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Gauge-reversing maps on cones, and
Hilbert and Thompson isometries

CORMAC WALSH

We show that a cone admits a gauge-reversing map if and only if it is a symmetric
cone. We use this to prove that every isometry of a Hilbert geometry is a projectivity
unless the Hilbert geometry is the projective space of a non-Lorentzian symmetric
cone, in which case the projectivity group is of index two in the isometry group. We
also determine the isometry group of the Thompson geometry on a cone.
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1 Introduction

Consider a proper open convex cone C in a real finite-dimensional vector space V.
Associated to C, there is a natural partial order on V defined by x <¢c y if y—x eclC.
The gauge on C is defined by

Mc(x,y):=inf{A>0|x <c Ay} forall x,yeC.

Related to the gauge are the following two metrics on C. Hilbert’s projective metric is
defined to be

dg(x,y):=logMc(x,y)Mc(y,x) forall x,yeC.
This is actually a pseudometric since d g (x,Ax) =0 for any x € C and A > 0. On the
projective space of the cone it is a genuine metric. Thompson’s metric is defined to be
dr(x,y):=logmax(Mc(x, y), Mc(y,x)) forall x,yeC.

In this paper, we study the maps between cones that preserve or reverse the gauge, or
are isometries of one of the two metrics. Recall that a map ¢: C — C’ between two
proper open convex cones is said to be gauge-preserving if M¢c/(¢px,py) = Mc(x,y)
and gauge-reversing if M¢c/(¢x,py) = Mc(y, x) for all x and y in C. Obviously,
both types of map are isometries of the Hilbert and Thompson metrics.

Any linear isomorphism between C and C’ is clearly gauge-preserving. Noll and
Schiffer [17] showed that the converse is also true: every gauge-preserving bijection
between two finite-dimensional cones is a linear isomorphism.
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56 Cormac Walsh

On a symmetric cone, that is, one that is homogeneous and self-dual, Vinberg’s *-map
is gauge-reversing; see Kai [11]. We show that gauge-reversing maps exist only on
symmetric cones.

Theorem 1.1 Let C be a proper open convex cone in a real finite-dimensional vector
space. Then C admits a gauge-reversing map if and only if C is symmetric.

Noll and Schiffer [17, page 377] raise the question of whether the existence of a
gauge-reversing bijection between two cones requires that they be linearly isomorphic.
We answer this question in the affirmative for finite-dimensional cones.

Corollary 1.2 If there is a gauge-reversing bijection between two finite-dimensional
cones, then the cones are linearly isomorphic.

Let D := P(C) be the projective space of the cone C, and consider the Hilbert metric
on D. The isometry group of this metric was first studied by Busemann and Kelly; see
(29.1) of [6]. They showed that, in the case where D is two-dimensional with strictly
convex closure, every isometry is a projectivity, that is, arises as the projective action
of a linear map on the cone.

De la Harpe [10] proved the same result in arbitrary finite dimension. He also noted
that there exist isometries that are not projectivities in the case of the positive cone
(where D is an open simplex) and in the case of the cone of positive-definite symmetric
matrices. Both of these cones are symmetric. De la Harpe asked, in general, when do
the isometry group Isom(D) and the projectivity group Proj(D) coincide?

Molnér [15] determined the isometry group of the Hilbert metric in the case of another
symmetric cone, the cone Pos(C, n) for n > 3 of positive definite Hermitian matrices
with complex entries. One may interpret his results as saying that each isometry is the
projective action of either a gauge-preserving or a gauge-reversing map on the cone.
Molnar and Nagy [16] extended this result to the case of n = 2, where, of course, the
Hilbert geometry is isometric to 3—dimensional hyperbolic space.

These results were generalised to all finite-dimensional symmetric cones by Bosché [4],
using Jordan algebra techniques.

In [14], Matveev and Troyanov determine completely the isometry group in dimension
two.

For polyhedral Hilbert geometries, it was shown by Lemmens and Walsh [13] that
every isometry is a projectivity, unless the domain D is a simplex, in which case the
projectivity group has index two in the isometry group.
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It was proved by Speer [21] that, in general, the projectivity group is a subgroup of
index at most two in the isometry group.

We show the following.

Theorem 1.3 Let (D, dp) be a finite-dimensional Hilbert geometry, and let C be a
cone over D. Every isometry of (D, dy) arises as the projective action of either a
gauge-preserving or a gauge-reversing map of C.

Combining this with Theorem 1.1 gives us the isometry group of any Hilbert metric.

Corollary 1.4 If C is symmetric and not Lorentzian, then Proj(D) is a normal sub-
group of index two in Isom(D). Otherwise, Isom(D) = Proj(D).

This result had been conjectured in [13]. It also resolves some conjectures of de la
Harpe, namely that Isom(D) is a Lie group, and that Isom(D) acts transitively on D
if and only if Proj(D) does.

We also determine the isometries of the Thompson metric.

Theorem 1.5 Let C and C’ be proper open convex cones, and let ¢: C — C’ be a
surjective isometry of the Thompson metric. Then there exist decompositions C =
C1®C; and C' = C{@C] such that ¢ takes the form ¢ (x1+x2) = (1 (x1) +P2(x2)),
where ¢, is a gauge-preserving map from C; to C{, and ¢, is a gauge-reversing map
from C, to C}.

The first to study the isometries of the Thompson metric were Noll and Schiffer [17].
They showed that, in the case where the cone order of either C or C’ is loose, every
such isometry is either gauge-preserving or gauge-reversing. Here loose means that for
all x and y in the cone, the set {x, y} has neither an infimum nor a supremum unless
x and y are comparable. In particular, they showed that both the Lorentz cone and the
cone of positive definite symmetric matrices are loose.

The isometry group of the Thompson metric has been worked out by Molnar [15] in the
case of the cone of positive-definite complex Hermitian matrices, and by Bosché [4]
for general symmetric cones.

The plan of the paper is as follows. We recall some background material in Section 2.
We then prove the homogeneity of any cone admitting a gauge-reversing map in
Section 3. An important tool we will use in much of the paper is the horofunction
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boundary; we recall its definition in Section 4 and describe known results about it in
the case of the Hilbert geometry in Section 5. Using these results, we finish the proof
of Theorem 1.1 and of Corollary 1.2 in Section 6. In Section 7, we study the isometries
of the Hilbert geometry and prove Theorem 1.3 and Corollary 1.4. Sections 8 and 9 are
devoted to the study of the horofunction boundaries of, respectively, product spaces and
Thompson geometries. These results are then used in Section 10 to prove Theorem 1.5.

Acknowledgements I greatly benefited from many discussions with Bas Lemmens
concerning this work. This work was partially supported by the ANR Finsler.

2 Preliminaries

2.1 Gauge-preserving and gauge-reversing maps

Let C be an open convex cone in a real finite-dimensional vector space V. In other
words, C is an open convex set that is invariant under multiplication by positive scalars.
We use cl to denote the closure of a set. If c1C N (—clC) = {0}, then C is called a
proper open convex cone.

As described in the introduction, C induces a natural partial order <¢ on V', and
this is used to define the gauge M (-, -), which in turn is used to define Thompson’s
metric d7 and Hilbert’s projective metric dg on C.

Let ¢: C — C’ be a map between two proper open convex cones in V. We say
that ¢ is isotone if x <¢ y implies ¢x <c’ ¢y, and that it is antitone if x <c y
implies ¢y <c ¢x. The map ¢ is called an order embedding if x <¢ y if and only
if px <c’ ¢y. An order antiembedding is defined in an analogous way. We say that
¢ is homogeneous of degree o € R if ¢p(Ax) = A%p(x) for all x € C and A > 0.
Maps that are homogeneous of degree —1 we call antihomogeneous, and maps that are
homogeneous of degree 1 we just call homogeneous.

For the proofs of the next two propositions, see [17].
Proposition 2.1 A map ¢: C — C’ is gauge-preserving if and only if it has any two

of the following three properties: order embedding, homogeneous, Thompson-distance
preserving.

Proposition 2.2 A map ¢: C — C’ is gauge-reversing if and only if it has any two
of the following three properties: order antiembedding, antihomogeneous, Thompson-
distance preserving.
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We see from Proposition 2.1 that every linear isomorphism from C to C’ is gauge-
preserving. The following theorem shows that the converse is also true.

Theorem 2.3 [20; 17] Let ¢: C — C’ be a gauge-preserving bijection. Then, ¢ is
the restriction to C of a linear isomorphism.

2.2 Hilbert’s metric

Hilbert originally defined his metric on bounded open convex sets. One can re-
cover his definition by taking a cross-section of the cone, that is, by defining D :=
{xeC| f(x) =1}, where f: V — R is some linear functional that is positive with
respect to the partial order associated to C. Suppose we are given two distinct points
x and y in D. Define w and z to be the points in the boundary dD of D such that
w, X, ¥, and z are collinear and arranged in this order along the line in which they
lie. The Hilbert distance between x and y is then defined to be the logarithm of the
cross-ratio of these four points:

dg(x,y):=log —|zx| wyl .
|zy[lwx]|
On D, this definition agrees with the previous one.

If D is an ellipsoid, then the Hilbert metric is Klein’s model for hyperbolic space. At
the opposite extreme, if D is an open simplex, then the Hilbert metric is isometric to a
normed space with a polyhedral unit ball [10; 18].

One may of course identify the cross-section D with the projective space P(C) of the
cone.

Let (X, d) be a metric space and / € R an interval. A map y: I — X is called a

geodesic if
dy(s),y@))=|s—t| forall s,z €l.

If I is a compact interval [a, b], then the image of y is called a geodesic segment
connecting y(«) and y(b). In the Hilbert geometry, straight-line segments are geodesic
segments. If 7 =R, then we call the image of y a geodesic line.

A subset of X of V is said to be relatively open if it is open in its affine hull. We
denote by relint X the relative interior of X, that is, its interior, considering it a subset
of its affine hull.

A geodesic line is said to be unique if for each compact interval [s, {] C R, the geodesic
segment Y ([s,?]) is the only one connecting y(s) and y(¢). The following result
characterises the unique geodesic lines [10].
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Figure 1: Definition of the Hilbert distance

Proposition 2.4 Let (D, dp) be a Hilbert geometry, and let w, z € dD be such that
the relatively open line segment (w, z) lies in D. Then, (w, z) is a unique geodesic
line if and only if there is no pair of relatively open line segments in cl D, containing
w and z, respectively, that span a two-dimensional affine space.

Recall that an exposed face of a convex set is the intersection of the set with a supporting
hyperplane. A convex subset E of a convex set D is an extreme set if the endpoints of
any line segment in D are contained in £ whenever any point of the relative interior
of the line segment is. The relative interiors of the extreme sets of a convex set D
partition D. If an extreme set consists of a single point, we call the point an extreme
point. We call a point in the relative interior of a 1-dimensional extreme set of the
closure of a cone an extremal generator of the cone. Alternatively, an extremal generator
of a cone C is a point x € C such that P(x) is an extreme point of P(c1C).

2.3 Symmetric cones

A proper open convex cone C in a real finite-dimensional vector space V is called
symmetric if it is homogeneous and self-dual. Recall that C is homogeneous if its
linear automorphism group Aut(C) := {4 € GL(V) | A(C) = C} acts transitively on
it, and it is self-dual if there exists an inner product (-,-) on V for which C = C*,
where

C*:={yeV|{(y,x)>0forall x €clC\{0}}

is the open dual of C. The characteristic function ¢: C — R is defined by

P (x) = f e ¥ dy  forall x € C.
C*
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This map is homogeneous of degree —dim V', and so Vinberg’s *—map,
C—C* x—x*:=-Vlogep(x),

is antihomogeneous. On symmetric cones, the *x—map coincides up to a scalar multiple
with the inverse map in the associated Euclidean Jordan algebra [7]. It was shown
in [11] that on symmetric cones the *—map is an order antiembedding. Hence, by
Proposition 2.2, it is gauge-reversing for these cones. It was also shown in [11] that
the symmetric cones are the only homogeneous cones for which this is true.

2.4 The Funk and reverse-Funk metrics

It will be convenient to consider the Hilbert and Thompson metrics as symmetrisations
of the following function. Define

dr(x,y):=logMc(x,y) forall xeV and yeC.

We call dg the Funk metric after P Funk [8], and we call its reverse dg(x,y) :=
dr(y, x) the reverse-Funk metric.

Like Hilbert’s metric, the Funk metric was first defined on bounded open convex sets.
On a cross-section D of the cone C, one can show that

dr(x. ) =log 22 and dg(x, y) = log 22
vl wx]

for all x, y € D. Here w and z are the points of the boundary dD shown in Figure 1.

On D, the Funk metric is a quasimetric; in other words, it satisfies the usual metric
space axioms except that of symmetry. On C, it satisfies the triangle inequality but is
not nonnegative. It has the following homogeneity property:

dr(ax,By) =dr(x,y)+loga—logp forall x,y e C and «,f > 0.

Observe that both the Hilbert and Thompson metrics are symmetrisations of the Funk
metric: for all x,y € C,

dg(x,y)=dp(x,y)+dr(x,y) and dr(x,y)=max(dp(x,y),dr(x,y)).

3 Homogeneity

In this section, we will prove that the existence of a gauge-reversing map on a cone
implies that the cone is homogeneous.
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Throughout the paper, we assume that C is a proper open convex cone in a real
finite-dimensional vector space V.

Proposition 3.1 Let ¢: C — C be gauge-reversing. Then ¢ is a bijection.

Proof By Proposition 2.2, ¢ is an isometry of the Thompson metric. It is therefore
injective and continuous. So, from invariance of domain, we get that ¢ (C) is an open
setin C.

Let y, be a sequence in ¢(C) converging to y € C. So there exists a sequence xj in
C such that ¢ (xy) = yu, for all n € N. Moreover, y, satisfies the Cauchy criterion,
and so x, does too. Therefore, since (C, d7) is complete, x, converges to some point
x € C. From continuity, we get that ¢(x) = y. We have proved that ¢(C) is closed.

Since C is connected and ¢ (C) is nonempty and both open and closed, we conclude
that ¢ (C) = C. a

We use Id to denote the identity operator.

Lemma 3.2 Let ¢: C — C be a gauge-reversing map that is differentiable at some
point x € C with derivative Dy¢ = —1d. Then x is a fixed point of ¢.

Proof Since ¢ is antihomogeneous, we have ¢(x +Ax) =¢(x)/(1+A) forall A > 0.
This implies that D¢ (x) = —¢(x). But, by hypothesis, Dx¢(x) = —x. Therefore,
¢(x) =x. a

Recall that an involution is a map ¢ satisfying ¢ o ¢ = 1d.

Lemma 3.3 Assume there exists a gauge-reversing map ¢: C — C. Then, for almost
all x in C, there exists a gauge-reversing map ¢x: C — C that fixes x, has derivative
Dyx¢x = —1d at x, and is an involution.

Proof The map ¢ is 1-Lipschitz in the Thompson metric on C. However, this
metric is Lipschitz equivalent to the Euclidean metric on any ball of finite radius in
the Thompson metric. So, we may apply Rademacher’s theorem to deduce that ¢ is
differentiable almost everywhere within every ball of finite radius, and hence almost
everywhere within all of C.

By Proposition 3.1, the map ¢ is bijective, and so has an inverse, which is also gauge-
reversing, and hence, by the reasoning of the previous paragraph, differentiable almost
everywhere.
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We deduce that, for almost every point x in C, ¢ is differentiable at x and ¢! is
differentiable at ¢(x). Necessarily, D¢(x)¢_1 = (Dx¢)7 L.

It follows from the antitonicity of ¢ that the linear map Dy ¢ is antitone, and hence that
— D¢ is isotone. Similarly, from the antitonicity of ¢~!, we deduce that (—D,¢) ™' =
—D¢(X)¢_1 is isotone. Therefore, (—Dx¢)~! is a linear isomorphism of C, and hence
gauge-preserving.

So the map ¢y: C — C defined by ¢y := (—Dx¢)~! 0 ¢ is gauge-reversing. By the
chain rule, Dx¢x = —1d. So, from Lemma 3.2, x is a fixed point of ¢,. The map
Px o ¢x is gauge-preserving, and therefore linear, and its derivative at x is Id. We
conclude that ¢ o ¢ = Id. a

Lemma 3.4 Assume there exists a gauge-reversing map ¢: C — C. Let x and y be
two points in P(C) collinear with an extreme point of P(cl C). Then there exists an
element of Proj(P(C)) mapping x to y.

Proof Let z be the midpoint, in the Hilbert metric on P(C), between x and y on
the straight line joining them. By Lemma 3.3, we may find a sequence z, in P(C)
converging to z such that, for all n € N, there is a gauge-reversing map ¢,,: C — C
that fixes some representative z, € C of z;, and has derivative —Id at Z,,. Considering
the action of ¢, on the projective space P(C), we see that ¢, fixes z, = P(Z,) and
its derivative there is —Id.

By assumption, there is an extreme point ¢ of P(clC) such that a, x, and y are
collinear. We may assume, by relabelling if necessary, that x lies between a and y.
For each n € N, define the straight line segment L, := az, N P(C), and let x; and
yn be the two points on L, satisfying

dH(xn,Zn) = dH(Znayn) = %dH(x’ J’)

We label these two points in such a way that x,, lies between a and yy; see Figure 2.
Clearly, x, and y, converge, respectively, to x and y as » tends to infinity.

Since azy passes through an extreme point of P(cl C), the line segment L, is a unique
geodesic line with respect to the Hilbert metric. So, ¢, (L) is also a unique geodesic
line, and hence a straight line segment. Using now that ¢, fixes z, and has derivative
—Id there, we get that ¢,, leaves L, invariant and reverses its orientation. So we
have ¢, (x,) = y, forall n e N.
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Figure 2: Illustration of the proof of Lemma 3.4

Again by Lemma 3.3, there exists a sequence w, in P(C) converging to y such that,
for all n € N, there is a gauge-reversing map ¢,,,: C — C that fixes a representative
Wy € C of wy, and therefore fixes w,. For each n € N, the map f,: C — C defined
by fn = ¢w, o ¢z, is gauge-preserving, and hence linear, by Theorem 2.3. Therefore,
the action of f; on P(C) is in Proj(P(C)) for each n € N.

Observe that the sequences y, and w, have the same limit, and that ¢y, (w,) = wy
converges to y. So, using that the {¢,,,} are all 1-Lipschitz, we get that ¢y, (V)
converges to y. But ¢y, (vn) = fu(x,) forall n € N, and x, converges to x. We
conclude that f,(x) converges to y. This implies that the maps { f;,} all lie in some
bounded subset of Proj(P(C)). It follows that there exists f € Proj(P(C)) such
that some subsequence of f; converges to f uniformly on compact sets of P(C).
Evidently, f(x) = y. |

Lemma 3.5 Assume there exists a gauge-reversing map ¢: C — C. Then C is a
homogeneous cone.

Proof Let x and y be points in C such that y = x + z, where z is an extremal
generator of C. So P(x), P(y),and P(z) are collinear in the projective space P(C),
and P(z) is an extreme point of P(cl C). Therefore, by Lemma 3.4, some element of
the linear automorphism group Aut(C) maps x to a positive multiple of y. Combining
this automorphism with multiplication by a positive scalar, we can in fact find an
element of Aut(C) that maps x to y. The result now follows since one can get from
any element of C to any other by adding and subtracting a finite number of extremal
generators of C. O
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4 The horofunction boundary

We recall in this section the definition of the horofunction boundary, which will be used
extensively in the rest of the paper. The setting will be that of quasimetric spaces, since
some of the metrics with which we will be dealing, namely, the Funk and reverse-Funk
metrics, are not symmetric.

Let (X, d) be a quasimetric space, that is, a space that satisfies the usual metric space
axioms apart from that of symmetry. We endow X with the topology induced by the
symmetrised metric dgym(x, ) :=d(x, y)+d(y, x), which for Funk and reverse-Funk
metrics is the Hilbert metric.

To each point z € X, associate the function ¥,: X — R,
Yz(x):=d(x,z)—d(b.z),

where b is some fixed basepoint. Consider the map ¢: X — C(X), z — V¥, from
X into C(X), the space of continuous real-valued functions on X endowed with the
topology of uniform convergence on bounded sets of dgyy,. This map can be shown to
be injective and continuous [2]. The horofunction boundary is defined to be

X(o0) :=cl{y; |z € X}\{Y: |z € X},

and its elements are called horofunctions. This definition is due to Gromov [9], and is
a development of an idea of Busemann [5], who considered the horofunctions obtained
along geodesic rays.

It is easy to check that the horofunction boundaries obtained using different basepoints
are homeomorphic to one another, and that indeed corresponding horofunctions differ
only by an additive constant.

A geodesic in a quasimetric space (X, d) is a map y from an interval of R to X such
that d(y(s),y(t)) =t —s for all s and ¢ in the domain with s < ¢. The space (X, d)
is said to be geodesic if, for any pair of points x and y in X, there is a geodesic
y: [s,t] = X with respect to d that starts at x and ends at y.

We make the following assumptions:

(I) The metric dsyn is proper, that is, its closed balls are compact.
) (X,d) is geodesic.

(III) For any point x and sequence X, in X, we have d(xj,x) — 0 if and only if
d(x,x,) — 0.
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These assumptions are satisfied by the Funk and reverse-Funk metrics.

Under assumptions (I), (II) and (III), it can be shown that ¥ is an embedding of X
into C(X); in other words, it is a homeomorphism from X to its image. From now on
we identify X with its image.

We will need the next proposition in Section 8.

Proposition 4.1 Let (X, d) be a proper geodesic metric space. Then inf§ = —oo for
any horofunction &.

Proof Let x, be a sequence converging to £. Since X is proper, we have that d (b, x,)
converges to infinity, where b is the basepoint. Foreach n € N, let y,: [0, d (b, xp)] = X
be a geodesic segment between b and x,. Choose ¢ > 0. For n large enough,
d(yn(t), xy) = d(b, x,) —t. Since the sequence (y,(¢)), lies in a compact set, we
may, by taking a subsequence if necessary, assume that it has a limit y. Using that the
functions d (-, x,) —d(b, x,,) are 1-Lipschitz, we get that

§(y) = lim d(yn(1). xn) —d(b,xn) = —t.
n—00
The result follows since ¢ is arbitrary. |
Isometries between quasimetric spaces extend continuously to homeomorphisms be-
tween their horofunction compactifications. Assume that f is an isometry from one

quasimetric space (X, d) to another, (X’, d’), with basepoints b and »’, respectively.
Then, for every horofunction & and point x € X,

[EX) =6/ ) 6T D).
4.1 Almost-geodesics and Busemann points

Let (X, d) be a metric space. We call a path y: T — X, with 7" an unbounded subset
of R4 containing 0, an almost-geodesic if, for each € > 0, there exists N € R such
that

|d(y(0),v(s))+d(y(s),y()) —t| <e forall s and ¢t with N <s <t¢.

Rieffel [19] proved that every almost-geodesic converges. We say that a horofunction
is a Busemann point if there exists an almost-geodesic converging to it, and denote by
Xp(o0) the set of all Busemann points in X (00).

The following alternative characterisation of almost-geodesics will be useful.
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Lemma 4.2 Let (X, d) be a proper geodesic metric space. A map y: T — X, with
T an unbounded subset of R containing 0, is an almost-geodesic if and only if, given

any € >0,
M |d(y(0),y(s)) —s| <e,
2 |d(y(s),y(t)) —t +s| <e,

forall s,t € T large enough with s <¢.

Proof That (1) and (2) hold for any almost-geodesic was proved by Rieffel [19]. The
implication in the opposite direction is equally straightforward. a

When X is proper and geodesic, one may take 7" to be R, as the following lemma
demonstrates.

Lemma 4.3 Let (X, d) be a proper geodesic metric space, and let & be a Busemann
point. Then there exists an almost-geodesic defined on the whole of R that converges

to .

Proof Since £ is a Busemann point, there exists an almost-geodesic a: T — X
converging to it, where 7" is an unbounded subset of R4 containing 0. Choose a
strictly increasing sequence (#,) in 7T, starting at 7o := 0 and converging to infinity.
Since (X, d) is a geodesic space, we may find, for each n € N, a geodesic segment
Bn: [0,d(a(ty), x(ty+1))] = X from a(t,) to a(f,41). We interpolate between the
points «(#,) for n € N by reparametrising these geodesic segments and concatenating
them. Define y: Ry — X by

o=

t—t
—nd(a(ln),a(tn+1))) forall t € Ry,
In+1—1n
where n depends on ¢ and is such that ¢, <t < t,4. Observe that y(t,) = «a(t,) for

all n e N.

Suppose we are given € > 0. Let s and ¢ both lie in [z, t,+1] for some n € N, with

s <t.So
A& ) _ t=s
d(a(tn), a(tn+1))  tat1—1tn
From Lemma 4.2, if n is large enough, then |d(a(tn), a(ty+1)) — tuy1 + tn| < 5.
Therefore, in this case, |d(y(s), y(¢)) —¢ + s| < 5. This shows that (2) holds when s
and ¢ are large enough and lie in the same interval [¢,, #;,+1].

Geometry & Topology, Volume 22 (2018)



68 Cormac Walsh

Now let p lie in [t, t,41] with n € N. The triangle inequality gives

d(y(0),y(tu+1) —d(y(p), v (tnt+1)) =d(y(0),y(p))
<d(y(0),y () +d(y(tn), y(p)).

From Lemma 4.2, both |d(y(0), y(t4)) — tx| and |d(y(0), Y (ty+1)) — tn+1] are less
than $ if n is large enough. Using this and what we proved in the previous paragraph,
we get that, when p is large enough, (1) holds, with p substituted for s.

The proof that (2) holds goes along similar lines. |

In the reverse-Funk metric, one may approach the boundary along a path of finite length.
So, for such spaces, we must modify the definition of almost-geodesic. We drop the
requirement that 7' be unbounded, and instead require that sup 7" be a limit point but
not an element of 7.

A path y: T — X is now said to be an almost-geodesic if, for each € > 0, there exists
N <sup T such that

|[d(y(0),y(s))+d(y(s),y(t))—t| <e forall s and ¢t with N <s <t.

One may show again that every almost-geodesic converges, however the limit may
now be a point in X . Again, a Busemann point is a horofunction that is the limit of an
almost-geodesic. One may verify that most of the results concerning Busemann points
carry over to this new definition.

The Busemann points provide enough information, in certain cases, to recover the

metric. We will use the following result in Section 7.

Proposition 4.4 Let (X,d) be a quasimetric space satisfying assumptions (I), (I)
and (IIT). Also assume that for each pair of points x and y in X there exists a geodesic
starting at x, passing through y, and converging to a Busemann point. Then

d(x,y)=sup(&(x)—&(y)) forall x,y € X,
3
where the supremum is taken over all Busemann points & .
Proof Let x, y € X. Horofunctions are 1-Lipschitz, that is, £(x) <d(x,y) +&(»)

for each horofunction &. This implies that the left-hand side of the equation above is
greater than or equal to the right-hand side.
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To prove the opposite inequality, let y be a geodesic starting at x, passing through y,
and converging to a Busemann point . For ¢ > d(x, y), we have d(x, y)+d(y, y(¢)) =
d(x,y(t)). It follows that d(x, y) + £(y) = &(x). O

4.2 The detour metric

We define the detour cost for any two horofunctions £ and 7 in X(oc0) to be

H(En) i=sup _inf (d(b.) +1()

where the supremum is taken over all neighbourhoods W of £ in X U X(c0). An
equivalent definition is

H(&,n) :=inf liminf (d(b. y (1)) + n(y (1)),
YV t—supT

where the infimum is taken over all paths y: T — X converging to £. This concept
first appears in [1]. More detail about it can be found in [23].

The detour cost satisfies the triangle inequality and is nonnegative. The Busemann
points can be characterised as those horofunctions ¢ satistfying H(&,&) = 0.

By symmetrising the detour cost, we obtain a metric on the set of Busemann points,
6(&,m):=H(&,n)+ H(n, &) for all Busemann points & and 7.

We call § the detour metric. It is possibly infinite-valued, so it is actually an extended
metric. One may partition the set of Busemann points into disjoint subsets in such a
way that 6(&, n) is finite if and only if £ and 5 lie in the same subset. We call these
subsets the parts of the horofunction boundary.

The following expression for the detour cost will prove useful in Sections 8 and 9.

Proposition 4.5 Let & be a Busemann point, and n a horofunction of a metric space
(X,d). Then

3 H(E.n) = Sug(n(X)—E(X)) =inf{A e R | n(-) =&(-) + AL

Proof First observe that the second equality of (3) is easy to prove.

According to [23, Lemma 5.1], n(-) < &(-) 4+ H(&,n). This implies that H (&, n) is
greater than or equal to the right-hand side of (3).
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Let y be an almost-geodesic converging to £. By [23, Lemma 5.2],

lim (d(b, (@) +n(y@)) = HEn) and  lim (d(b,y(1) +E@ 1) =0.

Therefore, lim;—o0 (1(y (1)) =& (y(t))) = H(&.n). Thus, H(§.n) <sup(n—§). O

5 The horofunction boundary of the Hilbert geometry

Let (D, dg) be a Hilbert geometry with basepoint 5. The horofunction boundary of
this geometry is best understood by first considering the horofunction boundaries of
the Funk and the reverse-Funk geometries.

5.1 The horofunction boundary of the reverse-Funk geometry

The following proposition says essentially that the horofunction boundary of the reverse-
Funk geometry is just the usual boundary 9D, and gives an explicit formula for the
horofunctions. For each x € cl D, define the function ry(-) := dgr(-,x) —dg(b, x).

Proposition 5.1 [22] The set of horofunctions of the reverse-Funk geometry on D is
{rx | x € 0D}. Every horofunction is a Busemann point. A sequence in D converges
to ryx, with x € dD, in the horofunction boundary if and only if it converges to x in the
usual topology.

We also have a description of the detour metric for this geometry.

Proposition 5.2 [13] Let x and y bein dD. If x and y are in the relative interior of
the same extreme set E of cl D, then the detour metric of the reverse-Funk geometry
is Sp(rx,1y) = dfl (x,y), where dg is the Hilbert metric on relint E. Otherwise,
Sr(rx,ry) is infinite.

Thus, the parts of the horofunction boundary are the relative interiors of the proper
extreme sets of cl D. We will be particularly interested in parts consisting of a single
point. We call these parts singletons. In the reverse-Funk geometry, there is a singleton
for each extreme point of cl D.

5.2 The horofunction boundary of the Funk geometry

The horofunction boundary of the Funk geometry is more complicated than that of the
reverse-Funk geometry. Its Busemann points were worked out explicitly in [22]. We
will not need all the details here.
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Proposition 5.3 [22] There is a part associated to every proper extreme set of the
polar D° of D. Endowed with its detour metric, each part is isometric to a Hilbert
geometry of the same dimension as the associated extreme set. If one extreme set E
is contained in another, E,, then the part associated to E is contained in the closure
of the part associated to E,.

Let C be the cone over D. Recall that the polar of D may be identified with a
cross-section of

C*:={yeV*|(y.x)>0forall x € C},

the (closed) dual cone of C.

Proposition 5.4 [22] Let y be an extremal generator of C* normalised so that
(y,b) = 1. Then log(y,-) restricted to D is a singleton of the Funk geometry of D,
and every singleton arises in this way.

5.3 The horofunction boundary of the Hilbert geometry

From the expression of the Hilbert metric as the symmetrisation of the Funk metric,
it is clear that every Hilbert horofunction is the sum of a Funk horofunction and a
reverse-Funk horofunction. We have the following criterion for convergence.

Proposition 5.5 [22] A sequence in D converges to a point in the Hilbert-geometry
horofunction boundary if and only if it converges to a horofunction in both the Funk
and reverse-Funk geometries.

Combined with Proposition 5.1, this implies that every sequence converging to a Hilbert
geometry horofunction also converges to a point in the usual boundary dD.

For each x € D, let B(x) denote the set of Funk-geometry Busemann points that can
be approached by a sequence converging to x in the usual topology.

Proposition 5.6 [22] The set of Busemann points of the Hilbert geometry is

{re + f|x€dD and f € B(x)}.
The detour metric was calculated in [13].

Proposition 5.7 [13] Every part of the horofunction boundary of the Hilbert geome-
try can be expressed as the Cartesian product of a part of the reverse-Funk geometry and
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a part of the Funk geometry. The detour metric distance between two Hilbert-geometry
Busemann points hy :=rx, + f1 and hy :=rx, + f2, with f1 € B(x1) and f; € B(x3),
is

S (h1,ha) =0R(rxy . rx,) + 8 (f1, /2),

where g and § are the detour metrics on the set of Busemann points of, respectively,
the reverse-Funk and Funk geometries.

So, each part is the £ —product of two lower-dimensional Hilbert geometries.

The following proposition tells us which reverse-Funk parts combine with which Funk
parts to form a Hilbert part.

Proposition 5.8 [13] Let R be the reverse-Funk part associated to a proper extreme
set E of cl D, and let F be the Funk part associated to a proper extreme set E’ of D°.
Then {r + f | r € R, f € F} is a part of the Hilbert horofunction boundary if and only
if (y,x) =0 forall ye€ E' and x € E.

Let U = R x F be a Hilbert part expressed as the product of a reverse-Funk part
and a Funk part. If either of the component parts is a singleton, then U will itself be
a Hilbert geometry when endowed with its detour metric. We call such parts of the
Hilbert horofunction boundary pure parts. When R is a singleton, U will be called a
pure Funk part, and when F is a singleton, U will be called a pure reverse-Funk part.

It was shown in [13] that the £{ —product of two Hilbert geometries, each consisting
of more than one point, cannot be isometric to a Hilbert geometry. It follows that the
extension to the horofunction boundary of any isometry maps pure parts to pure parts.

Of particular interest will be the maximal pure parts. These are the pure parts that are
not contained in the closure of any other pure part. This property is also preserved by
isometries.

Let W be a maximal pure Funk part. From what we have seen above, there is some
extreme point w of cl D such that each element of W can be written ry, + f, where
f is in the part of the Funk horofunction boundary associated to the exposed face of
D° defined by w.

Similarly, if U is a maximal pure reverse-Funk part, then there is a singleton Funk
horofunction f®) corresponding to some extreme point # of D°, such that any element
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of U can be written r, + f® with x € relint F, where F is the exposed face of
cl D defined by u.

Note that
AW ={ry+ f| f€Bw)} and clU ={ry+ /| f® e B(x)}.

Here the closures are taken in the set of Busemann points, not the set of horofunctions.

5.4 Horofunctions extended to the cone

Recall that Funk and reverse-Funk metrics can be extended to all of C. We may do
likewise with the Funk and reverse-Funk horofunctions. In particular, for x € dD, we
have rx(y) =dgr(y,x) —dg(b,x) forall y € C.

Observe that the extension to C of a reverse-Funk horofunction is the logarithm of an
antihomogeneous function, whereas that of a Funk horofunction is the logarithm of an
homogeneous function. So the natural extension to C of any Hilbert horofunction is
homogeneous of degree 0, that is, constant on the projective class of each point of C.

Recall that every isometry of a metric space extends continuously to a homeomorphism
on the compactification. One may consider a gauge-reversing map on a cone C to
be an isometry from C with the reverse-Funk metric to C with the Funk metric.
This is formalised in the following proposition, which will be crucial in our study
of gauge-reversing maps. It says that the extension of a gauge-reversing map to the
horofunction boundary takes reverse-Funk horofunctions to Funk horofunctions and
vice versa. Recall that we may consider D to be a cross-section of the cone C.

Proposition 5.9 Let ¢: C — C be a gauge-reversing map. If ry: C — R, with
x € dD, is an (extended) reverse-Funk horofunction, then

Pry(-) = Vx°¢_1(')_rx°¢_l(b)

is an (extended) Funk horofunction. Likewise, if f: C — R is an (extended) Funk
horotunction, then

¢f(:)i=fop ()= fopT (h)

is an (extended) reverse-Funk horofunction.
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Proof Let x, be a sequence in D converging to rx in the reverse-Funk horofunction
boundary. For each n € N, let z,, € D and A, > 0 be such that z, = A,¢(x,). For all
n € N, we have

dp(-,zpn)—dp(b,zy) =dfp (-, ¢xn)—dpr (b, pxn) = dR(¢_1('), xn)_dR(‘p_lb, Xn).

So, as n tends to infinity, the sequence z, converges in the Funk geometry to the
function rx 0~ 1(+) —rx 01 (b), which must therefore be a horofunction.

The proof of the second part is similar. O

6 Self-duality

Max Koecher defined a domain of positivity for a symmetric nondegenerate bilinear
form B on a real finite-dimensional vector space V' to be a nonempty open set C such
that B(x, y) > 0 for all x and y in C, and such that if B(x, y) > 0 for all y € c1C\{0},
then x € C. See [12]

A domain of positivity is always a proper open convex cone. If the bilinear form is
positive definite, then the cone is self-dual. A negative-definite bilinear form cannot
have a domain of positivity.

Assume we have a proper open convex cone C in a finite-dimensional vector space
that admits a gauge-reversing map. By Lemma 3.3, there exists a gauge-reversing map
¢: C — C that is an involution, has a fixed point b, and is differentiable at b with
derivative —Id. We take b to be the basepoint.

We wish to define a positive-definite bilinear form that makes the cone C a domain of
positivity.

We use the fact that certain Funk geometry horofunctions are log-of-linear functions.
For an illustration of our method, consider the positive cone int R’} with the gauge-
reversing map p: intR’} — intR’ defined by (ox); := 1/x; for all x € intR”
and coordinates 7. The singleton parts of the reverse-Funk horofunction boundary
correspond to the extremal rays of the cone, in this case the (positive) coordinate axes
of R”. More precisely, associated to the i coordinate axis e; is the reverse-Funk
horofunction r,,; (x) = —log x; . Each of these singletons is mapped by p to a singleton
of the Funk horofunction boundary. In the particular case under consideration, we have
p(re;)(X) = 1o, 0 p~1(x) = log x; for all x € int R’ . In general, the singleton Funk
horofunction is the logarithm of a linear functional. Thus, we have a correspondence
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between the extremal rays of the cone and linear functionals. This will allow us to
define a bilinear form on the space.

For x an extremal generator of C, define sy (-) := exp(rx 0 ¢(-)) on C, where
ry(+) :=log(M(x,-)/M(x, b)) is the reverse-Funk horofunction associated to the
point x € dC\{0}. Observe that /1 is the exponential of the image of r, under the

map ¢.
Lemma 6.1 For each extremal generator x of C, the function hy is linear on C.

Moreover, h defines a bijection between the projective classes of extremal generators
of C and those of its dual C*.

Proof Since ¢ reverses the gauge, it maps parts of the reverse-Funk horofunction
boundary to parts of the Funk horofunction boundary. In particular, it maps singletons
to singletons.

The parts of the reverse-Funk boundary correspond to the relative interiors of the
extreme sets of P(clC). So the singletons correspond to the projective classes of
extremal generators of C.

We have seen in Proposition 5.4 that singletons of the Funk horofunction boundary
correspond to projective classes of extremal generators of C*, and that each of these
horofunctions is the logarithm of a linear function. a

Definition 6.2 For y in C and x an extremal generator of C, let

B(y,x):=hx(y)M(x.b) = M(x.p(y)).

Extend this definition to all y € V' using Lemma 6.1. We obtain a function on V' that
is linear in y for every fixed extremal generator x of C.

Observe that B(y, x) is homogeneous in x.
Lemma 6.3 Let x and x" be extremal generators of C. Then B(x,x’) = B(x', x).

Proof Let x, and x;, be sequences in C converging, respectively, to x and x’. Define

_ M.y
M, y)

Since x, converges to x, the functions ry, converge pointwise to the reverse-Funk

Jy(2): forall yeCandze V.

horofunction ry. But ¢ is a gauge-reversing involution that fixes b, and so

Mxn. @) _ M. P(xn))

M) 0, pany) &G (-

l’xn0¢)(-) :log
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We deduce that the functions log jg(x,) converge pointwise to the Funk horofunction
log hy . Therefore, jg(x,) converges pointwise to /. By [22, Lemma 3.16], the
functions {j,} for y € C are equi-Lipschitzian; in other words, there is some A > 0
such that each of them is A—Lipschitz. We deduce that jy(x,)(X;,) converges to /i, (x’)
as n tends to infinity. Using in addition that M (b, ¢ (x,)) = M (xy, b) for all n, and
that M (-, b) is continuous, we get

Tim My @ 00)) = Mg (6 M (B, @ 0n) = h(x) M (x,5) = B, ).

But, for each n € N, we have that M (x}, ¢(x,)) equals M (x,,¢(x})), and similar
reasoning to the above shows that the limit of this latter quantity is B(x, x”). a

Further extend the definition of B to V x V by taking B(y,z) := Zj ziB(y, xj),
where z = ) j ZjX;j for some basis of extremal generators {x;} of C.

Proposition 6.4 This definition is independent of the basis of extremal generators
chosen.

Proof Suppose z =) I =2 Zj’.xj/. for two bases of extremal generators {x;}
and {x]’.}. Take any y € V and write y = ) _; yJ’.’ x]’.’ for some basis of extremal
generators {x}} of C. Using Lemma 6.3, we get

ZZjB(y,xJ-) = Zij,ZB(x,Z,Xj) = Zij,ZB(Xj,x,Z) = Zy,'c'B(z,x;é).
J j.k j.k k

Similarly, > j zj/. B(y, xj/.) can be shown to be equal to the same expression. O

Lemma 6.5 The function B is a symmetric nondegenerate bilinear form, and C is a
domain of positivity for B.

Proof It is clear from its definition that B is bilinear, and the symmetry comes from
the bilinearity and Lemma 6.3.

Let z € V be such that B(z, x) = 0 for all x € V. So, in particular, for all extremal
generators x of C we have /i, (z)M(x,b) = B(z,x) =0, and hence /1(z) = 0. But,
by Lemma 6.1, /&y is an extremal generator of C*, and all extremal generators of C*
arise in this way, up to scale. Also, C is proper, and so the extremal generators of C*
span V*. Tt follows that z = 0. We deduce that B is nondegenerate.

If y € C and x is an extremal generator of C, then B(y,x) = M(x,¢(y)) > 0. It
follows that B(y,z) >0 forall y,z € C.
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Let y € V be such that B(y,z) > 0 for all z € c1C\{0}. So, for every extremal
generator x of C, we have hx(y) = B(y,x)/M(x,b) > 0. We use again that each
hy is an extremal generator of C*, and that all extremal generators of C* arise in this
way, up to scale. We conclude that y isin C. a

We must now show that B is positive definite.

Given a symmetric nondegenerate bilinear form 5, diagonalise it to get a normal
basis {e;} such that each B(ej,ej) is either —1 or +1. Let S: V — V be the
map that changes the sign of each coordinate associated to a basis element satisfying
B(ej,ej) = —1. Also, let £(x, y) := B(Sx, y) be the Euclidean bilinear form with
the {e;} as an orthonormal basis. See [3] for a discussion of domains of positivity for
bilinear forms that are not positive definite.

The next lemma uses the following result from [12]: let C be a domain of positivity
with respect to B; then x € clC if and only if B(x, y) >0 forall y €C.

Lemma 6.6 Let C be a domain of positivity with respect to a symmetric indefinite
nondegenerate bilinear form B. Then B(z, z) = 0 for some z € c1C\{0}.

Proof Define
B(y,y)

Er.y)
One can calculate that VE(y, y) = 2y and that VB(y, y) = 2S5(y). So the gradient of
fis
4 Vi) =

f(y):= for all y € V\{0}.

28(y, »)S(y) —2B(y., )y

E(y.»)? '
We wish to minimise f over clC\{0}. Since f is homogeneous of degree zero and
clC\{0} is projectively compact, the minimum is attained at some point z of clC\{0}.
The minimum is nonnegative since C is a domain of positivity. Let v := Vf(z) be
the gradient of f at z, and let D, f* be the derivative of f at z. These quantities are
related by the equation D, f(-) = £(v,-). Near z, we have

f(z+8z)= f(2)+ Dz f(8z) +0(82).

Since the minimum of f over the convex set clC\{0} is attained at z, we have
D; f(x) > 0 for all x € C, since all such tangent vectors x point into the cone. So
B(Sv,x) =&(v,x) =0 forall x € C. It follows that Sv is in clC. We conclude that

5) B(v,v) = B(Sv, Sv) > 0.
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Write z =z +z_, where z4 is in the linear span of the basis vectors with B(e;j, e;) =
+1 and z_ is in the linear span of the basis vectors with B(e;,ej) = —1. So

E(z,z)=E(z4,24)+E(z—,z=) and B(z,z) =&E(z4,z4)—E(z—, z2).

Since C is open and B is not positive definite, C contains some element x such that
B(x,x) < &(x,x). So, from the minimising property of z, we get B(z,z) < &(z, z),
or, equivalently, £(z—,z—) > 0.

We also have that z € c1C, and so B(z,z) > 0. Hence £(z4,z4) = E(z—,z-) > 0.

One can calculate from (4) and (5) that

0<B(v,v) =

E(z,z)4 E(z—,2-)E (24, 24)(E(z—, 2-) = E(24, 24)).

So we see that —B(z,z) = £(z—, z—) — (24, z+) = 0. In fact equality holds, since we
proved the reverse inequality earlier. We have proved that B(z, z) = 0. a

Lemma 6.7 Let ¢p: C — C be a gauge-reversing map with fixed point b. Then b is
an isolated fixed point of ¢ if and only if P(b) is an isolated fixed point of the action
of ¢ on P(C).

Proof Let x;, be a sequence of points in P(C) distinct from P(b) that converge to
P(b) and are fixed by the action of ¢. Using the antihomogeneity of ¢, we get that
there exists a sequence ), in C of fixed points of ¢ such that y;, is in the projective
class x, for each n € N. The set of elements greater than or equal to b and the set of
elements less than or equal to b are exchanged by ¢, and the only element they have
in common is b. Therefore, each y;, is incomparable to b. It follows from this and the
projective convergence of y, to b that y, converges to b in C. We have proved that
b is not an isolated fixed point if P(b) is not.

The converse is easy. a

Lemma 6.8 Let ¢: C — C be a gauge-reversing map, and consider its action on the
projective space P(C) of the cone. If P(b) is an isolated fixed point of this action,
then P (b) is the unique fixed point.

Proof The projective action of ¢ is an isometry of the Hilbert metric dg . Let P (')
be any fixed point of this projective action. For each « € (0, 1), the set

Zo:=1{z€ P(C)|dy(h,z) = ady(b,b') and dg (z,b") = (1 —a)d g (b, b)}
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is invariant under ¢. It is also compact, convex and nonempty. Therefore, by the
Brouwer fixed point theorem, Z, contains a fixed point, which will be a distance
adg (b,b’) from b in the Hilbert metric. Since & can be made as small as we wish, and
we have assumed that P(b) is an isolated fixed point, we see that P(b’) = P(b). O

Lemma 6.9 The projective action of ¢ has a unique fixed point in P(C).

Proof The derivative of ¢ at b satisfies Dj¢ = —Id. It follows that b is an isolated
fixed point of ¢. So, by Lemma 6.7, P(b) is an isolated fixed point of the projective
action. Applying Lemma 6.8, we get the result. |

Lemma 6.10 Letz € C. Then M (z,b)M (b, $(z)) = M(z,¢(2)).
Proof Let

Y :={ye P(C)|du(z,y) =dn(y,.¢(2) = 3du (z,$(2))}.

This set is nonempty, closed, bounded, invariant under ¢, and convex in the usual
sense. So the Brouwer theorem implies that Y contains a fixed point, which by
Lemma 6.9 must be P(b). We deduce that dg(z,b) +dg (b, ¢(2)) =dg(z, p(2)).
This implies that dr(z,b) + dp(b, ¢p(z)) = dp(z, ¢ (2)). The result now follows on
taking exponentials. |

Lemma 6.11 If x is an extremal generator of C, then B(x,x) = M(x,b)?.

Proof Let x, be a sequence in C converging to x. Using the same reasoning as in
the proof of Lemma 6.3, we get

B(x,x) = lim M (xy, ¢p(xn)).
n—>o00
So, by Lemma 6.10,

B(x,x)= lim M(x,,b)M(b,¢(xp)) = lim M(x,, b)*>=M(x,b)>. O
n—o00 n—o0
Lemma 6.12 The bilinear form B is positive definite.

Proof We have shown in Lemma 6.5 that C is a domain of positivity of B. Since
C is nonempty, B cannot be negative definite. Let y € cl1 C\{0}. So we can write
y=> j VjXj as a positive combination of finitely many extremal generators {xj}
of C. Therefore, B(y,y) = Zj,k VivkB(xj,xy). Since C is a domain of positivity,
B(xj,xg) >0 forall j and k. Also, B(x;,xj) > 0 forall j, by Lemma 6.11. We
conclude that B(y, y) > 0. Therefore, by Lemma 6.6, B is positive definite. a
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Lemma 6.13 Assume there exists a gauge-reversing map ¢: C — C. Then C is
self-dual.

Proof As we have seen, by Lemma 3.3, we may assume that ¢ is an involution,
has b as a fixed point, and is differentiable at b with derivative —Id. It was shown
in Lemma 6.5 that the function B(-,-) is a symmetric nondegenerate bilinear form,
having C as a domain of positivity. But B is positive definite by Lemma 6.12, and so
C is self-dual. O

Proof of Theorem 1.1 Assume there exists a gauge-reversing map on C. It was
proved in Lemmas 3.5 and 6.13 that C is then, respectively, homogeneous and self-
dual.

On the other hand, if C is symmetric, then Vinberg’s «—map is gauge-reversing, as

discussed in the introduction. 0

Proof of Corollary 1.2 Suppose ¢: C; — C, is a gauge-reversing bijection between
the two cones. Let C := Cy @ C, be the product cone, and define the map &: C — C
by

D(x1,x2) 1= (¢ 1 (x2),4(x1)) forall x; € Cy and x5 € C,.

Since C is a product cone,

MC((XI’XZ)v (J’l, yZ)) = maX{MC] (xlvyl)v MCZ(XZv )’2)}

for all (xy,x,) and (y1, y2) in C. Using this and the fact that both ¢ and ¢! are
gauge-reversing, it is easy to show that ® is gauge-reversing. So, by Theorem 1.1, C
is a symmetric cone. It follows that both C; and C, are symmetric. Vinberg’s x—map
*c,: Co — C, on C; is gauge-reversing. So the map *c, o ¢ is a gauge-preserving
map from C; to C,, and hence, by Theorem 2.3, a linear isomorphism. |

7 Isometries of the Hilbert metric

In this section, we use Theorem 1.1 to determine the isometry group of the Hilbert
geometry.

We begin with some lemmas.

Lemma 7.1 Let (D,dp) be a Hilbert geometry. Assume there exists a unique ge-
odesic line connecting some point £ in the horofunction boundary to a point n in a
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nonsingleton pure reverse-Funk part. Then there exists another unique geodesic line,
connecting a point in the same part as £ to a point, distinct from 1, in the same part
asm.

Proof The unique geodesic line connecting & to 7 is a relatively open segment x,
with x, y € dD. Let U be the part of the horofunction boundary containing 7. The
point y is contained in the relative interior £ of some extreme set of cl D. Since
U is a pure reverse-Funk part, it may be written U = {r, + f | z € E}, where f is
some Funk horofunction. By assumption, U contains a Hilbert horofunction " distinct
from 7. So we have ' =ry + f for some )’ € E distinct from .

Since xy is a unique geodesic line, there is, by Proposition 2.4, no pair of relatively open
line segments in cl D, containing x and y, respectively, that span a two-dimensional
affine space. Observe that, given any relatively open line segment in ¢l D containing y’,
we may find a parallel one in cl D containing y. Therefore, there is no pair of
relatively open line segments in cl D, containing x and ', respectively, that span a
two-dimensional affine space. We conclude, using Proposition 2.4 again, that x)’ is a
unique geodesic line.

Let xy and x)’ be parametrised by unit-speed geodesics y and y’, respectively, and
denote by &’ the point in the horofunction boundary connected to 1’ by xy’. It is not
hard to show that lim;—_oo d g (¥ (¢),Y’()) is finite. This implies that &’ lies in the
same part as £&. We have already seen that 1’ lies in the same part as 7. a

Lemma 7.2 Let ®: D — D’ be a surjective isometry from one Hilbert geometry
(D.dp) to another, (D', dY;), and let U be a nonsingleton maximal pure Funk part
associated to an extreme point u of cl D. If U is mapped by ® to a reverse-Funk part
of D', then the line segment connecting u to any other extreme point of cl D lies in
the boundary 0D

Proof Suppose there is an extreme point v of cl D distinct from u such that the
relatively open line segment vu is contained in D. Let V' be the maximal pure Funk
part associated to v. Since v is extreme, the geodesic line vu is unique. It connects
some horofunction & in V' to some horofunction 1 in U . Observe that any sequence
in D converging to a horofunction in V' must converge in the usual topology to v, and
any sequence converging to a horofunction in U must converge in the usual topology
to u. Since every unique geodesic line is a straight line segment, we conclude that
vu is the only unique geodesic line connecting a horofunction in V' to a horofunction
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in U. So ®(vu) is the only unique geodesic line connecting a horofunction in @V to a
horofunction in ®U . Applying Lemma 7.1, we get that ®U is not a pure reverse-Funk
part. Since it is necessarily pure, it can not be a reverse-Funk part. a

Lemma 7.3 Let W and Z be pure parts of the horofunction boundary of a Hilbert
geometry. Assume that W is maximal, that cl W and cl Z have a point in common,
and that Z ¢ cIW. Then W and Z are of opposite types.

Proof We consider just the case where W is a pure Funk part; the other case is
handled similarly. So cl W = {ryx + f | f € B(x)} for some extreme point x of the
Hilbert geometry. We deduce that ¢l Z contains a function of the form ry + f, with
f € B(x). Therefore, if Z was a pure Funk part, each of its elements would be of
the form r, + f with f € B(x), and Z would be contained in cl W, contrary to our
assumption. We conclude that Z is a pure reverse-Funk part. a

The following is the key lemma of this section.

Lemma 7.4 Let ®: D — D’ be a surjective isometry between two Hilbert geometries
that maps a nonsingleton maximal pure Funk part to a pure reverse-Funk part. Then ®
arises as the projective action of a gauge-reversing map from the cone over D to the
cone over D’.

Proof We may assume without loss of generality that ®(b) = b’, where b and b’ are
the basepoints of D and D’, respectively.

Let U be the maximal pure Funk part in the statement of the lemma, and let ®(U)
be its image, which by assumption is a pure reverse-Funk part. Associated to U is an
extreme point u of ¢l D, and associated to ®(U) is a Funk horofunction /® . So we
may write

6) cdU={ru+f|f€Bw} and cl®U)={r+ /| f® e B(x)}.
Here, the closures are taken in the set of Busemann points.

Let C and C’ be the cones over D and D’, respectively, and make the identifica-
tions P(C) = D and P(C’) = D’. We extend the Funk, reverse-Funk and Hilbert
horofunctions to these cones as described in Section 5.4.

We define a map ¢: C — C’ as follows. For each x € C, let ¢(x) be such that
P(¢(x)) =D(P(x)) and f®@ (¢(x)) =ryu(x). Clearly, ® is the projective action of ¢,
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and, from the homogeneity properties of f® and r, , we get that ¢ is antihomogeneous.
Note also that ¢(b) = b’. Moreover, the push-forward of r,, is f® | that is,

) ru=ro9”" = 1.

Let v be any extreme point of cl D distinct from u, and denote by V the associated
maximal pure Funk part. So cl1V = {r, + f | f € B(v)}. By Lemma 7.2, the straight
line segment connecting # and v lies in the boundary of D. So there exists an element
of d(C*) that supports C at both u and v. In fact, the set of elements of d(C*) that
support C at both u and v forms a proper extreme set of C*, and so contains an
extremal generator w of C*. Let E :=relint{x € dD | (w, x) = 0}. So the maximal
pure reverse-Funk part associated to w can be written as W := {ry + f®) | x € E},
where f ) js the Funk Busemann point associated to w.

Observe that (w,u) = 0. So {h, = r, + f™®)} is a singleton part of the Hilbert
geometry horofunction boundary of D, and is contained in both clU and cl W.
Therefore, W and U satisfy the assumptions of Lemma 7.3, and it follows that ®W
and ®U do also. Applying the lemma, we get that ®W is of opposite type to U ; in
other words, ®W is a pure Funk part.

Similarly, {hy := ry + f ™} is a singleton part and is contained in both ¢l V and
cl W. Using the same reasoning as in the previous paragraph, we get that ®W is also
of opposite type to ®V'; in other words, ®V is a pure reverse-Funk part.

Let z be the extreme point of the polar (D’)° of D’ associated to the maximal pure
Funk part ®W . Since &4, and ®hy lie in cl ©W, we may write them as

(8) Ohy=r,+ @,
9) Ohy =r,+ f©,

where 7, is the reverse-Funk horofunction on D’ associated to z, and f® and 1@
are Funk horofunctions on D’. The f @) here is the same as the one appearing in (6)
because ®/, also lies in cl dU .

Observe that if / is any function on C that just depends on the projective class, then
¢h is a function on C’ that also just depends on the projective class, and ¢/h agrees
with ®/. Thus, (8) and (9) hold with ® replaced by ¢. Using this and (7), we get

61 ) = p(hy— 1) = phy—pry =1z + @ — f O =r..
Therefore, ¢ry = ¢p(hy — f@)) = f@),
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Let f be any Funk horofunction in B(v). So & :=r, + f is a Hilbert horofunction
and is contained in the set cl V. But we have seen that ®V is a pure reverse-Funk part.
It follows that ¢/ is a horofunction of the form r, + f ®) for some point p in dD’.
Therefore, ¢f = p(h—ry) =71p.

But v was chosen to be an arbitrary extreme point of cl D, and every Funk horofunction
is contained in B(v) for some choice of extreme point v of ¢l D. So we have shown
that every Funk horofunction is pushed forward by ¢ to a reverse-Funk horofunction.

By Proposition 4.4, we have the following two formulae:

(10) dp(x,y) =sup(f(x) = f(y)) forall x,yeD,
S

(11) dp(x,y) =sup(r(x)—r(y)) forall x,ye D',
r

where the suprema are taken over the set of all Busemann points in, respectively, the
Funk geometry on D and the reverse-Funk geometry on D’. In fact, since the quantities
involved have the right homogeneity properties, the formulae extend to all x and y in
C and C’, respectively.

So, for every x, y € C and every Funk Busemann point f of D,

fx) = f() =r(px) —r(py) < dp(¢x.¢y).

where 7 := ¢f := fo¢~! is the reverse-Funk horofunction of D’ that is the push-
forward of f. We deduce that dr(x,y) < dg(¢x,¢y) for all x,y € C. Using
this inequality and the fact that ¢ preserves the Hilbert distance, we get the opposite
inequality: for all x,y € C,

dp(x,y) =dg(x,p)—dp(y.x) > dy (px.¢y) —dr(py. ¢x) = dg($x.¢y).

Therefore, dp(x, y) = dg(¢x.¢y) forall x, y € C. It follows upon taking exponen-
tials that ¢ is gauge-reversing. a

Let ®: D — D’ be a surjective isometry between finite-dimensional Hilbert geometries
D and D’. Consider the following property, which ® may or may not have:

Property 7.5 For every extreme point u of cl D, there is an extreme point u’ of cl D’
such that, for all v € D, we have ®(uv) = u’®(v) as an oriented line segment,

In [13], it was shown that if D and D’ are polyhedral and ® and ®~! have Property 7.5,
then & is a projectivity. The proof is in two parts. First, it was shown that ® and
®~! extend continuously to the usual boundaries of D and D’, respectively. Then
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it was shown that an isometry between Hilbert geometries that extends continuously
to the boundary and has an inverse that does likewise is a projectivity. Inspecting the
proof, one sees that the polyhedral assumption was not used in any essential way and
that the same proof works in the general case provided one changes some terminology.
In particular, one must consider the extreme points rather than the vertices, and the
relative interiors of the extreme sets rather than the relatively open faces. Thus, we
have the following theorem.

Theorem 7.6 [13] Let ® be a surjective isometry between two finite-dimensional
Hilbert geometries such that both ® and ®~' have Property 7.5. Then ® is a projec-
tivity.

We now prove the main theorem of this section.

Proof of Theorem 1.3 Let ® be an isometry of (D, dg), and consider the action of
® on the horofunction boundary. Either every maximal pure Funk part is mapped to a
similar such part, or there is a nonsingleton maximal pure Funk part that is mapped to
a pure reverse-Funk part.

In the latter case, ® arises as the projective action of a gauge-reversing self-map on
the cone C over D, by Lemma 7.4.

Consider now the former case. Let u be an extreme point of cl D, and denote by U the
associated maximal pure Funk part. By assumption, U is mapped by ® to a maximal
pure Funk part U’ := ®(U). This part is associated to some extreme point u’ of ¢l D.

Let v € D. By Proposition 2.4, the open line segment #v is a unique geodesic half-line
in the Hilbert geometry. So its image ®(uv) is also a unique geodesic half-line, and is
therefore a straight line segment.

Let x, be sequence in uv converging to u in the usual topology. Since x; is moving
along a Hilbert geometry geodesic, it must converge to a Hilbert geometry horofunction,
which will be in U . It follows that ®(x,) converges to a Hilbert horofunction in U’,
and this horofunction is necessarily of the form r, + /', with f € B(u’). This implies
that ®(x,) converges to u’ in the usual topology. This establishes that ® satisfies
Property 7.5. That ®~! satisfies the same property can be shown in the same way.
Applying Theorem 7.6 gives that ® is a projectivity, and so arises as the projective
action of a gauge-preserving self-map of C. a
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Proof of Corollary 1.4 Denote by AT the set of self-maps of C that are gauge-
preserving, and by A the set that are either gauge-preserving or gauge-reversing. By
Theorem 1.3, every isometry of D arises as the projective action of a map in A.

If the cone C is not symmetric, then by Theorem 1.1, A consists of only gauge-
preserving maps, and so every isometry is a projectivity.

So assume that C is symmetric.

Observe that the composition of a gauge-reversing map and a gauge-preserving map
is gauge-reversing, and that the composition of two gauge-reversing maps is gauge-
preserving. It follows easily that A* is a normal subgroup of index two in A. This
implies that A is generated by AT and the Vinberg *—map associated to C, which
is always gauge-reversing for symmetric cones. So Isom(D) is generated by the
projectivities and the projective action of the x—map.

If C is Lorentzian, then the projective action of the *x—map is a projectivity, so in this
case Isom(D) = Proj(D).

For all other symmetric cones, this projective action is not a projectivity, and therefore
Proj(D) is a normal subgroup of index two in Isom(D). a

8 The horofunction boundary of product spaces

Let (X1,dy) and (X3, d;) be metric spaces. We define the £o,—product of these two
spaces to be the space X := X; x X, endowed with the metric d defined by

d((x1,x2), (y1,¥2)) = max{d (x1, y1)da(x2, y2)},
for all x1, y1 € X7 and x,, y, € X, and we denote this space by
(X, d) =:(X1,d1) o0 (X2,d2).

Our motivation for considering such spaces is that the Thompson metric on a product
cone has such a structure, a fact we will use when studying the isometry group of the
Thompson metric.

In this section, we will study the set of Busemann points and the detour cost for £oo—
product spaces. We assume that X; and X, have basepoints b; and b,, respectively,
and we take (bg, by) to be the basepoint of X .
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Let v and A denote, respectively, maximum and minimum. We use the convention that
addition and subtraction take precedence over these operators. We write x* := x Vv 0
and x~ :=x A0. Let R := R U {—00, +00}. Given two real-valued functions f;
and f5,and c € R, define

/1, o cli=(fi+cT) vV (fa—ch).

For the rest of this section, we will assume that (X7,d;) and (X3, d,) are proper
geodesic metric spaces.

The following proposition shows that horofunctions of {£~,—product spaces have a
simple form.

Proposition 8.1 Every horofunction of (X, d) is of the form

[§1.62. c]
with £ € X;(c0) and &, € X»(00), and ¢ € R.
Proof Denote by X, and X, the horofunction compactifications of X; and Xj,
respectively. Let x” = (x{, xJ) be a sequence in X converging to a horofunction &.

By passing to a subsequence_if necessary, we may assume that x{ converges to £ € X'y,
that x% converges to &, € X5, and that

d(by.x") —d(by. x1) — c,

with ¢ € R. At least one of &; and & must be a horofunction of its respective space.
Observe that, as n tends to infinity,

d(b,x")—d(by,x}) — —c~ and d(b,x")—d(by, x5) —c™t.
Therefore, for y = (31, y2) in X', we have the following limit as n tends to infinity:
d(y,x")—=d(b.x") = (d(y1.x7) Vd(y2. x3)) —d(b,x")
= (d(y1,x7) = d (b1, x7) + ¢7) vV (d(y2, x5) = d (b, x5) — ™)
— [§1.62.¢](»).
If & is not a horofunction, then ¢ = —oo, and &; is irrelevant in the expression

[£1,&2, c]. Likewise, if &, is not a horofunction, then ¢ = 400, and &, is irrelevant. O

Next, we will determine the Busemann points of product spaces. We will need the
following lemma.
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Lemma 8.2 Let f; and g, be real-valued functions on a set Yy, and let f> and g,
be real-valued functions on a set Y, . Assume that f1(x1)V f2(x2) = g1(x1) Vv g2(x2)
for all (xq,x;) € Y1 X Y,, and that inf f, =inf g, = —o0. Then f| = g1.

Proof Let x; € Y;. Choose x; € Y, such that f5(x;) < f1(x1). So

J1(x1) = filx) Vv f2(x2) = g1(x1) V g2(x2) = g1(x1).

The reverse inequality is proved similarly. a

We will also need the following characterisation of Busemann points from Theorem 6.2
of [1]: a horofunction is a Busemann point if and only if it cannot be written as the
minimum of two 1-Lipschitz functions, both different from it.

Proposition 8.3 For every pair of Busemann points £; € X1(o0) and &, € X;(00),
and every ¢ € R, the function [£;, &, c] is a Busemann point of X . Moreover, every
Busemann point of X arises in this way.

Proof Let £ be a Busemann point of X. By Proposition 8.1, we may write & =
[£1, &, ¢] with & € X(00) and &, € X,(00), and ¢ € R. Suppose &; = f A f’, where
f and f’ are real-valued 1-Lipschitz functions on (X7, d;). We consider the case
when ¢ > 0; the other case is similar. So

E=(AfIVE-o)=(fVE-DAV(E-0).

Therefore, & is the minimum of two 1-Lipschitz functions on (X, d). This implies,
since £ is Busemann, that it is equal to one of them, say £ = f Vv (§, —c¢). But we also
have that £ = &, v (&, —¢). If ¢ = o0, then we have proved that £&; = f'; otherwise
we apply Proposition 4.1 and Lemma 8.2 to get the same conclusion. We deduce that
&1 is a Busemann point of (X7, dy). The proof that &, is Busemann is similar.

Now assume that £; and &, are Busemann points of (X7, d1) and (X3, d;), respectively.
So there exists an almost-geodesic ; in X converging to &;, and an almost-geodesic
y, in X, converging to & . We may assume without loss of generality that y; and
y, start, respectively, at b; and b5, the basepoints of the spaces. By Lemma 4.3, we
may also assume that the domain of definition of these almost-geodesics is R4.. We
furthermore assume that ¢ > 0; the other case is handled similarly.

Define the path y: Ry — X by

y(t):= ()/1 @),y ((¢ —c)+)) forall 1 € R.
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By Lemma 4.2, we have, as ¢ tends to infinity,
(12) di (b1, n1(1)) —t =0,
(13) dz(bz,]/z(l))—t—)().

Observe that (t —c)* —¢ converges to —c as ¢ tends to infinity. We deduce from this
and (13) that
dy (b2, 2((t —c)T)) =t > —c as t — <.

From this and (12), we get
(14) db,y)—t—>0 ast— oco.

This shows that condition (1) of Lemma 4.2 holds for y. The proof of condition (2) of
the same lemma is similar. So y is an almost-geodesic.

Using (14), we get, for all x := (x;, x2) in X,

Jim (dCx, y(0)=d (b, y (1)) = tl_i)ngo((dl(xl»Vl(l))VdZ(XZvVZ((I_C)+)))_I)
= tl_i)rgo((dl (x1, 1)) =)V (da(x2. v2((t—)T)) 1))
=&51(x1) vV (52(x2)—0).

In other words, y(¢) converges to £ :=[£;, &>, ¢]. Therefore, £ is a Busemann point
of (X,d). O

We now calculate the detour cost in product spaces. We use the convention that —oo is
absorbing for addition, that is, (4+00) 4 (—00) = —o00 and (—o0) — (—00) = —00.

Proposition 8.4 Let & = [£1,&,,u] and n = [n1, 12, v] be Busemann points of X .
Then

H(E,m) =max(H(Em)—u” +v, HE, m) +ut —v™).
Proof We extend the definition of H somewhat by letting H(§ + u,n + v) :=
H(&,1) 4+ v —u for all Busemann points & and 75, and u, v € [—00, 0].

Write _ _
Eli=&+u, Ei=&H—ut,
mi=m+v., M=mn-v'.

So =& V& and =17 V7.
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By Proposition 4.5,

m()<HE,n)+E&() and na(-) < H(E,n2) +6(0).

Let M = max(H(gl,ﬁl), H(gz,ﬁz)). If M = 400, then clearly H(§,1) < M, so
assume that M < +o0. This implies that it is not the case that # = —o0 and v > —o0,
nor that ¥ = 400 and v < +oc0. It follows that

M(-)<HE.7)+E() and M(-) < HE. ) +E(-).
Therefore, using Proposition 4.5,

HEn = sup  ((01(x1)Va(x2)— (1 (x1) VE(x2)))

(x1,x2)€X

< sup ((HGEr.m)+E(x1)V HE. ) +E(x2)— Er(x1) VE(x2)))

(x1,x2)€X

< sup (M+EG)VM+E(x2)—(Er(x1) VE(X2)))

(x1,x2)€X

=M.

We now wish to prove the reverse inequality. We have

HEn = sup  (m(x1)— E1(x1) VEX2))).

(x1,x2)€X

Fix x; € X;. From Proposition 4.1 and the fact that ™ > 0, we get that inf Ez = —00.
Therefore, we can choose x, € X, to make &, (x,) as negative as we wish. So we see
that H(&,n) > n1(x1) —&1(x1). We conclude that

H(E ) = sup (n1(x1)—E&1(x1) = HEL ).

x1€X]

Similar reasoning shows that H(£, 1) > H (&5, 7). o
Using this proposition, we can characterise the singletons of product spaces.

Corollary 8.5 The following are equivalent:

e £ is asingleton Busemann point in the horofunction boundary of X .

e ¢ takes one of the following two forms: &(x1,x,) = &;(x1) with &; a singleton
Busemann point of X1, or £(x1,x3) = &(x,) with &, a singleton Busemann
point of X>.
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Proof Let ¢ be a Busemann point of X. By Proposition 8.3, we can write £ =
[£1, &5, ], where & and &, are Busemann points of X; and X, respectively, and
ceR.

Consider the case where ¢ is finite. For each € € R, define the Busemann point £€ :=
[£1,&2, ¢ + €]. We can calculate from Proposition 8.4 that H(&,£€) + H(E€,&) = |¢|
for all € € R. This shows that £€ is distinct from & but in the same part as it for all
€ € R\{0}, and hence that £ is not a singleton.

In the case where ¢ = oo, we have & = &;. If & is not a singleton of X7, then
let £} be another Busemann point in the same part as &;, and write £’ = & . From
Proposition 8.4, we get H(§,&') + H(§',&) = H(§1.&])) + H(£].&) <00, and so &
is not a singleton.

The case where ¢ = oo and &, is not a singleton of X, is handled similarly.

Now let &; be a singleton Busemann point of X7, and write &(xy, x;) := &;(x;) for all
X1 € X1 and x; € X;. Observe that £ =[&,, &,, oo] for any Busemann point &, of X;.
Let n :=[n1, 712, c] be a Busemann point of X in the same part of the horofunction
boundary as £. Here, of course, ; and n, are Busemann points of X; and X,
respectively, and ¢ € R. Since H(&, n) is finite, looking at Proposition 8.4, we see that
H(&5,1m2) +00—cT < 00, and hence ¢ = co. Using this and the same proposition
again, we get H(&1,n1) = H(E,n) <oo and H(n1,&) = H(n, &) < oo. Since &;
was assumed to be a singleton, we conclude that n; = &, and therefore n = &. We
have thus shown that & is a singleton.

That £ := &, is a singleton point of X whenever &, is singleton point of X, may be
proved in a similar manner. a

9 The horofunction boundary of the Thompson metric

In this section, we determine the horofunction boundary of the Thompson geometry
and its set of Busemann points. We then calculate the detour metric on the boundary.

The results of this section will resemble somewhat those of the last. This is because
the Thompson metric is the maximum of the Funk and reverse-Funk metrics, and, as a
consequence, its boundary is related to those of these two metrics in a way similar to how
the boundary of an £, —product space is related to the boundaries of its components.
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Recall that D is a cross-section of a proper open convex cone C. For each x € dD, let
A(x) denote the set of horofunctions of the Funk geometry that may be approached by
a sequence in D converging to x. Also, for each x € D, define the following function

on C:
Mc(-,x)

Jex(+) :=log Meb.x)’

We start off by describing the horofunctions of the Thompson metric.

Proposition 9.1 Let (C, dr) be a proper open convex cone with its Thompson metric.
Its horofunction boundary is

C(oo)={rx|x€D}U{fC,x|x€D}U{[rx,f,c]|xe8D,feA(x),ceR},

where D is a cross-section of C .

Proof First, we show that each of the functions in the statement is a horofunction.
Functions of the form ry, with x € D, may be approached by taking Ax as A > 0
tends to infinity. Similarly, fc ., with x € D, is approached by x /A as A tends to
infinity.

Let x € 3D, and f € A(x), and ¢ € R. So there exists a sequence x, € D such that
xp, converges to x and dp(-,x,) —dF(b, x,) converges pointwise to f . For each n,
we may choose )y, in the same projective class as x, such that M (b, y,) = M(yn, b).
It is not difficult to show that the limit of the sequence y, exp(%cn) in the horofunction
compactification is [ry, f, ¢] for any sequence ¢, in R converging to c.

Now we show that all horofunctions take one of the given forms. Let y, be a sequence
in C converging to a horofunction £. Using compactness, we may assume that yy,
converges in both the Funk and reverse-Funk horofunction compactifications. If y,
converges projectively to the projective class of some point y € D, then & must equal
ry if y, heads away from the origin, or fc,, if y, heads towards the origin. Otherwise,
Vn converges to a horofunction f in the Funk geometry, and to a horofunction ry in
the reverse-Funk geometry, with x € dD and f € A(x). By taking a subsequence if
necessary, we may assume that dg (b, y,) — dr (b, y) converges to a limit ¢ in R.
One may calculate then that dr (-, y,) —dr (b, yn) converges to [ryx, f,c] as n tends
to infinity. O

The following lemma parallels Lemma 8.2.
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Lemma 9.2 Let f1, f>, g1, and g, be real-valued functions on a cone C satistying
S1(x) = —logh + fi(x), fa(hx) =logh + f2(x),
g1(Ax) = —logh + g1(x), ga(Ax) =logh + g2(x),
forall A >0 and x € C. Assume that fiV f =gV g, on C. Then f| = g and
fa=g>.
Proof Let x € C, and choose A > 0 small enough that f,(Ax) < f1(Ax). So
S10x) = fi(Ax) V f2(Ax) = g1(Ax) V g2(Ax) = g1(Ax).

Therefore, f1(x) > g1(x). The reverse inequality is proved similarly.

The proof that f, = g, goes along the same lines. O

In [1], the notion of almost-geodesic was defined slightly differently. A sequence (xi)
in a metric space (X, d) was said to be an e—almost-geodesic if

d(x0.x1) + -+ d(om, Xm1) < d(x0. Xpms1) + € forall meN.

It was shown in [1] that every e—almost-geodesic has a subsequence that may be
parametrised to give an almost-geodesic in the sense of Rieffel. Conversely, given
any almost-geodesic in the sense of Rieffel, it was shown that one may obtain an
e—almost-geodesic by taking a sequence of points along it.

Recall again that a horofunction is a Busemann point if and only if it can not be written
as the minimum of two 1-Lipschitz functions, both different from it [1, Theorem 6.2].
In the context of a distance d that is not symmetric, a function f being 1-Lipschitz
means that f(x) <d(x,y)+ f(p) for all points x and y.

Proposition 9.3 The set of Busemann points of the Thompson geometry is
{rx | x € DYU{fcx|x€DyU{lry, f,c]| x €3D, f € B(x), c € R}.

Proof Assume that £ is a Busemann point. By Proposition 9.1, if £ is not of the form
Fx Of fc.x,with x € D, then it is of the form [ry, f,c], with x € dD and f € A(x),
and c € R. Write f = g A g/, where g and g’ are real-valued functions on C that
are 1-Lipschitz with respect to the Funk metric d. Observe that this property of g
and of g’ implies that each of them is the logarithm of an homogeneous function. We
consider the case when ¢ < 0; the other case is similar. We have

E=((rx+o)Vvi(gng) =(x+o)ve) Allrx+c)Vg).
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So £ is the minimum of two functions on C that are 1-Lipschitz with respect to
Thompson’s metric d7 . Since £ is a Busemann point, it must be equal to one of them,
say (rx +¢) Vv g. If ¢ = —o0, then we have proved that f = g; otherwise we apply
Lemma 9.2 to get the same conclusion. We have shown that if f* is written as the
minimum of two functions that are 1-Lipschitz with respect to the Funk metric, then it
equals one of them. Since f is a Funk horofunction, it follows that f is a Busemann
point of the Funk geometry.

Functions of the form ryx or fc x with x € D are clearly Busemann points of the
Thompson geometry since they are the limits, respectively, of the geodesics 7 > e’ x
and e 'x.

Let x € 3D, and f € B(x), and ¢ € R. Choose € > 0. We must show that [ry, f, ]
is a Busemann point. We consider only the case where c is finite; the case where it is
infinite is similar and easier.

Since f isin B(x), there exists, by the proof of [22, Lemma 4.3], a sequence x, in D
that converges to f and to ry, respectively, in the Funk and reverse-Funk geometries,
and furthermore is an e—almost-geodesic with respect to both of these metrics. So, as
discussed above, by passing to a subsequence if necessary and parametrising in the
right way, we obtain an almost-geodesic converging to r in the reverse-Funk geometry.
Applying [23, Lemma 5.2], we get that

(15) dRr(b,xn) + rx(xn) — 0.
In a similar fashion, one may show that
(16) dp(b,xn) + f(xn) > 0.

For each n € N, choose z; in the same projective class as x, such that M(z,, b) =
M(b, z)e€. So, forall n e N,

dr (b, zn) = dgr(b,zn) V dp (b, 2y) = dRr(b,zn) —¢~ = dp(b,zy) + ™.

Observe that both (15) and (16) also hold with z, in place of x,, since, foreach n € N,
xn and z, are related by a positive scalar. Combining all this, we have
dr (b, zn) +[rx. f.¢l(zn) = (d7 (b, z) + rx(zn) + ¢7)V (dr (b, 20) + [ (zn) —¢™)

= (dRr(b,zn) +rx(zn)) V (dF (b, zn) + f(zn)) = 0
as n tends to infinity.
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We have seen in the proof of Proposition 9.1 that z, converges to & :=[rx, f,c] in the
Thompson geometry. We deduce that H(,£) = 0, and so [ry, f, c] is a Busemann
point. a

Recall that we have extended the definition of H by setting H(§ + u,n + v) :=
H(&,1) + v—u for all Busemann points £ and 7, and u, v € [—o0, 0]. We are also
using the convention that —oo is absorbing for addition.

Proposition 9.4 The detour distance between two Busemann points & and 1 in the
horofunction boundary of the Thompson metric is 6(&,n) = dg(x, y) if £ =rx and
n=ry, with x, y € D. The same formula holds when £ = fc x and n = fc,,, with
X, yeED.If E=|ry, f.c]and n=[ryxs, f',c'], withx,x" €D, f € B(x), f' € B(x")
and ¢,c¢’ € R, then

8(5.m) = max(H (Fx, 7). H(f, ') + max(H (. 7). H(f', /).

where

Fx.:rx'i_c_, f_

vl /— /
Fx'i=rx ¢, f:

f
/

—ct,
'

In all other cases, §(£,n) = oo.

Proof For x and y in D, we have, by Proposition 4.5,
H(rx.ry) = sup(ry(z) —rx(2))
zeC

= Sug(dR(Z, y)—dgr(b,y) —dr(z.x) + dg(b.x))

=dr(x,y) —dr(b, y) + dgr(b, x).

Here we have used the triangle inequality to get an upper bound on the supremum, and
taken z = x to get a lower bound. Symmetrising, we get that §(ry,7y) = dpg(x, ).

We use similar reasoning in the case where the two Busemann points are of the form
Jc,x and fc y, with x,y € D.

Now let & :=[rx, f,c] and n:=[ry, f7, '], with x,x" € dD, f € B(x), f' € B(x)
and ¢, ¢’ € R. By Proposition 4.5,
(1) Srx () + H(rx,rer) and - f/() = )+ H(S ).

If either H(Fx,7x’) or H(f, f') equals +oo, then H(£, n) is trivially less than or
equal to the maximum of the two. So assume that both quantities are less than +o0.
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This rules out the possibility that ¢’ > ¢ = —oo, and the possibility that ¢’ < ¢ = 4o00.
So

() STx () + H(rx,7x) and  f'(0) = f()+H(S, ).
Therefore,
(17)  H(E ) = sup([rx, 17, ¢')(2) = [rx, f2€)(2))

zeC

= sug((?x/(z) v f1(2) = (Fx(2) v [(2)))
= Sug((FX(Z) + H(rx,7x) V f_(Z) + H(];’ f_/)) —(x(2) v f_(Z)))

< H(rx,Tx’) VH(]Fv f_/)
We now wish to show that H (&, n) > H(ry, 7x). This is trivial if H(ry,7y) = —00,
so we assume the contrary, which is equivalent to assuming that 7 is finite everywhere.
Let z € C. From (17), we have, for all A >0,

H(E 1) 2T (A2) = (Fx(k2) V [ (2)) = (Fxr = Tx) (h2) A (P = [)(A2).

Observe that 7y (Az) = 7x(z) —log A and f(Az) = f(z) +logh forall A > 0. So
(rx’ —7x)(Az) is independent of A. Moreover, by choosing A small enough, we may
make (7y — f )(Az) as large as we wish. We conclude that H(&,1) > (ry —7x)(2).
Taking the supremum over z € C gives us what we wish.

The proof that H(&,n) > H(f, f') is similar.
The result now follows on symmetrising. |
Corollary 9.5 The singletons of the Thompson geometry are the Busemann points of

the form r,, with x an extreme point of cl D, or of the form log({y,-)/{y, b)) with y
an extremal generator of C*.

Proof Since the Busemann points of the form 7y, with x € D, all lie in the same part,
none of them are singletons. Similarly, no Busemann point of the form fc ., with
x € D, is a singleton.

Consider now a Busemann point & := [ry, f,¢], with x € dD, and f € B(x), and
ceR.

If ¢ is finite, we define the Busemann point &€ := [ry, f,c + €] for each e e R. A
simple calculation using Proposition 9.4 then gives §(&,£€) = |e| for all e € R. So &€
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is distinct from £ but in the same part as it for all € € R\{0}, and hence & is not a
singleton.

In the case where ¢ = oo and x is not an extreme point of cl D, we have that x is in
the relative interior of some extreme set of cl D that contains another point x’ distinct
from x. One can then show using Proposition 9.4 that &' := [ry/, f’, o0] is distinct
from & but in the same part, where f’ is any function.

The case where ¢ = —oo and f is not a singleton of the Funk geometry is similar.

Now let x be an extreme point of cl D, so that r, is a singleton of the reverse-Funk
geometry. Write & := ry = [ry, f, oo] for any Funk horofunction f in B(x). Let
& :=[rys, f’, c] be a Busemann point of the Thompson geometry lying in the same part
of the horofunction boundary as £. Here, of course, x’ €D, and f’'€ B(x'),and c €R.
Since §(&, £') is finite, looking at Proposition 9.4, we see that H(f, f/)+oo—c™ < 00,
and hence ¢ = co. Using this and the same proposition again, we get oo > §(&,&’) =
8(rx,rx’). Since ry was assumed to be a singleton, we conclude that x’ = x, and
therefore £’ = £. We have thus shown that £ is a singleton.

The proof is similar in the case of Busemann points of the form log({y,-)/(y, b)),
with y an extremal generator of C*. O

10 Isometries of the Thompson metric

Let Cy, C, and C be nonempty convex cones in the linear space V. We say that C
is the direct product of Cy and C, if C = C; 4+ C; and lin C; Nlin C; = {0}. Here
lin denotes the linear span of a set. In this case we write C = C; & C,.

If C = Cy & (,, then 1linC is the (linear space) direct sum of linC; and lin C;.
Denoting by P; and P, the corresponding projections, we have P;(C) = C; and
P,(C) = C,. We note that C is relatively open if and only if both C; and C, are.

Let C = Cy & C, be a product cone. We write the Thompson metrics on C; and C,
as d} and d%, respectively. Let x1, y; € C; and X3, y» € C;. One may easily verify
that x; +x2 <¢ y1 + y» if and only if both x{ <¢, y; and x, <¢, y>. It follows that

Mc(x1+ X2, y1 +y2) = Mc,(x1, 1) V Mc, (X2, y2),

and hence that the Thompson metric on C is

(18) dr(x1 + X2, y1 + ¥2) = dp(x1. y1) V dF(x2, y2).
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Assume that C is proper, open and convex. Suppose that C, admits a gauge-reversing
bijection ¢,. For example, one may think of (0, co) with the map x — 1/x. Then,
as pointed out in [17, Proposition 10.1], there exists a Thompson metric isometry
of C that is neither gauge-preserving nor gauge-reversing, namely the map ¢: C — C
defined by

@(x1 4+ x2) :=x1 + ¢2(xp) forall x; € Cy and x5 € C;.

Indeed, we are applying here the identity map to the first component and ¢, to the
second. These maps are Thompson isometries on C; and C,, respectively, and so (18)
gives that ¢ is an isometry on C. However, ¢ is clearly neither homogeneous nor
antihomogeneous, which implies by Propositions 2.1 and 2.2 that ¢ is neither gauge-
preserving nor gauge-reversing.

We see from the following theorem that this is the only way in which such isometries
arise.

Theorem 1.5 Let C and C’ be proper open convex cones, and let ¢: C — C’ be a
surjective isometry of the Thompson metric. Then there exist decompositions C =
C1®C; and C' = C{@®C; suchthat ¢ takes the form ¢ (x1 +x2) = ¢1(x1) +¢2(x2),
where ¢, is a gauge-preserving map from Cy to Cl/ and ¢, is a gauge-reversing map
from C; to C;.

We will prove this theorem by considering the action of ¢ on the horofunction boundary,
or more specifically, its action on the singletons. Choose basepoints » and b" in C
and C’, respectively, such that ¢(b) = b’.

Recall that a singleton is a Busemann point that lies in a part consisting of a single
point, or in other words, that is an infinite distance from every other Busemann point
with respect to the detour metric. We have seen in Corollary 9.5 that each singleton of
the Thompson geometry is either a singleton of the Funk geometry or a singleton of
the reverse-Funk geometry on the same cone.

Let S be the set of functions of the form exp o g, where g is a singleton of the
Thompson geometry on C. So each element of S is the restriction to C of a function
either of the form (y,-)/(y,b) with y an extremal generator of C*, or of the form
M(x,-)/M(x,b) with x an extremal generator of C. Denote by F those of the
former kind, and by R those of the latter. On C’, we define the sets of functions S’,
F’ and R’ in the same way.
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Figure 3: The action of an isometry on the singletons in the boundary

Since the action of ¢ on the horofunction boundary preserves the detour metric, it
maps parts to parts, and hence maps singletons to singletons. Therefore, a function f
isin S if and only if f o¢ ™!, which is its image under ¢, is in S’.

Observe that each element of F is a linear functional on V', and together they span the
dual space V*. The idea of the proof is to examine which of these linear functionals
get mapped by ¢ to a linear functional, and which get mapped to something nonlinear.

Let F; denote the elements of F that are mapped to elements of F’, and F, denote
those that are mapped to elements of R’. Similarly, define an element f’ of F’ to be
in either F| or F), depending on whether its image /o ¢ under ¢~ lisin F or R.
So we have the picture given in Figure 3.

Define
Cyp:=relint{z eclC | f(z) =0forall f € F,},

Cy:=relint{zeclC| f(z) =0forall f € Fi}.
Observe that cl C; and cl C;, are exposed faces of cl C. We define Cl’ and Cz’ in an

analogous way.

Lemma 10.1 If x and y arein Cy, and f(x) = f(y) forall f € Fy, then x = y.
Similarly, if x and y arein C,, and f(x) = f(y) forall f € F,, then x = y.

Proof Under the assumptions of the first statement, f(x) = f(y) forall f € F{UF;.
However, F; U F, is exactly the set of extreme points f* of cl C* satisfying f(b) = 1.
Since this set spans V*, we have x = y.

The proof of the second statement is similar. a
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Lemma 10.2 Suppose z € C can be written z = x1 + x3 = y1 + y», with x; and yq
in Cy, and x, and y, in Cy. Then x; = y; and x; = y;.

Proof Each f € F, is linear and takes the value zero on C;, and so f(z) = f(x;) =
f(»2). Therefore, by Lemma 10.1, x, = ;.

The proof that x; = y; is similar. |

Define

Piz@)i= 297 (@p(z) and Pa(z,0) = 247 (Lo(2))

forall z€ C and a € (0, 00).

Lemma 10.3 The cone C is the direct product of C; and C,, and the maps Py(z) :=
limy— 0o P1(z,) and P,(z) := limy—co P>(z, ) are the projection maps onto C;
and C,, respectively.

Proof Let z € C. For f € Fy, we have that f o¢~! is the exponential of a Funk
horofunction, and is therefore homogeneous. In this case,

f(Pi(z@) =~ [ o¢™ @p() = f(2).

On the other hand, for f € F,, we have that f o¢~! is the exponential of a reverse-
Funk horofunction, and is therefore antihomogeneous, which gives that f(P;(z,a)) =

f(@)/e?.

So the limit of f(P;(z,a)) as « tends to infinity exists for all f € F. This implies
that the limit P;(z) defined in the statement of the lemma exists.

Moreover, we have

19) sy = {1 P ren

0 for f e F,.

So Py(z) isin cl Cy. Similarly, one can show that the limit P,(z) exists and lies in

cl C,, and that
0 for f € Fy,
0) F(Pa()) = feh
f(z) for feFj.
Observe that f(P1(z)) + f(P2(z)) = f(z) for all f € F. It follows that z =
P1(z) + P>(z). We have shown that C is a subset of ¢l C; + cl1C,. It follows that
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cl C is also a subset of this set since the latter set is closed. That c1C; +clC, is a
subset of cl C follows from the fact that ¢l C; and cl C, are contained in cl C'.

Lemma 10.2 implies that

lincl Cy Nlincl C, = 1in Cy Nlin C, = {0}.
So we see that the cone cl C is the direct product of clC; and clC,. It follows
immediately that C is the direct product of C; and C,. a

We define maps P{ and Pﬁ on C’ analogously to how we defined P; and P,.

Lemma 10.4 Let x and y in C be such that Pi(x) = Py(y). Then P{(¢(x)) =
Pi(p(»)).

Proof From (19), we have f(x) = f(y) forall f € F;. Equivalently,

Jod7H @) =fo¢™ B(»)
forall f € F;.But fo¢~!isin F| if and only if f isin Fy,and so f'(¢(x)) =
/"(@(y)) forall f” e Fj. It follows that Pj(¢(x)) = P{(¢(»)). O

We say that a function f on a product cone C; @ C, is independent of the first
component if f(x) = f(y) whenever P,(x) = P,(y). Similarly, we say that f is
independent of the second component if f(x) = f(») whenever Pi(x) = P1(p).

Equations (19) and (20) imply, respectively, that each function in F; is independent of
the second component, and each function in F> is independent of the first component.

Let d} and d% be the Thompson metrics on C; and C,, respectively. Since C is the
direct product of C; and C,, we may write

dr (X1 + X2, y1 + ¥2) = dj-(x1, y1) V dF(x2, y2)

for all x1,y; € Cy and x,, y, € C,. So (C,dr) is the £ —product of the spaces
(Cq, d}) and (Cy, d%) in the sense of Section 8. It was shown there, in Corollary 8.5,
that each singleton of such a product depends only on one of the two components.
We conclude that each element of §' is either independent of the first component or
independent of the second.

Lemma 10.5 Let f € S. Then f is independent of the first component if and only if
fo¢p~!is. Likewise, f is independent of the second component if and only if f o¢~!

18.
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Proof Assume f o¢~! is independent of the second component. Let x and y in C
be such that P;(x) = P;(y). So, by Lemma 10.4, P{(¢(x)) = P{(¢()). Therefore,

o7l (@p(x)) = fop~ 1 (¢(y)), or equivalently, f(x)= f(y). We conclude that f

is independent of the second component.
The implication in the opposite direction is proved in a similar manner.

Now assume that f o¢~! is independent of the first component, and so not independent
of the second. Since f isin S, it must be independent of either the first or second
component. However, the latter possibility is ruled out by what we have just proved.
Again, the implication in the opposite direction is similar. O

Lemma 10.6 Let x and y in C be such that P;(x) = P(y). Then P)(¢(x)) =
Py(@(»).

Proof Let /"€ F,.So f’o¢ isin R, and, by Lemma 10.5, it is independent of the
first component since f” is. In particular, f//(¢(x)) = f'(¢(y)). Using (20) we get
that /(P (¢x)) = f'(P5(¢py)) forall f' € F,. But the same equation also holds for
all /" e F{, since, by (20), both sides are zero in this case. The conclusion follows,
since the set of linear functions F| U F) spans the dual space of V' :=1inC". |

Proof of Theorem 1.5 It was shown in Lemma 10.3 that C and C’ decompose in
the way claimed, and in Lemmas 10.4 and 10.6 that ¢ is of the form ¢(x; + x;) =
¢1(x1) + ¢p2(xp) for all x; € C; and x; € C, for some maps ¢;: C; — Cl’ and
¢21 C2 — Czl .

Since C is a direct product of C; and Cj, its Thompson metric can be written as
dr(x1 +x2,y1+)2) = max(djl"(xl V1), d%(xz, ¥2)),

in terms of the Thompson metrics on C; and C;. A similar expression holds for d7..
So, for z € C; and x;, y, € C,, we have

dr(z +x2,2 + y2) = d3(x2, ¥2)

and

dp(p(z +x2). ¢ (z + ¥2)) = dp(91(2) + P2(x2). 91 (2) + $2(12))
= d7 ($2(x2), $2(12))-

We conclude that ¢, is an isometry from (Cj, d%) to (C), d%z).
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Moreover, for all x € C and A > 0,

Py@0x) = Tim 1 2(2x) = - Pl ().

Hence, ¢, is antihomogeneous.

We now apply Proposition 2.2 to get that ¢, is gauge-reversing.

A similar argument shows that ¢, is also a Thompson-metric isometry, but this time

homogeneous, and hence gauge-preserving by Proposition 2.1. a
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