On the other hand, since G.�/ acts by isometries on X.�/, we can identify G.�/ as
a subgroup of QI.G.�// (more precisely, we embed G.�/ into Isom.G.�/; dw/ and
embed Isom.G.�/; dw/ into QI.G.�// by Corollary 4.18). In this subsection, we will
seek to answer the following question:

Does there exist g 2 QI.G.�// such that g �H.G.� 0// �g�1 �G.�/?

Recall that we have picked an identification between G.�/ and the 0–skeleton of X.�/.
Each circle in the 1–skeleton of the Salvetti complex of G.�/ is labeled by an element
in the standard generating set S of G.�/. Moreover, we have chosen an orientation
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for each such circle. By pulling back the labeling and orientation of edges to the
universal cover X.�/, we obtain a G.�/–invariant directed labeling of edges in X.�/.
Moreover, both the labeling and orientation of edges in X.�/ are compatible with
parallelism between edges. This also induces an associated G.�/–invariant labeling of
vertices in P.�/.

Let fl�g�2ƒ be the collection of standard geodesics in X.�/, and let V� D v.l�/ be
the vertex set of l� . A coherent ordering of G.�/ is obtained by assigning a collection
of bijections f�W V�! Z for each � 2ƒ such that if l�1 and l�2 are parallel, then
the f�2 ıp ı f

�1
�1
W Z! Z is a translation, where pW V�1 ! V�2 is the map induced

by parallelism. The map f� pulls back the total order on Z to V� , which we denote
by �� . Then pW V�1 ! V�2 is order preserving.

Two coherent orderings �1 and �2 are equivalent, denoted by �1 D �2 , if their
collections of bijections agree up to a translation of Z. Recall that we have a G.�/–
invariant orientation of edges in X.�/ which is compatible with parallelism between
edges. This induces a unique coherent ordering � of G.�/ up to the equivalence
relation defined before. Moreover, for any element g 2G.�/, the pull-back g�.�/ is
also a coherent ordering; additionally, g�.�/D�.

Recall that for any vertex v 2X.�/, there is a label-preserving simplicial embedding
ivW F.�/!P.�/ by considering the standard geodesics passing through v . A coherent
labeling of G.�/ is a simplicial map aW P.�/!F.�/ such that aıivW F.�/!F.�/

is a simplicial isomorphism for every vertex v 2X.�/.

The label-preserving projection LW P.�/! F.�/ gives rise to a coherent labeling
of G.�/. Recall that G.�/ acts on P.�/ by simplicial automorphisms, and the labeling
of vertices in P.�/ is G.�/–invariant. Thus for any element g 2G.�/, the pull-back
g�.L/ is also a coherent labeling and g�.L/D L.

We have the following alternative characterization of elements in Isom.G.�/; dr/.

Lemma 5.4 There is a one-to-one correspondence which associates each element of
Isom.G.�/; dr/ to a triple consisting of

(1) a point v 2G.�/,

(2) a coherent ordering of G.�/ (up to the equivalence relation defined above),

(3) a coherent labeling of G.�/.

Proof Pick � 2 Isom.G.�/; dr/ and let ' D h.�/W P.�/! P.�/, where h is the
monomorphism in Remark 4.16. Then '�L D L ı 'W P.�/! F.�/ is a coherent
labeling of G.�/. Pick a standard geodesic l1 � X.�/. Then the parallel set Pl1
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admits a splitting Pl1 D l1 � l
?
1 . Since � maps vertices in a standard flat bijectively

to vertices in a standard flat, there exists a standard geodesic l2 � X.�/ such that
�.v.l1// D v.l2/ and �.v.Pl1// D Pl2 ; moreover, � respects the product structure
on Pl1 . Thus the pull-back ��� is a coherent ordering of G.�/. Now we can set up
the correspondence in one direction:

� .�.id/; ���; '�L/:

Here, id denotes the identity element of G.�/.

Conversely, given a point v 2G.�/, a coherent ordering �0 and a coherent labeling L0 ,
we can construct a map � as follows. Set �.id/ D v . For u 2 G.�/, pick a word
wuD a1a2 � � � an representing u. Let ui be the point in G.�/ represented by the word
a1a2 � � � ai for 1 � i � n, and let u0 D id. We define qi D �.a1a2 � � � ai / 2 G.�/
inductively as follows. Set q0 D v , and suppose qi�1 is already defined. Denote
the standard geodesic containing ui�1 and ui by li . Let vi D L0.�.li //, which
is a vertex of �, and let l 0i be the standard line that contains qi�1 and is labeled
by vi . Denote the vertex set of li with the order from �0 by .v.li /;��0/. Suppose
that kW .v.li /;��0/! .v.l 0i /;��/ is the unique order-preserving bijection such that
k.ui�1/D qi�1 . Then we define qi D k.ui /.

We claim that for any other word w0u representing u, we have �.wu/D �.w0u/, and
hence there is a well-defined map �W G.�/!G.�/. To see this, recall that one can
obtain wu from w0u by performing the following two basic moves:

(1) w1aa
�1w2! w1w2 ,

(2) w1abw2! w1baw2 when a and b commute.

It is clear that �.w1aa�1w2/ D �.w1w2/. For the second move, let ui�1 , ui , u0i
and uiC1 be points in G.�/ represented by w1; w1a;w1b and w1ab D w1ba , re-
spectively. Define qi�1D �.w1/, qi D �.w1a/, q0i D �.w1b/, qiC1D �.w1ab/ and
q0iC1D �.w1ba/. Since L0 is a coherent labeling, †qi .qiC1; qi�1/D†qi�1.qi ; q0i /D
†q0

i
.qi�1; q0iC1/ D

�
2

; moreover, the standard geodesic containing qi and qiC1 is
parallel to the standard geodesic containing qi�1 and q0i . Since �0 is a coherent
ordering, d.qi ; qiC1/D d.qi�1; q0i /; thus qiqiC1 and qi�1q0i are parallel. Similarly,
qi�1qi and q0i q0iC1 are parallel; thus qiC1 D q0iC1 .

Now we define another map �0W G.�/!G.�/, which serves as the inverse of � . Set
�0.v/D id and pick a word w D a1a2 � � � an . Let ri be the point in G.�/ represented
by va1a2 � � � ai for 1 � i � n, and let r0 D v . We define pi D �0.va1a2 � � � ai /

inductively as follows. Put p0 D id, and suppose pi�1 is already defined. Since L0 is
a coherent labeling, there exists a unique standard geodesic li containing pi�1 such
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that L0.�.li // and the edge ri�1ri share the same label. Let l 0i be the unique standard
geodesic containing ri�1 and ri , and let k0W .v.l 0i /;��/! .v.li /;��0/ be the unique
order-preserving bijection such that k0.ri�1/D pi�1 . Put pi D k0.ri /. By a similar
argument as above, �0W G.�/! G.�/ is well defined. It is not hard to deduce the
following properties from our construction:

(1) �0 ı� D � ı�0 D Id.

(2) dr.�.v1/; �.v2// � dr.v1; v2/ and dr.�
0.v1/; �

0.v2// � dr.v1; v2/ for any
vertices v1; v2 2G.�/.

(3) If L0 D L and �0 D�, then � is a left translation. If, in addition, v D id, then
� D Id.

It follows from (1) and (2) that � 2 Isom.G.�/; dr/. Moreover, vD �.id/, L0D '�L
(' D h.�/, where h is the monomorphism in Remark 4.16) and �0 D ���; thus we
have established the required one-to-one correspondence.

Pick finite simplicial graphs � and � 0 such that: (1) Out.G.�// is finite; (2) there
exists a simplicial isomorphism sW P.�/! P.� 0/. By Lemma 4.10, s induces a map
�W G.�/!G.� 0/. For every g0 2G.� 0/, there is a left translation

x�g 0 W G.�
0/!G.� 0/;

which gives rise to a simplicial isomorphism xsg 0 W P.� 0/!P.� 0/. Let sg 0D s�1ıxsg 0ıs .
Then sg 0 gives rise to a map �g 0 2 Isom.G.�/; dr/ by Corollary 4.15; moreover, by
Lemma 4.10,

(5-4) x�g 0 ı� D � ı�g 0

for any g0 2 G.� 0/. So G.� 0/ acts on G.�/, and we can define a homomorphism
ˆW G.� 0/! Isom.G.�/; dr/ by sending g0 to �g 0 . ˆ is injective since each step in
defining ˆ is injective.

Lemma 5.5 In the above setting, there exists an element �1 2 Isom.G.�/; dr/ such
that it conjugates the image of ˆ to a finite-index subgroup of G.�/.

We identify G.�/ as a subgroup of Isom.G.�/; dr/ via the left action of G.�/ on itself.

Proof Pick a reference point q 2 Im� , and let Kq D .F.� 0//q . Denote the points in
��1.q/ by fp�g�2ƒ , and let Kp� D .F.�//p� . Since the f�.Kp�/g�2ƒ are distinct
subcomplexes of Kq , the set ƒ must be finite.

Let LW P.�/! F.�/ and � be the coherent labeling and coherent ordering induced
by the G.�/–invariant labeling of X.�/ and P.�/. In a similar fashion, we can obtain
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a coherent labeling L0W P.� 0/! F.� 0/ and a coherent ordering �0 for G.� 0/ which
are invariant under the G.� 0/–action, ie

(5-5) .xsg 0/
�L0 D L0 and .x�g 0/

��0 D�0:

Our goal is to find a coherent labeling L1 and a coherent ordering �1 of G.�/ such
that .sg 0/�L1 D L1 and .�g 0/��1 D�1 for any g0 2G.� 0/.

Let iqW F.� 0/! P.� 0/ be the canonical embedding, and let

L1 D L ı s
�1
ı iq ıL

0
ı s

be the simplicial map from P.�/ to F.�/. Pick an arbitrary p 2 G.�/, and let
ipW F.�/!P.�/ be the canonical embedding. We need to show L1ıip is a simplicial
isomorphism. Let Kp D ip.F.�//, and let g01 2G.� 0/ such that g01 ��.p/D q . Then
iq ıL

0js.Kp/ Dxsg 01
js.Kp/ . Thus

L1 ı ip D L ı s
�1
ı iq ıL

0
ı s ı ip D L ı s

�1
ıxsg 01

ı s ı ip D L ı sg 01
ı ip;

which is a simplicial isomorphism by Lemma 4.10. It follows that L1 is a coherent
labeling; moreover,

.sg 0/
�L1 D .L ı s

�1
ı iq ıL

0
ı s/ ı .s�1 ıxsg 0 ı s/D L ı s

�1
ı iq ıL

0
ıxsg 0 ı s

D L ı s�1 ı iq ıL
0
ı s D L1

for any g0 2G.� 0/, where the third equality follows from (5-5). So L1 is the required
coherent labeling.

To simplify notation, we will write x<�y if x<y under the ordering �. We define �1
as follows. Let p1; p2 2 G.�/ be two distinct points in a standard geodesic line. If
�.p1/¤ �.p2/, then we set p1 <�1 p2 if and only if �.p1/ <�0 �.p2/. If �.p1/D
�.p2/, then by (5-4), there exists a unique g0 2G.� 0/ such that �g 0.pi / 2 ��1.q/ for
iD1; 2, and we set p1<�1 p2 if and only if �g 0.p1/<��g 0.p2/. It follows from (5-5),
(5-4) and our construction that p1 <�1 p2 if and only if �g 0.p1/ <�1 �g 0.p2/ for any
p1; p2 in the same standard geodesic line and any g0 2G.� 0/; thus .�g 0/��1 D�1 .

To verify �1 is coherent, pick parallel standard geodesics l1 and l2 in X.�/, and pick
distinct vertices p11; p12 2 l . Let p21; p22 be the corresponding vertices in l2 via
parallelism. We assume p11 <�1 p12 ; it suffices to prove p21 <�1 p22 .

Case 1 We assume �.p11/¤�.p12/. Recall that l1 can be realized as an intersection
of finitely many maximal standard flats, so by Lemma 4.10, there exists a standard geo-
desic line l 01�X.� 0/ such that �.v.l1//�v.l 01/ and �.v.Pl1//�v.Pl 01/; moreover, �
respects the product structures of Pl1 and Pl 01 . Thus �.p11/�.p21/ and �.p21/�.p22/
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are the opposite sides of a flat rectangle in X.� 0/. Now p21 <�1 p22 follows since
�0 is coherent.

Case 2 We assume �.p11/D �.p12/¤ �.p21/. In this case, we can assume without
loss of generality that �.p11/D�.p12/Dq (since .�g 0/��1D�1 ), and the points p11
and p21 stay in the same standard geodesic. For iD1; 2, let ri be the standard geodesic
passing p1i and p2i . Take r 0i �X.�

0/ and l 0i �X.� 0/ to be the standard geodesics such
that �.v.ri // � v.r 0i / and �.v.li // � v.l 0i /, respectively. Let q0 D �.p21/. Since �
restricted to v.Pl1/ respects the product structure, �.p21/D �.p22/D q0 and r 01D r

0
2 .

Let x�g 0 be the left translation such that x�g 0.q0/ D q . Since q0 2 r 01 and q 2 r 01 , we
have that x�g 0 is a translation along r 01 , and xsg 0 fixes every point in St.�.r 01//; hence
sg 0 fixes every point in s�1.St.�.r 01///D St.�.r1//, and

(5-6) �g 0.ri /D ri

for i D 1; 2. Let l3 D �g 0.l2/. Then l3 is parallel to l1 (or l2 ). To see this, note
that �.l1/ 2 St.�.r1//; hence �.l1/ is fixed by sg 0 . Put p3i D �g 0.p2i / for i D 1; 2.
Then p3i 2 ri by (5-6); hence p11p12 and p31p32 are the opposite sides of a flat
rectangle. Moreover, p3i 2 ��1.q/ for i D 1; 2 by (5-4), so p31 <�1 p32 since � is
coherent, and �D�1 while restricted on ��1.q/. Now the G.� 0/–invariance of �1
implies p21 <�1 p22 .

Case 3 If �.p11/D �.p12/D �.p21/, then we can assume without loss of generality
that they all equal to q . It follows that �.p22/ D q since � respects the product
structure while restricted to v.Pl1/. Thus p21 <�1 p22 by definition.

By Lemma 5.4, there exists �1 2 Isom.G.�/; dr/ such that ��1�D�1 and s�1LDL1
(s1 D h.�1/ where h is the monomorphism in Remark 4.16). Thus

.�1 ı�g 0 ı�
�1
1 /��D .��11 /� ı .�g 0/

�
ı .��1�/D .�

�1
1 /� ı .�g 0/

��1

D .��11 /��1 D�

for any g0 2G.� 0/. Similarly, .s1 ı sg 0 ı s�11 /�LD L for any g0 2G.� 0/. Note that
s1 ı sg 0 ı s

�1
1 D h.�1 ı �g 0 ı �

�1
1 /; thus by Lemma 5.4, G.� 0/ acts on G.�/ by left

translations via g0! �1 ı�g 0 ı�
�1
1 . This induces a monomorphism G.� 0/!G.�/.

Moreover, by (5-4) and the fact that ��1.q/ is finite, this action has finite quotient;
thus we can realize G.� 0/ as a finite-index subgroup of G.�/.

The next result basically says under suitable conditions, if there exists a quasi-isometry
qW G.�/!G.� 0/, then there exists a very “nice” quasi-isometry q0W G.�/!G.� 0/.
However, we do not insist that q0 is of bounded distance away from q (compared to
Theorem 4.13).
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Theorem 5.6 Let � and � 0 be finite simplicial graphs such that Out.G.�// is fi-
nite and G.� 0/ is quasi-isometric to G.�/. Then there exists a cubical map (see
Definition 2.1) 'W X.�/!X.� 0/ such that:

(1) The map ' is onto, and ' maps any standard flat in X.�/ onto a standard flat in
X.� 0/ of the same dimension.

(2) The map ' maps combinatorial geodesics in the 1–skeleton of X.�/ to combi-
natorial geodesics in the 1–skeleton of X.� 0/.

(3) The map ' is a quasi-isometry.

Proof Let f W G.�/ ! G.� 0/ be a quasi-isometry. By Theorem 5.3, f induces
a simplicial isomorphism sW P.�/ ! P.� 0/. By Lemma 4.10, s induces a map
�W G.�/! G.� 0/ such that dw.f .x/; �.x// < D for any x 2 G.�/. Let �1 be the
map in Lemma 5.5 and let ' D � ı��11 . We will use the same notation as in the proof
of Lemma 5.5.

We claim that if F D
Th
iD1 Fi , where each Fi is a maximal standard flat, then there

exists a unique standard flat F 0�G.� 0/ such that �.v.F //Dv.F 0/. To see this, let F 0i
be the maximal standard flat in X.� 0/ such that �.F 0i / D s.�.Fi // for 1 � i � h,
and let F 0 D

Th
iD1 F

0
i . Then it follows from Lemma 4.10 that �.v.F // � v.F 0/.

Recall that G.� 0/ acts on G.� 0/, P.� 0/, G.�/ and P.�/. The stabilizer Stab.v.F 0//
fixes �.F 0i / for all i ; hence it fixes �i for all i , and Stab.v.F 0// � Stab.v.F //.
Since Stab.v.F 0// acts on v.F 0/ transitively, (5-4) implies �.v.F // D v.F 0/ and
j��1.y/\F jD j��1.y0/\F j for any y; y0 2 v.F 0/. It also follows that Stab.v.F //�
Stab.v.F 0//; thus Stab.v.F 0//D Stab.v.F //.

Note that the above claim is also true for ' , and any standard geodesic satisfies the
assumption of the claim. Moreover, ' is surjective since �1 is surjective by (5-4).
Pick standard geodesics l �X.�/ and l 0 �X.� 0/ such that v.l 0/D '.v.l//, and we
identify v.l/ and v.l 0/ with Z in an order-preserving way. Then the above claim and
the construction of �1 imply that 'jv.l/ is of the form

(5-7) '.a/D ba=dcC r

for some integers r and d (with d � 1). In particular, ' can be extended to a simplicial
map from the Cayley graph C.�/ of G.�/ to C.� 0/.

Pick a combinatorial geodesic ! � C.�/ connecting vertices x and y ; we claim that
!0 D �.!/ is also a geodesic in C.� 0/ (it could be a point). Let fvigniD0 be vertices
in ! such that for 0 � i � n� 1, we have that Œvi ; viC1� is a maximal subsegment
of ! that is contained in a standard geodesic (v0 D x and vn D y ). Denote the
corresponding standard geodesic by li . For 0 � i � n � 1, let l 0i � X.� 0/ be the
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standard geodesic such that v.l 0i /D '.v.li //, and let !0i D �.Œvi ; viC1�/. Then !0i is a
(possibly degenerate) segment in l 0i by (5-7). Since ! is a geodesic, no two geodesics
in flign�1iD0 are parallel. Note that ' is induced by a simplicial isomorphism between
P.�/ and P.� 0/; thus the same property is true for the collection of geodesics fl 0ign�1iD0 .
It follows that no hyperplane in X.� 0/ could intersect !0 at more than one point;
hence !0 is a combinatorial geodesic.

Let ui D '.vi /. Then dw.ui ; uiC1/� dw.vi ; viC1/ by (5-7) (recall that dw denotes
the word metric on the corresponding group). Thus

(5-8) dw.'.x/; '.y//D

n�1X
iD0

dw.ui ; uiC1/�

n�1X
iD0

dw.vi ; viC1/D dw.x; y/

for any x; y 2G.�/.

Pick p 2 G.� 0/ and let k D j'�1.p/j. Then k does not depend on p by (5-4). It
follows that dw.'.x/; '.y//� 1 whenever dw.x; y/� kC1. Now we can cut ! into
pieces of length kC 1. Since '.!/ is a combinatorial geodesic,

dw.'.x/; '.y//�
dw.x; y/

kC 1
� 1:

Note that ' naturally extends to a cubical map from X.�/ to X.� 0/, which satisfies
all the required properties.

Theorem 5.7 If � and � 0 are finite simplicial graphs such that Out.G.�// is finite,
then the following are equivalent:

(1) G.� 0/ is quasi-isometric to G.�/.

(2) P.� 0/ is isomorphic to P.�/ as simplicial complexes.

(3) G.� 0/ is isomorphic to a subgroup of finite index in G.�/.

Proof .1/D) .2/ follows from Theorem 5.3. .2/D) .3/ follows from Lemma 5.5.
.3/D) .1/ is trivial.

This establishes Theorem 1.2 in the introduction.

6 The geometry of finite-index RAAG subgroups

Throughout this section, we assume G.�/© Z, since the main results of this section
(Theorems 6.13 and 6.19) are trivial when G.�/Š Z.
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6.1 Constructing finite-index RAAG subgroups

A right-angled Artin subgroup is a subgroup which is also a right-angled Artin group.
In this section, we introduce a process to obtain finite-index RAAG subgroups of an
arbitrary RAAG.

Lemma 6.1 Let X be a CAT.0/ cube complex, let l � X be a geodesic in the 1–
skeleton and let fhigi2Z be consecutive hyperplanes dual to l . Let �l W X ! l be the
CAT.0/ projection. Then:

(1) For every edge e �X , if e\hi D∅ for all i , then �l.e/ is a vertex in l , and if
e\ hi ¤∅ for some i , then �l.e/ is an edge in l .

(2) If K is any connected subcomplex such that e\ hi D∅ for all i , then �l.K/
is a vertex in l; moreover, if K stays between hi and hiC1 , then �l.K/ is the
vertex in l that stays between hi and hiC1 .

(3) For every interval Œa; b�� l , we have that ��1
l
.Œa; b�/ is a convex set in X . In

particular, if x 2 l is a vertex, then ��1
l
.x/ is a convex subcomplex of X .

(4) If K is a convex subcomplex such that K \ l ¤∅, then �l.K/DK \ l .

Proof Here (1) and (3) follow from the fact the every hyperplane has a carrier,
and (2) follows from (1). To see (4), it suffices to show that for every i such that
hi \ l ¤∅ and hi \K ¤∅, we have ei �K (ei is the edge in l dual to hi ). Let Nhi
be the carrier of hi . By Lemma 2.3, d.x;Nhi \K/ � c for any x 2 ei . Moreover,
d.x;Nhi \K/D d.x;K/ for x in the interior of ei , so we must have cD 0: otherwise,
the convexity of d. � ; K/ would imply K \ l D∅.

Recall that v.P.�/ nSt.�.l/// is the collection of vertices in P.�/ nSt.�.l//.

Lemma 6.2 Let l �X.�/ be a standard geodesic. Then there is a map

��.l/W v.P.�/ nSt.�.l///! v.l/

such that if v1 and v2 are in the same connected component of P.�/ nSt.�.l//, then
��.l/.v1/D ��.l/.v2/.

Proof Let �l W X.�/! l be the CAT.0/ projection and let l1 �X.�/ be a standard
geodesic such that d.�.l1/;�.l//� 2. Then �l.l1/ is a vertex in l by Lemma 3.1 and
Corollary 3.2. Moreover, we claim �l.l1/D �l.l2/ if l2 is a standard geodesic parallel
to l1 . It suffices to prove the case when there is a unique hyperplane h separating l1
from l2 . Note that d.�.l1/;�.l// � 2 yields h\ l D ∅, so l1 and l2 are pinched
by two hyperplanes dual to l ; then the claim follows from Lemma 6.1. Thus �l
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induces a well-defined map ��.l/W v.P.�/nSt.�.l///! v.l/. If �.l1/ and �.l2/ are
connected by an edge, then there exist standard geodesics l 01 and l 02 such that l 01\l 02¤∅
and l 0i is parallel to li for i D 1; 2. Thus �l.l1/ D �l.l

0
1/ D �l.l

0
2/ D �l.l2/, and

��.l/.�.l1//D ��.l/.�.l2//.

Pick a standard generating set S of G.�/, and let C.�; S/ be the Cayley graph. We
identify G.�/ as a subset of C.�; S/ and attach higher-dimensional cubes to C.�; S/
to obtain a CAT.0/ cube complex X.�; S/, which is basically the universal cover of the
Salvetti complex. Here we would like to think of G.�/ as a fixed set and of C.�; S/
and X.�; S/ as objects formed by adding edges and cubes to G.�/ in a particular
way determined by S , so we write S explicitly. We will choose a G.�/–equivariant
orientation for edges in X.�; S/ as before.

An S –flat (or an S –geodesic) in G.�/ is defined to be the vertex set of a standard flat
(or geodesic) in X.�; S/. We define P.�; S/ as before such that its vertices correspond
to coarse equivalence classes of S –geodesics.

We define an isometric embedding I W G.�/! `1.v.P.�; S/// which depends on S
and the orientation of edges in X.�; S/. Pick a standard geodesic l � X.�; S/,
and let �l W X.�; S/ ! l be the CAT.0/ projection. We identify v.l/ with Z�.l/

in an orientation-preserving way such that �l.id/ D 0 (id is the identity element
in G.�/). Then �l induces a coordinate function I�.l/W G.�/ ! Z�.l/ . If we
change l to a standard geodesic l1 parallel to l , then I�.l/ and I�.l1/ are identical by
Lemma 6.1. Thus for every vertex v 2P.�/, there is a well-defined coordinate function
IvW G.�/! Zv . These coordinate functions induce a map I W G.�/! Z.v.P.�/// .

The map I is an embedding since every two points in G.�/ are separated by some
hyperplane. I.G.�//� `1.v.P.�/// since for any g 2G.�/, there are only finitely
many hyperplanes separating id and g . I naturally extends to a map I W X.�; S/!
`1.v.P.�///, and it maps combinatorial geodesics to geodesics by the argument
in Theorem 5.6. Thus I is an isometric embedding with respect to the `1 metric
on X.�; S/. We say a convex subcomplex K � X.�; S/ is nonnegative if each
point in I.K/ has nonnegative coordinates (this notion depends on the orientation of
edges in X.�; S/). Let CN.�; S/ be the collection of compact, convex, nonnegative
subcomplexes of X.�; S/ that contain the identity.

For any K 2 CN.�; S/, we find a maximal collection of standard geodesics fcigsiD1
such that ci \K ¤∅ for all i and �.ci /¤�.cj / for any i ¤ j . Let gi 2 S be the
label of edges in ci and let ˛i D �ci .id/. Put ni D jv.K \ ci /j and vi D ˛ig

ni
i ˛
�1
i .

Let G0 be the subgroup generated by fvigsiD1 . It follows from the convexity of K that
if a standard geodesic c is parallel to ci and c\K¤∅, then jv.K\ci /j D jv.K\c/j.
Thus fvigsiD1 and G0 do not depend on the choice of the ci .
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Lemma 6.3 G0 is a finite-index subgroup of G.�/.

Proof We prove this by showing G0 � v.K/D G.�/. Let dr be the syllable metric
on G.�/ defined in Section 4.3. Pick a word ˛ 2 G.�/ and assume ˛ 2 G0 � v.K/
when dr.˛; id/ � k � 1. If dr.˛; id/ D k , then there exists ˇ 2 G.�/ such that
dr.id; ˇ/ D k � 1 and dr.ˇ; ˛/ D 1. Let ˇ D ˇ1ˇ2 for ˇ1 2 G0 and ˇ2 2 v.K/.
Then dr.ˇ2; ˇ�11 ˛/D 1. Suppose c is the standard geodesic containing ˇ2 and ˇ�11 ˛ .
Then there exists i such that ci and c are parallel. Note that Pc \K is a convex set
in the parallel set Pc , hence respects the natural splitting Pc D c � c? ; moreover,
the left action of vi translates the c factor by ni units and fixes the other factor.
Thus there exists d 2 Z and ˇ02 2 K \ c such that vdi ˇ

0
2 D ˇ

�1
1 ˛ , which implies

˛ D ˇ1v
d
i ˇ
0
2 2G

0 � v.K/.

Let � 0 be the full subgraph of P.�/ spanned by points f�.ci /gsiD1 . Then there is a
natural homomorphism G.� 0/!G0 .

Lemma 6.4 The homomorphism G.� 0/!G0 is actually an isomorphism. Hence G0

is a finite-index RAAG subgroup of G.�/.

We will follow the strategy in [47], where the following version of the ping-pong lemma
for right-angled Artin groups was used.

Theorem 6.5 [47, Theorem 4.1] Let G DG.�/ and let X be a set with a G–action.
Suppose the following hold:

(1) For each vertex vi of �, there exists a subset Xi �X such that the union of all
the Xi is properly contained in X .

(2) For each nonzero k 2 Z and vertices vi ; vj joined by en edge, vki .Xj /�Xj .

(3) For each nonzero k 2Z and vertices vi ; vj not joined by en edge, vki .Xj /�Xi .

(4) There exists x0 2X n
S
i2V Xi (V is the vertex set of � ) such that vki .x0/2Xi

for each nonzero k 2 Z.

Then the G–action is faithful.

Proof of Lemma 6.4 We will apply Theorem 6.5 with X DX.�; S/ and G DG.� 0/.
For 1� i � s , we identify ci and R in an orientation-preserving way such that �ci .id/
corresponds to 0 2R. Define XCi D �

�1
ci

��
ni �

1
2
;1

��
, X�i D �

�1
ci

��
�1;�1

2

��
and

Xi DX
C
i [X

�
i . It clear that the identity element id does not lie in Xi for any i , so

Theorem 6.5(1) is true. Each vi D ˛ig
ni
i ˛
�1
i translates ci by ni units, so (4) is also

true with x0 D id.
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If �.ci / and �.cj / are connected by an edge in P.�/, then vi stabilizes every
hyperplane dual to vj ; thus vki .Xj /DXj , and (2) is true. If

(6-1) d.�.ci /;�.cj //� 2;

then �cj .ci / is a point. Lemma 6.1 and ci \K ¤∅ yield that �cj .ci /� �cj .K/D
cj \K D Œ0; nj � 1�; thus

(6-2) ci \Xj D∅:

Similarly, ci \Xj D∅. Let hD ��1cj
�
�
1
2

�
be the boundary of X�j , and let Nh be the

carrier of h. Then (6-1) implies that h has empty intersection with any hyperplane
dual to ci , and so does Nh . It follows from Lemma 6.1 that �ci .h/D �ci .Nh/D p is
a vertex in ci . If h1 D ��1ci

�
p� 1

2

�
and h2 D ��1ci

�
pC 1

2

�
are two hyperplanes that

pinch p , then h\ hk D ∅ for k D 1; 2. This and (6-2) yield X�j \ hk D ∅; hence
�ci .X

�
j /D p by Lemma 6.1. Similarly, �ci .X

C
j /D p , so

p D �ci .Xj /D �ci .cj /� �ci .K/D ci \K D Œ0; ni � 1�:

Note .�ci ıv
k
i /.Xj /D .v

k
i ı�ci /.Xj /Dv

k
i .p/DpCkni , so vki .Xj /�Xi for k¤0.

The discussion in this subsection yields a well-defined map

‚S W CN.�; S/! ffinite-index RAAG subgroups of G.�/g:

The images of ‚S are called S –special subgroups of G.�/. A subgroup of G.�/ is
special if it is S –special for some standard generating set S of G.�/.

6.2 Rigidity of RAAG subgroups

In this subsection, we will assume G.� 0/ is a finite-index RAAG subgroup in G.�/
and Out.G.�// is finite. We will show that under such conditions, G.� 0/ must arise
from the process described in the previous subsection. We will prove this in three steps.
First we produce a convex subcomplex of X.�; S/ from G.� 0/. Then we will modify
this convex subcomplex such that it is an element in CN.�; S/. Thus we have defined
a map from finite-index RAAG subgroups of G.�/ to elements in CN.�; S/. In the
last step, we show the map defined in Step 2 is an inverse to the map ‚S defined in
Section 6.1.

Also near the end of this subsection, we will leave several relatively long remarks
which discuss relevant material in the literature. The reader can skip these remarks at
first reading.

Recall that Out.G.�// is finite and Out.G.� 0// is transvection-free (Theorem 5.3),
so any two standard generating sets of G.�/ (or G.� 0/) differ by a sequence of
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conjugations or partial conjugations. Then given any two standard generating sets S
and S1 for G.�/, there is a canonical way to identify P.�; S/ and P.�; S1/ (every
S –geodesic is Hausdorff close to an S1–geodesic). Thus we will write P.�/ and
P.� 0/ and omit the generating set.

Lemma 6.6 Let � and s be as in the discussion before Lemma 5.5. Let l �X.�/ and
l 0�X.� 0/ be standard geodesics such that �.v.l//Dv.l 0/. Then �ı��.l/D��.l 0/ıs .

Proof Pick standard geodesics r �X.�/ and r 0 �X.� 0/ such that �.v.r//D v.r 0/;
then s.�.r// D �.r 0/ by Lemma 4.10 (recall that r is the intersection of maximal
standard flats). Therefore, by the definition of ��.l/ , it suffices to show � ı�l.x/D

�l 0 ı �.x/ for any vertex x 2 X.�/. Let y be a vertex such that y … l , and let
x D �l.y/. By Lemma 6.1, we can approximate xy by a combinatorial geodesic !
in the 1–skeleton of ��1

l
.y/; then no hyperplane could intersect both l and ! . Let

fvig
n
iD0 be vertices in ! such that for 0 � i � n� 1, we have that each Œvi ; viC1�

is a maximal subsegment of ! that is contained in a standard geodesic (v0 D x and
vn D y ). Denote the corresponding standard geodesic by li . Then �.l/¤�.li / for
all i . Let ui D �.vi / and let l 0i be the standard geodesic such that �.v.li //D v.l 0i /.
Then uiuiC1 � l 0i and �.l 0/¤�.l 0i / for all i ; thus �l 0.l

0
i / is a point by Corollary 3.2,

and �l 0.ui /D �l 0.uj / for all 1� i; j � n.

Step 1 We produce a convex subcomplex of X.�; S/ from G.� 0/.

The left action G.�/Õ G.�/ induces G.� 0/Õ G.�/ and G.� 0/Õ X.�; S/. By
choosing a standard generating set S 0 of G.� 0/, we have left action G.� 0/ÕX.� 0; S 0/.
For h 2G.� 0/, we use �h , x�h , sh and xsh to denote the action of h on G.�/, G.� 0/,
P.�/ and P.� 0/ respectively. Pick a G.� 0/–equivariant quasi-isometry qW X.�; S/!
X.� 0; S 0/ such that qjG.� 0/ D Id. By Theorem 5.3 and Lemma 4.10, q induces
surjective G.� 0/–equivariant maps �W G.�/! G.� 0/ and sW P.�/! P.� 0/. Note
that � depends on the choice of generating set S and S 0 , and this flexibility comes
from the automorphism groups of G.�/ and G.� 0/.

The key of Step 1 is to choose a “nice” standard generating set S 0 of G.� 0/ such that
� behaves like ' in Theorem 5.6.

Lemma 6.7 By choosing a possibly different standard generating set S 0 for G.� 0/,
we can assume the map � satisfies �.id/D id, where id denotes the identity element
in the corresponding group.

Proof Assume �.id/ D a ¤ id; we claim if we change the generating set from S 0

to aS 0a�1 , then the resulting � will satisfy our requirement. By the construction
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of � , it suffices to show for any maximal S 0–flat F 01 such that a 2 F 01 , there exists
a maximal aS 0a�1–flat F 02 such that id 2 F 02 and dH .F 01; F 02/ <1. Let us assume
F 01 D fag

kgk2Z for some g 2 S 0 . Then F 02 D f.aga
�1/kgk2Z would satisfy the

required condition. We can prove the general case in a similar way.

Pick a standard geodesic l � X.�; S/; we want to flip the order of points of l in
a G.� 0/–equivariant way such that (5-7) is true. We choose an order-preserving
identification of v.l/ and Z. Let d D j��1.�.p//\v.l/j where p is a vertex in v.l/.
Let Stab.v.l// be the stabilizer of v.l/ under the action G.� 0/ Õ G.�/. By the
second paragraph of the proof of Theorem 5.6, d does not depend on the choice of p
in v.l/, and Stab.v.l// acts on v.l/ in the same way as dZ acts on Z (recall that �
is G.� 0/–equivariant and the action of G.� 0/ on G.�/ is induced from the left action
of G.�/ on itself).

We will write �.l/D d . If xl and l are parallel, then �.l/D �.xl/. Thus �W P.�/!Z
is well defined. Since �.l/ only depends on how Stab.v.l// acts on v.l/, we see
that � does not depend on the standard generating set S 0 . However, � descends to
�W S 0! Z for any choice of S 0 by the G.� 0/–equivariance of � .

Let �.0/D a . Then Stab.v.l// is generated by aha�1 for some h 2 S 0 . By the same
reasoning as in Lemma 6.7, we can assume a D id. Let S 0 D fh�g�2ƒ . For each
h� 2 S

0 , we associated an integer n� as follows. If h�hD hh� , we set n� D 0. Now
we consider the case where h�h¤ hh� . Let l 0� �X.� 0; S 0/ be the standard geodesic
that contains all powers of h� , and let b� D ��.l/ ı s�1.�.l

0
�// (��.l/ is the map in

Lemma 6.2). Then n� is defined to be the unique integer such that b�Cn�d 2 Œ0; d�1�
(recall that d D �.l/). Define f W S 0!G.� 0/ by sending h� to hn�h�h�n� ; then f
extends to an automorphism of G.� 0/, and S 00 D ff .h�/g�2ƒ is also a standard
generating set. Indeed, if �.l 0�1/ and �.l 0�2/ stay in the same connected component
of P.� 0/ n St.�.l 0//, then b�1 D b�2 by Lemma 6.2; hence n�1 D n�2 . It follows
that f can be realized as a composition of partial conjugations.

Lemma 6.8 Define �1 by replacing S 0 by S 00 in the definition of � . Then �1jv.l1/
satisfies (5-7) for any standard geodesic l1 �X.�; S/ with �.l1/ 2 fsh.�.l//gh2G.� 0/ .

Recall that for any h 2G.� 0/, we use sh to denote the action of h on P.�/.

Proof It suffices to show �1jv.l/ satisfies (5-7), and the rest follows from the G.� 0/–
equivariance of �1 . To show this, we only need to prove �1.i/D id for any i 2 Œ0; d�1�.
Let ƒ, b� and n� be as above.

We pick i 2 Œ0; d � 1�. Then there exists � 2 ƒ such that b� C n�d D i . By
Lemma 6.6, �.b�/ D id; hence �.i/ D hn� . Let li be a standard geodesic such
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that b� 2 li and d.�.li /;�.l// � 2. Then there exists h�0 2 S 0 with b�0 D b� such
that �.v.li //D fhk�0gk2Z . Then .�h/n�.v.li // is an S –geodesic passing through i ,
and .� ı .�h/n�/.v.li //D ..x�h/n� ı�/.v.li //D fhn�hk�0gk2Z . Note that

(6-3) dH
�
fhn�hk�0gk2Z; f.f .h�0//

k
gk2Z

�
<1:

Now we look at the new map �1 . Note that �1.0/D id is still true. Moreover, (6-3)
and Lemma 6.6 imply �1.i/D id. Thus the lemma follows.

The next lemma basically says the above change-of-basis process does not significantly
affect other geodesics.

Lemma 6.9 Let r be a standard geodesic in X.�; S/ which satisfies the condition
that �.r/… fsh.�.l//gh2G.� 0/ . Pick two different vertices x1; x2 2 r . If �.x/D �.y/,
then �1.x/D �1.y/.

Proof For i D 1; 2, let ri � X.�; S/ be a standard geodesic containing xi such
that d.�.ri /;�.r//� 2 for i D 1; 2. Let r 0 (resp. r 00 ) be an S 0–geodesic (resp. S 00–
geodesic) such that �.v.r//D v.r 0/ (resp. �1.v.r//D v.r 00/). Let ˛ D �.x/D �.y/.
Then there exist elements h�; h�1 and h�2 in S 0 such that �.v.ri //D f˛hk�i gk2Z for
i D 1; 2, and r 0 D f˛hk

�
gk2Z . Note that

(6-4) h¤ h�; h�1 ¤ h� and h�2 ¤ h�:

Recall that h is the generator of Stab.v.l//. The first inequality of (6-4) follows from
�.r/ … fsh.�.l//gh2G.� 0/ .

It suffices to show there exist S 00–geodesics r 001 and r 002 such that

(6-5) dH
�
�.v.ri //; r

00
i

�
<1

for i D 1; 2, and

(6-6) ��.r 00/.�.r
00
1 //D ��.r 00/.�.r

00
2 //;

then �1.x/D �1.y/ follows from Lemma 6.6. Define r 00i D f˛h
�n�i .f .h�i //

kgk2Z ;
then (6-5) is immediate. Note that for any a 2 r 01 and b 2 r 02 , we have

b D a � .f .h�1//
k1 � hn�1�n�2 � .f .h�2//

k2

for some k1; k2 2 Z; then (6-6) follows from (6-4) and the definition of ��.r 00/ .

Similarly, we can prove that if we change � with respect to the conjugation S 0 !
aS 0a�1 , then Lemma 6.9 is still true with r being an arbitrary standard geodesic.
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By Lemma 6.8 and Lemma 6.9, we can apply the above change-of-basis procedure
finitely many times to find an appropriate standard generating set S 0 of G.� 0/ such
that the corresponding map � satisfies (5-7) when restricted to any standard geodesic in
X.�; S/. By the proof of Theorem 5.6, we can extend � to a cubical map �W X.�; S/!
X.� 0; S 0/ such that combinatorial geodesics in C.�; S/ are mapped to combinatorial
geodesics in C.� 0; S 0/. Thus ��1.id/ is a combinatorially convex subcomplex. The
subcomplex ��1.id/ is also compact since ��1.id/ contains finitely many vertices.
Recall that combinatorial convexity in `1 metric and convexity in CAT.0/ metric are
the same for subcomplexes of CAT.0/ cube complexes [33], so we have constructed
a compact convex subcomplex ��1.id/� X.�; S/ from a given finite-index RAAG
subgroup G.� 0/�G.�/.

Step 2 We show ��1.id/ can be assumed to be an element in CN.�; S/.

For K � G.�/, denote the union of all standard geodesics in X.�; S/ that have
nontrivial intersection with K by K� . K is S –convex if and only if K is the vertex
set of some convex subcomplex in X.�; S/. Now we return to � . By Step 1, we can
assume �.id/D id, and ��1.y/ is S –convex for any y 2G.� 0/.

Step 2.1 Let flig
q
iD1 be the collection of standard geodesics passing through id, and

let ƒ1Dfidg. Let I W G.�/! `1.v.P.�; S/// and I�.l/W G.�/!Z�.l/ be the maps
defined in Section 6.1. Since v.li / and v.lj / are in different G.� 0/–orbits for i ¤ j ,
by Lemma 6.8 and Lemma 6.9, we can apply the change-of-basis procedure in Step 1
to find a standard generating set S 0 for G.� 0/ such that for each 1� i � q ,

(6-7) I�1�.li /
�
Œ0; �.li /� 1�

�
\ v.li /� �

�1.id/:

Step 2.2 Let ƒ2 D ƒ�1 \ �
�1.id/. Pick a vertex x 2 ƒ2 nƒ1 (if such x does not

exist, then our process terminates). Let l be a standard geodesic such that x 2 l . If l
is parallel to some li in Step 2.1, then (6-7) with li replaced by l is automatically true
without any modification on S 0 , because both I and � respect the product structure
of Pli . If l is not parallel to any li , then I�.l/.x/D 0. Moreover, �.l/ is not in the
G.� 0/–orbits of the �.li /, so we can modify S 0 as before such that both (6-7) and
I�1
�.l/

.Œ0; �.l/� 1�/\ v.l/� ��1.id/ are true. We deal with other standard geodesics
passing through x and other points in ƒ2 nƒ1 in a similar way.

Step 2.3 Let ƒ3Dƒ�2\�
�1.id/. For each vertex in ƒ3nƒ2 , we repeat the procedure

in Step 2.2. Then we can define ƒ4; ƒ5; : : : . Since j��1.id/j is finite and this number
does not change after adjusting S 0 , our procedure must terminate after finitely many
steps. Since ��1.id/ remains connected in each step, once the procedure terminates, we
must have already dealt with each point in ��1.id/ and each standard geodesic passing
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through each point in ��1.id/. By construction, the resulting � satisfies id 2 ��1.id/
and I�1

�.l/
.Œ0; �.l/�1�/\v.l/� ��1.id/ for each standard geodesic l which intersects

��1.id/. Thus ��1.id/ is nonnegative.

Note that the sets ƒi actually do not depend on the map � from step i � 1. They only
depend on the map �W v.P.�//! Z. Thus the nonnegative subset ��1.id/�G.�/
produced above depends only on S and the subgroup G.� 0/�G.�/. Then we have a
well-defined map

„S W fFinite-index RAAG subgroups of G.�/g ! CN.�; S/:

Step 3 We show „S is an inverse to the map ‚S defined in Section 5.2.

First we prove ‚S ı„S D Id. Let K D „S .G.� 0//. Let S 0 be the corresponding
standard generating set for G.� 0/ and let �W G.�/!G.� 0/ be the corresponding map.
We find a maximal collection of standard geodesics fcigsiD1 such that ci \K ¤ ∅
for all i and �.ci / ¤ �.cj / for any i ¤ j . Let ni D �.ci /, and let gi 2 S be the
label of edges in ci . Suppose ˛i D �ci .id/ where �ci W X.�; S/! ci is the CAT.0/
projection. Then it suffices to prove the following lemma.

Lemma 6.10 S 0 D f˛ig
ni
i ˛
�1
i g

s
iD1 .

Proof Pick h2S 0 and let ch�X.� 0; S 0/ be the standard geodesic containing id and h.
Then there exists a unique i such that �.v.ci //D ch . To see this, let c be a standard
geodesic in X.�; S/ such that s.�.c//D �.ch/. Then �.v.c// and ch are parallel
and there exists u 2G.� 0/ which sends �.v.c// to v.ch/. Thus � ı�u.v.c//D v.ch/
by (5-4), where �u is defined in the beginning of Step 1. Note that �u.v.c// has
nontrivial intersection with K . We choose ci to be the geodesic parallel to �u.v.c//.
Then �.v.ci //D v.ch/.

For any standard geodesic c0i parallel to ci , we have that �.c0i / is parallel to ch , so
h2 Stab.v.�.c0i ///D Stab.v.c0i //. It follows that �h stabilizes the parallel set Pci and
acts by translation along the ci –direction. Note that .I�.ci /ı�h/.x/DI�.ci /.x/C�.ci /
for any x 2 v.Pci /, so hD �h.id/D ˛ig

ni
i ˛
�1
i and the claim follows.

It remains to show „S ı‚S D Id. The following result implies this.

Lemma 6.11 Let � be an arbitrary finite simplicial graph. Pick a standard generating
set S for G.�/ and K 2CN.�; S/. Let G.� 0/D‚S .K/ and let S 0 be the correspond-
ing generating set. Suppose qW G.�/!G.� 0/ is a G.� 0/–equivariant quasi-isometry
such that qjG.� 0/ is the identity map. Then:
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(1) q induces a simplicial isomorphism q�W P.�; S/! P.� 0; S 0/.
(2) q� induces a G.� 0/–equivariant retraction r W G.�/!G.� 0/ such that r sends

every S –flat to an S 0–flat.
(3) r extends to a surjective cubical map r W X.�; S/!X.� 0; S 0/ with r�1.id/DK .

In particular, the vertex set of K is the strict fundamental domain for the left
action G.� 0/ÕG.�/.

Proof It suffices to prove the case when � does not admit a nontrivial join decompo-
sition and � is not a point.

By the construction of ‚S , we know the q–image of any S –flat which intersects K
is Hausdorff close to an S 0–flat which contains the identity. Moreover, if the S –flat
is maximal, then the corresponding S 0–flat is unique. Since G.� 0/ � v.K/ D G.�/,
the equivariance of q implies the q–image of every S –flat is Hausdorff close to an
S 0–flat. Since q is a quasi-isometry, images of parallel S –geodesics are Hausdorff
closed to each other. This induces q�W P.�; S/! P.� 0; S 0/, which is injective since
q is a quasi-isometry, and surjective by the G.� 0/–equivariance.

Pick x 2G.�/, and let fFigi2I be the collection of maximal S –flats containing x . For
each i , let F 0i be the unique maximal S 0–flat such that dH .q.Fi /; F 0i / <1. Note thatT
i2I Fi D x by our assumption on �. So

T
i2I F

0
i is either empty or one point. Note

that if x 2K , then
T
i2I F

0
i D id. The equivariance of q� implies that for every x ,T

i2I F
0
i is a point, which is defined to be r.x/. It is clear that v.K/ � r�1.id/,

but jG.�/W G.� 0/j � jv.K/j, so v.K/ D r�1.id/. It follows that v.K/ is the strict
fundamental domain for the left action of G.� 0/, and r is a G.� 0/–equivariant map
which maps v.K/ to id.

Note that r.id/ D id. Then the G.� 0/–equivariance of r implies r.g/ D g for any
g 2G.� 0/�G.�/. Thus r is a retraction. Similarly, by using the G.� 0/–equivariance
of r , we deduce that r sends every S –flat that intersects K to an S 0–flat passing
through the identity element of G.� 0/. Thus r sends every S –flat to an S 0–flat by the
equivariance of r . It is easy to see r extends to a cubical map r W X.�; S/!X.� 0; S 0/

such that r�1.id/DK .

Remark 6.12 We can generalize some of the results in Lemma 6.11 to infinite convex
subcomplexes of X.�; S/. A convex subcomplex K � X.�; S/ is admissible if for
any standard geodesic l , the CAT.0/ projection �l.K/ is either a finite interval or the
whole of l (a ray is not allowed). Let fl�g�2ƒ be a maximal collection of standard
geodesics such that (1) l� \K ¤ ∅; (2) l� and l�0 are not parallel for � ¤ �0 ; (3)
�l�.K/ is a finite interval. For each l� , let ˛� 2G.�/ be an element which translates
along l� with translation length D 1C length.�l�.K//. Let GK be the subgroup
generated by S 0 D f˛�g�2ƒ . If K is admissible, we can prove GK � v.K/DG.�/ as
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before. Moreover, for any finite subset S 01 � S 0 , the subgroup G1 generated by S 01 is
a right-angled Artin group, and G1 ,!GK is an isometric embedding with respect to
the word metric. We can define an S 0–flat as before and view each vertex of GK as a
0–dimensional S 0–flat.

Now we show v.K/ is a strict fundamental domain for the action GK Õ G.�/. It
suffices to show ˛.K/\K D∅ for each nontrivial ˛ 2GK . We can assume there is
a right-angled Artin group G1 such that ˛ 2 G1 � GK . Let ˛ D w1w2 � � �wn be a
canonical form of ˛ ; see [16, Section 2.3]. Then:

(1) Each wi belongs to an abelian standard subgroup of G1 .

(2) For each i , let wi D r
ki;1
i;1 r

ki;2
i;2 � � � r

ki;ni
i;ni

(ri;j 2 S 0 ). Then for each riC1;j
(1� j � niC1 ), there exists ri;j 0 which does not commute with riC1;j .

We associate each generator ri;j with a subset Xi;j � X.�; S/ as in the proof of
Lemma 6.4, and claim there exists j with 1� j � n1 such that ˛.K/�X1;j ; then
˛.K/\K D∅ follows. We prove by induction on n and assume w2w3 � � �wn.K/�
X2;j 0 . By (2), there is r1;j such that r1;j and r2;j 0 does not commute, so we have
rk1;j
1;j

.X2;j 0/ � X1;j . Moreover, by (1), rk1;h
1;h

.X1;j / D X1;j for h ¤ j , so ˛.K/ �
w1.X2;j 0/�X1;j .

Now we can define a GK –equivariant map r W G.�/! GK by sending v.K/ to the
identity of GK . We prove as before that r maps S –flats to (possibly lower-dimensional
or 0–dimensional) S 0–flats; thus r is 1–Lipschitz with respect to the word metric.
Let i W GK ,!G.�/ be the inclusion. Then by the equivariance of r , the composition
r ı i is a left translation of GK . In particular, if K contains the identity, then r is a
retraction. It follows that if S 0 is finite, then i is a quasi-isometric embedding.

Note that a related construction in the case of right-angled Coxeter groups has been
discussed in [34]. By taking larger and larger convex compact subcomplexes of X.�; S/,
we know G.�/ is residually finite. Moreover, pick ˇ 2 Stab.K/�G.�/. By definition
of S 0 , we have S 0 D ˇS 0ˇ�1 , so Stab.K/ normalizes GK . Now we have obtained a
direct proof of the fact that every word-quasiconvex subgroup of a finitely generated
right-angled Artin group is separable (Theorem F of [34]) by using the above discussion
together with the outline in Section 1.5 of [34].

The following result follows readily from the above discussion.

Theorem 6.13 Let G.�/ be a RAAG with Out.G.�// finite. We pick a standard
generating set S for G.�/. Then there is a one-to-one correspondence between
nonnegative convex compact subcomplexes of X.�; S/ that contain the identity and
finite-index RAAG subgroups of G.�/. In particular, these subgroups are generated by
conjugates of powers of elements in S .
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In particular, Theorem 1.3 in the introduction follows from Theorem 6.13.

Remark 6.14 If we drop the finite automorphism group assumption in the above
theorem, then there exist a RAAG G.�1/ and its finite index RAAG subgroup G.�2/
such that G.�2/ is not isomorphic to any special subgroup of G.�1/. To see this, let
G.�1/ be a right-angled Artin group such that Out.G.�1// is transvection-free. Then
Lemma 6.11 and Theorem 3.20 imply each special subgroup of G.�1/ does not admit
a nontrivial transvection in its outer automorphism group. Let �1 and �2 be the graphs
in Example 3.22. Then G.�2/ is a right-angled Artin subgroup of G.�1/, and there
are nontrivial transvections in Out.G.�2//. Thus G.�2/ is not isometric to any special
subgroup of G.�1/.

Remark 6.15 Pick G.�/ such that Out.G.�// is finite; then Theorem 6.13 can be
used to show a certain subgroup of G.�/ is not a RAAG. For example, let fvigkiD1
be a subset of some standard generating set for G.�/. We define a homomorphism
hW G.�/! Z=2 by sending each vi to the nontrivial element in Z=2 and killing all
other generators. Then ker.h/ is a RAAG if and only if k D 1. One can compare this
example to Example 3.22.

Remark 6.16 It is shown in [42, Theorem 2] that if F.� 0/ embeds into P.�/ as a full
subcomplex, then there exists a monomorphism G.� 0/ ,! G.�/. This result can be
recovered by our previous discussion as follows. Let � be an arbitrary finite simplicial
graph. Let S be a standard generating set for G.�/. For any vertex w 2 P.�/, let
˛w 2G.�/ be a conjugate of some element in S such that ˛w.l/D l for every standard
geodesic l �X.�; S/ with �.l/D w .

Suppose M � P.�; S/ is a compact full subcomplex and � 0 is the 1–skeleton of M .
Denote the vertex set of M by fwigniD1 , and let li be a standard geodesic with
�.li /D wi . We identify each li in an orientation-preserving way with R such that
0 2R is identified with �li .id/� li , where�li is the CAT.0/ projection to li and id
is the identity element of G.�/.

For 1 � i � n, define ƒi D f1 � j � n j d.wi ; wj / � 2g. For each i , we define
a pair of integers ai and ki as follows. If ƒi ¤ ∅, then let Œai ; ai C ki � � R
be the minimal interval such that

S
j2ƒi

�li .lj / � Œai ; ai C ki � (recall that li is
identified with R). If ƒi D ∅, then we pick an arbitrary ai and set ki D 0. Define
XiD�

�1
ci

��
�1; ai�

1
2

��
[��1ci

��
aiCkiC

1
2
;1

��
. Then by construction, Xi\Xj D∅

for i; j satisfying d.wi ; wj /� 2. Using the argument in Section 6.1, we can show the
subgroup generated by S 0 D f˛kiC1wi g

n
iD1 is a RAAG with defining graph � 0.

At this point it is natural to ask the following question.

Geometry & Topology, Volume 21 (2017)



Quasi-isometric classification of right-angled Artin groups, I 3531

Question 6.17 Let S be a standard generating set of G.�/, and let S 0 be a finite
collection of elements of the form ˛rk˛�1 , where r 2 S , k 2 Z and ˛ 2 G.�/.
Suppose G is the subgroup generated by S 0 . Is G a right-angled Artin group?

6.3 Generalized star extension

Our goal in this subsection is to find an algorithm to determine whether G.�/ and
G.� 0/ are quasi-isometric or not, given that Out.G.�// is finite.

For a convex subcomplex E � X.�/, we denote the full subcomplex in P.�; S/
spanned by f�.l�/g�2ƒ by yE , where fl�g�2ƒ is the collection of standard geodesics
in X.�/ with l�\E ¤∅.

Now we describe a process to construct a graph � 0 from � such that G.� 0/ is isomor-
phic to a special subgroup of G.�/. Let �1 D � , and let K1 be one point. We will
construct a pair .�i ; Ki / inductively such that:

(1) Ki is a compact CAT.0/ cube complex, and there is a cubical embedding
f W Ki !X.�/ such that f .Ki / is convex in X.�/.

(2) �i is a finite simplicial graph, and there is a simplicial isomorphism gW F.�i /!1f .Ki /.
Note that these assumptions are true for i D 1.

We associate each edge e �Ki with a vertex in �i , denoted by ve , as follows. Let le
be the standard geodesic in X.�/ that contains f .e/. We define ve WD g�1.�.le//.
Each vertex x 2Ki can be associated with a full subcomplex ˆ.x/� F.�i / defined
by ˆ.x/D g�1.yx/.

To define .�iC1; KiC1/, pick a vertex v 2 �i , and let fxj gmjD1 be the collection of
vertices in Ki such that v 2 ˆ.xj /. Then ff .xj /gkjD1 are exactly the vertices in
Pl \ f .Ki /, where l is a standard geodesic such that �.l/ D g.v/. Let L be the
convex hull of fxj gmjD1 in Ki . Then e � L for any edge e �Ki with ve D v .

Since f .L/D Pl \f .Ki /, the natural product decomposition Pl Š l � l? induces a
product decomposition of LD h� Œ0; a�. Note that it is possible that aD 0, and a > 0
if and only if there exists an edge e �Ki with ve D v . If a > 0, then h is isomorphic
to the hyperplane dual to e , and for any edge e0 2 Ki with ve0 D v , the projection
of e0 to the interval factor Œ0; a� is an edge.

Let Li D h � fag � L, and let Mi D
S
x2Li

ˆ.x/ (where x is a vertex). We de-
fine F.�iC1/ to be the simplicial complex obtained by gluing F.�i / and Mi along
St.v;Mi / (see Section 2.1 for the notation), and define KiC1 to be the CAT.0/ cube
complex obtained by gluing Ki and Li � Œ0; 1� along Li . One readily verifies that one
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can extend f to a cubical embedding f 0W KiC1!X.�/ such that f 0.KiC1/ is convex.
This also induces an isomorphism g0W F.�iC1/! yKiC1 which is an extension of g .

By construction, each G.�i / is isomorphic to a special subgroup of G.�/; moreover,
the associated convex subcomplex of this special subgroup is Ki . Also note that the
above induction process actually does not depend on knowing what X.�/ is. Thus it
also provides a way to construct convex subcomplexes of X.�/ by hand.

The above process of obtaining .�iC1; KiC1/ from .�i ; Ki / is called a generalized
star extension (GSE) at v . Note that the following are equivalent:

(1) �i ¨ �iC1 .
(2) Pl ¨X.�/, where l is the standard geodesic in X.�/ such that �.l/D g.v/.
(3) St.�.g.v///¨ F.�/, where � W P.�/! F.�/ is the natural label-preserving

projection defined in (4-1).

A GSE is nontrivial if �i ¨ �iC1 . If � is not a clique, then at each stage, there exists
a vertex v 2 �i such that the GSE at v is nontrivial.

Lemma 6.18 Suppose G.� 0/ is isomorphic to a special subgroup of G.�/. Then we
can construct � 0 from � by using finitely many GSEs.

Proof Let ‚S and CN.�; S/ be the objects defined in Section 6.1. Suppose G.� 0/
is isomorphic to ‚S .K/ for K 2 CN.�; S/. We define a sequence of convex subcom-
plexes in K by induction. Let K1 be the identity element in G.�/. Suppose Ki is
already defined. If Ki DK , then the induction terminates. If Ki ¨K , pick an edge
ei �K such that ei \Ki is a vertex and let KiC1 be the convex hull of Ki [ ei . Let
fKig

s
iD1 be the resulting collection of convex subcomplexes. An alternative way of

describing KiC1 is the following. If hi is the hyperplane in K dual to ei , and Ni
is the carrier of hi in K , then hi \Ki D ∅ by the convexity of Ki . Thus Ki \Ni
is disjoint from hi . Hence there is a copy of .Ki \Ni /� Œ0; 1� inside Ni , which is
denoted by Mi . Then KiC1 DKi [Mi . Now one readily verifies that one can obtain
. yKiC1; KiC1/ from . yKi ; Ki / by a GSE.

The above construction gives rise to an algorithm to detect whether G.� 0/ is isomorphic
to a special subgroup of G.�/. If there are n vertices in � 0, then � 0 can be obtained
from � by at most n nontrivial GSEs. So we can start with �, enumerate all possible n–
step nontrivial GSEs from �, and compare each resulting graph with � 0. By Theorem 5.7
and Theorem 6.13, we have the following result.

Theorem 6.19 If Out.G.�// is finite, then G.� 0/ is quasi-isometric to G.�/ if and
only if � 0 can be obtained from � by finitely many GSEs. In particular, there is an
algorithm to determine whether G.� 0/ and G.�/ are quasi-isometric.
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Note that a GSE gives rise to a pair .�i ; Ki /. If one does not care about the associated
convex subcomplex Ki , then there is a simpler description of GSE when Out.G.�//
is finite. Suppose we have already obtained F.�i / together with a finite collection of
full subcomplexes fG�g�2ƒi such that:

(1) fG�g�2ƒi is a covering of F.�i /.

(2) Each G� is isomorphic to F.�/.

When i D 1, we pick the trivial cover of F.�/ by itself. To construct �iC1 , pick a
vertex v 2 F.�i /, let ƒv D f� 2 ƒi j v 2 G�g and let �v D

S
�2ƒv

G� . Suppose
fCj g

m
jD1 is the collection of connected components of �v n St.v; �v/, and suppose

C 0j D Cj [ St.v; �v/. Then F.�iC1/ is defined by gluing C 01 and F.�i / along
St.v; �v/, and �iC1 is the 1–skeleton of F.�iC1/.

Lemma 6.20 Suppose Out.G.�// is finite. Then the above simplified process is
consistent with GSE.

Proof We assume inductively that there is a CAT.0/ cube complex Ki such that
the two induction assumptions for GSE are satisfied; moreover, fG�g�2ƒi coincides
with fˆ.x/gx2Ki (where x is a vertex). Let L D h � Œ0; a� be as before and let
Lj D h� fj g � L for each integer j 2 Œ0; a�. It suffices to show there is a one-to-one
correspondence between fLj gajD0 and fC 0j gmjD1 such that for each j , there exists
a unique j 0 with 1f .Lj / D g.C 0j 0/. Pick adjacent vertices x1; x2 2 f .Lj / and let
xw 2 � be the label of edge x1x2 . Suppose xv D �.g.v//. Then d. xw; xv/D 1. Since
Out.G.�// is finite, the orthogonal complement of xw satisfies xw?ª St.xv/. Then there
is a vertex xu 2 xw? such that d.xu; xv/D 2. The lifts of xu in yx1 and yx2 are the same
point, so .yx1\ yx2/ nSt.g.v// contains a vertex. Since F.�/ does not have separating
closed stars, yxi n St.g.v// is connected for i D 1; 2. Thus .yx1 \ yx2/ n St.g.v// is
connected. It follows that 1f .Lj / nSt.g.v// is connected. Moreover, from Lemma 4.9,
2f .Lj1/nSt.g.v// and 2f .Lj2/nSt.g.v// are in different components of P.�/nSt.g.v//
when j1 ¤ j2 , so there exists a unique j 0 such that 1f .Lj /D g.C 0j 0/.
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Maximal representations, non-Archimedean Siegel spaces,
and buildings

MARC BURGER

MARIA BEATRICE POZZETTI

Let F be a real closed field. We define the notion of a maximal framing for a
representation of the fundamental group of a surface with values in Sp.2n;F/ . We
show that ultralimits of maximal representations in Sp.2n;R/ admit such a framing,
and that all maximal framed representations satisfy a suitable generalization of
the classical collar lemma. In particular, this establishes a collar lemma for all
maximal representations into Sp.2n;R/ . We then describe a procedure to get from
representations in Sp.2n;F/ interesting actions on affine buildings, and in the case
of representations admitting a maximal framing, we describe the structure of the
elements of the group acting with zero translation length.

20-XX, 22E40

1 Introduction

Let † be a connected, orientable surface of genus g with p � 0 punctures and
negative Euler characteristic, and let V be a symplectic vector space over R. A current
theme in higher Teichmüller theory is to which extent classical hyperbolic geometry
and some fundamental structures on the Teichmüller space of † carry over to the
geometry and the moduli space of maximal representations of � D �1.†/ into Sp.V /
or Hitchin representations into SL.V /. For instance, compactifications of spaces of
representations of � have been introduced and studied by Alessandrini [1], Le [14]
and Parreau [22]. In the context of Hitchin representations, asymptotic properties of
diverging sequences were studied by Collier and Li [7], Katzarkov, Noll, Pandit and
Simpson [10], Loftin [18], Mazzeo, Swoboda, Weiss and Witt [19], Parreau [23] and
Zhang [29; 30].

The purpose of this paper is to study the action on an asymptotic cone of the symmetric
space X associated to Sp.V / defined by a sequence .�k/k2N of maximal representa-
tions �k W �! Sp.V /. More precisely, we fix a nonprincipal ultrafilter ! on N and
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let .xk/k2N 2 XN be a sequence of basepoints. We say that a sequence of scales
�D .�k/k2N is adapted to .�k; xk/k2N if

lim
!

DS .�k/.xk/

�k
<1:

Here for a representation � and a finite generating set S for � , we define DS .�/.x/D
max2S d.�./x; x/, where d denotes the Riemannian distance on X . Observe that
the above property is independent of the choice of the finite generating set S .

In this situation, we obtain an action !��W �! Iso.!X�/ by isometries on the asymp-
totic cone !X� of the sequence .X ; xk; d=�k/. The space !X� is not only CAT(0)-
complete, but when the limit lim! �k is infinite, it is an affine building associated to
the algebraic group Sp.V / over a specific field (more on this below); see Kleiner and
Leeb [11], Kramer and Tent [13], Parreau [20] and Thornton [28]. Depending on the
choice of scales, the representation !�� might have a global fixed point, but as it turns
out, if the representations �k are maximal, the limiting action is always faithful. Our
main result gives then the underlying geometric structure of the set of elements  in �
whose translation length L.!��.// in !X� is zero; notice that for an isometry of an
affine building, having zero translation length is equivalent to having a fixed point.

For convenience, we fix once and for all a complete hyperbolic metric on † of finite
area, and identify � with a subgroup of PSL.2;R/. In order to state the main result,
we recall that a decomposition †D

S
v2V †v into subsurfaces with geodesic boundary

gives rise to a presentation of � as fundamental group of a graph of groups with vertex
set V and vertex groups �1.†v/. The group � acts on the associated Bass–Serre
tree T and, in particular, on its vertex set zV ; observe that for v 2 V and w 2 zV lying
above v , the stabilizer �w of w in � is isomorphic to �1.†v/.

Theorem 1.1 Let �k W �!Sp.V / be a sequence of maximal representations, .�k/k�1
an adapted sequence of scales and !�� the action of � on the asymptotic cone !X� .
Then !�� is faithful. Moreover, there is a decomposition † D

S
v2V †v of † into

subsurfaces with geodesic boundary such that:

(1) for every  2 � whose corresponding closed geodesic is not contained in any
subsurface, L.!��.// > 0;

(2) for every v 2 V , there is the following dichotomy:

(PT) for every w 2 zV lying above v , and any  2 �w which is not boundary
parallel, !��./ has positive translation length;

(FP) for every w 2 zV lying above v , the stabilizer �w has a common fixed point
bw 2

!X� .

Geometry & Topology, Volume 21 (2017)
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A natural question is, given a sequence of maximal representations, how the choice
of basepoints and scales influences the action of � on the asymptotic cone and, in
particular, the decomposition given in Theorem 1.1. Turning to this issue, recall that for
a maximal representation �W �! Sp.V /, the displacement function x 7!DS .�/.x/

with respect to a generating set S �� achieves its minimum �S .�/ in a compact region
of the symmetric space X . Given a sequence .�k/k2N of maximal representations,
we have lim! �S .�k/ <1 if and only if, up to modifying the sequence on a set of
!–measure zero, .�k/k2N is contained in a compact subset of the character variety of
maximal representations.

Assume thus that lim! �S .�k/D1. Choosing a sequence .xk/k2N 2 XN of base-
points such that DS .�k/.xk/D �S .�k/, the sequence of scales .�k WD �S .�k//k2N

is obviously adapted to the sequence .�k; xk/k2N , and the resulting �–action !��
on !X� has no global fixed point. We show then (see Proposition 10.6) that if
.yk/k2N 2 XN is a sequence of basepoints and .�k/k2N is an adapted sequence
of scales such that !�� has no global fixed point, then !X� equals !X� with homo-
thetic distance function, and the actions !�� and !�� coincide. In particular, the
decomposition of † into subsurfaces given by Theorem 1.1 is uniquely determined by
the sequence .�k/k2N .

We say that a subsurface is of type (PT) (resp. (FP)) if the first (resp. the second)
possibility in Theorem 1.1(2) holds. One can show that any decomposition of the
surface † and any assignment of type (PT) or (FP) to the subsurfaces can be realized
by the limiting action for an appropriate sequence .�k/k2N . On the other hand,
Theorem 1.1 suggests that in a generic limiting action without a global fixed point, no
element of � should have zero translation length. We plan on analyzing the properties
of such representations in future work.

In case there is a subsurface of type (FP), the restriction �kj�w W �w ! Sp.V / is a
sequence of maximal representations to which the preceding discussion applies; that is,
either up to !–measure zero the sequence is relatively compact in the character variety
of �w , or there is an essentially unique choice of basepoints and scales such that the
limiting action does not have a global fixed point. Since, at each step, the topological
complexity of the surface decreases, this procedure stops after finitely many iterations
and can be seen as an asymptotic expansion of the initial sequence .�k/k2N .

When each subsurface in the decomposition of Theorem 1.1 is of type (FP), we
can use the fixed points bw to construct a map from the Bass–Serre tree T to the
asymptotic cone:

Theorem 1.2 Assume that for any subsurface of the decomposition, possibility (FP)
holds. Then there is a !��–equivariant quasi-isometric embedding T ! !X� .

Geometry & Topology, Volume 21 (2017)
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In the case of a vector space of dimension 2, maximal representations correspond to holo-
nomies of hyperbolizations; in this case, the second possibility in Theorem 1.1(2) occurs,
for example, for sequences of hyperbolizations obtained by pinching a multicurve. In
this case, the image of the quasi-isometric embedding of Theorem 1.2 is a simplicial sub-
tree of the asymptotic cone !X� . In higher rank, it is possible to construct examples in
which the image of the Bass–Serre tree is not totally geodesic in the affine building !X� .

We finish our discussion about ultralimits of maximal representations mentioning two in-
teresting geometric properties of maximal representations that can be deduced from our
work. Let S be a connected generating set, namely a generating set for � such that the
union of the closed geodesics representing the elements of S is a connected subset of †,
and let LS .�/ denote the maximal displacement of an element in the generating set S :

LS .�/Dmax
2S

L.�.//:

Corollary 1.3 Let S � � be a connected generating set for � . Then there is a con-
stant C depending only on S and 2nDdimV such that for any maximal representation
�W �! Sp.V /, we have

.ln 2/
p
n� LS .�/� �S .�/� CLS .�/:

We say that two diverging sequences of real numbers .�k/k2N and .�k/k2N have the
same growth rate according to the ultrafilter ! if lim! �k=�k is finite and nonzero.

Corollary 1.4 Let .�k/k2N be a sequence of maximal representations of the funda-
mental group � of a surface of genus g with p punctures. Then, varying  2 �, there
are at most 8g�8C4p distinct growth rate classes among the sequences L.�k.//k2N .

1.1 Real closed fields

The building structure on !X� alluded to previously comes about as follows. Assume
that the sequence of scales .�k/k2N is unbounded. Then � D .e��k /k2N is an
infinitesimal in the field R! of the hyperreals, and the building !X� is associated to
Sp.V ˝R!;� / [20; 28]. Here R!;� is the valuation field introduced by Robinson [24].
The characterizing properties of the representations arising as ultralimits of maximal
representations make sense in the more general context of symplectic groups over
arbitrary real closed fields.1 When VF is a symplectic vector space over a real closed
field F , the Kashiwara cocycle classifies the orbits of Sp.VF / on triples L.VF /

.3/

of pairwise transverse Lagrangians and can be used to select maximal triples (see
Section 2.3 for a precise definition of maximal triples). The general objects of our
study are representations which admit a maximal framing:

1We refer to Kaplansky [9] for general facts about linear algebra over real closed fields.
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Definition 1.5 A representation �W �! Sp.VF / admits a maximal framing if there
exist a �–invariant subset S � @H2 including the fixed points of hyperbolic ele-
ments of � , and an equivariant map �W S ! L.VF /, such that for every positively
oriented triple .x; y; z/ in S3 , the image .�.x/; �.y/; �.z// is maximal. If we want
to emphasize the domain of definition, we will refer to a maximal S–framing.

Remark 1.6 For the conclusion of Theorem 1.8 (see below) to hold, the existence
of a maximal S–framing for S the set of fixed points of hyperbolic elements is
sufficient. However, the fact that the reduction (see Theorem 1.7) of a maximal
S–framed representation admits a maximal S–framing will be used in subsequent
papers where we study the structure of the real spectrum compactification of maximal
representation varieties.

If F DR, any maximal representation admits a maximal framing (see Burger, Iozzi
and Wienhard [6, Theorem 8]), and we show in Corollary 10.4 that this is also true
for all ultralimits of maximal representations. Even more, the class of representations
admitting a maximal framing is closed under the natural reduction process we are
now going to describe. Let O � F be an order convex local subring.2 Its quotient
by the maximal ideal, denoted by FO , is real closed as well. Assume now that there
exists a symplectic basis of VF such that �.�/� Sp.2n;O/. We can then consider the
composition �O of � with the quotient homomorphism Sp.2n;O/! Sp.2n;FO/:

Theorem 1.7 Assume that �W �! Sp.VF / admits a maximal S–framing. Then the
reduction �OW �! Sp.VFO/ admits a maximal S–framing as well.

Theorem 1.7 allows us in general to obtain well controlled actions on affine buildings.
Indeed, for each infinitesimal � > 0, the set of elements of F comparable with � ,

O� D fx 2 F W jxj � ��k for some k 2 Zg;

forms an order convex subring of F . We denote by F� its residue field, which inherits
from O� an order compatible valuation. As a consequence, to any reductive algebraic
group over F� is associated an affine Bruhat–Tits building [2]. Since � is finitely
generated, for each representation �W � ! Sp.VF / and every choice of a basis, it is
possible to choose an infinitesimal � such that �.�/ � Sp.2n;O� /. By passing to
the quotient �� W �! Sp.2n;F� /, we get an action on the affine building associated
to Sp.2n;F� /. The main result for maximal framed representations over real closed
fields with valuation is:

2The definition of an order convex subring is recalled in Section 5.
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Theorem 1.8 Let �W � ! Sp.VL/ be a maximal framed representation, where L
is real closed with order compatible valuation, and let B be the Bruhat–Tits affine
building associated to Sp.VL/. Then the action of � on B satisfies the conclusions of
Theorem 1.1.

When L is a real closed field with order compatible valuation, we denote by U the
order convex valuation ring with residue field LU . We already mentioned that the
action on the affine building associated to a representation �W �! Sp.VL/ might have
a global fixed point. However, when this is the case, it is possible to find a symplectic
basis of VL such that �.�/ � Sp.2n;U/, and if � admits a maximal framing, then
it follows from Theorem 1.7 that the reduction �U W � ! Sp.2n;LU / has the same
property. In particular, this can be used to study the restriction of the representation �
to the subsurfaces defined in Theorem 1.8.

As a consequence of Theorem 1.8, we get a concrete way of checking if a represen-
tation � admitting a maximal framing has a global fixed point: if S is a connected
generating set for � , then � has a global fixed point if and only if each element of S
has a fixed point (see Corollary 7.6 for a precise formulation of this result and some
further comments).

1.2 Tools

We now turn to a short description of the key tools we develop in this paper. In the
context of his approach to the compactification of the Teichmüller space [3], Brumfiel
studied non-Archimedean hyperbolic planes [4]: for any ordered field F , he associates
to PSL.2;F/ a nonstandard hyperbolic plane HF2 , and for fields with valuation, he
introduces a pseudodistance on HF2 whose Hausdorff quotient is the R–tree associated
to PSL.2;F/. Inspired by Brumfiel’s work (see also [13]), we associate to a symplectic
group Sp.2n;F/ over a real closed field F the space

XF D fX C iY jX; Y 2 Sym.n;F/; Y positive definiteg;

where Sym.n;F/ denotes the vector space of symmetric n�n matrices with coefficients
in F . The group Sp.2n;F/ acts on XF by fractional linear transformations, and the
Sp.2n;F/–space XF can be thought of as a nonstandard version of the Siegel upper half-
space. Using a matrix-valued cross-ratio, we define, for any two transverse Lagrangians
a; b 2 L.F2n/, the F–tube Ya;b which is the nonstandard symmetric space associated
to the stabilizer in Sp.2n;F/ of the pair .a; b/, a group isomorphic to GL.n;F/.
In the case of the hyperbolic plane, the F–tubes are just the Euclidean half-circles
joining the ideal points a; b . Given a representation �W � ! Sp.2n;F/ admitting a
maximal framing �W S!L.F2n/, we can associate to every hyperbolic element  2�
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the F–tube Y D Y�.�/;�.C/ , where �; C are the fixed points of  in @H2 . One
key property that we exploit is that the intersection pattern of the axes of hyperbolic
elements in � is reflected in the intersection pattern of the corresponding F–tubes.
When the field F has an order compatible valuation, there is a natural R�0–valued
pseudodistance on XF , and the relation between cross-ratios and this pseudodistance
allows us to quantify the intersection pattern of the F–tubes. Finally, we exploit that
the Hausdorff quotient of XF can be identified with the set of vertices of the affine
Bruhat–Tits building associated to Sp.2n;F/.

1.3 Collar lemma

We finish this introduction discussing another geometric property of representations
admitting a maximal framing, which is at the basis of most of the results we discussed
so far. Recall that, since any element g 2 Sp.V / is conjugate to tg�1 , the set of
eigenvalues of a symplectic element is closed with respect to inverse: if � is an
eigenvalue of g , the same is true for ��1 . With a slight abuse of terminology, we say
that two hyperbolic elements ; � 2 � < PSL.2;R/ intersect if their axes do.

Theorem 1.9 (collar lemma) Let F be a real closed field, and let �W �! Sp.VF / be
a representation admitting a maximal framing. Then if  2 � is hyperbolic, �./ has
no eigenvalue of absolute value 1. Let j�1./j � � � � � j�n./j> 1 be the eigenvalues
of absolute value larger than 1. If the hyperbolic elements ; � in � intersect, then

j�1./j
2n
�

1

j�n.�/j2� 1
;(1) � nY

iD1

j�i ./j
2=n
� 1

�� nY
iD1

j�i .�/j
2=n
� 1

�
� 1:(2)

Here j � j denotes the F–valued absolute value on F Œi �, and we count the eigenvalues
with their multiplicity as roots of the characteristic polynomial. We immediately get
from Theorem 1.9(2):

Corollary 1.10 Under the same assumptions of Theorem 1.9, we have:

(1) If  is self-intersecting, then j�1./j �
p
2.

(2) If  satisfies j�1./j<
p
2, then  is simple and any � intersecting  satisfies

j�1.�/j>
p
2. In particular, there are at most .3g� 3Cp/ conjugacy classes of

hyperbolic elements  with j�1./j<
p
2.

(3) There exists � > 0 in F with j�1./j> 1C � for any hyperbolic  2 � .
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As an application of the collar lemma, we establish a uniform discontinuity property
of the � D �1.†/ action on the non-Archimedean Siegel space XF by a maximal
S–framed representation in the case where † has no boundary. Recall here that F has
a natural topology given by the order, and so does XF as an open subset of M.n;F Œi �/.
Given an open subset U � XF �XF containing the diagonal and x 2 XF , we let Ux
denote the open neighborhood consisting of all y 2 XF with .x; y/ 2 U .

Corollary 1.11 Let � D �1.†/ where † has no boundary, and let �W �! Sp.2n;F/
be a representation admitting a maximal framing. Then there is an open neighborhood
of the diagonal U � XF �XF which is invariant for the diagonal Sp.2n;F/–action and
such that for every x 2 XF ,

�./Ux \ Ux D∅ for all  2 � n feg:

We finish the introduction drawing some consequences of the collar lemma in the case
of classical maximal representations. It was established by Siegel in [26, Theorem 3]
that, under suitable normalizations, the translation length of an isometry g 2 Sp.2n;R/
on the symmetric space XR is

L.g/D 2

r
nP
iD1

ln2 j�i .g/j :

Using this formula, we get, from Theorem 1.9(2) and the Cauchy–Schwarz inequality,
the following:

Corollary 1.12 Let �W � ! Sp.2n;R/ be a maximal representation. If  and �

intersect, then
.eL.�.//=

p
n
� 1/.eL.�.�//=

p
n
� 1/� 1:

In particular, if  is not simple then L.�.//� log.2/
p
n.

Using that ex � 1� 2x for 0� x � 1, we get that, if L.�.�//�
p
n, then

L.�.//
p
n
� ln

� p
n

2L.�.�//

�
;

which exhibits the same asymptotic growth relation as in the Teichmüller setting. How-
ever, it is worth remarking that, as opposed to the classical collar lemma, Corollary 1.12
is not just a consequence of the Margulis Lemma: in our setting, the sets of minimal
displacement of the isometries �./ and �.�/ do not necessarily intersect. A similar ver-
sion of the collar lemma in the framework of Hitchin representations has been recently
established by Lee and Zhang [15]; see Remark 3.5 for a comparison with our results.
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Outline of the paper In Section 2, we define three different models for the nonstan-
dard symmetric space, and we study the action of Sp.V / on n–tuples of transverse
Lagrangians. Section 3 is devoted to the proof of the collar lemma, Theorem 3.3, for
representations admitting a maximal framing. The matrix-valued cross-ratio and the
F–tubes are introduced and studied in Section 4. In Section 5, we focus on order convex
subrings and describe how to obtain representations over the residue field. The main
result of the section is Theorem 5.9 (Theorem 1.7 in the introduction), whose proof also
exploits the geometric input coming from the collar lemma. In Section 6, we restrict
to fields with valuations and use the cross-ratio to describe the projection from the
nonstandard symmetric space to the affine Bruhat–Tits building. In Section 7, we initiate
our study of elements with zero translation length: to each such element, we associate a
pair of canonical fixed points (Proposition 7.1) and give sufficient conditions for these
points to coincide (Proposition 7.3). The proof of the decomposition Theorem 1.8
(Theorem 8.1) occupies Section 8, while Theorem 1.2 is proven in Section 9. In
the last section of the paper, we discuss the relation between ultralimits of maximal
representations and representations in symplectic groups over the Robinson field R!;� .
This allows us to deduce Theorem 1.1 from the more general Theorem 1.8 and, in the
case of closed surfaces, to completely characterize representations in Sp.2n;R!;� /
which admit a maximal framing (Theorem 10.5).
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2 Symplectic geometry over real closed fields

2.1 Basic objects

Let V be a 2n–dimensional vector space over a field F , endowed with a symplectic
form h � ; � i. The symplectic group Sp.V / is the subgroup of elements of GL.V /
preserving the form h � ; � i. Recall that a Lagrangian subspace is a maximal isotropic
subspace of V ; they form a subset of the Grassmannian Grn.V / of n–dimensional
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subspaces of V , denoted by L.V /. Whenever a Lagrangian l is fixed, we denote by
L.V /l the set of Lagrangians transverse to l , and by Q.l/ the vector space of quadratic
forms on l .

Given a; b in L.V / transverse, we recall the construction of an affine chart

ja;bW Q.a/! L.V /b:

For each element f in Q.a/, we denote by bf W a� a! F the associated symmetric
bilinear form. Since a and b are transverse, the symplectic pairing induces an iso-
morphism of b with the dual of a . We denote by Tf W a! b the unique linear map
satisfying

hv; Tf .w/i D bf .v; w/; for v;w 2 a:

The subspace of V defined by

ja;b.f / WD fvCTf .v/ j v 2 ag

is a Lagrangian subspace transverse to b .

Conversely, if l is transverse to b , any vector v in a can be written uniquely as a
combination of a vector in b and a vector in l . This allows us to define a linear map
T l
a;b
W a! b by requiring that vCT l

a;b
.v/ 2 l . In turn, we can use T l

a;b
to define the

quadratic form Qa;l;b on a :

Qa;l;b.v/D hv; T
l
a;b.v/i; v 2 a;

which satisfies ja;b.Qa;l;b/D l .

In the theory of maximal representations, positive-definite quadratic forms play a
prominent role. If q1; q2 are quadratic forms we will write q1� 0 to indicate that q1
is positive definite, and q1�q2 to indicate that the difference q1�q2 is positive definite.

2.2 Three models of the Siegel space

The symmetric space associated to the symplectic group Sp.2n;R/ was extensively
studied by Siegel [26] and is often referred to as the Siegel space. We now show that
the three most studied models for the Siegel space can be defined over arbitrary ordered
fields, are always equivariantly isomorphic, and give rise to interesting geometries.

We fix an ordered field F . Clearly the polynomial f .x/ D x2 C 1 is irreducible
in F Œx�. We denote by i 2 xF a root of the polynomial f and by K the splitting field
of f , the degree two extension K D F Œi �. If V is a 2n–dimensional vector space
over F endowed with a symplectic form h � ; � i, we denote by VK the “complexification”
VK D V ˝K and by h � ; � iKW V 2K!K the K–linear extension to VK of h � ; � i.
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The first model of the Siegel space consists of compatible complex structures on V :

XV D fJ 2 GL.V / j J 2 D� Id; hJ � ; � i is a scalar productg:

The set XV is a semialgebraic subset of End.V / on which the symplectic group
Sp.V / acts by conjugation. For J 2 XV , we will denote by . � ; � /J WD hJ � ; � i the
corresponding scalar product.

The second model of the Siegel space corresponds to the image of the Borel embedding;
see [5, Section 2.1.1; 25]. As in the real case, we realize XV as a semialgebraic
subset TV of L.VK/. Indeed, if J 2GL.V / is an element of XV , the complexification
J ˝ IK is diagonalizable over K. It is easy to verify that the eigenspaces L˙J of
J ˝ IK with respect to the eigenvalues ˙i are elements of L.VK/. If we denote by
� W VK! VK the complex conjugation with respect to the real form V , we get that
�.L˙J /D L

�

J . The image TV of the Borel embedding can be characterized as the set

TV D fL 2 L.VK/ j ih � ; �. � /iKjL�L is positive definiteg:

The group Sp.V / acts by extension of scalars on VK , preserves the symplectic form
h � ; � iK and commutes with the complex conjugation � ; thus it acts on TV .

Lemma 2.1 The algebraic map

XV ! TV ; J 7! LCJ ;

induces an Sp.V /–equivariant bijection.

Proof If vD xC iy is an eigenvector for the endomorphism J ˝ IK of eigenvalue i ,
it follows that y D�Jx . In particular, the restriction of ih � ; �. � /iK satisfies

ihv; �.v/iK D ihx; iJ xiKC ih�iJ x; xiK

D 2hJx; xi;

and this implies that the image of XV is contained in TV .

Conversely, if L 2 L.VK/ is such that ih � ; �. � /iKjL�L is positive definite, L is
transverse to �.L/ since the restriction of the aforementioned Hermitian form to �.L/
is negative definite. We denote by JL the endomorphism of VK defined by imposing
that JL.v/D iv for each v in L and JL.v0/D�iv0 for each v0 2 �.L/.

Since any element w of V can be written uniquely as w D vC �.v/ for some v 2 L,
and in particular, JLwD iv�i�.v/D ivC�.iv/2V , the endomorphism JL preserves
the real structure V . Let J WD JLjV . Since the Hermitian form ih � ; �. � /iKjL�L is
by assumption positive definite, the quadratic form hJ � ; � i is positive definite.
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If J is a point in XV and g belongs to Sp.V /, then since g commutes with � , we
get that gL˙J is the ˙i–eigenspace of gJg�1˝ IK . It follows that the map J 7! LCJ
is Sp.V /–equivariant.

The third and most concrete model for the Siegel space is the upper half-space XF ,
a specific set of K–valued symmetric matrices:

XF D fX C iY jX 2 Sym.n;F/; Y 2 SymC.n;F/g:

Here Sym.n;F/ denotes the vector space of symmetric n�n matrices with coefficients
in F and SymC.n;F/ denotes the properly convex cone in Sym.n;F/ consisting of
positive-definite symmetric matrices.

In order to establish a bijection between TV and XF , we fix a Lagrangian l1 in L.V /,
a complex structure J 2 XV and a basis e1; : : : ; en of l1 which is orthonormal for
. � ; � /J . The matrix representing the symplectic form with respect to the basis

B D fe1; : : : ; en;�Je1; : : : ;�Jeng

of V is
�
0 Id
� Id 0

�
. Moreover, using the basis B , we can associate to any 2n�n matrix M

of maximal rank the n–dimensional subspace of V spanned by the columns of M . We
use this to give an explicit identification of Sym.n;K/ with the affine chart of L.VK/

which consists of subspaces transverse to l1 :

�W Sym.n;K/! L.VK/; Z 7!
�Z

Id

�
:

It is easy to verify that if we use the basis f�Je1; : : : ;�Jeng to identify the space
Sym.n;K/ with Q.J l1/, we get that the map � corresponds to the map jJ l1;l1
described in Section 2.1.

Since the restriction of ih � ; �. � /iK to l1 is identically zero, every element l of TV
belongs to the image of �, and it is easy to verify that the restriction of ih � ; �. � /iK
to �.X C iY / can be represented by the matrix 2Y . In particular, � restricts to a
bijection between TV and XF . Notice that the restriction of � to the subset of F–valued
symmetric matrices has image in L.V / and gives a parametrization of the affine chart
of L.V / consisting of Lagrangians transverse to l1 .

It follows from the identification between XV and XF that the symplectic group
Sp.2n;F/ acts on XF by fractional linear transformations:�

A B

C D

�
�Z D .AZCB/.CZCD/�1:
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It will be useful in the following to record that, with our choice for a basis of the
symplectic form, an element

�
A B
C D

�
belongs to Sp.2n;F/ if and only if

tAD� tCB D Id; tAC D tCA; and tBD D tDB:

In order to achieve transitivity of the symplectic group on the Siegel upper half-space,
we need to restrict to real closed fields:

Definition 2.2 A real closed field is an ordered field F in which every positive element
is a square and such that every polynomial in one variable over F factors into linear
and quadratic factors.

Lemma 2.3 If F is a real closed field, the symplectic group Sp.2n;F/ acts transitively
on XF .

Proof Since F is, by assumption, real closed, every symmetric matrix is diagonalizable
by an orthogonal matrix, and as soon as it is positive definite, it admits a unique positive
square root [9, Sections 2–4]. Let now X C iY be a point in XF and let S be the
square root of Y . We have

X C iY D

�
S XS�1

0 S�1

�
� i Id :

2.3 Action on F–Lagrangians

We now want to understand the action of Sp.V / on n–tuples of pairwise transverse
Lagrangians. We denote this set by L.V /.n/ :

L.V /.n/ D f.l1; : : : ; ln/ 2 L.V /n j li t lj g:

It is a general fact that, for any field F , the symplectic group acts transitively on pairs
of transverse Lagrangians.

Lemma 2.4 The symplectic group Sp.V / acts transitively on L.V /.2/ .

Recall from Section 2.1 that, whenever two transverse Lagrangians a; b are fixed,
we have an identification ja;bW Q.a/Š L.V /b , and we denote by Qa;l;b the inverse
image j�1

a;b
.l/. Clearly for any element g in Sp.V /, the quadratic forms Ql1;l2;l3 and

Qgl1;gl2;gl3 are equivalent. As it turns out, the equivalence class of the quadratic form
Ql1;l2;l3 is a complete invariant of the triple .l1; l2; l3/ up to the symplectic group
action:
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Proposition 2.5 The triples .l1; l2; l3/; .m1; m2; m3/ in L.V /.3/ are equivalent mod-
ulo the symplectic group action if and only if the quadratic forms Ql1;l2;l3 and
Qm1;m2;m3 are equivalent.

Proof Since Sp.V / is transitive on pairs of transverse subspaces, we can assume that
l1Dm1D a and l3Dm3D b . The result now follows from the fact that the stabilizer
in Sp.V / of the pair a; b is GL.n;F/ acting on Q.a/ by congruence.

In particular, Sylvester’s theorem allows us to count the number of Sp.V /–orbits when
the field F is real closed: since in this case, the signature sign.Q/ is a complete
invariant of a quadratic form Q up to equivalence (see [9, Theorem 9]), we have

Corollary 2.6 Let F be a real closed field, and let V be a symplectic F–vector space
of dimension 2n. Then there are nC 1 orbits of Sp.V / in L.V /.3/ .

A fundamental tool in the study of Lagrangian subspaces is the Kashiwara cocycle,
which, at least when F DR, is also known as the Maslov cocycle:

Definition 2.7 The Kashiwara cocycle is the function

� W L3.V /! Z; .l1; l2; l3/ 7! sign.Q/;

where Q is the quadratic form on the direct sum l1˚ l2˚ l3 defined by

Q.x1C x2C x3/D hx1; x2iC hx2; x3iC hx3; x1i:

The following properties of the Kashiwara cocycle are well known:

Proposition 2.8 (see [17, Section 1.5]) Let .V; h � ; � i/ be a 2n–dimensional sym-
plectic vector space over a real closed field.

(1) � is alternating and invariant for the diagonal action of Sp.V / on L.V /3 .

(2) � has values in f�n;�nC1; : : : ; ng. On triples consisting of pairwise transverse
Lagrangians, it only achieves the values f�n;�nC2; : : : ;ng. If j�.l1; l2; l3/j D n,
then the li are pairwise transverse.

(3) If .l1; l2; l3/ are pairwise transverse, then

�.l1; l2; l3/D sign.Ql1;l2;l3/:

(4) � is a cocycle: for each 4–tuple .l1; l2; l3; l4/, we have

�.l2; l3; l4/� �.l1; l3; l4/C �.l1; l2; l4/� �.l1; l2; l3/D 0:
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The second and the third statement in Proposition 2.8 justify the following definition:

Definition 2.9 A triple .l1; l2; l3/2L.V /.3/ is maximal if Ql1;l2;l3 is positive definite.
More generally, an n–tuple .l1; : : : ; ln/ is maximal if Qli ;lj ;lk is positive definite for
any ordered triple of indices i < j < k .

Let S1 denote the unit circle in C endowed with its canonical orientation as boundary
of the unit disc. Given a pair a; b of distinct points, ..a; b// denotes the connected
component of S1 n fa; bg consisting of the points crossed by a positively oriented
C 1–path joining a to b . More generally, if a; b 2 L.V / are transverse, we denote
by ..a; b// the subset of L.V / consisting of points c such that the triple .a; c; b/ is
maximal:

..a; b//D fc 2 L.V / j .a; c; b/ 2 L.V /.3/ is maximalg:

The key property of maximal triples that will be exploited throughout the paper is that
they correspond to positive-definite quadratic forms:

Lemma 2.10 (1) A triple .a; l; b/ is maximal if and only if l D ja;b.q/ for a
positive-definite quadratic form q 2Q.a/.

(2) A 4–tuple .l1; l2; l3; l4/ is maximal if and only if it holds that Ql1;l2;l4� 0 and
Ql1;l3;l4 �Ql1;l2;l4 � 0.

Proof This follows from Proposition 2.8 together with the observation that the unipo-
tent radical of the stabilizer in Sp.V / of b is isomorphic to Sym.n;F/ and acts on
Q.a/ by translation.

We finish this subsection by analyzing the Sp.V /–orbits in L.V /.4/ . Using the objects
and notation introduced in Section 2.2, we fix a Lagrangian subspace l1 , a complex
structure J and a symplectic basis B of V of the form

B D fe1; : : : ; en;�Je1; : : : ;�Jeng:

Moreover, when this does not cause confusion, we suppress �W Sym.n;F/!L.V / and
simply represent an element in L.V /l1 by an F–valued symmetric matrix.

Proposition 2.11 Let F be a real closed field, and let .l1; l2; l3; l4/ 2 L.V /.4/ be a
maximal 4–tuple. Then there exist a diagonal matrix D D diag.d1; : : : ; dn/ satisfying
d1 � � � � � dn > 0, and an element g1 2 Sp.V / such that

g1.l1; l2; l3; l4/D .� Id; 0;D; l1/:

Moreover, there exists g2 2 Sp.V / such that g2.l1; l2; l3; l4/D .� Id; ƒ; 0; l1/, where
ƒ is diagonal with eigenvalues �1 < �i D�di=.1C di / < 0:
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Proof Since Sp.V / is transitive on maximal triples of Lagrangians and the triple
.� Id; 0; l1/ is maximal, we have an element g01 2 Sp.V / such that g01.l1; l2; l3; l4/D
.� Id; 0; Z; l1/ for some positive-definite matrix Z .

It is easy to verify that the stabilizer of the triple .� Id; 0; l1/ in Sp.2n;F/ consists
of matrices that have the form

StabSp.2n;F/.� Id; 0; l1/D
��
A 0

0 A

� ˇ̌
A 2O.n/

�
with respect to the basis B and acts by congruence. This allows us to conclude: since F
is real closed, every positive-definite matrix Z is orthogonally congruent to a diagonal
matrix, namely there exists A2O.n/ with AZA�1DD , where DD diag.d1; : : : ; dn/
with d1 � � � � � dn ; see [9, Theorem 48]. Then

g1 D

�
A 0

0 A

�
g01

satisfies the first assertion. For the second assertion, it is enough to take

g2 D

�
.IdCD/�1=2 �D.IdCD/�1=2

0 .IdCD/1=2

�
g1:

An important role in the rest of the paper will be played by Shilov hyperbolic elements
of Sp.V /. We denote by j � jW K! F�0 the absolute value jaC ibj D

p
a2C b2 .

Definition 2.12 An element g 2 Sp.V / is Shilov hyperbolic if there exists a g–
invariant decomposition V D LCg ˚L

�
g , with L˙g 2 L.V /, such that all eigenvalues

of the restriction of g to L�g have absolute value strictly smaller than one and all
eigenvalues of the restriction of g to LCg have absolute value strictly bigger than one.
In this case, we denote by Mg the restriction of g to LCg .

Remark 2.13 When V is a real vector space, the set of Lagrangians L.V / is the Shilov
boundary of the symmetric space TV . Moreover, if g 2 Sp.V / is Shilov hyperbolic,
then there exists a Zariski open subset of L.V /, the set of points transverse to L�g ,
which is contracted by g to LCg .

3 Representations admitting a maximal framing:
the collar lemma

Let † be an oriented surface of negative Euler characteristic, genus g and p punctures.
As mentioned in the introduction, we endow † with a complete hyperbolic metric of
finite area and identify it with �nH2 where H2 is the Poincaré upper half-plane.
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We now turn to the study of representations �W �! Sp.V / where V is a symplectic
space over a real closed field F . Recall from the introduction that we denote by
S � @H2 any �–invariant subset containing all the fixed points of hyperbolic elements
in � .

Definition 3.1 We say that the representation �W � ! Sp.V / admits a maximal S–
framing if there exists an equivariant map �W S! L.V / such that, whenever the triple
.x; y; z/ in S3 is positively oriented, the triple of Lagrangians .�.x/; �.y/; �.z// is
maximal.

Remark 3.2 It is a fundamental result [6, Theorem 8] that if F DR, then any maximal
representation admits a maximal framing. In addition, one can take S D @H2 and �
either left or right continuous.

In this section, we prove a generalization of the classical collar lemma of hyperbolic
geometry to the context of representations which admit a maximal framing. In the
case where F is the field of ordinary reals R, this establishes a collar lemma for all
maximal representations and gives a quantitative form of the fact due to Strubel [27]
that for every hyperbolic element  in � , the image �./ is Shilov hyperbolic.

Theorem 3.3 (collar lemma) If �W �! Sp.V / is a representation admitting a maxi-
mal framing, then for every hyperbolic element  , the image �./ is Shilov hyperbolic.
Let a; b be elements of � which intersect, and denote by j˛1j � � � � � j˛nj > 1 the
eigenvalues of the restriction of �.a/ to the attractive invariant Lagrangian LC

�.a/
, and

analogously for jˇ1j � � � � � jˇnj> 1 and �.b/. Then:

(1) .detM 2=n

�.a/
� 1/.detM 2=n

�.b/
� 1/� 1;

(2) jˇ1j2n �
1

j˛nj2� 1
.

We isolate a useful lemma which is used many times in the proof:

Lemma 3.4 Let M 2 GL.n;F/. Denote by 0 < �n � � � � � �1 the eigenvalues of
M tM and by j�nj � � � � � j�1j the absolute values of the eigenvalues of M . Then
�n � j�nj

2 and �1 � j�1j2 .

Proof If S DM tM , then S � 0, and if . � ; � / denotes the standard scalar product,
we have

�n Dmin
v¤0

.Sv; v/

.v; v/
:
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Since .Sv; v/D .tMv; tMv/, we get �n � .tMv; tMv/=.v; v/ for every nonzero v . If
now �n belongs to F , we get the statement applying this inequality to a corresponding
eigenvector of tM . If instead �n 2K nF , then there is a two-dimensional subspace
E Š F2 in Fn which is invariant under tM and where this latter matrix acts like�
a b
�b a

�
for some a; b 2 F with a2C b2 D j�nj2 . Then for

�
x
y

�
2E , we have�

tM
�
x
y

�
; tM

�
x
y

��
D .axC by/2C .�bxC ay/2 D .a2C b2/.x2Cy2/;

which implies the first assertion in the lemma. The second inequality follows from
applying the first inequality to tM

�1 and observing that

max
v¤0

.Sv; v/

.v; v/
D

�
min
v¤0

.v; v/

.tMv; tMv/

��1
D

�
min
v¤0

.tM�1v; tM�1v/

.v; v/

��1
:

Proof of Theorem 3.3 Given two hyperbolic elements a; b 2 � , we denote by ax.a/
and ax.b/ the axes of a and b , and by aC and bC (resp. a� and b� ) the attractive
(resp. repulsive) fixed points of a and b in @H2 .

We can assume, without loss of generality, that a and b translate as represented by
Figure 1 (left) and that the points .a�; b�; ab�; aC; abC; baC; bC; ba�/ are cyclically
positively ordered; see [15, Lemma 2.2].

Let �W S ! L.V / be the maximal framing for � . Then the six points�
�.b�/; �.aC/; �.a/�.bC/; �.b/�.aC/; �.bC/; �.a�/

�
in L.V /6 form a maximal 6–tuple. This implies that they are pairwise transverse and
every ordered subtriple forms a maximal triple.

We are going to perform our computations in the upper half-space model. As in
Section 2.2, fix a symplectic basis fe1; : : : ; en;�Je1; : : : ;�Jeng of V , set l1 D
he1; : : : ; eni and parametrize the set of Lagrangians transverse to l1 by symmetric

a� aC>
ax.a/

b�

bC

>

ax.b/ ab�

abC

ba� baC

�.a�/D� Id �.aC/D 0>

�.b�/D�ƒ2

�.bC/D l1

>

�.abC/D .AtA� Id/�1
�.baC/D�ƒ2CBƒ2 tB

Figure 1: The points involved in the proof of Theorem 3.3
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matrices. In view of Proposition 2.11, we may, modulo conjugating � , assume that
the 4–tuple .�.a�/; �.b�/; �.aC/; �.bC// is equal to .� Id;�ƒ2; 0; l1/, where ƒ
is diagonal with eigenvalues 0 < �i < 1. Since �.a/ fixes 0 and � Id, and �.b/ fixes
�ƒ2 and l1 , we have

�.a/D

�
tA�1 0

�tA�1CA A

�
and �.b/D

�
B Bƒ2�ƒ2 tB�1

0 tB�1

�
for some matrices A;B . Let ˛1; : : : ; ˛n (resp. ˇ1; : : : ; ˇn ) denote the eigenvalues
of A (resp. B ) counted with multiplicity and ordered so that j˛i j � j˛iC1j (resp.
jˇi j � jˇiC1j).

An easy computation gives

�.b/�.aC/D �.b/ � 0 D�ƒ2CBƒ2 tB;

�.a/�.bC/D �.a/ � l1 D .A
tA� Id/�1:

We summarize this information in Figure 1 (right) for the reader’s convenience.

The maximality of the triple

.�.aC/; �.abC/; �.bC//D .0; .AtA� Id/�1; l1/

implies that the quadratic form represented by .AtA� Id/�1 is positive definite, and
in particular, all the eigenvalues of AtA are bigger than one. Thus if we denote by
�1�� � �� �n>1 the eigenvalues of AtA, it follows from Lemma 3.4 that 1<�n�j˛nj2,
and hence we get that the eigenvalues of A satisfy 1 < j˛nj � � � � � j˛1j; in particular,
�.a/ is Shilov hyperbolic.

We now exploit the maximality of the triple

.�.aC/; �.baC/; �.bC//D .0; Bƒ2 tB �ƒ2; l1/;

which is equivalent to the fact that the quadratic form

ƒ..ƒ�1Bƒ/t.ƒ�1Bƒ/� Id/ƒD Bƒ2 tB �ƒ2

is positive definite. Denoting by C the matrix ƒ�1Bƒ, we get that all the eigenvalues
of C tC are bigger than 1. Let 1 < �n � � � � � �1 denote the eigenvalues of C tC .
From Lemma 3.4, we get that the eigenvalues of B satisfy 1 < jˇnj � � � � � jˇ1j. This
implies that �.b/ is Shilov hyperbolic as well. Moreover, we have

�1 � det.C tC/D det.C /2 � jˇ1j2n:

Last we exploit the maximality of the quadruple

.�.aC/; �.abC/; �.baC/; �.bC//D .0; .AtA� Id/�1; Bƒ2 tB �ƒ2; l1/;
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which is equivalent to the property that

(3) ƒ
�
.ƒ�1Bƒ/t.ƒ�1Bƒ/� Id

�
ƒ� .AtA� Id/�1� 0I

see Lemma 2.10(2).

Taking into account that 1 < �n � � � � � �1 , we obtain that if xn � � � � � x1 are the
eigenvalues of

X Dƒ
�
.ƒ�1Bƒ/t.ƒ�1Bƒ/� Id

�
ƒDƒ.C tC � Id/ƒ;

then (3) implies

(4) xi �
1

�nC1�i�1
; for all 1� i � n:

Next we claim that xi < .�i � 1/. Indeed, by the minmax theorem, we have

xk D min
dimWDnC1�k

max
v2W nf0g

.ƒ.C tC � Id/ƒv; v/
kvk2

D min
dimWDnC1�k

max
v2W nf0g

�
..C tC � Id/ƒv;ƒv/

kƒvk2
kƒvk2

kvk2

�
� .�k � 1/ max

v2Fnnf0g

kƒvk2

kvk2
D .�k � 1/�

2
1 < �k � 1;

where the last inequality takes into account that �1 < 1.

Setting i D 1 in the above inequalities, we obtain �1� 1� 1=.�n� 1/ which, together
with the inequalities previously obtained, namely that jˇ1j2n � �1 and �n � j˛nj2 ,
shows assertion (2).

We establish now the inequality (1). Since xi < �i � 1, we get

.detB/2 D
nY
iD1

�i >

nY
iD1

.1C xi /;

and we deduce from (4) that
nY
iD1

.1C xi /�

nY
iD1

�i

.�i � 1/
:

Since over any real closed field F , one has
Qn
iD1.a

n
i �1/� .a1a2 � � � an�1/

n for any
a1; : : : ; an > 1 (see Proposition A.1), we deduce, choosing ai D �1=ni , that� nY

iD1

�i

.�i � 1/

�1=n
�

.�1 � � � �n/
1=n

.�1 � � � �n/1=n� 1
:

Using �1 � � � �n D .detA/2 , this establishes the first inequality.
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Remark 3.5 In the specific case of a maximal representation with values in Sp.2n;R/
and which in addition belongs to the Hitchin component, assertion (2) is a weaker
version of the collar lemma for Hitchin representations proven by Lee and Zhang [15]:
their result implies, under these hypotheses, that

ˇ21 �
˛2n

.˛2n � 1/
:

This is Proposition 2.12(1) in their paper.

3.1 Proper discontinuity on the non-Archimedean Siegel space

We now turn to the topological property of maximal S–framed representations stated
in Corollary 1.11; this will follow from the following fact of independent interest.

Proposition 3.6 There exists a continuous, Sp.V /–invariant, multiplicative distance
function

DW XV �XV ! F�1

with the following property: for any g 2 Sp.V / and J 2XV , we have

D.gJ; J /� j�1.g/j
2;

where j�1.g/j is the maximum modulus of an eigenvalue of g .

More precisely, the properties of D alluded to in Proposition 3.6 are

(MD1) D.J1; J2/� 1, with equality if and only if J1 D J2 ;

(MD2) D.J1; J2/DD.J2; J1/ for all J1; J2 ;

(MD3) D.J1; J2/�D.J1; J3/D.J3; J2/ for all J1; J2; J3 .

We begin with three observations concerning positive-definite forms Q1;Q2 on an
F–vector space W . We have that

(5)
ˇ̌̌̌
Q2

Q1

ˇ̌̌̌
WDmax

x¤0

Q2.x/

Q1.x/

exists and coincides with the largest eigenvalue of the symmetric endomorphism S

representing Q2 with respect to Q1 . If moreover Q1;Q2 have the same determinant,
that is det.S/D 1, then

(6)
ˇ̌̌̌
Q2

Q1

ˇ̌̌̌
� 1; with equality if and only if Q2 DQ1:
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The third observation is that if Q is positive definite and g 2 Sp.V /, then

(7) max
x¤0

Q.gx/

Q.x/
� j�1.g/j

2;

as follows immediately from Lemma 3.4 upon taking an orthonormal basis for Q .

Let XV be the model of the Siegel space given by the set of compatible complex
structures on V (see Section 2.2); given J 2XV , we let QJ .x/ WD hJx; xi. Define,
for J1; J2 2XV ,

D.J1; J2/ WDmax
�ˇ̌̌̌
QJ2
QJ1

ˇ̌̌̌
;

ˇ̌̌̌
QJ1
QJ2

ˇ̌̌̌�
2 F�1:

Then D is well defined and continuous by (5); it verifies (MD1) as follows from (6).
The Sp.V /–invariance, as well as properties (MD2) and (MD3), are formal verifications.
The inequality in Proposition 3.6 is then a direct consequence of (7).

Proof of Corollary 1.11 It follows from Corollary 1.10 and the assumption that †
has no boundary that there exists � > 0 in F such that j�1.�.//j � 1C � for all
 2 � n feg. As a result, we have (Proposition 3.6)

D.�./J; J /� .1C �/2

for all J 2XV and  2 � n feg. It follows then from the fact that D is a continuous,
Sp.V /–invariant, multiplicative distance that

U D f.J1; J2/ 2XV �XV jD.J1; J2/ < .1C �/g

fulfills all the properties of Corollary 1.11.

4 Cross-ratios and the geometry of F–tubes

4.1 Cross-ratios

We now introduce a useful tool to study the geometry of the Siegel space. Let V be
a 2n–dimensional vector space over a field L. Observe that if a; b are n–dimensional
subspaces which are transverse (a t b ), then we have a direct sum decomposition
V D a˚b , and thus we can define the projection p�b

a W V ! a onto a parallel to b . Let
now .l1; l2; l3; l4/ be a quadruple in Grn.V / with the property that l1 t l2 and l3 t l4 .

Definition 4.1 The cross-ratio of .l1; l2; l3; l4/ is the endomorphism of l1 defined by

R.l1; l2; l3; l4/D p
�l2
l1
ıp

�l3
l4
jl1 :
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The cross-ratio has the following equivariance property: for all g 2 GL.V /, we have

R.gl1; gl2; gl3; gl4/D gR.l1; l2; l3; l4/g
�1:

It will be useful, in the following, to have an explicit expression for R once a basis
BDfe1; : : : ; e2ng of V is fixed. Recall that, as in Section 2.2, the choice of the basis B
allows us to represent an element m of Grn.V / with a 2n�n matrix M of maximal
rank: the columns of the matrix M are understood to be the coordinates, with respect
to B , of a basis of m. With this notation, we have the following:

Lemma 4.2 Let us assume that the columns of the matrix
�
Xi
Idn

�
form a basis Bi of the

n–dimensional vector space li . Then the expression for R.l1; l2; l3; l4/ with respect to
the basis B1 of l1 is given by

R.l1; l2; l3; l4/D .X1�X2/
�1.X4�X2/.X4�X3/

�1.X1�X3/:

Proof The matrix representing the linear map p�l3
l4
jl1 with respect to the bases B1

of l1 and B4 of l4 is the unique A 2 GL.n;L/ such that� X1
Idn

�
D

� X4
Idn

�
AC

� X3
Idn

�
.Id�A/:

Solving for A, we obtain

AD .X4�X3/
�1.X1�X3/:

Notice that X4�X3 is invertible since, by assumption, l3 and l4 are transverse.

Similarly, we get that the matrix representing the restriction of the linear map p�l2
l1

to l4 with respect to the bases B4 of l4 and B1 of l1 is given by

B D .X1�X2/
�1.X4�X2/:

Since, by definition, the endomorphism R.l1; l2; l3; l4/ is the composition of p�l2
l1

and p�l3
l4
jl1 , and p�l3

l4
jl1 has image contained in l4 , we get that

R.l1; l2; l3; l4/D BA;

which gives the desired result.

Let us now fix a basis B of V , set, as usual, l1 D he1; : : : ; eni and represent with a
matrix M 2M.n;L/ the subspace spanned by the columns of

�
M
Id

�
. Here M.n;L/ is

the set of n�n matrices. By a similar computation, we have

Lemma 4.3 Assume 0, Z , X , l1 are pairwise transverse. Then

R.0;Z;X; l1/DZ
�1X:
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It will be useful to understand how the cross-ratio varies with respect to permutations
of the factors. In particular, we need to be able to compare endomorphisms of different
vector spaces. Given two vector spaces l1; l2 of the same dimension, we say that
two endomorphism R1 2 End.l1/ and R2 2 End.l2/ are conjugate if there exists an
isomorphism gW l1! l2 such that gR1g�1 DR2 . In this case, we write R1 ŠR2 .

Lemma 4.4 Assume that the subspaces li are pairwise transverse. Then

(1) R.l1; l2; l4; l3/D Id�R.l1; l2; l3; l4/;

(2) R.l4; l1; l2; l3/Š .Id�R.l1; l2; l3; l4/�1/�1 ;

(3) R.l2; l3; l1; l4/ŠR.l1; l4; l2; l3/D .Id�R.l1; l2; l3; l4//�1 .

Proof (1) By definition, we have

p
�l2
l1
ıp

�l3
l4
jl1 Cp

�l2
l1
ıp

�l4
l3
jl1 D p

�l2
l1
ı .p

�l3
l4
Cp

�l4
l3
/jl1 D p

�l2
l1
ı Id jl1 D Idl1 :

(2) Up to the GL.V / action, we can assume that l1 D 0, l2 D Z , l3 D X and
l4D l1 . In particular, R.0;Z;X; l1/DZ�1X . In order to compute R.l1; 0; Z;X/,
we compute p�0

l1
jX DX and p�Z

X jl1 D .X �Z/
�1 .

(3) Similarly, one gets that p�X
Z jl1 D .Z �X/

�1 . The second equality follows from
the fact that p�l1

0 jX D Id and p�Z
X j0 D .Id�Z

�1X/�1 .

4.2 F–tubes

Let .V; h � ; � i/ be a symplectic vector space over a real closed field F . Recall from
Section 2.2 that K denotes the quadratic extension F Œi �, that � W L.VK/! L.VK/ is
induced by the complex conjugation with respect to the real structure V of VK and that
TV is the model of the Siegel space contained in L.VK/. For any pair of transverse
Lagrangians .a; b/ in L.V /.2/ , we introduce here an algebraic subset Ya;b of the
Siegel space TV that is determined by the pair .a; b/ and whose dimension is half the
dimension of TV . We call such subsets F–tubes. In the case when F DR, the subsets
Ya;b are Lagrangian submanifolds of the same rank as XR ; the F–tube Ya;b can be
seen as the higher-rank generalization of a geodesic of the Poincaré model which is
more suited to our purposes.

With the notation of Section 2.1, we define

Ya;b D fl 2 TV jR.a; l; �.l/; b/D� Idg:

Notice that requiring that an endomorphism of a vector space is equal to � Id does
not depend on the choice of a basis. From the equivariance property of the cross-ratio
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and the fact that the symplectic group commutes with the complex conjugation � , we
deduce that

(8) gYa;b D Yga;gb for any g 2 Sp.V /:

Our first goal is to give equations for Ya;b in the Siegel upper half-space for some
specific choice of the pair .a; b/. In the sequel, if Z denotes a matrix with coefficients
in K, denote by xZ the matrix obtained applying complex conjugation in K to all
coefficients of Z . If Z is symmetric, this is the same as applying the complex
conjugation � to the corresponding Lagrangian.

Lemma 4.5 The F–tube with endpoints 0; l1 is

Y0;l1 D fiY j Y 2 SymC.n;F/g:

Proof It follows from Lemma 4.3 that R.0;Z; �.Z/; l1/DZ�1 xZ . Clearly we have
Z�1 xZ D� Id if and only if xZ D�Z , and this concludes the proof.

An immediate consequence of Lemma 4.5 and the equivariance property (8) is that
if F is a real closed field, the stabilizer of Ya;b is isomorphic to GL.n;F/, and it acts
transitively on Ya;b .

It will also be useful to have explicit expression for the set Ya;b when a and b are trans-
verse to l1 . This has a particularly nice expression when aDhe1�enC1; : : : ; en�e2ni
and b D he1C enC1; : : : ; enC e2ni:

Lemma 4.6 If a; b 2 L.V / correspond to the matrices � Id and Id, then

Y� Id;Id D U.n/\XF

D fX C iY 2 XF j YX DXY; X
2
CY 2 D Idg:

Proof Lemma 4.2 implies

R.� Id; Z; �.Z/; Id/D .� Id�Z/�1.Id�Z/.Id� xZ/�1.� Id� xZ/:

Since IdCxZ and .Id� xZ/�1 commute, the equality R.� Id; Z; �.Z/; Id/D� Id reads

.Id�Z/.IdCxZ/D�.IdCZ/.Id� xZ/;
which implies

Id�ZC xZ �Z xZ D� IdCxZ �ZCZ xZ;

and hence, Z xZ DZ�Z D Id.
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As a consequence of the explicit parametrization of the sets Y0;l1 and Y� Id;Id , we
obtain:

Proposition 4.7 Assume that F is a real closed field. Let .a; b; c; d/ 2 L.V /.4/ be a
maximal 4–tuple. The F–tubes Ya;c and Yb;d meet exactly in one point.

Proof Up to the symplectic group action, we can assume .a; b; c; d/D .� Id; 0;D; l1/
for some diagonal matrix D D diag.d1; : : : ; dn/ with di > 0; see Proposition 2.11.
Let y be a point in Y0;l1 \Y� Id;D . Since y belongs to Y0;l1 , we know that y has
expression yD iY for some positive-definite matrix Y . From the definition of Y� Id;D ,
we get

.� Id�iY /�1.D� iY /.DC iY /�1.� IdCiY /D� Id :

This is equivalent to

.D� iY /.DC iY /�1 D .IdCiY /.� IdCiY /�1;

which in turn, using that .IdCiY / and .� IdCiY /�1 commute, is equivalent to

.� IdCiY /.D� iY /D .IdCiY /.DC iY /:

This last equation reads Y 2 DD , which has a unique positive solution.

Remark 4.8 If the ordered field F is not real closed, one can similarly get that, if
.a; b; c; d/ is maximal, the F–tubes Ya;c and Yb;d meet in at most one point.

4.3 Reflection with respect to Ya;b

In this subsection, we introduce a notion of orthogonality for F–tubes and establish
that the set of F–tubes orthogonal to a fixed one foliate the space TV . Our main tool
will be the characterization of Ya;b as the fixed point set of an involution �a;b which
we now define. Let a; b be transverse Lagrangians in L.V /. We consider the real
form Va;b of VK given by

Va;b D hvC iw j v 2 a; w 2 bi;

and denote by �a;b the complex conjugation of VK fixing Va;b . The following proper-
ties of �a;b can be checked easily:

Lemma 4.9 (1) �a;b is K–antilinear;

(2) �a;b� D ��a;b , and in particular, �a;b preserves V ;

(3) h�a;b. � /; �a;b. � /iK D�h � ; � iK ;

(4) g�a;b D �ga;gbg , for every g in Sp.V /.
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As a consequence of the first two facts of Lemma 4.9, we get that �a;b induces a map
on Grn.V / that, with a slight abuse of notation, will be also denoted by �a;b . The
third fact of Lemma 4.9 implies that �a;b restricts to a map

�a;bW L.VK/! L.VK/;

which preserves the subspaces we are interested in:

Lemma 4.10 The involution �a;b preserves the subspaces TV and L.V / of L.VK/.
It commutes with the cross-ratio.

Proof Since the F–linear map �a;b preserves V , the induced map on L.VK/ preserves
the subspace L.V /. The fact that �a;b induces a map of TV can be seen from the
following computation which uses Lemma 4.9(3): for every v;w 2 VK ,

ih�a;b.v/; �a;b.w/iK D�ihv;wiK

D ihv;wiK:

In particular, the restriction of ih � ; �. � /iK to a Lagrangian l 2 L.VK/ is positive
definite if and only if its restriction to �a;b.l/ is.

For any pair a; b 2 L.V /.2/ and for any 4–tuple .l1; l2; l3; l4/ in the domain of the
definition of R , we have

�a;bR.l1; l2; l3; l4/�a;b DR.�a;b.l1/; �a;b.l2/; �a;b.l3/; �a;b.l4//I

this follows from the equivariance property of the cross-ratio and that �2
a;b
D Id.

It is easy to check from the very definition of �0;l1 that for any Z 2 XF , we have
�0;l1.Z/D�

xZ . In particular, Y0;l1 D TV \ Fix.�0;l1/. An immediate corollary of
the transitivity of the symplectic group action on L.V /.2/ is the following:

Corollary 4.11 For any pair .a; b/, we have Ya;b D TV \Fix.�a;b/.

Another useful characterization of the F–tubes is the following:

Lemma 4.12 In the model XV ,

Ya;b D fJ 2XV j a and b are orthogonal for hJ � ; � ig:

Proof In the notation of Section 2, let J 2 XV . Then �a;b.L
C

J /D L
C

J if and only
if �a;b.L�J / D L

�
J . Hence, since �a;b is K–antilinear, we deduce �a;b.J ˝ IK/ D

�.J ˝ IK/�a;b , which, by restriction to V D a˚b , is equivalent to �a;bJ D�J�a;b .
The latter is equivalent to J.a/D b ; that is, a and b are orthogonal with respect to
hJ � ; � i.

Geometry & Topology, Volume 21 (2017)



3566 Marc Burger and Maria Beatrice Pozzetti

The restriction of �a;b to the subset of L.V / consisting of points that are transverse
to a and b can also be characterized in term of the cross-ratio:

Proposition 4.13 For each c 2 L.V / transverse to a and b , we have that �a;b.c/ is
the unique point satisfying

R.a; c; �a;b.c/; b/D� Id :

Proof Up to the symplectic group action, we can assume that aD0 and bD l1 . Since
c is transverse to l1 , it can be represented by a symmetric matrix S with coefficients
in F . The formula of Lemma 4.3 implies that R.0; S; �0;l1.S/; l1/D S

�1�0;l1.S/,
and hence the unique point satisfying R.0; S; �0;l1.S/; l1/D� Id is �S .

When F DR and the 4–tuple .a; b; c; d/ is maximal, the two R–tubes Ya;c and Yb;d
are orthogonal as totally geodesic submanifolds of the Riemannian manifold XR

precisely when R.a; b; c; d/ D 2 Id. For arbitrary real closed fields, we take this
property as a definition of orthogonality.

Definition 4.14 Let .a; b; c; d/ be maximal. Two F–tubes Ya;c and Yb;d are orthog-
onal if R.a; b; c; d/D 2 Id. In this case, we write Ya;c ? Yb;d .

Notice that the orthogonality relation is symmetric since R.d; a; b; c/ is conjugate to
.Id�R.a; b; c; d/�1/�1 ; see Lemma 4.4(2). The following lemma is a consequence
of the property of the cross-ratio established in Lemma 4.4(1) and the characterization
of the involution �a;b in terms of the cross-ratio given in Proposition 4.13:

Lemma 4.15 Let .a; b; c; d/ be a maximal quadruple in L.V /.4/ . The following are
equivalent:

(1) Ya;c ? Yb;d ;

(2) d D �a;c.b/;

(3) c D �b;d .a/.

We now turn to an important geometric feature of the Siegel upper half-space, namely
that the F–tubes orthogonal to any fixed F –tube foliate the whole space. We first verify
this in a special case:

Proposition 4.16 Assume that F is real closed. For any ZDXCiY 2TV , there exists
a unique S in L.V /l1 such that .0; S; l1/ is maximal and Z 2 Y�S;S . Moreover,

S D Y 1=2
p

IdC.Y �1=2XY �1=2/2 Y 1=2:
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Proof Given Z DXC iY , we look for a positive-definite matrix S with Z 2 Y�S;S ;
see the following picture:

Z DX C iY

0 S

Denoting by a.S�1=2/ the element of Sp.2n;F/ represented by the matrix
�
S�1=2 0
0 S1=2

�
,

we have a.S�1=2/Y�S;S DY� Id;Id . The condition a.S�1=2/Z 2Y� Id;Id leads, in view
of the equations of Lemma 4.6, to(

.S�1=2XS�1=2/.S�1=2YS�1=2/D .S�1=2YS�1=2/.S�1=2XS�1=2/;

.S�1=2XS�1=2/2C .S�1=2YS�1=2/2 D Id :

From the first equation, observing that Y is invertible, we get

XS�1 D YS�1XY �1:

Substituting this last equality in the second equation, and defining the matrix V WD
Y �1=2SY �1=2 , we get

V �1..Y �1=2XY �1=2/2C Id/D V;
which implies

V D
p

IdC.Y �1=2XY �1=2/2 and S D Y 1=2
p

IdC.Y �1=2XY �1=2/2 Y 1=2:

This shows the formula and implies uniqueness.

Since all F–tubes are Sp.V /–conjugate, we obtain:

Corollary 4.17 For any transverse pair .a; b/ 2 L.V /.2/ and any z 2 TV , there exists
a unique c 2 L.V / such that .a; c; b/ is maximal and z belongs to Yc;�a;b.c/ .

Corollary 4.17 allows us to define the orthogonal projection

prYa;b W TV [ ..a; b//[ ..b; a//! Ya;b
as follows:

(1) if c 2 ..a; b//[ ..b; a//, then we set prYa;b .c/D Yc; �a;b.c/\Ya;b ;

(2) if Z 2 TV , then we set prYa;b .Z/ D Yc;�a;b.c/ \ Ya;b , where c is the unique
Lagrangian in L.V / such that .a; c; b/ is maximal and Z 2 Yc;�a;b.c/ .

It is easy to check that, when restricted to its set of definition in L.V /, the orthogonal
projection respects cross-ratios:

Lemma 4.18 Let .a; b/ be a pair of transverse Lagrangians, and let x; y be points in
..a; b//. Then we have

R.a; x; y; b/DR.a; prYa;b.x/; prYa;b.y/; b/:
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Proof Up to the symplectic group action, we can assume that aD 0 and b D l1 . In
that case, the result follows from the explicit formula for the cross-ratio and for the
orthogonal projection.

5 Reduction modulo an order convex subring

5.1 Order convex subrings

Let F be a real closed, non-Archimedean field. We denote by O < F an order convex
subring. This means that O is a subring with the additional property that for every
positive element x in F , if there exists y in O with 0 < x < y , then x belongs to O
as well. It is easy to verify that, in this case, O is a local ring whose maximal ideal I
is given by

I D fx 2O j x�1 …Og:

We will denote by FO the quotient field FO WD O=I . The field FO is real closed as
well. The following examples of order convex subrings will play an important role in
the sequel:

Example 5.1 Let � 2 F be an infinitesimal: this means that � is a positive element
satisfying � < 1=n for any integer n. An example of an order convex subring of F is
given by the set of elements comparable to � :

O� D fx 2 F W jxj< ��k for some k 2N gI

in this case, the maximal ideal can also be characterized as

I� D fx 2 F W jxj< �k for all k 2N g:

Example 5.2 Let us assume that F admits an order compatible valuation v . An
example of order convex subring is given by the elements with nonnegative valuation

U D fx 2 F j v.x/� 0g;

and the maximal ideal can be characterized as

MD fx 2 F j v.x/ > 0g:

5.2 O–points

Let O be an order convex subring of F , and let W be a finite-dimensional F–vector
space equipped with an F–valued scalar product . � ; � /. Then we set

W.O/D fv 2W j .v; v/ 2Og and W.I/D fv 2W j .v; v/ 2 Ig:
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They are O–submodules; if e1; : : : ; em is any orthonormal basis of W , then one verifies

W.O/D
mX
iD1

Oei and W.I/D
mX
iD1

Iei :

This implies that the quotient WO D W.O/=W.I/ is an FO–vector space of dimen-
sion m D dim.W /, that the scalar product . � ; � / descends to a well-defined scalar
product . � ; � /O on WO and that, if pOW W.O/ ! WO denotes the quotient map,
fpO.e1/; : : : ; pO.em/g is again an orthonormal basis of WO . Notice, however, that the
map pO depends on the choice of the scalar product on W .

The subgroup
GL.W /.O/ WD fg 2 GL.W / j g.W.O//DW.O/g

preserves W.I/, and we obtain this way a natural homomorphism �OW GL.W /.O/!
GL.WO/. The choice of an orthonormal basis of W induces an identification of the
group GL.W /.O/ with GL.m;O/.

Let Q.W / be the vector space of F–valued quadratic forms on W . As in Section 2, we
associate to f 2Q.W / the symmetric bilinear form bf . � ; � /. We fix a basis e1; : : : ; em
of W which is orthonormal for . � ; � / and let .Af /ij D bf .ei ; ej / be the associated
symmetric matrix. We endow Q.W / with the scalar product .f; g/D tr.Af Ag/. Our
next task is to understand the relationship between Q.WO/ and Q.W /O .

Lemma 5.3 For a quadratic form f 2Q.W /, the following are equivalent:

(1) f 2Q.W /.O/;
(2) f .W.O//�O ;

(3) bf .W.O/;W.O//�O and bf .W.O/;W.I//� I .

Proof Clearly kf k2D tr.A2f /D
P
.Af /

2
ij belongs to O if and only if .Af /ij belongs

to O for all i; j , which easily implies the desired equivalences.

Thus, if f belongs to Q.W /.O/, then bf induces an FO–valued bilinear symmetric
form xbf on WO . In turn, xbf defines a quadratic form xf 2 Q.WO/. If Af is the
matrix of f with respect to the orthonormal basis fe1; : : : ; emg, then the matrix A xf
representing xf with respect to the basis fpO.e1/; : : : ; pO.em/g is just the reduction
modulo I of the matrix Af . With this at hand, one verifies easily that the map

xpOW Q.W /.O/!Q.WO/; f 7! xf ;

induces an isomorphism of FO–vector spaces

Q.W /O!Q.WO/:
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We end the discussion concerning quadratic forms with the following remark:

Remark 5.4 Let f 2Q.W /, and let fe1; : : : ; eng be an orthonormal basis in which f
is diagonal, that is, bf .ei ; ej /D �iıij . Let

mf D cardfi j �i > 0g;

nf D cardfi j �i < 0g;

zf D cardfi j �i D 0g:

Then clearly m xf �mf , n xf � nf and z xf � zf .

There is also a reduction process for Grassmannians, and it will play an important role
for the construction of framings. Thus let L 2 Grl.W / be an l–dimensional subspace
of W . Then L.O/DL\W.O/, and if e1; : : : ; el is an orthonormal basis of L, we have
L.O/DOe1C� � �COel . This implies that the image pO.L/ of L.O/ in WO is an FO–
vector subspace of dimension l . In this way, we obtain a map qOW Grl.W /!Grl.WO/

which is equivariant with respect to �OW GL.W /.O/! GL.WO/.

Remark 5.5 The map qO does not preserve transversality: if V DF2 with the standard
scalar product, and x is a nonzero element of I , the two distinct lines F � .1; 0/ and
F � .1; x/ of PV have the same image in PVO .

We apply now the preceding remarks to the following situation. Let V be a F–vector
space with a symplectic form h � ; � i, and fix a compatible complex structure J . We
will use the associated scalar product . � ; � / WD hJ � ; � i to define the O points. If L is
a Lagrangian, then JL is orthogonal to L, and if fe1; : : : ; eng is an orthonormal basis
of L, the basis B D fe1; : : : ; en;�Je1; : : : ;�Jeng is orthonormal and symplectic.
With this at hand, one shows readily that J 2 Sp.V /.O/ WD Sp.V /\GL.V /.O/, and
that h � ; � i induces a symplectic form h � ; � iO of VO compatible with pOW V.O/! VO .
If in addition, one sets JO D �O.J /, then JO is a complex structure on VO compatible
with h � ; � iO and with associated scalar product . � ; � /O . From the above, it follows
that, if L 2 Grn.V / is a Lagrangian, then qO.L/ 2 Grn.VO/ is a Lagrangian as well.

Lemma 5.6 The map
qOW L.V /! L.VO/

is surjective.

Proof Let L0 be a k–dimensional totally isotropic subspace of V , and let v0 2 V be
such that hv; v0i 2 I for all v 2 L0 . Let e1; : : : ; ek be an orthonormal basis of L0 .
By completing it to a symplectic basis of V , it is easy to verify that the map

V.I/! Ik; w 7! .he1; wi; : : : ; hek; wi/;
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is surjective. Thus we can find w0 2 V.I/ with hei ; v0i D hei ; w0i for all 1� i � k .
Then v1 D v0 � w0 has the same projection in VO as v0 and is orthogonal to L0
with respect to the symplectic form. The lemma follows then by recurrence on the
dimension.

5.3 Affine charts on Lagrangian Grassmannians and reduction
modulo I

Now we turn to a more detailed study of the map qO and certain transversality properties.
Recall from Section 2.1 that given transverse Lagrangians l1; l2 in V , we have a map

jl1;l2 W Q.l1/! L.V /l2

which to f 2Q.l1/ associates the Lagrangian

Lf D fvCTf v j v 2 l1g;

where Tf W l1! l2 is defined by the equation

bf .v; w/D hv; Tf wi D hw; Tf vi; v; w 2 l1:

If l1; l2 are orthogonal for . � ; � / and fe1; : : : ; eng is an orthonormal basis of l1 , then
fJe1; : : : ; Jeng is an orthonormal basis for l2 , and the symmetric matrix Af of f in
this basis is given by .Af /ij D hei ; Tf .ej /i D �.Jei ; Tf .ej //. Thus it follows from
Lemma 5.3 that f belongs to Q.l1/.O/ if and only if the matrix coefficients of Tf
with respect to the basis fe1; : : : ; eng and fJe1; : : : ; Jeng are in O , which in turn is
equivalent to Tf .l1.O//� l2.O/.

Lemma 5.7 If l1; l2 are orthogonal Lagrangians in the symplectic vector space V ,
then qO.l1/ and qO.l2/ are orthogonal, and the diagram

Q.l1/.O/ //

xpO

��

Q.l1/
jl1;l2

�
// L.V /l2 // L.V /

qO

��

Q.qO.l1//
jqO.l1/;qO.l2/

�
// L.VO/

qO.l2/ // L.VO/

commutes. The image under qO of a Lagrangian that does not belong to jl1;l2.Q.l1/.O//
is not transverse to qO.l2/.

Proof Since l1 and l2 are orthogonal, we have for f 2Q.l1/,

jl1;l2.f /.O/D fvCTf .v/ j v 2 l1.O/; Tf .v/ 2 l2.O/g:
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First notice that, if f belongs to Q.l1/.O/, then Tf .l1.O// is contained in l2.O/, and
thus we get

jl1;l2.f /.O/D fvCTf .v/ j v 2 l1.O/g:

Now Tf induces a well-defined map xTf W qO.l1/! qO.l2/ with the property that

qO.jl1;l2.f //D fvC
xTf .v/ j v 2 qO.l1/g:

But bf .v; w/ is, by definition, equal to hv; Tf .w/i, and thus b xf .v; w/ is equal to
hv; xTf .w/iO for v;w 2 qO.l1/. This implies that jqO.l1/;qO.l2/. xpO.f // is equal to
qO.jl1;l2.f // and proves the commutativity of the diagram.

If f does not belong to Q.l1/.O/, we can assume without loss of generality that
Tf .e1/ is not in l2.O/. Writing Tf .e1/D

Pn
iD1 �iJei , let i0 be such that j�i0 j D

maxfj�i j W 1� i � ng. Then �i0 does not belong to O , and hence �D ��1i0 belongs
to I . This implies that Tf .�e1/ belongs to l2.O/ and its ei0 coordinate is equal to 1.
Thus �e1CTf .�e1/ belongs to jl1;l2.f /.O/, and

0¤ pO.�e1CTf .�e1// 2 qO.jl1;l2.f //\ qO.l2/:

Lemma 5.8 Assume .a; b; c; d/ 2 L.V /.4/ is a maximal 4–tuple such that qO.a/ is
transverse to qO.b/, and qO.c/ is transverse to qO.d/. Then for every x1 2 ..b; c//
and x2 2 ..d; a//, the subspace qO.x1/ is transverse to qO.x2/.

Proof Pick m 2 ..qO.a/; qO.b/// and M 2 L.V / with qO.M/Dm (see Lemma 5.6).
As a consequence of Remark 5.4 and the definition of the Kashiwara cocycle, we get
that M 2 ..a; b//. It follows then that .b; x1; c; d; x2; a/ forms a maximal 6–tuple, and
these six Lagrangians are all transverse to M , as illustrated in the following picture:

x2

d

c

x1

b

M

a

Thus these points are in the image of jJM;M W Q.JM/! L.V /M. Denote by fl 2
Q.JM/ the quadratic form with jJM;M .fl/D l 2 L.V /M. We have from the maxi-
mality property of the 6–tuple that

fb� fx1 � fc� fd � fx2 � faI

see Lemma 2.10(2). Applying now Lemma 5.7 to l1 D JM and l2 DM , we deduce,
from the fact that qO.a/ and qO.b/ are transverse to m D qO.M/, that fa and fb
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are in Q.JM/.O/. From the inequalities above, we deduce that fx1 and fx2 are in
Q.JM/.O/; it follows then from the commutativity of the diagram in Lemma 5.7 that
qO.x1/ and qO.x2/ are transverse to mD qO.M/. Also,

fqO.x2/�fqO.x1/� fqO.d/�fqO.c/� 0;

where the last inequality follows from the hypothesis that qO.d/ is transverse to qO.c/.
Thus qO.x2/ is transverse to qO.x1/.

5.4 Choosing the scale and constructing the maximal framing

Let �W � ! Sp.V / be a representation admitting a maximal framing �W S ! L.V /.
We assume that there is a complex structure J in XV and an order convex subring O
of F such that �.�/� Sp.V /.O/. We define then �OW �! Sp.VO/ as the composition
�O WD�Oı� and �OW S!L.VO/ as the composition �O WD qOı� . Our goal is to show:

Theorem 5.9 If � is a maximal S–framing for �W �! Sp.V /, then �O is a maximal
S–framing for �OW �! Sp.VO/.

Remark 5.10 Since � is finitely generated, for any choice of a compatible complex
structure J it is possible to find an infinitesimal � such that �.�/ � Sp.V /.O� /,
where O� is the order convex subring described in Example 5.1. However, as we
will discuss in Section 10, the choice of � depends on the complex structure J ; see
Proposition 10.6.

In view of the definition of maximality of triples of Lagrangians and Remark 5.4, in
order to prove Theorem 5.9, we have to show that if x ¤ y are distinct points in S ,
then qO.�.x// and qO.�.y// are transverse Lagrangians. As a first step, we show:

Lemma 5.11 Assume that there exist two distinct points x; y in S such that qO.�.x//

and qO.�.y// are not transverse. Then there exists a hyperbolic element  2 � such
that qO.�.

C// and qO.�.
�// are not transverse.

Proof From Lemma 5.8, it follows that we can choose I either ..x; y// or ..y; x//
so that for every t1; t2 in I , we have that qO.�.t1// and qO.�.t2// are not transverse.
Now pick a hyperbolic element  2 � with fC; �g � I .

The strategy of the proof consists in showing that for every hyperbolic element  2 � ,
the Lagrangians qO.�.

�// and qO.�.
C// are transverse. This will be a consequence

of the properties of the eigenvalues of �./ using the collar lemma.

We first observe that eigenvalues behave well with respect to reduction modulo I :
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Lemma 5.12 Let B 2 GL.m;O/ be a matrix, and denote by ˇi 2K the eigenvalues
of B . Then:

(1) jˇi j 2O ;
(2) if xB denotes the image of B in GL.m;FO/, and x̌i are the images of ˇi in KO ,

then the eigenvalues of xB are precisely x̌i .

Proof The first assertion follows from the fact that if ˇi is an eigenvalue of B , then
there exists a vector v 2 V.O/ n V.I/ such that kBvk D jˇi jkvk; see Lemma 3.4.
The second assertion follows from the fact that the characteristic polynomial of the
reduction xB is the reduction of the characteristic polynomial of B .

Remark 5.13 Clearly, if g belongs to GL.V /.O/, for each subspace W of V pre-
served by g , the restriction gjW belongs to GL.W /.O/, and the restriction commutes
with the reduction: �O.g/jqO.W / D �O.gjW /. However, it is worth pointing out that
the Jordan decomposition of a matrix B 2 GL.m;O/ is not necessarily defined in
GL.m;O/, and in particular, the exponents of the minimal polynomial of a matrix B
need not to be related with the exponents of the minimal polynomial of the reduction
of B . For example, if � belongs to I , then the reduction of the not diagonalizable
matrix

�
2 �
0 2

�
is diagonalizable, and the reduction of the diagonalizable matrix

�
1 1
0 1C�

�
is not diagonalizable.

This last example shows that generalized eigenspaces relative to distinct eigenvalues
might not have transverse images in the quotient if the corresponding eigenvalues
coincide modulo I . We will now deduce from the collar lemma that, in case of maximal
S–framed representations, the intermediate eigenvalues have distinct reductions:

Lemma 5.14 Let �W � ! Sp.V / be a representation admitting a maximal framing.
Assume that �.�/� Sp.V /.O/. Then for every hyperbolic element  2 � , we have

j�n./j � 1 2O n I;

where j�1./j � � � � � j�n./j> 1 are the eigenvalues of  of absolute value greater
than 1.

Proof Let ı 2 � be a hyperbolic element with positive intersection number with  ,
and let �1.ı/ be the eigenvalue of �.ı/ of largest modulus. If j�n./j < 2, then the
collar lemma (Theorem 3.3) implies

j�n./j � 1D
j�n./j

2� 1

j�n./jC 1
�

1

3j�1.ı/j2n
:

Now observe that, since �.ı/ 2 Sp.2n;O/, we have that j�1.ı/j belongs to O , from
which the claim follows.
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We have now all the necessary ingredients to prove Theorem 5.9:

Proof of Theorem 5.9 Let us assume by contradiction that there exist x; y in S with
qO.�.x// nontransverse to qO.�.y//. As a consequence of Lemma 5.11, we can find
a hyperbolic element  in � such that qO.�.

C// is nontransverse to qO.�.
�//.

If now j�1./j � � � � � j�n./j > 1 are the absolute values of the eigenvalues of
�./j�.C/ , counted with multiplicity, then it follows from Lemmas 5.14 and 5.12
that the absolute values j�1./j � � � � � j�n./j> 1 of the eigenvalues of the restric-
tion of �O./ to qO.�.

C// are all strictly larger than 1. Since j�1./j�1 � � � � �
j�n./j

�1<1 are then the absolute values of the eigenvalues of the restriction of �O./

to qO.�.
�//, this implies that the �O–invariant vector space qO.�.

C//\qO.�.
�//

must be zero since otherwise �O./ would have at least a nonzero eigenvalue which
would be an element in KO both of absolute value strictly larger and smaller than 1.
Thus qO.�.

C//\ qO.�.
�//D 0, which is a contradiction. Hence, for every x ¤ y

in S , we have that qO.�.x// is transverse to qO.�.y//.

6 Fields with valuation and the projection to the building

In this section, F will denote an ordered field with a compatible valuation vW F !
R[f1g, meaning that we require v.y/� v.x/ whenever 0� x � y .

Example 6.1 (compare Example 5.1) Let E be an ordered field, � 2 E an infinitesi-
mal and O� the order convex local subring consisting of elements comparable with � .
On O� , we define the valuation

v� .x/D supft 2R W jxj � � tg:

Then v� passes to the quotient E� WDO�=I� by the maximal ideal I� and defines an
order compatible valuation.

We introduce on F the norm kxk WDe�v.x/ . This defines an ultrametric norm on F with
valuation ring U WD fx 2 F W kxk� 1g whose maximal ideal is M WD fx 2 F W kxk<1g.
Observe that since the valuation is order compatible, the norm is order compatible as
well: if 0 < x < y , then kxk � kyk.

Let .V; h � ; � i/ be a symplectic vector space over F , J0 2XV a compatible complex
structure and . � ; � /J0 the corresponding scalar product. We denote by BV the affine
building associated to Sp.V /; see [20, Section 3.2; 13, Theorem 4.3]. It is well known
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that the set of vertices B0V of BV can be identified with the homogeneous space
Sp.V /=Sp.V /.U/, where, as in Section 5, we define

V.U/D fv 2 V j .v; v/ 2 Ug
and

Sp.V /.U/D fg 2 Sp.V / j g.V.U//D V.U/g:

The stabilizer of the complex structure J0 2XV is

U.J0/D fg 2 Sp.V / j gJ0g�1 D J0g

D fg 2 Sp.V / j g preserves the scalar product . � ; � /J0g;

and hence is contained in Sp.V /.U/. As a result, we can define the projection

�BW XV D Sp.V /=U.J0/ ! B0V D Sp.V /=Sp.V /.U/:

Remark 6.2 Parreau [20] gave an explicit description of the building associated to
SL.2n;F/ as the space of good norms on F2n of determinant one. It is possible to
verify that, considering the affine building associated to Sp.2n;F/ as a subbuilding of
the affine building associated to SL.2n;F/, the map �B corresponds to the map that
associates to a point J 2XV the corresponding good norm �J .v/D k.v; v/J k.

For F DR, Siegel [26] gave explicit formulas for the Riemannian distance on XR . We
use the cross-ratio R defined in Section 4.1 to define in our context a distance-like func-
tion as follows. Observe that, given X;W 2 TV , the cross-ratio R.X; �.W /;W; �.X//
is always well defined: indeed, the Hermitian form ih � ; �. � /i is positive definite on X
and W and negative definite on �.W / and �.X/; in particular, X and �.W / are
transverse, and so are W and �.X/. Moreover, all the eigenvalues of the cross-ratio
R.X; �.W /;W; �.X// belong to F and are between 0 and 1: indeed, since F is real
closed, for each pair X;W 2 XF , we can find g 2 Sp.V / such that g �X D i Id and
g �W D iD for a diagonal matrix D with positive entries, and we have

gR.X; �.W /;W; �.X//g�1 DR.i Id;�iD; iD;�i Id/D
.Id�D/2

.IdCD/2
:

We can thus define

(9) d.Z;W /D

s
nX
iD1

�
ln
1Cpr i1�

p
r i

�2;
where r1; : : : ; rn are the eigenvalues of R.X; �.W /;W; �.X//.
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In the case we considered above, where X D i Id and W D iD , (9) specializes to

d.i Id; iD/D

s
nX
iD1

.ln kdik/2;

where d1; : : : ; dn are the entries of D .

The function d is clearly Sp.V /–invariant since the eigenvalues of the cross-ratio are.
Denote by dB the CAT(0) distance on BV . Using the transitivity of the symplectic
group on apartments in BV and the invariance of d , one verifies:

Proposition 6.3 For any X; Y 2 TV , we have

dB.�B.X/; �B.Y //D d.X; Y /:

As a result, we get that d is a pseudodistance on TV , and BV is the Hausdorff quotient
of TV modulo this pseudodistance.

We will denote by LB.g/ the translation length of an element g 2 Sp.V / considered
as an isometry of the affine building BV .

7 On elements with fixed points

We place ourselves in the framework of Section 6 and consider a representation �W �!
Sp.V / admitting a maximal framing .S; �/. In this section, we want to analyze how
elements of � which have zero translation length in the building BV interact. As a
crucial step in the analysis, we associate to any such  2 � a pair .bC ; b

�
 / of points

in BV which are fixed by �./ and are canonically constructed from the maximal
framing � .

Recall from Section 6 that we denote by �BW TV ! BV the Sp.V /–equivariant projec-
tion from the Siegel upper half-space to the affine building associated to Sp.V /, and
given an element g 2 Sp.V /, we denote by LB.g/ the translation length of g on BV .
Moreover, for ease of notation, we will denote by Y the F–tube Y�.�/;�.C/ and
by Y its projection to BV :

Y D �B.Y /:

It follows from the equivariance of �B that Y is a subbuilding of BV associated to a
subgroup of Sp.V / isomorphic to GL.n;F/. Recall from Section 4.3 that given any
pair of transverse Lagrangians a; b 2 L.V /, we defined an orthogonal projection

prYa;b W ..a; b//[ ..b; a//! Ya;b:

The first goal of the section is to prove:
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Proposition 7.1 Let  2 � be an element which is not boundary parallel. Assume
that LB.�.//D 0. Then both maps

FC W ..
�; C//! Y ; x 7! �B.prY .�.x///

and
F� W ..

C; �//! Y ; x 7! �B.prY .�.x///

are constant.

Denoting by bC (resp. b� ) the constant images of the maps FC (resp. F� ) in
Proposition 7.1 we have:

Corollary 7.2 The points bC and b� are fixed by �./.

If  2 � corresponds to a simple closed geodesic, it is possible to construct examples
of representations �W �! Sp.V / such that the points bC and b� are different. The
second main result of the section gives sufficient conditions for the two points to
coincide:

Proposition 7.3 Assume that  and � in � are hyperbolic elements with intersecting
axes, and that LB.�.//D LB.�.�//D 0. Then

bC D b
�
 D b

C
� D b

�
� D �B.Y \Y�/:

Corollary 7.4 Assume that LB.�.//D 0. If the closed geodesic corresponding to 
is not simple, then bC D b

�
 .

Before proceeding to the proofs of Propositions 7.1 and 7.3, we observe that in certain
situations, one can get a uniform lower bound on the translation lengths LB.�.// for
all hyperbolic elements  crossing a given hyperbolic element �. This is in fact an
immediate corollary of the collar lemma:

Corollary 7.5 Assume that � 2 � is a hyperbolic element, and let us denote by
j�1.�/j � � � � � j�n.�/j> 1 the eigenvalues of �.�/ of absolute value larger than 1. If
ı D kj�n.�/j � 1k< 1, then for any element  intersecting �, we have

LB.�.//�
1

2nı
:

In particular, if the closed geodesic represented by � is not simple, kj�n.�/j � 1k � 1.
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Proposition 7.3 also allows us to give sufficient conditions for a representation � to
have a global fixed point. We say that a generating set X for � is connected if the
graph .X;E/, where E consists of the pairs .s1; s2/ of elements of X whose axes
intersect, is connected.

Corollary 7.6 Let X be any connected generating set for � . If �W � ! Sp.V / is a
representation admitting a maximal framing, the following are equivalent:

(1) � has a global fixed point in BV ;

(2) LB.�.s//D 0 for all s 2X .

Remark 7.7 There exist connected generating sets consisting of 2g simple closed
curves. In particular, Corollary 7.6 refines, in our setting, [22, Corollary 3].

Recall from Section 2.3 that we say that g 2 Sp.V / is Shilov hyperbolic if there
exists a g–invariant decomposition V D LCg ˚L

�
g such that all the eigenvalues of the

restriction Mg of g to LCg are in absolute value strictly greater than one. It is however
worth remarking that, in general, g does not necessarily have a hyperbolic dynamic
on L.V /. It follows from Lemma 5.14 that, as soon as � admits a maximal framing,
for any hyperbolic element  2 � , its image �./ is Shilov hyperbolic.

Lemma 7.8 Let g 2 Sp.V / be Shilov hyperbolic, and let f�1; : : : ; �ng � F Œi � be the
set of eigenvalues of Mg . Then

LB.g/D 2

s
nX
iD1

.ln k�ik/2:

Proof Since g is Shilov hyperbolic, it stabilizes the F–tube Y
L
C
g ;L
�
g

, and similarly it
stabilizes the projection

Y
L
C
g ;L
�
g
D �B.YLCg ;L�g /:

This latter is a subbuilding of BV associated to GL.n;F/. The desired statement then
follows from [20].

Lemma 7.9 Let g 2 Sp.V / be Shilov hyperbolic. Then the following are equivalent:

(1) LB.g/D 0;

(2) kdetMgk D 1;

(3) kdetR.LCg ; S; gS;L
�
g /k D 1 for every S in ..LCg ; L

�
g //.
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Proof In view of Lemma 7.8, we have that

LB.g/D 2

s
nX
iD1

.ln k�ik/2;

while

kdetMgk D

nY
iD1

k�ik and detR.LCg ; S; gS;L
�
g /D .detMg/

�2:

The equivalence follows easily from the assumption that j�i j > 1 for all i and the
order compatibility of the norm.

Lemma 7.10 Let us assume that the 5–tuple of Lagrangians .x1; x2; x3; x4; x5/ is
maximal. Then

detR.x1; x2; x3; x5/� detR.x1; x2; x4; x5/:

Proof We may assume x1D 0 and x5D l1 ; then we have 0�x2�x3�x4 . In this
case, a computation gives that R.x1; x2; x3; x5/ is conjugate to y1 D x�1=22 x3x

�1=2
2 ,

and R.x1; x2; x4; x5/ is conjugate to y2 D x�1=22 x4x
�1=2
2 . Since each eigenvalue

of y1 is positive and smaller than the corresponding eigenvalue of y2 , one obtains the
desired inequality.

Lemma 7.11 Assume that .a; x; y; b/ in L.V /4 is maximal. Then

(1) kdetR.a; x; y; b/k � 1;

(2) d.prYa;b.x/; prYa;b.y//� ln kdetR.a; x; y; b/k �
p
n d.prYa;b.x/; prYa;b.y//.

Proof Since Sp.V / is transitive on maximal triples, we can assume that aD 0; bD l1
and x corresponds to the matrix C Id. Since the triple .x; y; l1/ is maximal, y
corresponds to a positive-definite matrix Y with all eigenvalues strictly bigger than
one. The first statement is immediate since detR.a; x; y; b/D det.Y /.

It follows from the definition of the orthogonal projection that prYa;b .x/D i Id and
prYa;b .y/D iY . If �1; : : : ; �n are the eigenvalues of Y , the explicit formula for the
distance d gives

d.i Id; iY /D

s
nX
iD1

.ln k�ik/2;

and we have

ln kdetR.a; x; y; b/k D
nX
iD1

ln k�ik:

The second assertion in the lemma then follows from Cauchy–Schwartz and the fact
that ln k�ik � 0 for every i .
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Lemma 7.12 If LB.�.// D 0, then for any x; y 2 ..�; C// with .�; x; y; C/
positively oriented, we have

kdetR.�.�/; �.x/; �.y/; �.C//k D 1:

Proof Since .�; x; y; C/ is positively oriented, and C is the attractive fixed point
of  , we can pick n� 1 with .x; y; nx/ positively oriented. Then by Lemma 7.10,
we have

1� detR.�.�/; �.x/; �.y/; �.C//

� detR.�.�/; �.x/; �./n�.x/; �.C//;

and the latter has norm 1 by Lemma 7.9(3).

Proof of Proposition 7.1 Let s and t be points in ..�; C// and assume with-
out loss of generality that the quadruple .�; t; s; C/ is positively oriented. Then
.�.�/; �.t/; �.s/; �.C// is a maximal quadruple; thus by Lemma 7.11, we have
d.prY .�.t//; prY .�.s/// � ln kdetR.�.�/; �.t/; �.s/; �.C//k. The right hand
side vanishes by Lemma 7.12, and hence we obtain, using Proposition 6.3, that
�B.prY .�.t///D �B.prY .�.s///.

Let us now assume that there are two elements ; � in �1.†/ whose axes intersect.
We want to show that if both �./ and �.�/ fix a point in BV , then they share a fixed
point. We begin with a preliminary computation:

Lemma 7.13 Let  and � be two hyperbolic elements of � with intersecting axes.
Assume LB.�.// D LB.�.�// D 0 and that the quadruple .��; �; �C; C/ is pos-
itively oriented. Then for every x 2 ..�; C//, all eigenvalues of the cross-ratio
R.�.��/; �.�/; �.x/; �.C// have the form 1Cf , where f 2F>0 satisfies kf kD 1.

Proof Pick g 2 Sp.V / such that g.�.��/; �.�/; �.C// D .� Id; 0; l1/, and set
pD g.�.�C//; see Figure 2. Now pick x 2 ..�; �C// and set qD g.�.x//. Observe
that 0� q� p .

By Lemma 7.12, since LB.�.//D 0, we have

kdetR.�.�/; �.x/; �.�C/; �.C//k D 1;

which implies kdetpk D kdet qk.

Let �1 � � � � � �n > 0 and �1 � � � � � �n > 0 denote the eigenvalues of q and p ,
respectively. Since 0� q� p , we deduce that 0 < �i < �i and hence k�ik � k�ik.
This implies that k�ik D k�ik since we know that their products are equal.

Exploiting that LB.�.�//D 0 together with Lemma 7.12 we get

kdetR.�.��/; �.�/; �.x/; �.�C//k D 1;
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�� � x �C y

     
� Id 0 q p r

Figure 2: The points needed for the proof of Lemma 7.13

which implies that k.detp/.det.p� q//�1 det.IdCq/k D 1. From this, we deduce
nY
iD1

k1C�ik D kdet.IdCq/k D
det.p� q/

detp

� 1;
where the last inequality follows from 0� p� q� p . Together with the observation
that 1C�i � 1 and the ultrametric inequality, this implies k�ik � 1 for all i , and thus
k�ik D k�ik � 1.

Now let y 2 ..�C; C// and set r Dg.�.y//. Then 0�p� r . Again by Lemma 7.12
we deduce that

kdetR.�.�/; �.�C/; �.y/; �.C//k D 1;

which implies kdetpk D kdet rk.

Let �1 � � � � � �n > 0 denote the eigenvalues of r . Since p � r , we deduce that
0 < �i < �i , and hence k�ik � k�ik. This implies, as above, that k�ik D k�ik. Since
LB.�.�//D 0, Lemma 7.12 implies that

kdetR.�.�C/; �.y/; �.C/; �.��//k D 1I

that is, kdet.IdCr/kD kdet.r�p/k. Since 0� r�p� r , we obtain kdet.r�p/k�
kdet rk. On the other hand, 0� r � IdCr , and hence kdet.IdCr/k D kdet.r/k, or
equivalently,

Qn
iD1 k1C .1=�i /k D 1. This, together with the information that �i > 0

and the ultrametric inequality, implies k�ik � 1, and thus k�ik D k�ik � 1.

To conclude the proof, we observe that R.�.��/; �.�/; �.x/; �.C// is conjugate to
R.� Id; 0; q; l1/D IdCq and hence has as all eigenvalues of the form 1Cf with f
positive satisfying kf k D 1.

Remark 7.14 Recall from Definition 4.14 that Y and Y� are orthogonal if and only
if R.�.��/; �.�/; �.�C/; �.C// D 2 Id. Lemma 7.13 should be interpreted as a
weaker form of orthogonality for the projections Y and Y� .
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Lemma 7.15 Let .a; c; b; d/ 2 L.V /4 be a maximal quadruple, and assume that all
the eigenvalues of R.a; c; b; d/ have the form 1Cf for some f 2 F>0 with kf kD 1.
Then the points

prYc;d.a/; prYc;d.b/; prYa;b.c/; prYa;b.d/; Ya;b \Yc;d

have pairwise pseudodistance zero.

Proof Pick g 2 Sp.V / such that g.a; c; b; d/ D .� Id; 0;D; l1/ where D is diag-
onal with strictly positive entries. Then a computation gives prY0;l1.� Id/ D i Id,
prY0;l1.D/D iD and Y0;l1\Y� Id;D D i

p
D .

Now since DD diag.d1; : : : ; dn/, the assumption on the eigenvalues implies kdikD 1,
and the explicit formula for the distance gives the desired statement.

Proof of Proposition 7.3 We may assume that .��; �; �C; C/ is positively oriented.
Applying Lemma 7.13 to x D �C , we obtain that the pseudodistances of the points
prY .�.�

C//, prY .�.�
�//, prY�.�.

C//, prY�.�.
�//, Y \Y� are all zero. This

concludes the proof once one notices that (see Proposition 7.1)

bC D �B.prY.�.�
C///;

b� D �B.prY.�.�
�///;

bC� D �B.prY�.�.
�///;

b�� D �B.prY�.�.
C///:

8 Decomposition theorem

Let �W �1.†; x/!Sp.V / be a representation into a symplectic group over a real closed
field F with valuation, and let �BW TV ! BV denote the projection to the building.
Recall from the introduction that if †D

S
v2V †v is a decomposition of the surface †

into subsurfaces with geodesic boundary, we consider the associated presentation of �
as fundamental group of a graph of groups with vertex set V and vertex groups �1.†v/.
We denote by zV the vertex set of the associated Bass–Serre tree T . For every v 2 V
and w 2 zV lying above v , the stabilizer �w of w in � is isomorphic to �1.†v/. In
this section, we prove the result mentioned in the introduction as Theorem 1.8:

Theorem 8.1 Assume that �W �! Sp.V / admits a maximal framing. Then there is a
decomposition †D

S
v2V †v of † into subsurfaces with geodesic boundary such that

(1) for every  2 � whose associated closed geodesic is not contained in any
subsurface, LB.�.// > 0;
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(2) for every v 2 V , there is the following dichotomy:

(PT) for every w 2 zV lying above v , and any  2 �w which is not boundary
parallel, �./ has positive translation length;

(FP) for every w2 zV lying above v, there is a point bw 2BV which is fixed by �w.

The proof of the theorem is based on the analysis of the incidence structure of the set

L� D f 2 � j  ¤ e;  hyperbolic; LB.�.//D 0g:

Let
PL� D f 2 L� j  is primitiveg= � �1;

and denote by x 2 PL� the equivalence class of  . Let

A� D fax./ j  2 L�g

denote the set of axes of elements in L� , so there is a bijective correspondence
A� Š PL� .

On PL� we put a graph structure by requiring that x is adjacent to x� if they are distinct
and their axes intersect. We denote by G� this graph and proceed to study its connected
components. Let C� G� be a connected component with vertex set V.C/. We observe
that if the component consists of a single vertex x , then the closed geodesic associated
to  is simple. Indeed, for each � in � , the conjugate ���1 belongs to L� and if
���1 ¤ x , the corresponding axes do not intersect.

Let us assume from now on that jV.C/j � 2, and let

�C D f 2 � j  stabilizes Cg
and

�C D

[
x2V.C/

f�; Cg:

Then we clearly have that if x belongs to V.C/, then  is an element of �C and �C is
a subset of the limit set ƒ.�C/� @H2 of �C . In particular, since �C is �C–invariant,
we get x�C Dƒ.�C/.

Lemma 8.2 There is a point pC 2 BV with b˙ D pC for all  such that x 2 V.C/.

Proof Indeed, if x is adjacent to x�, we have bC D b
�
 D b

C
� D b

�
� ; see Lemma 7.15.

The lemma follows from the assumption that C is connected.

Lemma 8.3 For every  2 �C , we have �./pC D pC .
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Proof For every  2 �C , if � gives a vertex of V.C/, the same holds for ��1 .
Hence we get

b˙� D b
˙

��1
D �./b˙� :

Lemma 8.4 Let g be an oriented geodesic with endpoints g� and gC. Assume
that �C \ ..g

�; gC// ¤ ∅ and �C \ ..g
C; g�// ¤ ∅. Then there exists x 2 C with

ax./\g ¤∅.

Proof Let us choose a class x� 2 C with �C 2 ..g�; gC// and a class x� 2 C with
�� 2 ..gC; g�//. Since C is connected, there is a sequence x̨1 D x�; x̨2; : : : ; x̨n D x�
of classes in C such that, for every i , the axis ax.˛i / intersects ax.˛iC1/. But then
clearly there is an index j such that ax. j̨ / intersects the geodesic g .

If X is a subset of xH2 D H2 [ @H2 , we denote by Co.X/ the closed convex hull
of X in H2 . To any component C we associate the closed convex subset YC of H2

defined by
YC D Co.ƒ.�C//D Co.�C/:

We say that an element  2 �C is a boundary component if the axis of  is a boundary
component of YC .

Proposition 8.5 For every primitive, hyperbolic element  2 �C which is not a
boundary component, we have

x 2 V.C/:

Proof Since  stabilizes C and is not a boundary component, we have that the
intersection �C\..

�; C// is not empty, and similarly, �C\..
C; �// is not empty.

Thus we conclude by Lemma 8.4.

Our next aim is to show that the image p.YC/ of YC under the universal covering map
pW H2!† is a compact subsurface of † with geodesic boundary.

Proposition 8.6 Let C � G� be a connected component with more than one vertex.
For every  2 � , one of the following holds:

(1) YC D YC ;

(2) YC\YC is a boundary component of YC ;

(3) the intersection YC\YC is empty.

Proof First we show that if the intersection  VYC\YC is not empty, then CD C, and
hence YC D YC . Let x 2  VYC\YC , and assume by contradiction that C¤ C, which
implies that V.C/\V.C/D∅.
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Claim 1 The point x does not belong to ax.�/ for any x� 2 C.

Proof Assume, instead, that x belongs to ax.�/ for some element � with x�2C. If the
intersection �C\ ..��; �C// is empty, then �C is contained in the closed interval
ŒŒ�C; ����, and hence YC is contained in one of the closed halfplanes determined
by ax.�/. This contradicts the hypothesis that x belongs to the interior of YC . Thus
we have that both intersections �C\ ..��; �C// and �C\ ..�C; ��// are not empty.
But then, by Lemma 8.4, there is an element � 2 C whose axis ax.�/ intersects ax.�/.
This implies that either x� D x�, or the elements x� and x� are adjacent in the graph G� .
Both contradict the fact that V.C/\V.C/D∅, and this proves Claim 1.

Now we can define Bxg , for every xg 2 C, to be the unique closed interval in S1

with endpoints fg�; gCg and such that x does not belong to the convex hull Co.Bg/.
According to Claim 1, this is well defined.

Claim 2 For every xg in C, the intersection �C\Bxg is empty.

Proof Indeed, assume that the intersection is not empty for some xg 2 C. Since xg does
not belong to C, this implies that the intersection �C\ VBg is not empty. Since x
belongs to  VYC , we get that the intersection �C\ .S1 nBg/ is not empty, and hence,
by Lemma 8.4, there is x� 2 C whose axis ax.�/ intersects ax.g/ nontrivially. This
again contradicts the assumption V.C/\V.C/D∅.

Claim 3 The union
S
xg2CBxg is connected.

Proof Indeed, for any pair of adjacent elements x and x� in C, we have that the
intersection Bx\Bx� is not empty. Now enumerate C by a possibly redundant sequence
x1; x2; : : : of consecutive adjacent vertices. Then the union

S1
iD1Bxi is connected.

Since the union
S
xg2CBxg is connected, it is an interval of S1 say with endpoints

˛1; ˛2 , numbered such that

..˛1; ˛2//�
[
xg2C

Bxg � ŒŒ˛1; ˛2��:

It follows then from Claim 2 that the intersection �C \ ..˛1; ˛2// is empty; on the
other hand, �C �

S
xg2CBxg � ŒŒ˛1; ˛2��. This implies that YC and YC lie in different

half-planes determined by the geodesic joining ˛1 to ˛2 and hence the intersection
 VYC\YC is empty. This gives a contradiction.

Assume now that YC is different from YC and that the intersection YC \ YC is
not empty. Let x be a point in the intersection YC \ YC ; then x belongs to the
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boundary of YC and also to the boundary of YC . Let g and g0 be the geodesics giving
respectively the connected components of @.YC/ and @.YC/ containing x .

If g \ g0 D fxg, then the intersection of the interiors  VYC \ VYC is not empty which,
together with what we proved, implies that the  VYC is equal to VYC and leads to
a contradiction. Thus gDg0� @.YC/\@YC . Since the intersection  VYC\ VYC is empty,
we deduce that YC and YC lie on different sides of g , and hence .YC/\YC D g .

Proposition 8.7 Let C � G� be a component with more than one vertex. Let �C be
the stabilizer of C in � and YC � H2 the closed convex hull of the limit set of �C .
Then the map

�CnYC ,! �nH2

induces an embedding with image a compact surface with geodesic boundary.

Proof Let us enumerate the vertices fx1; x2; : : : g of V.C/ in such a way that for
each i , we have xi adjacent to xiC1 . Let zx0 be the intersection ax.1/\ ax.2/, and
define Xn D

Sn
iD1 ax.i /. By construction, Xn is connected. Let furthermore x0

denote the projection x0 D p.zx0/.

Let �n < � be the image of the natural map �1.p.Xn/; x0/! �1.†; x0/ induced by
the inclusion p.Xn/ ,!†. Then �n is the fundamental group of the surface †n �†
obtained by taking an appropriate tubular neighborhood of p.Xn/ � † and adding
to it all components of the complement which are either simply connected or whose
fundamental group is generated by a parabolic element of � . Then †n is a subsurface
with smooth boundary and of finite topological type. Since �n < �nC1 , there exists
N � 1 with �n D �N for all n�N .

We will finish the proof by showing that �C D �N . Since �nzx0 � Ap.Xn/ , we have
�n < �C . Conversely, let us take  2 �C ; then  zx0 D ax.1�1/\ ax.2�1/,
and since �C preserves V.C/, we have that 1�1and 2�1 are in V.C/. Thus
 zx0 2Xn for n large enough, which implies  2�n . As a conclusion, we get �N D�C ,
which implies that �CnYC in † is isotopic to †N .

Proof of Theorem 8.1 The set of isolated components of G� is a �–invariant subset.
Since we know that each isolated component of G� corresponds to a geodesic of H2

that projects to a simple closed curve, we have that the projection of all the isolated
components is a collection C of pairwise disjoint simple closed curves which cut the
surface † in subsurfaces f†vgv2V for some index set V .
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Moreover, for any component C consisting of more than one element, we have that

YC D Co
�[
x2C

ax./
�

is a subsurface in H2 which projects to a subsurface of † whose boundary consists of
elements of C . In particular, there exists v 2 V with p.YC/D†v .

9 Quasi-isometric embeddings

Let �W �1.†; x/! Sp.V / be a representation admitting a maximal framing and †DS
v2V †v be the corresponding decomposition given by Theorem 8.1. We assume,

as usual, that † is equipped with a hyperbolic metric of finite area and denote by
pW H2!† the canonical projection, so †D �nH2 .

As we have seen in Section 8, the decomposition of the surface † comes from a
�–invariant decomposition

H2
D

[
w2zV

Sw

into subsurfaces with totally geodesic boundary. The Bass–Serre tree T D .zV; E/
can be identified with the incidence tree of the set fSw j w 2 zVg. Recall that a pair
fw1; w2g forms an edge if the intersection Sw1 \Sw2 is not empty. In this case, the
intersection corresponds to the axis of an element of � that acts on the building BV
with zero translation length and determines an isolated component of the graph G� .

Assume now that for every subsurface †v we are in the second case of the dichotomy
in the decomposition theorem. Then for every w 2 zV , the stabilizer �w of w in � has
a canonical fixed point bw 2 B0V which equals b˙ for each  2 �w .

Theorem 9.1 The map
zV! B0V ; w 7! bw ;

is a �–equivariant quasi-isometry.

Let � 2 � be an element whose corresponding geodesic is not contained in a subsur-
face. The axis ax.�/ determines a sequence .wn/n2Z of vertices in T , namely the
consecutive sequence of surfaces Swn crossed by ax.�/. This gives a geodesic path
in T , which is the axis of the isometry of T induced by �.
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Figure 3: The setting in the proof of Lemma 9.2

Lemma 9.2 Let us assume that the axis ax.�/ crosses the surface Sw . Let  2 �w be
an element which is not boundary parallel and such that ax./ intersects ax.�/. Then

bw D �B.prY�.�.
C///D �B.prY�.�.

�///:

In particular, bw belongs to Y� .

Proof Without loss of generality, we assume that the 4–tuple .��; �; �C; C/

is positively oriented. We will show that all of the eigenvalues of the cross-ratio
R.�.��/; �.�/; �.�C/; �.C// have the form 1C f for a positive f satisfying
kf k D 1.

Since  is not boundary parallel, we can find ˛ 2 �w such that ˛� belongs to
..��; �// and ˛C belongs to ..�; �C//; see Figure 3. Since .˛�; �; ˛C; C/
is positively oriented, we can pick an element g 2 Sp.V / with g.˛�; �; C/ D

.� Id; 0; l1/. For such g , we set g�.��/ D �T , g�.�C/ D S and g�.˛C/ D L.
With this notation we have T � Id and S � L � 0; moreover, the cross-ratio
R.�.��/; �.�/; �.�C/; �.C// is conjugate to R.�T; 0; S; l1/D IdCT �1S .

First observe that all the eigenvalues of R.�T; 0; S; l1/ are smaller than the corre-
sponding eigenvalues of R.� Id; 0; S; l1/. Indeed, the first matrix is conjugate to
IdCS1=2T �1S1=2 and the second equals IdCS , moreover all the eigenvalues of T
are by assumption greater than 1. Now ˛ and  cross and have zero translation
length since they both belong to �w . Since �C belongs to ..˛C; C//, it follows from
Lemma 7.13 that all the eigenvalues of R.�.˛�/; �.�/; �.�C/; �.C// have the form
1C� for a positive � satisfying k�k D 1. This implies that for each eigenvalue �i of
IdCT �1S , we have k�i � 1k � 1.

On the other hand, all the eigenvalues of R.�T; 0; S; l1/ are bigger than the cor-
responding eigenvalues of R.�T; 0; L; l1/: indeed the first matrix is conjugate
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to IdCT �1=2ST �1=2 and the second is conjugate to IdCT �1=2LT �1=2 . This
implies that, denoting by �i the eigenvalues of R.�T; 0; L; l1/ we have that
k�i � 1k � k�i � 1k. This is enough to conclude: we have by Lemma 4.4 that
R.�T; 0; L; l1/ŠR.L; l1;�T; 0/, and as a consequence of Lemma 7.13, this latter
cross-ratio has all its eigenvalues of the form 1Cf for some positive f of norm one.

Now we exploit that bw is in particular equal to b˙ . This latter point is, in view of
Proposition 7.1, equal to �B.prY .�.�

�///. Moreover, we deduce from Lemma 7.15
that

�B.prY.�.�
�///D �B.prY�.�.

�///D �B.prY�.�.
C///;

and this concludes.

Lemma 9.3 Let a; b 2 L.V / be transverse subspaces, and fix x1; : : : ; xk 2 ..a; b//
such that .a; xi ; xiC1; b/ is maximal for all i . Then

k�1X
iD1

d.prYa;b.xi /; prYa;b.xiC1//�
p
n d.prYa;b.x1/; prYa;b.xk//:

Proof Since for each pair of symmetric matrices S , T we have detR.0; S; T; l1/D
detS�1 detT , we deduce

detR.a; x1; xk; b/D
k�1Y
jD1

detR.a; xj ; xjC1; b/:

Thus we get

ln kdetR.a; x1; xk; b/k D
k�1X
jD1

ln kdetR.a; xj ; xjC1; b/k:

From Lemma 7.11, we deduce immediately

k�1X
iD1

d.prYa;b.xi /; prYa;b.xiC1//�
p
n d.prYa;b.x1/; prYa;b.xk//:

Proof of Theorem 9.1 Let v;w be vertices of T , and pick an element � 2 � whose
associated axis in T contains the geodesic path between v and w . Let us name
v0 D v; v1; : : : ; vk D w the vertices in such path.

We choose, for every i an element i 2 Svi whose axis ax.i / intersects the axis
ax.�/ nontrivially, and with the property that Ci 2 ..�

�; �C//. Then we have that, for
every i , the 4–tuple

.�.��/; �.Ci /; �.
C
iC1/; �.�

C//
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is maximal, and hence by Lemma 9.2 and 9.3, we have

k�1X
iD0

dB.bvi ; bviC1/�
p
n dB.bv0 ; bvk /:

Notice that for any pair of adjacent vertices l; r in T , the distance dB.bl ; br/ is positive:
otherwise it is easy to verify that for each pair of hyperbolic elements l 2 �l and
r 2 �r , the composition lr fixes bl D br and corresponds to an element of �
whose axis crosses the common boundary component of Sl and Sr , contradicting the
decomposition of Theorem 8.1.

Now, since the number of �–orbits on the set of edges of T is finite, there are positive
constants C1; C2 with

C1 � dB.bl ; br/� C2

for every pair .l; r/ of adjacent vertices. Thus we get

kC1 �
p
n dB.bv0 ; bvk /;

which implies

dT .v0; vk/�

p
n

C1
dB.bv0 ; bvk /:

The inequality
dB.bv0 ; bvk /� C2k D C2dT .v0; vk/

is immediate.

10 Ultralimits of maximal representations

In this section, we apply the general theory developed so far to the field of hyperreals
and the Robinson field in order to deduce the decomposition theorem for ultralimits of
maximal representations.

10.1 Hyperreals and Robinson fields

Let !W P.N/ ! f0; 1g be a nonprincipal ultrafilter on the set of natural numbers.
Recall that the ultraproduct

Q
! Xi of a sequence .Xi /i2N , of sets is the quotient ofQ

i2N Xi by the equivalence relation .xi /� .yi / if !.fi j xi D yig/D 1. We denote
by �! W

Q
i2N Xi !

Q
! Xi the quotient map and write X! for

Q
! X . In particular,

R! is the field of hyperreals, and if Xi are vector spaces over R (resp. R–algebras,
groups), then

Q
! X is a R!–vector space (resp. an R!–algebra, a group) and �! is a

morphism in the appropriate category. For a R–vector space V , the map

V �R!! V! ; .v; Œ.li /�/ 7! Œ.liv/�;
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induces an R!–isomorphism V ˝R R!! V! . For V finite-dimensional at least, we
deduce from the isomorphism EndR! .V ˝R R!/Š .EndV /˝R R! that the mapY

i2N

End.V /! End.V!/; .Ti /i 7! T;

where T .Œvi �/ D ŒTi .vi /� induces an algebra isomorphism .End.V //! Š End.V!/
which restricts to a group isomorphism .GL.V //!ŠGL.V!/. By abuse of notation, we
will also denote by �! W

Q
N GL.V /! GL.V!/ the induced map. Given a symplectic

form h � ; � i on V , let h � ; � i! denote the symplectic form on V! obtained by extending
the scalars from R to R! . Given a sequence of representations �i W � ! Sp.V /,
we will denote by �! the representation of � into Sp.V!/ obtained by composingQ
i2N �i with �! .

Proposition 10.1 Assume that �i W �! Sp.V / is a sequence of maximal representa-
tions. Then �! W �! Sp.V!/ admits a maximal framing.

The proof uses the following lemma, which is a straightforward verification:

Lemma 10.2 (1) The map
Q

N Grk.V /!Grk.V!/ defined by .Li /i2N 7!
Q
! Li

induces a .GL.V //! Š GL.V!/–equivariant bijection .Grk.V //! Š Grk.V!/
and restricts to a .Sp.V //! Š Sp.V!/–equivariant bijection L.V /! Š L.V!/.

(2) Let fi W Wi ! R be quadratic forms with signature ni 2 Z. Assume that the
sequence dimWi is bounded, and let f! W

Q
! Wi !R! be the quadratic form

given by f!.Œ.vi /�/D Œ.fi .vi //�. Then f! has signature n where n is defined
by !.fi j ni D ng/D 1.

Proof of Proposition 10.1 Since each �i is maximal, there exists a maximal framing
�i W @H2 ! L.V /. Define then �! W @H2 ! L.V!/ by composing

Q
�i W @H2 !Q

N L.V / with the quotient map
Q

N L.V / ! L.V!/. The maximality of the so
obtained framing follows then from Lemma 10.2(2).

Let now � 2R! be an infinitesimal and recall the definition of the local ring

O� D fx 2R! W jxj< �
�k for some k 2N g

with associated maximal ideal

I� D fx 2R! W jxj< �
k for all k 2N g:

The quotient is the Robinson field R!;� DO�=I� associated to � [24; 16].
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Remark 10.3 Assuming the continuum hypothesis, a deep result of Erdös, Gillman
and Henriksen [8] implies that the field R! does not depend on the choice of the
ultrafilter. And under the same hypothesis, Thornton showed that the normed field
R!;� does not depend on the choice of the ultrafilter ! nor on the infinitesimal � [28,
Theorem 2.34].

If instead we assume the negation of the continuum hypothesis, it was shown by
Kramer, Shelah, Tent and Thomas [12, Theorem 1.8] that there exists an uncountable
set of nonprincipal ultrafilters such that the associated Robinson fields are pairwise
nonisomorphic.

If .�i / is a divergent sequence of real numbers and we set � D Œ.e��i /� 2R! we have
that the field R!;� is the field denoted by R!;� in [22].

Now let �! be a representation into Sp.V!/ admitting the maximal framing .S; �!/.
Choose a compatible complex structure J! and an infinitesimal � 2 R! such that
�!.�/ � Sp.V!/.O� /, and denote by V!;� the vector space V!.O� /=V!.I� /. Ac-
cording to Theorem 5.9, composing �! with �� W Sp.V!/.O� /! Sp.V!;� / we obtain
a representation which admits q� ı�! W S ! L.V!;� / as maximal framing.

Thus we obtain in particular:

Corollary 10.4 If .�i /i2N W � ! Sp.V / is a sequence of maximal representations
where V is a real symplectic vector space, �! W � ! Sp.V!/ the corresponding
representation over the field of hyperreals, J! a choice of compatible complex struc-
ture and � an infinitesimal such that �!.�/ � Sp.V!/.O� /, then the representation
�!;� W �! Sp.V!;� / admits a maximal framing defined on @H2 .

In the compact case we obtain a converse:

Theorem 10.5 Assume that the surface �nH2 is compact. Then a representation
�W �! Sp.V!;� / admits a maximal framing if and only if there is a sequence �i W �!
Sp.V / of maximal representations such that �!;� D � .

Proof Let

Repg WD
�
.A1; B1; : : : ; Ag ; Bg/ 2 Sp.V /2g

ˇ̌̌ nY
iD1

ŒAi ; Bi �D Id
�

be the R–variety of representations of � in Sp.V /. Then it follows from [28] that
the reduction modulo I� induces a surjection Repg.O� /! Repg.R!;� /. Thus we
can lift � to a representation �! W �! Sp.V!/.O� / which we represent by a sequence
.�i /i2N of representations of � into Sp.V /.
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Let �W S ! L.V!;� / be a maximal framing for � . It follows from the collar lemma
that for every hyperbolic element  2 � , the image �./ is Shilov hyperbolic. Then
�!./ needs also to be Shilov hyperbolic and we have q� .LC�!.//D L

C

�./
because

of uniqueness of attractive fixed Lagrangians.

Fix a decomposition of †D �nH2 into pairs of pants, let P �† denote any such pair
of pants and let fc1; c2; c3g be standard generators of �1.P /; in particular, c1c2c3D e .
Let �1; �2; �3 be the attractive fixed points in @H2 of c1; c2; c3 . Then .�1; �2; �3/ and
.�1; c1 � �3; �2/ are positively oriented. Thus the images under � of the two triples are
maximal, and hence the triples

.LC
�!.c1/

; LC
�!.c2/

; LC
�!.c3/

/ and .LC
�!.c1/

; �!.c1/L
C

�!.c3/
; LC

�!.c2/
/

are maximal. It follows that there is a set EP � N of full !–measure such that for
each i in EP , �i .c1/; �i .c2/; �i .c3/ are Shilov hyperbolic and both

.LC
�i .c1/

; LC
�i .c2/

; LC
�i .c3/

/ and .LC
�i .c1/

; �i .c1/L
C

�i .c3/
; LC

�i .c2/
/

are maximal. It follows then from [27, Theorem 5] that �i j�1.P /! Sp.V / is maximal
for each i in EP . Thus if P1; : : : ; P2g�2 is the pair of pants decomposition, we have
that for all i 2

T2g�2
jD1 EPj , the restriction �i j�1.Pj / is maximal. By additivity of the

Toledo invariant (see [6, Theorem 1]), we deduce that �i is maximal. Since
T2g�2
jD1 EPj

is of full !–measure, this concludes the proof.

10.2 Asymptotic cones

We finish the paper deducing the statements about ultralimits of maximal representations
from the general theory of representations admitting a maximal framing.

Proof of Theorem 1.1 Let �k W �!Sp.V / be a sequence of maximal representations,
Jk 2XV a sequence of basepoints, namely a sequence of compatible complex structures,
and �D .�k/k2N an adapted sequence of scales. If the sequence � is bounded on a
set of full !–measure, then we may assume

sup
k2N

max
2S

d.�k./Jk; Jk/ <1;

and hence, if we conjugate �k by gk 2 Sp.V / with gkJk D x a fixed basepoint, it
follows that the sequence .�k D gk�kg�1k /k2N is relatively compact in the space of
representations. In this case, !X� is just the Siegel space XR with rescaled distance,
and !�� is an ordinary accumulation point of the sequence .�k/k2N .

If the sequence � is unbounded, let � WD .e��k /k2N , which is an infinitesimal in R! ,
and let J! WD Œ.Jk/k2N �2End.V!/ which is a compatible complex structure. Then we
conclude from the fact that � is adapted to .�k; Jk/k2N that �!.�/� Sp.V!/.O� /.
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Furthermore, it follows from [22] that the action on the Bruhat–Tits building of
Sp.V!;� / coming from the representation �!;� W � ! Sp.V!;� / coincides with the
ultralimit !��W � ! Iso.!X�/ under the identification of !X� with the Bruhat–Tits
building BV!;� . Theorem 1.1 follows then from Corollary 10.4 and Theorem 8.1.

We now characterize the cases which lead to actions without a global fixed point. Recall
from the introduction that when S is a finite generating set for � , and � is a maximal
representation we denote by DS .�/.x/ the displacement function.

The function DS .�/ is convex and, since �.�/ is not contained in any proper parabolic
subgroup of Sp.V /, we have that for every C > 0, the convex set fx jDS .�/.x/�C g
must be compact; in particular, DS .�/.x/ achieves its minimum that we will denote
by �S .�/Dminx2X DS .�/.x/.

The function � 7! �S .�/ descends then to a proper function

Hommax.�;Sp.V //=Sp.V /! .0;1/

on the character variety of maximal representations. Let now .�k/k2N be a sequence
of maximal representations, .xk/k2N 2XN a sequence of basepoints and � an adapted
sequence of scales. Furthermore, let yk 2 X be such that �S .�k/DDS .�k/.yk/.

Proposition 10.6 The representation !�� on !X� has no global fixed point if and
only if

lim
!

�k

�S .�k/
<1 and lim

!

d.yk; xk/

�k
<1;

in which case !X� D !X� , the distances on the asymptotic cones are homothetic and
the actions !�� and !�� coincide.

Remark 10.7 We can also deduce the fact that if !�� has no global fixed point
then the limit lim! �k=�S .�k/ is finite by combining [22, Proposition 4.4] and [21,
Corollary 3].

Proof of Proposition 10.6 For the “if” part: changing the sequence on a set of !–
measure zero, we may assume that for some constant C > 0, we have �S .�k/=C �
�k � C�S .�k/ and d.yk; xk/ � C�k for all k 2 N . This readily implies that the
asymptotic cones !X� and !X� are equal, that the induced distances are homothetic
with factor lim! �k=�S .�k/ and that the actions !�� and !�� coincide. Thus we have
to verify that !�� does not have a global fixed point. But this follows immediately
from the fact that

max
2S

d.�k./x; x/

�S .�k/
� 1 for all x 2 X :
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We next show the “only if” part. Let T be a finite connected generating set, and let us
denote by K the maximal length of an element of T with respect to the generating
set S . Since !�� does not have a global fixed point, it follows from Corollary 7.6 that
there is 0 2 T with L.!��.0//D lim! L.�k.0//=�k > 0. Since

L.�k.0//� d.�k.0/yk; yk/�K�S .�k/�KDS .�k/.xk/

and lim! DS .�k/.xk/=�k < 1, we may assume that the sequences .�k/k2N and
.�S .�k//k2N are equivalent, namely that there are positive constants C1; C2 such that
C1�S .�k/� �k � C2�S .�k/ for all k 2N .

Pick now two hyperbolic elements ; � in � with intersecting axes. If �k W S1!L.V /
denotes the boundary map associated to �k , we have

Y�k.C/;�k.�/\Y�k.�C/;�k.��/ D fzkg;

and the sequence .zk/k2N in !X� represents a point in the intersection Y� \Y�� ; see
Section 7. Thus we get lim! d.xk; zk/=�k <1. The same applies to !X� and hence
lim! d.yk; zk/=�S .�k/ <1. Using the triangle inequality and taking into account
that the sequences .�k/k2N and .�S .�k//k2N are equivalent, we deduce

lim
!

d.xk; yk/

�k
<1:

Proof of Corollary 1.3 The first inequality follows from the collar lemma, while the
last follows by contradiction from Proposition 10.6.

Proof of Corollary 1.4 Applying iteratively Theorem 1.1, it is possible to obtain a
canonical decomposition of the surface in subsurfaces with geodesic boundary with
the property that all curves strictly contained in a subsurface have the same growth
rate. The set C of curves defining this decomposition is the union of the curves given
by Theorem 1.1 and all the curves contained in subsurfaces of type (FP) selected by
applying Theorem 1.1 to the restrictions of the representations to those subsurfaces.
One can apply Theorem 1.1 at most 3g� 3Cp times corresponding to the case when
at each step precisely one curve is added and all the complementary pieces are of type
(FP). Hence there are at most 3g� 3Cp distinct growth rates among curves having
nontrivial intersection with C . There are three possibilities for the remaining curves:
either a curve is contained in a subsurface defined by the decomposition C , or it is one
of the curves in C or it corresponds to a puncture in the surface. The claim follows
since there are at most 2g� 2Cp complementary components.
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Appendix

Proposition A.1 Let F be a real closed field. Let n be a positive integer and assume
that a1; : : : ; an � 1. Then we have

.a1a2 � � � an� 1/
n
� .an1 � 1/.a

n
2 � 1/ � � � .a

n
n � 1/;

with equality if and only if a1 D � � � D an .

For F DR, this follows easily from the convexity of the function ex=.ex � 1/; here
we reproduce the proof due to Thomas Huber for general real closed fields. We start
with a key lemma:

Lemma A.2 Let n be a positive integer, and let c; x � 1. Then we have

(10) .cx� 1/n � .cnx� 1/.x� 1/n�1;

with equality if and only if nD 1 or c D 1.

Proof We use induction. For nD 1, the inequality is in fact an equality. By induction,

.cx� 1/nC1 D .cx� 1/.cx� 1/n � .cx� 1/.cnx� 1/.x� 1/n�1

(observe that all factors are nonnegative), and it suffices to show that

.cx� 1/.cnx� 1/� .cnC1x� 1/.x� 1/

holds. But the difference of the left and the right hand side factors as

x.c � 1/2.cn�1C � � �C cC 1/

and is clearly nonnegative.

Now we turn to the proof of the main result and proceed again by induction. For
nD 1, there is nothing to show; hence let n� 2. By symmetry, we may assume that
a D a1 � ai for all i � 2. By the induction hypothesis, the right hand side of the
inequality does not decrease when we replace a2; : : : ; an by their geometric mean
b D .a2 � � � an/

1=.n�1/ ; notice that in a real closed field, positive numbers admit kth

roots for any natural number k � 1. Therefore, it suffices to show the inequality

.abn�1� 1/n � .an� 1/.bn� 1/n�1;

where a � b � 1. But this is a direct consequence of our lemma: just set c D a=b � 1
and x D bn � 1 in (10). Equality only holds for c D 1, that is, for a D b . But this
implies a1 D � � � D an by the maximal choice of a1 .
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C 0 approximations of foliations

WILLIAM H KAZEZ

RACHEL ROBERTS

Suppose that F is a transversely oriented, codimension-one foliation of a connected,
closed, oriented 3–manifold. Suppose also that F has continuous tangent plane
field and is taut; that is, closed smooth transversals to F pass through every point
of M . We show that if F is not the product foliation S1 �S2 , then F can be C 0

approximated by weakly symplectically fillable, universally tight contact structures.
This extends work of Eliashberg and Thurston on approximations of taut, transversely
oriented C 2 foliations to the class of foliations that often arise in branched surface
constructions of foliations. This allows applications of contact topology and Floer
theory beyond the category of C 2 foliated spaces.

57M50; 53D10

1 Introduction

In [8], Eliashberg and Thurston introduce the notion of confoliation and prove that
when k � 2, a transversely oriented C k foliation F of a closed, oriented 3–manifold
not equal to S1 � S2 can be C 0 approximated by a pair of C1 contact structures,
one positive and one negative. They also prove that when F is also taut, any contact
structure sufficiently close to the tangent plane field of F is weakly symplectically
fillable and universally tight.

The focus of this paper is C k;0 foliations (see Section 2 for definitions). These
foliations are less smooth than those studied by Eliashberg and Thurston. In the context
of applications of C k;0 foliations, the natural definition of taut is a foliation for which
closed smooth transversals pass through every point of the manifold.

Definition 1.1 A foliation F of M is taut if for each p 2M , there is a simple closed
curve everywhere transverse to F and passing through p .

Given sufficient smoothness, this is equivalent to the usual definition, which stipu-
lates the existence of transversals through every leaf of the foliation; see Kazez and
Roberts [26]. In addition, when dealing with C k;0 foliations, it is important to specify
whether smooth or topological transversals are being used [26]. We use the terms
transverse, transversal and transversely in the smooth sense; that is, they refer to

Published: 31 August 2017 DOI: 10.2140/gt.2017.21.3601
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3602 William H Kazez and Rachel Roberts

smooth objects intersecting so that the associated tangent spaces intersect minimally.
In contrast, a curve is topologically transverse to F if no nondegenerate subarc is
isotopic, relative to its endpoints, into a leaf of F .

In this paper, we complete the project started in Kazez and Roberts [24] and prove
that the requirement that F be C 2 can be weakened to the condition that F be C 1;0 ;
equivalently, that the tangent plane field of F be defined and continuous. Our main
theorem is the following.

Theorem 1.2 Let M be a closed, connected, oriented 3–manifold, and let F be a
transversely oriented C 1;0 foliation on M . Then F can be C 0 approximated by
a positive (resp. negative) contact structure �C (resp. �� ) if and only if F is not a
foliation of S1 � S2 by spheres. When F is taut, these contact structures, .M; �C/
and .�M; ��/, are weakly symplectically fillable and universally tight.

In addition, we take the proof of this theorem as an opportunity to revisit classical
foliation results in the topological setting, and attempt to state as clearly as possibly
what is true in the TOP category. Proofs are given when we could not find them in the
literature.

Tautness of a C 1;0 foliation F guarantees the existence of a transverse, smooth,
volume-preserving flow [26, Theorem 6.1]. The existence of a volume-preserving
flow transverse to F is used in Proposition 3.2.2 of Eliashberg and Thurston [8] to
conclude weak symplectic fillability of the approximating contact structure. Tightness
then follows from Theorem 3.2.4, and universal tightness by Proposition 3.5.5, of [8].
Theorem 1.2 therefore implies the following.

Corollary 1.3 Let F be a transversely oriented C 1;0 foliation on a closed, connected,
oriented 3–manifold M ¤S1�S2 . If ˆ is a smooth volume-preserving flow transverse
to F , then any positive contact structure transverse to ˆ is weakly symplectically
fillable and universally tight.

With the additional assumptions that F is C1;0 and is not a foliation of T 3 by planes,
Jonathan Bowden [1] has also proved Theorem 1.2, and hence any accompanying
corollaries. His approach is similar to ours but uses different propagation techniques.

In this paper, M will denote a connected, closed, oriented 3–manifold, and F will be
a transversely oriented (not necessarily taut) foliation in M .

There are two useful notions that we use in describing approximations of a given
foliation F by either another foliation, a contact structure or indeed any 2–plane field �
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on M . The first is C 0 approximation. This can be defined using the standard topology,
or a compatible metric, on the Grassmannian bundle of continuous tangent 2–planes
over M . Pick a compatible metric. If for all � > 0 there exists a 2–plane field � on
M of a particular type (eg corresponding to a foliation in Theorem 1.4, or a contact
structure in Theorem 1.2) that is within � of TF , then we say F is C 0 close to a
2–plane bundle of the type of � .

The starting point for the second notion of approximation is a foliation F together with
a transverse flow ˆ. A tangent 2–plane distribution � on M is ˆ–close to F if it
is also transverse to ˆ. Since the notion of ˆ–closeness is purely topological, it is
very well suited to the study of continuous plane fields. When F is taut, there exists
a volume-preserving flow ˆ transverse to F , and this notion of ˆ approximation is
particularly useful, and is the focus of Kazez and Roberts [24], because it is sufficient
that a contact structure � be ˆ–close to F in order to conclude that it is weakly
symplectically fillable and universally tight. Clearly ˆ–close is implied by C 0 close,
and it is the latter notion that is the focus of this paper.

The construction in Eliashberg and Thurston [8] of a contact structure approximating a
foliation consists of two steps. First, a contact structure is constructed in neighborhoods
of curves in leaves of the foliation about which there is contracting holonomy. Next the
foliation is used to propagate the contact structure to the remainder of the manifold.

To carry out this strategy for C 1;0 foliations, extra care is required. The preferred
neighborhoods of curves must be chosen to be particularly thin, and it may be that
a foliation has no such thin neighborhoods. In such a case, a new foliation that C 0

approximates the first and has thin, contracting holonomy is constructed. This is done
by the method of generalized Denjoy blow up and is described in Section 5.

The key issue in attempting to propagate a contact structure defined only on a subset V
of the manifold to the entire manifold is the possibility that not every point outside of V
is connected to V by a leaf of the foliation. The main ideas in finding such a set V are
discussed in Section 4. Since we are changing the foliation and studying a possibly
changing minimal set, arguments have to be made that this is a finite procedure, and
that the desired V is just a finite union of thin contracting neighborhoods.

The culmination of this strategy is Theorem 6.2, which can be roughly stated as:

Theorem 1.4 A transversely oriented C 1;0 foliation F not equal to S1 �S2 is C 0

close to a C1;0 foliation F 0 for which there exists a subset V of M with the following
properties. First, V is a disjoint union of finitely many thin solid tori each of which
is a standard neighborhood of a closed curve in a leaf for which the holonomy has a
contracting interval. Second, M is V–transitive with respect to F 0 .

Geometry & Topology, Volume 21 (2017)
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Much of the focus of the paper is on creating and approximating nontrivial holonomy in
foliations. Section 8 covers the case in which no nontrivial holonomy exists, including
the case that all leaves of the foliation are planes. Throughout the paper, plane is used
in the topological sense; that is, a plane is a surface homeomorphic to R2 . We use
I to mean a nondegenerate closed interval in places, and to mean I D Œ0; 1� in other
places, and the meaning should be clear from context.

In Section 9 we briefly recall the techniques introduced in [24] to propagate a contact
structure along a C1;0 foliation and thereby conclude our main result, Theorem 1.2,
from Theorem 1.4.

In [2], Calegari proves the theorem, proposed in Gabai [18] as folklore in need of proof,
that any C 0 foliation can be isotoped to a C1;0 foliation. This leads to an existence,
as opposed to an approximation, result. That is, the existence of a taut, oriented C 0

foliation is sufficient to guarantee the existence of a pair of contact structures, one
positive and one negative.

Corollary 1.5 Suppose M is a closed, oriented 3–manifold that contains a oriented
C 0 foliation F not equal to S1�S2 . Then M contains a pair of contact structures �C

and �� , one positive and one negative, that may be chosen arbitrarily C 0 close to each
other. When F is taut, these contact structures, .M; �C/ and .�M; ��/, are weakly
symplectically fillable and universally tight.

In [35], Ozsváth and Szabó use the Eliashberg–Thurston existence theorem to show
that L–spaces do not admit transversely orientable, taut C 2 foliations. Since many
constructions of foliations — see Dasbach and Li [5], Delman and Roberts [6], Gabai
[10; 11; 12; 13; 14; 15; 17], Kalelkar and Roberts [23], Kazez and Roberts [24], Li
[29; 30], Li and Roberts [31] and Roberts [36; 37; 38] — are not C 2 , it is useful to be
able to remove the smoothness assumption from their theorem.

A C 0 foliation is topologically taut if there is a topological transversal through every
leaf of the foliation. By Corollary 5.6 of Kazez and Roberts [26], a topologically taut
C 0 foliation is isotopic to a taut C1;0 foliation, and hence the differences between the
versions of tautness are unimportant when working with foliations up to topological
conjugacy.

Corollary 1.6 An L–space does not contain a transversely orientable, topologically
taut C 0 foliation.

One of the motivations for our work is the uniqueness theorem proved by Vogel [43]. He
shows that with mild assumptions on the leaves of a C 2 foliation, which are necessarily
satisfied in an atoroidal, irreducible manifold, sufficiently close approximating contact
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structures must be isotopic to each other. Although our work does not address the
uniqueness question for approximations of C 1;0 foliations, one of our main tools, flow
box decompositions, seems well suited for comparing a pair of close contact structures.

This suggests questions related to uniqueness that can be asked in an atoroidal, irre-
ducible manifold.

(1) If �1 and �2 are sufficiently close to a taut, transversely oriented C 1;0 foliation F ,
are they isotopic?

(2) Can the contact invariant of an approximating contact structure be computed,
and shown not to vanish, directly from the foliation?

(3) If �1 and �2 are sufficiently close to a taut, transversely oriented C 1;0 foliation F ,
are the contact invariants determined by �1 and �2 necessarily equal?

Acknowledgements We thank Jonathan Bowden for helpful feedback on a preliminary
version of this paper. Our focus was originally on taut foliations, as our goal was to
establish the tightness of certain contact structures, and our theorem statements reflected
this, but Bowden made the interesting observation that the condition that the foliation
be taut is not necessary for the existence of a pair of approximating contact structures.
Tautness is necessary only to conclude that there is a volume-preserving transverse
flow, and hence that the approximating contact structures are weakly symplectically
fillable and universally tight. Subsequently, we incorporated this observation in the
statement of Theorem 1.2, and removed superfluous references to tautness throughout
the paper. Proofs remained unchanged, except for the proof of Corollary 8.16, which
was modified to use Lemma 2.12 of [1].

We also thank Vincent Colin, Larry Conlon and John Etnyre for many helpful conver-
sations. We would also like to thank the referee for many helpful comments.

This work was partially supported by grants from the Simons Foundation (#244855 to
Kazez, #317884 to Roberts) and from the National Science Foundation (DMS-1612036
to Kazez, DMS-1612475 to Roberts).

2 Background

We begin by defining foliations in 3–manifolds with empty boundary. Near the end of
this section, we extend these definitions to 3–manifolds with nonempty boundary that
are smooth or smooth with corners; namely, manifolds locally modeled by open sets
in Œ0;1/3 .

Definition 2.1 Let M be a smooth 3–manifold with empty boundary. Let k and l
be nonnegative integers or infinity with l � k . Both C k and C k;l codimension-one

Geometry & Topology, Volume 21 (2017)



3606 William H Kazez and Rachel Roberts

foliations F are decompositions of M into a disjoint union of C k immersed connected
surfaces, called the leaves of F , together with a collection of charts Ui covering M ,
with �i W R2 �R! Ui a homeomorphism, such that the preimage of each component
of a leaf intersected with Ui is a horizontal plane.

The foliation F is C k if the charts .Ui ; �i / can be chosen so that each �i is a C k

diffeomorphism.

The foliation F is C k;l if for all i and j ,

(1) the derivatives @ax @
b
y @

c
z , taken in any order, on the domain of each �i and each

transition function ��1j �i are continuous for all aC b � k , and c � l , and

(2) if l � 1, then �i is a C 1 diffeomorphism.

Remark 2.2 The smoothness conditions on both the charts and the transition functions
are to ensure that the smooth structure on the leaves is compatible with the smooth
structure on M .

In particular, TF exists and is continuous if and only if F is C 1;0 . Also notice that
C k;l foliations are C l , but not conversely.

Two C k;0 foliations F and G of M are called C k;0–equivalent if there is a self-
homeomorphism of M that maps the leaves of F to the leaves G , and is C k when
restricted to any leaf of F .

Remark 2.3 Definition 2.1 is an amalgamation of two definitions due to Candel and
Conlon [4, 1.2.22, 1.2.24]. In one of their definitions, they allow for the possibility
that the ambient manifold is not given a differentiable structure or that it may have a
differentiable structure that does not contain TF as a subbundle. Since a topological
3–manifold admits a unique smoothness structure [32], we forgo this generality and
require leaves of F to be C k immersed in M .

Given a codimension-one foliation F , it is useful to fix a flow ˆ transverse to F . Even
when the leaves of the foliation are only topologically immersed, Siebenmann shows
[41, Theorem 6.26] — see also Chapter IV of [21] — that there is a 1–dimensional
transverse foliation. For foliations with smoother leaves it is much easier to construct a
transverse flow. We next recall some basic facts about flows.

Definition 2.4 (see, for example, Section 17 of [27]) A global flow on M is an
action of R on M ; that is, a continuous map

�W M �R!M

such that
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(1) �.�.p; s/; t/D �.p; t C s/, and

(2) �.p; 0/D p .

For each p 2M , there is a curve �pW R!M given by �p.t/D �.p; t/.

Proposition 2.5 [27, Proposition 17.3] Let �W M �R!M be a smooth global flow.
The vector field V W M ! TM given by V.p/D �0p.0/ is smooth, and each curve �p is
an integral curve of V .

We call V the vector field determined by the flow � . Let ˆ denote the 1–dimensional
smooth foliation with leaves the integral curves �p of V . Conversely, since M is
compact, any smooth vector field determines a smooth flow.

Theorem 2.6 [27, Theorems 17.8 and 17.11] Given a smooth vector field V on M ,
there is a unique global flow �W M �R!M such that V is the vector field determined
by � .

So any choice of nowhere-zero tangent vector field to a smooth 1–dimensional foliation
determines a smooth global flow on M .

If there is a continuously varying vector field transverse to the leaves of a foliation F ,
then F is transversely orientable.

Theorem 2.7 [41, Theorem 6.26; 21, Theorems 1.1.2 and 1.3.2] Let F be a codimen-
sion-one, transversely oriented C 0 foliation. There is a continuous flow ˆ transverse
to F .

When M is C 1;0 , this flow can be chosen to be smooth. In fact, there is a smooth
nowhere-zero vector field V W M ! TM everywhere positively transverse to F , and if
M is given a Riemannian metric, then V can be chosen to lie arbitrarily C 0 close to
the continuous vector field of vectors perpendicular to TF .

Proof We are primarily interested in the case that F is C 1;0 . Since in this case the
proof is both immediate and enlightening, we reproduce it here. Fix a Riemannian
metric on M . Since F is transversely oriented, each tangent plane TpF has a preferred
orientation. For each p 2M , let V?.p/ denote the positive unit normal to the tangent
plane TpF . Approximate V?.p/ by a smooth vector field V . If the approximation is
taken close enough it will be nonzero and transverse to TF .

When a foliation F and a transverse flow ˆ are understood, a submanifold of positive
codimension in M is called horizontal if each component is a submanifold of a leaf
of F and vertical if it can be expressed as a union of subsegments of the flow ˆ. A
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codimension-0 submanifold X of M is called .F ; ˆ/–compatible if its boundary is
piecewise horizontal and vertical, and hence F and ˆ restrict naturally to foliation
and flow on X . If X is .F ; ˆ/–compatible, let @vX denote its vertical boundary and
let @hV denote its horizontal boundary.

Definition 2.8 [24] Let F be either a C k or C k;l foliation, and let ˆ be a transverse
flow. A flow box, F , is an .F ; ˆ/–compatible closed chart, possibly with corners.
That is, it is a submanifold diffeomorphic to D � I , where D is either a closed C k

disk or a polygon (a closed disk with at least three corners), ˆ intersects F in the
arcs f.x; y/g � I , and each component of D � @I is embedded in a leaf of F . The
components of F \F give a family of graphs over D .

In the case that D is a polygon, it is often useful to view the disk D as a 2–cell with
@D the cell complex obtained by letting the vertices correspond exactly to the corners
of D . Similarly, it is useful to view the flow box F as a 3–cell possessing the product
cell complex structure of D� I . Then @hF is a union of two (horizontal) 2–cells and
@vF is a union of c (vertical) 2–cells, where c is the number of corners of D . In
the case that D has no corners, we abuse language slightly and consider @hF to be a
union of two (horizontal) 2–cells and @vF to be a single vertical face, where the face
is the entire vertical annulus @D � I .

Suppose V is either empty or else a compact, .F ; ˆ/–compatible, codimension-0
submanifold of M . A flow box decomposition of M rel V , or simply flow box
decomposition of M if V D ∅, is a decomposition of M n intV as a finite union
M D V [

�S
i Fi

�
, where

(1) each Fi is a flow box,

(2) the interiors of Fi and Fj are disjoint if i ¤ j , and

(3) if i ¤ j and Fi \ Fj is nonempty, it must be homeomorphic to a point, an
interval or a disk that is wholly contained either in @hFi \ @hFj or in a single
face in each of @vFi and @vFj .

In [25], we develop a theory of flow box decompositions and show that they are
particularly well suited to the study of codimension-one foliations. Their role is similar
to that played by triangulations and branched surfaces, but they are perhaps better
suited to the consideration of differentiability properties.

Lemma 2.9 [24] Let F be a C 0 foliation and ˆ a C 0 transverse flow. There is a
flow box decomposition for .M;F ; ˆ/. When F is C k;0 with k � 1, and ˆ is smooth,
this flow box decomposition can be chosen to be C k .
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Two 2–plane bundles, for instance two contact structures, are said to be C 0 close, if
at each point, the associated 2–planes are close in the associated Grassmann bundle
of 2–planes. Two C 1;0 foliations, F and G , are C 0 close if the associated 2–plane
bundles TF and TG are C 0 close. A 2–plane bundle, for instance a contact structure,
is C 0 close to a C 1;0 foliation F if it is C 0 close to TF . A diffeomorphism C 1 close
to the identity map will preserve C 0 proximity of foliations and contact structures.

As the next theorem and its corollary show, there is often no loss of generality in
restricting attention to foliations with smooth leaves.

Theorem 2.10 [2; 25] Suppose F is a C 1;0 foliation in M . Then there is an isotopy
of M taking F to a C1;0 foliation G which is C 0 close to F . If ˆ is a smooth flow
transverse to F , the isotopy may be taken to map each flow line of ˆ to itself.

Corollary 2.11 If every C1;0 transversely oriented foliation can be C 0 approxi-
mated by positive and negative contact structures, then the same is true for every C 1;0

transversely oriented foliation.

3 Holonomy neighborhoods

Let  be an oriented simple closed curve in a leaf L of F , and let p be a point in  .
We are interested in the behavior of F in a neighborhood of  . Let h be a holonomy
map for F along  , and let � and � be small closed segments of the flow ˆ which
contain p in their interiors and satisfy h .�/D � . Choose � small enough that � [ �
is a closed segment and not a loop. Notice that � \ � is necessarily a closed segment
containing p in its interior. There are three possibilities:

(1) � D � ,

(2) one of � and � is properly contained in the other, or

(3) � \ � is properly contained in each of � and � .

We will need to consider very carefully a regular neighborhood of  which lies nicely
with respect to both F and ˆ. To this end, restrict attention to foliations F which
are C1;0 and transverse flows ˆ which are smooth, and suppose that  is smoothly
embedded in L. Let A be the closure of a smooth regular neighborhood of  in L; so
A is a smoothly embedded annulus in L.

Lemma 3.1 Suppose F is C1;0 and ˆ is smooth. If � and A are chosen to be small
enough, there is a compact submanifold V of M , smoothly embedded with corners,
which satisfies the following:
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(1) V is homeomorphic to a solid torus.

(2) @V is piecewise vertical and horizontal; namely, @V decomposes as a union
of subsurfaces @vV [ @hV , where @vV is a union of flow segments of ˆ and
@hV is a union of two surfaces L� and LC , each of which is either a disk or an
annulus, contained in leaves of F .

(3) each flow segment of ˆ\V runs from L� to LC .

(4) � is a component of the flow segments of ˆ\V .

(5) A is a leaf of the foliation F \V .

Proof Cover a small open neighborhood of  by finitely many smooth flow boxes.
By passing to a smaller � and A as necessary, we may suppose that A is covered by
two flow boxes with union, V , satisfying the properties (1)–(5).

Notation 3.2 Denote the neighborhood V of Lemma 3.1 by V .�; A/.

Notice that if � D � , then V .�; A/ is diffeomorphic to A � I , where I is a non-
degenerate closed interval. Otherwise, there is a unique smooth vertical rectangle,
R say, such that the result of cutting V .�; A/ open along R , and taking the metric
closure, is diffeomorphic to a solid cube.

Notation 3.3 Write R .�; A/ for any smooth vertical rectangle embedded in V .�; A/
such that the result of cutting V .�; A/ open along R , and taking the metric closure,
is diffeomorphic to a solid cube. When V .�; A/ is not diffeomorphic to a product,
R .�; A/ is uniquely determined. Let Q .�; A/ denote the solid cube obtained by
splitting V .�; A/ along R .�; A/.

Note that if  is essential, then Q .�; A/ can be viewed as an . zF ; ẑ / flow box, where
. zF ; ẑ / is the lift of .F ; ˆ/ to the universal cover of M .

Definition 3.4 The neighborhood V .�; A/ is called the holonomy neighborhood
determined by .�; A/, and is called an attracting neighborhood if h .�/ is contained
in the interior of � .

Notice that at most one of V .�/ and V� .�/ can be attracting. More generally,
consider the fixed point set Fix.h /� � of h . The set Fix.h / is closed and cuts �
into open intervals on which h is either strictly increasing or strictly decreasing.
Identify .�; p/ with .I; 0/ for some closed interval I containing 0 in its interior. If
h is decreasing on .0; t/ and increasing on .�s; 0/ for some s; t > 0, then there is a
choice of � 0 � � determining an attracting neighborhood V .� 0; A/. Symmetrically, if
h is increasing on .0; t/ and decreasing on .�s; 0/, then there is a choice of � 0 � �
determining an attracting neighborhood V� .� 0; A/.
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Definition 3.5 Let F be a C1;0 foliation. A set of holonomy neighborhoods
V1

.�1; A1/; : : : ; Vn
.�n; An/ for F is spanning if each leaf of F has nonempty

intersection with the interior of at least one Vi
.�i ; Ai /.

Definition 3.6 Let V be the union of pairwise disjoint holonomy neighborhoods
V1

.�1; A1/; : : : ; Vn
.�n; An/ for F . A C1;0 foliation G in M is called V–compatible

with F (or simply V–compatible if F is clear from context) if each Vi
.�i ; Ai / is a

holonomy neighborhood for G , with V spanning for G if it is spanning for F .

Fix a set of pairwise disjoint holonomy neighborhoods V1
.�1; A1/; : : : , Vn

.�n; An/

for F , and let V denote their union. Let Ri D Ri
.�i ; Ai / for 1 � i � n and let R

denote the union of the Ri . For each i with 1� i � n fix a smooth open neighborhood
NRi

of Ri in Vi . Choose each NRi
small enough that its closure, NRi

, is a closed
regular neighborhood of Ri . Let NR denote the union of the NRi

.

Now, given V , R and NR , we further constrain the set of foliations F (that we need
to approximate by smooth contact structures) to C1;0 foliations which are smooth
on NR . The following lemma establishes that we can do this with no loss of generality.

Lemma 3.7 [25] Let F be a C1;0 foliation and let ˆ be a smooth flow transverse
to F . Let V denote the union of a set of pairwise disjoint holonomy neighborhoods
for F and fix NR as above. There is an isotopy of M taking F to a C1;0 foliation
which is both C 0 close to F and smooth on NR . This isotopy may be taken to preserve
both V and the flow lines of ˆ setwise.

Next we describe a preferred product parametrization on a closed set containing V . In
this paper, we express S1 as the quotient S1D Œ�1; 1�=�, where � is the equivalence
relation on Œ�1; 1� which identifies �1 and 1.

Lemma 3.8 Let F be a C1;0 foliation and let ˆ be a smooth flow transverse to F .
Let V denote the union of pairwise disjoint holonomy neighborhoods Vi D Vi

.�i ; Ai /

for F for 1 � i � n, and fix NR as above. Suppose F is smooth on NR . Then for
each i with 1� i � n there is a pairwise disjoint collection of closed solid tori Pi such
that Pi contains Vi and there is a diffeomorphism Pi ! Œ�1; 1��S1 � Œ�1; 1� which
satisfies the following:

(1) The flow segments ˆ\Pi are identified with the segments f.x; y/g � Œ�1; 1�.

(2) Ai is identified with Œ�1; 1��S1 � f0g.

(3) i is identified with f0g �S1 � f0g.

(4) Ri is identified with Œ�1; 1�� f1��1g � Œ�1; 1�.
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(5) The restriction of the diffeomorphism to NRi
maps leaves of F to horizontal

level surfaces Dz�fzg, where Dz is either Œ�1; 1��
�
1
2
; 1
�
, Œ�1; 1��

�
�1;�1

2

�
,

or it is the union of both with identifications along Ri , that is,

Œ�1; 1��
���

1
2
; 1
�
[
�
�1;�1

2

��
=�
�
:

Proof Since Vi is homeomorphic to a solid torus, it is contained in a solid torus
which is diffeomorphic to Œ�1; 1�� S1 � Œ�1; 1�, where the diffeomorphism can be
chosen to identify A with Œ�1; 1��S1 � f0g and the flow segments ˆ\P with the
segments f.x; y/g � Œ�1; 1�. Moreover, since the restriction of F to Vi \NR is a
smooth product foliation transverse to vertical fibers, and there is a unique such up to
diffeomorphism, this diffeomorphism Pi! Œ�1; 1��S1�Œ�1; 1� can also be chosen so
that the restriction of the diffeomorphism to NR maps leaves of F \NR to horizontal
level surfaces Dz � fzg, where Dz D Œ�1; 1��

���
1
2
; 1
�
[
�
�1;�1

2

��
=�

�
.

f0g �S1 � Œ�1; 1�

R

NR

V � P

Figure 1: A vertical slice of the image of V under the diffeomorphism from
P to Œ�1; 1��S1 � Œ�1; 1�

Definition 3.9 Fix V and NR as above. Let Pi and Pi ! Œ�1; 1� � S1 � Œ�1; 1�

be as given in Lemma 3.8. Abuse notation and use the diffeomorphism to identify
Pi with Œ�1; 1� � S1 � Œ�1; 1�. Let Pi be the product foliation of Pi with leaves
.Œ�1; 1��S1/� ftg, and call such a foliated solid torus, .Pi ;Pi /, a product neighbor-
hood of .Vi INRi

/. Letting P denote the union of the Pi and P denote the union of
the Pi , call .P;P/ a product neighborhood of .V INR/.
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Definition 3.10 Let F be a C1;0 foliation and V the union of pairwise disjoint,
holonomy neighborhoods Vi

.�i ; Ai / for F for 1 � i � k . Let R denote the union
of the Ri

.�i ; Ai / for 1� i � k , and let NR be an open regular neighborhood of R
in V . Let .P;P/ be a product neighborhood of .V INR/. The foliation F is strongly
.V; P /–compatible if

(1) F \NR D P \NR , and

(2) in the coordinates inherited from P , the intersection F\V is a product foliation
Œ�1; 1� � F0 , where F0 is a C1;0 foliation of V \ .f0g � S1 � Œ�1; 1�/ (ie
F \V is x–invariant).

Given V , R and NR , we will further constrain the set of foliations F (that we need to ap-
proximate by smooth contact structures) to C1;0 foliations which are strongly .V; P /–
compatible for some choice of product neighborhood .P;P/. The following lemma
establishes that we can do this with no loss of generality; namely, after a small pertur-
bation of F , it is possible to rechoose the diffeomorphisms Pi! Œ�1; 1��S1� Œ�1; 1�

so that F D P on NR and F is invariant under translation in the first coordinate.

Lemma 3.11 [25] Let F be a C1;0 foliation and let ˆ be a smooth flow transverse
to F . Let V denote the union of a set of pairwise disjoint holonomy neighborhoods for
F and fix NR as above. There is an isotopy of M which takes F to a C1;0 foliation
which is C 0 close to F and strongly .V; P /–compatible for some choice of product
neighborhood .P;P/ of .V INR/. This isotopy may be taken to preserve both V and
the flow lines of ˆ setwise.

For simplicity of exposition, it is sometimes useful to fix a product metric on P . We
do so as follows.

Definition 3.12 Let V .�; A/ be a holonomy neighborhood and let .P;P/ be a product
neighborhood of V .�; A/.

Put the standard metric on intervals and let S1 D Œ�1; 1�=f�1� 1g inherit its metric
from Œ�1; 1�. Then put the product metric on P D Œ�1; 1� � S1 � Œ�1; 1�. When
P comes equipped with the identification P D Œ�1; 1� � S1 � Œ�1; 1� as given in
Lemma 3.8 together with this product metric, the product neighborhood .P;P/ is
called a metric product neighborhood of V .�; A/.

A metric product neighborhood induces a metric on both V .�; A/�P and, via lengths
of paths, on Q .�; A/.
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Proposition 3.13 Suppose V .�; A/ is a holonomy neighborhood with metric product
neighborhood .P;P/. Choose � > 0. There is a closed transversal � 0 � � containing p
in its interior such that T .F \V .� 0; A// is � C 0 close to T .P \V .� 0; A//.

Proof At each point x of  , choose a foliation chart of the form Ux � .�ıx; ıx/

such that Ux is a neighborhood of x in A and fxg� .�ıx; ıx/ is transverse to both P
and F . Since both foliations are at least C1;0 and contain A as a leaf, ıx may be
chosen small enough that TP and TF are within � at all points of Ux � .�ıx; ıx/.
Passing to a finite cover, there exists a short enough transversal � 0 � � about p such
that all its leaf-preserving translates sweep out the desired neighborhood V .� 0; A/.

Definition 3.14 Suppose V .�; A/ is a holonomy neighborhood with product neighbor-
hood .P;P/. Choose a metric on P . The restriction of F to V .�; A/ is �–horizontal
if T .F \V .� 0; A// is � C 0 close to T .P \V .� 0; A//.

Definition 3.15 Suppose V .�; A/ is a holonomy neighborhood for F with metric
product neighborhood .P;P/. Fix � > 0. V .�; A/ is �–flat if the length of the longest
segment of the restriction of ˆ to V .�; A/ is bounded above by � .

In other words, V .�; A/ is �–flat if its maximum “height” is small relative to both its
minimum “width” and its minimum “length”. The next lemma follows immediately
from the continuity of TF .

Lemma 3.16 Fix � > 0. There is a ı > 0 so that if V .�; A/ is ı–flat, then the
restriction of F to V .�; A/ is �–horizontal.

4 Minimal sets

Holonomy neighborhoods which are attracting play a particularly important role in
the construction of approximating contact structures. Results from the last section
will eventually be used to make C 0 approximations in a single (attracting) holonomy
neighborhood. Results in this section will be used to choose or create enough attracting
holonomy neighborhoods that these approximations can be extended to all of M . This
is accomplished through the use of minimal sets.

Definition 4.1 Let F be a C 0 foliation. A minimal set of F is a nonempty closed
subset of M that is a union of leaves and is minimal with respect to inclusion among
such sets.
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Equivalently, a subset ƒ of M is a minimal set if and only if both ƒD xL for some
leaf L and ƒ properly contains no leaf closure. In particular, if ƒ is a minimal set,
then ƒD xL for all leaves L contained in ƒ. More generally, if L is any leaf of F ,
then by Zorn’s lemma, xL contains at least one minimal set.

The next two results follow from elementary point set topology. See, for example, [3,
Chapter 3, Theorem 1].

Proposition 4.2 Let ƒ be a minimal set of F . Then every leaf of F contained in ƒ
is dense in ƒ.

Proposition 4.3 Let ƒ be a minimal set of F and let � be a transversal to F satisfying
ƒ\ int � ¤∅. Then the following properties hold:

(1) The intersection ƒ\ � is either discrete, all of � or a Cantor set.

(2) ƒ\ � D � if and only if F Dƒ is minimal.

(3) ƒ\ � is discrete if and only if ƒ consists of a single compact leaf.

Moreover, if � is any other transversal to F satisfying ƒ\ int � ¤∅, then both ƒ\ �
and ƒ \ � are of the same type, namely, discrete, all of the transverse interval, or
Cantor.

A minimal set ƒ is called exceptional if ƒ\ � is a Cantor set for some transversal � .
A foliation is called minimal if it is itself a minimal set.

Definition 4.4 Suppose that ƒ is a minimal set and that � is a transversal to F .
When ƒ\ � is a Cantor set, we differentiate between those points of ƒ\ � which
are endpoints of “removed intervals” and those which are not. The leaves of ƒ which
correspond to points which are endpoints of “removed intervals” are isolated on one
side in ƒ and so we refer to them as boundary leaves. The leaves L of ƒ which do not
correspond to endpoints of “removed intervals” are approached arbitrarily closely on
both sides by leaves in ƒ (and hence by leaves of L). Call these leaves nonboundary
leaves.

When ƒ\� D � , Proposition 4.3 implies ƒDM and all leaves of ƒ are nonboundary
leaves. When ƒ\ � is discrete, the single compact leaf of ƒ is a boundary leaf.

Definition 4.5 Let p 2M . A closed segment � is a transversal about p if � is a
transversal to F which contains p in its interior.

Lemma 4.6 Let S � f0; 1g be leaves of F which bound an I–bundle S � I such that
each I–fiber is transverse to F . If ƒ� S � I is a minimal set of F , then necessarily
S is compact and ƒ is isotopic to S � f0g.
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Proof Begin by noting that since any I–fiber fxg � .0; 1/ for x 2 S is disjoint from
S � f0; 1g, the closure S � f0g has empty intersection with S � .0; 1/. Hence, either
S is compact and ƒ is a component of S � f0; 1g, or S � f0; 1g is disjoint from ƒ.

Restrict attention therefore to the case that S � f0; 1g is disjoint from ƒ. Since ƒ is
closed, for each x 2 S there is a minimum point mx of .fxg � I /\ƒ. Let Lmin be
collection of all such points mx as x ranges over S . In the analogous way define Lmax

to be the union of points Mx .

Notice that if B DD� I � S � I is any flow box, each of Lmin\B and Lmax\B is
a component of F \B . It follows that Lmin and Lmax are leaves of ƒ. If mx <MX
for some x , it follows that xLmin\ xLmax D∅, a contradiction. Thus Lmin DLmax Dƒ

is compact, and isotopic to S � f0g. It follows that S is necessarily compact.

In Section 8, we will investigate foliations with only trivial holonomy, and the following
lemma will prove useful. It is included here as its proof uses flow box decompositions,
but is not needed for any of the results of this section.

Lemma 4.7 Let S � f0; 1g be leaves of F which bound an I–bundle S � I in M .
Suppose that F lies transverse to the I–fibers and has only trivial holonomy. Then the
restriction of F to S � I is, up to a ˆ–preserving isotopy, the product foliation S � I .

Proof Let L be any leaf of the restriction of F to S � .0; 1/. We claim that L
intersects each flow box D � I in exactly one component, and hence is isotopic, via
a ˆ–preserving isotopy, to L � f0g. Consider a component � D D � fag of the
intersection of L with flow boxes B DD � I . Suppose by way of contradiction that
L\B contains a second component �0 DD � fa0g.

Let x 2 D . Since L is connected, there is a path � in L from .x; a/ to .x; a0/.
Express � as a concatenation of finitely many intervals, each of which lies in a single
flow box, and consider the immersed cylinder ��I . A standard cut and paste argument
reveals that we may assume that this cylinder is embedded. But the existence of
the path � implies the existence of nontrivial holonomy, a contradiction. Hence, the
intersection of L with any flow box is connected. In addition, since S is path-connected,
and therefore any two flow boxes are connected by a path in S � Œ0; 1�, the intersection
of L with any flow box is also nonempty. Hence, the restriction of F to S � Œ0; 1� is,
up to a ˆ–preserving isotopy, the product foliation S � I .

Corollary 4.8 Suppose F is a C 0 foliation of a compact 3–manifold M .

(1) At most finitely many isotopy classes of compact surfaces can be realized as
leaves of F .

(2) F can contain only finitely many exceptional minimal sets.
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Proof If F is not transversely oriented, work instead with . yM; yF/, where � W yM!M

is a double cover such that yF D ��1.F/ is transversely oriented. (See, for example,
Proposition 3.5.1 of [4].) In this case, ƒ is a minimal set for F only if ��1.ƒ/
contains a minimal set for yF , and hence if the claimed result holds true for yF , it holds
true for F also.

So restrict attention to the case that F is transversely oriented, and let ˆ be an oriented
flow transverse to F . Choose a flow box decomposition B for .M;F ; ˆ/. Denote a
flow box in B by B DD � I . For each leaf L of F and flow box B of B , call any
component of L\B a plaque of L.

Let LD fƒ˛g denote any finite set of distinct minimal sets of F , and let ƒD
S
˛ ƒ˛ .

Let Bi for i D 1; : : : ; n be those flow boxes such that Bi \ƒ ¤ ∅. Let Y denote
the open manifold M nƒ. Let S D fDi � f0g j 1 � i � ng [ fDi � f1g j 1 � i � ng.
Define a map f W S! L by f .Di � fj g/Dƒ˛0

if the plaque of ƒ in Bi closest to
Di � fj g lies in a leaf of ƒ˛0

. Since S is finite, so is the image of f .

Consider a minimal set ƒˇ in L which is not in the image of f . We claim that ƒˇ is
a compact leaf Lˇ and lies as a section of a trivial R–bundle component of Y [ƒˇ ,
where the R–fibers are subsegments of the flow ˆ.

To see that this is true, proceed as follows. Let † denote the component of the open
manifold Y [ƒˇ DM n

S
˛¤ˇ ƒ˛ which contains ƒˇ . Choose any p 2 Lˇ , a leaf

of ƒˇ . This point p lies in a plaque Di � fbg of ƒˇ for some 0 < b < 1. Consider
the two plaques of the closed set ƒnƒˇ which lie closest to Di �fbg. They cobound
a flow box †i .a; c/DDi � .a; c/�†, for some 0� a < b < c � 1. Let La be the
leaf containing Di � fag, and let Lc be the leaf containing Di � fcg.

Next consider any Bj 2 B satisfying @vBj \†i .a; c/ ¤ ∅. Since ƒˇ is not in the
image of f , we have †i .a; c/\ @hBj D∅, and hence †i .a; c/ naturally extends to
an I–bundle of the form .Di [Dj /�R�†. Repeat this process of moving through
adjacent flow boxes to obtain an exhaustion of La by an increasing union of plaques,
and an exhaustion of † by an increasing union of R–bundles, where the R–fibers are
subsegments of the flow ˆ and these R–bundles are trivial since the flow is oriented.
To see that all of † is realized by this exhaustion, note that † is path-connected, and
any closed path can be decomposed as a piecewise union of finitely many intervals,
each of which lies in a single flow box. It follows that † is an a trivial R–bundle
over La , with all R–fibers subsegments of the flow ˆ. So the leaves La , Lˇ and
Lc are isotopic. Since La and Lˇ bound an I–bundle and xLa ¤ xLˇ , it follows from
Lemma 4.6 that La , Lˇ and Lc are compact.

Hence, any exceptional minimal set lies in the image of f , and thus, there can be
at most 2jBj exceptional minimal sets. Moreover, any compact leaf has an isotopy
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representative that lies in the image of f , and thus, at most finitely many isotopy
classes of compact surface can be realized as leaves of F .

Remark 4.9 Recall that any compact 3–manifold admits a triangulation [32]. More-
over, given a foliation F , there is a triangulation T of M which is compatible with F ;
namely, F is in Haken normal form with respect to T [19, Lemma 1.3]. Hence
there is a similar proof of Corollary 4.8 which uses triangulations instead of flow box
decompositions. Our proof doesn’t depend on first finding a good triangulation.

Corollary 4.10 Suppose ƒ is a minimal set and p 2 ƒ. Let � be any transversal
about p . If ƒ is a compact leaf, then there is a transversal �0 � � about p such that if
a minimal set intersects �0 , it is a compact leaf isotopic to ƒ. If ƒ is not a compact
leaf, there is a transversal �0 � � about p which does not intersect any minimal set
other than ƒ.

Proof Since minimal sets are closed and there are only finitely many exceptional
minimal sets by Corollary 4.8, it is possible to choose �0 about p that misses all
exceptional minimal sets that are not equal to ƒ. Furthermore, Corollary 4.8 implies
that if there is no transversal �0 about p that is disjoint from all minimal sets not
equal to ƒ, there must exist a sequence of compact leaves Li all mutually isotopic
that limit on ƒ. However, referring to the proof of Corollary 4.8, at most finitely many
of the compact leaves Li lie in the image of f and any other, S D Lj say, lies as a
surface fiber in one of finitely many I–bundles of the form S � I , where the surfaces
S �f0; 1g are leaves of F . Hence, the nonexistence of �0 implies that ƒ is a minimal
set embedded in an I–bundle S � Œ0; 1� transverse to the I–fibers, and therefore by
Lemma 4.6 is a compact leaf isotopic to S D Lj .

Notation 4.11 Fix a C 0 foliation F . If F is minimal, set ƒ1 D F . Otherwise, let
ƒ1; : : : ; ƒr denote the exceptional minimal sets of F and let ŒL1�; : : : ; ŒLs� denote
the isotopy classes of compact leaves of F .

For each compact leaf of F , let X.L/ denote the minimal F –saturated closed subset
of M containing all leaves of F which are isotopic to L.

Corollary 4.12 Let F be a C 0 foliation that is not a fibering of M over S1 . Then
there are finitely many pairwise disjoint holonomy neighborhoods

V1
.�1; A1/; : : : ; VrCs

.�rCs; ArCs/

such that

(1) i is an essential simple closed curve in a leaf of ƒi for 1� i � r ,
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(2) rCi is an essential simple closed curve in a leaf in the isotopy class ŒLi � and
each leaf isotopic to Li lies in the interior of VrCi

.�rCi ; ArCi / for 1� i � s ,
and

(3) each minimal set of F has nonempty intersection with the interior of exactly one
Vi
.�i ; Ai /.

In particular, the set of holonomy neighborhoods fVi
.�i ; Ai /gi is spanning.

Conditions (1) and (2) guarantee that each minimal set of F has nonempty intersection
with the interior of at least one Vi

.�i ; Ai /. So condition (3) guarantees that each
Vi
.�i ; Ai / for 1� i � r has nonempty intersection with exactly one minimal set, ƒi ,

and each VrCi
.�rCi ; ArCi / for 1� i � s has nonempty intersection with exactly one

isotopy class of minimal set, ŒLi �.

Proof For each i with 1� i � r let i be an essential simple closed curve in a leaf
of ƒi , and choose a holonomy neighborhood Vi

.�i ; Ai /. Choose the .�i ; Ai / so that
the neighborhoods Vi

.�i ; Ai / are pairwise disjoint and disjoint from any compact leaf
of F . This is possible by Corollary 4.10.

Let L be a compact leaf of F . Recall that X.L/ denotes the minimal F –saturated
closed subset of M containing all leaves of F which are isotopic to L. Since F is not
a fibering of M over S1 , either X.L/DL or X.L/ŠL�Œ0; 1�, with the identification
given by a homeomorphism. Note that if L and F are compact leaves of F , then
either L and F are isotopic and X.L/ D X.F /, or L and F are not isotopic and
X.L/\X.F /D ∅. Rechoose the isotopy class representatives as necessary so that
X.L1/; : : : ; X.Ls/ is a listing of the sets X.L/, where either X.Li / D Li or Li is
identified with Li � f0g under the identification X.Li /D Li � I .

Set nD r C s .

For each j , let rCj be an essential simple closed curve in Lj D Lj � f0g. Choose
a holonomy neighborhood VrCj

.�rCj ; ArCj /. If X.Lj / D Lj � Œ0; 1�, choose
the transversal �rCj long enough that its interior has nonempty intersection with
Lj � f1g (and hence also with all leaves isotopic to Lj ), and short enough that the
holonomy neighborhoods VrC1

.�1; A1/; : : : ; Vn
.�n; An/ are pairwise disjoint and

disjoint from the minimal sets ƒ1; : : : ; ƒr and their fixed holonomy neighborhoods
V1

.�1; A1/; : : : ; Vr
.�r ; Ar/.

Since the closure of any leaf contains a minimal set, each leaf of F has nonempty
intersection with the interior of Vi

.�i ; Ai / for some i ; in other words, the collection
of holonomy neighborhoods fVi

.�i ; Ai /gi is spanning.
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5 Generalized Denjoy blow up

In this section we define the operation of generalized Denjoy blow up. Informally, this
operation consists of thickening a leaf and inserting a new foliation into the thickened
region. This will be used to modify a foliation and create attracting neighborhoods of
curves in a leaf of a foliation.

Definition 5.1 Let L be a finite (or even countably infinite) union of leaves of a C k;0

foliation F of M with k � 1, and let ˆ be a smooth flow transverse to F . A C k;0

foliation, F 0 , is a generalized Denjoy blow up of F along L if there is an open subset
U �M and a collapsing map hW M !M satisfying the following properties:

(1) F 0 is transverse to ˆ.

(2) There is an injective C k immersion j W L� .0; 1/!M with j.L� .0; 1//DU .

(3) For each x 2 L, the image j.fxg � I / is contained in a flow line of ˆ.

(4) j.L� f0g/ and j.L� f1g/ are leaves of F 0 .

(5) h�1.x/ is a point for x … L and equals j.fxg � I / for x 2 L.

(6) h preserves flow lines of ˆ and maps leaves of F 0 to leaves of F .

(7) h is C 0 on M and C k when restricted to any leaf of F 0 .

When the restriction of F 0 to j.L� Œ0; 1�/ is a product foliation, F 0 is also referred to
as a Denjoy blow up of F along L.

Theorem 5.2 [7; 25] Let F be C k;0 foliation with k � 1 that is transverse to a
smooth flow ˆ. Let L be a finite or countable collection of leaves of F , and let F1 be
a C k;0 foliation of L� I transverse to the I coordinate that contains L�@I as leaves.
Then there exists F 0 arbitrarily C 0 close to F that is a generalized Denjoy blow up
of F along L, and such that the pullback of F 0 to L� I is C k;0–equivalent to F1 .

Moreover, if V is the union of a set of pairwise disjoint holonomy neighborhoods for F ,
.P;P/ is a product neighborhood of V , and F is strongly .V; P /–compatible, then F 0

can be chosen to be both V–compatible with F and strongly .V; P /–compatible.

Remark 5.3 The main ideas of Theorem 5.2 are due to Dippolito [7]. We require
slightly more than is easily extracted from his work, namely, C 0 approximation. We
give a proof of the theorem in [25] using flow box decompositions that also allows
for C 1 , rather than C1 , leaves. We also realize the additional conditions that F 0 be
both V–compatible with F and strongly .V; P /–compatible.
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In order to create attracting neighborhoods, we will be interested in inserting foliations
into L� .0; 1/ of the form described in the following lemma.

Lemma 5.4 Let  be an oriented essential simple closed curve in LDL�f0g. There
is a C1;0 foliation on L�I , transverse to the I–fibers fxg�I for x 2L and such that
the holonomy h along  is monotone decreasing on the interior of I . Moreover, this
foliation of L� I can be chosen so that L� f0g and L� f1g are its only minimal sets.

Proof If  does not separate, let ˛ be a properly embedded curve in L that intersects
 in a point. Let P be the product foliation on .Ln˛/� I , and let h W I ! I be the
desired holonomy about  . Then glueing the leaves of P at height x to those of height
h .x/ gives a foliation on L� I with holonomy h around  .

If  separates L into components A and B , first consider the case that A is compact
with genus g � 1. In the usual way, A may be thought of a disk D with 4g disjoint
subarcs glued in pairs. Let P be the product foliation on D� I . Using 2g homeomor-
phisms hi of I to glue up the leaves of P produces a foliation on A� I . With the
right choice of pairings of glued subarcs, the holonomy along  will be the product
of g commutators of the hi . Since any orientation-preserving homeomorphism of I
can be written as a single commutator — see for instance, Lemma 3.1 of [29] — this
construction can be carried out for any genus and any choice of h .

Next, consider the case that A is not compact. Let ˛ be a properly embedded half-
infinite line contained in A and starting on  . Splitting A along ˛ and glueing leaves
with h as in the nonseparating case gives the desired foliation around  .

The same constructions are used to extend a given choice of holonomy across B .

Notation 5.5 Any foliation given by a generalized Denjoy blow up of F along L,
with the foliation inserted into L � .0; 1/ of the type generated by Lemma 5.4, is
denoted by F 0 D F.L; /.

The following two lemmas use the notation of Definition 5.1 to describe the effect of
generalized Denjoy blow up on the set of minimal sets of F.

Lemma 5.6 Let L be a leaf of F that is not contained in any minimal set of F . Let
F 0 be a generalized Denjoy blow up of F along L. There is a bijective correspondence
between the minimal sets of F and those of F 0 given by ƒˇ$ h�1.ƒˇ /. In particular,
neither L0 , L1 , nor any leaf in j.L� .0; 1// is contained in a minimal set of F 0 . The
restriction of the collapsing function, h, gives a homeomorphism from h�1.ƒˇ / to
ƒˇ for all ˇ .
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Proof Since xL is not minimal, it properly contains S for some leaf S of F . It follows
that each of xL0 and xL1 properly contains h�1.S/D h�1.S/. So neither xL0 nor xL1
is minimal. For each leaf F � j.L� .0; 1// the set F properly contains each of L0
and L1 and hence each of xL0 and xL1 . Therefore F is not minimal.

Finally, notice that S 0 is a leaf of F 0 not equal to L0 , L1 or a leaf of j.L� .0; 1//
if and only if S D h.S 0/ is a leaf of F not equal to L. Since h�1.S/D h�1.S/, the
claimed bijective correspondence of minimal sets follows immediately.

Lemma 5.7 Suppose xL and ƒ are minimal sets of F with xL ¤ ƒ. Let F 0 be a
generalized Denjoy blow up of F along L. Then h�1.ƒ/ is a minimal set of F 0 . Any
other minimal set of F 0 arises in one of the following ways:

(1) If L is compact, let F1 be the foliation of L�I that is contained in F 0 . Minimal
sets of F1 are mapped to minimal sets of F 0 by inclusion; in particular L0 and
L1 are minimal sets.

(2) If L is noncompact, with L a nonboundary leaf of xL, then xL0 D xL1 is a
minimal set of F 0 .

(3) If L is noncompact, with L a boundary leaf of xL, then there are two possibilities,
depending on whether L is isolated in xL from above or from below. If L is
isolated in xL from below (above), then xL1 (resp. xL0/ is a minimal set, and
xL0 (resp, xL1/ properly contains this minimal set. In particular, the leaf L0
(resp. L1/ is not contained in a minimal set of F 0 .

Proof Since F 0 is not minimal, any minimal set of F 0 is either a compact leaf or else
an exceptional minimal set. Moreover, the only minimal set impacted by the blow up
of L is xL. So we restrict attention to xL and h�1.xL/.

If L is compact, then so is h�1.xL/D j.L� Œ0; 1�/ and (1) follows immediately.

Suppose instead that L is not compact and ƒ0 is a minimal set of F 0 that intersects
j.L� .0; 1//. It follows from Lemma 4.6 that ƒ0 \ .xL0 [ xL1/¤ ∅, and hence that
ƒ0 � .xL0[ xL1/.

Since h.xL0[ xL1/D xL, the union xL0[ xL1 cannot properly contain S , for some leaf
S of F 0 , unless S D xLi for some i 2 f0; 1g. It follows that ƒ0 is equal to one or both
of xL0 and xL1 .

The cases are distinguished as follows. If L is a nonboundary leaf, xL0 D xL1 is
minimal, and if L is a boundary leaf, exactly one of xL0 and xL1 is minimal. To see
this, let � be a transversal to F containing a point p 2 � \L. There is a sequence of
points pn 2 � \L which limit on p . If there exists a sequence of such points limiting
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on p from above, then the points h�1.pn/\L1 limit on L1 from above. Similarly,
if there exists a sequence of such points limiting on p from below, then the points
h�1.pn/\L0 limit on L0 from below. It follows that L is isolated in xL from below
if and only if L0 is isolated, and that L is isolated in xL from above if and only if
L1 is isolated. So either L is a nonboundary leaf and xL0 D xL1 is minimal, or L is a
boundary leaf, isolated from either above or below, and exactly one of xL0 or xL1 is
minimal.

6 Creating attracting holonomy

In this section, we restrict attention to the case that every minimal set of F contains a
leaf which is not homeomorphic to R2 . The remaining case, in which M D T 3 [16],
is considered in Section 8.

Consider a minimal set ƒ of a foliation F . Restrict attention to the case that ƒ is not
a compact leaf. So either ƒ D F or ƒ is exceptional. When the foliation F under
consideration is C 2 , a result of Sacksteder [39] guarantees the existence of a leaf L
in ƒ and simple closed curve  in L such that the holonomy h along  is linear
attracting, that is h0.0/ < 1. As shown by Eliashberg and Thurston, this combination
of smoothness and linear attracting holonomy can be used to introduce a contact region
in a neighborhood of  .

When the foliation F is only C1;0 , it is shown in [24] that it is possible to introduce
contact regions about a simple closed loop  in a leaf L of ƒ for which the foliation
has a (topologically) attracting neighborhood. In general, however, there might be no
curve with such an attracting region.

In this section, we show that by taking advantage of generalized Denjoy blow up,
it is possible to C 0 approximate F by a foliation F 0 , where each minimal set of
F 0 has nonempty intersection with one of finitely many attracting neighborhoods,
V1

.�1; A1/; : : : ; Vn
.�n; An/. Moreover, F 0 and the Vi

.�i ; Ai / can be chosen so
that, for each i , �i is small and the restriction of F 0 to Vi

is C 0 close to a product
foliation Ai

� �i .

In order to make sense of “small” and C 0 close, it is useful to fix a Riemannian metric g
on M . We choose a particularly convenient g as follows. Recall that if F is a C1;0

foliation of M which is not a fibering of M over S1 , then Corollary 4.12 guarantees
the existence of a finite spanning set of pairwise disjoint holonomy neighborhoods
for F .
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Notation 6.1 Let F0 be a C1;0 foliation of M . If F0 is a fibering of M over S1 ,
perform a C 0 small Denjoy splitting of F0 along a fiber and let F1 denote this new
C1;0 foliation. If F0 is not a fibering of M over S1 , let F1 D F0 .

Let fV 01; : : : ; V
0
ng, with nD r C s , denote a set of pairwise disjoint holonomy neigh-

borhoods V 0i D Vi
.�i ; Ai / for F1 satisfying the conditions of Corollary 4.12. Let V 0

denote the union V 0 D
S
i V
0
i . For each i with 1� i � n, let R0i DRi

.�i ; Ai /, and
set R0 D

S
i Ri . For each i with 1� i � n, fix a smooth open neighborhood NR0

i
of

R0i in V 0i . Choose each NR0
i

small enough that its closure, NR0
i
, is a closed regular

neighborhood of R0i . Let N 0R denote the union of the NR0
i
.

Apply Lemma 3.11 to isotope F1 to a C1;0 foliation F2 which is C 0 close to F1
and strongly .V 0; P /–compatible for some choice of product neighborhood .P;P/ of
.V 0INR0/.

Put the product metric on each component PiD Œ�1; 1��S1�Œ�1; 1� of P , as described
in Definition 3.12, and let g0 denote the resulting metric on P . Let g D g.P / be any
fixed Riemannian metric on M which restricts to g0 on P . Since the metric product
neighborhoods Pi have pairwise disjoint closures, a partition of unity argument can be
used to construct such a metric g.P /.

Beginning with a minimal set ƒ, a leaf L of ƒ and a simple closed curve  in L which
is not homotopically trivial, we show how to introduce an attracting neighborhood, or,
sometimes a pair of attracting neighborhoods, about  via generalized Denjoy blow
up. These operations are performed without increasing the number of minimal sets.
Since the goal is to produce �–flat holonomy neighborhoods, it may be necessary, as
in Theorem 6.2(2) below, to introduce new holonomy neighborhoods to take care of
thick collections of parallel compact leaves.

Theorem 6.2 Let F0 be a C1;0 foliation of M . Let 1; : : : ; r ; : : : ; nDrCs , V 0 ,
F2 , .P;P/ and g D g.P / be as given in Notation 6.1. So, in particular, F2 is not a
fibering, V 0 is spanning for F2 , and F2 is strongly .V 0; P /–compatible.

Fix � > 0. There is a C1;0 foliation F that is � C 0 close to F2 , V 0–compatible
with F2 and strongly .V 0; P /–compatible, and a finite set of pairwise disjoint attracting
neighborhoods

V1
.�1; A1/; : : : ; Vm

.�m; Am/;

with m� n, for F such that:

(1) Vi
.�i ; Ai /� V

0
i
.�i ; Ai / for 1� i � n.

(2) i lies in a compact leaf of F and is isotopic to ji
for some r < ji � n and

Vi
.�i ; Ai /� V

0
ji
.�ji

; Aji
/ for n < i �m.
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(3) Each Vi
.�i ; Ai / is �–flat with respect to F .

(4) The restriction of F to any Vi
.�i ; Ai / is �–horizontal.

(5) There is a regular neighborhood Nh of @hV such that Nh \A D ∅ and the
restriction of F to Nh is a smooth product foliation.

(6) Each minimal set of F has nonempty intersection with the interior of exactly
one Vi

.�i ; Ai /.

Notice that since F is strongly .V 0; P /–compatible, it is strongly .V; P /–compatible.
Notice also that condition (6) implies that the collection of attracting neighborhoods
V1

.�1; A1/; : : : ; Vm
.�m; Am/ is spanning. Referring back to Notation 6.1, each i is

an essential loop in a leaf of a minimal set. Therefore each attracting neighborhood
Vi
.�i ; Ai / necessarily has nonempty intersection with at least one minimal set. In

addition, by the choice of V 0 and Corollary 4.12, (1) and (2) guarantee that if an
attracting set Vi

.�i ; Ai /, has nonempty intersection with distinct minimal sets, then
necessarily i > r and the minimal sets are isotopic compact leaves.

Proof By Lemma 3.16, it is sufficient to prove that there is a C1;0 foliation F
arbitrarily C 0 close to F2 such that F admits a finite spanning set of pairwise disjoint,
�–flat attracting neighborhoods V1

.�1; A1/; : : : ; Vn
.�n; An/ for F satisfying condi-

tions (1)–(6). Since the holonomy neighborhoods V 01
.�1; A1/; : : : ; V

0
n
.�n; An/ are

pairwise disjoint, condition (1) will guarantee that the neighborhoods V1
.�1; A1/; : : : ,

Vn
.�n; An/ are pairwise disjoint.

Using Notation 4.11, F2 has finitely many minimal sets ƒ1; : : : ; ƒr that have no
compact leaves, and at most finitely many isotopy classes ŒL1�; : : : ; ŒLs� of compact
leaves.

Let L be a compact leaf of F2 . Since F2 is not a fibering over S1 , either X.L/DL or
X.L/D L� Œ0; 1�, with the identification given by a diffeomorphism. Abuse notation
and set ƒrCj DX.Lj / for 1� j � s .

Inductively create a V 0–compatible, C1;0 foliation Fk arbitrarily C 0 close to F2
and a pairwise disjoint collection of attracting neighborhoods

Vk D fV1
.�1; A1/; : : : ; Vk

.�nk
; Ank

/g

for Fk satisfying conditions (1)–(4). Let N0.Fk/ be the number of minimal sets ƒj ,
with 1� j � r , that do not intersect the interior of some Vi

.�i ; Ai /. Let N1.Fk/ be
the number of isotopy classes of compact leaves of Fk containing leaves that do not
intersect the interior of some Vi

.�i ; Ai /. Set N.Fk/DN0.Fk/CN1.Fk/.
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The construction of the desired set of attracting neighborhoods consists of finding, or
creating, attracting �–flat neighborhoods that decrease N.Fk/. These neighborhoods
are created by performing, as necessary, generalized Denjoy blow ups very close to
leaves L in the sets ƒi for 1� i � r C s , and by Theorem 5.2, these blow ups can be
chosen arbitrarily C 0 close to F . The construction takes different forms depending on
properties of L and is carried out in Propositions 6.5, 6.7, and 6.8.

At the kth stage in the induction, one or more �–flat attracting neighborhoods are added
to Vk to yield VkC1 .

To complete the proof of Theorem 6.2, it suffices to establish Propositions 6.5, 6.7,
and 6.8. We now do so.

Let  be an oriented essential simple closed curve in a leaf L contained in a minimal set
ƒ of Fk that contributes to N.Fk/. To simplify notation, let F D Fk at the kth step.
We begin by considering a holonomy neighborhood V .�; A/� P . Using the notation
of Section 2, p 2  and � and � are transversals through p such that h W � ! � is a
holonomy map for F along  . Notice that if � is chosen to be sufficiently small, then
V .�; A/ is �–flat.

Lemma 6.3 Let V .�; A/ be a holonomy neighborhood of  . One of the following is
true:

(1) There is a choice of � 0 � � such that one of V .� 0; A/ and V� .�
0; A/ is an

attracting neighborhood, and including the attracting neighborhood decreases
N.F/.

(2) There is a choice of � 0� � such that, after performing a generalized Denjoy blow
up along L arbitrarily C 0 close to the identity and compatible with V .�; A/,
V .�; A/ is the union of two attracting neighborhoods V0

and V1
, where 0

and 1 are the copies of  obtained by the splitting, chosen with opposite orienta-
tions as determined by the form of V . Including these attracting neighborhoods
decreases N.F/.

(3) The holonomy map h is the identity when restricted to at least one of the
components of �nfpg.

Proof Consider the holonomy map h W �!� . If there are intervals in each component
of �nfpg on which h is strictly monotonic, then (1) or (2) must hold. Otherwise, (3)
holds.

By the lemma, it is enough to consider the case that  is essential in L, and h is the
identity when restricted to at least one of the components of �nfpg. Notice that since
F is taut, L is �1–injective, and hence  is homotopically nontrivial in M .
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Identify .�; p/ with .Œ�u; v�; 0/. For t 2 Œ�u; v�, let Lt denote the leaf of F inter-
secting � at height t . Call a compact leaf of F isolated if there is an F saturated open
neighborhood of L containing no other compact leaf. For simplicity of exposition, we
will consider first the case that L is either noncompact or else compact but isolated.

As a first step towards building an attracting neighborhood, we show that without
increasing N.F/, generalized Denjoy blow ups can be used to replace holonomy that
is the identity on one side of  with monotone holonomy.

Lemma 6.4 Let  be an oriented essential simple closed curve in an isolated compact
leaf L such that h is the identity on Œ0; v�. Then there exists a generalized Denjoy
blow up of F to F 0 such that, in F 0, h is strictly monotone on a nondegenerate
subinterval of Œ0; v�. Moreover, N.F 0/ �N.F/, and h may be created to be either
monotone increasing or decreasing on this subinterval.

Proof By Corollary 4.10, there exists w 2 .0; v� small enough to guarantee that the
transversal .0; w/ is disjoint from the minimal sets of F . Let t 2 .0; w/, and consider
the leaf Lt .

Let t be a parallel copy of  lying in Lt and passing through t . Perform generalized
Denjoy blow up F.Lt ; t /, arbitrarily C 0 close to the identity and compatible with V ,
to introduce spiraling about ˙1t , the two copies of t introduced. This introduces a
nondegenerate interval in .0; v/ on which h is strictly monotonic. Moreover, the type
of monotonicity, increasing or decreasing, can be chosen. Since xLt is not minimal,
Lemma 5.6 guarantees that no new minimal sets are introduced.

Proposition 6.5 Let  be an oriented essential simple closed curve in an isolated
compact leaf L. If h is the identity on at least one of Œ�u; 0� and Œ0; v�, then there
exists a generalized Denjoy blow up F 0 of F that creates no new compact leaves,
has N.F 0/�N.F/ and for which there exists an attracting holonomy neighborhood
containing L.

Proof Apply Lemma 6.4 once or twice, as necessary, and let F 0 be the result of doing
the generalized Denjoy blow up or blow ups required to make h strictly monotone
on nondegenerate subintervals of each of Œ�u; 0� and Œ0; v�. The monotonicity can
be chosen so that h is either attracting on both subintervals or repelling on both
subintervals. Choose � 0 � � to be the smallest closed interval containing both sub-
intervals. Including V .� 0/ with the collection of holonomy neighborhoods may not
create intersections with every leaf isotopic to L, that is, it may not decrease N1.F/,
but it keeps N.F 0/�N.F/.
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Lemma 6.6 Let  be an oriented essential simple closed curve in a noncompact leaf
L of a minimal set such that h is the identity on Œ0; v�. Then there exists a generalized
Denjoy blow up of F to F 0 such that, in F 0, h is strictly monotone on a nondegenerate
subinterval of Œ0; v�. Moreover, N.F 0/�N.F/, and h may be created to be either
monotone increasing or decreasing on this subinterval.

Proof By Corollary 4.10, there exists w 2 .0; v� small enough to guarantee that the
transversal .0; w/ is disjoint from the minimal sets of F . Hence the proof of Lemma 6.4
works in this case as well.

Proposition 6.7 Let  be an oriented essential simple closed curve in a noncompact
leaf L of a minimal set that contributes to N.F/. If h is the identity on at least one
of Œ�u; 0� and Œ0; v�, then there exists a generalized Denjoy blow up F 0 of F that
creates no new compact leaves, satisfies N.F 0/ < N.F/, and for which there exists an
attracting holonomy neighborhood containing L.

Proof The proof is similar to the proof of Proposition 6.5, instead requiring one or two
applications of Lemma 6.6. The result is a strict decrease in N0.F/, thereby forcing
N.F 0/ < N.F/.

At this point, attracting neighborhoods have been constructed which intersect every
minimal set consisting of noncompact leaves (with at least one non-R2 leaf). There
remain minimal sets that consist of a single compact leaf. Lemma 6.4 shows how to
construct a holonomy neighborhood that will contain such a leaf. The next proposition
shows how to deal with possibly infinite families of isotopic compact leaves.

Let L be a compact leaf of F . Recall that X.L/ denotes the minimal F saturated
closed submanifold of M containing all leaves isotopic to L, and that F is not a
fibering over S1 . So either X.L/ D L or X.L/ is diffeomorphic to L� Œ0; 1�. We
now restrict attention to the remaining case, that X.L/ŠL� Œ0; 1�. Notice that leaves
of F that are contained in X.L/ are not required to be homeomorphic to L.

Proposition 6.8 Let L be a compact leaf such that X.L/Š L� Œ0; 1�, and let  be
an oriented essential simple closed curve in L. There is a C1;0 foliation F 0 C 0 close
to F such that all surfaces of F 0 isotopic to L are covered by finitely many pairwise
disjoint, �–flat, attracting neighborhoods that are disjoint from all minimal sets not
isotopic to L.

Moreover, such a foliation F 0 can be obtained from F by performing a finite number
of generalized Denjoy blow ups along leaves of F isotopic to L, and the attracting
neighborhoods can be chosen of the form Vt

.�t ; At /, where Lt is a leaf of F isotopic
to L and .L;A; / is isotopic to .Lt ; At ; t /.
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Proof Let A be a smooth regular neighborhood of  in L and choose p 2  . Use a
diffeomorphism to identify X.L/ with L� Œ0; 1�. Choose the diffeomorphism so that
it agrees with the product structure of P restricted to X.L/. In particular, flow lines of
ˆ map to the vertical fibers fxg � Œ0; 1�. Let �0 denote the vertical fiber fpg � Œ0; 1�.
Let � denote a closed flow segment of ˆ containing �0 in its interior and such that �
is disjoint from all minimal sets of F not isotopic to L.

Let Lt , t 2 T , be a listing of the leaves of F isotopic to L, where Lt \ � D f.p; t/g.
Let t D Lt \ . � Œ0; 1�/ and At D Lt \ .A� Œ0; 1�/. Notice that since lengths can
only shorten under projection, the minimum length and width of At is bounded below
by the minimum length and width of A. For all t 2 T , choose an �

2
–flat holonomy

neighborhood Vt
.�t ; At /, where �t � � .

Since the union
S
t2T At is compact (since closed), the interiors of finitely many of

the Vt
.�t ; At / cover

S
t2T At . Choose t1; : : : ; tk 2 T so that the interiors of the

Vti
.�ti ; Ati / for 1� i � k cover

S
t2T At . Set � 0 D �t1 [ � � � [ �tk . Choose closed

subintervals of the �ti and relabel as necessary so that � 0 D � 0t1 [ � � � [ �
0
tk

, where the
interiors of the � 0ti are pairwise disjoint and only successive ones can have nonempty
intersection. Then the Vti

.� 0ti ; Ati / cover, and after performing finitely many C 0

small blow ups along compact leaves of the form La , with a2 @� 0ti , and then extending
the � 0ti slightly as necessary, we have the claimed finite set of pairwise disjoint, �–flat,
attracting neighborhoods, disjoint from all minimal sets not isotopic to L.

By Corollary 4.8, only finitely many applications of Propositions 6.5 and 6.8 generate
attracting holonomy neighborhoods that intersect all compact leaves. Proposition 6.7
takes care of the rest of the cases, and therefore completes the proof of Theorem 6.2.

7 Approximation in an attracting neighborhood

In this section we show (Theorem 7.2) how the tangent plane field of the restriction of
a C1;0 foliation F0 to a sufficiently small attracting neighborhood V .�; A/ can be
C 0 approximated by a contact structure. The idea is that restriction of the foliation
F0\V .�; A/ can be analyzed by cutting V .�; A/ open along R .�; A/ and consid-
ering the resulting foliation on Q .�; A/. Much of the foliation data is then encoded
in monodromy maps along the four vertical sides of Q .�; A/.

This portion of the paper is quite different than the more analytic strategy of [8, 2.5.1–
2.5.3], in which they approximate forms which define foliations by a contact form
in the neighborhood of nontrivial linear monodromy. Our strategy is guided by the
relationship between a contact structure on the boundary of a vertical cylinder about the
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z–axis in the radial model of the standard contact structure on R3 and the foliations
by horizontal disks. Thus we build foliations on the vertical boundaries of Q .�; A/
in Lemma 7.5 that can serve as the characteristic foliations of a contact structure.

When V .�; A/ is attracting, these characteristic foliations can be chosen both to be
compatible with gluing Q .�; A/ to form V .�; A/, and to dominate the given foliation
on the complement of V .�; A/. Recall that if two curves intersect in @vX for some
codimension-zero submanifold X with piecewise horizontal and vertical boundary, the
curve with greater slope, when viewed from outside of X , is said to strictly dominate
the other curve.

A key result is Proposition 7.6, in which we show that the restriction of F to @vQ can
be approximated by a smooth foliation on @vQ .�; A/ that has decreasing monodromy.
By Corollary 7.10, such foliations can be smoothly extended to a disk foliation on
Q .�; A/, and hence V .�; A/, using the original C1;0 foliation as a guide.

To simplify the exposition, we will fix a Riemannian metric on M as described in
Notation 6.1.

Notation 7.1 We say one object is O.�/ close to another if for some constant K
independent of the two objects, the objects are K� close.

Theorem 7.2 Let F0 be a C1;0 foliation of M , and let .P;P/ and g D g.P / be
given as in Notation 6.1. Fix � > 0 and let V , Nh and F be given as in Theorem 6.2.

Then there are a regular neighborhood Nv � V of the vertical edges of @Q in V and
smooth plane fields �˙V defined on V satisfying

� �CV is positive and ��V is negative,

� �˙V D TF on Nh[Nv and is contact at all other points of V ,

� �CV dominates F along @vV , with the domination strict outside Nh[Nv ,

� ��V is dominated by F along @vV , with the domination strict outside Nh[Nv ,

� each of �˙V is positively transverse to ˆ, and

� each of �˙V is O.�/ C 0 close to TF on V .

The proof of this theorem will occupy the rest of this section. By symmetry, it will
suffice to establish the existence of �C .

It suffices to consider the case nD 1; so, to simplify notation, write V D V .�; A/,
with metric product neighborhood .P;P/. Recall that the metric product neighborhood
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.P;P/ has product metric and horizontal product foliation P induced by the identifi-
cation P Š Œ�1; 1��S1 � Œ�1; 1�. Use this identification to view V D V .�; A/� P

as a subset V � Œ�1; 1� � S1 � Œ�1; 1�. Notice that @vV � @vP . Let NR de-
note the open neighborhood of R .�; A/ in V given by the intersection of V with
Œ�1; 1��

��
1
2
; 1
�
[
�
�1;�1

2

��
� Œ�1; 1�. Recall that F D P on NR . See Figure 1.

Eventually, we will further constrain Nv , but for now, let Nv � NR be any regular
neighborhood of the vertical edges of @Q , and set N DNh[Nv .

Write QDQ .�; A/, and let
� W Q! V

denote the quotient map which reverses the splitting of V along R .�; A/. Viewing
S1 as the quotient Œ0; 1�=f0� 1g, the identification V � Œ�1; 1��S1� Œ�1; 1� induces
an identification

Q � Œ�1; 1�� Œ0; 1�� Œ�1; 1��R3;

with @vQ � @v.Œ�1; 1�� Œ0; 1�� Œ�1; 1�/. We will abuse notation and let Nh , Nv , N ,
and NR also denote their pullbacks to Q under � W Q! V . Similarly, we let F denote
the pullback ��1.F \V / when this meaning is clear from context.

Our goal is to construct a smooth positive confoliation on V satisfying the conditions
of Theorem 7.2. We will do this by defining a smooth positive confoliation �C on Q
which smoothly glues, via � W Q! V , to a smooth confoliation on V . As a first step,
we will define a smooth foliation on @vQ which will serve as the characteristic foliation
of the contact structure �C . This characteristic foliation will be closely related to the
restriction of F to @vQ . The following proposition will be used to make the transition
from continuous to smooth structures.

Proposition 7.3 Let ˆ, Nh , Nv , N and Q be as given above, and let � 2 f˙1g.

Let X denote either a vertical face or a union of three vertical faces of Q , and denote the
components of @vX by � and � . Let G0 be a C1;0 foliation of X which is everywhere
transverse to ˆ, satisfies G0 D P on Nv \X , and is smooth when restricted to N \X .
Let G0W � ! � be the holonomy map defined by following leaves of G0 across X ,
beginning in � and ending in � . Let "W � ! R be a continuous function satisfying
".z/� 0, with equality if and only if z 2 @� .

Then there is a C1 foliation G on X , with holonomy across X given by the holonomy
map GW � ! � , such that

(1) G is positively transverse to ˆ,

(2) G is arbitrarily C 0 close to G0 ,

Geometry & Topology, Volume 21 (2017)



3632 William H Kazez and Rachel Roberts

(3) G D G0 on N ,

(4) TG dominates (resp. is dominated by) TG0 , with the domination strict outside N ,
if � D 1 (resp. � D�1), and

(5) jG.z/�G0.z/j � ".z/.

Proof It suffices to consider the case that �D 1. Begin by considering the case that X
lies in the vertical plane x D 1.

At each point .1; y; z/ of X let f .y; z/ be the continuous function such that the line
field @y C f .y; z/@z is tangent to G0 . Let gW X !R be a smooth function arbitrarily
close to f and such that g.y; z/� f .y; z/, with equality if and only if .1; y; z/ 2N .
Let G be the foliation given by the integral curves of the flow tangent to @yCg.y; z/@z .
Denote the foliation determined by g by G . Certainly, conclusions (1)–(4), are satisfied
by G .

Let "0 be one half of the minimum value of " on � � int.N.@hV //, where N.@hV / is
the portion of N corresponding to a regular neighborhood of @hV .

Let gnW X ! R be a sequence of smooth functions, each determining a foliation
satisfying (1)–(4) and with limit f . By the smoothness of solutions to ODEs, there
is a number m so that by setting g D gn for any n > m, and letting G be the
foliation determined by g , the corresponding holonomy map GW � ! � satisfies
G.z/�G0.z/< �0 . Thus (5) holds for z … �� int.N.@hV //. On int.N.@hV //, gD f ,
and hence G.z/DG0.z/ for all z 2 � \ int.N.@hV //. Thus (5) holds for all z 2 � .

Finally, we consider the remaining possibilities for X . Certainly the proof as given
applies to any single face of Q . In the case of a union of three faces of Q , isometrically
flatten out the union so that it lies in a single plane to see that the proof as given applies.

Next we introduce some useful notation. Label the vertical faces of Q by B , C , D
and E , where �.B/� �.D/DR .�; A/, and the sequence B;C;D;E is a listing of
the faces in counterclockwise order about @vQ . These faces are illustrated in Figure 2.

Projecting these labels to V , we will abuse notation when convenient by considering B
to be a subset of D . Notice that each of B \Nh , C \Nh and E \Nh consists of
two components, whereas D\Nh consists of four components.

Also, label the vertical edges of Q

�BC D B \C; �CD D C \D; �DE DD\E and �EB DE \B:

Geometry & Topology, Volume 21 (2017)



C 0 approximations of foliations 3633

�EB B �BC C D E

S

F

�

N
y D 1 x D�1 y D�1 x D 1

Figure 2: The vector field � is shown as short dashes. Two leaves of F are
shown, one of which corresponds to the annulus leaf A . A pair of circle
leaves of S is shown dominating � .

Again, projecting these labels to V , we will abuse notation when convenient by consid-
ering �EB to be a subset of �DE and �BC to be a subset of �CD .

Now consider the (continuous) holonomy maps of F across the 2–dimensional faces
of @vQ ,

�EB
FB
�! �BC

FC
�! �CD

FD
�! �DE

FE
�! �EB :

Since F is smooth on Nh , the restrictions of FB , FC , FD , and FE to �BC \Nh ,
�CD \Nh , �DE \Nh and �EB \Nh , respectively, are smooth functions.

Recall that F D P along R .�; A/. Therefore, using the identifications

V � Œ�1; 1��S1 � Œ�1; 1� and Q � Œ�1; 1�� Œ0; 1�� Œ�1; 1��R3;

we have B Š .A \ B/ � �EB with the leaves of F \ B identified with the leaves
.A\B/� ftg and D Š .A\D/� �CD with the leaves of F \D identified with the
leaves .A\D/� ftg. In particular, �EB Š �BC and �CD Š �DE , and under these
smooth identifications, the maps FB and FD are automatically identity maps.

In the next corollary, we show that the restrictions of F to C and E can be approximated
by smooth foliations which dominate.

Corollary 7.4 There are smooth foliations �C on C and �E on E satisfying:

(1) Each of �C and �E is positively transverse to ˆ.

(2) �C (resp. �E ) is arbitrarily C 0 close to F on C (resp. on E ).

(3) �C D F and �E D F on N .

(4) �C (resp. �E ) dominates F on C (resp. E ), with the domination strict out-
side N .
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Proof Let G0 denote the restriction of F to X , where X is either C or E , and
set � D 1. Apply Proposition 7.3 with X D C to obtain �C , and with X D E to
obtain �E .

In the next proposition, we show that the restrictions of F to B and D can be approx-
imated by smooth foliations which dominate along D and are dominated along B .
Moreover, the union of these foliations with the smooth foliations of the preceding
corollary gives a foliation realizing decreasing monodromy about @vQ .

Lemma 7.5 Let �C and �E be as guaranteed in Corollary 7.4, with monodromy maps
KC W �BC ! �CD and KE W �DE ! �EB , respectively. There are maps KB W �EB !
�BC and KDW �CD! �DE , respectively, satisfying

(1) KD.t/DK
�1
B .t/ for all t 2 �EB � �DE ,

(2) KB D FB and KD D FD when restricted to N ,

(3) KB.t/� FB.t/ for all t 2 �EB ,

(4) KD.t/� FD.t/ for all t 2 �CD ,

(5) KEKDKCKB.t/� t for all t 2 �EB .

where, for each inequality, equality holds if and only if t 2N .

Proof Recall that the metric product neighborhood .P;P/ has product metric and
horizontal product foliation P induced by the identification P Š Œ�1; 1��S1� Œ�1; 1�.
Use this identification to view V .�; A/�P as a subset V .�; A/� Œ�1; 1��S1�Œ�1; 1�
and therefore Q as a subset of Œ�1; 1�� Œ0; 1�� Œ�1; 1�. This identification induces
�CD Š �DE Š Œ�a; d � and �EB Š �BC Š Œ�b; c� for some �1��a <�b < 0 < c <
d � 1. Choose e so that c < e < d and .c; e� is disjoint from N .

As a first step towards choosing KD , let yKDW Œ�a; d �! Œ�a; d � be any orientation-
preserving diffeomorphism that maps Œ�b; c�! Œc; e� and satisfies FD.t/ � yKD.t/
for all t 2 �CD , with equality if and only if t 2N .
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Next choose KB satisfying (2), KB.t/� .KE yKDKC /�1.t/ and (3). Finally, choose
KD satisfying (2) to agree with K�1B on Œ�b; c� and such that FD.t/�KD.t/� yKD.t/
for all t 2 Œ�a;�b� [ Œc; d �. Thus, KD.t/ � yKD.t/ for all t 2 Œ�a; d �, and KD
satisfies (4). Since KB.t/ < .KE yKDKC /�1.t/� .KEKDKC /�1.t/, condition (5) is
satisfied. Some of these relationships are shown in Figure 3.

Proposition 7.6 Let �C and �E be as guaranteed in Corollary 7.4, with monodromy
maps KC W �BC ! �CD and KE W �DE ! �EB , respectively. Let KB W �EB ! �BC
and KDW �CD ! �DE be the maps as constructed in Lemma 7.5. There are smooth
foliations �B and �D , with holonomy maps KB and KD , respectively, satisfying

(1) �B D F and �D D F when restricted to N ,

(2) F is dominated by �B along B , with the domination strict outside N ,

(3) F dominates �D , with the domination strict outside N ,

(4) �B and �D agree where identified by � W Q! V ,

(5) the foliation on @vQ defined by the union

�D �B [�C [�D [�E

is smooth, and

(6) each of �B and �D are O.�/ C 0 close to the restriction of F ,

where, for each inequality, equality holds if and only if t 2N .

Proof Use KB and KD to construct �B and �D , respectively. By construction,
F D P in a neighborhood of R .�; A/, and hence F is equal to P in a neighborhood
of B and D in Q . So F restricts to foliations of B D Œ�1; 1�� f1g � Œ�a; d � and
D D Œ�1; 1�� f�1g � Œ�a; d �, respectively, by horizontal straight line segments.

The foliation of B by line segments with endpoints .1; 1; z/ and .�1; 1;KB.z// has
leaves given by .1� �/.1; 1; z/C �.�1; 1;KB.z// with � 2 Œ0; 1� and has the desired
monodromy KB.z/. To guarantee (1) holds, replace � by �.t/ where �W Œ�1; 1�! Œ0; 1�

is a smooth damping function chosen so that ��1.0/[ ��1.1/ corresponds to N \B .
Let �B be this damped linear foliation. Similarly define �D to be the damped linear
function with holonomy KD.z/ damped so that leaves are horizontal exactly on N \D .

The foliations �B and �D are smooth since the corresponding holonomy maps KB and
KD are smooth. In addition, since the foliations �B ; �C ; �D and �E are horizontal
in a neighborhood of @vQ.1/ , they glue together to give a smooth foliation of @vQ .
Moreover, since V is �–flat, the straight lines used to create �D have slope between ˙� ,
thus after damping, T�D has slope bounded in absolute value by 2� . Since F was
chosen to satisfy the conclusions of Theorem 6.2, so in particular F is �–horizontal, it
follows that T�D and T�B are O.�/ close to TF .
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Notice that � is the characteristic foliation of a smooth 2–plane field along @vQ

defined as follows. At each point p of @vQ , let �p denote the 2–plane perpendicular
to @vQ which contains Tp�. We will show that this 2–plane field extends to a smooth
confoliation on V which stays close to F . The first step in constructing this extension
is to build a circle foliation dominated by � which in turn bounds a disk foliation of Q .

Corollary 7.7 Let KB , KC , KD , KE and � be as given in Proposition 7.6. There is
a smooth foliation S of @vQ by circles (with corners along @vQ.1/ ) such that

(1) � dominates TS , with the domination strict outside Nh ,

(2) S D �D F on Nh , and

(3) S is O.�/ C 0 close to each of F and �.

Proof Begin by constructing S on X , where X is the union of the faces C , D
and E of Q . Let G0 denote the restriction of � to X , and let G0 denote the holo-
nomy map G0W �BC ! �EB given by the composition G0 D KEKDKC . For each
z 2 �BC D Œ�b; c�, let ".z/DK�1B z�G0.z/. Apply Proposition 7.3 to get a foliation
G on X satisfying

(i) G is positively transverse to ˆ,

(ii) G is � C 0 close to G0 ,

(iii) G D G0 on N ,

(iv) TG dominates TG0 , with the domination strict outside N , and

(v) G.z/�G0.z/� ".z/.

Since G0 is O.�/ close to F by Corollary 7.4 and Proposition 7.6, and G is � close to
G0 , G is O.�/ close to F . Set S D G on X .

Next, construct S on the remaining vertical face, B . Take advantage of the fact that, as
described in the proof of Proposition 7.6, � restricted to B consists of damped straight
line segments. Let S consist of a smooth family of similarly damped line segments
from G�1.z/ 2 �EB to z 2 �BC . Condition (v) guarantees that G.z/ � K�1B .z/,
with equality only in the collar of f�b; cg in Œ�b; c� determined by N , and hence line
segments from G.z/ to z are steeper than line segments K�1B .z/ to z for z outside this
collar of f�b; cg. This property is preserved under suitably chosen damping. Notice
that S lies within � of � in B .

The foliation S is a foliation by circles since it has trivial monodromy about @vQ .
By construction, S is dominated by �, with the domination strict exactly outside N .
Moreover, S lies within � of �, and hence O.�/ close to F .
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Next we consider a smooth cylinder Q0 which lies nicely in Q . We do this as follows.

Recall that in our preferred coordinates (namely, the ones inherited from P ), Q is an
�–flat, x–invariant subset of Œ�1; 1�3 which is diffeomorphic to a cube and satisfies
Œ�1; 1�� Œ�1; 1�� f0g �Q . In particular, F agrees with the horizontal foliation P at
all points .x; y; z/ of Q for which y …

�
�
1
2
; 1
2

�
.

�3=4

3=4

D0

FDP FDP

C 0
Q0

�1;1 Nv

Nv

B 0

E 0

y

x

�1 �1=2 0 1=2 1
FDP

FDPx

y

Figure 4: �� Œ�1; 1�2 and Q

Let � be the smooth disk embedded in the square Œ�1; 1�2 with smooth boundary

@�D B 0[ ��1;1[C
0
[ ��1;�1[D

0
[ �1;�1[E

0
[ �1;1;

where B 0 D
�
�
3
4
; 3
4

�
� f1g, C 0 D f�1g �

�
�
3
4
; 3
4

�
, D0 D

�
�
3
4
; 3
4

�
� f�1g, E 0 D

f1g�
�
�
3
4
; 3
4

�
and �i;j is a curve that rounds the corner near .i; j / and smoothly

connects the closest pair of line segments just defined. See Figure 4. Set Q0 D
Q\ .�� Œ�1; 1�/, a smooth closed cylinder. Finally, we specify a particular Nv : set
Nv DQ nQ

0 . By the choice of �, this Nv is an open regular neighborhood in Q of
the vertical edges of Q .

Next smoothly parametrize � by polar-like coordinates .r; �/, with r 2 Œ0; 1�, where �
is the usual polar coordinate, and r will be chosen to facilitate the identification of points
.x;�1/ and .x; 1/ in �. Let X 01 D

�
�
7
8
; 7
8

�
�
�
7
8
; 1
�

and X 02 D
�
�
7
8
; 7
8

�
�
�
�1;�7

8

�
be rectangular subsets of � as shown in Figure 5. Choose r so that

(i) r D�y when .x; y/ 2X 01 ,

(ii) r D y when .x; y/ 2X 02 ,

(iii) @=@r D�@=@x when .x; y/ 2 f1g �
�
�
3
4
; 3
4

�
,
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(iv) @=@r D @=@x when .x; y/ 2 f�1g �
�
�
3
4
; 3
4

�
, and

(v) the vector field @=@r has a single, necessarily elliptic, singularity at .0; 0/.

Recall that � is horizontal along @vQ\Nv . Let �0 denote the smooth extension of
the line field � on @vQ0\@vQ to @vQ0 obtained by defining � on @vQ0 n@vQ to be
the tangent horizontal line field.

Uv Uv

UvUv

@=@r

X 02 X 01

y

Figure 5: Radial flow on �

Let S 0 denote a smooth extension of the foliation S \ .@vQ0\ @vQ/ to a foliation by
circles which satisfies

.10/ �0 dominates TS 0 , with the domination strict outside Nh ,

.20/ S 0 D �0 D F on Nh , and

.30/ S 0 is O.�/ C 0 close to each of F and �0 .

The existence of such an S 0 is guaranteed by continuity.

Next we extend the circle foliation S 0 to a smooth disk foliation of Q0 .

Proposition 7.8 There is a smooth foliation D of Q0 by disks such that

(1) TD contains @=@r in a width 1
4

collar of @vQ0 ,

(2) DD F on Nh ,

(3) D is everywhere transverse to ˆ,

(4) D is O.�/ C 0 close to F , and

(5) S 0 D D\ @vQ0 .
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Proof Let U denote the intersection of Q0 with the width 1
2

collar of @vQ in Q . In
particular, U contains the width 1

4
collar of @vQ0 in Q0 .

Let H be a C1 foliation of Q0 which is � C 0 close to F , is everywhere transverse
to ˆ, is x–invariant, and satisfies HD F on Nh and HD F D P on NR \Q0 .

We will choose D to coincide with H outside U and to smoothly interpolate between
S 0 and H over U . We will take advantage of the polar-like coordinates .r; �/ on �.
Label the leaves of H by Ht for t 2 � , where Ht is the (disk) leaf intersecting � at
t , and let ht .r; �/; .r; �/ 2�, be the smooth family of functions such that the graph
of ht is the leaf Ht .

Label the leaves of S 0 by S 0t for t 2 � , where S 0t is the circle leaf intersecting � at t .
The leaf S 0t can be described as a graph z D st .�/ for � 2 S1 . Since S 0 is smooth,
st defines a smooth family of smooth graphs. Extend S 0 to a foliation zS 0 of U , by
extending the functions st to functions Qst defined on U by Qst .r; �/D st .�/. Since
@=@r lies in the restriction of TF to U , the leaves of zS 0 lie in Q0 and describe a
smooth foliation of U .

Let g denote a smooth bump function defined on � which is 1 on a width 1
4

collar
of @vQ0 and 0 outside U . Since g is smooth and U is compact, g has bounded first
partial derivatives, with the bounds independent of � . Finally, define

dt .r; �/D g.r; �/Qst .r; �/C .1�g.r; �//ht .r; �/:

Let D be the smooth foliation with leaves given by the graphs of z D dt .r; �/. Com-
puting first partial derivatives, we obtain

@dt

@r
D
@g

@r
� .Qst � ht /C .1�g/

@ht

@r
and

@dt

@�
D
@g

@�
� .Qst � ht /Cg �

�
@Qst

@�
�
@ht

@�

�
C
@ht

@�
:

Since Q0 is �–flat, jQst �ht j< � . The partials of Qst and Qh are O.�/ small since S 0 , H
and F are O.�/ C 0 close to horizontal. It follows that D is O.�/ close to horizontal,
and hence O.�/ close to F . Finally, note that DD zS when g D 1. Hence, @DD S 0 ,
and TD contains @=@r in a width 1

4
collar of @vQ0 .

We will use the foliation D to extend the line field �0 to a contact structure across
Q0 n Nh , and thus to define a smooth confoliation on Q which is contact on the
complement of Nh[Nv . First, we establish an elementary glueing lemma.
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x

y
U1;h

U1;h

Uv

X1

glue

U2;h

U2;h

Uv

Uv

X2
Figure 6: The glueing X DX1[X2

Lemma 7.9 Suppose X decomposes as a union of two cubes X1 and X2 , where
X1 D Œ�1; 1�� Œu; v�� J1 and X2 D Œ�1; 1�� Œv; w�� J2 for some u < v < w and
nondegenerate closed intervals J1 � J2 . (See Figure 6.) Let

˛1 D dz� a.x; y; z/ dx

be a smooth 1–form defining a positive confoliation �1 D ker˛1 on X1 , and let

˛2 D dz� b.x; y; z/ dx

be a smooth 1–form defining a positive confoliation on X2 . Let Ui;h be a regular open
neighborhood of @hXi in Xi for i D 1; 2, and let Uv be a regular open neighborhood
of the faces xD˙1 in X . Suppose that U2;h\X1�U1;h (this allows U2;h\X1D∅).

In addition, suppose that the functions a and b satisfy the following:

(1) aD b on X1\X2 ,

(2) a.x; y; z/D 0 () ay.x; y; z/D 0 () .x; y; z/ 2 Uv [U1;h , and

(3) by.x; y; z/D 0 () .x; y; z/ 2 Uv [U2;h .

Then there is a smooth 1–form ˛ D dz� c.x; y; z/ dx defining a positive confoliation
� D ker˛ on X , where c satisfies

(c1) c D a on a neighborhood of the y D u face of X1 ,

(c2) c D b on a neighborhood of the y D w face of X2 , and

(c3) c.x; y; z/ D 0 () cy.x; y; z/ D 0 () .x; y; z/ is in the closure of
Uv [U1;h[U2;h .

Moreover, if each of a and b is C 0 close to 0, then so is c .
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In other words, the continuous 1–form ˛1[˛2 on X can be C 0 approximated by a
smooth 1–form ˛ which agrees with ˛1[˛2 on a neighborhood of @X , and describes
a positive confoliation � D ker.˛/ on X which is a contact structure exactly where �1
or �2 is a contact structure.

Proof For i D 1 or 2, �i is a positive confoliation, that is, ˛i ^ d˛i � 0. Hence
ay � 0 and by � 0. Also, by hypothesis, a D b on X1 \X2 . Therefore, for each
.x0; z0/ 2 Œ�1; 1� � J1 , the one-variable functions a.x0; y; z0/ for y 2 Œu; v� and
b.x0; y; z0/ for y 2 Œv; w� piece together to give a continuous function defined on
Œv; w� which is smooth on the complement of fvg.

Notice that b.x; y; z/D 0 if and only if .x; y; z/ 2 U1;h\X2 or by.x; y; z/D 0. So
b.x; y; z/D 0 if and only if .x; y; z/ 2 .U1;h\X2/[Uv [U2;h .

To facilitate blending a and b into a smooth function c , choose a smooth function Qb
on X2 such that:

. Qb1/ Qb D b in a neighborhood of the y D w face of X2 .

. Qb2/ Qby � 0.

. Qb3/ Qb � b on X2 .

. Qb4/ Qb.x; v; z/ > b.x; v; z/ () .x; v; z/ … Uv [U2;h .

. Qb5/ Qb D 0 () Qby D 0 () by D 0.

At a point .x; v; z/ 2 X1 \X2 it might be that ay.x; v; z/ > by.x; v; z/ > 0, but in
this case, the choice of Qb forces a.x; v; z/ < Qb.x; v; z/. Thus it is possible to define a
smooth za on X1[X2 which satisfies all of the following, and in particular .za3/:

.za1/ zaD a on X1 .

.za2/ zay � 0.

.za3/ za � Qb .

.za4/ za.x; y; z/D 0 () zay.x; y; z/D 0 () .x; y; z/ is an element of the closure
of Uv [U1;h[U2;h .

To produce such an za , pick a nonnegative smooth extension e.x; y; z/ of ay.x; y; z/
to X1 [X2 which is 0 exactly on Uv [U1;h[U2;h . With .za3/ in mind, such an
extension can be modified by multiplying by a smooth nonnegative map which takes
the value 1 on X1 and approaches 0 quickly on X2 so that

za.x; y; z/D

Z y

u

e.x; s; z/dsC a.x; u; z/

satisfies .za1/–.za4/.
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Now choose � W Œu; w�! Œ0; 1� such that �.Œu; v�/D 0, �
��
1
2
.vCw/;w

��
D 1, and

� maps
�
v; 1
2
.vCw/

�
diffeomorphically to .0; 1/. Set

c.x; y; z/D .1� �.y//za.x; y; z/C �.y/ Qb.x; y; z/;

so that properties (c1) and (c2) of c are immediate. Since

cy D �y. Qb� za/C .1� �/zay C � Qby � 0;

is the sum of three nonnegative terms, � is a positive confoliation. Moreover, if cy D 0,
either ay D 0 and .x; y; z/ 2Uv [U1;h , or by D 0 and .x; y; z/ 2Uv [U2;h . Hence,
if cy.x; y; z/D 0, necessarily .x; y; z/ 2 Uv [U1;h[U2;h . But this means also that
zaD Qb D 0, and so c D 0.

Conversely, suppose .x; y; z/ 2 Uv [U1;h[U2;h . It suffices to consider the case that
.x; y; z/ 2 Uv [U1;h[U2;h , and hence at least one of the following is true:

(1) .x; y; z/ 2 Uv means zaD 0 and Qb D b D 0,

(2) .x; y; z/ 2 U1;h means � D 0 and zaD 0, and

(3) .x; y; z/ 2 U2;h means Qb D b D 0 and zaD 0.

In each of these three cases, c D 0 on an open set about .x; y; z/ and therefore
cy.x; y; z/D 0. Hence, property (c3) of c is satisfied.

Corollary 7.10 There exists a smooth confoliation � on Q that is O.�/ C 0 close
to TF , has characteristic foliation � on @vQ , and satisfies � D TF on Nh[Nv .
Moreover, � can be chosen so that �.�/ is a smooth confoliation on V , where � is the
quotient map � W Q! V .

Proof At all points of N DNh[Nv , let � be the tangent plane to F . Thus � contains
� along N \ @vQ , and � contains �0 along N \ @vQ0 .

The foliation by disks, D , given by Proposition 7.8 will be used to extend � to all
of Q0 .

Let � denote the smooth inward pointing vector field on Q0 given by lifting the vector
field �@=@r to the leaves of D , where the lift is the pullback under the projection
.r; �; z/! .r; �/. In particular, in the width 1

4
collar about @vQ0 , �D�@=@r .

Notice that �0 and � span a plane at every point of @vQ0 . Denote this plane by � .

At this point we have the start of a smooth confoliation � on @vQ0 [N , and Q0 is
foliated by disks of D which are in turn either everywhere tangent to � or foliated by a
vector field � which serves as a candidate for a Legendrian vector field. This is directly
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analogous to a cylindrical neighborhood of the z–axis in the standard radial model of
a tight contact structure.

To extend � across Q0 it is enough to map Q0 to a standard model, use the technique of
Lemma 5.14 of [24], and pull back the resulting contact structure to a contact structure
� on Q0 . Roughly speaking, Q0 is mapped to a solid cylinder in R3 centered along
the z–axis in such a way that D and � are mapped to horizontal planes and radial lines,
respectively. The standard radially symmetric contact structure is then pulled back
to Q0 .

Some extra care is needed so that the confoliation � on Q is O.�/ close to TF .
By construction, it is O.�/ close along @vQ and in coordinates the planes of �
monotonically approach horizontal planes in R3 as you move radially towards the
z–axis along Legendrian curves. The issue is that the pullback confoliation planes may
not monotonically approach TD .

Since Q0 is compact, the metric distortion when compared to the standard model is
bounded, and so it suffices to show that we can reduce to the case that the line field �0

is arbitrarily close to TS 0 . We do this by taking advantage of the width 1
2

collar, U , of
@vQ in Q to define a contact structure with planes that rotate from slope �0 to slope
close to TS 0 as follows.

Since the restriction of @=@r to U lies in both TF and TD , the restrictions to U of
the flow lines for @=@r lie in both D and F .

Recall that @� corresponds to rD1, and let s.�; z/ denote the slope of TS 0 at .1; �; z/.
Note that s.�; z/ is also the slope of TD\ @vU at .r0; �; z/, where r0 is determined
by the condition that .r0; �; z/ 2 .@vU n @vQ/. Let c.�; z/ denote the slope of �0

at .1; �; z/. Since �0 strictly dominates S 0 exactly on the complement of Nh ,

s.�; z/� c.�; z/� 0;

with equality if and only if .1; �; z/ 2Nh .

Fix ı 2
�
0; 1
2

�
, and let f W U ! Œı; 1� be a smooth function which satisfies

(i) f .r; �; z/D 1 for all .r; �; z/ 2N [ @vQ0 ,

(ii) f .r; �; z/D ı for all .r; �; z/ 2 .@vU n .@vQ[Nh//, and

(iii) fr.r; �; z/� 0 for all .r; �; z/ 2 U , with equality if and only if .r; �; z/ 2N .

For .r; �; z/ 2 U , define

˛ D dz� Œ.1�f .r; �; z//s.�; z/Cf .r; �; z/c.�; z/� d�:
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Setting g.r; �; z/D .1�f .r; �; z//s.�; z/Cf .r; �; z/c.�; z/, we have

˛ D dz�g.r; �; z/ d�:

Notice that along @vQ0 , ker.˛/D � . In addition,

d˛ D�gr dr d� �gz dz d�;

and hence

˛^ d˛ D�gr dr d� dz D�
�
fr.r; �; z/.c.�; z/� s.�; z//

�
dr d� dz

is a smooth positive confoliation defined on U . This confoliation agrees with TF on
U \N and is a contact structure on U nN . Moreover, by choosing ı as small as is
necessary, we may guarantee that at each point .r; �; z/ 2 .@vU n @vQ/ the line field
given by � restricted to @vU dominates and is as close to the line field given by TD
restricted to @vU as is required. Hence there is a smooth confoliation � on Q that is
O.�/ C 0 close to TF , has characteristic foliation � on @vQ , and satisfies � D TF
on Nh[Nv .

To ensure that the contact structure on Q glues smoothly to V , some further care is
needed. Extending the 2–plane field from the vertical boundary of a cylinder across a
radially foliated disk involves a choice of rate of rotation of contact planes to horizontal.
The rates should be chosen to respect the glueing of B to D . Since � D TF along Nv ,
it suffices to show that the rates can be chosen to respect the glueing of B 0 to D0 . To
see that this is possible, proceed as follows.

Recall the rectangles X 01; X
0
2��, and for iD1; 2 let Xi denote the points .r; �; z/2Q

with .r; �/ 2 X 0i . Let �i denote the restriction of � to Xi . In terms of .x; y; z/
coordinates and given the form of � in U , we can write �1 D ker.dz� a.x; y; z/ dx/
and �2 D ker.dz � b.x; y; z// for smooth functions a.x; y; z/ defined on X1 D�
�
7
8
; 7
8

�
�
�
7
8
; 1
�
� � and b.x; y; z/ defined on X2 D

�
�
7
8
; 7
8

�
�
�
�1;�7

8

�
� � .

Without changing notation, regard X1 and X2 as subsets of V using the quotient
map � W Q ! V given by identifying y D ˙1. Since �1 D �2 along X1 \ X2 ,
a.x; y; z/D b.x; y; z/ along X1\X2 in V .

Recall also that � is dominated by F along D and dominates F along B . Hence,
a.x; y; z/ D b.x; y; z/ � 0 along X1 \X2 , with equality if and only if .x; y; z/ 2
Nh[Nv . Lemma 7.9 therefore applies and produces a smooth contact structure on X
which agrees with �1[ �2 in a neighborhood of @X .

Proof of Theorem 7.2 Let � > 0. By symmetry, it suffices to establish the existence
of �C .
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Let F0 be a C1;0 foliation of M , and let F be an � C 0 close C1;0 foliation
constructed using Theorem 6.2. Let V.�; A/ be one of the holonomy neighborhoods
constructed for F .

Corollary 7.4 and Proposition 7.6 guarantee the existence of a smooth foliation � on
@vQ which is dominated by and O.�/ C 0 close to F . Corollaries 7.7–7.10 show that
� is the characteristic foliation of a smooth confoliation on Q that glues to a smooth
confoliation on V . This confoliation restricts to a contact structure outside N . Each of
�˙V is O.�/ C 0 close to F on V , and hence O.�/ C 0 close to TF0 on V .

8 Foliations with only trivial holonomy

In this section we investigate taut, transversely oriented C 0 foliations with only trivial
holonomy. First we recall some classical results, with a focus on smoothness assump-
tions. New results then appear as Theorems 8.10 and 8.12 and Corollary 8.16, with
Corollary 8.16 giving the conclusion needed for the main result in this paper.

Versions of the next result appear as Theorem 4 of [40], Lemma 3.6 of [22], or, in
greatest generality, Corollary 2.6 of [28].

Theorem 8.1 A transversely oriented C 0 foliation that has trivial holonomy is topo-
logically taut.

Our focus is on approximations of C 1;0 and smoother foliations, thus Corollary 5.6
of [26], can be used to approximate a topologically taut C 0 foliation with an isotopic
taut C1;0 foliation when convenient.

Next we recall a theorem found in [22].

Theorem 8.2 [22, Theorem 4.1] Let F be a transversely oriented C 0 foliation in
M with only trivial holonomy, and let ˆ be a C 0 flow transverse to F . Let zM denote
the universal cover of M , and let zF and ẑ be the lifts of F and ˆ to zM . Then zM
is homeomorphic to R2 �R, where each R2 � fzg, z 2 R, is a leaf of zF and each
fxg �R, x 2R2 , is an orbit of ẑ .

This theorem is given in [22] for foliations that are C1 . However, this smoothness
hypothesis in unnecessary. For completeness, we include Imanishi’s proof here, re-
framed using the language of leaf spaces and with careful attention paid to smoothness
assumptions.
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Lemma 8.3 [22] Let F be a transversely oriented C 0 foliation with only trivial
holonomy, and let ˆ be a C 0 flow transverse to F . Suppose H W Œ0; 1�� Œ0; 1/!M

is a continuous map such that H.Œ0; 1�� ftg/ is a curve in a leaf of F for all t , and
H.fsg � Œ0; 1// is an immersed curve in a flow line of ˆ for all s . If H extends
continuously to f0g � Œ0; 1�, then H extends continuously to Œ0; 1�� Œ0; 1�!M .

Proof This follows immediately from Theorem 3.1 of [22]. See also Lemma 9.2.4
of [4].

Proof of Theorem 8.2 Let zM be the universal cover of M and let zF and ẑ be the
lifts of F and ˆ to zM . Let T be the leaf space of F , and let �W zM ! T denote
the associated quotient map. Note that it is sufficient to prove that �. zC/D T for any
orbit zC of ẑ .

So suppose that �. zC/¤ T for some orbit zC of ẑ . Since zC is everywhere transverse
to ẑ , �. zC/ is an embedded copy of R in T . Note that although zC is properly
embedded in zM , �. zC/ may or may not be properly embedded in T . In either case,
there is a leaf zL of zF such that �.zL/ lies in the closure of �. zC/ but not in �. zC/. Let
zC 0 be an orbit of ẑ passing through zL. There is an interval Œx; y� in T such that
Œx; y�\ �. zC 0/D Œx; y� and Œx; y�\ �. zC/D Œx; y/. As illustrated in Figure 7, this is
impossible by Lemma 8.3.

zy0

zx0
zx

zC 0
zC

zL

Figure 7: A continuous H which does not continuously extend

Next we show that some of this product structure on zM can be seen also in M .

Corollary 8.4 Let F be a transversely oriented C 0 foliation with only trivial holo-
nomy, and let ˆ be a C 0 flow transverse to F . Let ƒ be a minimal set of F . Then any
region complementary to ƒ is a product L� Œ0; 1�, with each fxg � Œ0; 1� a segment
of the flow ˆ. Moreover, the restriction of F to this complementary region is, up to a
ˆ–preserving isotopy, the product foliation L� Œ0; 1�.
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Proof Let X denote the metric closure of some complementary region of ƒ. By
Theorem 8.2, any lift of X to zM has the form zL � Œ0; 1�, where zL is the lift of a
boundary leaf L of X , and each fzxg � Œ0; 1� is a segment of the flow ẑ . It follows
that X is an I–bundle, with each I–fiber a segment of a flow line of ˆ. Now apply
Lemma 4.7 to conclude that the restriction of F to X is, up to a ˆ–preserving isotopy,
the product foliation L� Œ0; 1�.

Corollary 8.5 Let F be a transversely oriented C 0 foliation with only trivial holo-
nomy. Then exactly one of the following is true:

(1) F is a fibering of M over S1 .

(2) F is minimal.

(3) F is a single Denjoy blow up of a minimal foliation; equivalently, F contains
a unique minimal set, and this minimal set is exceptional with complement a
product.

Proof Let ˆ be a C 0 flow transverse to F . If F is not minimal, then it contains
a minimal set, ƒ say. Let X denote the metric closure of any component of the
complement of ƒ. It follows from Corollary 8.4 that X is an I–bundle L� Œ0; 1�,
and the restriction of F to X is, up to ˆ–preserving isotopy, the product foliation
L� Œ0; 1�. If ƒ is a compact leaf, conclude that F is a fibering of M . Otherwise,
ƒ is exceptional, and F is a single Denjoy blow up (along at most countably many
leaves) of a minimal foliation; in other words, F contains a unique minimal set, and
this minimal set is exceptional with complement a product.

Theorem 8.6 [22, Theorem 1.3] Let F be a transversely oriented C 0 foliation with
only trivial holonomy. Suppose F does not contain an exceptional minimal set. Then
there is a topological flow  W M �R!M such that:

(1)  preserves F ; ie  .�; t / sends each leaf of F into a leaf of F .

(2)  is topologically transverse to F ; ie,  .x;R/ is topologically transverse to F .

Recall that a transverse measure on a codimension-one foliation G is an invariant
measure on each arc transverse to G that is equivalent to Lebesgue measure on an
interval of R. Invariant, in this context, means that the measure of a transverse arc is
unchanged under isotopies of the arc that keep each point on the same leaf of G .

Lemma 8.7 Let  W M � R ! M be the topological flow of Theorem 8.6. If
 .x1; Œs1; t1�/ and  .x2; Œs2; t2�/ are isotopic through an isotopy that keeps each
point on the same leaf of F , then t1� s1 D t2� s2 .
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Proof The isotopy can be lifted to the universal cover of M , so without changing
notation we take M D zM . The advantage of working in zM is that leaves of the
foliation are in bijective correspondence with  .x2; t / for t 2R.

Let �i D  .xi ; Œsi ; ti �/. The given isotopy sweeps out a family of curves ˛t each
contained in a leaf of F that starts at a point of �1 and ends at a point of �2 , with
t 2 Œs1; t1� so that ˛t .0/D  .x1; t /. Another family of arcs ˇt each contained in a
leaf of F can be generated by using the flow. Define ˇt .s/D  .˛s1.s/; t � s1/.

It follows that ˇt .0/D . .x1; s1/; t � s1/D .x1; t /D ˛t .0/ for t 2 Œs1; t1�, while
ˇt .1/D  . .x2; s2/; t � s1/D  .x2; s2C t � s1/.

The arcs ˛t and ˇt have the same initial point, are both contained in the same leaf, and
terminate in the flow segment  .x2; Œs2C t1� s1; t2�/. It follows that they terminate
in the same leaf, that is, s2C t1� s1 D t2 .

Corollary 8.8 [22, Corollary 4.1] Let F be a transversely oriented C 0 foliation with
only trivial holonomy. Suppose F does not contain an exceptional minimal set. Then
F admits a transverse measure.

Proof Let � be a transversal to F . First we show that if the terminal point of � is
 .x; t/, then there is an Œs; t � � R such that � is isotopic to  .x; Œs; t �/ through an
isotopy that keeps each point on the same leaf of F .

To see this, fix the initial point x0 of � , and use the flow to homotope � to an arc �
starting at x0 and contained in a leaf of F . This homotopy can be thought of as the
image of a triangle T , with edges � and � , and a flow arc  .x; Œs; t �/ for some value
of s swept out by  .x; t/. The desired isotopy of � is given by following horizontal
arcs of T \F .

Define the length of � to be jt � sj. Lemma 8.7 guarantees that this defines a positive
transverse measure on F .

Branched surfaces were first introduced by Williams in [44]. We refer the reader to
[9; 33; 34] for the definitions of branched surface B and an associated I–bundle
neighborhood N.B/. We recall that a surface S , not necessarily compact, is carried
by a branched surface B if S is injectively immersed in N.B/ so that it is everywhere
transverse to the I–fibers. A minimal set of a foliation is carried by B if each of its
leaves is carried by B .

It is standard to say that a foliation F is carried by B if a Denjoy blow up, F 0 , of
F along a single leaf L results in a lamination ƒD F 0 n j.L� .0; 1// such that all
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leaves of ƒ are carried by B . (Note that if B carries a foliation in this sense, then the
regions complementary to N.B/ are necessarily products.) In this paper, however, we
instead introduce and use the following definition.

Definition 8.9 A foliation F is carried by a branched surface B if

(1) the restriction of F to N.B/ is a foliation transverse to the I–fibers and tangent
to @hN.B/, and

(2) the restriction of F to M n int N.B/ is a product foliation that is transverse to
the I–fibers of N.B/ along @vN.B/ and tangent to @hN.B/.

We refer the reader to [20; 29] for a description of the splitting open of a branched
surface and the corresponding “splitting open” of the I–bundle neighborhood N.B/.

Theorem 8.10 Let F be a transversely oriented C 0 foliation of M with only trivial
holonomy. Then M fibers over S1 and either

(a) F is measured, or

(b) F is a single Denjoy blow up of a minimal measured C 0 foliation.

In the case that F is measured, either it is minimal or it is a fibering of M over S1 .

Proof The proof proceeds by analyzing the three cases arising in the conclusion of
Corollary 8.5.

Case (1) If F is a fibering, of course M is fibered. It follows immediately that F
satisfies conclusion (1).

Case (2) Since F does not contain an exceptional minimal set, Corollary 8.8 can
be applied. From this it follows that F is transversely measured. Since F has a
transverse measure, it is fully carried by a measured branched surface B , and since F
is a foliation, the complementary regions of B are products. It remains to show that
M fibers over S1 . This will be done following the next case.

Case (3) Then F is a single Denjoy blow up of a minimal foliation E . Denote the
minimal set of F by ƒ and denote the smooth transverse flow used in the blow up by
ˆ. By Corollary 8.8, E is measured, thus (2) is satisfied. It remains to show that M
fibers over S1 .

This measure on E determines a transverse measure on ƒ in the sense that any segment
of a flow line of ˆ can be given the measure it has when viewed as a transversal to E .
Since ƒ has a transverse measure, it is fully carried by a measured branched surface B ,
and since the complementary regions of ƒ are I–bundles, the complementary regions
of B are products. So Proposition 4.11 of [33] applies, thereby implying M fibers
over S1 .
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Hence, in each of the cases (2) and (3), F is fully carried by a transversely measured
branched surface for which every complementary region is a product. The space of
positive measures on B is an open cone in a vector space since it is the solution space
of a system of homogenous linear equations. Since there is a nontrivial real solution and
the coefficients of these equations are integers, there is a nontrivial, positive, rational
solution arbitrarily close to the real solution. Any positive rational solution corresponds
to an integral measure on B and hence describes a surface S (not necessarily connected)
which is fully carried by B .

Since any complementary region to B , and hence to S , is necessarily a product, it
follows that M cut open along S is an I–bundle. Letting S0 be a (possibly the)
component of S , it follows that M is a fiber bundle over S1 with fiber S0 .

Next we apply a theorem from [25].

Theorem 8.11 [25] Suppose F is a transversely orientable C 1;0 measured foliation
in M . Then there is an isotopy of M taking F to a C1 measured foliation which is
C 0 close to F . If ˆ is a smooth flow transverse to F , the isotopy may be taken to
map each flow line of ˆ to itself.

Theorem 8.12 Fix � > 0. Let F be a transversely oriented C 1;0 foliation of M with
only trivial holonomy. Then M fibers over S1 , and F is O.�/ C 0 close to a smooth
fibering of M .

Proof By Theorem 8.10, M fibers over S1 , and F is either measured or a single
Denjoy blow up of a measured foliation. In the case that it is measured and not minimal,
it is necessarily a fibering, and so there is nothing to prove. If F is measured and not
a fibering, it is necessarily minimal, and the first step is to perform a single Denjoy
blow up.

Thus, it is enough to consider the case when F is a single Denjoy blow up of a minimal
measured C 1;0 foliation E . By Theorem 8.11, it suffices to show that F is O.�/ C 0

close to a C 1;0 fibering of M . Denote the exceptional minimal set of F by ƒ, and
denote the smooth transverse flow used in the blow up by ˆ. Let B be a smoothly
embedded, transversely oriented branched surface which is transverse to ˆ and which
fully carries F . In particular, ƒ lies in a regular I–fibered neighborhood N of B ,
transverse to the I–fibers, with the I–fibers segments of the flow ˆ. In addition, the
regions complementary to int.N / are sutured manifold products, and F restricts to a
product foliation on these complementary regions. Since ƒ has a transverse measure,
so does B .
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Now fix � >0. Use ƒ to split B open as much as is necessary to a smoothly embedded,
measured branched surface Bsplit so that the result of splitting open N is a regular
I–fibered neighborhood Nsplit that has an �–flat .F ; ˆ/ flow box decomposition such
that each flow box has horizontal boundary contained in @hN.Bsplit/. We say G0 is a
foliation of Nsplit if in addition to the usual local product leaf structure, it is tangent
to @hNsplit , transverse to @vNsplit , and everywhere transverse to ˆ. By �–flatness,
any foliation G0 of Nsplit can be isotoped relative to @Nsplit to be � C 0 close to the
restriction F0 of F to Nsplit .

Pick a rational measure � fully carried by Bsplit , and let G0 be a C 1;0 fibering of M
determined up to isotopy by .B; �/. Choose G0 to be everywhere transverse to ˆ and
so that its restriction to Nsplit is a foliation of Nsplit .

Consider a component † of the metric closure of the complement of Nsplit . Both F
and G0 restrict to product foliations on †, and hence to foliations by circles on each
component Ai of @vNsplit . Again appealing to the �–flatness of N.Bsplit/, there is
an O.�/ C 0 small isotopy of M in a neighborhood of

S
i Ai taking F to F0 such

that if F and G are leaves of the restrictions of F0 and G0 respectively to †, then
either F D G in a neighborhood of @F D @G or @F \ @G D ∅. Now let G be the
foliation obtained by letting G coincide with G0 on Nsplit and coincide with F0 on
each component †. By construction, G is a C 1;0 fibering of M . Moreover, G is O.�/
close to F since G0 is O.�/ close to F on Nsplit and coincides with F0 on each †.

Recall the statement of Tischler’s theorem.

Theorem 8.13 [42] A transversely oriented, C1 measured foliation F of M can
be C1 approximated by a smooth fibering G of M over S1 .

Thus Theorem 8.12 weakens the assumptions of smoothness in Tischler’s theorem for
3–manifolds.

Next, we consider the case that all leaves in some minimal set of F are planes. If F
has only trivial holonomy, then it is Reebless, and the possibilities for .M;F/ are very
well understood, by work of Imanishi and Gabai:

Lemma 8.14 [16; 22] Let F be a Reebless C 0 foliation of a closed 3–manifold M .
Suppose F contains a minimal set all of whose leaves are planes. Then all leaves of F
are planes and M D T 3 .

In fact, as shown by Bowden, the condition that F be Reebless can be removed:

Lemma 8.15 [1, Lemma 2.12] Let F be a C 0–foliation on a manifold M that has
a minimal set all of whose leaves are planes. Then M D T 3 , and F is a foliation by
planes.
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The C 0 foliation theory that is used for the main result in this paper is the following
corollary.

Corollary 8.16 Let F be a transversely oriented C 1;0 foliation of a closed 3–
manifold M . Suppose F contains a minimal set all of whose leaves are planes.
Then M D T 3 and F is C 0 close to a smooth fibering of M by tori.

Proof By Lemma 8.15, all leaves of F are planes and M DT 3 . Necessarily, therefore,
F has only trivial holonomy, and so by Theorem 8.12, F is C 0 close to a smooth
fibering of M . The leaves of this fibering are necessarily tori as they are �1–injective.

9 Propagation

In this section, we describe how to extend the smooth confoliation on V to a smooth
contact structure on M which is O.�/ close to F , and hence prove our main result,
Theorem 1.2.

Begin by recalling the propagation technique introduced in [24]. The starting point is a
decomposition of a manifold into two codimension-0 pieces. Roughly speaking, one
piece, V , has a contact structure, while the other piece, W , has a foliation. As long
as the contact structure dominates the foliation along @vV D @vW and every point of
W can be connected to V by a path in a leaf, the contact structure can be propagated
throughout W .

For completeness we include the formal definitions of these concepts and the main
theorem of [24] stated in the C 0 setting.

Definition 9.1 [24, Definition 6.4] Let M be a closed oriented 3–manifold with
smooth flow ˆ. Suppose that M can be expressed as a union

M D V [W;

where V and W are smooth 3–manifolds, possibly with corners, such that @V D @W .
We say that this decomposition is compatible with the flow ˆ if @V (and hence @W )
decomposes as a union of compact subsurfaces @vV [@hV , where @vV is a union of flow
segments of ˆ and, @hV is transverse to ˆ. Let U be a preferred regular neighborhood
of the union of the horizontal 2–cells and the vertical 1–cells of @V . Suppose this
decomposition is compatible with ˆ, V admits a smooth confoliation �V , and W
admits a C 1;0 foliation FW . Suppose that U is smoothly foliated with a foliation
FU which smoothly agrees with FW where they meet. We say that .V; �V / is ˆ–
compatible with .W;FW /, and that M admits a positive .�V ;FW ; ˆ/ decomposition,
if the following are satisfied:
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(1) �V and FW are (positively) transverse to ˆ on their domains of definition,

(2) each of FW and �V is tangent to @hV ,

(3) �V D TFU on U \V ,

(4) �V is a contact structure on V nU , and

(5) ��V
< �TFW

on .@vV /nU , when viewed from outside W .

A foliation FW is V–transitive if every point in W can be connected by a path in a
leaf of F to a point of V .

Let Vi
.�i / be the spanning collection of attracting neighborhoods constructed in

Theorem 6.2. Then M can be decomposed by setting V D V1
.�1/[� � �[Vn

.�n/ and
letting W be the closure of the complement of V . Since V is the union of a spanning
collection of neighborhoods, F 0W , the restriction of F 0 to W , is V–transitive.

The confoliation �V constructed in Corollary 7.10 satisfies conditions (1)–(5), and we
can therefore apply Theorem 6.10 of [24].

Theorem 9.2 [24, Theorem 6.10] If M admits a positive .�V ;FW ; ˆ/ decompo-
sition such that FW is V–transitive and �V is � C 0 close to FW \ @vW , then M
admits a smooth positive contact structure �C which agrees with �V on V and is � C 0

close to FW on W . The analogous result holds if M admits a negative .�V 0 ;FW 0 ; ˆ/

decomposition, yielding a smooth negative contact structure �� . If M admits both
a positive .�V ;FW ; ˆ/ decomposition and a negative .�V 0 ;FW 0 ; ˆ/ decomposition,
then these contact structures .M; �C/ and .�M; ��/ are weakly symplectically fillable
and universally tight.

Our main theorem can now be proved.

Theorem 1.2 Any taut transversely oriented C 1;0 foliation on a closed oriented 3–
manifold M ¤ S1�S2 can be C 0 approximated by both a positive �C and a negative
�� smooth contact structure. These contact structures .M; �C/ and .�M; ��/ are
weakly symplectically fillable and universally tight.

Proof of Theorem 1.2 Given the earlier results in this paper on approximating fo-
liations by smoother foliations, the methods developed for introducing holonomy in
minimal sets, and the construction of approximating contact structures in attracting
holonomy neighborhoods, Theorem 1.2 follows directly from Theorem 9.2. Since this is
a long line of implications and constructions, we assemble and summarize the steps now.

The first step is to show that it suffices to restrict attention to the case that F is a
transversely oriented C1;0 foliation which is not a fibering and whose every minimal
set contains a leaf which is not homeomorphic to R2 .
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Consider first the case that F is a transversely oriented C 1;0 foliation on M . By
Theorem 2.10, F can be C 0 approximated by a transversely oriented C1;0 foliation.
Next, if F contains a minimal set all of whose leaves are planes, then by Corollary 8.16,
it can be C 0 approximated by a smooth fibering. Finally, if F is a C1;0 fibering, then
by Theorem 5.2, it can be C 0 approximated by a transversely oriented C1;0 foliation
which is obtained by Denjoy blow up.

If F is minimal, set ƒ1 D F . Otherwise, let ƒ1; : : : ; ƒr denote the exceptional mini-
mal sets of F , and let ŒL1�; : : : ; ŒLs� denote the isotopy classes of compact leaves of F .
Apply Corollary 4.12 to obtain a spanning collection of pairwise disjoint holonomy
neighborhoods V 01

.�1; A1/; : : : ; V
0
rCs

.�rCs; ArCs/. Let V 0 denote their union.

For each i with 1 � i � n, let R0i D Ri
.�i ; Ai /, and set R0 D

S
i Ri . For each i

with 1� i � n, fix a smooth open neighborhood NR0
i

of R0i in V 0i . Choose each NR0
i

small enough that its closure, NR0
i
, is a closed regular neighborhood of R0i . Let NR0

denote the union of the NR0
i
.

By Lemma 3.11, F can be C 0 approximated by a transversely oriented C1;0 foliation
which is strongly .V 0; P /–compatible for some choice of product neighborhood .P;P/
of .V 0INR0/. Hence, it suffices to restrict attention to the case that F is a transversely
oriented, strongly .V 0; P /–compatible, C1;0 foliation which is not a fibering and
whose every minimal set contains a leaf which is not homeomorphic to R2 . We now
do so. In particular, F D P on NR0 and F is x–invariant in the .x; y; z/ coordinates
given by P .

Put the product metric on each component PiD Œ�1; 1��S1�Œ�1; 1� of P , as described
in Definition 3.12, and let g0 denote the resulting metric on P . Fix a Riemannian
metric g D g.P / on M which restricts to g0 on P . Fix � > 0.

Now apply Theorem 6.2 to obtain a transversely oriented C1;0 foliation G that is �
C 0 close to F , V 0–compatible with F , and strongly .V 0; P /–compatible, and a finite
set of pairwise disjoint attracting neighborhoods

V1
.�1; A1/; : : : ; Vm

.�m; Am/;

with m� n, for G such that the Vi
are �–flat, �–horizontal, and if V denotes their

union, G is V–transitive.

By Theorem 7.2, there are a regular neighborhood Nv � V of the vertical edges of
@Q in V and smooth approximating confoliations �˙V defined on V where the main
properties are

(1) �˙V D TG on Nh[Nv and is contact at all other points of V ,
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(2) �CV dominates G along @vV , with the domination strict outside Nh[Nv , and

(3) ��V is dominated by G along @vV , with the domination strict outside Nh[Nv .

Let W denote the closure of the complement of V and let GW denote the restriction
of G to W . Applying Theorem 9.2 to the .�CV ;GW ; ˆ/ decomposition of M yields
a positive contact structure �C on M which is O.�/ close to G . By symmetry, there
is a negative contact structure �� on M which is O.�/ close to G . When F is taut,
these contact structures are weakly symplectically fillable and universally tight. Since
G is � close to F , each of �˙ is O.�/ close to F .

References
[1] J Bowden, Approximating C 0–foliations by contact structures, Geom. Funct. Anal. 26

(2016) 1255–1296 MR

[2] D Calegari, Leafwise smoothing laminations, Algebr. Geom. Topol. 1 (2001) 579–585
MR

[3] C Camacho, A Lins Neto, Geometric theory of foliations, Birkhäuser, Boston (1985)
MR

[4] A Candel, L Conlon, Foliations, I, Graduate Studies in Mathematics 23, Amer. Math.
Soc., Providence, RI (2000) MR

[5] O T Dasbach, T Li, Property P for knots admitting certain Gabai disks, Topology
Appl. 142 (2004) 113–129 MR

[6] C Delman, R Roberts, Alternating knots satisfy Strong Property P, Comment. Math.
Helv. 74 (1999) 376–397 MR

[7] P R Dippolito, Codimension one foliations of closed manifolds, Ann. of Math. 107
(1978) 403–453 MR

[8] Y M Eliashberg, W P Thurston, Confoliations, University Lecture Series 13, Amer.
Math. Soc., Providence, RI (1998) MR

[9] W Floyd, U Oertel, Incompressible surfaces via branched surfaces, Topology 23
(1984) 117–125 MR

[10] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983)
445–503 MR

[11] D Gabai, Foliations and genera of links, Topology 23 (1984) 381–394 MR

[12] D Gabai, Detecting fibred links in S3 , Comment. Math. Helv. 61 (1986) 519–555 MR

[13] D Gabai, Genera of the alternating links, Duke Math. J. 53 (1986) 677–681 MR

[14] D Gabai, Foliations and the topology of 3–manifolds, II, J. Differential Geom. 26
(1987) 461–478 MR

Geometry & Topology, Volume 21 (2017)

http://dx.doi.org/10.1007/s00039-016-0387-2
http://msp.org/idx/mr/3568032
http://dx.doi.org/10.2140/agt.2001.1.579
http://msp.org/idx/mr/1875608
http://dx.doi.org/10.1007/978-1-4612-5292-4
http://msp.org/idx/mr/824240
http://msp.org/idx/mr/1732868
http://dx.doi.org/10.1016/j.topol.2003.11.010
http://msp.org/idx/mr/2071298
http://dx.doi.org/10.1007/s000140050095
http://msp.org/idx/mr/1710698
http://dx.doi.org/10.2307/1971123
http://msp.org/idx/mr/0515731
http://msp.org/idx/mr/1483314
http://dx.doi.org/10.1016/0040-9383(84)90031-4
http://msp.org/idx/mr/721458
http://dx.doi.org/10.4310/jdg/1214437784
http://msp.org/idx/mr/723813
http://dx.doi.org/10.1016/0040-9383(84)90001-6
http://msp.org/idx/mr/780731
http://dx.doi.org/10.1007/BF02621931
http://msp.org/idx/mr/870705
http://dx.doi.org/10.1215/S0012-7094-86-05336-6
http://msp.org/idx/mr/860665
http://dx.doi.org/10.4310/jdg/1214441487
http://msp.org/idx/mr/910017


3656 William H Kazez and Rachel Roberts

[15] D Gabai, Foliations and the topology of 3–manifolds, III, J. Differential Geom. 26
(1987) 479–536 MR

[16] D Gabai, Foliations and 3–manifolds, from “Proceedings of the International Congress
of Mathematicians, I” (I Satake, editor), Math. Soc. Japan, Tokyo (1991) 609–619 MR

[17] D Gabai, Taut foliations of 3–manifolds and suspensions of S1 , Ann. Inst. Fourier
.Grenoble/ 42 (1992) 193–208 MR

[18] D Gabai, Problems in foliations and laminations, from “Geometric topology” (W H
Kazez, editor), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI (1997)
1–33 MR

[19] D Gabai, Combinatorial volume preserving flows and taut foliations, Comment. Math.
Helv. 75 (2000) 109–124 MR

[20] D Gabai, U Oertel, Essential laminations in 3–manifolds, Ann. of Math. 130 (1989)
41–73 MR

[21] G Hector, U Hirsch, Introduction to the geometry of foliations, B: Foliations of
codimension one, Aspects of Mathematics E3, Friedr. Vieweg & Sohn, Braunschweig
(1983) MR

[22] H Imanishi, On the theorem of Denjoy–Sacksteder for codimension one foliations
without holonomy, J. Math. Kyoto Univ. 14 (1974) 607–634 MR

[23] T Kalelkar, R Roberts, Taut foliations in surface bundles with multiple boundary
components, Pacific J. Math. 273 (2015) 257–275 MR

[24] W H Kazez, R Roberts, Approximating C 1;0–foliations, from “Interactions between
low-dimensional topology and mapping class groups” (R I Baykur, J Etnyre, U Hamen-
städt, editors), Geom. Topol. Monogr. 19, Geom. Topol. Publ. (2015) 21–72 MR

[25] W H Kazez, R Roberts, C 1;0 foliation theory, preprint (2016) arXiv

[26] W H Kazez, R Roberts, Taut foliations, preprint (2016) arXiv To appear in Comm.
Anal. Geom.

[27] J M Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics 218,
Springer (2003) MR

[28] T Li, Commutator subgroups and foliations without holonomy, Proc. Amer. Math. Soc.
130 (2002) 2471–2477 MR

[29] T Li, Laminar branched surfaces in 3–manifolds, Geom. Topol. 6 (2002) 153–194 MR

[30] T Li, Boundary train tracks of laminar branched surfaces, from “Topology and geome-
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Boundaries and automorphisms of
hierarchically hyperbolic spaces

MATTHEW GENTRY DURHAM

MARK F HAGEN

ALESSANDRO SISTO

Hierarchically hyperbolic spaces provide a common framework for studying mapping
class groups of finite-type surfaces, Teichmüller space, right-angled Artin groups,
and many other cubical groups. Given such a space X , we build a bordification of X
compatible with its hierarchically hyperbolic structure.

If X is proper, eg a hierarchically hyperbolic group such as the mapping class group,
we get a compactification of X ; we also prove that our construction generalizes the
Gromov boundary of a hyperbolic space.

In our first main set of applications, we introduce a notion of geometrical finiteness
for hierarchically hyperbolic subgroups of hierarchically hyperbolic groups in terms
of boundary embeddings.

As primary examples of geometrical finiteness, we prove that the natural inclusions
of finitely generated Veech groups and the Leininger–Reid combination subgroups
extend to continuous embeddings of their Gromov boundaries into the boundary of the
mapping class group, both of which fail to happen with the Thurston compactification
of Teichmüller space.

Our second main set of applications are dynamical and structural, built upon our
classification of automorphisms of hierarchically hyperbolic spaces and analysis of
how the various types of automorphisms act on the boundary.

We prove a generalization of the Handel–Mosher “omnibus subgroup theorem” for
mapping class groups to all hierarchically hyperbolic groups, obtain a new proof of
the Caprace–Sageev rank-rigidity theorem for many CAT.0/ cube complexes, and
identify the boundary of a hierarchically hyperbolic group as its Poisson boundary;
these results rely on a theorem detecting irreducible axial elements of a group acting
on a hierarchically hyperbolic space (which generalize pseudo-Anosov elements of
the mapping class group and rank-one isometries of a cube complex not virtually
stabilizing a hyperplane).
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Introduction

The class of hierarchically hyperbolic spaces (HHSs) was introduced by Behrstock,
Hagen and Sisto [5], and they gave a streamlined definition in [6], to provide a common
framework for studying cubical groups and mapping class groups of surfaces. The
definition was motivated by the observation that, under natural hypotheses, a CAT.0/
cube complex is equipped with a collection of projections to hyperbolic spaces obeying
rules reminiscent of the hierarchical structure of mapping class groups and projections
to curve graphs introduced by Masur and Minsky [59; 60]. The class of HHSs includes
the aforementioned spaces (mapping class groups and many CAT.0/ cube complexes,
including all universal covers of compact special cube complexes), along with Gromov-
hyperbolic spaces, Teichmüller space with any of the usual metrics, and many others;
see Behrstock, Hagen and Sisto [5; 6; 7] for an account of the current scope of the theory.

Much of the utility of HHSs comes from the fact that many features of Gromov-
hyperbolic spaces have natural generalizations in the HHS world. Since one of the most
useful objects associated to a hyperbolic space is its Gromov boundary, we provide
here a generalization of the Gromov boundary to hierarchically hyperbolic spaces.
The boundary of a hierarchically hyperbolic space is inspired by various boundaries
associated to the salient examples of HHSs, eg the simplicial boundary of a CAT.0/
cube complex and the Thurston compactification of Teichmüller space, projective
measured lamination space PML.S/.
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Just as the Gromov boundary does for hyperbolic spaces and groups, the HHS boundary
provides considerable information about the geometry of an HHS and the dynamics of
its automorphisms; our aim in this paper is to explore some of these properties.

Introduction to HHSs

We first briefly and softly recall the HHS theory. A hierarchically hyperbolic space is
a pair .X ;S/ equipped with some additional data: X is a quasigeodesic metric space
and S is an index set equipped with a partial order v, called nesting, with a unique
maximal element S . There is also an orthogonality relation on S; when S is the set
of essential subsurfaces of a surface S , up to isotopy, orthogonality is just disjointness.
We often call elements of S domains.

Each U 2 S is equipped with a uniformly hyperbolic space CU and a coarse map
�U W X!CU . There are also relative projections �UV , which are coarse maps CU!CV
defined unless U and V are orthogonal. In the case where X is the marking complex
of the surface S and S is the set of subsurfaces of S , the associated hyperbolic spaces
are the curve graphs of these subsurfaces and the projections are subsurface projections.
We impose other rules reminiscent of the hierarchical structure of the mapping class
group; see Definition 1.1.

The distance formula is crucial: for any x; y 2 X , the distance dX .x; y/ differs, up to
bounded multiplicative and additive error, from the sum of the distances

dCU .�U .x/; �U .y//

as U 2 S varies over those domains where that distance exceeds some predefined
threshold; see Behrstock, Hagen and Sisto [6].

Just as quasiconvexity is vital to the study of hyperbolic spaces, hierarchical quasi-
convexity is central in the study of HHSs. Roughly, Y�X is hierarchically quasiconvex
if �U .Y/ is uniformly quasiconvex for each U 2S, and any point in X projecting
under �U close to �U .Y/ for each U must lie close (in X ) to Y . The fundamental
example of a hierarchically quasiconvex subspaces is the standard product region PU
associated to each U 2S. Roughly, the subspace PU consists of those points x 2 X
where �V .x/ is close to �UV for any V 2S that is not orthogonal to, or nested in, V .
The factor of PU obtained by fixing, in addition, the projections to domains orthogonal
to U (and allowing movement in domains nested in U ) is denoted by FU , and the
other factor is EU . A familiar example here is the region of Teichmüller space with
the Teichmüller metric where the boundary curves of some subsurface U are short:
Minsky [61] proved that these so-called thin parts are quasiisometric to products of the
Teichmüller spaces of the complementary subsurfaces, one of which is U .

Geometry & Topology, Volume 21 (2017)



3662 Matthew Gentry Durham, Mark F Hagen and Alessandro Sisto

What’s needed from [5; 6] Behrstock, Hagen and Sisto [6] is the main foundational
paper in the theory of HHSs. In the current paper, we use most of the background
material developed in [6], with the notable exception of the combination theorems.
In particular, we use the main definition of HHSs (which is equivalent to, but much
simpler than, the original definition from [5]), the realization theorem, the distance
formula, and the existence of hierarchy paths. The fact that mapping class groups
are hierarchically hyperbolic groups, which is crucial for our applications to Veech
and Leininger–Reid subgroups in Section 5, could be deduced from Behrstock [3],
Behrstock, Kleiner, Minsky and Mosher [8] and Masur and Minsky [59; 60], but is
also given a streamlined proof by Behrstock, Hagen and Sisto [6, Section 11].

From Behrstock, Hagen and Sisto [5], we need the acylindricity result (Theorem 14.3)
and, for the purposes of Section 10, the HHS structure on CAT.0/ cube complexes.
We note that the acylindricity result from [5] is independent of the other HHS results
in that paper.

Finally, the recent paper Behrstock, Hagen and Sisto [7] is completely independent of
this one.1

The boundary

Consider an HHS .X ;S/. Since any two points of X are joined by a hierarchy path —
a uniform quasigeodesic projecting to a uniform unparametrized quasigeodesic in CU
for each U 2S (see [6]) — a natural approach to constructing a boundary is to imitate
the construction of the Gromov boundary, or the visual boundary of a CAT.0/ space:
boundary points would be asymptotic classes of “hierarchy rays” emanating from a
fixed basepoint, and one might imagine topologizing this set by defining two boundary
points to be close if the corresponding rays stay close “for a long time”.

The boundary construction is motivated by this intuition. Given a hierarchy ray
 W N! X , one first observes that the set of U 2S for which �U ı  is unbounded
is a pairwise-orthogonal collection —  either spends a bounded amount of time in
each standard product region, or  wanders permanently into the (coarse) intersection
of several standard product regions. Accordingly, the underlying set of the boundary
@.X ;S/ is the set of formal linear combinations p D

P
U2U aUpU , where U � S

(the support of p ) is a pairwise-orthogonal set, each pU is a point in the Gromov
boundary of CU , each aU 2 .0; 1�, and

P
U aU D 1.

Regarding each @CU as a discrete set, the above construction yields a (highly discon-
nected, locally infinite) simplicial complex. The “rank-one hierarchy rays” — ie the

1The picture on Hagen’s website shows the current state of the theory, indicating the main concepts
and results and their interdependencies.
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points of @CS — correspond to isolated 0–simplices, while the standard product regions
contribute boundary subcomplexes isomorphic to simplicial joins. This complex is a
kind of “Tits boundary” for .X ;S/. The actual boundary we define is related to this
complex in much the same way that the visual boundary of a CAT.0/ space is related
to the Tits boundary; we define the boundary @.X ;S/ by imposing a coarser topology,
described in Section 2. (When the context is clear, we denote @.X ;S/ by @X , being
mindful that this space depends, as far as we know, on the particular HHS structure S.)

The resulting space X D X [ @X is Hausdorff and separable; @X is a closed subset
and X is dense (Proposition 2.17). Moreover, the Gromov boundary @CU embeds in
@.X ;S/, in the obvious way, for each U 2S, by Theorem 4.3. Crucially:

Theorem 3.4 (compactness) Let .X ;S/ be a hierarchically hyperbolic space with
X proper. Then X is compact.

The definition of @.X ;S/ is given strictly in terms of S and the accompanying
hyperbolic spaces and projections; the standing assumption that .X ;S/ is normalized —
each �U is coarsely surjective — connects the boundary to the space X by ensuring
that X is dense in X . Even so, it is not clear whether the homeomorphism type of
@.X ;S/ depends on the particular choice of HHS structure:

Question 1 Let .X ;S/ be a hierarchically hyperbolic space and let .X ;S0/ be a
different hierarchically hyperbolic structure on the same space. Does the identity
map X ! X extend to a map X [ @.X ;S/ ! X [ @.X ;S0/ which restricts to a
homeomorphism of boundaries?

A positive answer to Question 1 would stand in contrast to the situation for CAT.0/
spaces. For example, the right-angled Artin group A, presented by a path of length 3,
famously has the property that the universal cover zX of the Salvetti complex can be
endowed with different CAT.0/ metrics (obtained by perturbing angles in the 2–cells)
with nonhomeomorphic visual boundaries; see Croke and Kleiner [22]. On the other
hand, zX admits a hierarchically hyperbolic structure . zX;S/ coming from the cubical
structure of zX (with no dependence on the CAT.0/ metric). Perturbing the CAT.0/
metric within its quasiisometry type does not change the HHS structure (and hence
the HHS boundary), so the HHS boundary is in a sense more “canonical” than the
visual boundary in this example (and indeed for all CAT.0/ cube complexes with factor
systems, which we discuss in more detail below).

Automorphisms and their actions on the boundary

An automorphism of .X ;S/ is a bijection gW S!S and an isometry CU ! Cg.U /
for each U 2 S which satisfy certain compatibility conditions. The distance for-
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mula ensures that automorphisms induce uniform quasiisometries of X , so the group
Aut.S/ of automorphisms uniformly quasiacts by (uniform) quasiisometries on X .
The (quasi)action of Aut.S/ on X extends to an action on X that restricts to an action
by homeomorphisms on @X (Corollary 6.1).

In one of the main cases of interest, X is a Cayley graph of a finitely generated group G ,
and the action of G on itself by left multiplication corresponds to an action on .G;S/
by HHS automorphisms. In this situation, if the action on S is cofinite, then .G;S/
is a hierarchically hyperbolic group structure; if a group G admits a hierarchically
hyperbolic group structure, then G is a hierarchically hyperbolic group (HHG). The
archetypal hierarchically hyperbolic group is the mapping class group of a connected,
oriented surface of finite type [6, Section 11]. Other examples include many cubical
groups [5], many graphs of hierarchically hyperbolic groups [6], and certain quotients
of hierarchically hyperbolic groups [7]. If .G;S/ is a hierarchically hyperbolic group,
then the isometric action of G on itself by left multiplication extends to an action
by homeomorphisms on G (Corollary 6.2). We describe in detail below our results
regarding the dynamics and structure of groups of automorphisms.

Embeddings of subspace boundaries and geometrical finiteness

A desirable property of a boundary is that inclusions of subspaces that are “convex” in
an appropriate sense induce embeddings of boundaries with closed images. In Section 5,
we show that hierarchically quasiconvex subspaces of X , which admit their own natural
HHS structures [6], have this property: if Y � X is hierarchically quasiconvex, then Y
has a limit set in @X which is homeomorphic to @Y with the HHS structure inherited
from X . In fact, Theorem 5.6 provides more, by giving natural conditions on maps
between HHSs ensuring that they extend continuously to the HHS boundary. This
motivates the following definition:

Definition 2 (geometrical finiteness) We say a hierarchically hyperbolic subgroup
H of a hierarchically hyperbolic group G is geometrically finite if the natural inclusion
�W H ,!G extends continuously to an H–equivariant embedding @�W @H ,! @G .

In what follows, we will be interested in developing this notion and establishing
examples in the context of the mapping class group of a finite-type surface.

Comparison of the mapping class group boundary with PML.S /

The archetypal hierarchically hyperbolic group is the mapping class group MCG.S/ of
a connected, oriented surface S of finite type. The hierarchically hyperbolic structure
is provided by results of Aougab [1], Behrstock [3], Behrstock, Kleiner, Minsky and
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Mosher [8], Bowditch [12], Clay, Rafi and Schleimer [21], Hensel, Przytycki and
Webb [43], Mangahas [55], Masur and Minsky [59; 60], Przytycki and Sisto [66] and
Webb [74] and is discussed in detail in Section 11 of Behrstock, Hagen and Sisto [6].
Roughly, S is the set of essential subsurfaces of S , up to isotopy, CU is the curve
graph of U for each U 2S, and projections are usual subsurface projections.

Traditionally, MCG.S/ has been studied via its action on Teichmüller space T .S/
with its Thurston compactification by PML.S/. This approach has been fruitful
especially when considering subgroups of MCG.S/ defined via flat or hyperbolic
geometry. Nonetheless, the MCG.S/ action on T .S/ is not cocompact and the orbits
of many subgroups (in fact, any with Dehn twists) are distorted in T .S/, which make
T .S/ imperfect for studying the coarse geometry of MCG.S/ and its subgroups.

The situation is further complicated when one attempts to extend the MCG.S/ action on
T .S/ to its various boundaries. Teichmüller geodesics are unique and thus geodesic rays
based at a point form a natural visual compactification of T .S/, but Kerckhoff [49]
proved that it is basepoint dependent and thus the MCG.S/ action fails to extend
continuously. While Thurston [72] defined a compactification via PML.S/ to which
the MCG.S/ action does extend continuously, Thurston’s compactification is defined
via hyperbolic geometry and the Teichmüller metric is defined via flat geometry, which
leads to an incoherence between the internal geometry and its asymptotics in PML.S/;
see Brock, Leininger, Modami and Rafi [16], Chaika, Masur and Wolf [19], Leininger,
Lenzhen and Rafi [51], Lenzhen [53] and Masur [58].

The boundary @.MCG.S/;S/ provides the first compactification of MCG.S/, so the
action of MCG.S/ on itself by left multiplication extends to a continuous action on the
boundary with the dynamical properties we discuss below (see also Section 6). While
many of these dynamical properties were originally proven via the MCG.S/–action
on T .S/ with its Thurston compactification, many of the pathologies described above
vanish in our construction, as we discuss presently.

On geometrically finite subgroups of MCG.S /

Problem 5 of Hamenstädt [41] and Section 6 of Mosher [62] regard the development
of a notion of geometrical finiteness for subgroups of MCG.S/. Mosher suggests a
definition that requires an external proper hyperbolic space X on which the candidate
subgroup acts with a collection of cusp subgroups in some appropriate sense; geometric
finiteness would then require that X and @X embed quasiisometrically in T .S/ and
continuously in PML.S/, respectively. Masur’s theorem makes it unreasonable to
expect a simultaneous continuous embedding X [ @X ! T .S/[PML.S/.
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We will argue that replacing T .S/ [ PML.S/ with MCG.S/ [ @MCG.S/ as in
Definition 2 generates a robust theory of geometrical finiteness. In particular, we prove:

Theorem 3 Suppose that H <MCG.S/ is one of the following:

(1) The standard embedding of MCG.Y / for some proper subsurface Y � S .
(2) Convex cocompact in the sense of Farb and Mosher [31].
(3) A finitely generated Veech group.
(4) A Leininger–Reid combination subgroup [52].

Then H is a geometrically finite subgroup of MCG.S/.

Hence geometrical finiteness generalizes convex cocompactness for subgroups of
MCG.S/ to a broader class of groups. Theorem 3(a) is proven in Theorem 5.11 and
Theorem 3(b) is Theorem 5.12. We discuss presently the Veech and Leininger–Reid
examples in more detail.

Veech and Leininger–Reid combinations subgroups For Mosher (see Problem 6.1
of [62]), the main test cases for a definition of geometrical finiteness for subgroups of
mapping class groups are finitely generated Veech groups and the Leininger–Reid sub-
groups. It is worth noting that while the former are explicitly defined via flat geometry
and the latter somewhat less so, the aforementioned coherence pathologies between
the Teichmüller geometry and the Thurston compactification give an obstruction to
considering embeddings of natural boundaries associated to them into PML.S/. We
prove that this obstruction disappears with @MCG.S/. We now briefly give some
background.

Given a holomorphic quadratic differential q on S , there is an associated copy of H2

called a Teichmüller disk, TD.q/, which is a convex subset of T .S/. The stabilizer
of TD.q/ in MCG.S/ is Aff.q/, those elements with a representative which act by
affine homeomorphisms with respect to the flat metric determined by q . A Veech
group V is a subgroup of Aff.q/ which acts properly on TD.q/; we consider only
finitely generated Veech groups. The visual boundary of TD.q/ is naturally identified
by PML.q/, which admits a natural embedding in PML.S/ that parametrizes the
limit set of V in PML.S/ — see Kent and Leininger [47] — but a theorem of Masur
[58] implies that this embedding does not give an everywhere continuous extension
TD.q/[PML.q/ ,! T .S/[PML.S/.
Leininger and Reid [52] construct subgroups of MCG.S/ which are combinations
of Veech groups; some are surface groups in which all but one conjugacy class is
pseudo-Anosov. The boundary of such a surface subgroup is its limit set in @H2 .
Problem 3.3 of Reid [68] asks if there is a continuous, equivariant embedding of this
boundary into PML.S/.
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While we do not answer this question directly, we do prove something strictly stronger
for @MCG.S/:

Theorem 5.20 Let H <MCG.S/ be either a finitely generated Veech or Leininger–
Reid subgroup as above. Then the inclusion H ,!MCG.S/ extends to a continuous
H–equivariant embedding @H ,! @MCG.S/ with closed image. In particular, H is a
geometrically finite subgroup of MCG.S/.

Other candidates for geometrical finiteness Perhaps the next best candidates for
geometrically finite subgroups of MCG.S/ are the various right-angled Artin groups
constructed by Clay, Leininger and Mangahas [20] and Koberda [50]. These sub-
groups are HHGs and the former are even known to be quasiisometrically embedded
in MCG.S/.

Question 4 Are the Clay–Leininger–Mangahas and Koberda right-angled Artin sub-
groups of MCG.S/ geometrically finite? Hierarchically quasiconvex? 2

The HHS boundary of Teichmüller space and PML.S / Slight modifications of
the above hierarchical structures endow the Teichmüller space, T .S/, with either
the Teichmüller or Weil–Petersson metrics, with an HHS structure, as explained in
[5; 6] using results of Brock [15], Durham [26] and Eskin, Masur and Rafi [29]; see
also Bowditch [14; 13] for closely related results.

Question 5 How is the HHS boundary @T .S/ of T .S/, with the Teichmüller metric
and the above HHS structure, related to the projective measured lamination space
PML.S/?

In fact, there is a natural map PML.S/ ! @T .S/ which collapses certain sim-
plices of measures on given laminations to points, while being injective on the set of
uniquely ergodic laminations, whose image in @T .S/ can be identified with a subset
of @CS � @T .S/. A promising strategy is to attempt to use this map, along with a
result of Edwards — see Daverman [24] and Edwards [28] — to prove that @T .S/ is
homeomorphic to PML.S/, ie to S2�.S/�1 . The missing ingredient is a positive
answer to:

Question 6 Does @T .S/ have the disjoint discs property?

A metric space M has the disjoint disks property if any two maps D2!M admit
arbitrarily small perturbations with disjoint image; the above question makes sense since
it is not hard to see, using Proposition 2.17, that @T .S/ is metrizable. The difficulty

2Since we initially posted this paper, Mousley [63] answered this question negatively.
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here involves nonuniquely ergodic laminations, which cause a similar problem to the
extensions discussed above related to the Leininger–Reid subgroups.

Another question, subject to much recent study, is about the limit sets of Teichmüller
geodesics in Thurston’s compactification. The analogous question in our setting is:

Question 7 What are the limit sets of Teichmüller geodesics in @T .S/?

There are now several constructions of geodesics with limits sets that are bigger
than a point — see Brock, Leininger, Modami and Rafi [16], Chaika, Masur and
Wolf [19], Leininger, Lenzhen and Rafi [51] and Lenzhen [53] — but these constructions
fundamentally depend on the fact that filling minimal laminations can admit simplices
of measures, which collapse in @T .S/. The geodesics constructed in [16; 19; 51] will
have unique limits @T .S/ as their asymptotics with respect to @T .S/ are determined by
their asymptotics in the curve graph CS . On the other hand, the situation becomes more
opaque for Teichmüller geodesics with vertical laminations with multiple components.
Using work of Rafi [67], one can determine that the coefficients aY of the components
Y � S supporting the potential limits in @T .S/ are determined by limits of ratios of
the rates of divergence in the various subsurface curve graphs CY . However, it seems
unlikely that these limits of ratios always exist, suggesting that such geodesics need
not have unique limits in @T .S/.

Dynamical and structural results

Our second main collection of applications of the boundary are about the dynamics
of the action on the boundary and the structure of subgroups. In Section 6, we study
automorphisms of hierarchically hyperbolic spaces:

Classification of automorphisms Given f 2 Aut.S/, the set Big.f / of U 2S for
which hf i � x (for some basepoint x 2 X ) projects to an unbounded set in CU is a
possibly empty finite set of pairwise-orthogonal domains preserved by the action of hf i
on S. We classify f according to the nature of Big.f /. First, if Big.f /D∅, then f
has bounded orbits in each CU and hence has bounded orbits in X , by Proposition 6.4;
in this case, f is elliptic. Second, if hf i � x projects to a quasiline in CU for some
U 2 Big.f /, then hf i � x is a quasiline in X , by Proposition 6.12, and f is axial.
Otherwise, f is distorted.

If Big.f /D fSg, then f is irreducible, and f is reducible otherwise. Perhaps the
most important class of HHS automorphisms are irreducible axial automorphisms. In
the mapping class group, these are the pseudo-Anosov elements; in a hierarchically
hyperbolic cube complex, these are the rank-one elements that do not virtually preserve
hyperplanes; see [5] and Hagen [36]. In the case where .G;S/ is a hierarchically
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hyperbolic group, each irreducible axial element is Morse — this follows from Theorem
6.15 — but the converse does not hold. The question of when irreducible axial elements
exist is of major interest later.

Dynamics and fixed points In Section 6.2, we study the dynamics of f 2 Aut.S/
on @X . First, we show that irreducible axial automorphisms act as expected:

Proposition 6.18 (north–south dynamics) If g 2 Aut.S/ is irreducible axial, then g
has exactly two fixed points �C; �� 2 @X . Moreover, for any boundary neighborhoods
�C 2 UC and �� 2 U� , there exists an N > 0 such that gN .@X �U�/� UC .

In Propositions 6.19 and 6.20, we show that if f is irreducible distorted, then f fixes
a unique point p 2 @X , which is an “attracting fixed point”. We also prove analogues
of these results for reducible automorphisms (Propositions 6.22 and 6.25).

We then study hierarchically hyperbolic groups. First, we rule out distortion:

Theorem 7.1 (coarse semisimplicity) If .G;S/ is a hierarchically hyperbolic group,
then each g 2G is either elliptic or axial; in fact g is undistorted in each element of
Big.g/.

In the event that G contains irreducible axial elements, we have:

Theorem 6.29 (topological transitivity) Let .G;S/ be hierarchically hyperbolic
with an irreducible axial element and let G be nonelementary. Then any G–orbit in
@G is dense.

Below, we will describe when .G;S/ has an irreducible axial element.

Uses of the boundary

We use the boundary, and actions thereon, in numerous ways.

Finding and exploiting irreducible axials In Section 9, we study irreducible axial
elements of groups of automorphisms of hierarchically hyperbolic spaces. The setting
is an HHS .X ;S/ with X proper and S countable, and we consider a countable
subgroup G � Aut.S/. This holds, for example, when X DG is an HHG. The main
technical statement is:

Propositions 9.4 and 9.2 (finding irreducible axials) Suppose that either G acts
properly and coboundedly on X and cofinitely on S, or G acts with unbounded orbits
in X and no fixed point in @CS . Then either G contains an irreducible axial element,
or there exists U 2S�fU g which is fixed by a finite-index subgroup of G .
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These two propositions are proved in tandem. The strategy is to consider probability
measures on G and corresponding G–stationary measures on @X ; the main lemma,
Lemma 9.8, shows that, unless G has a finite orbit in @CS or S�fSg, such a measure
must be supported on @CS � @X . In particular, if CS is bounded, then there must be
a finite orbit in S�fSg. We emphasize that, for the above proposition and all of its
applications, compactness of the HHS boundary (ie Theorem 3.4) is absolutely vital.

Using the above propositions, we prove:

Theorem 9.15 (HHG Tits alternative) Let .G;S/ be an HHG and let H �G . Then
H either contains a nonabelian free group or is virtually abelian.

By analyzing supports of global fixed points in the boundary of an HHS, we then prove:

Theorem 9.20 (omnibus subgroup theorem) Let .G;S/ be a hierarchically hyper-
bolic group and let H �G . Then there exists an element g 2H with A.H/D Big.g/.
Moreover, for any g0 2H and each U 2Big.g0/, there exists V 2Big.g/ with U v V .

Here, A.H/ is the set of domains U on which H has unbounded projection. The
theorem we actually prove is more general than the above, but the version stated here
is sufficient to imply the omnibus subgroup theorem for mapping class groups, due
to Handel and Mosher [42], which they proved as an umbrella theorem for several
subgroup structure theorems, including the Tits alternative; see also Mangahas [56] for
further discussion.

We also obtain a coarse/HHS version of the rank-rigidity conjecture for CAT.0/ spaces:

Theorems 9.13 and 9.14 (coarse rank-rigidity) Let .X ;S/ be an HHS with X
unbounded and proper and S countable. Let G � Aut.S/ be a countable subgroup
and suppose that one of the following holds:

(1) G acts essentially on X with no fixed point in @X .

(2) G acts properly and coboundedly on X and cofinitely on S.

Then either .X ;S/ is a product HHS with unbounded factors or there exists an axial
element g 2 G such that Big.g/ consists of a single domain W , for which CU is
bounded if U ?W .

Such an element g is a rank-one automorphism; all of its quasigeodesic axes of any
fixed quality lie in some neighborhood of one another (of radius depending on the
quality). The HHS is a product with unbounded factors if there exists U 2S such that
X coarsely coincides with the standard product region PU , and each of EU and FU
is unbounded.
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In particular, if X is any of the cube complexes shown in [5] to be hierarchically
hyperbolic (ie those admitting “factor systems”), then our methods allow us to recover
the Caprace–Sageev rank-rigidity theorem [18] for X :

Corollary 9.24 (rank-rigidity for many cube complexes) Let X be a CAT.0/ cube
complex with a factor system. Let G act on X and suppose that one of the following
holds:

(1) X is unbounded and G acts on X properly and cocompactly.

(2) G acts on X with no fixed point in X [ @4X .

Then X contains a G–invariant convex subcomplex Y such that either G contains
a rank-one isometry of Y or Y D A � B , where A and B are unbounded convex
subcomplexes.

It is difficult to construct cube complexes without factor systems that satisfy the
remaining hypotheses of this theorem. At least in the cocompact case, we believe that
our proof works without explicitly hypothesizing the existence of a factor system —
see Question A of [6], which asks whether the presence of a geometric group action on
a cube complex guarantees that a factor system exists (see Remark 9.25).3

Other applications, examples, and questions

The HHS boundary in the cubical case If X is a CAT.0/ cube complex with a factor
system F (here F more properly denotes the set of parallelism classes of elements
of the factor system), then the resulting hierarchically hyperbolic structure (which
is fundamentally derived from the hyperplanes of X and how they interact) has a
boundary which is, perhaps unsurprisingly, closely related to the simplicial boundary
@4X introduced by Hagen [36] (which is derived from how certain infinite families of
hyperplanes interact). Specifically:

Theorem 10.1 (simplicial and HHS boundaries) Let X be a CAT.0/ cube complex
with a factor system F, and let .X ;F/ be the associated hierarchically hyperbolic
structure. There is a topology T on the simplicial boundary @4X such that:

(1) There is a homeomorphism bW .@4X ; T /! @.X ;F/.
(2) For each component C of the simplicial complex @4X , the inclusion C ,!

.@4X ; T / is an embedding.

In particular, if F and F0 are factor systems on X , then @.X ;F/ is homeomorphic to
@.X ;F0/.

3After we initially posted this paper, Hagen and Susse [38] showed that every CAT.0/ cube complex
with a geometric group action admits a factor system and is thus hierarchically hyperbolic.
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This theorem highlights the relationship between the question of when factor systems
exist, and when X is visible in the sense that every simplex of the simplicial boundary
corresponds to a geodesic ray in X ; this is discussed in Remark 10.9.

Detecting splittings and cubulations from the boundary It is not difficult to show,
from the definitions and Stallings’ theorem [71] on ends of groups, that if .G;S/ is a
hierarchically hyperbolic group, then @.G;S/ is disconnected if and only if G splits
over a finite subgroup.

Question 8 Can the JSJ splitting of G over slender subgroups (see Dunwoody and
Sageev [25], Fujiwara and Papasoglu [33] and Rips and Sela [69]) be detected by
examining separating spheres in @.G;S/, as is the case for hyperbolic groups and
splittings over two-ended subgroups (see Bowditch [10])?

One can also consider producing actions of hierarchically hyperbolic groups on CAT.0/
cube complexes other than trees. As usual, this divides into two separate issues, namely
detecting a profusion of codimension-1 subgroups and then choosing a finite collection
sufficient to produce an action on a cube complex with good finiteness properties.
It appears as though @.G;S/ can be used to produce a proper action on a cube
complex from a sufficiently rich collection of hierarchically quasiconvex codimension-
1 subgroups by a method exactly analogous to that used to cubulate various hyperbolic
groups by Bergeron and Wise [9]. The main difference is that G does not act as
a uniform convergence group on @.G;S/; one must replace the space of triples of
distinct boundary points by the space of triples .p; q; r/ 2 @G such that any two of
p , q and r are antipodal, ie joined by a biinfinite hierarchy path.

Question 9 Let .G;S/ be a hierarchically hyperbolic group. Give conditions on G
ensuring that for any antipodal p; q 2 @G , there exists a hierarchically quasiconvex
codimension-1 subgroup H such that p and q are in distinct components of @gH for
some g 2G .

We have not included a detailed discussion of the above “boundary cubulation for HHG”
technique in the present paper since there are not yet any applications; these could be
provided by an answer to Question 9.

Poisson boundaries and C �–simplicity In Section 9.8.1, we show that the boundary
of an HHG is a topological model for the Poisson boundary:

Theorem 9.26 (Poisson boundary) Let .G;S/ be an HHG with diam CS D 1,
� be a nonelementary probability measure on G with finite entropy and finite first
logarithmic moment, and � the resulting �–stationary measure on @G . Then .@G; �/
is the Poisson boundary for .G;�/.
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In fact, @CS is a model for the Poisson boundary [5], but @.G;S/ has the advantage of
being compact, while in general @CS is not compact. The space @G is a G–boundary,
ie a compactum on which G acts minimally and proximally. Moreover:

Proposition 10 The action of G on @G is topologically free, ie for each g 2G�f1g,
the set of p 2 @X with gp ¤ p is dense in @X .

Proof Let g 2 G � f1g, let q 2 @G , and let U be a neighborhood of q . Suppose
for a contradiction that g fixes U pointwise. By Proposition 9.4, G contains an
irreducible axial element, so by Proposition 6.28, @CS is dense in @G , whence, since
G is nonelementary, g fixes infinitely many distinct points of @CS . If g is reducible
axial, then Lemma 6.24 yields a contradiction, since g cannot fix any point in @CS by
the lemma. If g is irreducible axial, then g fixes exactly two points in @CS , again a
contradiction. Otherwise, g is elliptic and hence has finite order and we are done by
hypothesis.

By a result of Kalantar and Kennedy [46, Theorem 1.5], the above proposition gives a
new proof that a nonelementary HHG G with @CS unbounded is C �–simple (ie the
reduced C �–algebra of G is simple) provided finite-order elements have finite fixed-
point sets in @CS . However, G is known to be C �–simple under these circumstances,
since G is acylindrically hyperbolic [5] and has no finite normal subgroup; see Dahmani,
Guirardel and Osin [23].

In light of the HHG structure on cubulated groups discussed above, Theorem 9.26
should be compared to the results of [64], in which Nevo and Sageev construct the
Poisson boundary for a cubical group using the Roller boundary of the cube complex.

Outline of this paper

In Section 1, we review hierarchically hyperbolic spaces. In Section 2, we define the
HHS boundary. Section 3 is devoted to the proof that proper HHSs have compact
boundaries, and in Section 4, we show that the HHS boundary of a hyperbolic HHS is
homeomorphic to the Gromov boundary. In Section 5, we discuss continuous extensions
of maps between HHSs to the boundary, and consider this phenomenon in the context
of Veech and Leininger–Reid subgroups of the mapping class group. Automorphisms
of hierarchically hyperbolic structures induce homeomorphisms of the boundary; in
Section 6, we classify their automorphisms and study fixed sets and dynamics of the
actions of automorphisms on the boundary. In particular, in Section 7, we show that
cyclic subgroups of hierarchically hyperbolic groups are undistorted. Section 8 is a
brief technical discussion of essential HHSs and actions, supporting Section 9, in which
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we prove the coarse rank-rigidity theorem and some of its consequences. In Section 10,
we consider CAT.0/ cube complexes with HHS structures coming from [5], relating
the HHS boundary to the simplicial boundary from Hagen [36].
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1 Background

1.1 Hierarchically hyperbolic spaces

We begin by recalling the definition of a hierarchically hyperbolic space, introduced
in [5] and axiomatized in a more efficient fashion in [6], as follows. We begin by defining
a hierarchically hyperbolic space. We will work in the context of a quasigeodesic
space, X , ie a metric space where any two points can be connected by a uniform-quality
quasigeodesic.

Definition 1.1 (hierarchically hyperbolic space) The q–quasigeodesic space .X ; dX /
is a hierarchically hyperbolic space if there exists ı�0, an index set S, whose elements
we call domains, and a set fCW WW 2Sg of ı–hyperbolic spaces .CU; dU /, such that
the following conditions are satisfied:

(1) Projections There is a set f�W W X ! 2CW j W 2 Sg of projections sending
points in X to sets of diameter bounded by some � � 0 in the various CW 2 S.
Moreover, there exists K such that each �W is .K;K/–coarsely Lipschitz.
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(2) Nesting S is equipped with a partial order v, and either SD∅ or S contains
a unique v–maximal element; when V vW , we say V is nested in W . We require
that W vW for all W 2S. For each W 2S, we denote by SW the set of V 2S
such that V vW . Moreover, for all V;W 2S with V ĹW there is a specified subset
�VW � CW with diamCW .�

V
W /� � . There is also a projection �WV W CW ! 2CV . (The

notation is justified by viewing �VW as a coarsely constant map CV ! 2CW .)

(3) Orthogonality S has a symmetric and antireflexive relation called orthogonality:
we write V ?W when V and W are orthogonal. Also, whenever V vW and W ?U ,
we require that V ? U . We require that for each T 2S and each U 2ST for which
fV 2ST W V ? U g ¤∅, there exists W 2ST �fT g such that whenever V ? U and
V v T , we have V vW . Finally, if V ?W , then V and W are not v–comparable.

(4) Transversality and consistency If V; W 2S are not orthogonal and neither is
nested in the other, then we say V and W are transverse, denoted by V tW . There
exists �0 � 0 such that if V tW , then there are sets �VW � CW and �WV � CV each
of diameter at most � and satisfying:

min
˚
dW .�W .x/; �VW /; dV .�V .x/; �

W
V /
	
� �0

for all x 2 X .

For V; W 2S satisfying V vW and for all x 2 X ,

min
˚
dW .�W .x/; �VW /; diamCV

�
�V .x/[ �

W
V .�W .x//

�	
� �0:

The preceding two inequalities are the consistency inequalities for points in X . Finally,
if U v V , then dW .�UW ; �

V
W / � �0 whenever W 2 S satisfies W 6? U and either

V ĹW or V tW .

(5) Finite complexity There exists n� 0, the complexity of X (with respect to S),
such that any set of pairwise-v–comparable elements has cardinality at most n.

(6) Large links There exist � � 1 and E � maxf�; �0g such that the following
holds: Let W 2S and let x; x0 2X . Let N D �dW .�W .x/; �W .x0//C�. Then there
exists fTigiD1;:::;bN c �SW �fW g such that for all T 2SW �fW g, either T 2STi
for some i or dT .�T .x/; �T .x0// < E . Also, dW .�W .x/; �

Ti
W /�N for each i .

(7) Bounded geodesic image For all W 2S, all V 2SW �fW g, and all geodesics
 of CW , either diamCV .�

W
V .//�E or  \NE .�VW /¤∅.

(8) Partial realization There exists a constant ˛ with the following property: Let
fVj g be a family of pairwise-orthogonal elements of S and let pj 2 �Vj .X /� CVj .
Then there exists x 2 X such that

� dVj .x; pj /� ˛ for all j ,
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� for each j and each V 2S with Vj v V , we have dV .x; �
Vj
V /� ˛ , and

� if W t Vj for some j , then dW .x; �
Vj
W /� ˛ .

(9) Uniqueness For each � � 0, there exists �u D �u.�/ such that if x; y 2 X and
d.x; y/� �u , then there exists V 2S such that dV .x; y/� � .

We often refer to S, together with the nesting and orthogonality relations, the projec-
tions, and the hierarchy paths, as a hierarchically hyperbolic structure for the space X .

Notation 1.2 Given U 2S, we often suppress the projection map �U when writing
distances in CU : given x; y2X and p2CU we write dU .x; y/ for dU .�U .x/; �U .y//
and dU .x; p/ for dU .�U .x/; p/. To measure distance between a pair of sets, we take
the infimal distance between the two sets. Given A � X and U 2S we let �U .A/
denote

S
a2A �U .a/.

Remark 1.3 (summary of constants) Each hierarchically hyperbolic space .X ;S/
is associated with a collection of constants often, as above, denoted by ı , � , n, �0 , E ,
�u and K , where

(1) CU is ı–hyperbolic for each U 2S,

(2) each �U has image of diameter at most � and is .K;K/–coarsely Lipschitz,
and each �UV has (image of) diameter at most � ,

(3) for each x 2 X , the tuple .�U .x//U2S is �0–consistent,

(4) E is the constant from the bounded geodesic image axiom.

Whenever working in a fixed hierarchically hyperbolic space, we use the above notation
freely. We can, and shall, assume that E � q , E � ı , E � � , E � �0 , E �K and
E � ˛ .

Lemma 1.4 (“finite dimension”) Let .X ;S/ be a hierarchically hyperbolic space of
complexity n and let U1; : : : ; Uk 2S be pairwise orthogonal. Then k � n.

Proof Definition 1.1(3) provides W1 2S, not v–maximal, such that U2; : : : ; Uk v
W1 . Using Definition 1.1 inductively yields a sequence Wk�1 ĹWk�2 Ĺ � � �ĹW1vS ,
with S v–maximal, such that Ui�1; : : : ; Uk vWi for 1 � i � k � 1. Hence k � n
by Definition 1.1(5).

The next lemma is a simple consequence of the axioms and also appears in [7]:

Lemma 1.5 Let U; V;W 2S satisfy U ? V , and U; V ° W , and W 6v U; V . Then
dW .�UW ; �

V
W /� 2E .
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Proof Our assumptions imply that U ĹW or U tW , and the same is true for V .
Applying partial realization yields a point x 2X such that dT .x; �UT /; dT .x; �VT /�E
whenever T 6vU; V and T ° U; V . The claim follows from the triangle inequality.

Definition 1.6 For D � 1, a path  in X is a D–hierarchy path if

(1)  is a .D;D/–quasigeodesic,

(2) �W ı  is an unparametrized .D;D/–quasigeodesic for each W 2S.

An unbounded hierarchy path Œ0;1/! X is a hierarchy ray.

The following theorems are proved in [6]:

Theorem 1.7 (realization theorem) Let .X ;S/ be hierarchically hyperbolic. Then
for each � there exist �e and �u such that the following holds. Let Eb 2

Q
W 2S 2

CW

have each coordinate correspond to a subset of CW of diameter at most � ; for each W ,
let bW denote the CW–coordinate of Eb. Suppose that whenever V tW we have

minfdW .bW ; �VW /; dV .bV ; �WV /g � �

and whenever V vW we have

minfdW .bW ; �VW /; diamCV .bV [ �
W
V .bW //g � �:

Then the set of all x 2X such that dW .bW ; �W .x//� �e for all CW 2S is nonempty
and has diameter at most �u .

Theorem 1.8 (existence of hierarchy paths) Let .X ;S/ be hierarchically hyperbolic.
Then there exists D0 such that any x; y 2 X are joined by a D0–hierarchy path.

Theorem 1.9 (distance formula) Let .X;S/ be hierarchically hyperbolic. Then
there exists s0 � � such that for all s � s0 there exist constants K and C such that, for
all x; y 2 X ,

dX .x; y/�.K;C/
X
W 2S

˚
fdW .�W .x/; �W .y//g

	
s
:

The notation
˚
fAg

	
B

denotes the quantity which is A if A� B and 0 otherwise.

1.2 Hieromorphisms, automorphisms and hierarchically hyperbolic
groups

Morphisms in the category of hierarchically hyperbolic spaces were defined in [6],
along with the related notion of a hierarchically hyperbolic group; we recall these
definitions here.
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Definition 1.10 (hieromorphism) Let .X ;S/ and .X 0;S0/ be hierarchically hyper-
bolic structures on the spaces X and X 0, respectively. A hieromorphism�

f; �.f /; f�.f; U /W U ! �.f /.U / j U 2Sg
�
W .X ;S/ �! .X 0;S0/

consists of a map f W X!X 0 , a map �.f /W S!S0 preserving nesting, transversality
and orthogonality, and a set f�.f; U /W U ! �.f /.U / j U 2 Sg of quasiisometric
embeddings with uniform constants such that the following two diagrams coarsely
commute for all nonorthogonal U; V 2S:

X X 0

CU C�.f /.U /

//
f

��

�U

��

��.f /.U/

//
�.f;U /

and

CU C�.f /.U /

CV C�.f /.V /

//
�.f;U /

��

�UV
��

�
�.f /.U/

�.f /.V /

//
�.f;V /

where �UV W CU ! CV is the map from Definition 1.1.

Definition 1.11 (automorphism of an HHS, automorphism group) A hieromor-
phism f W .X ;S/ ! .X ;S/ is an automorphism if �.f /W S ! S is a bijection
and �.f; U /W CU ! C�.f /.U / is an isometry for each U 2S. When the context is
clear, we will continue to use f to denote f , �.f / and �.f; U /.

Observe that if f and f 0 are automorphisms of .X ;S/, then f ı f 0W X ! X is
also an automorphism: compose the maps S! S, and compose isometries of the
hyperbolic spaces in the obvious way. Declare automorphisms f and f 0 equivalent
if �.f / D �.f 0/ and �.f; U / D �.f 0; U / for all U 2 S. Note that f; f 0W X ! X
uniformly coarsely coincide in this case.

Denote by Aut.S/ the set of equivalence classes of automorphisms, so Aut.S/ is a
group with the obvious multiplication. If Œf � 2 Aut.S/, then Œf ��1 is represented by
the quasiinverse of f associated to �.f /�1 and f�.f; U /�1 j U 2Sg.

Observe that Aut.S/ quasiacts on X by uniform quasiisometries. We will sometimes
abuse language and refer to individual automorphisms as elements of Aut.S/, and
refer to the “action” of Aut.S/ on X . By an action of a group G on .X ;S/, we mean
a homomorphism G! Aut.S/. “Coarse” properties of an action, like properness and
coboundedness, make sense in this context.

Definition 1.12 (equivariant) Let f W .X ;S/! .X 0;S0/ be a hieromorphism, G �
Aut.S/ and G0 � Aut.S0/, and �W G ! G0 a homomorphism. Then f is �–equi-
variant if
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S S0

S S0

//
f

��

g

��

�.g/

//
f

and

CU Cf .U /

CgU C�.g/f .U /

//
f

��

g

��

�.g/

//
f

(coarsely) commute for all g 2G and U 2S. This implies that �.g/f .x/� f .gx/
for all x 2 X and g 2G . If � is an isomorphism and f is �–equivariant, then f is
G–equivariant.

Definition 1.13 (hierarchically hyperbolic group) A finitely generated group G is
hierarchically hyperbolic if there exists a hierarchically hyperbolic space .X ;S/ such
that G � Aut.S/, the action on X is proper and cobounded, and G acts on S with
finitely many orbits. In this case we can assume X DG (with any fixed word-metric)
and that the action G ! Aut.S/ sends each g 2 G to an automorphism whose
underlying map G!G is left multiplication by g . In this case, we say that .G;S/ is
hierarchically hyperbolic.

1.3 Standard product regions

The notion of a standard product region in a hierarchically hyperbolic space, introduced
in [6], plays an important role in several places, so we recall the definition here. Let
.X ;S/ be a hierarchically hyperbolic space and let U 2 S. Let SU be the set of
V 2S with V v U (in particular, U 2SU is the unique v–maximal element). Let
S?U be the set of V 2 S such that V ? U , together with some v–minimal A 2 S
such that V v A for all such V .

Fix � � �0 and let FU be the space of �–consistent tuples in
Q
V 2SU

2CV whose
coordinates are sets of diameter � � . Similarly, let EU be the set of �–consistent tuples
in
Q
V 2S?U �fAg

2CV whose coordinates are sets of diameter � � . In fact, .FU ;SU /
and .EU ;S?U / are HHSs (the hyperbolic space associated to A is imA.EU /), and there
are hieromorphisms (see [6] or Definition 1.10), inducing quasiisometric embeddings,
FU ! X and EU ! X , extending to a coarsely defined map FU �EU ! X whose
image is hierarchically quasiconvex in the sense of [6] (or see below). Specifically,
each tuple Eb 2 FU is sent to the tuple that coincides with Eb on SU and has coordinate
�UV for all V 2S�fU g such that V tU or U v V , and is fixed at some base element
of EU on S?U �fAg. The map EU ! X is defined analogously. The spaces FU and
EU are the standard nesting factor and the standard orthogonality factor, respectively,
associated to U . The maps are the standard hieromorphisms associated to U , and
the image PU of FU �EU is a standard product region. Where it will not cause
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confusion, we sometimes denote by EU and FU the images of the corresponding
standard hieromorphisms.

Remark 1.14 (automorphisms of product regions) Let .X ;S/ be a hierarchically
hyperbolic space and let U 2 S. Recall that .FU ;SU / is a hierarchically hyper-
bolic space, where the hyperbolic spaces and projections implicit in the hierarchically
hyperbolic structure are exactly those inherited from S. Recall that .EU ;S?U / is a
hierarchically hyperbolic space, where CV is as in .X ;S/ except when V D A is the
v–maximal element. The hieromorphism .EU ;S

?
U /! .X ;S/ is determined by the

choice of A 2S that is v–minimal among all those containing each V with V ? U ,
which we take as the v–maximal element of S?U .

Let AU be the group of automorphisms g of S such that g �U D U . Then there are
restriction homomorphisms �U ; �?U W AU ! Aut.SU /;Aut.S?U /, defined as follows.
Given g 2AU , let �U .g/ act like g on SU and like g on each CV with V v U .

Define �? analogously, to give an automorphism of S?U �fAg restricting the action of
g on S, and fixing A. When defining gW imA.EU /! imA.EU /, we draw attention
to two cases, which it will be important to distinguish in Section 9:

� There exist infinitely many Ai 2S that are v–minimal with the property that V v
Ai whenever V ? U . The minimality assumption implies that these Ai are pairwise
nonnested, so, using Lemma 1.4 and the consistency axiom, we see that �Ai .EU /
has diameter bounded independently of Ai (in fact, just in terms of E ); thus, when
building the HHS .EU ;S?U /, we can take the hyperbolic space imA.EU / associated
to the maximal element A to be a single point, and define gW imA.EU /! imA.EU /
in the obvious way. This conclusion holds, more generally, if there are two transverse
v–minimal “containers” Ai and Aj for the domains orthogonal to U .

� The set fAig of domains that are v–minimal with the property that V v Ai
whenever V ?U is a pairwise-orthogonal set. In this case, there are at most n such Ai ,
where n is the complexity, by Lemma 1.4. Again, we choose A 2 fAig arbitrarily and
define the HHS structure on .EU ;S?U / using A as the v–maximal element, with asso-
ciated hyperbolic space imA.EU /. Now, if there exists h 2Aut.S/ such that hADAi
for some i , then imAi .EU / is uniformly quasiisometric to imA.EU /. In particular,
gW imA.EU /! imA.EU / can be defined so that the restriction homomorphism �?U
makes sense.

Note that, if f 2AU and x 2 PU � X , then dFU�EU
�
�U .f /.rU .x//; rU .f .x//

�
is

uniformly bounded, where rU W PU Šqi FU �EU ! FU is coarse projection to the
first factor, and a similar statement holds for �?U and projection to EU .
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Finally, recall that the standard product region PU is defined to be the image of FU�EU
under the product of the hieromorphisms .FU ;SU /; .EU ;S?U /! .X ;S/. This map
is coarsely defined, but it is convenient to fix maps FU �EU ! X (realizing those
hieromorphisms) such that PgU D gPU for all U 2S and g 2Aut.S/. Similarly, the
image of FgU coincides with gFU , etc. The set fPU W U 2Sg is Aut.S/–invariant.

1.4 Normalized hierarchically hyperbolic spaces and hierarchical
quasiconvexity

Hierarchically hyperbolic spaces, in the sense of Definition 1.1, need not coarsely
surject to the associated hyperbolic spaces, but in almost all cases of interest, they do.
Accordingly:

Definition 1.15 (normalized HHS) The HHS .X ;S/ is normalized if there exists C
such that for all U 2S, we have CU DNCU .�U .X //.

Proposition 1.16 Let .X ;S/ be a hierarchically hyperbolic space. Then X ad-
mits a normalized hierarchically hyperbolic structure .X ;S0/ with a hieromorphism
f W .X ;S0/! .X ;S/, where f W X ! X is the identity and f W S0!S is a bijection.
Moreover, if G � Aut.S/, then there is a monomorphism G! Aut.S0/ making f
equivariant.

Proof Let S0 D S, and retain the same nesting, orthogonality, and transversality
relations. For each U 2S0 , the associated hyperbolic space CnormU is chosen to be
uniformly quasiisometric to the uniformly quasiconvex subset �U .X / of CU . The
projection �U W X ! CnormU is, up to composition with a uniform quasiisometry,
unchanged (and therefore continues to be coarsely Lipschitz). Let pU W CU ! CnormU

be the composition of the coarse closest-point projection CU ! �U .X /, composed
with the uniform quasiisometry �U .X /! CnormU . Then, for all U and V with U tV
or U v V , define the relative projection CnormU ! CnormV to be the composition of
pU ı�

U
V W �U .X /! CnormV with the quasiisometry CnormU !�U .X /. The remaining

assertions are a matter of checking definitions.

Recall from [6] that the subspace Y of .X ;S/ is hierarchically quasiconvex if there
exists k0 � 0 such that �U .Y/ is k0–quasiconvex in CU for all U 2 S and if, for
all � � �0 , each �–consistent tuple Eb 2

Q
U2S CU with U–coordinate in �U .Y/ for

all U has the property that any associated realization point x 2 X lies at distance
from Y , depending only on � .

In the interest of staying in the class of normalized hierarchically hyperbolic spaces, we
will always work with a normalized hierarchically hyperbolic structure on Y , namely
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the one provided by Proposition 1.16. Moreover, we will (abusively) eschew the
notation CnormU and use the same notation for �U .Y/ and its thickening; in other
words, we will regard �U .Y/ as a genuine (uniformly) hyperbolic geodesic space.

Finally, we recall the following notion from [6, Definition 5.3, Lemma 5.4]. Let
Y � X be a hierarchically quasiconvex subspace. Then there is a coarsely Lipschitz
map gY W X ! Y (the coarse Lipschitz constants depend only on the constants from
Definition 1.1 and the constants implicit in the definition of hierarchical quasiconvexity)
with the following property: for each U 2S and x 2 X , the projection �U .gY.x//
uniformly coarsely coincides with the coarse closest-point projection of �U .x/ to the
quasiconvex subspace �U .Y/. The map gY is the gate map associated to Y .

2 Definition of the boundary

Fix a hierarchically hyperbolic space .X ;S/. For each S 2 S, denote by @CS the
Gromov boundary, ie the space of equivalence classes of sequences .xn 2 CS/, where
.xn/ and .yn/ are equivalent if for some (hence any) fixed basepoint x 2 CS , we have
.xn; yn/x !1. In particular, @CS need not be compact if CS is not proper. The
topology is as usual.

Remark 2.1 (extending the Gromov product) For U 2 S, any p; q 2 CU [ @CU
are joined to u 2 CU by .1; 20ı/–quasigeodesics, enabling extension of the Gromov
product to @CU .

2.1 Supports and boundary points

We first define @X D @.X ;S/ as a set.

Definition 2.2 (support set, boundary point) A support set S � S is a set with
Si ? Sj for all Si ; Sj 2 S . Given a support set S , a boundary point with support S is
a formal sum pD

P
S2S a

p
SpS , where each pS 2@CS , and apS >0, and

P
S2S a

p
SD1.

Such sums are necessarily finite, by Lemma 1.4. We denote the support S of p by
Supp.p/.

Definition 2.3 (boundary) The boundary @.X ;S/ of .X ;S/ is the set of boundary
points.

Notation 2.4 When the specific HHS structure is clear, we write @X to mean @.X ;S/.

2.2 Topologizing @X

We topologize @X using the visual topologies on the Gromov boundaries of elements
of fCS W S 2Sg. The main challenge is to incorporate these topologies into a coherent
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topology on the whole boundary, allowing boundary points supported on nonorthogonal
domains to interact. This requires some preliminary definitions.

Definition 2.5 (remote point) Let S �S be a support set. A point p 2 @X is remote
(with respect to S , or with respect to some q 2 @X with support S ) if

(1) Supp.p/\S D∅, and
(2) for all S 2 S , there exists T 2 Supp.p/ such that S and T are not orthogonal.

Denote by @rem
S

X the set of all remote points with respect to S .

For each S 2S, let B.CS/ be the set of all bounded sets in CS . If S �S is a support
set, we denote by S? the set of all U 2S such that U ? S for all S 2 S .

Definition 2.6 (boundary projection) Let S�S be a support set. For each q2@rem
S

X ,
let Sq be the union of S and the set of domains T 2 S? such that T is not orthogonal
to WT for some WT 2 Supp.q/. Define a boundary projection @�S .q/ 2

Q
S2Sq

CS
as follows. Let q D

P
T2T a

p
T qT be a remote point with respect to S . For each

S 2 Sq , let TS 2 Supp.q/ be chosen so that S and TS are not orthogonal. Define the
S –coordinate .@�S .q//S of @�S .q/ as follows:

(1) If TS v S or TS t S , then .@�S .q//S D �
TS
S .

(2) Otherwise, S v TS . Choose a .1; 20ı/–quasigeodesic ray  in CTS join-
ing �STS to qTS . By the bounded geodesic image axiom, there exists x 2 
such that �TSS is coarsely constant on the subray of  beginning at x . Let
.@�S .q//S D �

TS
S .x/.

Lemma 2.7 The map @�S is coarsely independent of the choice of fTSgS2S .

Proof Suppose that TS ; T 0S 2 T are chosen so that TS and T 0S are not orthogonal
to S and suppose that S 6v TS ; T 0S . In other words, either TS v S or TS t S and
the same is true for T 0S . By partial realization (Definition 1.1(8)), there therefore
exists y 2 X such that dS .�

TS
S ; y/; dS .�

T 0S
S ; y/ � E , whence �TSS and �T

0
S
S coarsely

coincide. If S vTS , then S ?T 0S since TS ?T 0S ; this contradicts the defining property
of T 0S . Hence, in all allowable situations, �TSS coarsely coincides with �T

0
S
S ; the claim

follows.

Fix a basepoint x0 2 X . We are now ready to define a neighborhood basis for each
p D

P
S2S a

p
SpS , where pS 2 CS for all S 2 Supp.p/ D S . For each S 2 S,

choose a cone-topology neighborhood US of pS in CS [@CS , and choose � > 0. For
convenience, given q 2 @X , we let aqT D 0 when T 2S�Supp.q/.

We define the basic set NfUS g;�.p/ as the union of a remote part, a nonremote part,
and an interior part, as follows:
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Definition 2.8 (remote part) The remote part is

N rem
fUS g;�

.p/D

�
q2@rem

S
X
ˇ̌̌
8S 2S; .@�S .q//S 2US and

X
T2S?

a
q
T <�

and 8S 2Sq; S 02S;
ˇ̌̌̌

dS .x0; .@�S .q//S /
dS 0.x0; .@�S .q//S 0/

�
a
p
S

a
p
S 0

ˇ̌̌̌
<�

�
:

Definition 2.9 (nonremote part) Given p; q 2 @X , let AD Supp.p/\Supp.q/. The
nonremote part is

N non
fUS g;�

.p/D

�
qD

X
T

a
q
T qT 2@X � @

rem
S

X
ˇ̌̌
8T 2A; ja

q
T � a

p
T j<� and qT 2UT ;

and
X

V 2Supp.q/�A

a
q
V <�

�
:

Definition 2.10 (interior part) The interior part is

N int
fUS g;�

.p/D

�
x2X

ˇ̌̌
8S; S 02S; 8T 2S?; �S .x/2US and

ˇ̌̌̌
aS

aS 0
�

dS .x0; x/
dS 0.x0; x/

ˇ̌̌̌
<�

and
dT .x0; x/
dS .x0; x/

<�

�
:

Definition 2.11 (topology on X [ @X ) For each p 2 @X with Supp.p/ D S , and
fUS W S 2 Sg and � > 0 as above, let

NfUS g;�.p/DN rem
fUS g;�

.p/[N non
fUS g;�

.p/[N int
fUS g;�

.p/:

We declare the set of all such NfUS g;�.p/ to form a neighborhood basis at p . Also, we
include in the topology on X [ @X the open sets in X . This topology does not depend
on x0 .

Remark 2.12 The NfUS g;�.p/ need not be open; a priori, they may have empty
interior!

The following is an obvious consequence of the definitions:

Proposition 2.13 For all U 2S, the inclusion @CU ,! @X is an embedding.

Proposition 2.17 gives basic properties of @X ; first we need a definition and some
lemmas.

Definition 2.14 (basically Hausdorff) Let H be a topological space and let B be a
neighborhood basis. Then .H;B/ is basically Hausdorff if for all distinct h; h0 2H ,
there exist disjoint B;B 0 2 B with h 2 B and h0 2 B 0 .
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Lemma 2.15 Let .X ;S/ be hierarchically hyperbolic and let X D X [ @.X ;S/.
Then, equipped with the neighborhood basis declared above, X is basically Hausdorff.

Proof Let p; q 2 X be distinct. The statement is obvious when p or q is in X , so
assume that p; q 2 @X . Fix a basepoint x0 2 X .

For each U 2 Supp.p/, choose a neighborhood Y pU of p in CU [ @CU that does
not contain .@�Supp.p/.q//U , provided it is defined. For each T 2 Supp.q/, choose a
neighborhood Y qT of q in CT [@CT that does not intersect N1000EC!

�
f�T .x0/g

�
and,

when it is defined, N1000EC!
�
.@�Supp.q/.p//T

�
, where !�0 is to be determined; also

choose Y qT so that Y pT \Y
q
T D∅ when T 2 Supp.p/\Supp.q/, unless pT D qT , in

which case we choose Y pT DY
q
T . Fix � >0, to be determined. Let N .p/DNfY pU g;�.p/

and N .q/DNfY qV g;�.q/.

Finally, for any w; v 2 @X , let Supp.w/v D Supp.w/[ .Supp.w/?�Supp.v/?/.

We need an auxiliary claim:

Claim 1 Let x; p; q2@X . Suppose there exist Wp; Wq 2Supp.x/, and U 2Supp.p/x
and V 2 Supp.q/x , such that Wp ° U and Wp ¤U , and Wq ° V and Wq ¤ V . Then
there exists y 2PWp \PWq �X such that .@�Supp.p/.x//U 100E–coarsely coincides
with �U .y/, and .@�Supp.q/.x//V 100E–coarsely coincides with �V .y/.

(PWp is the standard product region associated to Wp , defined in Section 1.3.)

Proof of Claim 1 If Wp t U or Wp v U , and Wq t V or Wq v V , then any
y 2 PWp \ PWq suffices. If U Ĺ Wp , use partial realization to see that, given a
.1; 20ı/–quasigeodesic ray  in CWp with endpoint xWp , we can choose a sequence
.yn/ in PWp \PWq projecting uniformly close to an unbounded sequence in  . This
provides the desired y . G

Suppose that x 2N .p/\N .q/. We consider the following cases:

(1) x 2 @X is p–remote and q–remote First of all, notice that by definition
of remote, for any U 2 Supp.p/ there exists Wp as in Claim 1, and similarly for
V 2 Supp.q/. We now consider the following subcases:

(a) There exists U 2 Supp.p/\Supp.q/ with pU ¤ qU .

(b) There exists U 2 Supp.p/\Supp.q/ with pU D qU but apU ¤ a
q
U .

(c) Up to swapping p and q , there exists V 2 Supp.q/�Supp.p/, and there exists
U 2 Supp.p/ not orthogonal to V .

(d) The previous case does not apply and, up to swapping p and q , there exists
V 2 .Supp.q/�Supp.p//\Supp.p/? .
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(a) Then we would have that .@�Supp.p/.x//U is contained in both Y pU and Y qU , which
are disjoint, a contradiction.

(b) Let U D Supp.p/\Supp.q/. For each V 2 U we have that the ratio

dV
�
x0; .@�Supp.p/.x//V

�
dU
�
x0; .@�Supp.p/.x//U

�
is �–close to both a

p
V =a

p
U and a

q
V =a

q
U . Hence, if there exists V 2 U such that

a
p
V =a

p
U ¤ a

q
V =a

q
U , we can choose � small enough to give a contradiction. Otherwise,

since the coefficients sum to 1, the supports of p and q do not coincide, and we deal
with this in the next subcases.

(c) If U t V , then by our choice of N .p/ and N .q/, we have dU .y; �VU / > E and
dV .y; �UV / > E for y as in Claim 1, contradicting consistency. If U Ĺ V or V Ĺ U ,
then we reach a similar contradiction of consistency.

(d) Suppose also that Supp.p/� Supp.q/[Supp.q/? but Supp.p/\Supp.q/?¤∅,
since otherwise either (a) or (b) holds. Let U 2 Supp.p/� Supp.q/. By remoteness
of x , we have U 2 Supp.q/?�Supp.x/? , so U 2 Supp.q/x . Hence the definition of
q–remoteness gives ˇ̌̌̌

dU
�
x0; .@�Supp.q/.x//U

�
dV
�
x0; .@�Supp.q/.x//V

� � aqU
a
q
V

ˇ̌̌̌
< �:

Similarly, we have V 2 Supp.p/x , so the definition of p–remoteness givesˇ̌̌̌
dV
�
x0; .@�Supp.p/.x//V

�
dU
�
x0; .@�Supp.p/.x//U

� � apV
a
p
U

ˇ̌̌̌
< �:

Now, since V … Supp.p/; U … Supp.q/, we have apV D a
q
U D 0, so, we may take y to

be the point in X provided by Claim 1, and hence we have dV .y; x0/=dU .y; x0/ < 2�
and dU .y; x0/=dV .y; x0/ < 2� provided ! in Claim 1 was chosen sufficiently large
in terms of � and E . This is a contradiction.

(2) x 2X In this case, x can play the role of y in the above arguments.

(3) x 2 @X is p–nonremote and q–nonremote In this case, first choose � 2
�
0; 1
2

�
smaller than 1

10
ja
p
W � a

q
W j for each W 2 Supp.p/\ Supp.q/. The definition of the

nonremote part now ensures that x cannot exist.

(4) x 2 @X is p–remote and q–nonremote In this case, there exists U 2 Supp.p/
and V 2Supp.q/, and Wp; Wq 2Supp.x/, such that Wp is distinct from and not orthog-
onal to U while Wp D V or Wp ? V . If for each such Wq we have Wq 2 Supp.q/? ,
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then by choosing � < 1, we have that
P
T2Supp.x/ a

x
T < 1, a contradiction. Thus we

may take Wq D V 2 Supp.q/.

Now, choose y 2PWp so that .@�Supp.p/.x//U 100E–coarsely coincides with �U .y/.
If U D Wq , then our choice of N .p/ and N .q/ ensures that x cannot lie in both.
Suppose that U tWq . Then �U .y/, �WqU and �WpU all 10E–coarsely coincide and lie
at distance 50E from the required neighborhood of pU , so x …N .p/. When U ĹWq
or Wq Ĺ U , a similar argument shows that x …N .p/\N .q/.

Hence it remains to consider the case where Wq ? U . By definition, jaxWq �a
q
Wq
j< � .

On the other hand, we can assume Wq 2 Supp.p/? , for otherwise we could rechoose
U and Wq to be in one of the above cases. Thus, by definition, axWq < � . This yields a
contradiction provided we choose, say, � 2

T
T2Supp.q/

�
0; 1
10
a
q
T

�
.

Hence our choice of N .p/ and N .q/ ensures N .p/\N .q/D∅, as required.

Lemma 2.16 X is Hausdorff.

Proof In light of Lemma 2.15, it suffices to show that for all p 2 @X , with p DP
T2Supp.p/ aTpT , all � > 0, and all collections fUT W T 2 Supp.p/g with each UT

a neighborhood of pT in CT [ @CT , the corresponding basic set NfUT g;�.p/ has
nonempty interior.

The topology of basic convergence Given a sequence fpng with each pn 2 X , we
say that pn basically converges to p 2 @X if for all � > 0 and all choices of fUT g
as above, we have pn 2NfUT g;�.p/ for all but finitely many n 2N . Similarly, fpng
basically converges to p 2 X if, for all � > 0, we have pn 2N�.p/ for all sufficiently
large n.

Define a topology on X as follows: the set A� X is declared to be closed if a 2 A
whenever there is a sequence fang such that an2A for all n and an basically converges
to a . Denote by M the space X endowed with this topology.

Nonempty interior of basic sets Let N D NfUT g;�.p/ be a basic set as above. We
claim that p 2 Int.N /. Otherwise, there exists a sequence fpng in X �N that basically
converges to p . This is a contradiction since basic convergence to p needs fpng to
enter N .

Equivalence of the topologies To complete the proof that basic sets in X have
nonempty interior (with respect to the original topology), and thereby complete the
proof of the lemma, it suffices to show that X is homeomorphic to M.

Now, a set A � X is closed in X (ie has open complement) if and only if, for each
p 2 X �A, we can choose � > 0 and neighborhoods fUT W T 2 Supp.p/g so that
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NfUT g;�.p/ is disjoint from A. But this is equivalent to the following: for all basically
convergent fang with each an 2 A, the (basic) limit a lies in A. This is in turn
equivalent to the assertion that A is closed in M.

Proposition 2.17 Let .X ;S/ be hierarchically hyperbolic, and let X D X [ @.X ;S/.

(1) X is Hausdorff and, if X is separable (eg if it is proper), then X is separable.

(2) @X is closed in X .

(3) X is dense in X .

Proof The “Hausdorff” part of assertion (1) follows from Lemma 2.16. Separability
of X follows from density of the metric space X in X , ie part (3). Assertion (2) is
obvious: no bounded neighborhood of an interior point contains a boundary point, so
no sequence of boundary points converges to an interior point.

It remains to prove (3). Pick a neighborhood NfUS g;�.p/ of pD
P
S2Supp.p/ a

p
SpS2@X

with pS 2@CS for S 2Supp.p/. For each Si 2Supp.p/DfS1; : : : ; Sd g, fix a uniform
quasigeodesic ray i in CS from �S .x0/ to pS .

First, suppose that d D 1. Then for each t , there exists xt1 such that �S1.x
t
1/ coarsely

coincides with 1.a
p
S1
�t / and, in view of the quasiisometric embedding FS1�ES1!X

described in Section 1.3, the point xt1 can be chosen so that �T .xt1/ coarsely equals
�T .x0/ for each T ? S1 . (Here we have used that .X ;S/ is normalized.)

Now suppose d � 2. By induction, for all t , there exists xt
d�1
2 ESd such that for

all i � d � 1, the projection �Si .x
t
d�1

/ coarsely coincides with i .a
p
Si
� t /, and also

�T .x
t
d�1

/ coarsely coincides with �T .x0/ for each T orthogonal to each Si . In
view of the quasiisometric embedding FSd �ESd ! X , there exists a point xt

d
such

that gESd .x
t
d
/ coarsely coincides with xt

d�1
and �Sd .x

t
d
/ coarsely coincides with

d .a
p
Sd
� t /. (Here, gESd is the gate map defined at the end of Section 1.) For each

sufficiently large t , the point xt
d

lies in NfUSi g;�.p/, as required.

Remark 2.18 By regarding each @CU , with U 2S, as a discrete set, we can endow
@.X ;S/ with an alternate topology as a simplicial complex, as follows. For each
U 2S and each p 2 @CU , we have a 0–simplex, and the 0–simplices pi 2 @CUi for
i D 0; : : : ; k span a k–simplex if Ui ? Uj for 0 � i < j � k . There is an obvious
bijection from the resulting simplicial complex to @.X ;S/, which is an embedding on
each simplex.

3 Compactness for proper HHS

In this section, we will prove that proper HHSs have compact HHS boundaries.
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3.1 Preliminary lemmas

Definition 3.1 Let .X;S/ be hierarchically hyperbolic. The level `U of U 2S is
defined inductively as follows. If U is v–minimal, then `U D 1. We inductively
define `U D k C 1 if k is the maximal integer such that there exists V v U with
`V D k and V ¤ U .

The following is a slightly modified version of Lemma 2.5 in [6].

Lemma 3.2 Let .X;S/ be hierarchically hyperbolic. Then there exists N with the
following property: Let x; y 2 X and let fSigiD1;:::;N �S be such that dCSi .x; y/�
50E for each i D 1; : : : ; N . Then there exist S 2 S and i such that Si Ĺ S and
dCS .x; y/� 100E . Moreover, for each T 2S such that each Si v T , we can choose
S v T .

Proof The proof is by induction on the level k of a v–minimal S 2S into which
each Si is nested. The base case k D 1 is empty.

Suppose that the statement holds for a given N DN.k/ when the level of S as above
is at most k . Suppose instead that jfSigj �N.kC 1/ (where N.kC 1/ is a constant
much larger than N.k/ that will be determined shortly) and there exists a v–minimal
S 2S of level kC 1 into which each Si is nested. There are two cases.

If dCS .x; y/� 100E , then we are done. If not, then the large link axiom (Definition
1.1(6)) implies that there exists K DK.100E/ and T1; : : : ; TK , each properly nested
into S (and hence of level less than kC 1), so that any Si is nested into some Tj . In
particular, if N.kC 1/�KN.k/, there exists j such that at least N.k/ elements of
fSig are nested into Tj . By the induction hypothesis, we are done.

Note that the proof still works replacing S with ST when each Si v T . In this
case, we can take S v T and the Ti produced by the large link axiom will also have
Ti v S v T for each i , as required for the second statement.

Lemma 3.3 Let .X;S/ be hierarchically hyperbolic. Then for every hierarchy ray 
there exists S 2S such that �S ./ is unbounded. Moreover, if T 2S has the property
that fdiamCT 0./ W T

0 v T g is unbounded, then there exists S v T such that �S ./ is
unbounded.

Proof The proof of the “moreover” part is a minor variation; we prove the first
assertion and indicate parenthetically how to adapt the proof.

By the distance formula (Theorem 1.9) and the fact that  is a quasigeodesic, there exists
an increasing sequence fnig of natural numbers such that for each positive integer i ,
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there exists S 0i 2S such that dCS 0
i
..ni /; .niC1//� 100E . (For the purposes of the

“moreover” part, we choose S 0i nested into T .) Since  is a hierarchy path, it makes
coarsely monotonic progress in CU for each U 2S, and thus for each t � 0 we have

dCU ..0/; .t//� 50E � jfi W ni � t; S 0i D U gj:

Let S �S be the collection of domains in which  makes significant progress; that
is, S is the set of all S 2S for which there exists tS � 0 such that for any t � tS we
have dCS ..0/; .t//� 50E . (In the proof of the “moreover” part, we further require
that S is nested into T .) If jSj <1, then we are done by the above inequality, so
assume jSj D1.

Let S 2 S be v–minimal with the property that there are infinitely many S 0 2 S
nested into S . (In the proof of the “moreover” part, S is nested into T .) Suppose for
a contradiction that diamS .�S .//DD <1.

Denote by Sj the set of all level-j elements of S nested into S , and let k be maximal
with the property that Sk is infinite. Note that this assumption and finite complexity
imply that

S
k0>k Sk

0

is finite. To derive a contradiction, we will use the large link
axiom and Lemma 3.2 to construct an infinite sequence of distinct Si 2

S
k0>k Sk

0

.

By the large link axiom (Definition 1.1(6)), there exists K D K.D/ such that, for
any t , there exist T t1 ; : : : ; T

t
K properly nested into S such that if X 2 S has X v S

and tX � t , then X v T tj for some j . If we take t0 large enough, we can apply
Lemma 3.2 to a sufficiently large subset of Sk , all of whose elements are nested into
some T t0j , and we get some S0 of level k0 > k such that dCS0..0/; .t// � 100E
for t � t0 . Note that Lemma 3.2 allows us to take S0 v T

t0
j , so that S0 v S and thus

S0 2 Sk0 . By minimality of S , there are finitely many elements of Sk nested into S0 .
We can now choose t1 > t0 and apply Lemma 3.2 to a sufficiently large subset of Sk

all of whose elements are nested into some T t1j but not nested into S0 , and get another
element S1 2 Sk1 for some k1 > k which is properly nested into S . We can then
proceed inductively and construct infinitely many distinct elements Si v S of level
greater than k , giving us our contradiction.

3.2 Compactness

We are ready to prove:

Theorem 3.4 Let .X ;S/ be hierarchically hyperbolic, and let X D X [ @.X ;S/. If
X is proper, then X is compact.

Proof It suffices to show that X is sequentially compact since it is separable by
Proposition 2.17. We will first show that any internal sequence fxng �X subconverges
to some point in X . Then we will show this suffices for the theorem.
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Internal sequences subconverge Let fxng � X be a sequence of interior points. For
each n, let n be a uniformly Lipschitz hierarchy path between x0 and xn , whose
existence is guaranteed by Theorem 1.8. Since X is proper, either the sequence xn
subconverges to an interior point and we are done, or we can assume that the sequence
of hierarchy paths n converges to a hierarchy ray, 1 .

Lemma 3.3 implies there exists T 2S such that �T ı1 is unbounded. The collection
fTig

k
iD1 for which this is true must be a collection of pairwise-orthogonal elements

by the consistency inequalities (Definition 1.1(4)). For each Ti , the quasigeodesic ray
�Ti ı 1 � CTi represents a point pTi 2 @CTi . Set T D fTigkiD1 .

We now consider two cases, depending on the behavior of the sequence fxng in T? .
First, suppose lim infn supfdCT .x0; xn/ W T 2 T?g <1. Up to passing to a further
subsequence of fxng, we have well-defined limits for 1� i; j � k ,

ri;j D lim
n

dCTi .x0; xn/
dCTj .x0; xn/

2 Œ0;1�;

which determine coefficients fapi 2 Œ0; 1�g such that api =a
p
j D ri;j and

P
a
p
i D 1. It is

straightforward to check that fxng eventually lies in the interior part of any NfUTi g;�.p/,
implying that fxng subconverges to p D

P
T2T a

p
TpT .

Now suppose that, up to passing to a subsequence,

lim inf
n

supfdCT .x0; xn/ W T 2 T?g D1:

Consider the sequence fyng D fgET .xn/g of gates in the orthogonal complement of T .

Since .ET ;ST?/ is an HHS with complexity strictly less than that of .X ;S/, by
induction on the complexity of .X ;S/, the sequence fyng subconverges to q 2 @X ,
where Supp.q/D fTigk

0

iDkC1
and Ti ? Tj whenever i � k < j . Since .ET ;ST?/�

.X ;S/ is hierarchically quasiconvex, we can take q 2 @ET . For each j > k , let
qTj 2 @CTj , so that q is a linear combination of the qTj . As before, up to passing to a
further subsequence, for any 1� i; j � k0 , we can define

ri;j D lim
n

dCTi .x0; xn/
dCTj .x0; xn/

2 Œ0;1�;

which determine coefficients fapTi g
k
iD1[fa

q
Tj
gk
0

jDkC1
such that

� arTi
=ar
0

Tj
D ri;j when r; r 0 2 fp; qg and arTi and ar

0

Tj
are defined, and

�
Pk
iD1 a

p
Ti
C
Pk0

jDkC1 a
q
Tj
D 1.
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If some arTi D0 for r 2fp; qg, we disregard Ti . We now claim that fxng (sub)converges
to

p D

kX
iD1

a
p
Ti
pTi C

k0X
iDkC1

a
q
Ti
qTi :

Pick a neighborhood NfUTi g;�.p/ of p . For large enough n, we have xn 2NfUTi g;�.p/
because

� �Ti .xn/ 2 UTi for i � k since .�Ti .xn/jpTi /�Ti .x0/!1,

� �Ti .xn/ 2 UTi for i > k since �Ti .xn/ coarsely equals �Ti .yn/ and yn! q ,

� jarTj
=ar
0

Ti
�dTj .x0; xn/=dTi .x0; xn/j< � by definition, when r; r 0 2 fp; qg and

arTi
and ar

0

Tj
are defined, and

� dT .x0; xn/=dTi .x0; xn/ < � for T 2 .fTigk
0

iD1/
? and any 1� i � k0 , as we now

show.

Let T 2 .fTigk
0

iD1/
? and choose i so that arTi ¤ 0 for r 2 fp; qg. Observe that

dT .x0; xn/
dTi .x0; xn/

D
dT .x0; xn/

dTkC1.x0; xn/
�
dTkC1.x0; xn/
dTi .x0; xn/

:

The first term on the right-hand side can be made arbitrarily small by increasing n since
dT .x0; xn/ and dTkC1.x0; xn/ coarsely coincide with dT .x0; yn/ and dTkC1.x0; yn/,
respectively, and fyng converges to q . Since the second term converges to rkC1;i <1,
this proves the claim and completes the internal sequence case.

Reduction to the internal sequence case Recall the definition of the boundary pro-
jection, Definition 2.8. By passing to a subsequence if necessary, it suffices to consider
any boundary sequence fzng � @X , where zn D

P
S2Supp.zn/ a

zn
S p

n
S for each n.

We first find fxng � X with the properties (1)–(7) below, and then verify that fzng
subconverges to the limit of fxng:

(1) dX .x0; xn/� n.

(2) .�S .xn/jp
n
S /�S .x0/ � n for each S 2 Supp.zn/ (we remind the reader that the

notation .� j �/� denotes the Gromov product with respect to the subscripted
basepoint).

(3) janS=a
n
S 0 � dS .x0; xn/=dS 0.x0; xn/j< 1=n for any distinct S; S 0 2 Supp.zn/.

(4) dT .x0; xn/=dS .x0; xn/ < 1=n for any T 2 .Supp.zn//? and S 2 Supp.zn/.

(5) For all n and Sn 2 Supp.zn/, if T t Sn or Sn v T , then dT .�S
n

T ; xn/ < K

for some uniform K > 0. Moreover, dT .x0; xn/� dSn.x0; xn/ for all such T .
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(6) fxng converges to p D
P
T2Supp.p/ a

p
TpT 2 @X with the following property:

if there are infinitely many n for which zn 2 @remX (with respect to Supp.p/),
then there are infinitely many remote zn such that the following holds for some
fixed T 2Supp.p/: there exists SnT 2Supp.zn/ such that SnT tT or SnT ĹT , or
T Ĺ SnT but dSnT .�

T
SnT
; x0/� 100K

0E for some constant K 0 � 1 depending on
fzng and p but not on n. Moreover, dCT .x0; xn/� dCSn.x0; xn/ for all such T .

(7) fxng converges to pD
P
T2Supp.p/ a

p
TpT 2 @X with the following property: if

there are infinitely many n for which zn 2 @remX (with respect to Supp.p/), then
there are infinitely many remote zn such that dT ..@�Supp.p/.zn//T ; xn/�K

00 for
some K 00 independent of n and all T 2 Supp.p/zn . Moreover, dCT .x0; xn/�
dCSn.x0; xn/ for all such T .

To see that such an internal sequence exists, choose a sequence fxng so that xn 2 P
for all n, where

P D im
� Y
S2Supp.zn/

FS ! X
�
I

the sequence fxng satisfies (1)–(4) (which can be done since they are componentwise
conditions); and

min
S2Supp.zn/

dX .gFS .xn/; x0/
dX .gFS .x0/; x0/

!1

as n ! 1. Here we fix, for each n, a basepoint .pS /S2Supp.zn/ and let FS D
FS � f.PS 0/S 0¤Sg.

(Recall from [6, Remark 5.12] that, whenever U1; : : : ; Uk 2S are pairwise orthogo-
nal, we have a standard quasiisometric embedding

Qk
iD1 FUi ! X whose image is

hierarchically quasiconvex and which is, for each i � k , the restriction of the usual
map FUi �EUi ! X .)

We can verify condition (5) by examining the product regions
Q
S2Supp.zn/ FS ! X .

Let T t Sn or Sn Ĺ T for Sn 2 Supp.zn/. Since xn coarsely lies in
Q
S2Supp.zn/ FS ,

it follows that diamT .�
Sn
T [�T .FSn//� 1 and dT .�T .FSn/; xn/� 1. We thus have,

for some uniform C ,

dT .x0; xn/� CdX

�
x0;

Y
S2Supp.zn/

FS

�
CC:

For sufficiently large n, our choice of fxng ensures that

dSn.x0; xn/� Cd
�
x0;

Y
S2Supp.zn/

FS

�
CC;

verifying the “moreover” part of assertion (5).
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Let fxng satisfy (1)–(5). We now prove there is a subsequence of fxng satisfying (6).

By replacing fxng with a subsequence (and replacing fzng with the corresponding
subsequence of fzng), we can apply the proof that internal sequences subsequentially
converge to conclude fxng converges to p D

P
T2Supp.p/ a

p
TpT 2 @X .

Consider the set G of n 2N such that zn is remote with respect to p . If G is finite,
then (6) holds vacuously. Otherwise, by replacing G with an infinite subset, we find
T 2 Supp.p/ such that for all n 2G , there exists Sn 2 Supp.zn/ with either T t Sn
or Sn Ĺ T or T Ĺ Sn .

First consider the case where fSn W n 2Gg is infinite. By passing to a subsequence if
necessary, and then applying finite complexity, Lemma 1.4, and Ramsey’s theorem,
we can assume that Sn t Sm when n ¤ m. Let GT � N be the set of n 2 G
such that T Ĺ Sn . Then for all m; n 2 GT , we have dSm.�TSm ; �

Sn

Sm/ � E by
the consistency inequalities. Hence, again by the consistency inequalities and the
triangle inequality, we have dSn.�TSn ; x0/� 2E for all but at most one element of GT .
Indeed, if dSn.�TSn ; x0/ > 2E , then dSn.�S

m

Sn ; x0/ > E for any m 2 GT � fng, so
by consistency dSm.�S

n

Sm ; x0/ � E ; the claim follows from the triangle inequality
since dSm.�TSm ; �

Sn

Sm/ � E . Hence, by replacing fzng with a subsequence, for all
T 2 Supp.p/ with T Ĺ Sn , we have dSn.�TSn ; x0/� 100K

0E . Letting SnT D S
n for

n 2G , this establishes assertion (6) when fSn W n 2Gg is infinite.

When fSn W n 2Gg is finite, we can assume that SnD Sm for all m; n by passing to a
subsequence. Hence, there exists S 2S such that for all n2G , and all U 2 Supp.zn/,
either U D S or U ? T . Fix T and S as above, and replace .zn/ with a subsequence
so that for each n 2G , we have S 2 Supp.zn/. Then, for each n 2G , set SnT D S and
observe that either S v T , S t T or T v S . In the latter case, take K 0D dS .�TS ; x0/,
which depends on p and fzng but not on n. This completes the proof of (6).

We now deduce condition (7) from (1)–(6). Assume G is infinite, so that, by (6), there
exists T 0 2 Supp.p/ such that, after replacing G with an infinite subset if necessary,
we have, for each n 2G , some SnT 0 2 Supp.zn/ such that dSn

T 0
.�T
Sn
T 0
; x0/� 100K

0E .
Let T 2 Supp.p/zn . First suppose that T Ĺ SnT 0 . Then, since T ? T 0 or T D T 0 ,
Lemma 1.5 implies that dSn

T 0
.�T
Sn
T 0
; x0/� 200K

0E . It follows from (2) that

.�Sn
T 0
.xn/jp

n
Sn
T 0
/�T
Sn
T 0

!1

as n!1, so that, by discarding finitely many n and applying the bounded geodesic
image axiom, we have dT

�
.@�Supp.p/.zn//T ; xn

�
�E for all n 2G . In the remaining

cases, where T t SnT 0 or SnT 0 Ĺ T , we reach the same conclusion, using (5) instead
of (6). This completes the proof of condition (7).
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Subconvergence of fzng Fix a neighborhood N DNfUS g;�.p/ of p ; we must check
that for infinitely many values of n, we have zn 2N . For each n, either zn 2 @remX (re-
call that this means that Supp.zn/\Supp.p/D∅ and for all T 2 Supp.p/, there exists
S 2Supp.zn/ with T ° S ) or zn 2@X�@remX (so that either Supp.zn/\Supp.p/¤∅
or there exists T 2 Supp.p/ with T ? S for all S 2 Supp.zn/).

The nonremote case We will consider the nonremote case first. Recall that zn DP
S2Supp.zn/ a

zn
S p

n
S . We must check the following conditions:

(a) For each S 2 Supp.p/\Supp.zn/, and infinitely many n, we have pnS 2 US .

(b) For each S 2 Supp.p/\Supp.zn/ and infinitely many n, we have anS ! a
p
S .

(c)
P
T2Supp.p/�Supp.zn/ a

p
T <K

0� for infinitely many n and some uniform K 0 .

Up to passing to a subsequence, (a) follows from (2) and the fact that xn! p .

For (b), we have three cases. If Supp.p/\Supp.zn/D∅, then this holds vacuously.
If Supp.p/\Supp.zn/ has multiple elements, then this follows from (3) and the fact
that xn! p . If Supp.p/\Supp.zn/D fSg, then this follows from (3) and (c), proved
momentarily.

To see (c), first observe that Supp.p/� Supp.zn/� .Supp.zn//? by nonremoteness.
Let T 2 Supp.p/� Supp.zn/ and S 2 Supp.p/\ Supp.zn/; note that such an S 2
Supp.p/ \ Supp.zn/ exists, otherwise one of xn ! p or (4) is contradicted. By
definition of xn! p , ˇ̌̌̌

a
p
T

a
p
S

�
dT .x0; xn/
dS .x0; xn/

ˇ̌̌̌
< �:

It follows from (4) that dT .x0; xn/=dS .x0; xn/ < 1=n. Since each apS � 1, it follows
that X

T2Supp.p/�Supp.zn/

a
p
T < �.X /

�
�C

1

n

�
� 2�.X /�;

completing the proof of (c) and thus the nonremote case.

The remote case We must check the following conditions:

(i) For any T 2 Supp.p/, and infinitely many n, we have .@�Supp.p/.zn//T 2 UT .

(ii) For infinitely many n and any T 2 Supp.p/zn ; T
0 2 Supp.p/, we haveˇ̌̌̌

dT .x0; .@�Supp.p/.zn//T /

dT 0.x0; .@�Supp.p/.zn//T 0/
�
a
p
T

a
p
T 0

ˇ̌̌̌
< �:

(iii) We have
P
T2Supp.p/?\Supp.zn/ a

zn
T <K� for some uniform K .
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For any T 2 Supp.p/ and each n, choose SnT 2 Supp.zn/ so that T and SnT are not
orthogonal. If G is infinite, then we may pass to a subsequence such that SnT and T
are always nonorthogonal: that is, T Ĺ SnT , or T t SnT , or SnT Ĺ T .

We now show that assertion (i) holds for infinitely many n; the proof divides into
three cases according to the above possibilities, which influence the definition of
.@�Supp.p/.zn//T .

First, if SnT t T , then .@�Supp.p/.zn//T D �
SnT
T . In this case, (i) follows immediately

from conditions (2) and (5) in the definition of fxng. The same is true if SnT Ĺ T . If
T v SnT , then (i) follows from (2), (7) and the triangle inequality.

Assertion (ii), in the case when T; T 0 2 Supp.p/, follows from (7). In fact, since fxng
converges to p , we have

(�)
ˇ̌̌̌
dT .x0; xn/
dT 0.x0; xn/

�
a
p
T

a
p
T 0

ˇ̌̌̌
! 0;

and dT .x0; xn/!1, dT 0.x0; xn/!1. By (7), we have that dT .x0; xn/ coarsely
coincides with dT .x0; .@�Supp.p/.zn//T /, and similarly for T 0 . Hence, .�/ implies that
the ratio in assertion (ii) satisfies the required inequality. If T 2 Supp.p/zn �Supp.p/,
then we have to verify

ˇ̌
dT
�
x0; .@�Supp.p/.zn//T

�
=dT 0

�
x0; .@�Supp.p/.zn//T 0

�ˇ̌
! 0.

We still know .�/ (with apT =a
p
T 0 replaced by 0) and dT 0.x0; xn/!1. If dT .x0; xn/

does not diverge, we are done. If it does, we can approximate dT
�
x0; .@�Supp.p/.zn//T

�
by dT .x0; xn/ and we can conclude as above.

It remains to verify assertion (iii). For each n, let T n 2 .Supp.p//?\ Supp.zn/ and
choose Sn 2 Supp.zn/� .Supp.p//? . Fix P 2 Supp.p/ so that, after passing to a
subsequence, P is not orthogonal to any of the Sn . By either (5) or (7), we have
dCSn.x0; xn/=dCP .x0; xn/ � 1, while dCP .x0; xn/=dCT n.x0; xn/ < � since xn! p .
Hence aznT n=a

zn
Sn � �C1=n, by (3), and the desired inequality follows since the number

of terms in the sum is bounded by �.X /, as in the nonremote case. This completes the
proof that fzng subconverges to p , and thus completes the proof that @X is compact.

4 The HHS boundary of a Gromov-hyperbolic space

In this section, we prove that the HHS boundary of a hyperbolic space is its Gromov
boundary, regardless of the chosen HHS structure.

Lemma 4.1 Let .X ;S/ be hierarchically hyperbolic. If X is hyperbolic, then there
exists C > 0 such that if U; V 2 S and U ? V , then either diam CU < C or
diam CV < C .
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Proof Recall from [6] that if U ? V , then there exists a quasiisometric embedding
FU �FV ,! X . Hyperbolicity uniformly bounds the diameter of one of the factors.

Lemma 4.2 Let .X ;S/ be hierarchically hyperbolic and let X be hyperbolic. If
 W Œ0;1/!X is a hierarchy ray with .0/Dx0 , then there exists a unique U 2S with
�U ı W Œ0;1/! CU a parametrized quasigeodesic ray. In particular, diamCV ./ <1

for all V 2S with V ¤ U .

Proof By Lemma 3.3, there exists U 2 CS such that diamCU ./ is unbounded. Let
V 2S be such that V ¤ U ; by Lemma 4.1, there are three cases: V v U , U v V
and V t U .

Let tM 2 Œ0;1/ be such that dCU ..0/; .t// > E2 for t � tM . If U v V , then by
the consistency inequality, dV

�
.t/; �VU ..0//

�
< E for all t > tM . If V v U , then

dCV ..t/; �UV / < E for all t > tM . Similarly, if U t V , then dCV ..t/; �VU / < E for
all t > tM by the transverse case of the consistency inequality. Thus, in each case,
diamCV ./ <1.

Theorem 4.3 Let .X ;S/ be hierarchically hyperbolic and suppose that X is hyper-
bolic. Let XGr D X [ @GrX , where @GrX is the Gromov boundary of X , and let
X D X [ @X . Then the identity map X ! X extends uniquely to a homeomorphism
XGr! X .

Proof Lemma 4.1 gives @X D
F
U2S @CU and Lemma 4.2 gives jSupp.p/j D 1 for

all p 2 @X .

Fix x0 2 X and let p 2 @GrX . Let pW Œ0; 1/! XGr be a geodesic from x0 to p . For
any n 2N , let nW Œ0; n/! X be a hierarchy path between x0 and p.n/. Since X is
hyperbolic, each n uniformly fellow-travels p and thus  D limn n is a hierarchy
ray from x0 to p . The ray  is independent of the choice of .n/ and is thus uniquely
determined by p . By Lemma 4.2, there exists a unique U 2S such that diamCU ./ is
an unbounded quasigeodesic ray. By hyperbolicity of CU , there exists q 2 @CU such
that �CU ./ limits to q .

The above discussion yields a well-defined map �GrW @GrX! @X given by �Gr.p/D q .
Define �W XGr!X by �jX D idX and �jXGr D �Gr . We claim that � is a homeomor-
phism.

Bijectivity The map � is clearly bijective on X . Let p; q 2 @GrX and suppose
that p ¤ q . Then there exist geodesic rays p; qW Œ0;1� ! X with Œp� D p ,
Œq� D q and p.0/ D q.0/ D x0 . Since p ¤ q , hyperbolicity of X implies that
dX .p.t/; q.t//!1.
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By Lemma 4.2, p and q have unique domains Up and Uq , respectively, to which
they have unbounded projections. If Up ¤ Uq , we are done. Otherwise, Up D
Uq D U , and Lemma 4.2, the distance formula, and the triangle inequality imply that
dU .p.t/; q.t// ! 1, whence �.p/ ¤ �.q/, by definition. Thus � is injective;
surjectivity of � follows from Theorem 1.7.

Basic sets in X For convenience, we describe basic sets N .p/ for p 2 @.X ;S/,
in our current simple situation. Observe that Supp.p/ consists of a single S 2 S,
while @rem

Supp.p/X consists of those q 2 @.X ;S/ with Supp.q/D fT g with T ¤ S . It
is automatic that T is not orthogonal to S if T ? S , then Lemma 4.1 implies only
one of CS or CT can be unbounded and thus have nonempty Gromov boundary. It
follows that Supp.q/\ .Supp.p//? D∅.

Choosing � > 0 and p 2 US � CS [ @CS , a remote neighborhood of p in X is

N rem
US ;�.p/D

�
q 2

G
S¤T

@CT
ˇ̌̌
�TS 2 US

�
:

Meanwhile, the nonremote part of the boundary is just @CS , so

N non
US ;�.p/D US :

Finally, the interior part is

N int
US ;�.p/D

�
x 2 X

ˇ̌̌
�S .x/ 2 US ;

dT .x0; x/
dS .x0; x/

< � for all T ? S
�
:

The above descriptions will be useful in proving that � is a homeomorphism.

Continuity of � and ��1 Choose p2@.X ;S/, supported on S 2S, a neighborhood
US of p 2 @CS , and � > 0. We may assume that

US D
˚
y 2 CS [ @CS j pn! p and lim inf

n
.y j�S .pn//�S .x0/ > r for some .pn/

	
for some r � 0. Choose q 2 @GrX so that �.q/D p . For each r 0 � 0, let

U .q; r 0/D fy 2 X [ @GrX j .y jq/x0 � r
0
g:

Recall that sets of this type yield a neighborhood basis in XGr .

We exhibit r 0 � 0, depending on p , r , � and the distance formula constants, such that

�.U .q; r 0//�NUS ;�.p/:

Indeed, if y 2 U .q; r 0/ \ @GrX , and r 0 is sufficiently large, then any geodesic ray
or segment representing Œ�S ı y � has an initial segment of length at least r lying
2ı–close to the corresponding segment for p . This implies that �.y/ 2 US , which is
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exactly the nonremote part of NUS ;�.p/ (regardless of the choice of � ). If y 2U .q; r 0/
is an interior point, and r 0 is sufficiently large, then similarly �S .x/ 2 US .

If T ? S , then, by Lemma 4.1, there exists a uniform C > 0 such that dT .x0; y/�C .
Moreover, choosing r 0 sufficiently large compared to r , C and the constants in the
distance formula, we have dS .x0; y/ � C=� . Hence either y is interior or y 2 @CS ,
and so

�.U .q; r 0//�N non
US ;�.p/[N int

US ;�.p/:

Continuity follows easily: Given an open set O � X , let q 2 ��1.O/. Then, since O
is open, it contains a neighborhood N of �.q/. The preceding discussion shows that
q lies in some neighborhood U which in turn lies in ��1.N /� ��1.O/, so ��1.O/
is open. Continuity of ��1 is proved similarly.

5 Extending hieromorphisms to the boundary

Hieromorphisms need not extend continuously to the boundary, but under additional
hypotheses on the quasiisometries implicit in the hieromorphism, such extensions do
exist. However, the class of hieromorphisms that extend continuously to the boundary
is contained in a larger class of maps with this property, and, given the examples we
study later in this section, it is in our interest to focus on this larger class of maps.

Definition 5.1 (slanted hieromorphism) Let .X ;S/ and .X 0;S0/ be hierarchically
hyperbolic spaces. A slanted hieromorphism f W .X ;S/! .X 0;S0/ consists of

(1) a map f W X ! X 0 ;
(2) a map �.f /W S! 2S

0

such that �.f /.U / is a collection of pairwise-orthogonal
elements of S0 for each U 2S;

(3) for each U 2S, a map �.f; U /W CU !
Q
V 2�.f /.U / CV

such that:

(I) If U; V 2 S satisfy U Ĺ V , then for each W 0 2 �.f /.V /, there exists
W 2 �.f /.U / with W Ĺ W 0 , and for every W 2 �.f /.U / there exists (a
unique) W 0 2 �.f /.V / with W ĹW 0 .

(II) If U; V 2S satisfy U ? V , then W ?W 0 for all distinct W 2 �.f /.U / and
W 0 2 �.f /.V /.

(III) If U; V 2S satisfy U tV , then for all W 2�.f /.U / there exists W 02�.f /.V /
with W tW 0 and vice versa.

(IV) Each �.f;U / is a (uniform) quasiisometric embedding.
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(V) For all U 2S, the following diagram (uniformly) coarsely commutes:

X X 0

CU
Y

W 2�.f /.U /

CW

//
f

��

�U
��

Q
W2�.f /.U/ �W

//
�.f;U /

(VI) If U; V 2S satisfy U Ĺ V or U t V , then

CU
Y

W 2�.f /.U /

CW

CV
Y

W 02�.f /.V /

CW 0

//
�.f;U /

��

�UV
��

g

//
�.f;V /

uniformly coarsely commutes, where g is a coarsely constant map such that:
if U Ĺ V , then for each W 0 2 �.f /.V /, the W 0–coordinate of g is �WW 0 for
some (hence any, by Lemma 1.5) W 2 �.f /.U / with W ĹW 0 , and if U t V ,
then for each W 0 2 �.f /.V /, the W 0–coordinate of g is �WW 0 for some (hence
any) W 2 �.f /.U / with W tW 0 .

(VII) If V Ĺ U , then

CU
Y

W 2�.f /.U /

CW

CV
Y

W 02�.f /.V /

CW 0

//
�.f;U /

��

�UV
��

h

//
�.f;V /

uniformly coarsely commutes, where the map h is defined as follows: given
.xW 0/W 02�.f /.U / , for each W 2 �.f /.V /, the W–coordinate of h..xW 0// is
�W
00

W .xW 00/, where W 00 is the unique element of �.f /.U / with W ĹW 00 .

Remark 5.2 (hieromorphisms are slanted hieromorphisms) Any hieromorphism f

is a slanted hieromorphism in which j�.f /.U /j D 1 for all U 2S.

Remark 5.3 There is presumably a still more general version of Definition 5.1 encom-
passing morphisms f W .X ;S/! .X 0;S0/ where f W X !X 0 is a map, f W 2S! 2S

0
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sends pairwise-orthogonal sets to pairwise-orthogonal sets, and f sends appropriate
products of hyperbolic spaces to products of hyperbolic spaces. Simple examples like
rotation in E2 require such a definition in order to be regarded as maps of hierarchically
hyperbolic spaces.

Definition 5.4 (coarse similarity) Let M and M 0 be metric spaces. Then f W M !
M 0 is a .�; �/–coarse similarity if there exist � > 0 and � � 0 such that for all
p; q 2M ,

�dM .p; q/� � � dM 0.f .p/; f .q//� �dM .p; q/C �:

Definition 5.5 (extensible slanted hieromorphism) Let f W .X ;S/! .X 0;S0/ be a
slanted hieromorphism. Then f is extensible if there exist 0 < �1 � �2 and K <1

such that:

(1) �.f /W S! 2S
0

is injective.

(2) For all V 2S0 , either there is U 2S with V 2 �.f /.U / or

diamCV
�
�V .f .X //

�
�K:

(3) For all U 2S and W 2 �.f /.U /, the composition

CU
�.f;U /
����!

Y
V 2�.f /.U /

CV ! CW

is a .�; �0/–coarse similarity, where the second map is the canonical projection
and � 2 Œ�1; �2� (� can depend on U and V ) and �0 � 0.

Theorem 5.6 (extending slanted hieromorphisms to the boundary) Let .X ;S/ and
.X 0;S0/ be hierarchically hyperbolic structures on the spaces X and X 0 , respectively.
Suppose that f W .X ;S/! .X 0;S0/ is an extensible slanted hieromorphism. Then
there is a map xf W X ! X 0 such that

(1) xf jX D f ;

(2) xf j@X is injective;

(3) for all f .p/ 2 @X 0 and basic neighborhoods f .p/ 2N of X 0 , the set xf �1.N /
contains a basic neighborhood of p 2 X , ie xf is continuous at each point in @X .

In particular, if X is proper, then xf j@X is an embedding with closed image and, if f is
an embedding, then xf W X ! X 0 is an embedding whose image is closed.

Proof For convenience, when the domains of the various maps are understood, we shall
denote each map f W X!X 0 , �.f /W S!2S

0

, and �.f; U /W CU!
Q
W 2�.f /.U / CW

by f .
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Boundary maps on hyperbolic domains Let U 2S. To each sequence .xn/ in CU ,
associate the sequence .f .xn//n in

Q
W 2C�.f /.U / CW . For each W 2 �.f /.U /,

let wn.W / 2 CW be the W–coordinate of f .xn/. Fix a basepoint x 2 CU and
pW D �W .�.f; U /.x// 2 CW for each W 2 �.f /.U /.

Suppose that .xn/n represents a point in @CU , ie .xi jxj /x!1 as i; j !1 . Since
�.f; U / is a uniform quasiisometric embedding, we have for each W 2 �.f /.U /
that .wi .W /jwj .W //pW !1 as i; j !1. Hence wi .W / converges to a point
p.W / 2 @CW .

For each W 2 �.f /.U /, choose ˛W 2 .0; 1� so that

˛W

˛W 0
D lim

n

dW .pW ; wn.W //
dW 0.pW 0 ; wn.W 0//

for all W;W 0 2 �.f /.W /, which exists because of the coarse similarity assumption.
Then define p 2?W 2C�.f /.U /@CW to be the linear combination

P
W 2�.f /.U / ˛W pW .

The assignment xfU ..xn//D p thus provides a map

xfU W CU [ @CU !
Y

W 2C�.f /.U /

CW [?W 2C�.f /.U /CW

extending the map �.f; U /.

For any U 2S, the map xfU defined above is injective since the composition of f with
any of the canonical projections

Q
W 2�.f /.U / CW ! CW is a uniform quasiisometric

embedding, and quasiisometric embeddings coarsely preserve Gromov products.

Definition of xf Let p 2 @X , so that p D
P
U2Supp.p/ ˇUpU , where pU 2 @CU

for each U , each ˇU 2 .0; 1�, and
P
U ˇU D 1. For each U 2 Supp.p/, we defined

xfU .pU /D
P
W 2�.f /.U / ˛

U
W qW above, where qW 2 @CW and

P
W ˛UW D 1. Let

xf .p/D
X

U2Supp.p/

X
W 2�.f /.U /

ˇU˛
U
W � qW ;

which is a point in @X 0 since
P
U

P
W ˇU˛

U
W D 1 and since

S
U2Supp.p/ �.f /.U /

is a pairwise-orthogonal set by Definition 5.1 since f is a slanted hieromorphism.

Injectivity of xf j@X Injectivity of xf j@X follows from injectivity of xfU on each
@CU for U 2S together with injectivity of �.f / and the fact that each xfU W CU !Q
W 2�.f /.U / CW is “fully supported” in the sense that each ˛UW > 0.

Continuity at boundary points First consider p 2 @X . By Proposition 2.17, there
exists .xn/ in X such that xn ! p as n ! 1. We check that f .xn/ converges
to xf .p/.
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Fix a basepoint x 2X , so that pD
P
U2Supp.p/ aUpU with

P
U aU D 1, each aU >0,

and for all U;U 0 2 Supp.p/,ˇ̌̌̌
dU .x; xn/
dU 0.x; xn/

�
aU

aU 0

ˇ̌̌̌
! 0 and

dV .x; xn/
dU .x; xn/

! 0

whenever U 2 Supp.p/ and V 2 Supp.p/? , and finally �U .xn/ ! pU for all
U 2 Supp.p/.

Consider the sequence .wn/D .f .xn//. For each U 2 Supp.p/ and W 2 �.f /.U /,
let cW W

Q
V 2�.f /.U / CV ! CW be the canonical projection. By hypothesis, for each

such W we have jdW .f .x/; wn/� �W dU .x; xn/j � �0W , where �W 2 Œ�1; �2� and
�0W � 0. Hence for each U 2 Supp.p/ and W 2 �.f /.U /, we have that �W .wn/D
cW ı xf .�U .xn//! cW ı xf .pU / and xf .�U .xn//!

P
W 2�.f /.U / ˇU˛W cW �

xf .pU /

as required. Moreover, if V 2 S0 does not belong to �.f /, then dV .f .x/; wn/ is
uniformly bounded by Definition 5.5(2).

Finally, if V 2 S � Supp.p/, then dV .x; xn/ is dominated by dU .x; xn/ for any
U 2 Supp.p/. Hence, for such V , we have that dW .f .x/; f .xn// is dominated by
dZ.f .x/; f .xn// whenever W 2�.f /.V / and Z 2�.f /.U / for some U 2 Supp.p/,
since each �.f; U / is a uniform quasiisometric embedding. Thus f .xn/ converges
to xf .p/.

More generally, given any sequence .zk/ in X converging to p 2 @X , we can use
the ideas in the proof of Theorem 3.4 to build a sequence of internal sequences .xk;i /
such that limi xk;i D zk for each k . Namely, for each k , we can take a sequence
.xk;i /! zk (if zk 2X , then we choose xk;i D zk to be constant), and then we choose
Nk > 0 large enough that if n > Nk , then the sequence .xk;n/ will satisfy conditions
(1)–(7) from the proof of Theorem 3.4. This will force that limi xk;i D zk , and then
since limk zk D p , the above conditions will force limk xk;n D p .

Now, since limn xk;n D p and limi xk;i D zk , the internal case above implies

lim
n
xf .xk;n/D xf .p/ and lim

i

xf .xk;i /D zk :

Together, these imply that limk xf .zk/ D xf .p/. Thus xf is continuous at boundary
points.

When X is proper Assertion (3) combines with Theorem 3.4 and Proposition 2.17(1)
to imply that xf is an embedding; compactness of @X implies that its image is closed.
If in addition, f is an embedding, then xf W X ! X 0 is an embedding, since asser-
tion (3) again combines with Proposition 2.17(1) and Theorem 3.4 to imply that xf is a
continuous injection from a compact space to a Hausdorff space.
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Remark 5.7 Theorem 5.6 holds under slightly more general conditions: condition (3)
of Definition 5.5 need only be imposed on U 2S in cases where either there exists
V 2 S with U ? V or j�.f /.U /j > 1 or both. For any U with empty orthogonal
complement and for which �.f /.U /D fV g for some V 2S0 , it suffices to require
that �.f; U /W CU ! CV is a uniform quasiisometric embedding.

5.1 Limit sets of hierarchically quasiconvex sets

Let .X ;S/ be a proper hierarchically hyperbolic space and let Y �X be hierarchically
quasiconvex. Let ƒY be the set of boundary points p D

P
U2Supp.p/ aUpU 2 @X

such that for all U 2 Supp.p/, there is a sequence pnU 2 �U .Y/ converging to pU .

Proposition 5.8 (hierarchically quasiconvex subspaces have limit sets) The set
Y [ ƒY is a closed subset of X , and Y is dense in Y [ ƒY . Hence Y has an
HHS structure such that Y [ƒY D Y .

Proof This is a definition chase and an application of Proposition 2.17.

Remark 5.9 When �U jY is either surjective or uniformly bounded for each U ,
Theorem 5.6, together with the HHS structure on Y inherited from X , implies that
ƒY is homeomorphic to the HHS boundary @Y . This holds in particular for the main
examples of hierarchically quasiconvex subspaces that we use, namely product regions:

Remark 5.10 (boundaries of standard product regions) Let U 2 S, and recall
from Section 1.3 that there is a quasiisometric embedding FU �EU ! X coming
from the standard hieromorphisms. By definition, @FU consists of exactly thoseP
V aV pV 2 @X where the support set fV g consists entirely of elements of SU , while

@EU consists of linear combinations of the same form, but with each V 2 S?U . In
particular, under the map FU �EU ! X , we see that the images of

@.FU � fe1g/; @.FU � fe2g/! @X

are identical. Moreover, the subspace @FU � @X is closed. Finally, @PU � X is a
closed subset homeomorphic to @FU ? @EU , where ? denotes the spherical join.

5.2 Geometrically finite subgroups of mapping class groups

In this subsection, we will show that certain interesting subgroups of mapping class
groups have a well-defined limit set in the boundary. Before doing so, we give a quick
sketch of relevant facts about mapping class groups and Teichmüller spaces. For more
details about the HHG structure of the mapping class group, the reader is referred to
[6, Section 11].
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Fix a finite-type surface S . The mapping class group MCG.S/ of S acts properly
and cocompactly on the marking graph M.S/ of S [60]. The vertices of the marking
graph, called markings, are isotopy classes of certain collections of curves on S (pants
decomposition together with certain transverse curves). MCG.S/ and M.S/ are
quasiisometric via the orbit map, and we will identify MCG.S/ with an orbit in M.S/

from now on. The mapping class group can be given a hierarchically hyperbolic structure
by considering the collection S of all its (isotopy classes of essential) subsurfaces and
associating to each Y 2 S its curve graph CY , a graph whose vertices are isotopy
classes of essential simple closed curves on Y , except when Y is an annulus (a case that
will be more subtle to deal with later, and which we will hence explain in more detail
here). When Y is an annulus, CY has vertices the isotopy classes of arcs connecting the
two boundary components, and two such vertices are adjacent if they can be represented
by disjoint arcs. The maps �Y WMCG.S/! 2CY are called subsurface projections and,
when Y is not an annulus, they are defined more or less by intersecting the curves in
the marking with Y . When Y is an annulus �Y is defined in the following way. Let yY
be the annular cover of S where the core of the annulus lifts to a simple closed curve.
There is a natural compactification Y of yY which is a closed annulus, and that can be
identified with Y . Given a marking m, lift to yY all the curves in m, except possibly
the (only) one which is isotopic to the core of Y . Each such lift can be compactified to
an arc in Y , and we can finally define �Y .m/ to be the collection of all such arcs that
connect distinct boundary components of Y .

We now comment briefly on Teichmüller space T .S/ endowed with the Teichmüller
metric. A point on Teichmüller space corresponds to a hyperbolic metric on S , and we
can hence consider the systole map SysW T .S/! 2CS that maps points in Teichmüller
space to the shortest curves in the corresponding hyperbolic metric. The set of systoles
is nonempty and pairwise disjoint, thus giving a bounded subset of CS .

5.2.1 Subsurface mapping class groups For any nonpants subsurface Y � S there
is a natural embedding �Y WMCG.Y / ,!MCG.S/ which takes any mapping class
fY 2MCG.Y / to a mapping class f 2MCG.S/ such that f jY � Y and f jSnY �
idSnY ; if Y is an annulus, we take MCG.Y / to be the cyclic subgroup generated by
the Dehn (half) twist about the core of Y .

We can also see this map in terms of markings: For each component X � S n Y
(including annuli with core curves in @Y ), fix a marking �X 2M.X/; if X is an
annulus, then �X 2 CX . Define a map �Y WM.Y /!M.S/ by

�Y .�Y /D �Y t
G
˛2@Y

˛ t
G

X2SnY

�X

for any marking �Y 2M.Y /.
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The map �Y extends to a hieromorphism in the obvious way and it follows from the
distance formula that it is a quasiisometric embedding. Since diamZ

�
�Y .M.Y //

�
is

uniformly bounded for each Z 2 S nSY and �Y is surjective for each W 2 SY ,
it is, moreover, easy to see that �Y .M.Y // is a hierarchically quasiconvex subspace
of M.S/. Hence we have, by Proposition 5.8:

Theorem 5.11 The natural inclusion �Y WMCG.Y / ,!MCG.S/ equivariantly extends
to a continuous embedding @�Y W @MCG.Y / ,! @MCG.S/ for any nonpants subsurface
Y � S .

5.3 Convex cocompactness subgroups

Convex cocompact subgroups of mapping class groups are a much-studied class of
hyperbolic subgroups of mapping class groups, mainly because they are precisely the
class of subgroups of MCG.S/ whose corresponding surface subgroup extensions
are hyperbolic. Importantly, they satisfy several strong equivalent characterizations,
which we state in the following theorem-definition with parts due variously to Farb
and Mosher [31], Hamenstädt [40], Kent and Leininger [48], and the first author with
Taylor [27]:

Theorem 5.12 A subgroup H <MCG.S/ is convex cocompact if it satisfies any of
the following equivalent conditions:

(1) Any orbit of H in T .S/ is quasiconvex.

(2) Any orbit of H in CS is quasiisometrically embedded.

(3) Any orbit of H in M.S/ is quasiisometrically embedded and has uniformly
bounded subsurface projections.

(4) H is a stable subgroup of MCG.S/.
(5) The corresponding extension �H of �1.S/ is Gromov-hyperbolic.

The following is a corollary of Proposition 5.8 and Theorems 4.3 and 5.12:

Corollary 5.13 If H <MCG.S/ is a convex cocompact subgroup of MCG.S/, then
the inclusion map H ,!MCG.S/ H–equivariantly extends to a continuous embedding
@GrH ,! @MCG.S/.

Proof It follows immediately from properties (2) and (3) of Theorem 5.12 that H is a
hierarchically quasiconvex subgroup of MCG.S/. Since H is hyperbolic, Theorem 4.3
implies that the boundary of the induced HHS structure on H inside of MCG.S/ is
homeomorphic to @GrH . The result then follows from Proposition 5.8.

Geometry & Topology, Volume 21 (2017)



Boundaries and automorphisms of hierarchically hyperbolic spaces 3707

In the rest of the section, we will consider finitely generated Veech subgroups and
the Leininger–Reid combination subgroups of MCG.S/, which are generally not
hierarchically quasiconvex. Recall that for both classes of groups, their actions on
T .S/ do not extend continuously everywhere to embeddings of their boundaries into
PML.S/. The main goal of the remainder of this section is to prove that such an
extension does exist for both classes of groups into @MCG.S/.

5.3.1 Veech subgroups The construction of Veech and Leininger–Reid subgroups
involves holomorphic quadratic differentials. We will not work with them directly, so
we do not need to define them, but we will rather work with the q–metric associated
to a holomorphic quadratic differential q on the surface S . This is a singular flat
metric on S which is locally isometric to R2 except at finitely many points called
singularities.

Given a holomorphic quadratic differential q on S , there exists a convex subset
TD.q/� T .S/ with TD.q/ŠH2 called a Teichmüller disk. Let AffC.q/ denote the
affine group of q . Following [52], we call any subgroup G.q/�AffC.q/�MCG.S/,
with G.q/ acting properly on TD.q/, a Veech subgroup, except that we will also ask
that G.q/ be finitely generated. Veech subgroups have the property that every element
of G.q/ is either pseudo-Anosov or a multitwist about some annular decomposition A
of q [73], where this annular decomposition comes from a finite measured foliation
with only closed leaves naturally associated to q .

Consider the Veech subgroup G DG.q/�MCG.S/. Let XG be the orbit of G of a
fixed marking � in the marking graph M.S/. Given a multitwist g 2G with annular
decomposition Ag D f˛1; : : : ; ˛ngg, let

�g W XG!
Y

1�i�ng

C˛i

be given by �g.�/D .�˛1.�/; : : : ; �˛ng .�// for � 2 XG . If g D T k1˛1 � � �T
kng
˛ng

, let

Lg D hgi ��g.�/�
Y

1�i�ng

C˛i :

Note that Lg Š R, and in fact Lg is the projection of the g–orbit of � and thus
coarsely the line in Rng with slope .k1; : : : ; kng/, where we identify the origin of Rng

with the projection of �. For each Lg , let �Lg W
Q
1�i�ng

C˛i ! Lg be the standard
projection onto Lg , considered as a subspace of Rng identified as above.

We now define an HHS structure .G;SG/ on G as follows:
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Domains S is the unique nest-maximal domain in SG , and for every primitive
multitwist g 2G with corresponding annular decomposition Ag D f˛g;1; : : : ; ˛g;ngg,
we include a domain Ug 2SG .

The spaces To S , we associate �S .G ��/� CS and to each Ug , we set CUg D Lg
and declare Ug vS for each g ; moreover, we specify that Ug tUg 0 for each primitive
g ¤ g0 .

Projections �S W XG ! CS is the standard projection; for each Ug , we define
�Ug W XG! Lg by �Ug.�/D �Lg.�g.�// for each � 2 XG .

Relative projections Given U; V 2SG , we define �UV W CU ! CV by:

(U vV ) In this case, V DS and U DUg for some primitive g ; then �VU D�Lg ı�g .

(U t V ) If U D Ug and V D Ug 0 , then

�
Ug
Ug0
D �Ug0 .hgi ��/:

Lemma 5.14 If G is finitely generated, then .G;SG/ is an HHS structure on G , and
G < Aut.SG/.

Proof We need to prove that .G;SG/ satisfies the axioms; since it clearly satisfies
projections, nesting, orthogonality, and finite complexity, it suffices to prove it satisfies
the consistency, large link, bounded geodesic image, partial realization, and uniqueness
axioms. Hyperbolicity of the associated spaces uses Lemma 5.15 (the only part for
which we need finite generation of G ).

There is no nontrivial orthogonality, so partial realization holds by construction.
Bounded geodesic image holds by the bounded geodesic image axiom in .MCG.S/;S/
and the definition of �SUg . The consistency and large link axioms hold for a similar rea-
son. Uniqueness follows from uniqueness in .MCG.S/;S/ together with Lemma 5.16.

Lemma 5.15 The projection �S .G ��/ is quasiconvex in CS .

Proof Consider the action of G on the corresponding Teichmüller disk TD.q/. Since
the action is proper, this makes G a finitely generated Fuchsian group. Hence, G is
geometrically finite [57], so that it acts with cofinite volume on a convex subspace
CG � TD.q/. Consider now the image of CG and TD.q/ in CS . Since geodesics in
T .S/ map to quasigeodesics in CS [59] and CG is a convex subspace of T .S/, it
follows that �S .CG/ is quasiconvex in CS .
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Now, it is not hard to see that �S .CG/ coarsely coincides with �S .G ��/. In fact, CG
contains a G–equivariant collection of horodisks such that the action on the complement
C 0G is cocompact, and cocompactness implies that �S .G ��/ coarsely coincides with
the image in CS of C 0G . Moreover, each horodisk is stabilized by a multitwist, and
the corresponding curves are short in all hyperbolic metrics corresponding to points
in the horodisk. This implies that the whole horodisk maps to a uniformly bounded
subset of CS under the systole map, namely a neighborhood of the aforementioned
curves. To sum up, the projection of the Teichmüller disk to CS is quasiconvex and
coarsely coincides with the projection of C 0G , which in turn coarsely coincides with
the projection of G ��, and we are done.

Lemma 5.16 There exists V > 0 such that for any U 2S�fSg, either

diamU .�U .G ��//� V

or U D ˛i 2 Ag for some annular decomposition Ag . In the latter case, �U is
(uniformly) coarsely surjective.

Proof Let U Ĺ S be a subsurface and let �� U be its spine, which is obtained by
pulling tight @U with respect to the q–metric, so that vertices of � are singular points
and edges are saddle connections (ie geodesics connecting singularities and intersecting
the singular set only at the endpoints). There exists a natural retraction r W U !� and
for each edge e of �, let ıe D r�1.me/, where me is the midpoint of e . Each ıe is
either a curve or an arc in .U; @U /. We now divide into three cases.

U is nonannular In this case, � has a degree-3 vertex v . Suppose that � has a
base curve ˛ that traverses each saddle connection in � at most once. Then v has
some incident edge e such that ıe is disjoint from ˛ . Now, for any g 2 AffC.q/, we
have that g �� is the spine of g �U , with vertices that are singular points and edges
saddle connections. In particular, g �˛ is a curve using each saddle connection of � at
most once, so dACU .˛; g �˛/� 3, where ACU denotes the arc-and-curve graph of U .
Since there is a 2–Lipschitz retraction AC.U /! CU [60, Lemma 2.2], it follows that
diamU .G ��/ is uniformly bounded.

Since G.q/ preserves the set of all singularities, saddle connections, and geodesic
representatives of curves, we are done provided we choose the marking � in such a
way that each of its base curves traverses each saddle connection at most once.

U 2 Ag for some g Let g 2 G.q/ be a multitwist about curves ˛1; : : : ; ˛n , with
g D

Qn
iD1 T

ki
˛i , where ki 2 Z� f0g. Hence �U is ki –surjective (where U D ˛i ).

Indeed, �U .g ��/D�U .T
ki
˛i ��/, and the ki are uniformly bounded since the action of

G.q/ on the corresponding Teichmüller disc is geometrically finite, and thus there are
finitely many conjugacy classes of multitwists in G.q/; see the proof of Lemma 5.15.
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U an annulus and U … Ag for any g The spine � of U contains at least one
singularity, and the angle at the singularity is greater than � on both sides. Let yU
be the annular cover of S corresponding to U . The lift y� of � disconnects yU into
two connected components, and we will refer to the closure of each such connected
component as a side of y�. Consider a singularity along y� and a saddle connection
entering the singularity. Then, for any side of y� there exists a unique geodesic ray
emanating from the given singularity, forming an angle of � with the given saddle
connection and contained in the given side of y�. We let f˛ig be the open arcs in yU
that can be formed by concatenating two such rays lying in opposite sides of y�. It
is readily seen that any two ˛i have intersection number at most 1. The bound on
the diameter of the projection onto CU now follows from the fact that any arc in the
subsurface projection onto CU of some curve in S can be represented either by a
geodesic transverse to a saddle connection in y�, which is easily seen to be disjoint
from some ˛i , or a geodesic containing one of the singularities, which is easily seen to
intersect an appropriate ˛i containing that singularity at most once.

Lemma 5.17 There exists a G–equivariant extensible slanted hieromorphism

.G;SG/! .MCG.S/;S/:

Proof At the level of spaces, the map G ! MCG.S/ is the inclusion. Define
�.f /W SG! 2S as follows: let �.f /.S/D fSg, and for each primitive multitwist g ,
let �.f /.Ug/D Ag , where Ag is the set of pairwise-disjoint annuli corresponding
to the multicurve supporting g . This is G–equivariant since hAg D Ahgh�1 for each
multitwist g and each h 2G .

The map �.f; S/W CS ! CS is the identity. For each primitive multitwist g D
T k1˛1 � � �T

kng
˛ng

, the map �.f; U /W Lg !
Q
i C˛i was specified above. Observe that

the composition of this map with any of the canonical projections to C˛i is a coarse
similarity with multiplicative constants determined by fk1; : : : ; kngg. These constants
are uniformly bounded since there are finitely many conjugacy classes of multitwists
in G.q/.

Combining Lemma 5.17 and Theorem 5.6, Remark 5.7, and Theorem 4.3 yields:

Corollary 5.18 For any Veech subgroup G <MCG.S/, the inclusion G!MCG.S/
extends continuously to an equivariant embedding @GrG ! @MCG.S/ with closed
image.

Remark 5.19 Corollary 5.18 does not follow from Proposition 5.8 because the Veech
subgroup G is not hierarchically quasiconvex in MCG.S/ whenever it contains a
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multitwist supported on a multicurve with more than one component; indeed, in this
case there are realization points in MCG.S/ whose images in each curve graph lie in
the image of G , but which are arbitrarily far from G .

5.3.2 Leininger–Reid surface subgroups We now turn to the Leininger–Reid sur-
face subgroups constructed in [52, Theorem 6.1]. Again, we show that these are
nonhierarchically quasiconvex subgroups of MCG.S/ that nonetheless have well-
defined limit sets in @MCG.S/. The setup is as follows:

(1) Let q1; : : : ; qn be holomorphic quadratic differentials, with A0 2 CS the core of
the annular decomposition of each qi such that each complementary component
has negative Euler characteristic.

(2) Suppose G0 DG0.qi / for all i � n.

(3) Suppose h 2MCG.S/ centralizes G0 and is pure and pseudo-Anosov on all
components of S �A0 .

Then, for

H DG.q1/�G0 h
k2G.q2/h

�k2 �G0 � � � �G0 h
knG.qn/h

�kn ;

the map H !MCG.S/ is an embedding whenever

N Dmin
˚
jki � kj j W i; j 2 f1; : : : ; ng; i ¤ j

	
(where we set k1D 0) is large enough. Moreover, every element of im.H!MCG.S//
(which we denote by H ) is either pseudo-Anosov or conjugate into an elliptic or
parabolic subgroup of some hkiG.qi /h�ki . In particular, the G.qi / can be chosen so
that H fails to be hierarchically quasiconvex for the reason explained in Remark 5.19.

In the remainder of this section, we prove:

Theorem 5.20 The inclusion H !MCG.S/ extends continuously to an equivariant
embedding @H ! @MCG.S/ with closed image.

Proof This follows from Theorem 5.6, Remark 5.7, and Proposition 5.25 below.

Our goal is now to state and prove Proposition 5.25, which says that the inclusion of H
into MCG.S/ is a slanted hieromorphism. We need control over various projections,
which we achieve in the following preliminary lemmas.

Lemma 5.21 There exists a constant Q such that �S .hkG.qi /h�k/ is Q–quasiconvex
for any i and any k .

Proof Apply quasiconvexity of the �S .G.qi // and boundedness of f�S .1; hk/gk2Z .
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Denote by Y the set of connected components in S of the complement of the annuli in
the annular decomposition of the multitwists in G0 .

Lemma 5.22 There exists K such that for any Y transverse to some Y0 2 Y we have
dY .�

Y0
Y ; 1/�K .

Proof This is because �Y0Y coarsely coincides with �Y .PY0/, and the fact that �Y is
coarsely Lipschitz (note that there are finitely many Y0 ).

Lemma 5.23 For each g 2 G.qi / � G0 for some i and each Y 2 Y , there exists
Y 0 2 Y such that g �Y 0 is transverse to Y .

Proof This is a restatement of [52, Lemma 4.1].

Lemma 5.24 There exist C and M with the following property. For any g D

g1h
m1 � � �gkh

mk with gi 2 G.qj.i//�G0 and jmi j � M for each i � k , we have
dY0.1; g/� C for each Y0 2 Y .

Proof Let K be as in Lemma 5.22. Proceed by induction on k , with C to be
determined. If k D 0, there is nothing to prove.

Suppose k � 1. Fix Y0 2 Y and let Y D g1Y 0 with Y 0 2 Y chosen via Lemma 5.23,
so that Y 0 t Y0 . By induction, dY .g1hm1 ; g/D dY 0.1; g2hm2 � � �gkhmk /� C , since
hY D Y for any Y 2 Y by hypothesis, so that g1hm1 �Y 0 D g1 �Y 0 D Y .

By Lemma 5.16, dY .1; g1/ is uniformly bounded by some V . Hence dY .1; g/ �
dY .g1; g1hm1/�C � V D dY 0.1; hm1/�C � V . If jm1j is large enough, then this
quantity is larger than K C 10E . Since Y0 t Y , consistency implies that we have
dY0.�

Y
Y0
; g/�E . Also,

dY0.�
Y
Y0
; 1/� dY0.�

Y
Y0
; g1/CV D dg�11 Y0

.�Y
0

g�11 Y0
; 1/CV � V CK;

hence dY0.1; g/� 2ECV CK . Thus we set C D 2ECV CK , which determines M .

Proposition 5.25 The subgroup H �MCG.S/ admits a hierarchically hyperbolic
space structure .H;SH / such that there is an extensible slanted hieromorphism
.H;SH /! .MCG.S/;S/ induced by the inclusion H ,!MCG.S/.

Proof We follow a very similar procedure to that used for individual Veech subgroups.
In particular, SH is defined exactly as SG was, except that there is now a domain
Ug for each primitive multitwist in H . To verify that this yields an HHS structure, we
must check that:
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(1) �S .H/ is quasiconvex.

(2) �U .H/ is uniformly bounded unless U 2 Ag for some g 2H .

Once the properties above are proven, arguing exactly as in the proof of Lemma 5.14
and Lemma 5.17 yields the desired slanted hieromorphism and completes the proof.

We now set conventions and notations that we use throughout the proof. When some
gD g1 � � �gk 2H with gi 2 hkj.i/G.qj.i//h�kj.i/�G0 is any fixed element of H , we
write pl D�S .g1 � � �gl/ (with p0D�S .1/), and let l be a geodesic in CS from pl�1
to pl , so that the concatenation of the l is a path from �S .1/ to �S .g/. Furthermore,
notice that we can write g D hm0g01h

m1 � � �g0
k
hmk for some g0i 2 G.qj.i// � G0

(more specifically, g0i D h
�kj.i/gih

kj.i/ ), and that jml j for l < k is bounded below
by N (recall that this is the minimal value of jki � kj j for i ¤ j ). We set hl D
hm0g01h

m1 � � �g0
l
.

In the following claim, we study geodesics connecting �S .1/ to �S .g/ for arbi-
trary g 2 G . The claim easily implies that geodesics from �S .1/ to �S .g/ stay
close to �S .H/ for any g 2 H because each l is contained in a coset of some
hkj.i/G.qj.i//h

�kj.i/ and such cosets are uniformly quasiconvex byLemma 5.21. Hence,
the claim proves that �S .H/ is quasiconvex, which is item (1) above.

Claim 2 There exists a constant R with the following property. For any g 2 H ,
the Hausdorff distance between

S
l l and Œ�S .1/; �S .g/� is bounded by R , where

Œ�S .1/; �S .g/� is any geodesic in CS from �S .1/ to �S .g/. Moreover, for any Y 2Y
we have that dhlY .1; hl/; dhlY .g; hlh

ml /� C .

Proof We first show
S
l l is uniformly close to Œ�S .1/; �S .g/�.

It suffices to show that the endpoints of all l lie within controlled distance of
Œ�S .1/; �S .g/�. Any such endpoint x coarsely coincides with both �S .hl/ and
�S .hlh

ml /, for some l (since f�S .hm/gm2Z is a bounded set). Pick any Y 2 Y ,
and set Z D hl �Y . By Lemma 5.24 we have dZ.hlhml ; g/� C and dZ.1; hl/� C .
Hence, if ml is large enough, we get dZ.1; g/ � dY .1; hml /� 2C � 100E . Notice
that by bounded geodesic image �ZS needs to be within 10E of geodesics from �S .hl/

and �S .hlhml /, which both coarsely coincide with the endpoint x we are interested
in. If geodesics from �S .1/ to �S .g/ did not pass close to x we could then conclude
that they do not pass close to �ZS , which would imply by bounded geodesic image that
dZ.1; g/ � 5E . But this is not the case, and hence we get a bound on the distance
from x to Œ�S .1/; �S .g/�, as required.

Let us now prove that points on Œ�S .1/; �S .g/� are close to
S
l l . Suppose by

contradiction that there exists x 2 Œ�S .1/; �S .g/� with dS
�
x;
S
l l

�
� 2C C 1. Let
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x1; x22 Œ�S .1/; �S .g/� lie on distinct sides of x (in the natural order of Œ�S .1/; �S .g/�)
with x1 closer to �S .1/ than x , and satisfy dS .xi ; x/DCC1. Then any y 2

S
l lies

in NC .Œ�S .1/; x1�/[NC .Œx2; �S .g/�/. However, the two neighborhoods are disjoint
and the connected set

S
l contains points in both, a contradiction. G

Let us now take U 2S� fSg and g 2H with dU .1; g/ � 100E . We need to show
that either U belongs to some Ag 0 or dU .1; g/ is bounded independently of U and g .

We proved in the claim that, for any Y 2 Y , the projections of 1 and g on hl � Y
coarsely coincide with the projections of hl and hlhml , respectively, and hence that
dhl �Y .1; g/ > 100E if jml j � N is large enough. Since ml can take finitely many
values, we therefore get the desired bound whenever U is of the form hl �Y . We now
assume that U is neither belongs to some Ag 0 nor it is of the form hl �Y . Hence, for
any l there exists Y such that hl � Y t U overlap, and hence are comparable in the
partial order �; see Proposition 2.8 of [6].

Another fact about � is that whenever Y; Y 0 2Y and l are such that hl �Y t hlC1 �Y 0 ,
we have hl �Y � hlC1 �Y 0 , again provided jml j �N is large enough. In fact,

�
hlC1Y

0

hlY
D hlC1�

Y

h�1
lC1

hlY 0

coarsely coincides with �hl �Y .hlC1/ (Lemma 5.22), which in turn coarsely coincides
with �hl �Y .hlh

ml / by Lemma 5.16 since hlC1 D hlhmlg0lC1 . Finally, �hl �Y .hlh
ml /

coarsely coincides with �hl �Y .g/ by what we said above.

By looking at a predecessor and a successor of U , we then see that the projections
of 1; g onto U coarsely coincide with those of hl � Y; hlC1 � Y 0 for some l and Y
and Y 0 . But these latter projections coarsely coincide with those of hl and hlhmlg0lC1 .
The projections of hl and hlhml are uniformly close by boundedness of ml , while
the projections of hlhml and hlhmlg0lC1 are uniformly close by Lemma 5.16. This
concludes the proof.

6 Automorphisms of HHSs and their actions on the
boundary

The most important special case of an extensible hieromorphism is an automorphism
of .X ;S/. For any automorphism f W .X ;S/! .X ;S/, each isometry f W CU !
C.f .U // extends to a homeomorphism Of W @CU ! @C.f .U //, yielding an application
of Theorem 5.6:

Corollary 6.1 (extensions of automorphisms to the boundary) Any f 2 Aut.S/
extends to a bijection X ! X which restricts to a homeomorphism on @X .
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Proof Let f W .X ;S/ ! .X ;S/ be an automorphism. Let p 2 @X , with p DPn
iD1 a

p
Ti
pTi , where the Ti are pairwise orthogonal and pTi 2 @CTi . Define a map

Of W @X ! @X by
Of .p/D

nX
iD1

a
p
Ti
Of .pTi /;

where Of W @CTi ! @C.f .Ti // is induced by f W CTi ! CTi . Let xf W X ! X be the
extension of f that is Of on @X ; extend f �1 similarly. Since f is an automorphism,
xf is clearly a bijection. Continuity of xf and xf �1 on the boundary follows from

Theorem 5.6.

When .G;S/ is a hierarchically hyperbolic group, @G is defined. In general, if X
and X 0 are hierarchically hyperbolic with respect to the same collection S, then there
is a quasiisometry X ! X 0 extending to the identity on the boundary. Indeed, the
definition of @X depends only on S and the attendant hyperbolic spaces.

Corollary 6.2 Let .G;S/ be a hierarchically hyperbolic group. Then the action of G
on itself by left multiplication extends to an action of G on G by homeomorphisms.

Section 6.1 is devoted to automorphisms, whose fixed points in @X we study in
Section 6.2.

6.1 Classification of HHS automorphisms

In this subsection, we will classify HHS automorphisms by their actions on S. Let
g 2 Aut.S/ and fix a basepoint X 2 X . Set

Big.g/D fU 2S j diamCU .hgi �X/ is unboundedg:

Observe that g �U 2 Big.g/ if U 2 Big.g/, since gW CU ! C.gU / is an isometry.

Lemma 6.3 There exists M DM.S/>0 such that for all g2Aut.S/ and U 2Big.g/,
we have gM �U D U .

Proof Consider the orbit hgi �U in S.

If there exists n� 1 such that gn �U ĹU , then gkn �U Ĺg.k�1/n �U Ĺ � � �Ĺgn �U ĹU

for all k � 1, so we either contradict finite complexity (if hgi �U is infinite) or the
fact that v is a partial order (if hgi �U is finite). Hence gn �U 6Ĺ U unless n D 0.
Similarly, U 6Ĺ gnU unless nD 0.

Next, consider the case where U 2 Big.g/ and gn �U t U for some n � 1. Then,
since U 2 Big.g/, we can choose arbitrarily large m 2N such that dU .X; gm �X/ >
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T D 100E C dU .g�1 � X;X/ C f .m/, where f W N ! N is increasing. Hence
dgnU .gmC1 �X; g �X/>T , since gW CU!CgU is an isometry. The triangle inequality
shows that dgnU .gM �X;X/> T �2dgU .X; gn �X/D 100ECf .m/. By considering
at least two such values of m, we see that consistency is contradicted (specifically, we
contradict Lemma 2.3 of [6]).

It follows that if U 2 Big.g/, then, for all n 2 Z, either gn �U D U or gn �U ? U .
Hence hgi � U is a pairwise-orthogonal collection. Hence there exists a global M ,
depending only on the complexity and Lemma 1.4, such that gM �U D U for each
U 2 Big.g/, establishing the first assertion.

Proposition 6.4 The automorphism g 2Aut.S/ is elliptic if and only if Big.g/D∅.

Proof If hgi �X is bounded, then Big.g/D∅ since projections are coarsely Lipschitz.

Conversely, suppose that Big.g/D∅. We will show that there exists D DD.g/ such
that diamV .�V .hgi �X// � D for all V 2 S. From this and the distance formula
(Theorem 1.9), it follows that g is elliptic. Hence suppose that no such D exists.

We need two facts:

(a) For each N � 0, there exists P D P.N;S/ such that for all U 2 S and
h 2 Aut.S/, either some positive power of h fixes U or fU; g �U; : : : ; gP �U g
contains a set of N pairwise-transverse elements. Indeed, as in the proof of
Lemma 6.3, for any p , the elements of fU; g �U; : : : ; gp�1 �U g are pairwise v–
incomparable, and any pairwise-orthogonal subset has cardinality bounded by the
complexity � of S. Hence, if p exceeds the Ramsey number Ram.�C 1;N /,
we have by Ramsey’s theorem that fU; g �U; : : : ; gp�1 �U g contains a set of N
pairwise-transverse elements, so we can take P D Ram.�C 1;N /� 1.

(b) For each C � 0 there exists Q 2N with the following property. Let x; y 2 X
and suppose fVigi2I satisfies dVi .x; y/ > E for all i , and that jI j �Q . Then
there exists V 2S such that Vi Ĺ V for some i 2 I , and dV .x; y/ > C . This
is a slight strengthening of Lemma 3.2; this exact statement is [7, Lemma 1.8].

Recall that � denotes the complexity — ie the maximum level — in S, so that S is the
unique element of level �. Since Big.g/D∅ but there are arbitrarily large projections,
by assumption, there exists a level ` < � and a constant R <1 such that:

� diamU .�U .hgi �X//�R when U has level greater than `.
� For each D<1, there exists U 2S, of level `, with diamU

�
�U .hgi�X/

�
>D .

Let U 2S be chosen so that dU .X; gn �U/> RR , where RR is a constant to be determined.
We can and shall assume that our U has been chosen at level `, and we emphasize
that such a U can be chosen so as to make RR arbitrarily large.
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Let Q DQ.R/ be the constant provided by setting C D R in fact (b) and let P D
Ram.�C 1;Q/. Fact (a) provides U1; : : : ; UQ 2 fU; g � U; : : : ; gP � U g such that
Ui tUj when i ¤ j . Now, for 1� j �Q , we have dUj .X; g

n �X/� RR�100KEQ .
So, provided RR — which can be chosen independently of R and hence of Q — satisfies
RR>100KEQC10E , fact (b) provides T 2S such that Uj Ĺ T for some j and such

that dT .X; gn �X/ > R . Now, since Uj is a translate of U and Aut.S/ preserves the
levels, the level of Uj is `, and hence T has level strictly greater than `, which is a
contradiction since dT .X; gn �X/ > R .

Remark 6.5 In the case where X is proper, there is a quick proof of Proposition 6.4
relying on the more powerful tools from Section 9.

Lemma 6.6 Let g 2 Aut.S/. Then there exists D DD.g;E/ such that

diamU .�U .hgi �X//�D
for all U 2S�Big.g/.

Proof Let Big.g/ D fUigi2I . Note that it suffices to prove the lemma for some
positive power of g , so by Lemma 6.3, we may assume that g �Ui D Ui for all i 2 I .

If Big.g/D∅, then g is elliptic by Proposition 6.4, from which the lemma follows
immediately: for each V 2 S, we have diamV .�V .hgi �X// � K diamX .hgi �X/,
which is bounded independently of V .

Next, suppose that Big.g/ ¤ ∅ and S … Big.g/ (as usual, S 2 S is the unique
v–maximal element). Then, for each i 2 I , the element Ui is maximal in an HHS
.FUi ;SUi / admitting a g–equivariant hieromorphism to .X ;S/. Since Ui ¤ S ,
the complexity of .FUi ;SUi / is strictly lower than that of .X ;S/, so it follows by
induction that diamV .�V .hgi �X// is bounded independently of V when V v Ui .
Indeed, in the base case, when the complexity is 1, X is itself a hyperbolic space
and the lemma follows from the usual elliptic/parabolic/loxodromic classification of
isometries of hyperbolic spaces [35].

Now, let T be the set of all U 2S such that U v Ui for some i 2 I . Observe that
T is g–invariant and downward-closed under nesting. Then Proposition 2.4 of [7]
provides an HHS . yXT;S� T/ with the same associated nesting and orthogonality
relations, hyperbolic spaces, and projections. Since T was g–invariant, g descends to
an automorphism of . yXT;S�T/ such that the action of g on S�T is the restriction
of the original action on S and, for each V 2S�T, the isometry CV ! CgV is the
original one. Now g has Big.g/D∅ with respect to . yXT;S�T/ and hence we are
done by the proof of Proposition 6.4.
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The preceding two analyses prove the lemma except in the case where S 2 Big.g/.
Hence, suppose S 2 Big.g/, so that g acts either loxodromically or parabolically
on CS . In this case, we cannot induct on complexity, so we argue directly using
consistency, bounded geodesic image, and simple properties of isometries of hyperbolic
spaces.

If U 2S�fSg, then U Ĺ S , and �US � CS is a well-defined subset of diameter �E .

First suppose that g acts loxodromically on CS . Then there exists N DN.g/ such that
�N elements of �S .hgi �X/ lie in the 100E–neighborhood of �US . Let fgi �Xgn

0

iDn

be the points in hgi �X � X projecting into NS
100E .�

U
S / � CS , so that n0 � n � N .

Then for all i; j 2 Z, consistency and bounded geodesic image imply that

dU .gi �X; gj �X/�EC max
n�k;k�n0

dS .gk �X; gk
0

�X/

�EC max
0�k;k0�N

KdX .gk �X; gk
0

�X/CK;

which is independent of U (here K is the coarse Lipschitz constant from Definition 1.1).

Next, suppose that g acts parabolically on CS . By definition, hgi �X has a unique limit
point in the Gromov boundary of CS , so there is an increasing function f W N!N such
that .gn ��S .X/jgm ��S .X//�S .X/>f .k/ whenever minfjmj; jnjg � k . In particular,
there exists k , independent of U , such that no CS –geodesic from �S .g

n � X/ to
�S .g

m �X/ passes 100E–close to �US provided jmj � k and jnj � k . We now argue
exactly as in the loxodromic case to bound diamU .�U .hgi �X// independently of U .
This completes the proof.

Lemma 6.7 For any distinct U; V 2 Big.g/, we have U ? V .

Proof Lemma 6.3 shows that by passing to a uniformly bounded power, if necessary
(which does not affect the big-set), we can assume that gU D U and gV D V . Hence
g acts as an isometry of both of the (not necessarily proper) hyperbolic spaces CU; CV .
Since U; V 2 Big.g/, the isometry g cannot be elliptic on either CU or CV . Hence,
by eg [35, Section 8.1], g is either parabolic or loxodromic on CU and CV .

If U Ĺ V or U t V , then �UV is a uniformly bounded subset of CV , and, since
gn � �UV � �

gnU
gnV D �

U
V for all n 2 Z, we have that hgi–orbits in CV are bounded,

contradicting that U 2 Big.g/.

Definition 6.8 (elliptic) An automorphism g 2 Aut.S/ is elliptic if some (hence
any) orbit of hgi in X is bounded.

Definition 6.9 (axial) An automorphism g 2 Aut.S/ is axial if some (hence any)
orbit of hgi in X is quasiisometrically embedded.
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Definition 6.10 (distorted) An element g 2Aut.S/ is distorted if it is not elliptic or
axial.

Example 6.11 (distorted automorphisms in familiar examples) Let S be a surface
of finite type and ˛ a simple closed curve. In MCG.S/, the subgroup h�˛i generated
by the Dehn twist about ˛ is quasiisometrically embedded [30], but in .T .S/; dT /,
the orbit of �˛ is distorted. In fact, MCG.S/ has no distorted automorphisms, as is
the case for cube complexes with factor systems, since cubical automorphisms are
combinatorially semisimple [39]. In Theorem 7.1 below, we prove that HHGs have
no distorted elements. A simple example of an HHS with a distorted automorphism
is obtained by gluing a combinatorial horoball to Z; this encapsulates the difference
between the HHS structures of MCG.S/ and .T .S/; dT /, where annular curve graphs
are replaced by horoballs over annular curve graphs.

Proposition 6.12 The automorphism g 2 Aut.S/ is axial if and only if there exists
U 2 Big.g/ such that n! gn � �U .X/ is a quasiisometric embedding Z! CU for
any X 2 X .

Proof Suppose that there exists U 2 Big.g/ such that n! gn � �U .X/ is a quasi-
isometric embedding. Then the distance formula (Theorem 1.9) yields a lower bound
on dX .gm �X; gn �X/ which is (at least) linear in jm�nj, ie g is axial.

Conversely, suppose that g is axial. Lemma 6.7 bounds the number of U 2 Big.g/
by the complexity of S. Lemma 6.6 ensures that diamV .�V .hgi �X// is bounded
independently of V for V … Big.g/. Since g acts axially on X , the distance formula
(Theorem 1.9) now implies that there exists at least one U 2 Big.g/ such that g acts
axially on CU .

The next proposition is an immediate consequence of Propositions 6.4 and 6.12:

Proposition 6.13 The automorphism g2Aut.S/ is distorted if and only if there exists
U 2 Big.g/ such that hgi ��U .X/ is unbounded but, for all U 2 Big.g/, we have

dCU .X; gn �X/D o.n/:

Definition 6.14 (reducible) The automorphism g2Aut.S/ is irreducible if Big.g/D
fSg, where S 2S is the unique v–maximal element. Otherwise, S … Big.g/ and g
is reducible.

Finally, we have the following strong characterization of irreducible axials:

Theorem 6.15 Let G � Aut.S/ act properly and coboundedly on the hierarchically
hyperbolic space .X ;S/. Suppose that g 2G is irreducible axial. Then g is Morse.

Geometry & Topology, Volume 21 (2017)



3720 Matthew Gentry Durham, Mark F Hagen and Alessandro Sisto

Proof By [5, Corollary 14.4], G acts acylindrically on CS , where S is v–maximal
in S, while g acts hyperbolically on CS . By [70, Proposition 3.8], g is weakly
contracting for the path system consisting of all geodesics in CS , so g is Morse, by [70,
Lemma 2.9].

Remark 6.16 (reducible Morse elements) The converse of Theorem 6.15 does not
hold, as can be seen be examining a Morse element of an appropriately chosen right-
angled Artin group whose support does not include all generators.

6.2 Dynamics of action on the boundary

In the remainder of this section, we impose the standing assumption that X is proper.
We will analyze the action of an infinite-order automorphism g on @.X ;S/, according
to whether g is irreducible or reducible and according to whether g is axial or distorted.

6.2.1 Irreducible automorphisms

Lemma 6.17 Let the irreducible g 2Aut.S/ fix some � 2 @X . Then Supp.�/D fSg.

Proof Suppose U 2 Supp.�/� fSg. Since g is irreducible, its orbit in CS is un-
bounded. In particular, this means that the orbit of �US is unbounded. By definition,
g � �US � �

g �U
S and thus U could not be fixed by g , completing the proof.

Proposition 6.18 (irreducible axials act with north–south dynamics) If g 2 Aut.S/
is irreducible axial, then g has exactly two fixed points �C; �� 2 @X . Moreover, for
any boundary neighborhoods �C 2 UC and �� 2 U� , there exists an N > 0 such that
gN .@X �U�/� UC .

Proof Let g 2 Aut.S/ be irreducible axial. For the rest of the proof, fix a basepoint
X 2 X .

Existence of �C; �� 2 @X For any n, let XnDgn �X . We will show that .Xn/ con-
verges to some point in @X ; a similar argument will show that .X�n/ converges to some
other point, and then we will prove they are distinct. By compactness (Theorem 3.4),
there exists a subsequence .Xnk / � .Xn/ which converges to some point �C 2 @X .
By irreducibility of g , we must have that �C 2 @CS � @X . By irreducibility and
the definition of convergence, we have that �CS .Xnk /! �C 2 @CS . Axiality of g
then implies that, for any other subsequence .Xnl / � .Xn/, the Gromov product
.Xnk ; Xnl /X !1 in CS as k; l !1. This implies that �CS .Xn/! �C 2 @CS ,
which implies that Xn! �C 2 @X .
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Similarly, we define X�n! �� 2 @X . Observe that .�CS .Xn/; �CS .X�n//�CS .X/ is
uniformly bounded by Proposition 6.12, implying that �C ¤ �� . Since g stabilizes
the orbit, it obviously fixes �C and �� . Note that �C and �� are independent of our
choice of X 2 X .

Uniqueness of �C; �� 2 @X By Lemma 6.17, any point � 2 @X fixed by g has
Supp.�/ D S . If g fixes three points in @X , then it fixes three points in @CS . As
such, g coarsely fixes the coarse median of those points, producing a bounded orbit, a
contradiction.

North–south dynamics on @X Fix boundary neighborhoods �C 2UC and �� 2U�
with UC\U� D∅.

Claim 1 For any p 2 @X �f��g, the sequence .gn.p// does not converge to �� .

Proof of Claim 1 If Supp.p/¤ fSg, then .gn.p// cannot converge to a point in @X
supported on S , as g does not alter the coefficients of the pieces of p supported on
proper subdomains. In particular, since Supp.��/D fSg, as shown above, .gn.p//
cannot converge to �� . Thus we may assume that Supp.p/D fSg.

Let ŒX; p� be a hierarchy ray in X . Since Supp.p/ D fSg, ŒX; p� projects to a
D–quasigeodesic, ŒX; p�S � CS . Let ŒX; ��� be the orbit .g�n.X//, which is a
quasigeodesic with quality depending on g .

Consider m2 CS , the coarse median of .��; p;X/. By hyperbolicity, there exist points
Y 2 ŒX; p�S and Z 2 ŒX; ��� sufficiently far out along ŒX; p�S and ŒX; ��� such that
any geodesic ŒY;Z� between Y and Z comes uniformly close to m, independent
of Y and Z ; in particular, the coarse median of .X; Y;Z/ is uniformly close to m.
Moreover, there is a uniform constant ı0>0 (depending on D , g , and the hyperbolicity
constant, ı > 0) such that each of ŒY;Z�, ŒX; Y �, and ŒX;Z� is ı0–close to m.

Let mY;Z 2 ŒY;Z� and mX;Z 2 ŒX;Z� be points ı0–close to m. Then there exists
a uniform ı00 > 0 such that ŒmY;Z ; Z� and ŒmX;Z ; Z� must ı00–fellow-travel. By
axiality, there exists N > 0 such that, for all n > N , gn.mX;Z/ is between X and
gn.X/ along the quasigeodesic axis of g in CS . This implies that the coarse median of
.X; gn.Y /; gn.Z// is uniformly close to X . Thus .gn.p/; ��/X is uniformly bounded
and .gn.p// cannot converge to �� in @CS and thus not in @X as well. G

Since the limit of .gn.p// is a fixed point, uniqueness of ��; �C and Claim 1 imply
that gn.p/! �C for any p 2 @X �f��g.

Now consider the function f W @X �U�!N , where f .p/ is the least power Np such
that gNp .p/ 2 UC . Since �C and �� are the unique fixed points of g , such a power
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exists, otherwise the sequence .gn.p// � @X would subconverge to another fixed
point. Since @X is compact (Theorem 3.4) the function f attains a maximum, Nf .
By definition, gNf .@X �U�/� UC , completing the proof.

We now treat the irreducible distorted case:

Proposition 6.19 (irreducible distorteds act parabolically) If g 2 Aut.S/ is irre-
ducible distorted, then g has exactly one fixed point �g 2 @X , and gn �X; g�n �X!�g
for any X 2 X .

Proof Let S 2S be the unique v–maximal element, so that gSDS and gW CS!CS
is an isometry. By the definition of irreducibility, Big.g/D fSg, so g has unbounded
orbits in the ı–hyperbolic space CS . We now apply the classification of isometries of
hyperbolic spaces, as summarized in [17, Section 3], emphasizing that these results do
not rely on properness of the space in question.

First, by Proposition 3.2 of [17] and the fact that hgi ��X .X/ (which coarsely coincides
with �S .hgi �X/) is distorted — ie not quasiconvex — in CS , we have that the action
of hgi on CS is not lineal or focal. By Lemma 3.3, the action of hgi on CS is not of
general type. Hence the action is horocyclic, ie the limit set of hgi on @CS consists
of exactly one point �g with g�g D �g . Moreover, Proposition 3.1 of [17] implies
that every � ¤ �g in @CS has infinite hgi–orbit. We also denote by �g the image
of this limit point under the usual (Aut.S/–equivariant) embedding @CS ! @X . We
thus have a fixed point �g 2 @X for g . Now, suppose that � 2 @X is fixed by g . By
Lemma 6.17, � 2 @CS � @X . If �¤ �g , then (as a point of @CS ), � cannot be fixed
by g , so �g is the unique fixed point in @X .

Finally, if p 2 @X � �g , then gn � p ! �g , for it subconverges to some point by
compactness of X (Theorem 3.4), which is fixed by g and thus must be �g by
uniqueness.

Proposition 6.20 Let g 2 Aut.S/ be irreducible distorted and fix �g 2 @X . For any
neighborhood U � @X of �g , there exists N > 0 such that if p 2 @X � U , then
gN �p 2 U .

Proof Fix a neighborhood �g 2 U � @X and let p 2 @X �U . Let F W X ! N be
the map which takes each p 2 X to the minimal n 2N such that gn �p 2 U ; note that
F is defined by Proposition 6.19. We prove that F is bounded.

Assume not; then there exists a sequence .pi /� @X such that F.pi /D ni !1 as
i!1. By compactness of X , the sequence .pi / accumulates on some point � 2 @X .
If N� D F.�/, then gN� �� 2 U . Choose an open neighborhood gN� �� 2 V � U .
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By passing to a subsequence if necessary, we may assume pi ! � and continuity of
the action of g on @X implies that gN� �pi ! gN� ��. In particular, this implies that
the sequence .gN� �pi / eventually lies in V � U , a contradiction.

6.2.2 Reducible automorphisms We now turn to nonelliptic reducible automor-
phisms. As before, we assume X is proper, g 2 Aut.S/ has infinite order and is thus
axial or distorted, and Big.g/ ¤ ∅ denotes the set of (pairwise orthogonal) U 2 S
where diamCU .hgi �X/D1.

If g is reducible, then Big.g/ D fAig t fBj g, where g acts axially on CAi and
distortedly on CBj for all i and j , and Ai ; Bj ¤ S for all i and j . Proposition 6.12
implies that g is axial if and only if fAig ¤∅; otherwise g is distorted.

We must be careful with nontrivial finite orbits in S. To that end, recall that by
Lemma 6.3 there exists M DM.S/ > 0 such that gM fixes Big.g/ pointwise. The
proof of that lemma shows that gM in fact fixes fAig and fBig pointwise, since we
cannot have g �Ai DBj for any i and j . Let hD gM , and note that Big.h/DBig.g/.
Note that we can choose M so that any pairwise-orthogonal subset of S stabilized by
h is fixed by h pointwise.

Lemma 6.21 Let V 2S and suppose that V v U or V t U for some U 2 Big.g/.
Suppose also that p 2 @X is fixed by g . Then V … Supp.p/.

Proof By hypothesis, h�pDp . Observe that hhi��VU is unbounded. Since U 2Big.g/,
we have that h ��VU D �

h�V
U and h �U is infinite, implying U … Supp.p/, as required.

We denote by Sk a k–sphere and by Dk a k–ball. Given spaces X and Y , we
denote by X ? Y their join. For each i and j , let Fi D FAi and F 0j D FBj be the
standard factors associated to Ai and Bj , so that there is a quasiconvex hieromorphismQ
i Fi �

Q
j F
0
j ! X , inducing an embedding Fi@Fi ! Fj @F

0
j ! @X whose image

is a closed g–invariant subset which we denote by E.g/. (Note: The image ofQ
i Fi �

Q
j F
0
j need not be g–invariant, but since g stabilizes each standard product

region F 0j �EBj , the subspaces gFi ; Fi are parallel, and thus have the same boundary.)

For each i , the action of hD gM on PFi Š Fi �EAi induces an action of h on Fi
by applying the restriction homomorphism �Ai W StabAut.S/.Ai / ! Aut.SAi /. For
each Ai , let hi be the image of h under this homomorphism, and let hj be the image
of h under the corresponding restriction homomorphism for Bj .

The following proposition says that, up to taking a power, a reducible automorphism
can be decomposed into irreducible automorphisms on subdomains:
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Proposition 6.22 If g is nonelliptic reducible and hD gM , then the following hold:

(1) For each i , hi is an irreducible axial automorphism of Fi which fixes a unique
pair of points �i;C; �i;� 2 @CAi and acts with north–south dynamics on @CAi .

(2) For each j , hj is an irreducible distorted automorphism of F 0j and fixes a unique
point �hj 2 @CBj .

Hence, g stabilizes (and h fixes pointwise) a nonempty subspace S.g/ ?C.g/� @X ,
where S.g/D ∅ or S.g/Š SjfAi gj�1 and C.g/D ∅ or C.g/Š DjfBj gj . Moreover,
for each n > 0, gn does not fix any point in E.g/�S.g/ ?C.g/.

Proof For each i , hi acts on CAi axially by the assumption on g and irreducibly by
construction. Hence, Proposition 6.18 implies that hi fixes two points �i;C; �i;�2@CAi
and acts with north–south dynamics on @CAi . Similarly, for each j , hj acts on CBj
distortedly by assumption and irreducibly by construction. Proposition 6.19 then implies
that hj fixes a unique point �hj 2 @CBj .

If fAig ¤∅, then each Ai contributes a pair of points �i;C; �i;� 2 @CAi fixed by h,
which we can think of as a copy of S0 , namely S0i . Moreover, h clearly fixes the join
of these spheres, FiS0i Š SjfAi gj�1 D S.g/, as required.

Similarly, if fBig ¤∅, then each Bj contributes a point �hj 2 @CBj fixed by h, and
h fixes the join of these points, Fj�hj ŠDjfBj gj D C.g/, as required.

Since h fixes these S.g/ and C.g/, h clearly fixes S.g/ ?C.g/. Now, if gn fixes a
point �2E.g/, then hnD .gn/M fixes �. If �D

P
i aipiC

P
j bj qj , where pi 2 @Fi

and qi 2 @F 0j , then the uniqueness of the �i;C , �i;� and �hj implies that, for ai ¤ 0
and bj ¤ 0, we must have qj D �hj and either pi D �i;C or pi D �i;� .

Remark 6.23 Set Comp.g/Dfp 2 @X jSupp.p/�fAi ; Bj g?i;j g and let Fix.h/� @X
be the set of fixed points of h. It is not difficult to show that

Fix.h/� S.g/ ?C.g/ ?Comp.g/;

but proper containment can happen.

Lemma 6.24 Let U 2 Big.g/ and U v V . For all p 2 @X such that gn.p/D p for
some n > 0, we have V … Supp.p/.

Proof It suffices to prove the lemma for hD gM . Suppose for a contradiction that
V 2 Supp.p/. Since U 2 Big.h/, diamV .hhi � �UV / is uniformly bounded. Take any
sequence Xk ! p in X ; note that this implies Xk ! pV in CV . Thus, there exists
K > 0 such that dV .Xk; �UV / > 100E if k �K .
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Since h is unbounded on CU , there exists N > 0 depending only on K such that
dU .Xk; h

n.Xk// > 100E if n�N and k �K . If  is a hierarchy path between Xk
and hn.Xk/ in X , then the bounded geodesic image axiom (Definition 1.1(7)) implies
that �V ./\NE .�UV /¤∅. In particular, this implies that dV .Xk; hn.Xk// > 100E .
Thus, for any n >N , we have that .Xk; hn.Xk//�UV is uniformly bounded as k!1,
which implies that no power of h could fix p , a contradiction.

Proposition 6.25 Let p 2 @X be such that gM .p/D p for some M > 0. Then

p 2 S.g/ ?C.g/ ?

�\
i

@EAi \
\
j

@EBj

�
:

Proof Lemmas 6.21 and 6.24 imply

Supp.p/�
[
i;j

�
SAi [SBj [ .fAig

?
\fBj g

?/
�
;

which, together with Proposition 6.22 and g–invariance of Big.g/, gives the claim.

6.3 Dynamics on boundaries of HHGs

Fix a hierarchically hyperbolic group .G;S/.

Definition 6.26 (stable boundary points) A point p 2 @G is a stable boundary point
if p is a fixed point of some irreducible axial element of Aut.S/.

The next lemma states that irreducible axials have cobounded orbits.

Lemma 6.27 Let g 2G be an irreducible axial. Then, given any X 2 X , there exists
N > 0 such that diamCU .hgi �X/ < N for any U 2S�fSg.

Proof If not, then there is a sequence of domains Un2S such that diamCUn.hgi�x/�n

for each n. Since g is irreducible axial, hgi �X projects to a uniform quasigeodesic
in CS .

By the bounded geodesic image axiom and hyperbolicity of CS , for each n > 100E ,
there exists a sequence .kn/�Z such that �UnS 2NE .Œg

kn �X; gknC1 �X�/�CS , where
Œgkn �X; gknC1 �X� is any geodesic between gkn �X and gknC1 �X in CS . Moreover,
since hgi�X is a uniform quasigeodesic in CS , it follows that dUn.g

kn �X; gknC1 �X/�

diamUn.hgi �X/� n.
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It follows that there exists a sequence of domains U 0n D g
�kn �Un 2 S with �U

0
n

S 2

NE .ŒX; g �X�/ and dU 0n.X; g �X/� diamU 0n.hgi �X/� n, which is impossible by the
distance formula. This completes the proof.

Proposition 6.28 If G has an irreducible axial element, then the set of stable boundary
points is dense in @G .

Proof Let p 2 @G be any point and let � 2 @G be a stable boundary point for some
irreducible axial g 2G . Choose X 2X and let nD ŒX; gn �X� be a D–hierarchy path
between X and gn �X . Let  D ŒX; �� be the limiting D–hierarchy ray as n!1.
Since n !  uniformly on compact sets and hgi �X is uniformly cobounded by
Lemma 6.27, it follows that  is uniformly cobounded.

By coboundedness of the action of G and density of the interior (Proposition 2.17),
there exists a sequence .gn/�G and N >0 such that gn.X/!p and thus gn ��!p .
Since G acts on itself by automorphisms, we have that gn � ŒX; �� projects to an infinite
quasigeodesic in CS , implying that gn �� 2 @CS � @G , which completes the proof.

Theorem 6.29 (topological transitivity of the G–action on @G ) Let .G;S/ be a
hierarchically hyperbolic group with G not virtually cyclic and containing an irreducible
axial element. For any p 2 @G , the orbit G �p is dense in @G .

Proof Let U � @G be an open set. By Proposition 6.28, there exists an irreducible
axial g 2G with stable boundary points �g;C; �g;� 2 @G , one of which is contained
in U . Suppose that �g;C 2 U and �g;� ¤ p . Then, since @G is Hausdorff, it follows
from Proposition 6.18 that some power of g moves p into U , as required. Hence
either we are done, or for every irreducible axial g with �g;C 2U , we have �g;�D p .

Now, suppose that there exists q 2 @G �U [fpg. Then, by Proposition 6.28, and the
fact that @G is Hausdorff, we may argue as above, using Proposition 6.18, that some
irreducible axial element takes p arbitrarily close to q , and thus that some power of g
takes a translate of p into U , as required, unless p is a stable point for every irreducible
axial element of G . But then G does not contain two independent irreducible axial
elements whence, since G acts acylindrically on CS by [5, Theorem 14.3], a theorem
of Osin (see Theorem 9.3 below) implies that G is virtually cyclic.

Corollary 6.30 If .G;S/ is an HHG with an irreducible axial, then @CS is dense
in @G .

Remark 6.31 In Section 9, we investigate the question of when groups of HHS
automorphisms contain irreducible axial elements. In that section, we consider a more
general class, so-called “rank-one” elements, of which irreducible axial elements are
the main examples.
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7 Coarse semisimplicity in hierarchically hyperbolic groups

Theorem 7.1 If .G;S/ is a hierarchically hyperbolic group, then each g 2G is either
elliptic or axial, and �U .hgi/ is a quasiisometrically embedded copy of Z for each
U 2 Big.g/.

Proof of Theorem 7.1 This follows from Lemmas 7.3 and 7.4 below.

Our main tool here is the following result of Bowditch:

Lemma 7.2 [11, Lemma 2.2] If G acts acylindrically by isometries on a hyperbolic
space M , then each element of G acts either elliptically or loxodromically on M .

Lemma 7.2 and [5, Theorem 14.3] combine to yield:

Lemma 7.3 If g 2G is irreducible, then g is either elliptic or axial.

Recall that for any reducible g 2 G , we have Big.g/ D fAig [ fBj g, where g acts
axially on each CAi and distortedly on each CBj . It remains to prove:

Lemma 7.4 If g 2G is reducible, then fBj g D∅.

For each U 2 S, let GU D AU \ G be the subgroup of G fixing U 2 S and
let GU D �U .GU /, where AU D StabAut.S/.U / and �U W AU ! Aut.SU / is the
restriction homomorphism.

Lemma 7.5 Let U 2S. Then GU acts acylindrically on CU .

Proof of Lemma 7.5 By definition, GU acts by automorphisms on the hierarchically
hyperbolic space .FU ;SU /. We first establish:

Claim 1 For each R � 0, there exists K D K.R/ such that any R–ball B � FU
intersects gB for at most K elements g 2GU .

Proof of Claim 1 Since the inclusion hieromorphism .FU ;SU / ! .G;S/ is a
quasiisometric embedding (with constants independent of U ), it suffices to bound the
number of cosets g.ker �U / in GU for which g.ker �U / � .B 0 �EU /D .xgB 0/�EU
intersects B 0 �EU , where B 0 is a ball in FU � PU � X of radius depending on
R and the quasiisometry constants. Such a bound exists because G acts on itself
geometrically. G
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We now follow the proof of Theorem 14.3 of [5]. Let � > 0 be given and let R �
1000� . Consider the set H of g 2 GU such that dU .x; gx/; dU .y; gy/ < � , where
x; y 2 FU . Choose s0 as in the distance formula for .FU ;SU / and, for each r � 0,
consider the set L.r/ of v–maximal V 2 SU � fU g such that dV .x; y/ > s0 andˇ̌
dU .x; �VU /�

1
2
R
ˇ̌
< r� . Arguing exactly as in the proof of Theorem 14.3 of [5] yields

a uniform bound on jL.11/j. We then divide into two cases.

First, if L.10/¤∅, then we again argue as in the proof of [5, Theorem 14.3], reach-
ing the conclusion that, if V 2 L.10/ and g 2 H, then gPV .x/ coarsely coincides
with g � gPV .x/, from which it follows from Claim 1 that H has uniformly bounded
cardinality. The argument in [5] uses only the GU –equivariance of the gate construction
and Definition 1.1 and thus goes through.

Similarly, if L.10/D∅, then the argument in [5] uses only the existence of hierarchy
paths, large links, bounded geodesic image, the distance formula, and a bound on the
cardinalities of stabilizers of balls in FU . The latter comes from Claim 1, and thus the
argument works verbatim in the present context.

Proof of Lemma 7.4 Let U 2 Big.g/. Let M > 0 be as in Lemma 6.3 and set
hD gM ; note that h �U D U , ie h 2 AU . Let hU D �U .h/ 2 GU . By Lemma 7.5,
GU acts acylindrically on CU , so by Lemma 7.2, hU is either elliptic or loxodromic
on CU . Since U 2 Big.h/, it must be the case that hU is loxodromic on CU . Since h
acts like hU on CU , the claim follows.

8 Essential structures, essential actions and product HHSs

8.1 Product HHSs

It is shown in [6] that, if X0;X1 admit hierarchically hyperbolic structures, then X0�X1
admits a hierarchically hyperbolic structure making the inclusions Xi ! X0 � X1
into hieromorphisms with hierarchically quasiconvex image. Rather than recall the
construction, we now give a more streamlined (equivalent) definition.

Definition 8.1 Let .X ;S/ be a hierarchically hyperbolic space. Then .X ;S/ is a
product HHS if there exists K <1 and U 2S such that for all V 2S, either V vU ,
or V ? U , or diam.CV / �K . If, in addition, for each n 2N there exist V;W 2S
with V vU , W ?U and diam.�V .X //; diam.�W .X //>n, then .X ;S/ is a product
region with unbounded factors. Observe that .X ;S/ is a product HHS if and only if
there exists U 2 S such that PU ! X is coarsely surjective, and that .X ;S/ is a
product region with unbounded factors if in addition FU and EU are both unbounded.
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8.2 Essential structures and cores

Definition 8.2 (essential HH structures) Let .X ;S/ be an HHS and let G �Aut.S/.
Then .X ;S/ is G–essential if, for any G–invariant hierarchically quasiconvex Y �X ,
all of X is contained in some regular neighborhood of Y .

Remark 8.3 Compare Definition 8.2 to the definition of a G–essential cube complex
from [18], which requires that the cube complex be the cubical convex hull of a G–orbit
(but actually requires something stronger).

Proposition 8.4 (essential core) Let .X ;S/ be an HHS and let G � Aut.S/ be a
subgroup. Suppose that one of the following holds:

(1) G acts properly and cocompactly on X and with finitely many orbits on S, ie
.G;S/ is an HHG.

(2) G acts on X with unbounded orbits and with no fixed point in @X .

Then there exists a G–invariant, G–essential, hierarchically quasiconvex subspace
Y � X such that whichever of (1) or (2) held for G Õ X holds for the action of G
on Y .

Proof If .X ;S/ is an HHG, the claim follows immediately with YDX . In the second
case, we will build Y � X so that Y is hierarchically quasiconvex and G–invariant,
with the property that if Y 0 � X is hierarchically quasiconvex and G–invariant, then
there exists an R > 0 such that Y � NR.Y 0/. Given such a Y , the fact that G does
not fix a point in @Y follows from Proposition 5.8 and the hypothesis that G does not
fix a point in @X .

To construct Y , for each U 2S, let HU � CU be the union of all geodesics starting
and ending in �U .G �x/ for some fixed basepoint x 2X . A thin quadrilateral argument
shows that HU is uniformly quasiconvex. Let Y consist of all realization points y
with �U .y/ 2 HU for all U 2 S; this subspace is easily seen to have the required
properties.

Recall that, by hierarchical quasiconvexity, .Y;S/ is normalized: for each U 2S, the
associated hyperbolic space is uniformly quasiisometric to �U .Y/� CU .

9 Coarse rank-rigidity and its consequences

Throughout this section, .X ;S/ is a hierarchically hyperbolic space with X proper and
S countable; we always let S denote the v–maximal element of S. In this section,
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we consider countable subgroups G � Aut.S/ (so that, by the distance formula, G
acts discretely on X ). These standing hypotheses cover the case where .G;S/ is an
HHG. We emphasize our standing assumption that all HHSs are normalized.

Definition 9.1 (rank-one automorphism) The automorphism g 2Aut.S/ is rank-one
(on .X ;S/) if

� g is axial;

� jBig.g/j D 1;

� if U 2S is orthogonal to the domain in Big.g/, then diam.�U .X // <1.

Irreducible axial elements are rank-one.

Our first goal is to show that, under the above hypotheses, either G contains an
irreducible axial element or the G–essential core of X is a product HHS (not necessarily
with unbounded factors). This is done in Section 9.1, using tools from Sections 9.2,
9.3 and 9.4. In Section 9.5, we apply results of Section 9.1.

9.1 Irreducible axials or fixed domains

We now prove the following two parallel propositions (one covering the nonparabolic
case, and one covering the HHG case):

Proposition 9.2 Let .X ;S/ be an HHS with X proper and S countable. Let the
countable group G � Aut.S/ act with unbounded orbits in X and without a global
fixed point in @CS . Then either G contains an irreducible axial element, or there exists
U 2S�fSg such that jG �U j<1. Moreover, any G–essential hierarchically quasi-
convex subspace Y � X coarsely coincides with the standard product region PU \Y .

Proof By Proposition 8.4, there exists a G–invariant hierarchically quasiconvex
subspace Y with a hierarchically hyperbolic structure .Y;S/ admitting a G–equivariant
hieromorphism .Y;S/! .X ;S/ that is the inclusion on Y and the identity on S, and
such that .Y;S/ is G–essential. Moreover, G continues to act without a global fixed
point in @CS . Hence, since Y is proper and S is countable, Proposition 9.11 provides
an irreducible axial isometry of .Y;S/ (hence of .X ;S/) unless diam.�S .Y// <1.
If diam.�S .Y// <1, then Proposition 9.10 completes the proof.

The HHG version requires the following theorem of Osin, which we also use elsewhere:

Theorem 9.3 [65, Theorem 1.1] Let G be a group acting acylindrically on a hyper-
bolic space. Then exactly one of the following holds:
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(1) G has bounded orbits.

(2) G is virtually infinite cyclic and contains a loxodromic element.

(3) G contains infinitely many independent loxodromic elements.

Proposition 9.4 Let .G;S/ be an HHG. Then either G contains an irreducible axial
element or there exists U 2 S such that jG � U j < 1 and G coarsely coincides
with PU .

Proof The G–action on .G;S/ is essential. If diam.CS/ D 1, then, since G
acts acylindrically on CS , as proved in [5, Section 14], Theorem 9.3 implies that G
contains an irreducible axial element. Hence we can assume that diam.CS/ <1, and
in particular that G has no fixed point in @CS D ∅. The claim now follows from
Proposition 9.10.

9.2 Finding finite orbits in S

Let � be a probability measure on G , whose support generates G . All spaces are
equipped with their Borel � –algebra, so every subset of G is measurable, while the
measurable subsets of X are determined by Definition 2.11.

Lemma 9.5 (stationary measure on X ) There exists a �–stationary probability
measure � on X , ie for all �–measurable E � X ,

�.E/D
X
g2G

�.g/�.g�1E/D �� �.E/:

Proof This is a standard fact, relying on compactness of X , ie Theorem 3.4. See [34,
Lemma 1.2], for example.

Remark 9.6 (sampling X ) Since our aim in this section is to establish that, after
passing if necessary to a G–essential core, G contains an irreducible axial element
or X is a product HHS, and these properties are insensitive to modifications of X
within its quasiisometry type, we now “discretize” X , for convenience in the proof of
Lemma 9.8.

Let D D GnX , and let d be the quotient pseudometric, so .D; d/ is proper since
X is proper. Hence there exists � > 0 and a countable set fxxngn�0 in D such that
ND
� .fxxng/DD . Thus X contains a countable, G–invariant set fxngn�0 for which the

inclusion fxng ,! X is a quasiisometry, and we replace X with fxng. We can thus
assume that X is countable.

Lemma 9.7 For each U �S, the set fp 2 @X W Supp.p/D Ug is �–measurable.
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Proof Either fp 2 @X W Supp.p/D Ug D∅, in which case we’re done, or U D fUig
is a set of pairwise-orthogonal domains. Let X0 be the set of points q 2 @X such that,
for all V 2 Supp.q/, there exists U 2 U with V v U . Note that

Y D fp 2 @X W Supp.p/D Ug � X0:

Let X1 be the subset of X0 consisting of those q 2X0 such that for some V 2 Supp.q/,
we have V …U (so V is properly nested in some U 2U and orthogonal to the remaining
elements).

X0 is closed in X We will check that for any sequence fqng with each qn 2 X0 , if
qn! q , then q 2 X0 . Suppose not, ie suppose that there exists V 2 Supp.q/ such that
V 6v U for all U 2 U . Consider a basic neighborhood N DN�;fNT g.q/ of q . There
are two cases.

First case This is the case where there exists U 2 U such that U t V or U Ĺ V and,
for infinitely many n, there exists W 2 Supp.qn/ such that W v U and W 6? V . Let
I be the set of such n.

First, suppose that qn is remote with respect to q . Suppose that the basic neighborhood
N has been chosen so that NV does not meet the 109E–neighborhood of �UV . Then
for arbitrarily large n 2 I , the subsets �UV and �WV coarsely coincide, and hence
.@�Supp.q/.qn//V D�

W
V does not lie in NV . It follows that for arbitrarily large n2I , we

have qn …N , by the definition of the remote part of a basic set. This is a contradiction.

Second, suppose that qn is nonremote with respect to q , where n2I . Exactly as before,
suppose that NV does not meet the 109E–neighborhood of �UV (which is still defined by
assumption). We still have that �WV is defined and coarsely coincides with �UV for some
W 2 Supp.qn/, by assumption. Hence, again, we have that .@�Supp.q/.qn//V D �

W
V

does not lie in NV . From the final condition in the definition of the nonremote part of
a basic set, it follows that qn …N , which is again a contradiction.

Second case In this case, for all but finitely many n, we have V ? W for all
W 2 Supp.qn/. The point qn is nonremote with respect to q . Indeed, there exists
V 2 Supp.q/ which is orthogonal to every element of Supp.qn/. In particular, V 2
Supp.q/�Supp.qn/\Supp.q/. Now,

P
T2Supp.qn/�Supp.q/ a

qn
T < � , soX

T2Supp.qn/\Supp.q/

a
qn
T > 1� �;

while jaqT � a
qn
T j< � whenever T 2 Supp.qn/\Supp.q/. HenceX
T2Supp.q/\Supp.qn/

a
q
T > 1� �

�
jSupp.qn/\Supp.q/j

�
;
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which is impossible when � is sufficiently small compared to aqV , since V … Supp.qn/.
Hence qn …N , a contradiction.

Conclusion Let T be the set of support sets V ¤ U such that for each V 2 V , there
exists U 2 U with V v U . Then T is countable, being a set of finite subsets of the
countable set S. Now, X1 is the union over all V 2T of the set X0.V/ of q 2 @X such
that for each W 2 Supp.q/, there exists V 2 V with W v V . Hence, by the previous
part of the proof, X1 is a countable union of closed sets. Thus Y D X0�X1 is Borel,
and hence �–measurable.

Lemma 9.8 If G has no finite orbit in .S � fSg/ [ @CS , then � is supported on
@CS � X .

Proof Let D be the set of finite subsets of S, so that D is countable and G acts on
D in the obvious way. By construction, fSg and ∅ are the only elements of D whose
G–orbits are finite. We first define a map OW X ! D . Note that if S D fSg, then
@X D @CS , and the claim follows, so we assume that there exists U Ĺ S .

Defining O on boundary points For each p 2 @X , let O.p/D Supp.p/. Observe
that this assignment is G–equivariant and that O.p/D fSg if and only if p 2 @CS .

Defining O on interior points Let B � X contain exactly one point from each
G–orbit, and choose F 2 D � ffSg;∅g. For each x 2 B , let O.x/ D F . Then,
for any x 2 B and g 2 G , let O.gx/ D gF . Then O is G–equivariant and, for
all x 2 X , the nonempty finite set O.x/ differs from fSg. For any F 0 2 D , either
O�1.F 0/ D ∅ or F 0 D gF for some g 2 G . Hence, for any subset D0 of D , we
can write O�1.D0/D

S
gF 2D0 gB . It follows that O�1.D0/ is a countable union of

translates of B , which is a countable union of closed sets (singletons) by Remark 9.6,
and thus O�1.D0/ is Borel.

Measurability of X � @CS Since @CS D
˚
p 2 @X W Supp.p/ D fSg

	
, it follows

from Lemma 9.7 that X � @CS is measurable.

Measurability of O There is a probability measure z� on D given by z�.A/ D
�.O�1.A//, for each A�D . A set O�1.A/ decomposes as

fx 2 X WO.x/ 2 Ag[ fp 2 @X W Supp.p/ 2 Ag:

The set fp 2 @X W Supp.p/ 2 Ag D
S

U2Afp W Supp.p/D Ug, which is �–measurable
by Lemma 9.7. Since A � D is countable, it suffices to show that O�1.F /\X is
Borel for each F 2D , but this was established above.

Conclusion We have that OW X !D is a measurable G–equivariant map. Since G
preserves @CS , it follows that X � @CS is a G–invariant �–measurable set.
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Suppose that F 0 2 D has the property that G � F 0 is finite. Then G � U is a finite
G–invariant subset of S for each U 2 F 0 and, by our hypothesis that there is no finite
G–orbit in S�fSg, we have that F 0 D fSg. Since O.e/¤ fSg for all e 2 X � @CS ,
it follows that O.X � @CS/ does not contain a finite G–orbit. As shown in eg [2; 45,
Lemma 2.2.2; 75, Lemma 3.4; 44, Lemma 3.3], we must have �.X � @CS/D 0.

Corollary 9.9 If diam.CS/ <1, then G stabilizes a finite subset of S�fSg.

Proof By hypothesis, @CS D∅, so � cannot be supported on @CS . Hence G has a
finite orbit in S[@CS by Lemma 9.8 and thus G must have a finite orbit in S�fSg.

9.3 Finding product structures when diam.CS/ <1

Proposition 9.10 Suppose G �Aut.S/ is a countable subgroup with diam.CS/<1.
Then there exists U 2S�fSg and a finite-index subgroup G0 such that G0 �U DU and
X coarsely coincides with PU . Hence either .X ;S/ is a product HHS with unbounded
factors or X coarsely coincides with FU or EU .

Proof By Corollary 9.9, there exists U 2S�fSg and a finite-index subgroup G0�G
such that G0 �U D U . Note that G0 continues to act essentially on .X ;S/, coarsely
stabilizing PU . Since PU is hierarchically quasiconvex, X coarsely equals PU by
essentiality. The last assertion is immediate.

9.4 Finding irreducible axial elements when diam.CS/D1

Proposition 9.11 Let .X ;S/ be a hierarchically hyperbolic space. Let G � Aut.S/
act essentially and suppose that G acts on X with no global fixed point in @CS and
that CS is unbounded. Then G contains an irreducible axial automorphism of .X ;S/.

Proof Suppose that every orbit of G in CS is bounded, so that, fixing x0 2 X , there
exist Q;R <1 such that diamS .G ��S .x0//�R and G ��S .x0/ is Q–quasiconvex.
Consider the set of all E–consistent tuples .bU /U2S such that bS 2G ��S .x0/. Let
Y be the set of realization points in X corresponding to such tuples, provided by
Theorem 1.7, and note that G acts on Y . By definition, Y is hierarchically quasiconvex
in X provided �U .Y/ is uniformly quasiconvex in CU for each U 2 S, which we
now verify.

If Eb is such a tuple, with dS .bS ; �US /�E , then consistency puts no constraint on the
U–coordinate of Eb, ie for any such U , the map �U W Y! CU is uniformly coarsely
surjective, and in particular �U .Y/ is uniformly quasiconvex in CU . On the other
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hand, if dS .�US ; G ��S .x0// >E , then consistency and bounded geodesic image imply
that �U .Y/ is uniformly bounded, and hence uniformly quasiconvex.

The existence of Y contradicts G–essentiality of X . Hence G has an unbounded orbit
in CS , so either there exists g 2G acting loxodromically on CS , so g is irreducible
axial, or there exists a unique fixed point p 2 @CS , which is impossible.

9.5 Coarse rank-rigidity

Recall that a metric space X is wide if no asymptotic cone of X has a cut-point. The
following lemma is well-known and elementary:

Lemma 9.12 Let X be a metric space quasiisometric to the product X0 �X1 , where
each Xi is unbounded. Then X is wide, ie no asymptotic cone of X has a cut-point.

We now prove the main theorems of this section. Much of the work was done in proving
Propositions 9.2 and 9.4; the remaining work is largely in sorting out technical issues
that arise when attempting to induct on complexity; these issues mainly stem from the
fact that, given U 2S, the induced HHS structure on EU does not have a uniquely
determined v–maximal element.

Theorem 9.13 (coarse rank-rigidity for nonparabolic actions) Let .X ;S/ be an HHS
with X proper and S countable. Let the countable group G � Aut.S/ act essentially
with unbounded orbits in X and without a fixed point in @.X ;S/. Then one of the
following holds:

(1) X is a product HHS with unbounded factors; specifically, X is coarsely equal to
PU for some U 2S with jGU j<1.

(2) There exists g 2G such that g is rank-one.

If conclusion (1) holds, then X is wide.

Proof By Proposition 9.2, either G contains an irreducible axial element, which is
rank-one by definition, so conclusion (2) holds, or there is a finite-index subgroup
G0 �G fixing some U 2S�fSg, so that by essentiality, X coarsely coincides with
the standard product region PU . This implies that X is a product HHS. Choose U of
minimal level with this property, ie no domain of lower level has a finite G–orbit in S.

Since G has unbounded orbits in X , at least one of EU and FU is unbounded. If
FU and EU are both unbounded, then conclusion (1) holds, and we are done. The
statement about wideness follows from Lemma 9.12.

If FU is unbounded and EU is bounded, then .FU ;SU / is an HHS with FU proper
and SU countable, on which G0 acts by HHS automorphisms with no fixed point
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in @CU (for otherwise G would have a fixed point in @X ). By minimality, G0 has no
finite orbit in SU �fU g, so Proposition 9.11 provides g 2G0 acting as an irreducible
axial element of Aut.SU /. As an element of Aut.S/, we see that g is rank-one, for
otherwise there would be some V ? U with diam.CV /D1, contradicting that EU
is bounded.

Finally, suppose that EU is unbounded and FU is bounded. Let C be a minimal
G0–invariant set of v–minimal elements C of S�fSg such that W v C whenever
W ? U .

Suppose that there exists C 2 C with C ? U . Then g �C ? g �U D U for all g 2G0 ,
so g � C v C , from which it follows that (passing if necessary to a further finite-
index subgroup if necessary) G0 �C D C . Then .EU ;SC / is an HHS satisfying the
hypotheses of the theorem, and G0�Aut.SC / acts without a fixed point in @EU (since
it stabilizes @EU � @X ). In this case, the claim follows by induction on complexity.
Indeed, in the base case, jSj D 1 and the theorem is obvious. Otherwise, induction
shows that either conclusion (1) holds, or there exists g 2 G that acts as a rank-one
element of Aut.SC /. Since G0 preserves PU and PU coarsely equals X , this implies
that g is rank-one on .X ;S/, as required.

The definition of C and Definition 1.1(3) imply that C 6v U and U 6v C for all C 2 C.
Hence it remains to consider the case where each C 2 C satisfies C tU ; fix such a C .
Since G0 stabilizes U , it coarsely stabilizes the image PU of PU D FU �EU ! X .
In other words, for any basepoint x 2X , the orbit G0 �x lies in a neighborhood of PU .
Now, since C t U , the definition of PU implies that �C .gx/ uniformly coarsely
coincides with �UC for all g 2G0 , whence diam.�C .G0 � x// <1, so, by essentiality,
diam.�C .X // <1.

In this case, form a new index set S?U by appending to the set of domains orthogonal
to U a new domain C . In S?U \S, the associated hyperbolic spaces, projections
from EU , and relative projections are defined as in S. The hyperbolic space CC is
a single point, so the projections �C W X ! CC and �V

C
for V ? U are defined in

an obvious way. We thus have an HHS structure .EU ;S?U / with G0 � Aut.S?U /, of
complexity less than that of S, and we can argue as above by induction. Observe
that, if g 2 Aut.S?U / is rank-one on EU , then Big.g/ consists of some element of
S?U \S, and since �C .X / is bounded for all C 2 C, and we can argue as above that
g is rank-one on .X ;S/.

Theorem 9.14 (coarse rank-rigidity for HHG) Let .G;S/ be an infinite hierarchi-
cally hyperbolic group. Then exactly one of the following holds:

(1) .G;S/ is a product HHS with unbounded factors, and G is wide.
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(2) G contains a rank-one element, and is thus not wide.

Moreover, conclusion (1) holds if and only if diam.CS/ <1.

Proof By Proposition 9.4, either G contains an irreducible axial element, which
is rank-one, or there exists U 2 S � fSg with G0 � U D U for some finite-index
G0 � G , and G coarsely coincides with PU . In the latter case, we argue as in the
proof of Theorem 9.13, by induction on complexity, using the following observation:
if V 2 S� fSg and a finite-index subgroup G0 fixes V , then the action of G0 on
FV is proper and cobounded. Moreover, G0 acts with finitely many orbits on SV , so
.G0;SV / is an HHG structure on G0 , enabling induction.

9.6 Tits alternative for HHGs

The goal of this subsection is the following theorem:

Theorem 9.15 (Tits alternative for HHGs) Let .G;S/ be an HHG and let H �G .
Then H either contains a nonabelian free group or is virtually abelian.

Before we proceed with the proof, we need some supporting results:

Proposition 9.16 Let .G;S/ be a hierarchically hyperbolic group. Then any H �G
containing an irreducible axial element is virtually Z or contains a nonabelian free
group.

Proof Since G acts on CS acylindrically [5], and hence H �G does, Theorem 9.3
implies that either H is virtually cyclic or H contains irreducible axial elements g and
h such that fh˙g\ fg˙g D∅. Propositions 6.18 and 2.17(1) enable an application of
the ping-pong lemma, showing that gN and hN freely generate a free subgroup F for
some N >0. Or, one can apply [5, Corollary 14.6], which uses [32, Proposition 2.4].

Lemma 9.17 Let .G;S/ be an HHG with S 2S v–maximal. Suppose that H �G
has bounded orbits in CS and fixes some p 2 @CS . Then jH j<1.

Proof By Theorem 14.3 of [5], G acts acylindrically on CS , ie for each � > 0, there
exists R � 0 and N 2N such that whenever s; s0 2 CS satisfy dS .s; s0/ � R , there
are at most N elements g 2G for which dS .s; g � s/; dS .s0; g � s0/� � .

Fix s 2 CS and let �1 bound the diameter of the orbit H � s . Let  be a .1; 20ı/–
quasigeodesic ray with endpoint p and initial point s , where CS is ı–hyperbolic.
Then, for all h 2 H , the ray h �  emanates from h � s and has endpoint h � p D p .
This fact, together with a thin quadrilateral argument, shows that there exists k D k.ı/
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and R0 such that for all h 2H , we have dS .t; h � t / � kı whenever t 2  satisfies
dS .s; t/ � R0 . Let � D maxf�1; kıg and let R and N be the associated constants
coming from acylindricity. Then we can choose t 2  so that dS .s; t/ > R while
dS .s; h � s/; dS .t; h � t /� � for all h 2H , and hence jH j �N .

Proof of Theorem 9.15 Note that H is a countable subgroup of Aut.S/, since G is
finitely generated. We divide into cases, according to whether H fixes some p 2 @G .

H fixes p 2 @CS In this case, by Proposition 9.16, H is either virtually cyclic,
contains a nonabelian free group, or, by Theorem 9.3, H has a bounded orbit in CS .
Lemma 9.17 implies that H is finite in the latter case.

H has no fixed boundary point Suppose there is an irreducible axial g 2H . Then
either H contains a nonabelian free group or H is virtually Z, by Proposition 9.16.

Otherwise, Proposition 9.2 provides U 2 S� fSg such that H �U is finite and the
H–essential core Y of in G coarsely coincides with PU \Y . By replacing H with a
finite-index subgroup if necessary, we can assume that H �U D U .

Thus we have an H–essential product HHS .X0�X1;S�/ with H �Aut.S�/ acting
on X0 � X1 . Here S� consists of two disjoint subsets S0 and S1 , together with
various domains whose associated spaces are uniformly bounded, with the property
that U0 ? U1 for all U0 2S0 and U1 2S1 , and each Si gives Xi an HHS structure
(for more on product decompositions, see [6]). Let Hi �H be the stabilizer of some
(hence any) parallel copy of Xi .

Observe that Hi � Aut.Si / is an action on an HHS of strictly lower complexity for
i 2 f0; 1g, namely .Xi ;Si /. If Hi contains no irreducible axial element, then Xi
decomposes as a product HHS, by Theorem 9.13. Otherwise, applying Lemma 7.5
and Theorem 9.3, we see that either H0 or H1 (hence H ) contains a nonabelian free
group, or Hi is virtually Z for i 2 f0; 1g. Hence, either H contains a nonabelian free
subgroup, or by induction on complexity, we have a product HHS .

Q
j L

i
j ;Si / such

that Hi �Aut.Si / and each Lij Šqi R. In the latter case, we conclude that H virtually
acts geometrically by HHS automorphisms on

�Q
ij L

i
j ;S

�
�
. Hence, for some n, a

finite-index subgroup of H acts by uniform quasiisometries on Rn , so H is virtually
abelian.

H fixes p 2 @G � @CS In this case, H has a finite-index subgroup fixing some
U 2 Supp.p/ (so U Ĺ S ). We now argue by induction on complexity as above.

9.7 The “omnibus subgroup theorem”

Our next result generalizes the Handel–Mosher “omnibus subgroup theorem” from [42].
Theorem 9.20 below implies the omnibus subgroup theorem in the case where X is the
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mapping class group of a connected, oriented surface of finite type. In order to state the
theorem, we need to restrict the class of HHSs we consider, and give some definitions.

Definition 9.18 (hierarchical acylindricity) Given an HHS .X ;S/, we say that
G � Aut.S/ is hierarchically acylindrical if, for each U 2S, the image of G \AU
under the restriction homomorphism �U W AU ! Aut.SU / acts acylindrically on CU .

Lemma 7.5 implies that every group of automorphisms of an HHG is hierarchically
acylindrical. Moreover, hierarchical acylindricity passes to subgroups. For the rest of
this subsection, fix G � Aut.S/ to be hierarchically acylindrical.

Definition 9.19 (active domains) Let G�Aut.S/ be a group of HHS automorphisms.
We say U 2S is an active domain for G if diamU .�U .G �x// is unbounded for some
(hence any) x 2 X . Let A.G/ be the set of v–maximal active domains for G . Note
that if G D hgi, then A.G/D Big.g/.

Theorem 9.20 (omnibus subgroup theorem) Let .X ;S/ be a hierarchically hyper-
bolic space with S countable and X proper. Let G �Aut.S/ be a countable hierarchi-
cally acylindrical subgroup. Then there exists an element g 2G with A.G/D Big.g/.
Moreover, for any g0 2G and each U 2 Big.g0/, there exists V 2 Big.g/ with U v V .

Before we prove Theorem 9.20, we prove a lemma related to fixed boundary points
of G . Throughout, �.S/ denotes the complexity of .X ;S/, ie the length of a longest
v–chain.

Definition 9.21 (fixed-point set) Given an arbitrary HHS .X ;S/ and G � Aut.S/,
let Fix.G/D fp 2 @.X ;S/ jG �p D pg.

Given p 2 Fix.G/, let G0 �f:i: G be a finite-index subgroup of G which fixes each
U 2 Supp.p/. Let U 2 Supp.p/ and suppose that G is hierarchically acylindrical.
Since G0 fixes U , the restriction homomorphism �U gives a group G0U which (coarsely)
acts on FU and acts acylindrically on CU . The next lemma relates supports of fixed
points to active domains.

Lemma 9.22 If p 2 Fix.G/, U 2 Supp.p/, and V 2 A.G/, then either U ? V or
U D V . Moreover, in the latter case, there exists g0U 2 G

0
U such that U 2 Big.g0U /

and hg0U i �f:i: G
0
U .

Proof We separately analyze two cases.
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The case U t V or U Ĺ V Suppose that U t V or U Ĺ V , ie �UV is a well-defined
coarse point. Since G0 � U D U , we have that G0 coarsely stabilizes the image of
PU D FU �EU ! X , which we denote by PU . In other words, G0 � x0 is uniformly
close to PU for all x0 2 PU .

By definition of the standard embedding, if V tU or U vV , then �V .PU /��UV 2CV
(see Section 1.3). Thus for any x0 2 PU and V 2S with U t V or U Ĺ V , we have

diamV .G0 � x0/� 1;

which implies that any orbit of G0 projects to a bounded subset of CV . Hence V …A.G/,
a contradiction. Thus either V v U or V ? U .

The case V vU Now suppose V vU . Since U 2 Supp.p/, it follows that G0U fixes
a point pU 2 @FU , where pU 2 @CU . Since G is hierarchically acylindrical, G0U acts
acylindrically on CU . By Theorem 9.3 and the fact that G0U fixes a point in @CU , one
of the following holds:

(1) G0U has bounded orbits in CU .

(2) G0U contains an element g0U which acts axially on CU , and hg0U i �f:i: G
0
U .

If (1) holds, then, since G0U fixes a point of @CU , Lemma 9.17 implies that jG0U j<1.
In this case, since V v U , we have �V .G0 � x/D �V .G0U � x/ is finite, so V … A.G/,
a contradiction.

If (2) holds, then we have found the desired element g0U . Moreover, the existence of
this element shows that U is nested into some element of A.G/. On the other hand,
V v U and V 2 A.G/, so U D V by maximality of V .

Thus the only possibilities are that either V ? U or U D V and the desired g0U
exists.

We are now ready for the proof of Theorem 9.20:

Proof of Theorem 9.20 The “moreover” part of the statement follows automatically
from the first assertion and the definition of A.G/, for if g0 2G and U 2Big.g0/, then
U is an active domain for G and thus U must nest into some domain in A.G/DBig.g/.

We now prove the main part of the statement. By Proposition 8.4, we can assume that
G acts essentially on X . Let S 2S to be the unique v–maximal domain in S. Note
that if G contains an irreducible axial element or has finite order, then we are done.
Moreover, by acylindricity of the action of G on CS , either G contains an irreducible
axial or has bounded orbits in CS (so S … A.G/).

In particular, if G fixes a point of @CS , then Lemma 9.17 implies that jGj<1, and we
are done. We may therefore assume that G does not fix a point in @CS and S …A.G/.
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We now argue by induction on complexity of S. Suppose that �.S/D 1. Then either
there is an irreducible axial element, and we are done, or G acts with bounded orbits
on CS , in which case A.G/D∅ since SD fSg, and we are done.

Now assume that the statement holds for any group of automorphisms of an HHS that
satisfies the hypotheses of the theorem and has complexity less than �.S/.

There are two main cases, depending on whether or not G has a fixed point in @X .

First consider the case where G fixes no point of @X . Proposition 9.2 implies that
either G contains an irreducible axial, in which case we are done, or there exists
U 2 S � fSg such that jG � U j <1 and X is coarsely equal to PU � X . In the
latter case, after passing to a finite-index subgroup if necessary, we have G acting by
automorphisms on the HHS .PU ;S/ (with complexity �.S/).

The remaining possibility is that G fixes some p 2 @X�@CS . In this case, after passing
if necessary to a finite-index subgroup, we again find U 2S�fSg with GU DU and
G acting by automorphisms on the HHS .PU ;S/ (with complexity �.S/).

In either case, let PU D FU �EU , so that S contains orthogonal subsets SU and
S?U such that .FU ;SU / and .EU ;S?U / are HHSs of complexity at most �.S/� 1.
By replacing G with an index-2 subgroup if necessary, we can assume that G stabi-
lizes SU . Moreover, G stabilizes S?oU WD fV 2S W V ?U g, ie S?oU is obtained from
S?U by removing W if W ° U , where W Ĺ S is the (arbitrarily chosen) v–minimal
“container” domain containing everything orthogonal to U .

Recall that S?U consists of all domains V 2S with V ? U along with a v–minimal
domain W 2 S such that V v W for all V ? U . If W is the unique such domain,
then G �W DW , and thus G admits a natural restriction homomorphism to Aut.S?U /.

Otherwise, W … A.G/. Since diamW .�W .PU // � 1, we may replace W with a
single point W � such that CW � D f�g. From this we obtain a new HHS structure on
.EU ;S

?o
U /, where S?oU DS?U �W [fW

�g, by making the obvious alterations to the
projection and domain maps associated to W .

In either case, let GU be the image of G under the usual restriction homomorphism
AU ! Aut.SU /. Let G?U be the image of G under the restriction map  W AU !
Aut.S?U / or, if W is not unique, we take G?U be the image of  W AU ! Aut.S?oU /

defined as follows: for all g 2AU , the map  .g/ acts like g on S?oU and acts as the
identity on CW � .

Hence we have HHSs .FU ;SU / and .EU ;S?U /, of complexity at most �.S/�1, and
groups GU �Aut.SU / and G?U �Aut.S?U / or Aut.S?oU / that satisfy the hypotheses
of the theorem.
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We now show that A.G/DA.GU /tA.G
?
U /. The inclusions A.GU /;A.G?U /!A.G/

are obvious. Conversely, suppose that V 2A.G/. If U 2Supp.p/ for some p2Fix.G/
(as we can assume is the case whenever Fix.G/¤∅), then Lemma 9.22 implies that
V DU or V ?U , ie V 2SU tS?U (and, if V DW , then W is the unique container
and hence G–invariant). Otherwise, the proof of Lemma 9.22 shows that V ? U or
V v U . Hence V 2 A.GU /tA.G?U /.

By induction on complexity, either A.GU /D∅, or there exists xh2GU with Big.xh/D
A.GU /. Likewise, either A.G?U / D ∅, or there exists xh? 2 G?U with Big.xh?/ D
A.G?U /. If A.GU / D ∅ (resp. A.G?U / D ∅), we take xh D 1 (resp. xh? D 1). Since
A.G/ D A.GU / t A.G?U /, we must use xh and xh? to find g 2 G with Big.g/ D
A.GU /tA.G

?
U /.

Choose h; h? 2G stabilizing SU and S?U and mapping to xh 2GU and xh? 2G?U ,
respectively, under the above restriction maps. Let k be the image of h in G?U and
let k? be the image of h? in GU , so we are considering the action of h and k? on
SU and h? and k on S?U .

Let fU1; : : : ; U`gDBig.xh/�SU and let fV1; : : : ; VkgDBig.xh?/�S?U . By passing
to powers, we can assume that hUi D Ui and h?Vj D Vj for all i and j . Since
the action of GU on SU preserves A.GU /, and the action of G?U on S?U preserves
A.G?U /, we can, by passing to powers, assume that k? preserves each Ui and k

preserves each Vj .

Let N � 0 and consider F D hhN ; .h?/10N i � G . The image of F in GU is
F D hxhN ; .k?/10N i, and the image of F in G?U is F?D hkN ; .xh?/10N i. The above
discussion shows that F acts acylindrically on each CUi and F? acts acylindrically
on each CVj . Examining the various cases that arise according to how k acts on the
CVi and how k? acts on the CUi shows that, in each case, there exists g 2 F whose
image in F is loxodromic on each CUi and whose image in F? is loxodromic on
each Vj . Hence Big.g/D A.GU /tA.G

?
U /, as required.

The following is an immediate but useful corollary of Theorem 9.20:

Corollary 9.23 If G � Aut.S/ is hierarchically acylindrical, then A.G/ is pairwise
orthogonal.

9.8 Rank-rigidity for some CAT.0/ cube complexes

We now use Theorems 9.14 and 9.13 to reprove the rank-rigidity theorem of Caprace
and Sageev [18], in the case where the cube complex in question contains a factor
system. See Section 10 for a discussion of the definition, and the definition of the
simplicial boundary @4X of the cube complex X .
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Corollary 9.24 (rank-rigidity for cube complexes with factor systems) Let X be
an unbounded CAT.0/ cube complex with a factor system F. Let G act on X and
suppose that one of the following holds:

(1) G acts on X properly and cocompactly.

(2) G acts on X with no fixed point in X [ @4X .

Then X contains a G–invariant convex subcomplex Y such that either G contains
a rank-one isometry of Y or Y D A � B , where A and B are unbounded convex
subcomplexes.

We remark that in view of [36, Remark 5.3], we could have stated the corollary in
terms of fixed points in the CAT.0/ boundary rather than the simplicial boundary, but
we have opted for the latter because of the close relationship between the simplicial
and HHS boundaries discussed in Section 10.

Proof of Corollary 9.24 First suppose that G acts on X essentially, in the sense that
every halfspace contains points of some G–orbit arbitrarily far from the associated
hyperplane (in particular, X does not contain a G–invariant proper convex subcomplex).
Recall from [5] that X is equipped with a hierarchically hyperbolic structure .X ;S/,
where S is the set of factored contact graphs of elements of F, and that G � Aut.S/.
If G acts on X properly and cocompactly, then .G;S/ is an HHG; if G acts on X
with no fixed point in @4X , then G does not fix a point in @.X ;S/, by Theorem 10.1
below.

Depending on which hypothesis we invoke, one of Theorem 9.14 or Theorem 9.13
implies that either there exists g 2G which is rank-one (in the HHS sense) or there
exists U 2S such that X coarsely coincides with PU , which has unbounded factors,
and G0U D U for some finite-index G0 � G . In the former case, elements that are
rank-one in the HHS sense (with respect to this particular HHS structure on X ) are
rank-one isometries of X in the usual sense, by [36, Proposition 5.1] and the definition
of a factor system [5, Section 8].

In the latter case, PU D FU � EU is a genuine convex product subcomplex with
unbounded factors (see [5]). Let g 2G and suppose that H is a hyperplane intersecting
PU but not gPU . Since PU is coarsely equal to X and X is essential, the halfspace
of PU separated from gPU by H contains points arbitrarily far from H , whence PU
and gPU cannot lie at finite Hausdorff distance. This contradicts that PU is invariant
under a finite-index subgroup of G . Hence PU and gPU are parallel for all g 2G ,
ie they are crossed by exactly the same hyperplanes. Thus X D PU � Y for some
compact cube complex Y , whence Y is a single point, by essentiality. It follows that
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PU is G–invariant, so X D PU by essentiality. Hence X decomposes as a product
with unbounded factors. In general, we first replace X by its G–essential core in either
preceding argument, using Proposition 3.5 of [18].

Remark 9.25 Question A of [6] asks whether the existence of a proper cocompact
action of G on the CAT.0/ cube complex X ensures that X contains a factor system. By
a result in [5], the answer is affirmative provided X embeds as a convex subcomplex in
the universal cover of the Salvetti complex of some right-angled Artin group. Although
it is a strong condition, we believe that such embeddings always exist (although there
is in general no algebraic relationship between G and the RAAG).

9.8.1 The Poisson boundary of an HHG Results in [5] show that, if G is an HHG
with diam CS D1, then, given a nonelementary probability measure � on G , the
boundary @CS admits a �–stationary measure making it the Poisson boundary. As a
topological model of the Poisson boundary, @CS is unsatisfactory since it need not be
compact. However:

Theorem 9.26 (the HHS boundary is the Poisson boundary) Let .G;S/ be an HHG
with diam CS D 1, � be a nonelementary probability measure on G with finite
entropy and finite first logarithmic moment, and � the resulting �–stationary measure
on @G . Then .@G; �/ is the Poisson boundary for .G;�/.

We use acylindricity of the action of G on CS and a result of Maher and Tiozzo [54]:

Theorem 9.27 [54, Theorem 1.5] Let G be a countable group which acts acylindri-
cally on a separable Gromov-hyperbolic space X . If � is a nonelementary probability
measure on G with finite entropy and finite first logarithmic moment with corresponding
stationary measure � , then .@X; �/ is the Poisson boundary for .G;�/.

Proof of Theorem 9.26 Let � be a nonelementary probability measure on G with
finite entropy and finite first logarithmic moment. Since G acts on CS acylindrically
[5, Theorem 14.3], Theorem 9.27 implies that there exists a �–stationary measure �0

on @CS such that .@CS; �0/ is the Poisson boundary for .G;�/.

Let f W @CS ,! @G be the embedding from Proposition 2.13. By Lemma 9.7, f .@CS/
is Borel, so for any Borel subset V � @G , the set V \ f .@CS/ is Borel. Define a new
measure � on @G by �.V /D �0

�
f �1.V \f .@CS//

�
.

Since f is G–equivariant, it follows that � is �–stationary. By definition, f .@CS/
has full �–measure. Moreover, .@G; �/ is a �–boundary by measurability of f and it
is maximal since .@CS; �0/ is maximal. Thus .@G; �/ models the Poisson boundary
for .G;�/.
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10 Case study: CAT.0/ cube complexes

Throughout this section, X is a locally finite CAT.0/ cube complex in which each
collection of pairwise-intersecting hyperplanes is (not necessarily uniformly) finite.
In [5], it is shown that CAT.0/ cube complexes can often be given HH structures
using certain collections of convex subcomplexes called factor systems. We recall the
definition in Section 10.2. When F is a factor system for X , denote the resulting HH
structure by .X ;F/.

The simplicial boundary of X was introduced in [36]; we recall the definition below.
The simplicial boundary and the HH structure are closely related by the following
theorem:

Theorem 10.1 (simplicial and HHS boundaries) Let X be a CAT.0/ cube complex
with a factor system F. There is a topology T on the simplicial boundary @4X such
that:

(1) There is a homeomorphism bW .@4X ; T /! @.X ;F/.
(2) For each component C of the simplicial complex @4X , the inclusion C ,!

.@4X ; T / is an embedding.

In particular, if F and F0 are factor systems on X , then @.X ;F/ is homeomorphic
to @.X ;F0/.

We prove Theorem 10.1 in Section 10.3.

Remark 10.2 Proposition 3.37 of [36] relates @4X to its Tits boundary @TX . There
is an analogous relationship between the HHS boundary and the visual boundary when
the former is defined (ie when X has a factor system). Specifically, one can show that
there is a commutative diagram

@4X @TX

@.X ;F/ @visX

//I

��

b

��

id

//J

where b is the bijection from Theorem 10.1, I and J are embeddings, J is �
2

–
quasisurjective, and @.X ;F/ is a deformation retract of @visX . The CAT.0/ metric on
X is far afield from our present discussion, since the HHS structure depends only on
the combinatorics of X and is insensitive to changes in the CAT.0/ metric (unlike the
visual boundary [22]), so we will not give a detailed proof of the above. The top part
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of the diagram comes from [36, Proposition 3.37]; the missing ingredient is to shown
that J is an embedding, which is a tedious exercise in the definition of the topology
on @.X ;F/.

10.1 The simplicial boundary

We first recall the necessary definitions from [36].

Definition 10.3 (UBS, boundary equivalence, minimal UBS) A set U of hyperplanes
in X is a unidirectional boundary set (UBS) if each of the following holds:

� U is infinite.
� If U;U 0 2 U and a hyperplane V separates U and U 0 , then V 2 U .
� If U;U 0; U 00 2 U are pairwise disjoint, then one of them separates the other two.
� For all hyperplanes W , at least one component of X �W contains at most

finitely many elements of U .

Given UBSs U and V , let U � V if all but finitely many elements of U lie in V . The
UBSs U and V are boundary equivalent if U � V and V � U , and U is minimal if U
and V are boundary equivalent for all UBSs V with V � U .

Remark 10.4 Any infinite set of hyperplanes which is closed under separation contains
a minimal UBS [36, Lemma 3.7].

Proposition 3.10 of [36] shows that each UBS U is boundary equivalent to a UBS of
the form

Fk
iD0 Ui , where each Ui is a minimal UBS, and this decomposition is unique

up to boundary equivalence. Up to reordering, for 0� i < j � k , for all but finitely
many U 2 Uj , the hyperplane U intersects all but finitely many elements of Ui . In
this situation, Uj dominates Ui . The number k is the dimension of U .

Definition 10.5 (simplicial boundary) A k–simplex at infinity is a boundary equiva-
lence class of k–dimensional UBSs. If v and v0 are simplices at infinity, represented
by boundary sets V and V 0 , then V \ V 0 is, if infinite, a boundary set representing
the simplex v \ v0 . The simplicial boundary @4X of X is the simplicial complex
with a closed k–simplex for each k–dimensional simplex at infinity; the simplex u
represented by the UBS U is a face of the simplex v , represented by V , if U � V .

Remark 10.6 (boundaries of convex subcomplexes) It is shown in [36] that if Y �X
is a convex subcomplex, then @4Y � @4X in a natural way: each simplex at infinity
in @4Y corresponds to a UBS in X consisting of hyperplanes that intersect Y , and
these hyperplanes intersect in X exactly when they intersect in Y , by convexity.
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10.1.1 Visibility

Definition 10.7 (visible simplex) The simplex u at infinity is visible if there exists a
combinatorial geodesic ray  in X .1/ such that the set U of hyperplanes intersecting
 represents the boundary–equivalence class u. Otherwise, the simplex u at infinity is
invisible. If every simplex at infinity is visible, then X is fully visible.

Theorem 3.19 of [36] states that every maximal simplex of @4X is visible. Visibility
is also related to a subtlety in the definition of @4X :

Remark 10.8 (visibility and proper faces) Let
Fk
iD0 Ui be a UBS, with each Ui

a minimal UBS, numbered so that for 0 � i < j � k and all U 2 Uj , we have that
U \ V ¤ ∅ for all but finitely many V 2 Ui . If, up to modifying each Ui in its
boundary equivalence class, U \ V ¤ ∅ whenever U 2 Ui , V 2 Vj , and i ¤ j ,
then the simplex u represented by

Fk
iD0 Ui is visible. In this case, X contains an

isometrically embedded (on the 1–skeleton) cubical orthant, the boundary of whose
convex hull is u. Conversely, if we know that each Ui represents a visible 0–simplex,
then

F
i2K Ui represents a visible simplex at infinity for any K � f0; : : : ; kg, as is

proved in [36]. If this does not occur, then there may be subsets K � f0; : : : ; kg such
that

F
i2K Ui represents an invisible simplex at infinity, or is not even a UBS (by virtue

of failing to satisfy the condition on separation). In other words, when X is not fully
visible, simplices at infinity may have proper faces that are not genuine simplices at
infinity represented by UBSs.

A visible simplex v � @4X is represented by the combinatorial geodesic ray  �X .1/

if the UBS of hyperplanes intersecting  represents the boundary equivalence class v .

Remark 10.9 (factor systems and visibility) Conjecture 2.8 of [4] states that if X
is a CAT.0/ cube complex on which some group acts geometrically, then X is fully
visible. Also, the proof of Theorem 10.1 shows that, if X contains a factor system
(see Definition 10.10), then every simplex of @4X is visible. This is another reason
for interest in Question A of [6], which asks whether every CAT.0/ cube complex on
which some group acts geometrically contains a factor system.

10.2 Factor systems: hierarchical hyperbolicity of cube complexes

We now summarize results from [5] yielding hierarchically hyperbolic structures on X .
We refer the reader to Section 2 of [5] for discussion of convex subcomplexes and the
gate map gF W X ! F from X to any convex subcomplex F .

Recall that each hyperplane H of X lies in a carrier, N .H/, which is the union of
closed cubes intersecting H . For all H , there is a cubical isomorphism N .H/ Š
H �

�
�
1
2
; 1
2

�
; a subcomplex of X which is the image under the inclusion N .H/! X
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of either of the subcomplexes H �
˚
1
2

	
or H �

˚
�
1
2

	
is a combinatorial hyperplane.

We say that two convex subcomplexes F and F 0 of X are parallel if for any hyperplane
H of X , we have H \F ¤∅ if and only if H \F 0 ¤∅. We let F denote a choice
of representatives for each parallelism class of elements of F.

Definition 10.10 A factor system F is a set of convex subcomplexes such that:

(1) Each nontrivial combinatorial hyperplane of X belongs to F, as does each
convex subcomplex parallel to a nontrivial combinatorial hyperplane.

(2) X 2 F.

(3) There exists � > 0 such that, for all F; F 0 2 F, either

gF .F
0/ 2 F or diam.gF .F 0//� �:

(4) There exists � � 1 such that each point in X belongs to at most � elements
of F.

We require that elements of F are not single points. (This condition is only imposed to
ensure that nesting and orthogonality are mutually exclusive: if F is a single point and
F 0 2 F, then F ? F 0 and F v F 0 , so we exclude this situation.)

The contact graph CX of X (see [37]) has a vertex for each hyperplane, with two
hyperplanes joined by an edge if no third hyperplane separates them. If F � X is a
convex subcomplex, then F is a CAT.0/ cube complex whose hyperplanes have the
form H \F , where H is a hyperplane of X , and, by convexity of F , this yields an
embedding CF ,! CX of F as a full subgraph.

Given a factor system F on X , we define the factored contact graph yCF of each F 2F
as follows. Begin with CF . For each parallelism class of subcomplexes F 0 2F, parallel
to a proper subcomplex of F that is not a single 0–cube, we have CF 0 ¨ CF , and we
cone off CF 0 by adding a vertex vF 0 to CF and joining each vertex of CF 0 � CF
to vF 0 . The resulting factored contact graph yCF is uniformly quasiisometric to a
tree [5, Proposition 8.24].

Let us now define the maps �F W X ! 2
yCF . For each F 2 F, given x 2 X , let

gF .x/ 2 F be its gate. There is a nonempty finite set of hyperplanes H of F that are
not separated from x by any other hyperplane; these form a nonempty clique in CF , to
which we send x . We then compose with 2CF ,! 2

yCF to yield �F W X ! 2
yCF sending

each point to a clique.

Let F v F 0 if F is parallel to a subcomplex of F 0 , and F ? F 0 if there is a cubical
isometric embedding F �F 0!X (after possibly varying F and F 0 in their parallelism
classes). Otherwise, F and F 0 are transverse. With these definitions, it is shown
in [5; 6] that .X ;F/ is a hierarchically hyperbolic space.
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10.3 Relating the simplicial and HHS boundaries

Fix X with a factor system F; necessarily, X is uniformly locally finite.

Proof of Theorem 10.1 We will first exhibit a bijection bW @4X ! @.X ;F/. We
then define T D fb�1.O/g, where O varies over all open sets in @.X ;F/, so as to
make b a homeomorphism. It then suffices to verify that this topology agrees with
the simplicial topology on each component of @4X ; the “in particular” statement then
follows immediately.

Reduction to the single-simplex case Let m be a maximal simplex of @4X . By the
definition of the simplicial boundary, m is a simplex at infinity, ie it is represented
by some UBS M. Moreover, by [36, Theorem 3.19], we can take M to be the set
of hyperplanes intersecting some combinatorial geodesic ray m emanating from the
(fixed) basepoint x0 . Let Ym be the convex hull of m .

By [5, Lemma 8.4], Fm D fF \ Ym W F 2 Fg is a factor system. (We emphasize
that Fm is a set, not a multiset: if F;F 0 2 F satisfy F \Ym D F 0 \Ym , we count
this subcomplex once.) We adopt the following convention: for each F \Ym 2 Fm ,
we assume that F has been chosen so that F is v–minimal among all F 0 2 F with
F 0\YmDF \Ym . (Note that there is a unique such minimal F : if F \YmDF 0\Ym ,
then F \Ym D F \F 0\Ym , and F \F 0 v F;F 0 .)

Also, if F v F 0 , then F \ Ym v F 0 \ Ym , obviously. Conversely, suppose that
F \Ym v F 0\Ym . Let F 00 D gF .F

0/, so F 00 v F 0 and F 00 v F . Then F 00\Ym D
F \Ym , so F 00 D F by minimality, whence F v F 0 .

If F ?F 0 , then convexity of Ym implies .F�?F 0/\YmD .F \Ym/�.F 0\Ym/, so
.F \Ym/? .F 0\Ym/. Conversely, suppose that .F \Ym/? .F 0\Ym/. For brevity,
let ADF \Ym and B DF 0\Ym , so that X contains A�B . By Lemma 10.13, there
exist FA; FB 2 F such that A� FA , B � FB and FA ? FB . Let F 0A D F \FA and
F 0B D F

0\FB . Then F 0A\Ym D F \Ym and F 0A v F , so minimality of F implies
F 0A D F ; similarly F 0B D F

0 . But since FA ? FB and F 0A v FA and F 0B v FB , we
have F ? F 0 .

It follows that there is a hieromorphism .Ym;Fm/! .X ;F/ defined as follows: the
map Ym! X is the inclusion; the map Fm! F is given by F \Ym 7! F for each
F \Ym 2 Fm (where F is v–minimal in F with the given intersection with Y ), and
for each F \Ym , the map yC.F \Ym/! yCF is the inclusion on contact graphs and
sends cone vertices to cone vertices in the obvious way.

We will see below that Ym D
Qk
iD0 Ymi , where each Ymi has the property that

@yC.F \Ymi /D∅ for all F 2 F except for a unique RFi 2 F for which @yC. RFi \Ymi /
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consists of a single point pi . Moreover, RFi ? RFj for i ¤ j . Lemma 10.11 shows that
for each F \Ym , the map yC.F \Ym/ ,! yCF is a uniform quasiisometric embedding,
inducing a boundary map, ie pi may be regarded as a point in @yC RFi for each i . We
thus obtain an injective map bmW @.Ym;Fm/! @.X ;F/ given by

bm

� kX
iD0

aimi

�
D

kX
iD0

aipi :

Constructing b We will observe below that if m;m0 are maximal simplices, then the
associated collections fpigkiD0 and fp0ig

k0

iD0 intersect in a set corresponding precisely
to the set of 0–simplices of m\m0 . It follows that the maps constructed above are
compatible, ie bmjYm\m0 D bm0 jYm\m0 and that, if m and m0 are disjoint maximal
simplices of @4X , then bm and bm0 have disjoint images. Pasting together the bm
thus yields an injection bW @4X ! @.X ;F/.

Surjectivity of b Let f RFigkiD1 be a support set in F, choose for each i a point
pi 2 @yC RFi and let pD

P
k
iD1 aipi . For each i , let �i be a geodesic ray in the quasitree

yC RFi joining �yC RFi .x0/ to pi . Let fH i
ng be a sequence of hyperplanes of X , each

crossing RFi , corresponding to vertices of �i , ordered so that H i
n separates H i

nC1

from x0 . Any P 2F that crosses infinitely many of these hyperplanes satisfies RFi vP ,
or else some element of F nested into RFi would “kill” the pi direction in @yC RFi . Every
simplex of @4

�Qk
jD0

RFj
�
� @4X is visible, from which it is easy to check that there

is a unique (up to boundary–equivalence) minimal UBS Mi containing fH i
ng and

representing a 0–simplex mi of @4X such that fm0; : : : ; mkg span a simplex m. By
definition, bm

�P
i aimi

�
D p .

Analysis of components To prove that each component C of @4X , with the simplicial
topology, is embedded in .@4X ; T /, we must show that bıidW @4X!@.X ;F/ restricts
to an embedding on C , where idW @4X! .@4X ; T / is the identity. Let m be a maximal
simplex of @4X . Let pD

P
i aipi 2 b ı id.M/ and let N DNfUi g;�.p/\@.Ym;Fm/

be a basic neighborhood of p , as defined in Section 1.1. Observe that N is completely
nonremote, whence it is clear from the definition that b�1m .N / is basic in the simplicial
topology on @4Ym Dm, so bm is continuous. It follows that b ı id is continuous. A
similar argument shows that the restriction of b ı id to C is an open map. To complete
the proof, it now suffices to produce the Fi and analyze their factored contact graphs,
which we do in the next several steps.

Visibility of faces of m Let m be a maximal simplex of @4X and observe that @4Ym
is exactly the simplex m. We now verify that each face of m is a visible simplex at infin-
ity. Let m0; : : : ; mk be the 0–simplices of m; represent mi by a minimal UBS Mi such
that Mj dominates Mi when i < j and MD

Fk
iD0Mi . Recall from Remark 10.8

that if Mi dominates Mj for all i and j , then each subsimplex of m is visible.
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By projecting m to a combinatorial hyperplane on the carrier of some element of Mk ,
we see that M�Mk represents a visible codimension-1 face m0 of m, represented
by a ray m0 . The convex hull Ym0 � Ym of m0 inherits a factor system from Ym as
above. Hence, by induction, for i < k , the 0–simplex represented by Mi is visible.
Thus it suffices to show that the 0–simplex mk represented by Mk is visible. (In
the base case, m is a maximal 0–simplex, and is visible by maximality.) Suppose,
for a contradiction, that mk is not visible, so there exists i < k such that Mi fails to
dominate Mk . In particular, k � 1.

The UBS Mk contains a sequence fMngn�0 of pairwise-disjoint hyperplanes such
that Mn separates Mn˙1 for all n � 1. For each n, let MCn be the combinatorial
hyperplane in N .Mn/ in the same component of X �Mn as MnC1 . For each n, let
Pn D gMC0 .M

C
n / be the projection of MCn on MC0 . The set of hyperplanes crossed

by both M0 and Mn contains all but finitely many elements of Mi ; hence each Pn
is unbounded and thus belongs to the factor system Fm . Moreover, for all N � 0, the
intersection

TN
nD0 Pn ¤∅. Hence, since Pm has multiplicity �<1, it must be the

case that there exists N such that Pn D PN for all N � n. Thus, when n; n0 � N ,
the set of elements of Mj crossed by Mn coincides with the set crossed by Mn0 for
all j � k� 1. Hence each Mj dominates Mk , whence mk is visible.

Structure of Ym By [36, Theorem 3.23] and visibility of the mi established above,
after moving x0 if necessary, Ym D

Qk
iD0 Ymi , where Ymi is the convex hull in X

of a combinatorial geodesic ray  i at the basepoint x0 representing a 0–simplex mi
of m. Each point of mD @4Ym can be uniquely written as

P
iD0 aimi , where ai � 0

and
Pk
iD1 ai D 1.

For each i , let fH i
ngn�0 be the set of hyperplanes crossing  i ; this is a minimal UBS

and is numbered according to the order in which  i crosses the H i
n . Thus, if n > m,

the hyperplane H i
n does not separate H i

m from x0 (in fact, either H i
n \H

i
m ¤ ∅

or H i
m separates H i

n from x0 ). Choose Fi 2 Fm to be v–minimal such that all but
finitely many H i

n cross Fi . Observe that Fi ? Fj for all i ¤ j , and that Fi � Ymi .

Suppose that m0 is some other maximal simplex and Ym0 D
Qk0

iD0 Ym0i . For each i ,
let F 0i 2 Fm0 be v–minimal among those factors crossing all but finitely many of the
elements crossing Ymi . Suppose that @yCFi D @yCF 0j for some i � k and j � k0 . Then
the set of hyperplanes crossing Ymi , which is boundary-equivalent to that crossing Fi ,
is boundary-equivalent to that crossing F 0j and hence that crossing Ym0

j
, ie mi Dm0j .

Orthogonality Each Fi has the form Fi D yFi \Ym , where yFi 2 F. While orthog-
onality of elements of F implies orthogonality of the corresponding elements of Fm ,
the converse need not hold, but we will require that yFi ? yFj for all i ¤ j , in order
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to construct points of @.X ;F/. However, finitely many applications of Lemma 10.13
below show that for each i , there exists RFi 2 F such that Fi � RFi � yFi and such that
RFi ? RFj for all i ¤ j .

Factored contact graphs in Fm For any F 2 Fm , we have, by convexity and [18,
Proposition 2.5], that F D

Qk
iD0 gYmi .F /, whence CF decomposes as a join, so yCF

is obtained from a join by coning off certain subgraphs. Thus yCF is bounded (and
@yCF D ∅) unless F is parallel to a subcomplex of some Ymi . We claim that @yCFi
consists of exactly one point pi for each i , and that, for all other F 2 Fm , we have
@yCF D∅.

Observe that CFi coarsely coincides with CYi , the fH i
ng are partially ordered by the

order in which i crosses them, and that CFi is coarsely equal to a maximal chain
in this partial order (ie a combinatorial ray � in CFi ). By Theorem 2.4 of [36], � is
unbounded in CFi , since Fi is v–minimal, and thus determines a point pi 2 @CFi .
Moreover, pi is unique, since yCFi lies in the 1–neighborhood of � (yCFi is obtained
from � by adding edges reflecting intersections of elements of the fH i

ng).

Hence, if � � yCFi is unbounded, then @yCFi D fpig. By v–minimality of Fi , no
hyperplane of Fi crosses infinitely many fH i

ng, so hyperplanes of Fi are compact.
By minimality of the UBS fH i

ng, any element of Fm corresponding to a cone-vertex
in yCFi crosses finitely many hyperplanes. It follows that for all n � 0, there exists
N � n such that H i

n and H i
m cannot be adjacent to the same cone-vertex of yCFi when

m�N . Hence @yCFi D fpig.

We have shown that if F 2 Fm has unbounded factored contact graph, then F is (up
to parallelism) contained in some Ymi . If F intersects only finitely many elements
of fHig, then F is compact and thus yCF is bounded. If F intersects infinitely many,
then it intersects all but finitely many, whence either F is parallel to Fi or yCF contains a
subgraph, containing all but finitely many hyperplane-vertices, whose vertices are all ad-
jacent to the cone-point corresponding to gF .Fi /; thus yCF is bounded. This completes
the description of the boundaries of the factored contact graphs of the elements of Fm .

Lemma 10.11 Let F be a factor system in X , let Y � X be a convex subcomplex,
and let F0 be the factor system in Y consisting of all subcomplexes of the form F 0\Y ,
where F 0 2 F. Let F \Y 2 F0 , and suppose that if F 0 2 F satisfies F 0\Y D F \Y ,
then F v F 0 .

Then the following map �W yC.F \Y/!yCF is a .3; 0/–quasiisometric embedding: � is
the inclusion on contact graphs; for each F 0\Y 2 F0 properly nested in F \Y (with
F 0 minimal with this intersection with Y ), the cone-point in yC.F \Y/ corresponding
to F 0\Y is sent to the cone-point of yCX corresponding to F 0 .
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Remark 10.12 Recall from the discussion in the proof of Theorem 10.1 of the hi-
eromorphism .Ym;Fm/! .X ;F/ that if F 0 \ Y v F \ Y and F and F 0 are each
v–minimal with the given intersections with Y , then F v F 0 .

Proof of Lemma 10.11 Let v and v0 be vertices of yC.F \Ym/. Let vD v0 , v1; : : : ,
vn D v

0 be a geodesic sequence in yCF from v to v0 . If vi is a hyperplane vertex, let
Hi be the corresponding hyperplane of F (so H crosses F \Y ). If vi is a cone-vertex,
let Hi be a subcomplex in F, properly contained in F , that represents the parallelism
class corresponding to the cone-vertex vi . (For i 2 f0; ng, if Hi is a hyperplane, then it
crosses Y . Otherwise, Hi 2F is v–minimal among all U 2FF with U \YDHi\Y .)

If Hi is a cone-vertex, then Hi˙1 are hyperplanes crossing Hi . This gives a se-
quence H0;H1; : : : ;Hn of hyperplanes or factor-system elements in F such that
N .Hi /\N .HiC1/¤∅ when Hi and HiC1 are hyperplanes, and Hi \HiC1 ¤∅
when HiC1 is a subcomplex in F.

For each i such that Hi 2F, we have Hi ĹF . In particular, our minimality assumption
on F ensures that if Hi \Y ¤∅, then Hi \Y Ĺ F \Y . Otherwise, we would have
Hi \Y D F \Y while Hi Ĺ F , contradicting minimality of F .

For each i with Hi a hyperplane, choose a combinatorial geodesic i ! N .Hi /
joining the terminal point of iD1 to a closest point on HiC1 (or N .HiC1/ if viC1
is a hyperplane vertex). Similarly, choose i ! Hi when vi is a cone-vertex. The
geodesic 1!H1 joins H1\Y (or N .H1/\Y to H1\H2 , or N .H1/\H2 etc),
and n!Hn (or N .Hn/) is similarly chosen to end in Y . Let D! F be a minimal-
area disc diagram bounded by 1 � 2 � � � n and a geodesic of Y joining its endpoints.
Moreover, suppose that each of the geodesics, and indeed the sequence v0; : : : ; vn and
the representative subspaces, are chosen so as to minimize the area of D among all
possible such choices.

Then, arguing exactly as in the proof of Proposition 3.1 of [5], we see that 1 � � � n can
be chosen to be a geodesic since a minimal D cannot contain a dual curve traveling
from i to j for any i and j . It follows that 1 � � � n lies in Y , so each Hi that is
a hyperplane either crosses Y or contributes a combinatorial hyperplane to F0 , while
each Hi that is a subcomplex contributes an element to F0 ; as explained above, for
each such Hi , we have Hi \ Y Ĺ F \ Y , so Hi \ Y corresponds to a cone-point
in yC.F \Y/. We thus have a sequence H1; : : : ;Hn of (non-v–maximal) elements of
F0 and hyperplanes crossing Y , which determines a path of length between n� 1 and
3.n� 1/ in yC.F \Y/.

Lemma 10.13 Let X be a CAT.0/ cube complex with a factor system F. Suppose
that A and B are unbounded convex subcomplexes of X such that there is a cubical
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isometric embedding A�B! X extending A;B ,! X . Then there exist PA; PB 2 F
with PA ? PB and A� PA and B � PB .

Proof Let xDA\B . Then A and B are contained in combinatorial hyperplanes HA
and HB , respectively. Indeed, every hyperplane crossing A (including the one whose
carrier contains HB ) crosses every hyperplane crossing B (including the one whose
carrier contains HA ). For each hyperplane V 0 crossing HB , let V be one of the two
associated combinatorial hyperplanes and consider gHA.V /. Observe that gHA.V / 2 F
since it contains A and is thus unbounded. Since F has finite multiplicity, there are only
finitely many distinct subcomplexes gHA.V /, as V varies over all hyperplanes whose
projection to HA contains A; let PA 2 F be their intersection. Define PB analogously.
Then PA and PB have the desired properties. (Indeed, a hyperplane H crosses PA if
and only if H crosses every hyperplane V whose projection to HA contains A; the
projection of H to HB thus contains B , so every hyperplane crossing PB crosses H ,
whence PA �PB � X .)
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Thurston norm via Fox calculus

STEFAN FRIEDL

KEVIN SCHREVE

STEPHAN TILLMANN

In 1976 Thurston associated to a 3–manifold N a marked polytope in H1.N IR/ ,
which measures the minimal complexity of surfaces representing homology classes
and determines all fibered classes in H 1.N IR/ . Recently the first and third authors
associated to a presentation � with two generators and one relator a marked polytope
in H1.� IR/ and showed that it determines the Bieri–Neumann–Strebel invariant
of � . We show that if the fundamental group of a 3–manifold N admits such a presen-
tation � , then the corresponding marked polytopes in H1.N IR/DH1.� IR/ agree.

20J05, 57M05, 57M27, 57R19

1 Summary of results

Throughout this paper all 3–manifolds are compact, connected and orientable. Suppose
N is a 3–manifold. In 1976 Thurston [49] introduced a seminorm xN on H 1.N IR/,
henceforth referred to as the Thurston norm, which is a natural measure of the complex-
ity of surfaces dual to integral classes. A class � 2H 1.N IR/ is fibered if � can be
represented by a nondegenerate closed 1–form. If � is integral, then � is fibered if and
only if it is induced by a surface bundle N ! S1 . We refer to Section 2.4 for details.

Thurston [49] showed that the information on the Thurston seminorm and the fibered
classes can be encapsulated in terms of a marked polytope.

A marked polytope is a polytope in a vector space together with a (possibly empty)
set of marked vertices. In order to state Thurston’s result precisely we need one
more definition. Given a polytope in a vector space V we say that a homomorphism
� 2Hom.V;R/ pairs maximally with the vertex v if �.v/ > �.w/ for all other vertices
w ¤ v . In this language, the main result of [49] can be stated as follows:

Theorem 1.1 Let N be a 3–manifold. There exists a unique symmetric marked
polytope MN in H1.N IR/ such that for any � 2H 1.N IR/D Hom.�1.N /;R/ we
have

xN .�/Dmaxf�.p/��.q/ j p; q 2MN g;

and � is fibered if and only if it pairs maximally with a marked vertex of MN .
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Subsequently, by a .2; 1/–presentation we mean a group presentation with precisely
two generators and one nonempty relator. A .2; 1/–presentation is cyclically reduced
if the relator is a cyclically reduced word. Recently, the first and third authors [24]
associated to a cyclically reduced .2; 1/–presentation � Dhx;y j ri a marked polytope
M� in H1.� IR/.

Now we outline the definition of M� in the case that b1.�/ D 2. A different (but
equivalent) definition is given in Section 2.6, as well as a definition for cyclically
reduced .2; 1/–presentations � with b1.�/D 1.

Identify H1.G� IZ/ with Z2 such that x corresponds to .1; 0/ and y corresponds
to .0; 1/. Then the relator r determines a discrete walk on the integer lattice in
H1.G� IR/, and the marked polytope M� is obtained from the convex hull of the
trace of this walk as follows:

(1) Start at the origin and walk across Z2 reading the word r from the left.

(2) Take the convex hull C of the set of all lattice points reached by the walk.

(3) Mark precisely those vertices of C which the walk passes through exactly once.

(4) Now consider the unit squares that are completely contained in C and touch a
vertex of C . Mark a midpoint of a square precisely when one (and hence all)
vertices of C incident with the square are marked.

(5) The set of vertices of M� is the set of midpoints of all of these squares, and a
vertex of M� is marked precisely when it is a marked midpoint of a square.

In Figure 1 we sketch the construction of M� for the presentation � D hx;y j ri,
where

r D x2yx�1yx2yx�1y�3x�1yx2yx�1yxy�1x�2y�1xy�1x�2y�1xy3xy�1

�x�2y�1xy�1x�1y:

This example is due to Dunfield [12] and presents the fundamental group of the exterior
of the 2–component link in S3 shown in Figure 2 (see Section 6.3).

Given two polytopes P and Q in a vector space V , we write P :
DQ if the polytopes P

and Q differ by a translation, ie if there exists v 2 V with P D vCQ. The following
is the main theorem of this paper:

Theorem 1.2 Let N be an irreducible 3–manifold that admits a cyclically reduced
.2; 1/–presentation � D hx;y j ri. Then

MN
:
DM� :

Geometry & Topology, Volume 21 (2017)
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2 and 3 4 5

Figure 1: The marked polytope M� for Dunfield’s example, starting from the
path determined by the relation r . Marked vertices are filled and unmarked
vertices are empty; Labels on arrows correspond to steps in the above algorithm.

This theorem answers in particular a question of Sikorav [48] in the affirmative for
3–manifolds that admit a .2; 1/–presentation.

The proof of Theorem 1.2 relies on the virtually special theorem of Agol [2], Liu [36],
Przytycki and Wise [42; 43] and Wise [56; 57; 58], which we recall in Section 3.1. It
also hinges on the following general result, which is of independent interest.

Theorem 1.3 Let N be an irreducible 3–manifold with empty or toroidal boundary.
If N is not a closed graph manifold, then �1.N / is residually a torsion-free and
elementary amenable group.

The proof of Theorem 1.3 uses the virtually special theorem and builds on work
of Linnell and Schick [35]. It is proved in Section 3, where we also give several
consequences.

We give a brief outline of the proof of Theorem 1.2. The starting point is an alternative
definition of the marked polytope M� using Fox derivatives [17] (see Section 2.6).
This definition is less pictorial, but it allows us to relate the polytope M� to the chain
complex of the universal cover of the 2–complex X associated to the presentation � .
This makes it possible to study the “size” of M� using twisted Reidemeister torsions
corresponding to finite-dimensional complex representations and corresponding to skew
fields of X ; see Cochran [8], Friedl [18], Friedl and Vidussi [25], Harvey [27] and
Wada [54]. Since X is simple homotopy equivalent to N , these twisted Reidemeister
torsions agree with the twisted Reidemeister torsions of N .

In the following we denote by PN and P� the polytopes MN and M� without the
markings. Given two polytopes P and Q in a vector space V we write P �Q if there
exists v 2V with vCP �Q. The proof of Theorem 1.2 now breaks up into three parts:

Geometry & Topology, Volume 21 (2017)
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(1) We first show that PN �P� . Put differently, we show that P� is “big enough” to
contain PN . This is achieved with the main theorem of Friedl and Vidussi [26],
which states that twisted Reidemeister torsions corresponding to finite-dimen-
sional complex representations detect the Thurston norm of N . This relies on
the virtually special theorem. See Section 4.

(2) Next we show the reverse inclusion P� �PN . This means that P� is “not bigger
than necessary”. At this stage it is crucial that r is cyclically reduced. Using
Theorem 1.3 and the noncommutative Reidemeister torsions of Cochran [8],
Friedl [18] and Harvey [27] we show that indeed P� � PN . See Section 5.

(3) Finally we need to show that the markings of MN and M� agree. This follows
immediately from Friedl and Tillmann [24, Theorem 1.1] and Bieri, Neumann
and Strebel [4, Theorem E]. See Section 5.3.

The paper is concluded with a conjecture and a question in Section 7.

Convention Throughout this paper, all groups are finitely generated, all vector spaces
are finite-dimensional, and all 3–manifolds are compact, connected and orientable.

Acknowledgments Friedl is very grateful for being hosted by the University of Sydney
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Mathematisches Forschungsinstitut Oberwolfach for hosting them in January 2015.
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Tillmann is partially supported under the Australian Research Council’s Discovery
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reading of this paper and a very helpful report.

2 Polytopes associated to 3–manifolds and groups

2.1 Polytopes

Let V be a real vector space and let Q D fQ1; : : : ;Qkg � V be a finite (possibly
empty) subset. Denote by

P.Q/D conv.Q/D
� kX

iD1

tiQi

ˇ̌̌ kX
iD1

ti D 1; ti � 0

�
the polytope spanned by Q. A polytope in V is a subset of the form P.Q/ for
some finite subset Q of V . For any polytope P there exists a unique smallest subset
V.P/� P such that P is the polytope spanned by V.P/. The elements of V.P/ are
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the vertices of P . Note v 2 P is a vertex if and only if there exists a homomorphism
�W V !R such that �.v/ > �.p/ for every p 2 P with p ¤ v .

Let V be a real vector space and let P and Q be two polytopes in V . The Minkowski
sum of P and Q is

PCQ WD fpC q j p 2 P and q 2Qg:

It is straightforward to see that PCQ is again a polytope. Furthermore, for each vertex
u of PCQ there exists a unique vertex v of P and a unique vertex w of Q such that
uD vCw . Conversely, for each vertex v of P there exists a (not necessarily unique)
vertex w of Q such that vCw is a vertex of PCQ.

If P , Q and R are polytopes with PCQDR, then we write P DR�Q. We have

P D fp 2 V j pCQ�RgI

in particular, R�Q is well-defined.

There is a natural scaling operation on polytopes

� �P WD f�p j p 2 Pg;

where P � V is a polytope and � 2 RC . If k 2 N , then the Minkowski sum of
k copies of P equals kP .

2.2 Convex sets and seminorms

Let C be a nonempty convex set in the real vector space V . Given � 2Hom.V;R/ we
define the thickness of C in the �–direction by

thC.�/ WDmaxf�.c/��.d/ j c; d 2 Cg:

It is straightforward to see that the function

�C W Hom.V;R/!R�0; � 7! thC.�/;

is a seminorm. Conversely, a seminorm �W Hom.V;R/!R�0 defines the convex set

C.�/ WD fv 2 V j �.v/� 1 for all � 2 Hom.V;R/ with �.�/� 1g:

Note that C.�/ is symmetric since v 2 C.�/ implies �v 2 C.�/. For any seminorm �

on Hom.V;R/ we have �C.�/ D �. On the other hand, if C is a nonempty convex set
of V , then C.�C/ equals the symmetrization of C ,

Csym
WD
˚

1
2
.c � d/ j c; d 2 C

	
:

Finally, given a convex set C in V the dual of C is

C� WD f� 2 Hom.V;R/ j �.v/� 1 for all v 2 Cg:

Geometry & Topology, Volume 21 (2017)
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2.3 Marked polytopes

Let V be a real vector space. A marked polytope M in V is a polytope P and a
(possibly empty) subset VC of V.P/. The elements of VC are the marked vertices;
the elements of V.P/nVC are the unmarked vertices and P is the underlying polytope
of M.

If MD .P;VC/ and N D .Q;WC/ are two marked polytopes, then the Minkowski
sum of M and N has underlying polytope the Minkowski sum of the underlying
polytopes and set of marked vertices precisely those that are sums of marked vertices:

MCN D .PCQ; V.PCQ/\ .VCCWC/ /:

The marked polytope M D .P;VC/ is symmetric if the underlying polytope P is
symmetric and VC D�VC .

2.4 The Thurston norm and fibered classes

Let N be a 3–manifold. For each � 2 H 1.N IZ/ there is a properly embedded
oriented surface † such that Œ†� 2H2.N; @N IZ/ is the Poincaré dual to � . Letting
��.†/D

Pk
iD1 maxf��.†i/; 0g, where †1; : : : ; †k are the connected components

of †, the Thurston norm of � 2H 1.N IZ/ is

xN .�/Dminf��.†/ j Œ†�D �g:

The class � 2H 1.N IR/ is called fibered if it can be represented by a nondegenerate
closed 1–form. By [50] an integral class � 2H 1.N IZ/DHom.�1.N /;Z/ is fibered if
and only if there exists a fibration pW N!S1 such that p�D�W �1.N /!�1.S

1/DZ.

Thurston [49] showed that xN extends to a seminorm xN on H 1.N IR/ and that
the dual C.xN /

� to the unit norm ball C.xN / of the seminorm xN is a polytope PN

with vertices in ImfH1.N IZ/=torsion!H1.N IR/g. Furthermore, Thurston showed
that we can turn PN into a marked polytope MN , which has the property that
� 2 H 1.N IR/ D Hom.H1.N IR/;R/ is fibered if and only if it pairs maximally
with a marked vertex.

2.5 The marked polytope for elements of group rings

Let G be a group. Throughout this paper, given f 2CŒG� and g 2G we let fg denote
the g–coefficient of f . Let  W G!H1.GIZ/=torsion be the canonical map.

We write V DH1.GIR/ and we view H1.GIZ/=torsion as a subset of V . With this
convention the above map  gives rise to a map  W G ! V . Given f 2 CŒG� we
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refer to
P.f / WD P

�
f .g/ j g 2G with fg ¤ 0g

�
� V

as the polytope of f . We will now associate to P.f / a marking. In order to do this
we need a few more definitions:

(1) For v 2 V we refer to f v WD
P

g2 �1.v/ fgg as the v–component of f .

(2) We say that an element r 2CŒG� is a monomial if it is of the form r D˙g for
some g 2G .

A vertex v of P.f / is marked precisely when the v–component of f is a monomial.
We then refer to the polytope P.f / together with the set of all marked vertices as the
marked polytope M.f / of f .

The proof of [24, Lemma 3.2] applies with the above definitions, to give:

Lemma 2.1 Let G be a group and let f;g 2CŒG�. Then the following hold:

(1) If for every vertex v of P.f / the v–component f v 2CŒG� is not a zero divisor,
then P.f �g/D P.f /CP.g/.

(2) If each vertex of M.f / is marked, then M.f �g/DM.f /CM.g/.

2.6 The marked polytope for a .2 ; 1/–presentation

Let F be the free group with generators x and y . Following [17] we denote by
@=@xW ZŒF �! ZŒF � the Fox derivative with respect to x , ie the unique Z–linear map
such that

@1

@x
D 0;

@x

@x
D 1;

@y

@x
D 0 and @uv

@x
D
@u

@x
Cu

@v

@x

for all u; v 2 F . We similarly define the Fox derivative with respect to y , and often
write

ux WD
@u

@x
and uy WD

@u

@y
:

In [24] we proved the following proposition:

Proposition 2.2 Let � D hx;y j ri be a .2; 1/–presentation with b1.�/D 2. Then
there exists a marked polytope M, unique up to translation, such that

MCM.x� 1/
:
DM.ry/ and MCM.y � 1/

:
DM.rx/:

Denote by M� the marked polytope of Proposition 2.2. Up to translation it is a
well-defined invariant of the presentation, and it is shown in [24] that this definition is
equivalent to the one sketched in the introduction.
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A .2; 1/–presentation � D hx;y j ri is simple if b1.G�/D 1, x defines a generator of
H1.� IZ/=torsion and y represents the trivial element in H1.� IZ/=torsion. In [24]
we showed that given a simple .2; 1/–presentation � D hx;y j ri there exists a marked
polytope M� , unique up to translation, such that

M� CM.x� 1/
:
DM.ry/:

It was shown in [24] that there is a canonical way to associate to any .2; 1/–presentation
� D hx;y j ri with b1.G�/D 1 a simple presentation � 0 D hx0;y0 j r 0i representing
the same group. We then define M� WDM� 0 .

2.7 3–manifold groups which admit .2; 1/–presentations

Manifolds having fundamental group with a .2; 1/–presentation are described in
Section 6. The only specific result needed to develop our theory is the following,
which follows from work of Epstein [16].

Theorem 2.3 Let N be an irreducible (compact, connected and orientable) 3–manifold
such that � WD �1.N / admits a .2; 1/–presentation. Then the boundary of N consists
of one or two tori.

Proof Groups that admit a .2; 1/–presentation have deficiency 1, while the fundamen-
tal group of a closed irreducible 3–manifold has deficiency zero [16, Section 3]. Whence
N has nonempty boundary, and [16, Lemma 2.2] implies that 1

2
�.@N /D �.N /� 0.

No boundary component of N is a sphere since we assume N is irreducible and
�1.N /¤ f1g. Since N (and hence each of its boundary components) is orientable,
we now have �.@N /D 0 and every boundary component is a torus.

A standard half-lives, half-dies argument shows b1.@N /� 2b1.N /. Since b1.N /� 2

we deduce that @N consists of either one or two tori.

3 Properties of 3–manifold groups

3.1 The virtually special theorem

As usual, given a property of groups or spaces we say this property is satisfied virtually if
a finite-index subgroup (not necessarily normal) or a finite-index cover (not necessarily
regular) has the property.

In the following, given a 3–manifold N we say that � 2H 1.N IR/ is quasifibered if
it is a limit of fibered classes in H 1.N IR/. The following theorem is now a variation
of the virtually special theorem combined with Agol’s virtual fibering theorem [1,
Theorem 5.1] (see also [22, Theorem 5.1] for an exposition).
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Theorem 3.1 Let N be an irreducible 3–manifold with empty or toroidal boundary.
If N is not a closed graph manifold, then for every � 2 H 1.N IR/ there exists a
finite-index cover pW N 0!N such that p�.�/ is quasifibered.

The theorem was proved by Agol [2] for all closed hyperbolic 3–manifolds, by Wise
[56; 57; 58] for all hyperbolic 3–manifolds with boundary, by Liu [36] and Przytycki
and Wise [43] for all graph manifolds with boundary and by Przytycki and Wise [42]
for all 3–manifolds with a nontrivial JSJ–decomposition that has at least one hyperbolic
JSJ–component. We refer to [3] for precise references.

If we apply the theorem to the zero class we get in particular the following corollary:

Corollary 3.2 An irreducible 3–manifold with empty or toroidal boundary is virtually
fibered unless it is a closed graph manifold.

3.2 Residual properties of 3–manifold groups

We start with several definitions, most of which are standard. Let P be a class of
groups.

(1) The group � is residually P if for every nontrivial g 2 � , there exists a homo-
morphism ˛W �! � to a group in � in P such that ˛.g/¤ 1.

(2) The group � is fully residually P if for every finite subset fg1; : : : ;gng��nf1g,
there exists a epimorphism ˛W �!G to a group in � in P such that ˛.gi/¤ 1

for all i D 1; : : : ; n.

(3) The group � has the P–factorization property if for every epimorphism ˛W �!G

onto a finite group G there exists an epimorphism ˇW �! � to a group � in
P such that ˛ factors through ˇ .

We are mostly interested in the following classes of groups.

(1) The class EA of elementary amenable groups is the smallest class of groups that
contains all abelian and all finite groups and that is closed under extensions and
directed unions.

(2) We denote by TEA the class of all groups that are torsion-free and elementary
amenable. It is clear that TEA is closed under taking finite direct products.

Using Corollary 3.2 and work of Linnell and Schick [35] we will prove the following
theorem:

Theorem 3.3 Let N be an irreducible 3–manifold with empty or toroidal boundary.
If N is not a closed graph manifold, then �1.N / has the TEA–factorization property.
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The question of to what degree this statement holds for closed graph manifolds is
discussed in Section 3.4. We postpone the proof of the theorem to Section 3.3, and
point out several corollaries.

Theorem 1.3 Let N be an irreducible 3–manifold with empty or toroidal boundary.
If N is not a closed graph manifold, then �1.N / is residually TEA.

Proof Let P be any class of groups. If a group � is residually finite and has the
P–factorization property, then G is also residually P . The statement of the theorem
now follows from Theorem 3.3 and the fact that 3–manifold groups are residually
finite [29].

Corollary 3.4 Let � be the fundamental group of an irreducible 3–manifold that
has empty or toroidal boundary and is not a closed graph manifold. For every
nonzero element p 2 ZŒ��, there exists a homomorphism ˛W � ! � 2 TEA such
that 0¤ ˛.p/ 2 ZŒ��.

Proof We write p D
Pk

iD1 aigi , where a1; : : : ; ak ¤ 0 and g1; : : : ;gn 2 � are
pairwise distinct. By Theorem 1.3 the group � is residually TEA. Since TEA is closed
under taking finite direct products, � is also fully residually TEA. We can thus find a
homomorphism ˛W �! � to a group � 2 TEA such that all ˛.gi/ and all products
˛.gig

�1
j / with i ¤ j are nontrivial. Whence ˛.p/ 2 ZŒ�� is nonzero.

3.3 Proof of Theorem 3.3

The following lemma is probably well-known to the experts.

Lemma 3.5 Let E be a surface group (ie the fundamental group of a compact ori-
entable surface, possibly with boundary) and let R�E be a normal subgroup. Then
E=ŒR;R� is torsion-free.

Proof Let g 2E=ŒR;R� be a nontrivial element. We pick a representative for g in E ,
which by slight abuse of notation we also denote by g . We denote by S the subgroup
of E generated by g and R. It suffices to prove the following claim:

Claim The group S=ŒR;R� is torsion-free.

We consider the short exact sequence

1! ŒS;S �=ŒR;R�! S=ŒR;R�! S=ŒS;S �! 0:

Since R and S are either surface groups or infinitely generated free groups we deduce
that S=ŒS;S � D H1.S IZ/ and R=ŒR;R� D H1.RIZ/ are torsion-free. The group
S=R is generated by one element, which implies that S=R is cyclic, in particular
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abelian. It follows that ŒS;S ��R. We thus see that ŒS;S �=ŒR;R� is a subgroup of
R=ŒR;R�. So the groups on the left and on the right of the above short exact sequence
are torsion-free. It follows that S=ŒR;R� is torsion-free.

Proposition 3.6 If 1! E! � !M ! 1 is an exact sequence with E a surface
group and M 2 TEA, then � has the TEA–factorization property.

Proof Let ˛W �! P be a map to a finite group. Let RDE\Ker˛ . By Lemma 3.5
the group E=ŒR;R� is torsion-free. Furthermore it is elementary amenable by the
exact sequence

1!R=ŒR;R�!E=ŒR;R�!E=R! 1:

Now ˛ factors through �=ŒR;R�, and this is in TEA due to the sequence

1!E=ŒR;R�! �=ŒR;R�!M ! 1:

The profinite completion of the group � is denoted by y� ; see [44, Section 3.2] for a
definition and its main properties. Following Serre [47, I.2.6, Exercise 2] we say that a
group � is good if the natural morphism H�.y� IA/!H�.� IA/ is an isomorphism
for any finite abelian group A with a � –action.

In the proof of the following theorem we will on several occasions use the following
standard notation: if � is a subgroup of � , then �� WD

T
g2� g�g�1 . Note that ��

is always a normal subgroup of � , and if � is of finite index, then �� is of finite
index. We also note that the methods of the proof build heavily on the work of Linnell
and Schick [35].

Theorem 3.7 Let � be a finitely generated torsion-free group that has a finite-
dimensional classifying space and which is good. If � admits a finite-index subgroup �
which has the TEA–factorization property, then � also has the TEA–factorization
property.

Proof Let ˛W � ! G be a homomorphism to a finite group. We denote by K � �

the intersection of Ker.˛/ and �� . The subgroup K is of finite index in � and is
clearly contained in � . It follows from Lemma 2.1 of [46] that K also has the TEA–
factorization property. We write Q WD �=K . First suppose that Q is a p–group. It
suffices to show there is a subgroup U E � such that the map �!Q factors through
�=U and �=U is in TEA.

If no such U exists, then since K has the TEA–factorization property, there is a
nontrivial subgroup Q0 of Q that splits in the induced sequence of profinite completions

1! yK! y�!Q! 1I
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see [46, Lemmas 3.4–3.6]. However, putting the following two observations together
shows that this is not possible:

(1) The cohomology H�.Q0;Fp/ is nonzero in infinitely many dimensions.
(2) By [47, I.2.6, Exercise 1, page 15] any finite-index subgroup L (such as K or the

preimage of Q0 under �!Q) of � is also good and has a finite-dimensional
classifying space. This implies that H�. yL;Fp/ŠH�.L;Fp/ is nonzero in only
finitely many dimensions.

For the general case, we use a trick from [35]. For each Sylow p–subgroup S of Q,
consider the exact sequence 1!K! �S ! S ! 1, where �S is the preimage of S .
By the above, we get for each S a subgroup US such that the quotient �S=US is
torsion-free elementary amenable. Let U D\SUS . Since �=U � is a finite extension
of �=U � , elementary amenability follows from [35, Lemma 4.11]. It remains to show
that �=U � is torsion-free.

There is an exact sequence

1! U �
S =U �

! �S=U �
! �S=U �

S ! 1

with U �
S
=U � and �S=U �

S
torsion-free [35, Lemma 4.11]. Therefore, �S=U � is

torsion-free.

Suppose that �=U � has a nontrivial torsion element  . By raising  to some power
we get an element  0 that is p–torsion for some prime p . Since K=U � is torsion-free,
 0 would map to some Sylow p–subgroup, in which case  0 2 �S=U � , which is
torsion-free by the above. Therefore, �=U � is torsion-free.

Now we are finally in a position to prove Theorem 3.3.

Proof of Theorem 3.3 Let N be an irreducible 3–manifold that has empty or toroidal
boundary and that is not a closed graph manifold. According to Corollary 3.2, N has
a finite cover M that is fibered. The fundamental group of M is a semidirect product
of Z with a surface group, and hence Lemma 3.5 and Proposition 3.6 imply �1.M /

has the TEA–factorization property.

It follows from [47, Exercise 2(b), page 16] that �1.M / is good. By [47, Exercise 1,
page 15] the group �1.N / is also good. It is well-known (see eg [3, (A.1), page 44])
that N is aspherical and that in particular �1.N / is torsion-free. Thus we can apply
Theorem 3.7 to �1.N / and the finite-index subgroup �1.M /, giving the desired result
that �1.N / has the TEA–factorization property.

Remark The same proof also shows that torsion-free virtually cocompact special
groups have the TEA–factorization property. Indeed, these groups are virtual retracts
of right-angled Artin groups, and therefore contain finite index subgroups that are
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good and have the TEA–factorization property [46]. The 3–manifold groups that we
consider in Theorem 1.3 are not generally known to be virtually cocompact special.
However, this observation implies that Theorem 1.3 holds for many other 3–manifold
groups, eg for fundamental groups of hyperbolic 3–manifolds with infinite volume.
We refer to [3, Theorem 4.3.6] for details and references.

3.4 The case of closed graph manifolds

It is natural to ask for which closed graph manifolds the conclusions of Theorem 3.3
and its corollaries hold. It follows from the work of Liu [36] that the conclusion of the
theorem also holds for closed nonpositively curved graph manifolds. The question of
which closed graph manifolds are nonpositively curved was treated in detail by Buyalo
and Svetlov [7]. In the following we give a short list of examples of graph manifolds
that are not nonpositively curved:

(1) spherical 3–manifolds;

(2) Sol– and Nil–manifolds;

(3) Seifert fibered 3–manifolds that are finitely covered by a nontrivial S1 –bundles
over a closed surface.

It is clear that the statements do not hold for spherical 3–manifolds with nontrivial
fundamental group. The following lemma takes care of the second case:

Lemma 3.8 The fundamental groups of Sol– and Nil–manifolds are TEA; in particular
they have the TEA–factorization property.

Proof Sol– and Nil–manifolds are finitely covered by torus-bundles over S1 . Hence
their fundamental groups are elementary amenable, but the fundamental groups are
also torsion-free, so they are TEA.

Lemma 3.9 Let N be a Seifert fibered space with infinite fundamental group. Then
�1.N / has the TEA–factorization property.

Proof Since we will not make use of this lemma we only sketch the proof. The
manifold N is finitely covered by an S1 –bundle over a surface. By Theorem 3.7 we
can thus without loss of generality assume that N is an S1 –bundle over a surface F .
Since �1.N / is infinite there exists a short exact sequence

1! hti ! �1.N /! �1.F /! 1;

where the subgroup hti is generated by the S1 –fiber. By Proposition 3.6 the group
�1.F / has the TEA–factorization property. Let e denote the Euler number of the
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S1 –bundle over F and denote by M the total space of the S1 –bundle over the torus
with Euler number e . Then there exists a fiber-preserving map from N to M . Since
�1.M / is TEA we have found a homomorphism from �1.N / to a TEA group which is
injective on hti. Now it is straightforward to see that �1.N / has the TEA–factorization
property.

The above discussion shows that the fundamental groups of many closed graph mani-
folds have the TEA–factorization property. Nonetheless we expect that there are many
closed graph manifolds whose fundamental groups do not have the TEA–factorization
property.

4 Proof of Theorem 1.2, I

The goal of this section is to prove the following proposition.

Proposition 4.1 Let � D hx;y j ri be a cyclically reduced .2; 1/–presentation for the
fundamental group of an irreducible 3–manifold N . Then

PN � P� :

The main ingredient in the proof will be the fact that twisted Reidemeister torsions
corresponding to finite-dimensional complex representations detect the Thurston norm
of 3–manifolds.

4.1 Tensor representations

Let � be a group, let ˛W �! GL.k;C/ be a representation and let  W �!H be a
homomorphism to a free abelian group. We denote by C.H / the quotient field of the
group ring CŒH �. The homomorphisms ˛ and  give rise to the representation

˛˝ W �! GL.k;C.H //; g 7! ˛.g/ � .k/;

which we refer to as the tensor product of ˛ and  . This representation extends to a
ring homomorphism ZŒ��!M.k � k;C.H //, which we also denote by ˛˝ .

4.2 The definition of the twisted Reidemeister torsion

Let X be a finite CW–complex, � WD �1.X /, and denote by zX the universal cover
of X . The action of � via deck transformations on zX equips the chain complex
C�. zX IZ/ with the structure of a chain complex of ZŒ��–left modules.
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Let ˛W � ! GL.k;C/ be a representation. We let  W � !H WDH1.X IZ/=torsion
be the obvious projection map. Using the representation ˛ ˝  we can now view
C.H /k as a right ZŒ��–module, where the action is given by right multiplication on
row vectors.

We consider the chain complex

C�.X IC.H /k/ WDC.H /k ˝ZŒ�� C�. zX IZ/

of C.H /–modules. For each cell in X pick a lift to a cell in zX . We denote by
e1; : : : ; ek the standard basis for C.H /k . The tensor products of the lifts of the cells and
the vectors ei turn C�.X IC.H /k/ into a chain complex of based C.H /–vector spaces.

If the chain complex C�.X IC.H /k/ is not acyclic, then we define the corresponding
twisted Reidemeister torsion �.X; ˛/ to be zero. Otherwise we let �.X; ˛/2C.H /nf0g

be the torsion of the based chain complex C�.X IC.H /k/. We refer to [52] for the
definition of the torsion of a based chain complex. Standard arguments show that
�.X; ˛/2C.H /nf0g is well-defined up to multiplication by an element of the form zh,
where z 2 ˙ det.˛.�// and h 2 H . The indeterminacy arises from the fact that we
had to choose lifts and an ordering of the cells.

Suppose N is a 3–manifold and let ˛W �1.N /!GL.k;C/ be a representation. Choose
a CW–structure X for N and define �.N; ˛/ WD �.X; ˛/. It is well-known (see eg
[52; 25]) that this definition does not depend on the choice of the CW–structure.

4.3 The polytopes corresponding to twisted Reidemeister torsion

As above, suppose N is a 3–manifold and ˛W �1.N /! GL.k;C/ a representation.
If �.N; ˛/ is zero, then we define T .N; ˛/D∅.

Otherwise we write �.N; ˛/D p � q�1 with p; q 2CŒH �. If the Minkowski difference
P.q/�P.p/ exists (and by [25, page 53] this is the case if b1.N /� 2), then we define

T .N; ˛/ WD 1

k
� .P.p/�P.q//;

and otherwise define T .N; ˛/ WD f0g.

Proposition 4.2 Let �Dhx;y j ri be a .2; 1/–presentation for the fundamental group
of an irreducible 3–manifold N . Then for any representation we have

T .N; ˛/� P� :
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In the proof of the proposition we will need one more definition and one more lemma.
Let � be a group, f 2ZŒ��, ˛W �!GL.k;C/ be a representation, and  � W �!H WD

H1.� IZ/=torsion be the canonical epimorphism. Then det..˛˝ �/.f //2CŒH � and
we write

P.f; ˛/ WD 1

k
P
�
det..˛˝ �/.f //

�
�H1.� IR/:

Lemma 4.3 Let � be a group, f 2 ZŒ�� and ˛W �! GL.k;C/ be a representation.
Then

P.f; ˛/� P.f /:

Proof We write f D c1h1C � � �C clhl with h1; : : : ; hl 2 � and c1; : : : ; cl ¤ 0. We
consider

S WD fs1 .g1/C � � �C sl .hl/ j s1; : : : ; sl 2Cg:

Put differently, S is the set of all elements in CŒH � with support some subset of
f .g1/; : : : ;  .gl/g. For every p 2S we have P.p/�P. .g1/; : : : ;  .gl//DP.f /.
This implies that if p1; : : : ;pk are elements in S , then

P.p1 � � �pk/D P.p1/C � � �CP.pk/� P.f /C � � �CP.f /D kP.f /:

We write M WD .˛˝ /.f /D
Pl

iD1 ci˛.hi/ � .hi/. Each entry of det.M / lies in S .
It follows from the Laplace formula that det.M / is a sum of products of the form
p1 � � �pk , where each pi lies in S . By the above we have P.p1 � � �pk/ � kP.f /.
The definitions imply that if a; b 2CŒ�� are such that P.a/ and P.b/ are contained in
a polytope Q, then we have also have P.aC b/�Q. Hence P.det.M //� kP .

Proof of Proposition 4.2 We again denote by  W �1.N /! H1.N IZ/=torsion the
canonical epimorphism. Note that  .x/¤ 0 or  .y/¤ 0. Without loss of generality
we may assume  .y/¤ 0.

Theorem 2.3 shows that N has nontrivial toroidal boundary. It thus follows from [32,
Theorem A] (see also [25, page 50]) that

�.N; ˛/D det..˛˝ /.ry// � det..˛˝ /.y � 1//�1:

By Lemma 4.3 we have P.ry ; ˛/ � P.ry/. Since  .y/ ¤ 0 we know that  .y/
and 1 are the two distinct vertices of P.y � 1/. Also, we have P.y � 1; ˛/ D
1
k
P
�
det.˛.y/ .y/� idk/

�
and it is straightforward to see that this polytope equals

P.y � 1/.

Combining these results we obtain

T .N; ˛/DP.ry ; ˛/�P.y�1; ˛/DP.ry ; ˛/�P.y�1/�P.ry/�P.y�1/DP� :
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4.4 The proof of Proposition 4.1

Proposition 4.1 is an immediate consequence of Theorem 2.3, Proposition 4.2 and the
second statement of the following proposition:

Proposition 4.4 Let N be a 3–manifold with empty or toroidal boundary and let
˛W �1.N /! U.k;C/ be a unitary representation. Then

T .N; ˛/� PN :

Furthermore, if N is irreducible, then there exists a unitary representation

˛W �1.N /! U.k;C/

such that
T .N; ˛/ :D PN :

Proof Let N be a 3–manifold with empty or toroidal boundary. We write �D�1.N /.
Let ˛W �!U.k;C/ be a unitary representation. If �.N; ˛/D 0, then there is nothing
to show. So suppose that �.N; ˛/¤ 0. In [19, Theorem 1.1; 20, Theorem 3.1] it was
shown that for any � 2H 1.N IR/D Hom.�;R/ we have

maxf�.p/��.q/ j p; q 2 T .N; ˛/g � xN .�/:

It follows from the definitions and the discussion in Section 2.2 that T .N; ˛/sym �PN .
Since ˛ is a unitary representation, it follows from [21, Theorem 1.2] that T .N; ˛/sym :

D

T .N; ˛/. It thus follows that indeed T .N; ˛/� PN .

If N is not a closed graph manifold, then, building on Theorem 3.1, it was shown in
[26, Corollary 5.10] that there exists a unitary representation ˛W � ! U.k;C/ such
that

maxf�.p/��.q/ j p; q 2 T .N; ˛/g D xN .�/

for every �2H 1.N IR/. The same argument as above then implies that T .N; ˛/ :DPN .
If N is a closed graph manifold, then the same statement holds by [23].

5 Proof of Theorem 1.2, II

The goal of this section is to prove the following proposition, and to complete the proof
of the main theorem.

Proposition 5.1 Let � D hx;y j ri be a cyclically reduced .2; 1/–presentation for
the fundamental group of an irreducible 3–manifold N . Then

Psym
� � PN :
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In the proof of Proposition 4.1 we used twisted Reidemeister torsions corresponding
to finite-dimensional complex representations. In the proof of Proposition 5.1 we use
a different but related object, namely noncommutative Reidemeister torsions. In this
context they were first studied in [9; 8; 27; 18].

5.1 The Ore localization of group rings and degrees

Let � 2 TEA. It follows from [33, Theorem 1.4] that the group ring ZŒ�� is a domain.
Since � is amenable it follows from [11, Corollary 6.3] that ZŒ�� satisfies the Ore
condition. This means that for any two nonzero elements x; y 2 ZŒ�� there exist
nonzero elements p; q 2 ZŒ�� such that xp D yq . By [41, Section 4.4] this implies
that ZŒ�� has a classical fraction field, referred to as the Ore localization of ZŒ��,
which we denote by K.�/.

Let �W � ! Z be a homomorphism. For every nonzero p D
P

g2� pgg 2 ZŒ�� we
define

deg�.p/Dmaxf�.g/��.h/ j pg ¤ 0 and ph ¤ 0g:

We extend this to all of ZŒ�� by letting deg�.0/D�1. Since ZŒ�� has no nontrivial
zero divisors it follows that for p; q 2ZŒ�� we have deg�.pq/D deg�.p/C deg�.q/.
Given pq�1 2K.�/ we also define

deg�.pq�1/ WD deg�.p/� deg�.q/:

It is straightforward to see that this is indeed well-defined.

5.2 Noncommutative Reidemeister torsion of presentations

Let X be a finite CW–complex with GD�1.X /, and let zX denote the universal cover
of X . As in Section 4.2 we view C�. zX / as a chain complex of left ZŒG�–modules.
Now let 'W G! � 2 TEA be a homomorphism, and consider the chain complex of
left K.G/–modules

C�.X IK.�//DK.�/˝ZŒG� C�. zX /;

where G acts on K.�/ on the right via the homomorphism ' . If C�.X IK.�// is not
acyclic, define the corresponding Reidemeister torsion �.X; '/ to be zero. Otherwise
choose an ordering of the cells of X and for each cell in X pick a lift to zX . This turns
C�.X IK.�// into a chain complex of based K.�/ left-modules and we define

�.X; '/ 2K1.K.�//

to be the Reidemeister torsion of the based chain complex C�.X IK.�//. Here
K1.K.�// is the abelianization of the direct limit limn!1GL.n;K.�// of the general
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linear groups over K.�/ (see [37; 45] for details). We write K.�/� DK.�/ n f0g and
denote by K.�/�ab the abelianization of the multiplicative group K.�/� . The Dieudonné
determinant (see [45]) gives rise to an isomorphism K1.K.�//!K.�/�ab , which we
will use to identify these two groups. The invariant �.X; '/ 2K.�/� is well-defined
up to multiplication by an element of the form ˙g , where g 2 � . Furthermore, it does
not depend on the homeomorphism type of X . We refer to [52; 18; 28] for details.

It follows from deg�.p � q/D deg.p/C deg.q/ for p; q 2K.�/� that deg� descends
to a homomorphism deg� W K.�/

�
ab! Z. In particular deg�.�.X; '// is defined.

Proof of Proposition 5.1 Let N be an irreducible 3–manifold and suppose � D
hx;y j ri is a cyclically reduced .2; 1/–presentation of its fundamental group. Without
loss of generality we may assume that x represents a nonzero element in H WD

H1.N IZ/=torsion. We need to show that P� � PN .

We call � 2 Hom.�;R/ generic if there are vertices v and w of P.ry/ such that �
pairs maximally with v and � pairs minimally with w .

Claim For any generic epimorphism �W �! Z, we have thP�
.�/� xN .�/:

We denote by v and w the (necessarily unique) vertices of P.ry/ such that � pairs
maximally with v and minimally with w . By Corollary 3.4 and Theorem 2.3 there
exists a homomorphism ˛W �1.N /! � 2 TEA such that ˛.rvy � r

w
y /¤ 0. In particular,

˛.rvy /¤ 0 and ˛.rwy /¤ 0. Let  W �!H denote the canonical epimorphism. After
possibly replacing ˛ by ˛� we can and will assume that  factors through ˛ . In
particular � factors through ˛ and ˛.x/ is a nontrivial element in � .

We denote by X the CW–complex corresponding to the presentation � with one 0–cell,
two 1–cells corresponding to the generators x and y and one 2–cell corresponding to
the relator r . As in [24] we have �.N; ˛/D �.X; ˛/. We then have

thP�
.�/D thP.ry/.�/� thP.x�1/.�/

D .�.v/��.w//� j�.x/j

D deg�.˛.ry//� deg�.˛.x/� 1/

D deg�.˛.ry/ �˛.x� 1/�1/

D deg�.�.X; ˛//D deg�.�.N; ˛//� xN .�/:

Here the first two equalities follows from the definitions and the choice of v and w . The
fifth equality is [18, Theorem 2.1] and the last inequality is given by [18, Theorem 1.2]
(see also [8; 27; 53]). This concludes the proof of the claim.
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It is straightforward to see that the nongeneric elements in Hom.�;R/ correspond to a
union of proper subspaces of Hom.�;R/. By continuity and linearity of seminorms
we see that the inequality thP�

.�/ � xN .�/ holds in fact for all � 2 Hom.�;R/. It
follows from the definitions and the discussion in Section 2.2 that Psym

N
� PN .

5.3 Proof of the main theorem

For the reader’s convenience we recall the statement of Theorem 1.2.

Theorem 1.2 Let N be an irreducible 3–manifold that admits a cyclically reduced
.2; 1/–presentation � D hx;y j ri. Then

MN
:
DM� :

Proof It follows from Propositions 4.1 and 5.1 that PN �P� and Psym
� �PN . By the

symmetry of the Thurston norm we also have PN D Psym
N

, and this implies PN
:
D P� .

The fact that the markings agree is an immediate consequence of [24, Theorem 1.1; 4,
Theorem E].

6 Examples

Currently there is no geometric characterization of those 3–manifolds whose fundamen-
tal group may be presented using only two generators and one relator. Waldhausen’s
question [55] of whether the rank of the fundamental group equals the Heegaard
genus gives the conjectural picture that all of these manifolds have tunnel-number
one. Li [34] gives examples of 3–manifolds whose rank is strictly smaller than the
genus, including closed manifolds, manifolds with boundary, hyperbolic manifolds,
and manifolds with nontrivial JSJ decomposition. See also related work of Boileau,
Weidmann and Zieschang [6; 5]. However, Waldhausen’s question remains open for
hyperbolic 3–manifolds of rank 2 and for knot complements in S3 .

6.1 Tunnel-number one manifolds

A tunnel-number one 3–manifold is a 3–manifold obtained by attaching a 2–handle to a
3–dimensional 1–handlebody of genus two. The fundamental group has a presentation
with two generators from the handlebody and one relator corresponding to the attaching
circle of the 2–handle. Theorem 1.2 allows us to compute the unit ball of the Thurston
norm with ease, whilst other methods, such as normal surface theory [51; 10] have
limited scope (see [13]). Moreover, with Theorem 1.2 one can easily construct examples
with prescribed combinatorics or geometry of the unit ball.
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y y

x x

v1

w1

v2

w2

Figure 2: The calculation of @r=@x (right) for Dunfield’s link (left). Center
shows the terms appearing in @r=@x sorted according to their abelianization,
with signs as indicated.

Brown’s algorithm is an essential ingredient in Dunfield and D Thurston’s proof [14] that
the probability of a tunnel-number one manifold fibering over the circle is zero. This can
be paraphrased as: the probability that the unit ball has a nonempty set of marked vertices
is zero. Interesting applications of Theorem 1.2 combined with the methods of [14]
would be further predictions about the unit ball of a random tunnel-number one manifold.

6.2 Knots or links in S 3

Norwood [40] showed that if the complement of a given knot in S3 has fundamental
group generated by two elements, then the knot is prime. The complements of tunnel-
number one knots or links in S3 are tunnel-number one manifolds. This includes
the 2–bridge knots and links, but Johnson [31] showed that there are hyperbolic
tunnel-number one knots with arbitrarily high bridge number. There is a complete
classification of all tunnel-number one satellite knots by Morimoto and Sakuma [39],
and Morimoto [38] also showed that a composite link has tunnel-number one if and
only if it is a connected sum of a 2–bridge knot and the Hopf link.

6.3 Dunfield’s link

We conclude this section with an explicit calculation for the link L shown in Figure 2,
left, which was studied by Dunfield [12]. Write XL WDS3n�L and write � WD�1.XL/

for the link group. Then � has the presentation˝
x;y j x2yx�1yx2yx�1y�3x�1yx2yx�1yxy�1x�2y�1xy�1x�2y�1xy3xy�1

�x�2y�1xy�1x�1y
˛
;

where a meridian for the unknotted component is y�1x�1yx2yx�1yx2yx�1y�3 and
a meridian for the other component is x�1y�1 . Theorem 1.2 implies that P�

:
D PN .
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We use the map induced by x 7! .1; 0/ and y 7! .0; 1/ to identify H1.XLIZ/ D
H1.� IZ/ with Z2 .

A straightforward calculation shows that P.rx/ is the polytope with vertices v1D .0; 1/,
v2 D .2; 3/, w1 D .2; 1/ and w2 D .0;�1/ shown in Figure 2, right. Here v1 and
w1 are opposite vertices of P.rx/ and v2 and w2 are opposite vertices of P.rx/.
Subtracting the underlying polytope of M.y � 1/ from P.rx/ gives P� , and this
agrees (up to translation) with Figure 1. The following computation shows that the
markings are the same:

.rx/
v1 D x2yx�1yx2yx�1y�3x�1yx2yx�1yxy�1x�2y�1xy�1x�2y�1xy3

�xy�1x�2;

.rx/
w1 D x2yx�1yx2yx�1y�3x�1yx;

.rx/
v2 D x2yx�1yx2yx�1.�1Cy�3x�1yx2yx�1y/;

.rx/
w2 D x2yx�1yx2yx�1y�3x�1yx2yx�1yxy�1x�2y�1xy�1x�2y�1

� .1�xy3xy�1x�2y�1xy�1x�1/:

7 A conjecture and a question

7.1 A conjecture

We conjecture that Poincaré duality for the 3–manifold can be seen on the level of
group presentations as follows:

Conjecture 7.1 Let � Dhx;y j ri be a .2; 1/–presentation for the fundamental group
of a 3–manifold. Then there exists u 2

�
1
2
Z
�
2 such that for any vertex v of P.rx/ the

reflection of v in u, ie the point w D u� .v�u/D 2u� v , is also a vertex of P.rx/.
Furthermore we have

.rx/
v
� .�1/b0.@N /�1.rx/w:

The twisted Reidemeister torsions of [25] can be computed in terms of Fox derivatives,
and the symmetry results for twisted Reidemeister torsions proved in [32; 30; 21] give
strong evidence towards this conjecture. Also note that if � is a geometric presentation,
ie if it comes the presentation given by a genus-2 handlebody with a 1–handle attached,
then r is palindromic, ie reads the same forward and backward (see eg [15, Section 5.2]),
and then it is elementary to verify that the conjecture holds.

To give an explicit example, let us return to Dunfield’s link. Given the group G and
p; q 2 ZŒG�, write p � q if there exist g; h 2 G such that p D gqh. Furthermore,

Geometry & Topology, Volume 21 (2017)



Thurston norm via Fox calculus 3781

denote by p 7! xp the involution of ZŒG� defined by the inversion map g 7! g�1 for
each g 2G . We denote by � D hx;y j ri the presentation from Section 6.3. We then
note that

.rx/
v2 ��1Cy�3x�1yx2yx�1y.rx/

w2 � 1�xy3xy�1x�2y�1xy�1x�1:

The relator r is conjugate to

yx2yx�1yx2yx�1.y�3x�1yx2yx�1y/xy�1x�2y�1xy�1x�2y�1

� .xy3xy�1x�2y�1xy�1x�1/:

In particular writing s D yx2yx�1yx2yx�1 we have the following equality in ZŒ��:

.rx/
v2 � s.ry/

v2s�1
D s.�1Cy�3x�1yx2yx�1y/s�1

D�1C .xy3xy�1x�2y�1xy�1x�1/�1

D�.rx/w2 :

7.2 A question

We initially attempted to prove Theorem 1.2 just using twisted Reidemeister torsions
corresponding to finite-dimensional representations, noting that Theorem 1.2 follows
from the first part of Proposition 4.4 together with an affirmative answer to the following
question, which is interesting in its own right.

Question 7.2 Let N be an aspherical 3–manifold and write � D �1.N /. Let p be
a nonzero element in ZŒ��. Does there exist a representation ˛W �! GL.k;C/ such
that det.˛.f //¤ 0?
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The Lp –diameter of the group
of area-preserving diffeomorphisms of S 2

MICHAEL BRANDENBURSKY

EGOR SHELUKHIN

We show that for each p � 1 , the Lp –metric on the group of area-preserving
diffeomorphisms of the two-sphere has infinite diameter. This solves the last open
case of a conjecture of Shnirelman from 1985. Our methods extend to yield stronger
results on the large-scale geometry of the corresponding metric space, completing an
answer to a question of Kapovich from 2012. Our proof uses configuration spaces
of points on the two-sphere, quasimorphisms, optimally chosen braid diagrams, and,
as a key element, the cross-ratio map X4.CP 1/!M0;4 Š CP 1 n f1; 0; 1g from
the configuration space of 4 points on CP 1 to the moduli space of complex rational
curves with 4 marked points.

20F65, 37E30, 53D99; 20F36, 57M07, 57R50, 57S05

1 Introduction and main results

1.1 Introduction

The L2 –length of a path of volume-preserving diffeomorphisms, which describes a
time-dependent flow of an ideal incompressible fluid, corresponds to the hydrodynamic
action of the flow in the same way as the length of a path in a Riemannian manifold
corresponds to its energy; see Shnirelman [41]. Indeed, it is the length of this path
with respect to the formal right-invariant Riemannian metric on the group G of volume-
preserving diffeomorphisms introduced by Arnold in [1]. The L1–length of the same
path has a dynamical interpretation as the average length of a trajectory of a point under
the flow.

Following the principle of least action, it therefore makes sense to consider the infimum
of the lengths of paths connecting two fixed volume-preserving diffeomorphisms. This
gives rise to a right-invariant distance function (metric) on G . Taking the identity
transformation as the initial point, Arnold observes that a path whose L2 –length is
minimal (and equal to the distance) necessarily solves the Euler equation of an ideal
incompressible fluid.
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It follows from works of Ebin and Marsden [18] that for diffeomorphisms in G that
are C 2 –close to the identity, the infimum is indeed achieved. Further, more global
results on the corresponding Riemannian exponential map were obtained in Ebin,
Misiołek and Preston [19] and Shnirelman [42]; see Ebin [17] for additional references.
Shnirelman [40; 41] showed, among a number of surprising facts related to this subject,
that in the case of the ball of dimension 3, the diameter of the L2 –metric is bounded.
This result is known1 to hold for all compact simply connected manifolds of dimension 3

or larger (see Eliashberg and Ratiu [20], Khesin and Wendt [29] and Arnold and Khesin
[3]), while its analogue in the non–simply connected case is false (see Eliashberg and
Ratiu [20] and Brandenbursky [9]). Furthermore, Shnirelman has conjectured that for
compact manifolds of dimension 2, the L2 –diameter is infinite.

In this paper we consider Shnirelman’s conjecture, and its analogues for Lp–metrics,
with p � 1. It follows from results of [20] that on compact surfaces (possibly with
boundary) other than T 2 and S2 , Shnirelman’s conjecture holds for all p � 1. Their
arguments rely on the Calabi homomorphism Cal (see Calabi [14]) from the compactly
supported Hamiltonian group Hamc.†; �/ to the real numbers in the case of a surface †
with nonempty boundary (� is the area form), and on nontrivial first cohomology
combined with trivial center of the fundamental group in the closed case. For the
two-torus T 2 this conjecture of Shnirelman also holds for all p � 1, as can be quickly
seen by the following steps. First, the methods of [20] together with the fact that the
Hamiltonian group Ham.T 2; dx^dy/ is simply connected as a topological space (see
eg Polterovich [35, Chapter 7.2.B]) imply that Ham.T 2; dx^dy/ with the Lp–metric
has infinite diameter (compare with Brandenbursky and Kędra [11, Theorem 1.2]).
Second, the inclusion Ham.T 2; dx^dy/ ,!Diff0.T

2; dx^dy/, the two groups being
equipped with their respective Lp–metrics, is a quasi-isometry (see Proposition A.1).
The case of the two-sphere S2 , to which previous methods do not apply, remained
open.

The case p > 2 (but not that of Shnirelman’s original conjecture!) is well-known, as it
follows from a result of Polterovich [34] regarding Hofer’s metric on Ham.S2/ by an
application of the Sobolev inequality. The authors gave a different proof of this case
by elementary methods in the preprint [12].

The main result of this paper is the unboundedness of the Lp–metric on Ham.S2/ for
all p � 1. This completes a full answer to Shnirelman’s question. Our methods extend
to yield stronger results on the large-scale geometry on the Lp–metric on Ham.S2/.
In particular, we provide bi-Lipschitz group monomorphisms of Rm endowed with
the standard (say Euclidean) metric into .Ham.S2/; dLp / for each positive integer m

1The authors have not found a detailed proof of this generalization in the literature.
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and each p � 1. Moreover, our key technical estimate implies by an argument of
Kim and Koberda [30] (cf Crisp and Wiest [16] and Benaim and Gambaudo [5])
the existence of quasi-isometric group monomorphisms from each right-angled Artin
group to .Ham.S2/; dLp / for each p � 1, completing the resolution of a question of
Kapovich [27] in the case of S2 (the case p > 2 shown in Kim and Koberda uses [12]).

Our methods are two-dimensional in nature, and have to do with braiding and relative
rotation numbers of trajectories of time-dependent two-dimensional Hamiltonian flows
(in extended phase space). We note that Shnirelman has proposed to use relative rotation
numbers to bound from below the L2 –lengths of two-dimensional Hamiltonian paths
in [41]. This direction is related to the method of Eliashberg and Ratiu by a theorem
of Gambaudo and Ghys [22] and Fathi [21] (compare with Shelukhin [39]), stating
that the Calabi homomorphism is proportional to the relative rotation number of the
trajectories of two distinct points in the two-disc D under a Hamiltonian flow, averaged
over the configuration space of ordered pairs of distinct points .x1;x2/ in the two-disc.

This line of research was pursued in Gambaudo and Lagrange [24], Benaim and
Gambaudo [5], Crisp and Wiest [16], Brandenbursky [9], Brandenbursky and Kędra [10]
and Kim and Koberda [30], obtaining quasi-isometric and bi-Lipschitz embeddings of
various groups (right-angled Artin groups and additive groups of finite-dimensional
real vector spaces) into Hamc.D2; dx^dy/ and into ker.Cal/�Hamc.D2; dx^dy/

endowed with their respective Lp–metrics (see Brandenbursky and Kędra [11] for
similar embedding results on manifolds with a sufficiently complicated fundamental
group). In all cases, the key technical estimate is an upper bound, via the Lp–length
of an isotopy of volume-preserving diffeomorphisms, of the average, over all points
in a configuration space of the manifold, of the word length in the fundamental group
of the configuration space of the trace of the point under the induced isotopy (closed
up to a loop by a system of short paths on the configuration space). In this paper we
produce similar estimates for the case of the two-sphere. Our case of Diff0.S

2; �/,
with p � 2, is more difficult than that of ker.Cal/� Hamc.D; dx ^ dy/ because the
necessary analytical and topological bounds require a more global approach and have
to take into account the geometry and topology of the sphere.

In turn, lower bounds on the average word length can often be provided by quasi-
morphisms — functions that are additive with respect to the group multiplication —
up to an error which is uniformly bounded (as a function of two variables). The
quasimorphisms we use were introduced and studied by Gambaudo and Ghys in the
beautiful paper [23]; see also Polterovich [36], Py [37; 38] and Brandenbursky [8].
These quasimorphisms essentially appear from invariants of braids traced out by the
action of a Hamiltonian path on an ordered n–tuple of distinct points in the surface
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(suitably closed up), averaged over the configuration space Xn.†/ of n–tuples of
distinct points on the surface †.

Comparison with [12] The first step in our study of Shnirelman’s conjecture is found
in the unpublished preprint [12], where we saw which elements of the approach of [9]
extend to the case of S2 . There we found that without a key new idea one could only
obtain the necessary estimates for p > 2. The main novelty of this paper consists
indeed of a new geometric idea, which is of independent interest. To wit, we introduce
certain canonical “logarithmic” differential forms on Xn.CP1/, which play a key role
in our arguments. These forms can be considered as analogues for the case of CP1 of
the differential forms of Arnold [2] on Xn.C/. One curious aspect of these forms is
that while in Arnold’s case they appeared from pairs of points, that is from the natural
projections Xn.C/! X2.C/ on pairs of coordinates, in the case of CP1 they are
constructed from quadruples of points, that is from projections Xn.CP1/!X4.CP1/

on quadruples of coordinates. This fits with P2.C/D �1.X2.C//Š �1.C n f0g/D Z
and P4.CP1/D �1.X4.CP1//ŠZ=2Z��1.C nf0; 1g/DZ=2Z� .Z�Z/ being the
first infinite pure braid groups in the two cases.

1.2 Preliminaries

1.2.1 The Lp–metric Let M denote a smooth oriented manifold without boundary
that is either closed, or has M D X n @X for a compact manifold X . Let M be
endowed with a Riemannian metric g and smooth measure � (given by a volume form,
which in our case that M is a surface is an area form � , and orientation on M ). We
require g and � to extend continuously to X in the second case. Finally denote by

G D Diffc;0.M; �/

the identity component of the group of compactly supported diffeomorphisms of M

preserving the smooth measure �.

Fix p � 1. For a smooth isotopy f�tgt2Œ0;1� from �0 D 1 to �1 D � , we define the
Lp–length by

lp.f�tg/D

Z 1

0

�
1

vol.M; �/
�

Z
M

jXt j
p d�

�1=p

dt;

where Xt D
d

dt 0

ˇ̌
t 0Dt

�t 0 ı �
�1
t is the time-dependent vector field generating the iso-

topy f�tg, and jXt j is its length with respect to the Riemannian structure on M .
As is easily seen by a displacement argument, the Lp–length functional determines a
nondegenerate norm on G by the formula

dp.1; �/D inf lp.f�tg/:
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This in turn defines a right-invariant metric on G by the formula

dp.�0; �1/D dp.1; �1�0
�1/:

Remark 1.1 Consider the case p D 1. It is easy to see that the L1–length of an
isotopy is equal to the average Riemannian length of the trajectory f�t .x/gt2Œ0;1� (over
x 2 M , with respect to �). Moreover for each p � 1, by Jensen’s (or Hölder’s)
inequality, we have

lp.f�tg/� l1.f�tg/:

Denote by z1 the identity element of the universal cover zG of G . Similarly one has the
Lp–pseudonorm (that induces the right-invariant Lp–pseudometric) on zG , defined for
z� 2 zG as

dp.z1; z�/D inf lp.f�tg/;

where the infimum is taken over all paths f�tg in the class of z� . Clearly dp.1; �/D
inf dp.z1; z�/, where the infimum runs over all z� 2 zG that map to � under the natural
epimorphism zG! G .

Up to bi-Lipschitz equivalence of metrics (d and d 0 are equivalent if d=C � d 0 � Cd

for a certain constant C > 0) the Lp–metric on G (and its pseudometric analogue
on zG ) is independent of the choice Riemannian structure and of the volume form �

on M . In particular, the question of boundedness or unboundedness of the Lp–metric
enjoys the same invariance property.

Terminology For a positive integer n, we use A;B;C > 0 as generic notation for
positive constants that depend only on M , �, g and n.

1.2.2 Quasimorphisms For some of our results, we require the notion of a quasi-
morphism. Quasimorphisms are a helpful tool for the study of nonabelian groups,
especially those that admit few homomorphisms to R. A quasimorphism r W G!R
on a group G is a real-valued function that satisfies

r.xy/D r.x/C r.y/C br .x;y/;

for a function br W G �G!R that is uniformly bounded:

ı.r/ WD sup
G�G

jbr j<1:

A quasimorphism xr W G!R is called homogeneous if xr.xk/D kxr.x/ for all x 2G

and k 2 Z. In this case, it is additive on each pair x;y 2G of commuting elements:
r.xy/D r.x/C r.y/ if xy D yx .

Geometry & Topology, Volume 21 (2017)
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For each quasimorphism r W G ! R there exists a unique homogeneous quasimor-
phism xr that differs from r by a bounded function:

sup
G

jxr � r j<1:

It is called the homogenization of r and satisfies

xr.x/D lim
n!1

r.xn/

n
:

Denote by Q.G/ the real vector space of homogeneous quasimorphisms on G .

For a finitely generated group G , with finite symmetric generating set S , define the
word norm j � jS W G! Z�0 by

jgjS Dminfk j g D s1 � � � sk for some s1; : : : ; sk 2 Sg

for g 2 G . This is a norm on G , and as such it induces a right-invariant metric
dS W G �G!Z�0 by dS .f;g/D jgf

�1jS . This metric is called the word metric. In
this setting, any quasimorphism r W G! R is controlled by the word norm. Indeed,
for all g 2G ,

jr.g/j �
�
ı.r/Cmax

s2S
jr.s/j

�
� jgjS :

When a specific symmetric generating set S for G can be fixed, we will usually
denote j � jS by j � jG .

We refer to [15] for more information about quasimorphisms.

1.2.3 Configuration spaces and braid groups For a manifold M , which shall in
this paper be usually of dimension 2 and without boundary, the configuration space
Xn.M /�M n of n–tuples of points on M is defined as

Xn.M /D f.x1; : : : ;xn/ j xi ¤ xj ; 1� i < j � ng:

That is,
Xn.M /DM n

n

[
1�i<j�n

Dij ;

where the partial diagonal Dij �M n is defined as Dij D f.x1; : : : ;xn/ j xi D xj g

for 1 � i < j � n. Note that Dij is a submanifold of M n of codimension dim M .
When dim M D 2 and M is endowed with a complex structure, Dij is a complex
hypersurface. Therefore we shall sometimes refer to Dij and D D

S
1�i<j�n Dij as

divisors. Indeed, complex coordinates serve an important role in our arguments.
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Finally we define the pure braid group of M as

Pn.M /D �1.Xn.M //:

Noting that the symmetric group Sn on n elements acts on Xn.M /, we form the
quotient Cn.M /DXn.M /=Sn and define the full braid group of M as

Bn.M /D �1.Cn.M //:

For smooth surfaces M endowed with a complex structure (hence smooth complex
manifolds of complex dimension 1), Cn.M / turns out to inherit the structure of a
smooth complex manifold of complex dimension n.

We note that Pn.M / and Bn.M / enter the exact sequence

1! Pn.M /! Bn.M /! Sn! 1:

In particular Pn.M / is a normal subgroup of Bn.M / of finite index. We refer to
Kassel and Turaev [28] for further information about braid groups.

1.2.4 Short paths and the Gambaudo–Ghys construction Given a real-valued
quasimorphism r on Pn.M /D�1.Xn.M /; q/, for a fixed basepoint q 2Xn.M / there
is a natural way to construct a real-valued quasimorphism on the universal cover zG of
the group GDDiff0.S

2; �/ of area-preserving diffeomorphisms of M DS2 . We shall
see that in our case of M D S2 this induces a quasimorphism on G itself, because
the fundamental group of G is finite. The construction is carried out by the following
steps; see Gambaudo and Ghys [23], Polterovich [36] and Brandenbursky [8].

Step 1 For all x2Xn.S
2/nZ with Z a closed negligible subset (eg a union of subman-

ifolds of positive codimension), choose a smooth path  .x/W Œ0; 1�!Xn.S
2/ between

the basepoint q 2 Xn.S
2/ and x . Make this choice continuous in Xn.S

2/ nZ . We
first choose a system of paths on M DS2 itself, in our case the minimal geodesics with
respect to the round metric, and then consider the induced coordinate-wise paths in M n ,
and pick Z to ensure that these induced paths actually lie in Xn.S

2/. After choosing
the system of paths f .x/gx2Xn.S2/nZ we extend it measurably to all x 2Xn.S

2/

(obviously, no numerical values computed in the paper will depend on this extension).
We call the resulting choice a “system of short paths”.

Step 2 Given a path f�tgt2Œ0;1� in G starting at Id, and a point x 2Xn.S
2/, consider

the path f�t �xg, to which we then concatenate the corresponding short paths. That is,
consider the loop

�.x; f�tg/ WD  .x/ # f�t �xg #  .y/�1

Geometry & Topology, Volume 21 (2017)
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in Xn.S
2/ based at q , where �1 denotes time reversal, and y D �1 � x . Hence we

obtain for each x 2Xn.S
2/nZ\.�1/

�1.Z/ an element Œ�.x; f�tg/�2�1.Xn.S
2/; q/

(or rather for each x 2Xn.S
2/ after the measurable extension in Step 1).

Step 3 Consequently applying the quasimorphism r W �1.Xn.S
2/; q/!R we obtain

a measurable function f W Xn.S
2/ ! R. Namely, f .x/ D r.Œ�.x; f�tg/�/. The

quasimorphism ˆ on zG is defined by

ˆ.Œf�tg�/D

Z
Xn.S2/

f d�˝n:

It is immediate to see that this function is well-defined for topological reasons. The
quasimorphism property follows by the quasimorphism property of r combined with
finiteness of volume. The fact that the function f is absolutely integrable can be
shown to hold a priori by a reduction to the case of the disc. We note, however, that by
Tonelli’s theorem this fact follows as a byproduct of the proof of our main theorem,
and therefore requires no additional proof.

Step 4 Of course our quasimorphism can be homogenized, to obtain a homogeneous
quasimorphism x̂ .

Remark 1.2 In our case, by the result of Smale [43], �1.G/ D Z=2Z, and hence
the quasimorphisms descend to quasimorphisms on G , eg by minimizing over the
two-element fibers of the projection zG ! G . For x̂ , the situation is easier since by
homogeneity it vanishes on �1.G/�Z.zG/, and therefore depends only on the image
in G of an element in zG . We keep the same notation for the induced quasimorphisms.

1.2.5 The cross-ratio map Recall that S2 can be identified with CP1 , and the latter
has an affine chart u0W C! CP1 with u0.z/ D Œz; 1� in homogeneous coordinates,
whose image is the complement of the point 1 WD Œ1; 0�.

The cross-ratio map is given by the natural2 projection

X4.CP1/!M0;4 DX4.CP1/=PSL.2;C/:

Composing it with the isomorphism M0;4 Š CP1 n f1; 0; 1g Š C n f0; 1g given by
the inverse of the map u 7! Œ.1; 0; 1;u/�, we obtain a map

crW X4.CP1/!C n f0; 1g:

In other words cr.x1;x2;x3;x4/ D A.x4/ for the unique map A 2 PSL.2;C/ with
A.x1/D1; A.x2/D 0; A.x3/D 1.

2Recall that the holomorphic automorphism group of CP1 is isomorphic to PSL.2;C/ acting by
fractional-linear transformations.
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In homogeneous coordinates, for .x1;x2;x3;x4/ 2 X4.CP1/ where xj D Œzj ; wj �

for 1� j � 4, the map cr is given by

cr.x1;x2;x3;x4/D
.z1w3� z3w1/.z2w4� z4w2/

.z2w3� z3w2/.z1w4� z4w1/
:

In the affine chart u0 �u0 �u0 �u0 it looks like

cr.z1; z2; z3; z4/D
.z1� z3/.z2� z4/

.z2� z3/.z1� z4/
:

The cross-ratio map allows us to write down a diffeomorphism (in fact isomorphism of
quasiprojective varieties)

cW Xn.CP1/ �!� X3.CP1/�Xn�3.C n f0; 1g/;

.Ex;y1; : : : ;yn�3/ 7! .Ex; cr.Ex;y1/; : : : ; cr.Ex;yn�3//;

where Ex D .x1;x2;x3/ denotes a point in X3.CP1/ and cr.Ex;y/D cr.x1;x2;x3;y/

is the cross-ratio map. Later we shall see that this diffeomorphism is precisely what
makes the proofs work, as it allows one to use the affine structure on C �C n f0; 1g.

Note that
�c WD pr2B cW Xn.CP1/!Xn�3.C n f0; 1g/;

where pr2W X3.CP1/�Xn�3.C n f0; 1g/!Xn�3.C n f0; 1g/ is the projection to the
second factor, is simply a coordinate description of the natural projection

Xn.CP1/!M0;n ŠXn.CP1/=PSL.2;C/:

Finally, note that c induces an isomorphism c#W Pn.CP1/!Z=2Z�Pn�3.Cnf0; 1g/
on fundamental groups (recall that P3.CP1/Š �1.PSL.2;C//Š Z=2Z).

1.2.6 Differential 1–forms on configuration spaces Using the isomorphism c , we
introduce special differential 1–forms on Xn.CP1/ for n� 4, that we consequently use
as an intermediate step in our results. Denote by u1; : : : ;un�3 the affine coordinates
on Cn�3 � .C n f0; 1g/n�3 �Xn�3.C n f0; 1g/. For each element � 2 I of an index
set

I D f.i I 0/g1�i�n�3[f.i I 1/g1�i�n�3[f.ij /g1�i¤j�n�3;

define an R–valued differential 1–form on Xn�3.C n f0; 1g/ by

�� D
1

2�
Im.˛�/;

with

˛iI0 D
dui

ui
; ˛iI1 D

d.ui � 1/

ui � 1
; ˛ij D

d.ui �uj /

ui �uj
:
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Finally, define
z�� D .�c/

��� 2�
1.Xn.CP1/;R/;

for each � 2 I .

For a 1–form � on a manifold Y and a smooth parametrized path  W Œ0; 1�! Y , setZ


j� j WD

Z 1

0

j�.t/. P .t//j dt:

Clearly, for a smooth loop  we have j
R
 � j �

R
 j� j. Moreover,

R
 j� j D

R
�1 j� j,

where �1 is the time-reversal of  .

1.3 Main results

Our main technical result is:

Theorem 1.3 For an isotopy x� D f�tg in G , the average word norm of a trajectory
�.x; x�/ is controlled by the L1–length of x� :

W .x�/D

Z
Xn.CP1/nZ\.�1/�1.Z/

jŒ�.x; x�/�jPn.S2/ d�˝n.x/�A � l1.x�/CB

for certain constants A;B > 0.

Remark 1.4 Note that W .x�/ depends only on the class z� D Œx�� 2 zG of x� in the
universal cover zG of G .

Theorem 1.3 has a number of consequences concerning the large-scale geometry of
the L1–metric on G . Firstly, as any quasimorphism on a finitely generated group is
controlled by the word norm, we immediately obtain the following statement.

Corollary 1.5 The homogenization x̂ of each Gambaudo–Ghys quasimorphism ˆ

satisfies
j x̂ .�/j � C � d1.�; 1/:

By a theorem of Ishida [26], the composition Q.Bn.S
2//!Q.Pn.S

2//
GG
��!Q.G/,

where the first arrow is the natural restriction map and the second is the Gambaudo–
Ghys map, is an embedding. Hence for n� 4, by results of Bestvina and Fujiwara [6],
Q.G/ is an infinite-dimensional vector space. Thus by Corollary 1.5 the diameter of G
with the L1–distance is infinite.

Corollary 1.6 The L1–diameter of G is infinite.

Considering certain special examples of Gambaudo–Ghys quasimorphisms, and their
calculations for certain autonomous flows, as in [12], we find for each integer k � 1 a k –
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tuple of homogeneous Gambaudo–Ghys quasimorphisms f x̂ ig1�i�k and a k –tuple of
commuting autonomous Hamiltonian flows (one-parameter subgroups) ff�t

i gt2Rg1�i�k

such that x̂ i.�
t
j /D tıij . This implies the following stronger statement.

Corollary 1.7 The metric group .G; d1/ admits a bi-Lipschitz group monomorphism
from .Rk ; d/, where d is any metric on Rk induced by a vector-space norm.

Moreover, by an argument of Kim and Koberda [30] (cf Benaim and Gambaudo [5]
and Crisp and Wiest [16]), Theorem 1.3 implies the following statement, finishing an
answer to a question of Kapovich [27] in the case of S2 .

Corollary 1.8 The metric group .G; d1/ admits a quasi-isometric group embedding
from each right-angled Artin group endowed with the word metric.

Remark 1.9 We note that Corollary 1.8 implies Corollary 1.6, providing the latter
with a proof that does not use quasimorphisms.

Finally, Proposition 2.7 in [13] combined with Corollary 1.5 implies the following.

Corollary 1.10 For each positive integer k , the complement in G of the set Autk of
products of at most k autonomous diffeomorphisms contains a ball of any arbitrarily
large radius in the L1–metric.

Remark 1.11 Let p � 1. By Jensen’s (or Hölder’s) inequality we have

d1 � dp;

hence all the results above for d1 continue to hold for dp .

1.4 Outline of the proof

Theorem 1.3 is an immediate consequence of the following lemma and two proposi-
tions. The lemma states that for our purposes two different choices of short paths are
equivalent.

Lemma 1.12 Choosing as short paths the component-wise affine segments  0.x/ in
the chart u0� � � � �u0W C

n!CPn to the basepoint, obtain from the isotopy x� D f�tg

another family of loops �0.x; x�/ for x 2Xn.CP1/ nZ0\ .�1/
�1.Z0/, for a different

negligible subset Z0 , and hence another average word norm function

W 0.x�/D

Z
Xn.CP1/nZ 0\.�1/�1.Z 0/

jŒ�0.x; x�/�jPn.S2/ d�˝n.x/:

Then jW .x�/�W 0.x�/j � C , for a constant C depending only on the systems of paths.
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The first proposition is a purely topological fact about the word norm of the classes of
loops in the fundamental group of the configuration space.

Proposition 1.13 Let � be a piecewise C 1 loop in Xn.S
2/ based at q . Let S be a

finite generating set of Pn.S
2/. The word norm of the class Œ�� 2 �1.Xn.S

2/; q/ Š

Pn.S
2/ with respect to S satisfies

jŒ��jS �A0 �

X
�2I

Z
�

jz�� jCB0

for constants A0;B0 > 0 depending only on S and on n.

The second lemma is purely analytical and relies on the fact that we work with area-
preserving diffeomorphisms, as well as on the fact that the differential forms we
consider have integrable singularities near the divisors of .CP1/n that we excise to
obtain Xn.CP1/.

Proposition 1.14 There exist constants A1;B1 > 0, depending only on n, such that
for each � 2 I ,Z

Xn.CP1/nZ

�Z
�.x;x�/

jz�� j

�
d�˝n.x/ � A1 � l1.x�/CB1:
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2 Proofs

Proof of Proposition 1.13 Let x� be a loop in Xn�3.C n f0; 1g/ based at xq D �c.q/.
We first claim that the word norm of Œx�� in Pn�3.C n f0; 1g/Š �1.Xn�3.C n f0; 1g//
satisfies

(1) jŒx��jPn�3.Cnf0;1g/ �A2 �

X
�2I

Z
x�

j�� jCB2

for A2;B2 > 0. Proposition 1.13 follows immediately from this statement by setting
x� D �c ı �, since the map Pn.CP1/! Pn�3.C n f0; 1g/ induced by �c is a quasi-
isometry (note that it is identified with the projection Z=2Z � Pn�3.C n f0; 1g/!
Pn�3.C n f0; 1g/ to the second factor, under the isomorphism given by c ).

We require the following two lemmas from geometric group theory.

Lemma 2.1 The natural map eW Pn�3.C n f0; 1g/! Pn�1.C/ induced by adding
constant strands at the punctures f0; 1g is a quasi-isometric embedding of groups.

Lemma 2.2 The inclusion Pn�1.C/! Bn�1.C/ is a quasi-isometric embedding of
groups.

Lemma 2.2 is a consequence of a general fact about cocompact group actions [25,
Corollary 24], as Pn�1 is a subgroup of finite index in Bn�1 . Lemma 2.1 is rather
special to our case, and hence we provide a proof.

Proof of Lemma 2.1 The map eW Pn�3.Cnf0; 1g/!Pn�1.C/ fits into the following
exact sequence [28]:

1! Pn�3.C n f0; 1g/! Pn�1.C/! P2.C/! 1:

Note that P2.C/ŠZ. Moreover the generator z of the center Z.Pn�1.C// of Pn�1.C/
maps to a generator 1 2 Z of P2.C/. Hence mapping 1 to z determines a section for
Pn�1.C/! P2.C/ that yields an isomorphism between the above exact sequence and

1! Pn�3.C n f0; 1g/! Pn�3.C n f0; 1g/�Z! Z! 1;

the first map taking the form x 7! .x; 0/, and the second map being the projection to
the second coordinate. The statement follows.

Consider the geometric braid x� and add two constant strands at 0 and 1. Call the new
geometric braid x�0 . It is now a loop in Xn�1.C/ based at xq [ f0; 1g. We show that
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for any geometric braid ˇ in Xn�1.C/ based at xq[f0; 1g, its word norm in Bn�1.C/
satisfies

(2) jŒˇ�jBn�1.C/ �A3 �

X
1�i<j�n�1

Z
ˇ

j� 0ij jCB3

for some A3;B3 > 0 and

� 0ij D
1

2�
Im
�

d.ui �uj /

ui �uj

�
for 1� i ¤ j � n� 1. Note that the forms f� 0�0g�02I 0 with

I 0 D f.ij / j 1� i < j � n; .i; j /¤ .n� 2; n� 1/g

pull back to f��g�2I under the natural embedding Xn�3.Cnf0; 1g/!Xn�1.C/ given
by .u1; : : : ;un�3/ 7! .u1; : : : ;un�3; 0; 1/, and the form �n�2;n�1 pulls back to the
zero form. Hence by Lemmas 2.1 and 2.2 estimate (2) implies estimate (1).

For 1� i ¤ j � n� 1, let

pij W Xn�1.C/!X2.C/; .u1; : : : ;un�1/ 7! .ui ;uj /

be the natural projection on the respective pair of coordinates. Note that � 0ij D p�ij� ,
with � D 1

2�
Im.d.u� v/=.u� v//. Hence we have

R
ˇ j�
0
ij j D

R
ˇij
j� j, where ˇij D

pij ı ˇ , and moreover the following equality holds by the co-area formula; see [32,
Theorem 5.1.12] or [24].

For almost all ! 2 S1 , the quantity

nij .!/D #
�

t 2 Œ0; 1/
ˇ̌̌ pi ıˇ.t/�pj ıˇ.t/

jpi ıˇ.t/�pj ıˇ.t/j
D ! 2 S1

�
is finite, and defines an L1–function with normZ

S1

nij .!/ dm.!/D

Z
ˇ

j� 0ij j

for m the Haar (Lebesgue) measure on S1 . Note that (see [9; 10]) nij .!/ is the
number of times that the i th strand crosses over the j th strand in the diagram of the
braid ˇ obtained by projection in the direction ! .

We claim that there exist a constant C (which depends only on n) and ! 2 S1 such
that for all 1� i; j � n� 1,

nij .!/� C

Z
ˇ

j� 0ij j
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and all crossings are transverse. Indeed, if nij does not have vanishing L1–norm, by
Markov’s (or Chebyshev’s) inequality (see [31, Section 29.2, Theorem 5]) we estimate

m

��
! 2 S1

ˇ̌̌
nij .!/� C

Z
ˇ

j� 0ij j

��
�

1

C
:

Hence any C > .n� 1/.n� 2/ would be sufficient to ensure that the intersection\
1�i¤j�n�1

�
! 2 S1

ˇ̌̌
nij .!/� C

Z
ˇ

j� 0ij j

�
has positive measure and hence is nonempty. Moreover, clearly the set of all ! for
which all crossings are transverse has full measure.

Hence, from the !–projection diagram of the braid ˇ we get a presentation of ˇ as a
word in the full braid group Bn.C/, generated by say the half-twists, that has exactly
one generator for each overcrossing. Hence

jŒˇ�jBn�1.C/ �
X
i¤j

nij .!/� 2C
X
i<j

Z
ˇ

j�ij j:

This finishes the proof.

Proof of Lemma 1.12 For a subset W of Xn.CP1/, set W�1
WDW \ .�1/

�1.W /.
We note that for any negligible subset Z00 of Xn.CP1/,

W .x�/D

Z
Xn.CP1/n.Z�1

[Z 0
�1
[Z 00

�1
/

jŒ�.x; x�/�jPn.CP1/ d�˝n.x/;

W 0.x�/D

Z
Xn.CP1/n.Z�1

[Z 0
�1
[Z 00

�1
/

jŒ�0.x; x�/�jPn.CP1/ d�˝n.x/;

whether these integrals are finite or not (simply by the definition of the Lebesgue
integral).

Hence it is sufficient to show that there exists a constant C , depending only on the
systems of paths and a negligible subset Z00 of Xn.CP1/, such that for each x in

Xn.CP1/ n .Z�1
[Z0�1

[Z00�1
/DCn

n ..Cn
\Z�1

/[ .Cn
\Z0�1

/[ .Cn
\Z00�1

//

we have
ˇ̌
jŒ�0.x; x�/�jPn.CP1/� jŒ�.x;

x�/�jPn.CP1/

ˇ̌
� C .

And indeed we see that

Œ�.x; x�/�D Œı.�1 �x/�
�1Œ�0.x; x�/�Œı.x/�
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for ı.x/D  .x/# x 0.x/ and Œı.x/�Pn.CP1/�C , as can be seen by direct calculation on
braid diagrams in C . Indeed, as spherical geodesics map to circular arcs or affine rays
under stereographic projection, and the latter happens for x in a negligible subset Z00

of Cn n ..Cn\Z/[ .Cn\Z0//, considering for x 2Xn.CP1/ n .Z [Z0[Z00/ the
diagram of the geometric braid ı.x/ in a generic direction ! 2S1 , we see that it has at
most 4

�
n
2

�
C
�
n
2

�
crossings, corresponding to the  .x/ and x 0.x/ parts of the geometric

braid. Therefore Œı.x/�Bn.C/ � 5
�
n
2

�
. However, Œı.x/�Pn.C/ �A � Œı.x/�Bn.C/CB for

constants A;B>0 (see Lemma 2.2 below), and obviously Œı.x/�Pn.CP1/� Œı.x/�Pn.C/ .
This finishes the proof.

Proof of Proposition 1.14 We proceed to prove the analytic estimate on averages.
First we show that for each � 2 I , the integral of jz�� j on each of the short paths is
universally bounded.

Lemma 2.3 For each � 2 I and x 2Xn.CP1/ nZ0 , we have
R
 0.x/j

z�� j � C .

Proof of Lemma 2.3 Recall that by definition of  0.x/, we work in the chart Cn .
Since  0.x/ is a component-wise affine segment, any linear function h D zi � zj

composed with  0.x/ is an affine segment in C n f0g. Therefore
R
 0.x/jdh=hj � � .

By the definition of z�� (see (3) below) we obtain
R
 0.x/j

z�� j �
1

2�
� 6 � � D 3 for all

� 2 I .

By Lemma 2.3 it is sufficient to give a bound onZ
Xn.CP1/nZ 0

�Z
x��x

jz�� j

�
d�˝n.x/;

which by preservation of area and continuity can be rewritten asZ 1

0

�Z
Xn.CP1/

jz��.X
˚n
t /j.x/ d�˝n.x/

�
dt:

As the integrands are nonnegative, Tonelli’s theorem ensures that one can change the
order of integration without knowing in advance that the integrals converge.

We note that the above calculation is the only place in the proof that uses area-
preservation.

Now note that under the standard stereographic projection, the lower hemisphere in S2

is identified with the standard unit disk D D fjzj � 1g in C . This embeds as

H0 D f Œz; 1� j jzj � 1g
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in CP1 under the standard affine chart u0W C �!
� U0 containing the point Œ0; 1�.

Similarly, the upper hemisphere is identified with the subset

H1 D fŒ1; w� j jwj � 1g

of the image of the affine chart u1W C �!� U1 in CP1 . Moreover, CP1 is the
measure-disjoint union of H0 and H1 .

Let us write .CP1/n D
S
�2f0;1gn H� as a measure-disjoint union of products H� D

H�1
� � � � �H�n

of hemispheres. Let e� denote the isomorphism

e� D e�1
� � � � � e�n

W Dn
DD� � � � �D!H�;

where e�j D u�j jDW D!H�j for 1� j � n are given by the embeddings above. Write
H 0� DH�\Xn.CP1/ and �� D e�1

� .H� nH 0�/. Put xe� D e�jH 0� W D
n n��!H 0� . ThenZ

Xn.CP1/

jz��.X
˚n
t /j.x/ d�˝n.x/D

X
�2f0;1gn

Z
H 0�

jz��.X
˚n
t /j.x/ d�˝n.x/:

Write Z
H 0�

jz��.X
˚n
t /j.x/ d�˝n.x/D

Z
Dnn��

j.xe�/
�z��.e

�
�X˚n

t /j.x/ de�� .�
˝n/:

Note that e��X˚n
t D e��1

Xt ˚� � �˚ e��n
Xt , and that for each � 2 I we have .xe�/�z�� D

1
2�

Im.df�;�=f�;�/ with f�;� D l1l2=.l3l4/ or f�;� D l1l2l3=.l4l5l6/, with each lk of
the form a� b or ab� 1, where a and b are natural coordinates on two of the factors
in the product Dn . From now on, we focus on the second case, since the first case
is simpler and is treated analogously. We state it more precisely: if .a1; : : : ; an/ are
natural coordinates on Dn , then �� D

S
1�i<j�nfhij D 0g, with hij D ai � aj if

�i D �j and hij D aiaj � 1 if �i ¤ �j , and for each 1� k � 6 we have lk D hij for
some 1� i < j � n. Indeed, this follows immediately from the identities

cr.x1;x2;x3;x4/� 1D� cr.x1;x3;x2;x4/D
.z1w2� z2w1/.z3w4� z4w3/

.z2w3� z3w2/.z1w4� z4w1/

and

cr.x1;x2;x3;x4/�cr.x1;x2;x3;x5/D
.z1w3� z3w1/.z1w2� z2w1/.z5w4� z4w5/

.z2w3� z3w2/.z1w4� z4w1/.z1w5� z5w1/

for xj D Œzj ; wj � in homogeneous coordinates on CP1 for 1� j � 5.

We record the formula

(3) .xe�/
�z�� D

1

2�
Im
�

dl1

l1
C

dl2

l2
C

dl3

l3
�

dl4

l4
�

dl5

l5
�

dl6

l6

�
;
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which follows immediately from the above discussion. From (3) it follows that it is
sufficient to estimateZ

D�DnfhijD0g

ˇ̌̌̌
dhij

hij

ˇ̌̌̌
.e��i

Xt ˚ e��jXt /.e�i
� e�j /

� d�˝2

for each 1� i < j � n.

The pullback j � jSph D e�� j � jS2 for � 2 f0;1g of the metric on the sphere in either of
the coordinate charts is equal to

.j � jSph/� D .1Cj�j
2/�1
j � jEucl:

Abbreviating j � jEucl D j � j we therefore have, for all � 2D ,

1
2
j � j � j � jSph � j � j:

Hence in order to obtain an estimate via
R

Dj.e
�
�k

Xt /jSph d� for 1�k�n, it is sufficient
to estimate via

R
Dj.e

�
�k

Xt /j d�.

Hence it is sufficient to estimateZ
D2nfa�bD0g

ˇ̌̌̌
d.a� b/

a� b

ˇ̌̌̌
.At ˚Bt / d�˝2

or Z
D2nfab�1D0g

ˇ̌̌̌
d.ab� 1/

ab� 1

ˇ̌̌̌
.At ˚Bt / d�˝2:

Here
d�.�/D 2.1Cj�j2/�2 dm.�/

is the pullback of the spherical measure to D by any of the maps e�j (note that the
map CP1!CP1 given by Œz; w� 7! Œw; z� is an isometry of the spherical metric, and
hence preserves the volume form), and At ;Bt are e��i

Xt ; e
�
�j

Xt for appropriate i; j .

Start with Z
D2nfa�bD0g

jAt .a/�Bt .b/j

ja� bj
d�.a/ d�.b/:

We apply the triangle inequality jAt .a/�Bt .b/j � jAt .a/j C jBt .b/j, and estimate
the two resulting terms separately. Since they are estimated analogously, we show the
estimate for the first term only. We haveZ

D

Z
D

jAt .a/j

ja� bj
d�.b/ d�.a/D

Z
D
jAt .a/j

�Z
D

1

ja� bj
d�.b/

�
d�.a/

� C �

Z
D
jAt .a/j d�.a/;
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since Z
D

1

ja� bj
d�.b/� 2

Z
D

1

ja� bj
dm.b/� 8� D C:

We continue with Z
D2nfab�1D0g

jaBt .b/�At .a/bj

jab� 1j
d�.a/ d�.b/:

Using the triangle inequality in the numerator, we estimate the two terms separately.
Consider for example the first term. The estimate proceeds analogously to the previous
case, the only difference being the following calculation. Writing a� D 1=a, we
compute Z

D

jaj

jab� 1j
d�.a/D

Z
fja�j�1g

1

jb� a�j
d�.a�/� C:

Indeed, write the last integral as the sum of the integrals over the measure-disjoint
subsets f1� ja�j � 2g and fja�j � 2g of C . Then we estimateZ

fja�j�2g

1

jb� a�j

1

.1Cja�j2/2
dm.z/�

Z
fja�j�2g

1

jb� a�j
dm.a�/

�

Z
fjb�a�j�3g

1

jb� a�j
dm.b� a�/

D 6�;

and, recalling that jbj � 1,Z
fja�j�2g

1

ja�� bj

1

.1Cja�j2/2
dm.a�/�

Z
fja�j�2g

1

ja�j � jbj

1

.1Cja�j2/2
dm.a�/

�

Z
fja�j�2g

2

ja�j

1

.1Cja�j2/2
dm.a�/

D C1 <1:

This gives us an estimate as required, with C D 12� C 2C1 .

3 Examples of quasimorphisms and bi-Lipschitz embeddings
of vector spaces

For ˛ 2 Pn D Pn.C/ we denote by y̨ the n–component link which is a closure of ˛ ;
see Figure 1.

Let signnW Pn!Z be a map such that signn.˛/D sign.y̨/, where sign is the signature
invariant of links in R3 . Gambaudo and Ghys [23] showed that signn defines a
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˛

Figure 1: Closure y̨ of a braid ˛

quasimorphism on Pn ; see [8] for a different proof. We denote by signnW Pn ! R
the induced homogeneous quasimorphism. Recall that the center of Pn is isomorphic
to Z. Let �n be a generator of the center of Pn . It is a well-known fact that Pn.S

2/

is isomorphic to the quotient of Pn�1 by the cyclic group h�2
n�1
i; see [7]. Let

lknW Pn! Z be a restriction to Pn of a canonical homomorphism from Bn D Bn.C/
to Z which takes value 1 on each Artin generator of Bn . Let sn�1W Pn�1!R be a
homogeneous quasimorphism defined by

sn�1.˛/ WD signn�1.˛/�
signn�1.�n�1/

lkn�1.�n�1/
lkn�1.˛/:

Since sn�1.�n�1/D 0, the homogeneous quasimorphism sn�1 descends to a homo-
geneous quasimorphism xsnW Pn.S

2/! R. Note that xs2 and xs3 are trivial because
P2.S

2/ and P3.S
2/ are finite groups.

For each n� 4, let
SignnW Diff0.S

2; �/!R

be the induced homogeneous quasimorphism. In [23, Section 5.3] Gambaudo and Ghys
evaluated quasimorphisms Sign2n on a family of diffeomorphisms

f! W S
2
! S2

such that f!.1/D1 and f!.x/D e2i�!.jxj/x ; here S2 is identified with C[f1g
and !W RC!R is a function which is constant in a neighborhood of 0 and outside
some compact set. Let a.r/ be the spherical area (with the normalization vol.C/D 1)
of the disc in C with radius r centered at 0. Set uD 1� 2a.r/ and let z!.u/D !.r/.
In [23, Lemma 5.3] Gambaudo and Ghys showed that for each n� 2,

(4) Sign2n.f!/D
n

2

Z 1

�1

.u2n�1
�u/z!.u/ du:
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Proof of Corollary 1.7 Let H! W S
2!R be a smooth function supported away from

the f1g point and ft;! be a Hamiltonian flow generated by H! , such that f1;! D f! .
Since ft;! is an autonomous flow, by (4) we have

Sign2n.ft;!/D t
n

2

Z 1

�1

.u2n�1
�u/z!.u/ du:

Let d 2 N . It follows from (4) that it is straightforward to construct a family of
functions !i W RC!R and fH!i

gd
iD1

supported away from the f1g point such that:
� Each Hamiltonian flow ft;!i

is generated by H!i
and f1;!i

D f!i
.

� The functions fH!i
gd
iD1

have disjoint support and hence the diffeomorphisms
ft;!i

and fs;!j commute for all s; t 2R, 1� i; j � n.
� The .d � d/ matrix0B@ Sign4.f1;!1

/ � � � Sign4.f1;!d
/

:::
: : :

:::

Sign2dC2.f1;!1
/ � � � Sign2dC2.f1;!d

/

1CA
is nonsingular.

It follows that there exists a family f x̂ ig
d
iD1

of homogeneous quasimorphisms on
Diff0.S

2; �/ such that x̂ i is a linear combination of Sign4; : : : ;Sign2dC2 and

(5) x̂
i.ft;!j /D

�
t if i D j ;

0 if i ¤ j:

Let I W Rd ! Diff0.S
2; �/ be a map such that

I.v/ WD fv1;!1
ı � � � ıfvd ;!d

for v D .v1; : : : ; vd /. It follows from the construction of ffvi ;!i
gd
iD1

that I is a
monomorphism. Let A0p WDmaxi lp.fft;!i

g0�t�1/. Then

kfv1;!1
ı � � � ıfvd ;!d

kp �A0pkvk;

where kvk D
Pd

iD1 jvi j and k � kp D dp. � ; 1/ denotes the Lp–norm.

The diffeomorphisms fv1;!1
; : : : ; fvd ;!d

pairwise commute. Hence, for each 1� i �d ,
by Corollary 1.5 and Equation (5) we have

kfv1;!1
ı � � � ıfvd ;!d

kp �A�1
p j
x̂

i.fv1;!1
ı � � � ıfvd ;!d

/j DA�1
p � jvi jj

x̂
i.f1;!i

/j;

where Ap is the maximum over the Lipschitz constants (in Corollary 1.5) of the
functions

x̂
i W Diff0.S

2; �/!R:
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It follows that

kfv1;!1
ı � � � ıfvd ;!d

kp �
�
.d �Ap/

�1 min
i
j x̂ i.f1;!i

/j
�
kvk D .d �Ap/

�1
kvk;

and the proof is complete.

Appendix: The case of the torus

The proof of [20, Theorem A.1] or [11, Theorem 1.2] applied to Ham.T 2; dx ^ dy/,
combined with the fact that Ham.T 2; dx ^ dy/ is simply connected as a topological
space (see [35, Chapter 7.2.B]) shows that the diameter of .Ham.T 2; dx ^ dy/; dL1/

is infinite. Hence by Remark 1.11, the following statement implies that the diameter of
.Diff0.T

2; dx ^ dy/; dLp / is infinite for all p � 1.

Proposition A.1 The inclusion .Ham.T 2; dx^dy/; dL1/ ,!.Diff0.T
2; dx^dy/; dL1/

is a quasi-isometry.

Proof of Proposition A.1 We equip the torus T 2 with the standard flat Riemannian
metric. We use the following instance of the flux exact sequence (see [4; 33]):

1! Ham.T 2; dx ^ dy/
�
�! Diff0.T

2; dx ^ dy/
Flux
��! T 2

! 1:

It has the property that the monomorphism � W T 2 ! Diff0.T
2; dx ^ dy/ given by

�.a; b/W .x;y/ 7! .xC b;y � a/ satisfies Flux B� D 1T 2 . In particular,

Diff0.T
2; dx ^ dy/D Ham.T 2; dx ^ dy/ � �.T 2/:

However, dL1.�.a; b/; 1/� 1=
p

2 for all .a; b/ 2 T 2 , as is verified in an elementary
manner. In particular, �W Ham.T 2; dx^dy/!Diff0.T

2; dx^dy/ has coarsely dense
image.

We proceed to prove that � is a bi-Lipschitz group monomorphism. First, ��dL1 � dL1

is immediate by definition of the L1–distance. We claim that c �dL1 � ��dL1 for some
0< c < 1. By right-invariance, it is sufficient to show that c �dL1.h; 1/� dL1.�.h/; 1/

for all h 2 Ham.T 2; dx ^ dy/. Consider a smooth path Œ0; 1�! Diff0.T
2; dx ^ dy/

such that t 7! gt with g0 D 1 and g1 D �.h/. Look at the path

Œ0; 1�! Diff0.T
2; dx ^ dy/; t 7! �t D � ıFlux.gt /:

Notice that in fact it is a loop based at 1 2 Diff0.T
2; dx ^ dy/. We shall prove the

following estimate of L1–lengths.

Claim 1 We have l1.f�
�1
t g/� c0 � l1.fgtg/ for some c0 > 0.
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We defer the proof of this claim to the end of the section. Define the path

Œ0; 1�! Ham.T 2; dx ^ dy/; t 7! ht D �
�1.��1

t gt /;

with h0 D 1 and h1 D h. Then, since �t are isometries, we see that

l1.fhtg/� l1.f�
�1
t g/C l1.fgtg/� .1C c0/ � l1.fgtg/;

by Claim 1. This finishes the proof, with c D .1C c0/
�1 .

Proof of Claim 1 First of all, since �t are isometries, l1.f�
�1
t g/D l1.f�tg/. Let Yt D

at .x;y/ @xCbt .x;y/ @y be the time-dependent symplectic vector field generating fgtg.
For f 2 C1.T 2;R/, denote its average by hf i D

R
T 2 f dx ^ dy (our area form has

total area 1). We record that

(6) jhf ij � jf jL1 :

It follows quickly from the definition of Flux (and an explicit characterization of exact
1–forms on T 2 ) that the vector field Zt D hat i @x C hbt i @y generates �t . Hence
by (6), for each 0� t � 1 we have

jZt jL1 �
p

2 � jYt jL1 :

Hence l1.f�tg/�
p

2 � l1.fgtg/, finishing the proof with c0 D
p

2.
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