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Central limit theorems
for mapping class groups and Out.FN /

CAMILLE HORBEZ

We prove central limit theorems for the random walks on either the mapping class
group of a closed, connected, orientable, hyperbolic surface, or on Out.FN / , each
time under a finite second moment condition on the measure (either with respect to
the Teichmüller metric, or with respect to the Lipschitz metric on outer space). In
the mapping class group case, this describes the spread of the hyperbolic length of
a simple closed curve on the surface after applying a random product of mapping
classes. In the case of Out.FN / , this describes the spread of the length of primitive
conjugacy classes in FN under random products of outer automorphisms. Both
results are based on a general criterion for establishing a central limit theorem for
the Busemann cocycle on the horoboundary of a metric space, applied to either the
Teichmüller space of the surface or to the Culler–Vogtmann outer space.

20F65, 60B15

Introduction

Central limit theorems in noncommutative settings have a long history, and have already
been established in various contexts. In the case of random products of matrices, a
classical theorem of Furstenberg [19] asserts that if .Ai/i2N is a sequence of random
matrices, all distributed with respect to some probability law � on GL.N;R/ whose
support generates a noncompact subgroup of GL.N;R/ that does not virtually preserve
any proper linear subspace of RN, then under a first moment assumption on �, there
exists � > 0 such that for all v 2RN X f0g, almost surely, one has

lim
n!C1

1

n
log kAn � � �A1:vk D �:

Central limit theorems in this context date back to the works of Furstenberg and
Kesten [20], Le Page [37], Guivarc’h and Raugi [25], and Gol’dsheı̆d and Margulis [23].
These assert, under some conditions on �, that the variables

log kAn � � �A1:vk� n�
p

n
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converge in law toward a centered Gaussian law on R, which does not depend on the
vector v 2RN Xf0g. These central limit theorems were classically established under an
exponential moment assumption on the measure �. Their proofs relied on establishing
a spectral gap property for the transfer operator of the Markov chain corresponding to
the random walk, in a well-chosen space of sufficiently regular functions. Recently,
Benoist and Quint [3] gave a new approach to the central limit theorem on linear
groups, which enabled them to relax the assumption made on the measure to a second
moment condition.

Central limit theorems have also been established for free groups (Sawyer and Ste-
ger [49]) or, more generally, word-hyperbolic groups (Björklund [8]), describing the
spread of the word length of the element obtained at time n of the random walk
(again, the limiting law is Gaussian). Their proofs also required exponential moment
assumptions on the measure. The new approach of Benoist and Quint also enabled
them to similarly relax the moment assumption in this context [4].

The goal of the present paper is to prove central limit theorems on mapping class groups
of closed, connected, orientable, hyperbolic surfaces, and on the group Out.FN / of
outer automorphisms of a finitely generated free group. In the case of mapping class
groups, we will establish a central limit theorem for the hyperbolic lengths of essential
simple closed curves, under application of a random product of diffeomorphisms. In
the case of Out.FN /, we will establish a central limit theorem for the word lengths of
primitive conjugacy classes of FN , under application of a random product of outer
automorphisms of FN .

Central limit theorem on mapping class groups Let S be a closed, connected,
oriented, hyperbolic surface, and let � be a hyperbolic metric on S . The mapping
class group Mod.S/ is the group of isotopy classes of orientation-preserving diffeo-
morphisms of S. Karlsson [33] established a version of the law of large numbers for
the random walk on Mod.S/, estimating the typical growth of curves under random
products of diffeomorphisms of the surface. Given a probability measure � on Mod.S/,
the (left) random walk on .Mod.S/; �/ is the Markov process whose position ˆn at
time n is obtained by successive multiplications on the left of n independent �–
distributed increments si , ie ˆn D sn � � � s1 . A probability measure on Mod.S/ is
nonelementary if the subsemigroup of Mod.S/ generated by the support of � is a
subgroup of Mod.S/ that contains two independent pseudo-Anosov mapping classes.

Karlsson proved that if � is a nonelementary probability measure on Mod.S/ with finite
first moment with respect to the Teichmüller metric, then there exists a (deterministic)
real number � > 0 such that for all essential simple closed curves c on S , and almost
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every sample path .ˆn/n2N of the random walk on .Mod.S/; �/, one has

lim
n!C1

1

n
log l�.ˆn.c//D �:

Here l�.ˆn.c// is the smallest length of a curve in the isotopy class of ˆn.c/, measured
by integration of the metric � . The growth rate � is also equal to the drift of the random
walk on .Mod.S/; �/ with respect to the Teichmüller metric. We will establish the
following central limit theorem, under a second moment condition on �. In the
statement, we denote by ��n the nth convolution of �.

Theorem 0.1 Let S be a closed, connected, oriented, hyperbolic surface, and let � be
a hyperbolic metric on S. Let � be a nonelementary probability measure on Mod.S/
with finite second moment with respect to the Teichmüller metric. Let � > 0 be the
drift of the random walk on .Mod.S/; �/ with respect to the Teichmüller metric.

Then there exists a centered Gaussian law N� on R such that for every compactly
supported continuous function F on R, and all essential simple closed curves c on S ,
one has

lim
n!C1

Z
Mod.S/

F

�
log l�.ˆ.c//� n�

p
n

�
d��n.ˆ/D

Z
R

F.t/ dN�.t/

uniformly in c .

Central limit theorem on Out.FN / Let N � 2, let FN be a free group of rank N ,
and let Out.FN / denote its outer automorphism group. Let � be a probability measure
on Out.FN /. We established in [28] the following analogue of Karlsson’s theorem for
the random walk on Out.FN /, estimating the growth of nontrivial conjugacy classes
in FN under application of a random product of outer automorphisms. Assume that
the probability measure � on Out.FN / is nonelementary, ie the subsemigroup of
Out.FN / generated by its support is a subgroup which is not virtually cyclic and does
not virtually preserve the conjugacy class of any proper free factor of FN , and assume
that � has finite first moment with respect to the asymmetric Lipschitz metric dCVN

on
the outer space CVN of Culler and Vogtmann. Then there exists a Lyapunov exponent
� > 0 such that for all primitive elements g 2 FN and almost every sample path
.ˆn/n2N of the left random walk on .Out.FN /; �/, one has

lim
n!C1

1

n
log kˆn.g/k D �;

where kˆn.g/k denotes the smallest word length of a conjugate of ˆn.g/, written in
some prescribed free basis of FN . Here we recall that an element g 2 FN is primitive
if it belongs to some free basis of FN , and we denote by PN the collection of all
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primitive elements of FN . Again, the Lyapunov exponent � is also equal to the drift
of the random walk on .Out.FN /; �/; ie

�D lim
n!C1

1

n
dCVN

.ˆn:o; o/

for almost every sample path .ˆn/n2N of the random walk. We will establish a central
limit theorem for the variables log kˆn.g/k under a second moment assumption on �.

Theorem 0.2 Let � be a nonelementary probability measure on Out.FN / with finite
second moment with respect to dCVN

. Let � > 0 be the drift of the random walk on
.Out.FN /; �/ with respect to dCVN

. Then there exists a centered Gaussian law N�
on R such that for every compactly supported continuous function F on R, and all
primitive elements g 2 PN , one has

lim
n!C1

Z
Out.FN /

F

�
log kˆ.g/k� n�

p
n

�
d��n.ˆ/D

Z
R

F.t/ dN�.t/

uniformly in g .

Strategy of proofs The present paper was inspired by the new approach by Benoist
and Quint to the central limit theorem for linear groups [3] and hyperbolic groups [4].
This relies on the study of various cocycles. Given a countable group G , a compact
G–space X and a continuous cocycle � W G �X !R, Benoist and Quint developed a
method for proving a central limit theorem for the cocycle � . This follows the so-called
Gordin’s method and requires proving that � is centerable, ie can be written as

(1) �.g;x/D �0.g;x/C .x/� .gx/

for all .g;x/ 2G �X , where  is a bounded measurable function on X and where
there exists � 2R such that Z

G

�0.g;x/ d�.g/D �

for all x 2X . One is then left showing a central limit theorem for �0 , which can be
done by using a classical central limit theorem for martingales due to Brown [9].

In order to prove a central limit theorem for the word length in a hyperbolic group G ,
Benoist and Quint [4] applied the above strategy to the Busemann cocycle on the
horofunction boundary of G . We recall that the horofunction compactification of a
proper geodesic metric G–space .X; dX / is defined as the closure of the image of the
embedding

 W X ! C.X /; z 7! fx 7! dX .x; z/� dX .o; z/g;
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where C.X / is the space of continuous functions on X , equipped with the topology of
uniform convergence on compact subsets of X , and o2X is a basepoint. The Busemann
cocycle is the continuous cocycle ˇ on G � @hX (where @hX is the horoboundary
of X ) defined by letting ˇ.g; h/ WD h.g�1:o/ for all .g; h/ 2G � @hX .

In the mapping class group context, we will establish a central limit theorem for the
Busemann cocycle on the horoboundary of the Teichmüller space T .S/ of the surface,
which we equip with the Teichmüller metric. It turns out that this is enough for proving
Theorem 0.1 since the Busemann cocycle on Mod.S/� @hT .S/ is closely related to
lengths of simple closed curves on S (the metric on T .S/ can indeed be controlled
using lengths of curves). Similarly, in the case of Out.FN /, it will be enough to
prove a central limit theorem for the Busemann cocycle on the horoboundary of the
outer space of Culler and Vogtmann, which is closely related to lengths of conjugacy
classes in FN . A new difficulty arises however in the latter context: since the natural
metric on outer space fails to be symmetric, outer space has in fact two horoboundaries
(forward and backward), which appear to be rather different in nature (see [28], where
the forward horoboundary of outer space is completely described, and the geometry
of the backward horoboundary is also investigated). We will actually only prove a
central limit theorem for the Busemann cocycle on the backward horoboundary, but
our arguments will require working with both boundaries.

As a consequence of the work of Benoist and Quint, one can give a general condition
under which the Busemann cocycle on the backward horoboundary @�h X of a G–metric
space X (where G is a countable group) satisfies a central limit theorem (a dual version
holds for the Busemann cocycle on the forward horoboundary @Ch X by reversing the
roles of the forward and backward metrics). We denote by L� the reflected measure
on G , defined by letting L�.g/ WD �.g�1/ for all g 2 G . We denote by . � j � / the
natural extension of the Gromov product on X to @�h X � @Ch X , defined by letting

.xjy/o WD �
1
2

inf
z2X

.h�x .z/C hCy .z//

for all x;y 2 @�h X � @Ch X , where h�x and hCy denote the functions on X associated
to x and y . We denote by d

sym
X the symmetrized metric on X , defined as the maximum

of the forward and backward metrics.

Theorem 0.3 Let .X; dX / be a (possibly asymmetric) geodesic metric space, let
o 2 X , and let G be a countable group acting by isometries on X . Let � be a
probability measure on G with finite second moment with respect to d sym

X . Assume
that there exists a G–invariant measurable subset Y � � @�h X , on which there exists a
�–ergodic �–stationary probability measure � , and a G–invariant subset Y C � @Ch X ,
on which there exists a L�–stationary probability measure �� . Further assume that
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(H1) there exists � 2R such thatZ
G�YC

ˇC.g;y/ d L�.g/ d��.y/D �;

(H2) there exists ˛ > 0 and a sequence .Cn/n2N 2 l1.N/ such that for all x 2 Y �,

��.fy 2 Y C j .xjy/o � ˛ng/� Cn:

Then ˇ�
jY �

is centerable. Let

V� WD

Z
G�Y �

.ˇ�0 .g;x/��/
2 d�.g/ d�.x/;

and let N� be the centered Gaussian law on R with variance V� . Then

lim
n!C1

Z
G

F

�
ˇ�.g;x/� n�

p
n

�
d��n.g/D

Z
R

F.t/ dN�.t/

for �–ae x 2 Y � and every compactly supported continuous function F on R.

To derive Theorem 0.3 from the work of Benoist and Quint, one is essentially left
solving the cohomological equation (1) for the cocycle ˇ� : the solution is given as
in [4] by

(2)  .x/ WD �2

Z
YC
.xjy/o d��.y/:

Hypothesis (H2) ensures that  is finite and bounded, and hypothesis (H1) ensures
that the cocycle ˇ�

0
defined as in (1) has constant average �.

The intuition behind hypothesis (H1) is that if you pick an element g2G at random with
respect to the probability measure �, and a random point y in the forward horoboundary
of X , then on average you will tend to move away from y (about distance �) when
going from o to go. This is a typical behavior if X is a hyperbolic space.

The intuition behind hypothesis (H2) is that if you pick two points x and y in the
backward and forward horoboundaries of X , then with high probability, geodesic rays
from o to x (for the backward metric) and from o to y (for the forward metric) will
rapidly diverge. This is again a typical behavior if X is a hyperbolic space.

In order to prove Theorem 0.1, we will establish hypotheses (H1) and (H2) for the
Gromov product on the Teichmüller space T .S/. The rough intuition is that, though not
hyperbolic, Teichmüller space is hyperbolic on average, and typical rays in T .S/ con-
tain infinitely many subsegments with hyperbolic-like behavior; see Dowdall, Duchin
and Masur [15].
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To make sense of this intuition, we will take advantage of the mapping class group
action on the curve graph C.S/ of the surface, which is known to be Gromov hyperbolic
thanks to work by Masur and Minsky [42]. Combining the arguments of Benoist and
Quint with recent work by Maher and Tiozzo [40] extending results about random
walks on hyperbolic spaces to nonproper settings, we will first establish hypotheses
(H1) and (H2) for the Gromov product on C.S/.

There is a well-behaved Lipschitz map from T .S/ to C.S/. In order to obtain the
desired deviation estimates for the realization of the random walk on T .S/, we will
lift to T .S/ our estimates for the realization of the random walk on C.S/. This is
done by appealing to a contraction property of typical geodesics in T .S/, following a
strategy that was already used in Dahmani and Horbez [14] for establishing spectral
theorems for the random walks on Mod.S/ and Out.FN /. Since the realizations
of the random walk on T .S/ and C.S/ both escape the origin with positive speed,
typical rays in T .S/ must contain subsegments whose projections to C.S/ make
definite progress. Any subsegment I that makes progress also satisfies the following
contraction property: if another Teichmüller segment has the same projection to C.S/
as I , then it passes uniformly close to I in T .S/. This will be the key observation for
establishing hypotheses (H1) and (H2) for the Gromov product on T .S/.

We use a similar strategy for establishing hypotheses (H1) and (H2) for the outer space
of Culler and Vogtmann. This time, we will take advantage of the action of Out.FN /

on the so-called free factor graph, which was proved to be Gromov hyperbolic by
Bestvina and Feighn [6]. However, new technical difficulties arise, mainly coming
from the asymmetry of the metric on outer space, and the contraction property we
establish in this context is slightly weaker than the one we use in the context of mapping
class groups.

Structure of the paper The paper is organized as follows. In Section 1, we establish
a central limit theorem for Busemann cocycles, in the general case of metric spaces that
may fail to be symmetric. In Section 2, we build on the works of Benoist and Quint [4]
and Maher and Tiozzo [40] to establish quantitative deviation estimates for random
walks on (possibly nonproper) hyperbolic spaces, under a second moment condition on
the measure. The proof of the central limit theorem in the context of mapping class
groups is carried in Section 3, and we deal with the Out.FN / case in Section 4.
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1 A central limit theorem for Busemann cocycles

1.1 Random walks on groups: general definitions and notation

General notation Let G be a group, and let � be a probability measure on G . The
(left) random walk on G with respect to the measure � is the Markov chain on G

with initial distribution the Dirac measure at the identity element, and with transition
probabilities p.x;y/ WD �.yx�1/.

The product probability space � WD .GN� ; �˝N�/ is the space of increments of the
random walk. The position of the random walk at time n is given from its position
g0D e at time 0 by successive multiplications on the left of independent �–distributed
increments si , ie gn D sn � � � s1 . The path space P WD GN is equipped with the
�–algebra generated by the cylinders fg 2 P j gi D gg for all i 2N and all g 2 G ,
and the probability measure P induced by the map

�! P; .s1; s2; : : : / 7! .g0;g1;g2; : : : /:

Remark 1.1 We warn the reader that we will always be considering left random walks
on groups in the present paper, because it is more natural when applying a random
product of diffeomorphisms to a curve, or a random product of outer automorphisms to
a conjugacy class. However, many results concerning random walks on either mapping
class groups or outer automorphism groups of free groups are stated for right random
walks in the literature: this is more natural when considering the random walk as an
actual walk at random on the Cayley graph of the group, or on any space it acts on.

Moment and drift Assume now that G acts by isometries on a (possibly asymmetric)
metric space .X; dX / (ie dX is assumed to satisfy the separation axiom and the triangle
inequality, but it may fail to be symmetric). Let o 2X be a basepoint. We say that �
has finite first moment with respect to dX ifZ

G

dX .go; o/ d�.g/ <C1:

It has finite second moment with respect to dX ifZ
G

dX .go; o/2 d�.g/ <C1:

Remark 1.2 In the case where the metric dX is not symmetric, the reason why we use
dX .go; o/ rather than dX .o;go/ in the above formula can be understood as follows.
As explained in Remark 1.1, the natural realization of our random process .ˆn/n2N

on G as a walk at random on the space X is by considering the sequence .ˆ�1
n :o/n2N .

Having this in mind, our definitions of the first and second moment really measure
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the average step of the realization of the random walk on X . Notice however that in
the case of the Out.FN /–action on the outer space CVN (which is the application we
have in mind in the present paper, where an asymmetric metric arises), the distances
dX .go; o/ and dX .o;go/ are always within a bounded multiplicative constant from
one another, so both possible definitions of moments will lead to the same condition in
the Out.FN /–context.

By Kingman’s subadditive ergodic theorem [35], if � has finite first moment with re-
spect to dX , then for P–ae sample path .gn/n2N of the random walk on .G; �/, the limit

lim
n!C1

1

n
dX .gno; o/

exists and is equal to

inf
n2N

1

n

Z
G

dX .go; o/ d��n.g/;

where ��n denotes the nth convolution of �. This limit is called the drift of the random
walk on .G; �/ with respect to dX .

The reflected measure L� is the probability measure on G defined by letting L�.g/ WD
�.g�1/ for all g 2 G . Notice that if dX is symmetric, and if � has finite first (or
second) moment with respect to dX , then the same also holds for L�. The symmetry
of dX , together with the fact that the G–action on X is by isometries, also implies
that the drifts of the random walks on .G; �/ and .G; L�/ with respect to dX are equal
in this situation.

Stationary measures A probability measure � on X is said to be �–stationary if
� D �� � , where we recall that the convolution �� � is the probability measure on X

given by

�� �.S/ WD

Z
G

�.h�1S/ d�.h/

for all measurable subsets S�X . Any compact space admits a �–stationary probability
measure, obtained as a weak limit of the Cesàro averages of the measures ��n � ıo ,
where ıo is the Dirac measure at o.

1.2 Horoboundaries and Busemann cocycles

Horoboundaries Let .X; dX / be a (possibly asymmetric) geodesic metric space.
We let dCX WD dX , and d�X be the (possibly asymmetric) metric on X defined by
letting d�X .x;y/ WD dX .y;x/ for all x;y 2 X . We also let d

sym
X
WD max.dCX ; d

�
X /,

which is a symmetric metric on X . Letting

hCz W X !R; x 7! dCX .x; z/� dCX .o; z/;
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for all z 2X , one obtains a continuous map

hCW X ! C.X /; z 7! hCz ;

where C.X / denotes the space of continuous real-valued functions on X , equipped
with the topology of uniform convergence on compact sets of .X; d sym

X /. The closure
clCh .X / WD hC.X / in C.X / is compact. In the case where .X; d sym

X / is a proper metric
space, and that dCX and d�X determine the same topology on X , then the embedding
of X in hC.X / is a homeomorphism onto its image [50, Proposition 2.2]. In this
situation, the horofunction boundary @Ch X WD hC.X /X hC.X / is compact. We will
denote by @�h X the horofunction boundary of X for the metric d�X .

Extension of the Gromov product to the horoboundary For all x;y 2 X , the
Gromov product of x and y with respect to o is defined as

.xjy/o WD
1
2
.dX .x; o/C dX .o;y/� dX .x;y//:

We extend it to cl�h X � clCh X by letting

.xjy/o WD �
1
2

inf
z2X

.h�x .z/C hCy .z//

for all x 2 cl�h X and all y 2 clCh X (where we denote by h�x and hCy the functions
on X corresponding to x and y ). When x;y 2 X , this indeed coincides with the
Gromov product defined above: in this case, the infimum is achieved at any point z 2X

lying on a geodesic segment from x to y . We note that .xjy/o may be infinite. We
also note that this extension is not always continuous; see the example attributed to
Walsh in [46, Appendix].

Busemann cocycles Let now G be a group acting by isometries on X . Then the
G–action on X extends continuously to an action by homeomorphisms on @Ch X by
letting

g:hCx .z/ WD hCx .g
�1:z/� hCx .g

�1:o/

for all x 2 @hX and all z 2 X . The Busemann cocycle ˇC
X
W G � clCh X ! R is the

continuous cocycle defined by

ˇC
X
.g;x/ WD hCx .g

�1:o/

for all .g;x/ 2G � clCh X (recall that if Y is a G–space, a map � W G �Y !R is a
cocycle if �.gh;y/D �.g; hy/C�.h;y/ for all g; h2G and all y 2Y ). We similarly
define a cocycle ˇ�

X
on G � cl�h X . Notice that, for all x 2 clCh X and all g 2G ,

(3) jˇC
X
.g;x/j � d

sym
X .go; o/:
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1.3 Deviation estimates for cocycles: review of the work of Benoist
and Quint

Let G be a countable group acting continuously on a compact metrizable space X .
Given a continuous cocycle � W G � X ! R, we let �supW G ! R be the function
defined, for all g 2G , by

�sup.g/D sup
x2X

j�.g;x/j:

Proposition 1.3 (Benoist and Quint [3, Proposition 3.2]) Let G be a discrete group,
let X be a compact metrizable G–space, let � be a probability measure on G . Let
� W G �X !R be a continuous cocycle such that �sup 2L2.G; �/. Assume that there
exists � 2R such that for all �–stationary probability measures � on X , one hasZ

G�X

�.g;x/ d�.g/ d�.x/D �:

Then for all � > 0, there exists a sequence .Cn/n2N 2 l1.N/ such that for all n 2N
and all x 2X , one has

��n.fg 2G W j�.g;x/� n�j � �ng/� Cn:

A way of checking the condition in the above statement is by using the following
version of Birkhoff’s ergodic theorem in the context of cocycles.

Proposition 1.4 Let G be a countable group acting by isometries on a space X , let �
be a probability measure on G , and let � W G � X ! R be a measurable cocycle.
Assume that there exists � 2R, and a measurable subset X 0 �X of full measure with
respect to any �–stationary probability measure on X , such that for all x 2 X 0 and
P–ae sample path .gn/n2N of the random walk on .G; �/, one has

lim
n!C1

1

n
�.gn;x/D �:

Then for all �–stationary probability measures � on X ,Z
G�X

�.g;x/ d�.g/ d�.x/D �:

Proof Recall that � denotes the step space of the random walk. Let � be a �–
stationary probability measure on X . We equip the space ��X with the probability
measure �˝N�˝ � . Then the map

zU W ��X !��X; ..sn/n�1;x/ 7! ..snC1/n�1; s1:x/;

is measure preserving. We also let

z� W ��X !R; ..sn/n�1;x/ 7! �.s1;x/:
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Then for all ! D .sn/n�1 2�, all n 2N , all i 2 f1; : : : ; ng and all x 2X , the cocycle
relation implies that

�.gn.!/;x/D

nX
iD1

z�. zU i.!;x//;

where gn.!/ WD sn � � � s1 . Since

lim
n!C1

1

n
�.gn.!/;x/D �

for �˝N�˝ �–ae .!;x/ 2��X , Birkhoff’s ergodic theorem applied to each of the
ergodic components of the transformation zU , implies thatZ

��X

z�.!;x/ d�˝N�.!/ d�.x/D �:

This means that for all �–stationary probability measures � on X ,Z
G�X

�.g;x/ d�.g/ d�.x/D �:

1.4 Central limit theorem for Busemann cocycles

We will specify the central limit theorem for centerable cocycles of Benoist and Quint
[3, Theorem 3.4] to the specific case of the Busemann cocycle on the horoboundary of
a metric space (Theorem 1.6 below). In particular, we give a criterion, coming from [4],
ensuring centerability of the Busemann cocycle (see below for a definition).

We start by recalling some terminology. Let G be a discrete group acting continuously
on a metrizable G–space X , let � be a probability measure on G , and let � W G�X!R
be a cocycle. Given � 2R, we say that � has constant drift � with respect to � if for
all x 2X , one has Z

G

�.g;x/ d�.g/D �:

We say that � is �–centerable if there exist a measurable cocycle �0W G �X ! R
with constant drift with respect to �, and a bounded measurable function  W X !R,
such that for all g 2G and all x 2X , one has

�.g;x/D �0.g;x/C .x/� .gx/:

The average of � with respect to � is defined as the drift of �0 with respect to �. The
following proposition gives a criterion for ensuring �–centerability of the Busemann
cocycle ˇ� on the backward horoboundary of X (by reversing the roles of dX and d�X ,
a dual criterion can also be given for the cocycle ˇC ).
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Proposition 1.5 Let .X; dX / be a (possibly asymmetric) geodesic metric space, let
o 2 X , and let G be a countable group acting by isometries on X . Let � be a
probability measure on G . Assume that there exist G–invariant measurable subsets
Y � � @�h X and Y C � @Ch X , and a L�–stationary probability measure �� on Y C.
Further assume that

(H1) there exists � 2R such thatZ
G�YC

ˇC.g;y/ d L�.g/ d��.y/D �;

(H2) there exists ˛ > 0 and a sequence .Cn/n2N 2 l1.N/ such that for all x 2 Y �,

��.fy 2 Y C j .xjy/o � ˛ng/� Cn:

Then ˇ�
jY �

is �–centerable with average �.

Proof The argument follows the proofs of [4, Propositions 4.2 and 4.6]. For all
x 2 Y �, we let

 .x/ WD �2

Z
YC
.xjy/o d��.y/:

Hypothesis (H2) implies that  is finite and bounded: indeed, one bounds the integral by
cutting Y C into subsets of the form fy 2Y C j˛n� .xjy/o�˛.nC1/g with n varying
over N , and then using summability of the sequence .Cn/n2N . We then note that

(4) ˇ�.g;x/D ˇC.g�1;y/C 2.gxjy/o� 2.xjg�1y/o

for all g 2 G , all x 2 Y � and all y 2 Y C (this relation is a consequence of the
definitions; it was already noticed by Benoist and Quint [4, Lemma 1.2] in the case
of a symmetric metric space). Since �� is L�–stationary, we have

�2

Z
G�YC

.xjg�1y/o d�.g/ d��.y/D�2

Z
YC
.xjy/o d��.y/D  .x/:

Using in addition hypothesis (H1), we obtain, by integrating (4) on G � Y C with
respect to d�.g/ d��.y/, thatZ

G

ˇ�.g;x/ d�.g/D ��

Z
G

 .g:x/ d�.g/C .x/

for all x 2 Y � . The cocycle ˇ�
0

defined by letting

ˇ�0 .g;x/ WD ˇ
�.g;x/C .g:x/� .x/

for all g 2G and all x 2 Y � has constant drift � with respect to �. Hence ˇ�jY � is
�–centerable with average �.
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Once centerability of ˇ�jY � is established, the proof of the following central limit
theorem is the same as the proofs of [3, Theorem 3.4] or [4, Theorem 4.7], which rely
on a central limit theorem for martingales due to Brown [9]. The cocycle ˇ�

0
appearing

in the definition of V� is a cocycle provided by �–centerability of ˇ�jY � . As noticed
in [3, Remark 3.3], the value of V� does not depend on the choice of ˇ�

0
.

Theorem 1.6 Let .X; dX / be a (possibly asymmetric) geodesic metric space, let
o 2 X , and let G be a countable group acting by isometries on X . Let � be a
probability measure on G with finite second moment with respect to d

sym
X . Assume

that there exists a G–invariant measurable subset Y � � @�h X , on which there exists a
�–ergodic �–stationary probability measure � , and a G–invariant subset Y C � @Ch X ,
on which there exists a L�–stationary probability measure �� . Further assume that

(H1) there exists � 2R such thatZ
G�YC

ˇC.g;y/ d L�.g/ d��.y/D �;

(H2) there exists ˛ > 0 and a sequence .Cn/n2N 2 l1.N/ such that for all x 2 Y �,

��.fy 2 Y C j .xjy/o � ˛ng/� Cn:

Let

V� WD

Z
G�Y �

.ˇ�0 .g;x/��/
2 d�.g/ d�.x/;

and let N� be the centered Gaussian law on R with variance V� . Then

lim
n!C1

Z
G

F

�
ˇ�.g;x/� n�

p
n

�
d��n.g/D

Z
R

F.t/ dN�.t/

for �–ae x 2 Y � and every compactly supported continuous function F on R.

Remark 1.7 If we assumed in addition that Y � D @�h X , and that ˇ� has unique
covariance in the sense of [3, Section 3.3] (which happens in particular if @�h X carries
a unique �–stationary probability measure), then Theorem 1.6 would be a specification
of the central limit theorem for centerable cocycles on compact spaces of Benoist and
Quint [3, Theorem 3.4], in which case the convergence would be uniform in x 2 @�h X

(notice that square-integrability of ˇ� follows from the second moment assumption
on � together with (3)). Nevertheless, the proof of Benoist and Quint, as it appears
in [4, Theorem 4.7] applies as such (with Y � in place of their space X ) to prove
Theorem 1.6.
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2 Deviation results for random walks on hyperbolic spaces

2.1 Review on Gromov hyperbolic spaces

We briefly review basic facts about Gromov hyperbolic spaces, and refer the reader
to [22] for details. A symmetric metric space X is Gromov hyperbolic if there exists
ı � 0 such that for all x;y; z; o 2X , one has

.xjy/o �min..xjz/o; .yjz/o/� ı:

The smallest such ı is then called the hyperbolicity constant of X .

From now on, we let X be a geodesic Gromov hyperbolic metric space. A sequence
.xn/n2N 2X N converges to infinity if .xnjxm/o goes to C1 as n and m go to C1.
Two sequences .xn/n2N ; .yn/n2N 2X N that converge to infinity are said to be equiv-
alent if .xnjym/o goes to C1 as n and m go to C1. The Gromov boundary @1X

of X is the set of equivalence classes of sequences that converge to infinity. The
Gromov product on X extends to X [ @1X by letting

hajbio WD inf lim inf
i;j!C1

hxi jyj io

for all a; b 2 X [ @1X , the infimum being taken over all sequences .xi/i2N 2 X N

converging to a and all sequences .yj /j2N 2X N converging to b .

In the case of Gromov hyperbolic geodesic metric spaces, we have defined two ex-
tensions of the Gromov product: the extension to the Gromov boundary (denoted
with brackets), and the extension to clh X from the previous section (denoted with
parentheses). Notice that since the metric on X is assumed to be symmetric in
this section, we will just write clh X without mentioning any superscript. The two
extensions of the Gromov product are related in the following way. Following Maher
and Tiozzo [40, Section 3.2], we define cl1h X as the subspace of clh X made of
those horofunctions h such that infx2X h.x/D�1. Then there is a projection map
� W X [ cl1h X !X [ @1X which restricts to the identity on X , and such that for all
h 2 cl1h X , all sequences .xn/n2N 2X N converging to h for the topology on clh X ,
also converge to �.h/ for the topology on X [@1X . All results below are adaptations
of observations made by Benoist and Quint [4, Section 2] to the case of a possibly
nonproper Gromov hyperbolic geodesic metric space X .

Lemma 2.1 There exists C > 0, only depending on the hyperbolicity constant of X ,
such that for all x;y 2X [ cl1h X satisfying �.x/¤ �.y/,

h�.x/j�.y/io�C � .xjy/o � h�.x/j�.y/ioCC:
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Given C;K > 0, a .C;K/–quasigeodesic in X is a map  W R!X such that

1

C
js� t j �K � dX . .s/;  .t//� C js� t jCK

for all s; t 2R.

Proof of Lemma 2.1 The key observation is that there exists a constant K > 0, only
depending on the hyperbolicity constant of X , such that for all x;y 2 X [ cl1h X

satisfying �.x/¤ �.y/, there exists a .1;K/–quasigeodesic  W I!X (where I �R
is either an interval, a half-line, or the entire real line) such that  .t/ converges to �.x/
(resp. �.y/) as t goes to �1 (resp. C1). One then notices that up to a bounded
additive error, the infimum in the formula defining .xjy/o can be taken over all points z

lying on the image of  .

Lemma 2.2 For all x;y 2 cl1h X such that �.x/¤ �.y/, there exists Cx;y > 0 such
that, for all m 2X ,

max.hx.m/; hy.m//� dX .o;m/�Cx;y :

Proof One has to choose Cx;y to be sufficiently large compared to twice the distance
from o to a quasigeodesic line joining x to y . Details of the proof are an exercise in
hyperbolic metric spaces, and left to the reader.

Let now G be a group acting by isometries on X . We let

�X .g/ WD dX .go; o/

for all g 2 G . As a consequence of (3) from Section 1.2 and Lemma 2.2 applied to
mD g�1o, we obtain the following fact.

Corollary 2.3 For all x;y 2 cl1h X such that �.x/ ¤ �.y/, there exists Cx;y > 0

such that, for all g 2G ,

�X .g/�Cx;y �max.ˇX .g;x/; ˇX .g;y//� �X .g/:

Lemma 2.4 There exists C > 0, only depending on the hyperbolicity constant of X ,
such that for all g 2G and all x 2 cl1h X , one hasˇ̌

.gojgx/o�
1
2
.�X .g/CˇX .g;x//

ˇ̌
� C

and ˇ̌
.gojx/o�

1
2
.�X .g/�ˇX .g

�1;x//
ˇ̌
� C:
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Proof This follows from the definitions and the hyperbolicity of X by noticing that
for all m 2X and all x 2 cl1h X , the infimum in the formula defining .mjx/o can be
taken, up to a bounded additive error, over the points z lying on a .1;K/–quasigeodesic
ray from m to �.x/.

2.2 A large deviation principle for the Busemann cocycle

Building on work by Benoist and Quint [4] and Maher and Tiozzo [40], we will
establish quantitative deviation results for random walks on groups acting on (possibly
nonproper) hyperbolic spaces, under a second moment assumption on the measure.
Deviation estimates were also obtained by Mathieu and Sisto [43] under an exponential
moment assumption on the measure. Throughout the section, we let X be a separable
Gromov hyperbolic geodesic metric space, and G be a countable group acting by
isometries on X . We fix a basepoint o 2 X . A subgroup H � G is nonelementary
if it contains two loxodromic isometries of X with disjoint fixed point sets in @1X .
A probability measure � on G is nonelementary if the subsemigroup of G generated
by the support of � is a nonelementary subgroup of G . In this case, the reflected
measure L� is also nonelementary. We start by recalling the following result of Maher
and Tiozzo.

Proposition 2.5 [40, Theorem 1.1] Let G be a countable group acting by isometries
on a separable Gromov hyperbolic geodesic metric space .X; dX /, let o 2X , and let
� be a nonelementary probability measure on G . Then for P–ae every sample path
g WD .gn/n2N of the random walk on .G; �/, the sequence .g�1

n :o/n2N converges to
a point bnd.g/ 2 @1X . The hitting measure �� on @1X defined by letting

��.S/D P Œbnd.g/ 2 S �

for all measurable subsets S � @1X , is nonatomic, and it is the unique L�–stationary
probability measure on @1X .

We will first prove a deviation principle for the Busemann cocycle ˇX W G�clh X!R,
under a second moment assumption on � (Proposition 2.8 below). We recall that
�X .g/ WD dX .go; o/ for all g 2 G . The following lemma is an extension of [4,
Proposition 3.2] to the case where X is no longer assumed to be proper.

Lemma 2.6 Let G be a countable group acting by isometries on a separable Gromov
hyperbolic metric space X , and let � be a nonelementary probability measure on G .
Then for all � > 0, there exists T > 0 such that for all x 2 cl1h X , one has

P
h

sup
n2N
j�X .gn/�ˇX .gn;x/j � T

i
� 1� �:
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Proof The proof is similar to the proof of [4, Proposition 3.2], by using the convergence
statement recalled in Proposition 2.5 and the adaptation of the Benoist–Quint estimates
given in Section 2.1. The rough idea is to show that if x 2 cl1h X then, P–almost
surely, one has

sup
n2N
j�X .gn/�ˇX .gn;x/j<C1;

from which the lemma follows. This fact is shown by noticing that, P–almost surely, the
sequence .g�1

n :o/n2N converges to a boundary point bnd.g/ distinct from x (because
the hitting measure is nonatomic), and denoting by z a coarse center for the triangle
made of o;x and bnd.g/. Then j�X .gn/ � ˇX .gn;x/j is equal, up to a bounded
additive error, to 2dX .o; z/, for all sufficiently large n 2N .

Corollary 2.7 Let G be a countable group acting by isometries on a separable Gromov
hyperbolic metric space X , and let � be a nonelementary probability measure on G

with finite first moment with respect to dX . Let �X be the drift of the random walk on
.G; �/ with respect to dX . Then for all �–stationary probability measures � on clh X ,Z

G�clhX

ˇX .g;x/ d�.g/ d�.x/D �X :

Proof Lemma 2.6 implies that for all x 2 cl1h X and P–ae sample path .gn/n2N of
the random walk on .G; �/, one has

lim
n!C1

1

n
ˇX .gn;x/D �X :

By [40, Proposition 4.4], all �–stationary probability measures on clh X are supported
on cl1h X . As ˇX is a cocycle, Corollary 2.7 follows by applying Birkhoff’s ergodic
theorem.

The following proposition can be viewed both as an extension of [4, Proposition 4.1] to
the case of a random walk on a group acting by isometries on a (not necessarily proper)
hyperbolic space, and as an extension of [40, Theorem 1.2] to the case of a measure
with finite second moment with respect to dX .

Proposition 2.8 (Benoist and Quint [4, Proposition 4.1]) Let G be a countable group
acting by isometries on a separable Gromov hyperbolic geodesic metric space X , and
let � be a nonelementary probability measure on G with finite second moment with
respect to dX . Let �X be the drift of the random walk on .G; �/ with respect to dX .
Then for all � > 0, there exists a sequence .Cn/n2N 2 l1.N/ such that for all x 2 clh X
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and all n 2N , one has

��n.fg 2G W jˇX .g;x/� n�X j � �ng/� Cn

and
��n.fg 2G W j�X .g/� n�X j � �ng/� Cn:

Proof The deviation principle for the Busemann cocycle ˇX follows from Corollary 2.7
and the large deviation principle for cocycles of Benoist and Quint (Proposition 1.3).
Notice that metrizability of clh X was established in [40, Proposition 3.1]. The deviation
principle for the function �X then follows from the deviation principle for the Busemann
cocycle by using Corollary 2.3.

2.3 Sublinear tracking

Using the fact that �X > 0 by [40, Theorem 1.2], and arguing as in [4, Lemma 4.5],
one can deduce the following estimate from Proposition 2.8.

Lemma 2.9 (Benoist and Quint [4, Lemma 4.5]) Let G be a countable group acting
by isometries on a separable Gromov hyperbolic geodesic metric space X , and let �
be a nonelementary probability measure on G with finite second moment with respect
to dX . Let � be the unique �–stationary probability measure on @1X . Then for
all ˛ > 0, there exists a sequence .Cn/n2N 2 l1.N/ such that for all n 2 N and all
x;y 2X [ @1X , one has

��n.fg 2G j hgojyio � ˛ng/� Cn

and
��n.fg 2G j hgxjyio � ˛ng/� Cn;

and hence
�.fx 2 @1X j hxjyio � ˛ng/� Cn:

Remark 2.10 Corollary 2.7 guarantees that hypothesis (H1) from Theorem 1.6 is
satisfied, and Lemma 2.9 implies that hypothesis (H2) is also satisfied. One can deduce
that the Busemann cocycle ˇX and the function �X both satisfy a central limit theorem,
extending the central limit theorem for hyperbolic groups of Benoist and Quint [4] to
nonproper settings.

We recall from Proposition 2.5 that for P–ae sample path g D .gn/n2N of the
random walk on .G; �/, the sequence .g�1

n :o/n2N converges to a boundary point
bnd.g/ 2 @1X . We will denote by �g;X a .1;K/–quasigeodesic ray from o to bnd.g/
(where K only depends on the hyperbolicity constant of X ). We now obtain the
following quantitative version of sublinear tracking under a second moment assumption
on the measure �.
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Proposition 2.11 Let G be a countable group acting by isometries on a separable
Gromov hyperbolic geodesic metric space X , and let � be a nonelementary probability
measure on G with finite second moment with respect to dX .

Then for all � > 0, there exists a sequence .Cn/n2N 2 l1.N/ such that

P
�
dX .g

�1
n :o; �g;X .RC//� �n

�
� Cn:

Proof The proof follows the argument from the proof of [40, Proposition 5.7], using
the quantitative estimate from Lemma 2.9; it goes as follows. There exists K > 0, only
depending on the hyperbolicity constant of X , such thatˇ̌

dX .g
�1
n :o; �g;X .RC//� hoj bnd.g/ig�1

n :o

ˇ̌
�K;

and hence ˇ̌
dX .g

�1
n :o; �g;X .RC//� hgn:ojgn:bnd.g/io

ˇ̌
�K:

Therefore, the condition
dX .g

�1
n :o; �g;X .RC//� �n

implies that
hgn:ojgn:bnd.g/io � �n�K:

In addition, the boundary point gn:bnd.g/ is independent from gn , and its distribution
is given by the hitting measure �� . Conditioning over the value of gn:bnd.g/, we get

P
�
dX .g

�1
n :o; �g;X .R//� �n

�
�

Z
@1X

��n
�
fg 2G j hgojyio � �n�Kg

�
d��.y/:

Proposition 2.11 therefore follows from Lemma 2.9.

Given � > 0, two quasigeodesic segments  W Œa; b�! X and  0W Œa0; b0�! X are
said to fellow travel up to distance � if there exists an increasing homeomorphism
� W Œa; b�! Œa0; b0� such that dX . .t/; 

0ı�.t//� � for all t 2 Œa; b�. As a consequence
of Lemma 2.9, one also gets the following fact.

Proposition 2.12 Let G be a countable group acting by isometries on a separable
Gromov hyperbolic geodesic metric space X , and let � be a nonelementary probability
measure on G with finite second moment with respect to dX . Let �X be the drift of
the random walk on .G; �/ with respect to dX .

Then for all ˇ > 0, there exists a sequence .Cn/n2N 2 l1.N/, such that for all x 2

X [ @1X , one has
P
�
hxj bnd.g/io � 1

2
ˇn
�
� 1�Cn:
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In particular, if K> 0, then with probability at least 1�Cn , any .K;K/–quasigeodesic
from x to bnd.g/ contains a subsegment that fellow travels �g;X .Œˇn;C1// up to a
distance � that only depends on K and on the hyperbolicity constant of X .

3 Central limit theorem on mapping class groups

The goal of this section is to establish a central limit theorem in the context of mapping
class groups of surfaces (Theorem 0.1).

3.1 Background on mapping class groups

Let S be a closed, connected, oriented, hyperbolic surface. The mapping class group
Mod.S/ is defined as the group of all isotopy classes of orientation-preserving diffeo-
morphisms of S . We start by reviewing classical material on mapping class groups.

Teichmüller space and two of its metrics The Teichmüller space T .S/ is the space
of isotopy classes of conformal structures on S . Up to isotopy, there is a unique
hyperbolic metric on S in a given conformal class, so T .S/ can alternatively be
defined as the space of isotopy classes of hyperbolic metrics on S . We review the
definition of two metrics on T .S/.

The Teichmüller metric is defined by letting

dT .x;y/ WD
1
2

inf
f

log K.f /

for all x;y 2T .S/, where the infimum is taken over the collection of all quasiconformal
maps f from .S;x/ to .S;y/, and K.f / denotes the quasiconformal dilatation of f .
The Teichmüller metric is uniquely geodesic: any two points in T .S/ are joined by a
unique geodesic segment. This metric can alternatively be described in terms of ratios
of extremal lengths of curves, as follows. A simple closed curve c on S is essential
if it does not bound a disk on S . Given an essential simple closed curve c on S and
x 2 T .S/, the extremal length of c in the conformal structure x is

Extx.c/D sup
�

l�.c/
2

Area.�/
;

where the supremum is taken over all metrics � in the conformal class x , where l�.c/

denotes the infimal �–length of a curve isotopic to c , and Area.�/ is the area of S

equipped with the metric � . We denote by S the collection of all isotopy classes of
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essential simple closed curves on S . Kerckhoff proved in [34, Theorem 4] that for
all x;y 2 T .S/,

dT .x;y/D
1
2

log sup
c2S

Exty.c/
Extx.c/

:

Thurston’s asymmetric metric is defined by letting

dTh.x;y/ WD inf
f

log Lip.f /

for all x;y 2 T .S/, where the infimum is taken over the collection of all Lipschitz
maps f from .S;x/ to .S;y/, and Lip.f / denotes the Lipschitz constant of f .
This metric can also be described using hyperbolic lengths of curves: Thurston estab-
lished that

dTh.x;y/D log sup
c2S

ly.c/

lx.c/

for all x;y 2 T .S/, where lx denotes the length measured in the unique hyperbolic
metric in the conformal class x . The next proposition, due to Lenzhen, Rafi and Tao,
states that, up to a bounded additive error, one can actually take the supremum over
a finite collection of curves in the above formula. Let x 2 T .S/. Following [38,
Section 2], we define a marking �x on .S;x/ to be a collection of curves of S , made
of both a finite set P of pairwise disjoint curves on S that cut S into a finite collection
of pairs of pants, and a set of transverse curves Q that satisfy the following property:
each curve ˛ 2 P intersects exactly one curve ˇ 2Q, and ˇ intersects ˛ minimally,
and does not intersect any other curve in P . The marking �x is a short marking if
P is constructed by first picking a curve c on S that minimizes lx.c/, then a second
shortest curve, and so on, and curves in Q are then chosen to be as short as possible.
Notice that a short marking on .S;x/ is not unique (but the set of all curves that can
appear in a short marking on .S;x/ defines a bounded set of the curve graph of S ,
whose definition is recalled a bit later).

Proposition 3.1 (Lenzhen, Rafi and Tao [38, Theorem E]) There exists K > 0 (only
depending on the topological type of S ) such that for all x;y 2 T .S/, one hasˇ̌̌̌

dTh.x;y/� log max
c2�x

ly.c/

lx.c/

ˇ̌̌̌
�K;

where the maximum is taken over the collection of all curves in a short marking �x

on .S;x/.

Given � > 0, the �–thick part T .S/� is the subspace of T .S/ made of those hyperbolic
metrics for which no essential simple closed curve on S has length smaller than � .
The two metrics defined above are comparable in restriction to the thick part of T .S/.
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Proposition 3.2 (Choi and Rafi [10, Theorem B]) For all � > 0, there exists C D

C.�/ > 0 such that for all x;y 2 T .S/� , one has jdT .x;y/� dTh.x;y/j � C .

The Thurston boundary and the Gardiner–Masur boundary Thurston defined a
compactification of T .S/, as the closure of the image of the embedding

T .S/! PRS ; x 7!R�.lx.c//c2S ;

and he identified the boundary T .S/ X T .S/ with the space PMF of projective
Whitehead equivalence classes of measured foliations on S ; see [17]. We denote
by MF the space of (unprojectivized) Whitehead equivalence classes of measured
foliations on S . The length pairing between curves in S and points in T .S/ extends
to continuous intersection pairings (denoted by i ) from MF � T .S/ to R and from
MF �MF to R.

A measured foliation F on S is arational if no leaf of F contains a simple closed curve
on S . It is uniquely ergodic if in addition, every measured foliation F 0 2MF with the
same topological support as F is homothetic to F . We will denote by UE �PMF the
space of uniquely ergodic arational foliations, and let PMF0 WD UE [S . Given any
two transverse measured foliations x;y 2 PMF0 , there exists a Teichmüller geodesic
 W R! T .S/ such that  .t/ converges to x (resp. to y ) as t goes to �1 (resp. C1).

Gardiner and Masur have constructed [21] another compactification clGM T .S/ of T .S/,
using extremal lengths instead of hyperbolic lengths, by taking the closure of the image
of the embedding

T .S/! PRS ; x 7!R�.Extx.c/1=2/c2S

in the projective space PRS . We will denote by @GMT .S/ WD clGM T .S/X T .S/ the
Gardiner–Masur boundary. Liu and Su have identified the horoboundary of .T .S/; dT /

with the Gardiner–Masur boundary [39]. There exists an injective map from PMF
to @GMT .S/, whose restriction to PMF0 is a homeomorphism onto its image [45,
Theorem 2]. In particular, the Busemann cocycle ˇ on @GMT .S/ restricts to a contin-
uous cocycle (again denoted by ˇ ) on PMF0 . Miyachi also proved [45, Corollary 1]
that for all F 2PMF0 , all Teichmüller rays with vertical foliation equal to F converge
to F in @GMT .S/. For all F 2 PMF0 , the horofunction hF associated to F is given,
for all z 2 T .S/, by

hF .z/D log sup
˛2S

i.F; ˛/

Extz.˛/1=2
� log sup

˛2S

i.F; ˛/

Exto.˛/1=2
:

The curve graph The curve graph C.S/ is the simplicial graph whose vertices are
the isotopy classes of essential simple closed curves on S , in which two vertices are
joined by an edge whenever there are disjoint representatives in the isotopy classes
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of the corresponding curves. We denote by dC the simplicial metric on C.S/. Masur
and Minsky proved in [42] that .C.S/; dC/ is Gromov hyperbolic, and that an element
ˆ 2 Mod.S/ acts loxodromically on C.S/ if and only if ˆ is a pseudo-Anosov
mapping class. There is a coarsely Mod.S/–equivariant, coarsely Lipschitz map
� W T .S/! C.S/, which sends every point x 2 T .S/ to the isotopy class of one of
the essential simple closed curves with minimal hyperbolic length in .S;x/. Masur
and Minsky also proved in [42] that �–images of Teichmüller geodesics are uniform
unparametrized quasigeodesics in C.S/.

The Gromov boundary of the curve graph was identified by Klarreich [36] with the
space of equivalence classes of arational foliations, two arational foliations being
equivalent if they have the same topological support, and only differ by their transverse
measure. Klarreich also proved that there is a well-defined Mod.S/–equivariant map

 W PMF0! C.S/[ @1C.S/

sending any element in S to the corresponding vertex of C.S/, and such that for
all x 2 UE and all sequences .xn/n2N 2 T .S/N converging to x , the sequence
.�.xn//n2N converges to  .x/ 2 @1C.S/.

Random walks on mapping class groups We finish this section by reviewing a
result of Kaimanovich and Masur [30] about random walks on Mod.S/. A subgroup
H �Mod.S/ is nonelementary if it contains two pseudo-Anosov mapping classes that
generate a free subgroup of H . A probability measure on Mod.S/ is nonelementary
if the subsemigroup of Mod.S/ generated by the support of � is a nonelementary
subgroup of Mod.S/. In view of the definition of nonelementarity in Section 2, this is
equivalent to nonelementarity with respect to the action on the curve graph C.S/.

Theorem 3.3 (Kaimanovich and Masur [30, Theorem 2.2.4]) Let � be a nonele-
mentary probability measure on Mod.S/. Then for P–ae sample path ˆ WD .ˆn/n2N

of the random walk on .Mod.S/; �/, the sequence .ˆ�1
n :o/n2N converges to a point

bnd.ˆ/ 2 UE . The hitting measure �� on PMF , defined by letting

��.S/D P Œbnd.ˆ/ 2 S �

for all measurable subsets S � PMF , is nonatomic, and it is the unique L�–stationary
measure on PMF .

3.2 Relating the length cocycle to the Busemann cocycle

Let � W Mod.S/�S!R be the length cocycle, defined by letting

�.ˆ; c/ WD log lo.ˆ.c//

lo.c/
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for all ˆ2Mod.S/ and all c 2 S , where o is a fixed basepoint in C.S/. The following
proposition will enable us to get control over the length cocycle in terms of the Buse-
mann cocycle. We recall that hc denotes the horofunction in @hT .S/ associated to c .

Proposition 3.4 For all � > 0, there exists C > 0 such that for all c 2 S and all
z 2 T .S/� , one has ˇ̌̌

hc.z/� log lz.c/

lo.c/

ˇ̌̌
� C:

Proof It follows from work by Minsky [44, Lemma 4.3] that there exists C1 > 0 such
that for all z 2 T .S/� and all c 2 S , one hasˇ̌

log.lz.c//� 1
2

log.Extz.c//
ˇ̌
� C1:

Hence for all z 2 T .S/� and all c 2 S , one hasˇ̌̌
hc.z/�

�
log sup

˛2S

i.c; ˛/

lz.˛/
� log sup

˛2S

i.c; ˛/

lo.˛/

�ˇ̌̌
� 2C1:

By Proposition 3.1, together with the fact that i.˛;y/D ly.˛/ for all y 2 T .S/ and
all ˛ 2 S , we know that there exists C2 > 0 such thatˇ̌̌

log sup
˛2S

i.˛;y/

lx.˛/
� log sup

˛2�x

i.˛;y/

lx.˛/

ˇ̌̌
� C2

for all y 2 T .S/. Using the continuity of the extension of the intersection form to
the boundary, we will show that this is also true if y 2 T .S/ is replaced by � 2MF :
indeed, if ˛0 2 S , then there exists y 2 T .S/ such thatˇ̌̌

log i.�; ˛0/

lx.˛0/
� log i.y; ˛0/

lx.˛0/

ˇ̌̌
� C2

and ˇ̌̌
log sup

˛2�x

i.�; ˛/

lx.˛/
� log sup

˛2�x

i.y; ˛/

lx.˛/

ˇ̌̌
� C2:

Therefore,
log i.�; ˛0/

lx.˛0/
� log sup

˛2�x

i.�; ˛/

lx.˛/
� 3C2;

and since this is true for all ˛0 2 S we get

0� log sup
˛2S

i.˛; �/

lx.˛/
� log sup

˛2�x

i.˛; �/

lx.˛/
� 3C2:

By applying this observation to both x D z and x D o, we get the existence of C3 > 0

such that for all z 2 T .S/� and all c 2 S , one hasˇ̌̌
hc.z/�

�
log sup

˛2�z

i.c; ˛/

lz.˛/
� log sup

˛2�o

i.c; ˛/

lo.˛/

�ˇ̌̌
� C3:
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In addition, when z 2 T .S/� , all curves in a short marking �z (including the transverse
curves) coarsely have hyperbolic length 1, up to a bounded multiplicative error; see eg
[48, Section 3.1]. Therefore, there exists C4 > 0 such that for all z 2 T .S/� and all
c 2 S , one has

(5)
ˇ̌̌̌
hc.z/� log

sup˛2�z
i.c; ˛/

sup˛02�o
i.c; ˛0/

ˇ̌̌̌
� C4:

Finally, in view of [38, Proposition 3.1], there exists C5 > 0 such that for all z 2 T .S/
and all c 2 S , one has

1

C5

X
˛2�z

i.c; ˛/lz.x̨/ � lz.c/ � C5

X
˛2�z

i.c; ˛/lz.x̨/;

where the curve x̨ is the transverse curve to the curve ˛ to the short marking �z . One
derives that

1

C5
sup
˛2�z

.i.c; ˛/lz.x̨//� lz.c/� C5

� X
˛2�z

lz.x̨/

�
sup
˛2�z

i.c; ˛/:

Using again the fact that all curves in �z coarsely have length 1, one can therefore
deduce that there exists C6 > 0 such that for all z 2 T .S/� and all c 2 S , we have

(6)
ˇ̌̌
log.lz.c//� log

�
sup
˛2�z

i.c; ˛/
�ˇ̌̌
� C6:

The claim follows from the estimates (5) and (6).

As a consequence of Proposition 3.4 applied to z Dˆ�1o, we obtain the following:

Corollary 3.5 There exists C > 0 such that for all ˆ 2Mod.S/ and all c 2 S ,

jˇ.ˆ; c/� �.ˆ; c/j � C:

3.3 A deviation principle in Teichmüller space

In [33], Karlsson established a law of large numbers for Mod.S/. This is stated in the
case where x 2 S is a simple closed curve on S , however Karlsson’s proof extends
to the case where x 2MF . We fix once and for all a basepoint o 2 T .S/. We recall
that i denotes the intersection form on MF � T .S/.

Theorem 3.6 (Karlsson [33, Corollary 4]) Let � be a nonelementary probability
measure on Mod.S/ with finite first moment with respect to dT , and let � be the drift
of the random walk on .Mod.S/; �/ with respect to dT . Then for all x 2MF and
P–ae sample path of the random walk on .Mod.S/; �/, one has

�D lim
n!C1

1

n
log i.ˆn:x; o/:
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We deduce the following deviation estimate for the realization in T .S/ of the random
walk on .Mod.S/; �/.

Proposition 3.7 Let � be a nonelementary probability measure on Mod.S/ with
finite second moment with respect to dT , and let � be the drift of the random walk
on .Mod.S/; �/ with respect to dT . Then for every � > 0, there exists a sequence
.Cn/n2N 2 l1.N/ such that for all n 2N and all c 2 S , one has

��n
�n
ˆ 2Mod.S/ W

ˇ̌̌
log lo.ˆ.c//

lo.c/
� n�

ˇ̌̌
� �n

o�
� Cn:

Proof Let � W Mod.S/�PMF !R be the continuous cocycle defined by

�.ˆ;x/ WD log i.ˆ:x; o/

i.x; o/

for all ˆ 2Mod.S/ and all x 2 PMF . Theorem 3.6 states that for all x 2 PMF and
P–ae sample path of the random walk on .Mod.S/; �/, one has

lim
n!C1

1

n
�.ˆn;x/D �:

Birkhoff’s ergodic theorem, in the form provided by Proposition 1.4, then implies thatZ
Mod.S/�PMF

�.ˆ;x/ d�.ˆ/ d�.x/D �;

where � denotes the unique �–stationary probability measure on PMF . Proposition 3.7
follows by applying the deviation estimate of Benoist and Quint (Proposition 1.3) to
the cocycle � (square-integrability of �sup follows from the fact that �sup.ˆ;x/ D

dTh.ˆ:o; o/ for all ˆ 2Mod.S/).

We now establish an analogue of Proposition 2.8 for the realization in T .S/ of the
random walk on .Mod.S/; �/. In the following statement, for all ˆ 2Mod.S/, we let

�T .ˆ/ WD dT .ˆ:o; o/:

Proposition 3.8 Let � be a nonelementary probability measure on Mod.S/ with
finite second moment with respect to dT . Let � be the drift of the random walk
on .Mod.S/; �/ with respect to dT . Then for every � > 0, there exists a sequence
.Cn/n2N 2 l1.N/ such that for all n 2N ,

��n.fˆ 2Mod.S/ W j�T .ˆ/� n�j � �ng/� Cn:

Proof In view of Proposition 3.2, it is enough to prove the analogous statement
where dT is replaced by dTh in the definition of �T . Proposition 3.8 therefore follows
from Proposition 3.7 applied to each of the finitely many curves in �o given by
Proposition 3.1.
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3.4 Lifting estimates from C.S / to T .S /

3.4.1 Deviation estimates for the Gromov product: hypothesis (H2) We will now
check hypothesis (H2) from Theorem 1.6 for the Gromov product on the horoboundary
of T .S/.

Proposition 3.9 Let � be a nonelementary probability measure on Mod.S/, and
let �� be the unique L�–stationary probability measure on PMF0 . Then there exist
˛ > 0 and a sequence .Cn/n2N 2 l1.N/ such that for all x 2 PMF0 , one has

��.fy 2 PMF0 j .xjy/o � ˛ng/� Cn:

The strategy of our proof of Proposition 3.9 will consist in lifting to T .S/ the analogous
estimate for the Gromov product on C.S/. In order to make the lifting argument possible,
we will appeal to a contraction property for typical Teichmüller geodesics. A similar
strategy was already used in [14] for proving a spectral theorem for the random walk
on Mod.S/.

Let K > 0 be a constant such that all �–images of Teichmüller geodesics are .K;K/–
unparametrized quasigeodesics in C.S/. We fix once and for all a large enough
constant � > 0 such that all triangles in C.S/ whose sides are .K;K/–quasigeodesics,
are �–thin (in particular, � is assumed to satisfy the conclusion of Proposition 2.12).
We equip T .S/ with the Teichmüller metric dT . Let I be a Teichmüller geodesic
segment. Given B;C > 0, we say that I is .B;C /–progressing if diamT .S/.I/� B

and diamC.S/.�.I//�C . Given D; � >0, we say that I is .D; �/–contracting if for all
geodesic segments J in T .S/, if �.I/ and �.J / fellow travel up to distance � in C.S/
(with a slight abuse of terminology, as we are identifying �.I/ and �.J / with their
parametrizations), then there exists J1�J at dT –Hausdorff distance at most D from I ,
such that �.J1/ has diameter at least diam.�.I//� � in C.S/. The following proposi-
tion, established in [14], essentially follows from work by Dowdall, Duchin and Masur.

Proposition 3.10 (Dowdall, Duchin and Masur [15, Theorem A]; Dahmani and
Horbez [14, Proposition 3.6]) There exist C0; � > 0 such that for all B > 0, there
exists D > 0 such that for all C > C0 , all .B;C /–progressing Teichmüller geodesic
segments are .D; �/–contracting.

We fix once and for all the constants C0; � > 0 given by Proposition 3.10. We say that I

is D–supercontracting if for all geodesic segments J in T .S/, if �.I/ and �.J / fellow
travel up to distance � in C.S/, then J contains a .D; �/–contracting subsegment.

Corollary 3.11 There exists C > 0 such that for all B > 0, there exists D > 0 such
that all .B;C /–progressing Teichmüller geodesic segments are D–supercontracting.
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Proof Let C >C0C� . If I is .B;C /–progressing and J is such that �.I/ and �.J /
fellow travel up to distance � , then in view of Proposition 3.10, there exists a subsegment
J1 � J at dT –Hausdorff distance at most D from I , whose �–image has diameter
at least C � � . In particular, the segment J1 is .BC2D;C��/–progressing. Since
C � � > C0 , Proposition 3.10 applies to J1 , showing that I is D0–supercontracting
for some D0 > 0 only depending on B and C .

From now on, we fix C > 0 provided by Corollary 3.11. We now assume that the
basepoint in C.S/ is the �–image of the basepoint in T .S/ (we will denote both of
them by o). We recall from Section 2.3 that �ˆ;C.S/ denotes a .1;K/–quasigeodesic
ray (where K is a universal constant) from o to the limit point in @1C.S/ of the
sequence .ˆ�1

n :o/n2N .

Proposition 3.12 Let � be a nonelementary probability measure on Mod.S/ with
finite second moment with respect to dT .

Then there exist constants B; ˇ > 0 and a sequence .Cn/n2N 2 l1.N/ such that the
probability that the Teichmüller segment Œo; ˆ�1

n :o� contains a .B;C /–progressing sub-
segment whose �–image in C.S/ fellow travels a subsegment of �ˆ;C.S/.Œˇn;C1//

up to distance � , is at least 1�Cn .

Proof We denote by �C (resp. �T ) the drift of the random walk on .Mod.S/; �/ with
respect to dC (resp. dT ). We let B be a positive real number greater than 5C�T =�C . We
denote by n;ˆW Œ0; �T .ˆn/�! T .S/ the parametrization of the Teichmüller segment
from o to ˆ�1

n :o.

We first claim that there exists a sequence .Cn/n2N 2 l1.N/ such that for all n 2N ,
with probability at least 1�Cn , the following hold:

� �T .ˆn/� �T nC
�CBn

5C
�B .

� �C.ˆn/ >
4
5
�Cn.

� � ı n;ˆ.Œ0; t
2
n .ˆ/�/ fellow travels a subsegment of �ˆ;C.S/ up to distance � ,

where t2
n .ˆ/ > 0 is the infimum of all real numbers such that � ın;ˆ.Œ0; t

2
n .ˆ/�/

has dC–diameter at least 4
5
�Cn.

The first conclusion can be ensured by Proposition 3.8, the second by Proposition 2.8,
and the third by Proposition 2.11.

Now, we claim that in this situation, denoting by t1
n .ˆ/ > 0 the infimum of all

real numbers such that � ı n;ˆ.Œ0; t
1
n .ˆ/�/ has dC–diameter at least 1

5
�Cn, the seg-

ment n;ˆ.Œt
1
n .ˆ/; t

2
n .ˆ/�/ contains a .B;C /–progressing subsegment whose �–image
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fellow travels a subsegment of �ˆ;C.S/ up to distance � . Proposition 3.12 will follow
from this claim (with ˇ WD 1

5
�C ).

To prove the claim, we subdivide the Teichmüller segment n;ˆ.Œt
1
n .ˆ/; t

2
n .ˆ/�/ into

d�T .ˆn/=Be subsegments of dT –length at most B , whose �–images all fellow travel
some subsegment of �ˆ;C.S/ up to distance � . If none of these segments had a �–
image of diameter at least C , then the image � ı n;ˆ.Œt

1
n .ˆ/; t

2
n .ˆ/�/ would have

dC–diameter at most�
�� .ˆn/

B
C 1

�
C �

�T C n

B
C
�Cn

5
�

2�Cn

5
;

a contradiction. The claim follows.

We recall from Theorem 3.3 that for P–ae sample path ˆ D .ˆn/n2N of the random
walk on .Mod.S/; �/, the sequence .ˆ�1

n :o/n2N converges to a point bndT .ˆ/ 2 UE .
We denote by �ˆ;T the Teichmüller ray from o to bndT .ˆ/. Notice that the �–image
of �ˆ;T fellow travels �ˆ;C.S/ up to distance � .

Proposition 3.13 Let � be a nonelementary probability measure on Mod.S/ with
finite second moment with respect to dT .

Then there exist constants D; ˛; ˇ > 0, and a sequence .Cn/n2N 2 l1.N/, such that
the probability that �ˆ;T .Œ0; ˛n�/ contains a .D; �/–contracting subsegment whose
�–image lies at dC–distance at least ˇn from o is at least 1�Cn .

Proof Let B; ˇ > 0 be the constants given by Proposition 3.12. Let D > 0 be the
constant corresponding to B provided by Corollary 3.11. Let � be the drift of the
random walk on .Mod.S/; �/ with respect to dT . Propositions 3.8 and 3.12 imply that
there exists a sequence .Cn/n2N 2 l1.N/ such that with probability at least 1�Cn , the
Teichmüller segment Œo; ˆ�1

n :o� has length at most 2�n, and contains a subsegment I

whose �–image lies at dC–distance at least ˇn from o, which is .B;C /–progressing,
and such that �.I/ fellow travels the �–image of a subsegment J of �ˆ;T up to
distance � . In view of Corollary 3.11, the segment I is D–supercontracting. This
implies that J contains a .D; �/–contracting subsegment.

Proof of Proposition 3.9 Let x 2PMF0 , and let D; ˛; ˇ > 0 and .Cn/n2N 2 l1.N/
be as in Proposition 3.13. We will show that, for all n 2N ,

P
�
.xj bndT .ˆ//o � 2˛n

�
� 1�Cn:

Using nonatomicity of the hitting measure �� and Proposition 3.13, we get the existence
a measurable subset X of the path space, of measure at least 1�Cn , such that for
all ˆ2X , we have bndT .ˆ/2PMF0Xfxg, and the segment �ˆ;T .Œ0; ˛n�/ contains a
.D; �/–contracting subsegment J such that �.J / lies at dC–distance at least ˇn from o.
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In view of Proposition 2.12, we can also assume that for all ˆ 2X , the Teichmüller
geodesic line (or ray) from x to bndT .ˆ/ contains a subsegment whose �–image
fellow travels �.J / up to distance � . One can thus find a point y 2 Œx; bndT .ˆ/� and
a point y0 2 �ˆ;T .Œ0; ˛n�/, such that dT .y;y

0/�D . From now on, we let ˆ 2X .

Let  W R! T .S/ be a parametrization of the Teichmüller line from x to bndT .ˆ/.
Then

.xj bndT .ˆ//o D �
1
2

inf
z2T .S/

lim
n!C1

.h.�n/.z/C h.n/.z//;

with the notation from Section 1.2. It then follows from the triangle inequality that
the infimum in the above formula is achieved at any point lying on the image of  .
In particular, one has

.xj bndT .ˆ//o D�
1
2
.hx.y/C hbndT .ˆ/.y//:

Since �ˆ.k/ also converges to bndT .ˆ/, using Miyachi’s result [45, Corollary 1]
and the identification between the horofunction boundary and the Gardiner–Masur
boundary, we have (all limits are taken as k goes to C1, and we write d instead
of dT for ease of notation) that

�2.xj bndT .ˆ//o

D lim
�
d.y;  .�k//C d.y; �ˆ;T .k//� d.o;  .�k//� d.o; �ˆ;T .k//

�
� lim

�
d.y;  .�k//C

�
d.y0; �ˆ;T .k//�D

�
� d.o;  .�k//� d.o; �ˆ;T .k//

�
D lim

�
d.y;  .�k//� d.o;  .�k//

�
� d.o;y0/�D

� �d.o;y/� d.o;y0/�D

� �2d.o;y0/� 2D

� �2˛n� 2D:

This implies that
.xj bndT .ˆ//o � ˛nCD;

and concludes the proof of Proposition 3.9.

3.4.2 Mean value of the Busemann cocycle: hypothesis (H1) Using similar argu-
ments as in the proof of Proposition 3.9, we will now establish hypothesis (H1) from
Theorem 1.6 for the Gromov product on the horoboundary of T .S/: this is the content
of Corollary 3.15 below.

Proposition 3.14 Let � be a nonelementary probability measure on Mod.S/. For all
� > 0, there exists M > 0 such that for all x 2 PMF0 , one has

P
h

sup
n2N
jˇ.ˆn;x/� �.ˆn/j �M

i
� 1� �:
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Proof It suffices to show that for all x 2 PMF0 and P–ae sample path .ˆn/n2N of
the random walk on .Mod.S/; �/, one has

sup
n2N
jˇ.ˆn;x/� �.ˆn/j<C1:

We observe that there exists D > 0 such that for all x 2PMF0 and P–ae sample path
ˆ WD .ˆn/n2N of the random walk, the �–image of the Teichmüller geodesic from x

to bndT .ˆ/ crosses the �–image of a .D; �/–contracting subsegment I of �ˆ;T up
to distance � . This observation relies on the fact that P–almost surely, the Teichmüller
ray from o to bndT .ˆ/ contains infinitely many .D; �/–contracting subsegments: this
fact was established in [14, Proposition 3.11]. In particular, there exists a point z 2 I

such that for all n 2N sufficiently large, both the Teichmüller segment Œo; ˆ�1
n :o� and

the Teichmüller ray from ˆ�1
n :o to x pass at bounded distance from z . So for all n2N

sufficiently large, the difference jˇ.ˆn;x/� �.ˆn/j is equal to jhx.z/� dT .o; z/j up
to a bounded error (by a similar computation as in the proof of Proposition 3.9), from
which the claim follows.

Corollary 3.15 Let � be a nonelementary probability measure on Mod.S/ with finite
first moment with respect to dT . Let � be the drift of the random walk on .Mod.S/; �/
with respect to dT . Let � be the �–stationary probability measure on PMF0 . ThenZ

Mod.S/�PMF0

ˇ.ˆ;y/ d�.ˆ/ d�.y/D �:

Proof Proposition 3.14 implies that for all y2PMF0 and P–ae sample path .ˆn/n2N

of the random walk on .Mod.S/; �/, one has

lim
n!C1

1

n
ˇ.ˆn;y/D �:

Corollary 3.15 then follows by applying Birkhoff’s ergodic theorem, in the form
provided by Proposition 1.4.

3.5 Central limit theorem

We now complete the proof of the central limit theorem for mapping class groups.

Theorem 3.16 Let S be a closed, connected, oriented, hyperbolic surface, and let � be
a hyperbolic metric on S . Let � be a nonelementary probability measure on Mod.S/
with finite second moment with respect to the Teichmüller metric. Let � be the drift of
the random walk on .Mod.S/; �/ with respect to dT .
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Then there exists a centered Gaussian law N� on R such that for every compactly
supported continuous function F on R, and all essential simple closed curves c on S ,
one has, uniformly in c ,

lim
n!C1

Z
Mod.S/

F

�
log l�.ˆ.c//� n�

p
n

�
d��n.ˆ/D

Z
R

F.t/ dN�.t/:

Proof In view of Corollary 3.5, it is enough to prove a central limit theorem for the
Busemann cocycle ˇ , ie show that there exists a gaussian law N� on R such that for
every compactly supported continuous function F on R, and all x 2 PMF0 , one has

lim
n!C1

Z
Mod.S/

F

�
ˇ.ˆ;x/� n�
p

n

�
d��n.ˆ/D

Z
R

F.t/ dN�.t/;

uniformly in x 2 PMF0 . In view of Proposition 3.14, it is enough to prove that there
exists x 2 PMF0 for which the limit holds. Since the Busemann cocycle ˇ satisfies
hypotheses (H1) (Corollary 3.15, applied to the nonelementary probability measure L�)
and (H2) (Proposition 3.9) from Theorem 1.6 (with Y � D Y C D PMF0 ), the result
follows from Theorem 1.6.

4 Central limit theorem on Out.FN /

Let N � 2. The goal of this section is to establish a central limit theorem on Out.FN /

(Theorem 0.2). The proof will follow the same outline as in the mapping class group
case; the main novelties come from the need to take care of asymmetry of the metric
on CVN , which implies in particular that we will only have a one-sided version of
Corollary 3.11 in the context of Out.FN /.

4.1 Background on Out.FN /

Outer space and its metric Outer space CVN was introduced by Culler and Vogtmann
in [13], and can be defined as the space of equivalence classes of free, minimal,
simplicial, isometric FN –actions on simplicial metric trees, two trees being equivalent
whenever there exists an FN –equivariant homothety between them. Unprojectivized
outer space cvN is defined in a similar way, by considering trees up to FN –equivariant
isometry, instead of homothety. The group Out.FN / acts on both CVN and cvN on
the right by precomposing the FN –actions. These Out.FN /–actions can be turned
into left actions by letting ˆ:T WD T:ˆ�1 for all ˆ 2 Out.FN / and all T 2 CVN .
Given � > 0, the �–thick part CV�N is the subspace of CVN made of those trees T

such that the volume-one representative of the quotient graph T=FN does not contain
any embedded loop of length smaller than � .
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Outer space comes equipped with a natural asymmetric metric dCVN
[18], the distance

between two trees T;T 0 2 CVN being equal to the logarithm of the infimal Lipschitz
constant of an FN –equivariant map from the covolume-one representative of T , to the
covolume-one representative of T 0 . The Out.FN /–action on CVN is by isometries for
this metric. White has proved (see [18, Proposition 3.15] or [1, Proposition 2.3]) that

dCVN
.T;T 0/D log sup

g2FNXfeg

kgkT 0

kgkT

for all T;T 0 2 CVN , identified with their covolume-one representatives in the above
formula. In addition, the supremum in the above formula can be taken over a finite
set Cand.T / that only depends on T . Elements in Cand.T / are called candidates
for T , they are primitive elements of FN (recall that an element of FN is primitive if
it belongs to some free basis of FN ).

Currents on free groups Let @2FN WD @FN � @FN X�, where @FN is identified
with the Gromov boundary of a Cayley tree R0 of FN , and � denotes the diagonal
subset. A current on FN is an FN –invariant Borel measure on @2FN that is finite on
compact subsets of @2FN . We denote by CurrN the space of currents on FN , which is
topologized as in [31]. Every g 2FN which is not of the form hk for any h 2FN and
k > 1 determines a rational current �g , where for all closed-open subsets S � @2FN ,
the number �g.S/ is the number of FN –translates of the axis of g in R0 , whose pairs
of endpoints belong to S . The group Out.FN / acts on the set of currents on the left
in the following way: given ˆ 2Out.FN /, a current �, and a compact set K � @2FN ,
we let ˆ.�/.K/ WD �.��1.K//, where � 2 Aut.FN / is any representative of ˆ. The
length pairing between trees in cvN and elements of FN extends continuously [32] to
an intersection pairing h � ; � iW cvN �CurrN !RC .

Forward and backward horoboundaries of outer space We denote by PN the
collection of all primitive elements of FN . The primitive compactification CVN

prim

was introduced in [29, Section 2.4] by taking the closure of the image of the embedding

i W CVN ! PRPN ; g 7!R�.kgkT /g2PN
;

in the projective space PRPN . The forward horofunction compactification of CVN was
identified in [28, Theorem 2.2] with the primitive compactification CVN

prim . This is a
quotient of the Culler–Morgan compactification CVN , which was introduced in [12],
and identified by Cohen and Lustig [11] and Bestvina and Feighn [5] (see also [27])
with the space of equivariant homothety classes of very small minimal FN –trees, ie
trees whose arc stabilizers are either trivial, or maximally cyclic, and whose tripod
stabilizers are trivial. The fibers of the quotient map from CVN to CVN

prim were
described in [29].
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Among trees in @CVN WD CVN XCVN , arational trees will be of particular interest
to us. These are defined in the following way. A subgroup A � FN is a free factor
if there exists B � FN such that FN D A �B . A tree T 2 @CVN is arational if
no proper free factor of FN has a global fixed point in T , and the action of every
proper free factor of FN on its minimal subtree in T is free and simplicial. We denote
by UE the subspace of @CVN made of those arational trees T which are both uniquely
ergometric and dually uniquely ergodic, ie those that admit, up to homothety, a unique
length measure (see the definition in [24, Section 5.1], attributed to Paulin) and a unique
geodesic current � 2MN satisfying hT; �i D 0 (we say that � is dual to T ). We note
that the quotient map from CVN to CVN

prim is one-to-one in restriction to the set of
trees with dense orbits [29], and in particular, in restriction to UE .

Properties of the backward horoboundary @�h CVN were also investigated in [28,
Section 4]. Backward horofunctions are described in terms of geodesic currents on FN .
We denote by MN the minimal set of currents, defined in [41] as the closure of the
set of rational currents associated to primitive conjugacy classes. Given a finite set
S �MN , we define a function fS on CVN by setting

fS .T / WD log
supS hT; �i

supS ho; �i

for all T 2CVN (here again trees are identified with their covolume-one representatives).
By [28, Proposition 4.5], for all � 2 @�h CVN , there exists a finite set S �MN such that
� D fS . For all trees T 2 UE with dual current �, and all geodesic lines  W R!CVN

such that limt!�1  .t/D T in the Culler–Morgan compactification CVN , one has
limt!�1  .t/D fŒ�� in CVN [ @

�
h CVN ; see [28, Remark 4.6].

Folding lines in outer space A nice collection of paths in outer space is the collection
of so-called folding lines, whose definition we now review. A morphism between
two R–trees T and T 0 is a map f W T ! T 0 , such that every segment in T can be
subdivided into finitely many subsegments, in restriction to which f is an isometry.
Every morphism defines a partition of the set of connected components of T X fxg

(called directions), at each point x 2 T : two directions belong to the same class of the
partition if and only if their f –images overlap in T 0 . The data of all these partitions is
called a train-track structure on T . A morphism f W T ! T 0 is optimal if there are at
least two distinct equivalence classes of directions at every point in T , and f realizes
the infimal Lipschitz constant of an FN –equivariant map from T to T 0 .

An optimal folding path in cvN is a continuous map  W I!cvN , with I�R an interval,
together with a collection of FN –equivariant optimal morphisms ft;t 0 W  .t/!  .t 0/

for all t < t 0 , such that ft;t 00 D ft 0;t 00 ıft;t 0 for all t < t 0< t 00 . It is a greedy folding path
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if for all t0 2 R, there exists � > 0 such that for all t 2 Œt0; t0C ��, the tree  .t/ is
obtained from  .t0/ by identifying two segments of length � in  .t0/ whenever they
have a common endpoint, and have the same ft0;t–image. The projection to CVN of a
(greedy) folding path in cvN will again be called a (greedy) folding path.

Any two trees T;T 0 2 CVN are joined by a (nonunique) geodesic segment, which is
the concatenation of a segment contained in a simplex of CVN (ie the subspace of
CVN made of all trees obtained by only varying the edge lengths of T ), and an optimal
greedy folding path. A geodesic segment obtained in this way will be called a standard
geodesic segment. If T 0 2 UE , then one can similarly find a (nonunique) standard
geodesic ray in CVN starting at o and limiting at T 0 , consisting of the concatenation
of an initial segment contained in a simplex, and an optimal greedy folding ray; see
[7, Lemma 6.11]. Given any two distinct trees T;T 0 2 UE , there exists a (nonunique)
optimal greedy folding line  W R! CVN such that  .t/ converges to T (resp. to T 0 )
as t goes to �1 (resp. C1), as follows from the work of Bestvina and Reynolds [7,
Theorem 6.6 and Lemma 6.11].

The free factor graph The free factor graph FFN is the simplicial graph whose
vertices are the conjugacy classes of proper free factors of FN , in which two vertices
ŒA� and ŒB� are joined by an edge whenever there exist representatives A;B in the
corresponding conjugacy classes, such that either A   B or B   A. The graph FFN is
Gromov hyperbolic; see Bestvina and Feighn [6]. The group Out.FN / has a natural left
action on FFN . There is a natural coarsely Lipschitz, coarsely Out.FN /–equivariant
map � W CVN ! FFN , which sends any tree T 2 CVN to a proper free factor A

such that T collapses to a tree T 0 in which A fixes a point. Bestvina and Feighn
also established in [6] that �–images of standard geodesic lines in CVN are uniform
unparametrized quasigeodesics in FFN .

Bestvina and Reynolds [7] and Hamenstädt [26] independently described the Gromov
boundary @1FFN as the space of equivalence classes of arational trees in @CVN , two
trees being equivalent whenever they have the same underlying topological tree (and
only differ by the metric). In particular, there is a continuous Out.FN /–equivariant
map  W UE! @1FFN , such that for all T 2 UE , and all sequences .Sn/n2N 2 CVN

N

converging to T (for the topology of CVN ), the sequence .�.Sn//n2N converges
to  .T / (for the topology of FFN [ @1FFN ).

Review on projections to folding paths Let  W I ! CVN (where I �R is an inter-
val) be an optimal greedy folding path determined by a morphism f . The morphism f

determines train-track structures on all trees  .t/ with t 2 I . A segment Œa; b��  .t/
is legal if for every x 2 J , the intervals Œa;x/ and .x; b� belong to components
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of  .t/X fxg in distinct equivalence classes of the train-track structure. Following
Bestvina and Feighn [6], for all g 2PN , we define right .g/ as the infimal t 2 I such
that every segment of length MBF in the axis of g in  .t/, contains a legal subsegment
of length 3 (here MBF is the constant defined in [6, Section 6], which only depends
on N ). We then let

Pr .S/ WD 
�

sup
g2Cand.S/

right .g/
�

for all S 2 CVN . The following lemma relies on the work of Bestvina and Feighn [6,
Section 4]; it was established as such in [14, Lemma 4.7].

Lemma 4.1 (Bestvina and Feighn [6]) There exists K0 > 0 (only depending on N )
such that for all greedy folding paths  W I!CVN , all g 2PN , and all t; t 0� right .g/
satisfying t � t 0 , one hasˇ̌̌̌

dCVN
. .t/;  .t 0//� log

kgk.t 0/

kgk.t/

ˇ̌̌̌
�K0:

The Bestvina–Feighn projection satisfies the following contraction property.

Lemma 4.2 (Bestvina and Feighn [6, Proposition 7.2]) There exists D1> 0 such that
for every standard geodesic line  W I!CVN , and all H;H 02CVN , if dCVN

.H;H 0/�

dCVN
.H;=. //, then dFFN

.�.Pr .H //; �.Pr .H 0///�D1 .

The following lemma of Dowdall and Taylor, relates the Bestvina–Feighn projection and
the closest-point projection in FFN . Given an optimal greedy folding path  W I!CVN ,
we denote by n�ı a closest-point projection map to the image of � ı  in FFN .

Lemma 4.3 (Dowdall and Taylor [16, Lemma 4.2]) There exists D2 > 0 such that

dFFN

�
�.Pr .H //;n�ı .�.H //

�
�D2

for all optimal greedy folding paths  and all H 2 CVN .

Random walks on Out.FN / A subgroup H � Out.FN / is nonelementary if H is
not virtually cyclic, and does not virtually fix the conjugacy class of any proper free
factor of FN . A probability measure on Out.FN / is nonelementary if the subsemi-
group generated by its support is a nonelementary subgroup of Out.FN /. With the
terminology from Section 2, this is equivalent to nonelementarity with respect to the
action on the free factor graph FFN .
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Proposition 4.4 (Namazi, Pettet and Reynolds [47, Theorem 7.21]) Let � be a
nonelementary probability measure on Out.FN / with finite first moment with re-
spect to dCVN

. Then for P–ae sample path ˆ WD .ˆn/n2N of the random walk on
.Out.FN /; �/, and any o 2 CVN , the sequence .ˆ�1

n :o/n2N converges to a point
bnd.ˆ/ 2 UE . The hitting measure �� defined by setting

��.S/ WD P .bnd.ˆ/ 2 S/

for all measurable subsets S � @CVN is nonatomic, and it is the unique L�–stationary
probability measure on @CVN .

It follows from the description of @Ch CVN as a quotient of the Culler–Morgan boundary
that �� can also be viewed as the unique L�–stationary probability measure on @Ch CVN .

4.2 Progress and contraction for folding paths

In this section, we will establish a contraction property for folding lines in outer space
(Proposition 4.6 below, which is a variation on [14, Proposition 4.17]). This will play
the same role in our proof of the central limit theorem as Corollary 3.11 in the mapping
class group case, though we only get a one-sided version in the Out.FN / context.

Let � > 0 be a sufficiently large constant, such that all quasigeodesic triangles in FFN

whose sides are �–images of folding lines in outer space, are �–thin (in particular,
� is assumed to satisfy the conclusion of Proposition 2.12, if K is a constant such
that �–images of folding lines are .K;K/–unparametrized quasigeodesics). Given
D > 0, a geodesic line  W R! CVN and a subsegment I D Œa; b��R, we say that 
is D–bicontracting along I if for all geodesic segments  0W Œa0; b0�! CVN , if � ı  0

contains a subsegment which fellow travels � ı jI up to distance � , then there exists
t 2 Œa0; b0� such that d

sym
CVN

. .a/;  0.t// � D . We say that  is D–right-contracting
along I if the above holds for all geodesic segments  0 which are further assumed to
be such that  0.b0/ belongs to the image of  and lies to the right of jI .

Given B;C > 0, we say that a geodesic segment  W I D Œa; b�! CVN is .B;C /–
progressing if dCVN

. .a/;  .b//�B and � ı .I/ has dFFN
–diameter at least C . The

following lemma is based on an observation due to Dowdall and Taylor [16, Lemma 4.3].
We include a proof for completeness.

Lemma 4.5 (Dowdall and Taylor [16, Lemma 4.3]) There exists C0 > 0 such that
for all B > 0, there exists � > 0 such that for all C > C0 , if  W Œa; b�! CVN is a
.B;C /–progressing geodesic segment, then  .a/ 2 CV�N .
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Proof Let � < exp.�B/, and assume by contradiction that  .a/ 62 CV�N : there exists
g 2FN represented by a loop of length smaller than � in the volume-one representative
of  .a/=FN . Let t 2 Œa; b� be such that dFFN

.� ı  .a/; � ı  .t// � 11 (this exists
as soon as C0 is sufficiently large). Then kgk.t/ � 1 (see the argument in [16,
Lemma 4.2] for the precise constant 11). Hence

B � dCVN
. .a/;  .t//� log 1

�

(the first inequality follows from the fact that  is .B;C /–progressing, and the second
follows from White’s formula for the distance on CVN ). This is a contradiction.

Proposition 4.6 There exists C > 0 such that for all B > 0, there exists D > 0 such
that the following holds.

Let  W RC!CVN be a geodesic ray. Let I�R be an interval such that jI is a .B;C /–
progressing optimal greedy folding path. Then  is D–right-contracting along I .

The proof of Proposition 4.6 is a variation on the argument from [14, Proposition 4.17]:
in [14], the folding path  was supposed to satisfy a stronger condition, but the
conclusion was that  is D–bicontracting along I .

Proof The proof is illustrated in Figure 1. Let ID Œa; b� and C �2�CD1C2D2CC0 ,
where D1;D2;C0 > 0 are the constants from Lemmas 4.2, 4.3 and 4.5, respectively.
Let B > 0. Assume that jI is .B;C /–progressing. Let  0W Œa0; b0� ! CVN be a
geodesic segment such that  0.b0/2  .Œb;C1//, and there exists I 0� Œa0; b0� such that
� ı  0

jI 0
fellow travels � ı jI up to distance � . We aim at showing that there exists

t 2 I 0 such that d
sym
CVN

. .a/;  0.t// � D , where D is a constant that only depends
on B .

Let S WD  .a/. As C � C0 and jI is .B;C /–progressing, we have S 2 CV�N , where
� WD �.B/ is the constant provided by Lemma 4.5. Hence by [2], there exists M > 0

(only depending on B ) such that, for all y 2 CVN ,

(7) d
sym
CVN

.S;y/�MdCVN
.y;S/:

As � ı  0
jI 0

fellow travels � ı jI up to distance � , there exists U 2  0.I 0/ such
that dFFN

.�.U /; �.S// � � . Therefore, dFFN
.n�ıjI .�.U //; �.S// � 2� , and by

Lemma 4.3 we have (writing PrI for PrjI for ease of notation) that

(8) dFFN
.�.PrI .U //; �.S//� 2�CD2:
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Let S0 2  .I/ be a point closest to U in  .I/, and let U 0 2  0.I/ be a point lying to
the right of U on the image of  0 , and such that

dCVN
.U;U 0/D dCVN

.U;  .I//D dCVN
.U;S0/:

Lemma 4.2 shows that dFFN
.�.PrI .U //; �.PrI .S0///�D1 . By Lemma 4.3, we also

have dFFN
.�.S0/; �.PrI .S0///�D2 . Together with (8), the triangle inequality then

yields dFFN
.�.S0/; �.S//� 2�CD1C 2D2 . Recall that S;S0 2  .I/, and S0 lies

to the right of S . As C � 2�CD1C2D2 and jI is .B;C /–progressing, this implies
that dCVN

.S;S0/� B , and in view of (7) we obtain

(9) d
sym
CVN

.S;S0/�MB:

Lemma 4.2 also shows that dFFN
.�.PrI .U 0//; �.PrI .U ///�D1 . Together with (8),

the triangle inequality then yields dFFN
.�.PrI .U 0//; �.S// � 2� CD1CD2 . This

implies as above that dCVN
.S;PrI .U 0//� B , and hence, in view of (7),

(10) d
sym
CVN

.S;PrI .U 0//�MB:

Let now g 2 PN be such that

(11) dCVN
.U 0;PrI .U 0//D log

kgkPrI .U 0/

kgkU 0
:

Let S 0 WD  0.b0/ 2  .Œb;C1//. Notice that PrI .U 0/ is necessarily to the right of
Pr .U 0/ on the image of  (they may coincide), and S 0 lies to the right of PrI .U 0/.
Lemma 4.1, applied to the optimal greedy folding path  , shows that there exists
K0 > 0 (which only depends on N ) such that

(12) dCVN
.PrI .U 0/;S 0/� log

kgkS 0

kgkPrI .U 0/
CK0:

By adding (11) and (12), we get

(13) dCVN
.U 0;PrI .U 0//CdCVN

.PrI .U 0/;S 0/�K0 � log
kgkS 0

kgkU 0
� dCVN

.U 0;S 0/:

Then (10) shows that there exists K > 0 (which only depends on B and on the rank N

of the free group) such that

(14) dCVN
.U 0;S/C dCVN

.S;S 0/�K � dCVN
.U 0;S 0/:

Therefore, the total green length (the sum of the lengths of the segments S0U , S0U 0

and S0S 0 ) on Figure 1 is equal, up to a bounded error, to dCVN
.U;S 0/. This implies
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U

U
0

S
0 S PrI .U 0/

 0

S0

Figure 1: The situation (represented in CVN ) in the proof of Proposition 4.6

that dCVN
.U 0;S/ is uniformly bounded. Precisely, we have

dCVN
.U 0;S/� dCVN

.U 0;S 0/� dCVN
.S;S 0/CK

� dCVN
.U 0;S 0/� dCVN

.U;S 0/C dCVN
.U;S/CK

D�dCVN
.U;U 0/C dCVN

.U;S/CK

� �dCVN
.U;U 0/C dCVN

.U;S0/C dCVN
.S0;S/CK

D dCVN
.S0;S/CK

�MBCK;

and therefore,
d

sym
CVN

.U 0;S/�M.MBCK/

as required, in view of (7).

4.3 A deviation principle in outer space

Let � be a probability measure on Out.FN / with finite first moment with respect
to dCVN

. We recall that the drift of the random walk on .Out.FN /; �/ with respect
to dCVN

is defined with the conventions of the present paper as being equal to the limit

lim
n!C1

1

n
dCVN

.ˆn:o; o/

for P–ae sample path .ˆn/n2N of the left random walk on .Out.FN /; �/.

Theorem 4.7 (Horbez [28, Corollary 5.4]) Let � be a nonelementary probability
measure on Out.FN / with finite first moment with respect to dCVN

, and let � be the
drift of the random walk on .Out.FN /; �/ with respect to dCVN

.

Then for all x 2 @�h CVN and P–ae sample path .ˆn/n2N of the random walk on
.Out.FN /; �/, one has

lim
n!C1

1

n
ˇ�.ˆn;x/D �:
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Proof With the notation from Section 4.1, we have x D fS for some finite subset
S �MN , and

ˇ�.ˆn;x/D fS .ˆ
�1
n :o/D log

supS ho; ˆn�i

supS ho; �i
:

The conclusion of Theorem 4.7 was established in [28, Corollary 5.4] when S consists
of a single rational current, corresponding to a primitive conjugacy class in FN .
However, the proof from [28] extends in the same way to any singleton S , by noticing
that the supremum in the formula giving the distance between two trees in CVN can
be taken over all currents in MN , if one uses the continuous extension of the length
pairing between conjugacy classes and trees to MN � cvN . The conclusion then also
holds for any finite subset S �MN .

We derive the following large deviation principle for the Busemann cocycle on the
backward horoboundary of outer space, and for the function �CVN

defined for all
ˆ 2 Out.FN / by

�CVN
.ˆ/ WD dCVN

.ˆ:o; o/:

Proposition 4.8 Let � be a nonelementary probability measure on Out.FN / with
finite second moment with respect to dCVN

, and let � be the drift of the random walk
on .Out.FN /; �/ with respect to dCVN

. Then for every � > 0, there exists a sequence
.Cn/n2N 2 l1.N/ such that for all n 2N and all x 2 @�h CVN , one has

��n
�˚
ˆ 2 Out.FN / W jˇ

�.ˆ;x/� n�j � �n
	�
� Cn:

In particular, one has

��n
�˚
ˆ 2 Out.FN / W j log kˆ.g/k� n�j � �n

	�
� Cn

for all n 2N and all g 2 PN , and

��n
�˚
ˆ 2 Out.FN / W j�CVN

.ˆ/� n�j � �n
	�
� Cn:

Proof Theorem 4.7, together with Birkhoff’s ergodic theorem (in the form provided
by Proposition 1.4), implies thatZ

Out.FN /�@�h CVN

ˇ�.ˆ;x/ d�.ˆ/ d�.x/D �

for every �–stationary probability measure � on @�h CVN . The first assertion then fol-
lows from Proposition 1.3 (the fact that ˇ�sup 2L2.G; �/ follows from (3) in Section 1).
The second assertion is a specification of the first to the case where x D fS , with S

consisting of a single rational current corresponding to the primitive element g . The
last assertion follows from the second, applied to each of the finitely many candidates
in Cand.o/.
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4.4 Lifting estimates from FFN to CVN

4.4.1 Deviation estimate for the Gromov product: hypothesis (H2) We will now
check hypothesis (H2) from Theorem 1.6 for the Gromov product on @�h CVN �@

C
h CVN .

The proof follows the same outline as in the mapping class group case (Section 3.4).

Proposition 4.9 Let � be a nonelementary probability measure on Out.FN / with
finite second moment with respect to dCVN

, and let �� be the unique L�–stationary
probability measure on @Ch CVN . Then there exist ˛ > 0 and a sequence .Cn/n2N 2

l1.N/ such that for all x 2 UE � @�h CVN , one has

��.fy 2 @Ch CVN j .xjy/o � ˛ng/� Cn:

We assume that the basepoint in FFN is the �–image of the basepoint in CVN (both are
denoted by o). Recall from Proposition 4.4 that for P–ae sample path ˆ WD .ˆn/n2N

of the random walk on .Out.FN /; �/, the sequence .ˆ�1
n :o/n2N converges to a point

bnd.ˆ/ 2 UE . We then let �ˆ be a standard geodesic ray from o to bnd.ˆ/, and for
all n 2N , we let tn.ˆ/ 2RC be the infimum of all t 2RC such that

dCVN
.ˆ�1

n :o; �ˆ.t//D inf
t 02RC

dCVN
.ˆ�1

n :o; �ˆ.t
0//:

Notice the image of �ı�ˆ in FFN lies at bounded Hausdorff distance from any .1;K/–
quasigeodesic ray from o to bndFFN

.ˆ/. We start by establishing the following lemma.

Lemma 4.10 Let � be a nonelementary probability measure on Out.FN / with finite
second moment with respect to dCVN

. Then there exist K1;K2 > 0 and a sequence
.Cn/n2N 2 l1.N/ such that

P
�
dCVN

.o; �ˆ.tn.ˆ///�K1n and dFFN
.o; � ı �ˆ.tn.ˆ///�K2n

�
� 1�Cn:

Proof Let � be the drift of the random walk on .Out.FN /; �/ with respect to dCVN
.

In view of Proposition 4.8, there exists a sequence .Cn/n2N 2 l1.N/ such that for all
n 2N , there exists a measurable subspace Xn of the path space with P .Xn/� 1�Cn ,
and such that dCVN

.o; ˆ�1
n :o/ � 2�n for all ˆ WD .ˆk/k2N 2 Xn . For all ˆ 2 Xn ,

since o and ˆ�1
n :o both belong to the thick part of CVN , we have

dCVN
.ˆ�1

n :o; o/� 2M�n

for some constant M > 0 only depending on the rank N of the free group [2]. Since
�ˆ.tn.ˆ// is a closest-point projection of ˆ�1

n :o to the image of �ˆ , we then have

dCVN
.ˆ�1

n :o; �ˆ.tn.ˆ///� 2M�n;
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and the triangle inequality implies that

dCVN
.o; �ˆ.tn.ˆ///� 2.M C 1/�n:

In view of Lemmas 4.2 and 4.3, there also exists K > 0, only depending on the rank N

of the free group, such that

dFFN

�
� ı �ˆ.tn.ˆ//;n�ı�ˆ

.�.ˆ�1
n :o//

�
�K:

On the other hand, Propositions 2.8 and 2.11 imply that we can find a constant K2 > 0,
a sequence .C 0n/n2N 2 l1.N/, and for all n 2N , a measurable subset X 0n of the path
space with P .X 0n/� 1�C 0n , and such that for all ˆ 2X 0n ,

dFFN
.o;n�ı�ˆ

.�.ˆ�1
n :o///�K2n:

Then all sample paths ˆ 2Xn\X 0n satisfy the required estimates, hence the proof.

Proposition 4.11 Let � be a nonelementary probability measure on Out.FN / with
finite second moment with respect to dCVN

. Then there exist K1;D; �; ˇ > 0 and a
sequence .Cn/n2N 2 l1.N/ such that with probability at least 1 � Cn , there exists
a subsegment I WD Œa; b� � Œ0;K1n� such that �ˆ.a/ 2 CV�N , and � ı �ˆ.I/ lies at
distance at least ˇn from o in FFN , and �ˆ is D–right-contracting along I .

Proof The proof is similar to the proof of Proposition 3.12. Let C be a constant that
satisfies the conclusions of Lemma 4.5 and Proposition 4.6. Let K1;K2 > 0 be the
constants provided by Lemma 4.10, and let B be a positive real number greater than
4CK1=K2 . By Lemma 4.10, there exists a sequence .Cn/n2N 2 l1.N/ such that for
all n 2N , with probability at least 1�Cn , one has

dCVN
.o; �ˆ.tn.ˆ///�K1n and dFFN

.o; � ı �ˆ.tn.ˆ///�K2n:(15)

We claim that when (15) holds, assuming in addition that n� 4C=K2 , if we denote by
t0
n .ˆ/ > 0 the smallest real number such that � ı �ˆ.Œ0; t

0
n .ˆ/�/ has dFFN

–diameter at
least 1

4
K2n, then the segment �ˆ.Œt

0
n .ˆ/; tn.ˆ/�/ contains a .B;C /–progressing sub-

segment. Proposition 4.11 will follow from this claim (with ˇ WD 1
4
K2 ), together with

Lemma 4.5, which states that progressing subsegments are thick, and Proposition 4.6,
which states that progressing subsegments are right-contracting.

To prove the claim, we subdivide �ˆ.Œt
0
n .ˆ/; tn.ˆ/�/ into dK1n=Be subsegments

of dCVN
–length at most B . If none of these segments had a �–image of diameter

at least C , then the image � ı �ˆ.Œt
0
n .ˆ/; tn.ˆ/�/ would have dFFN

–diameter at
most .K1n=B C 1/C , which is smaller than 1

2
K2n since n � 4C=K2 . The image

� ı �ˆ.Œ0; tn.ˆ/�/ would then have diameter at most 3
4
K2n, which is a contradiction.

The claim follows.
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Proof of Proposition 4.9 The proof is similar to the proof of Proposition 3.9. Let
K1;D; �; ˇ > 0 and .Cn/n2N 2 l1.N/ be as in Proposition 4.11. Let x 2 UE . We will
show that there exists ˛0 > 0 such that for all n 2N ,

P
�
.xj bnd.ˆ//o � ˛0n

�
� 1�Cn:

Let n 2 N . By Proposition 4.11, and since the hitting measure �� on @Ch CVN is
nonatomic, there exists a measurable subset Xn of the path space, of measure at least
1� Cn , such that for all ˆ 2 Xn , we have bnd.ˆ/ 2 UE X fxg, and there exists a
subsegment I WD Œa; b� � Œ0;K1n�, such that �ˆ.a/ 2 CV�N , and � ı �ˆ.I/ lies at
dFFN

–distance at least ˇn from o, and �ˆ is D–right-contracting along I . In view of
Proposition 2.12 (and the existence of the map  W UE! @1FFN ), we can also assume
that for all ˆ 2X , and all sequences .xk/k2N 2 CVN

N converging to x , any geodesic
segment from xk to �ˆ.k/ with k 2N sufficiently large contains a subsegment whose
�–image fellow travels � ı �ˆ.I/ up to distance � .

From now on, we let ˆ 2Xn . Let .xk/k2N 2CVN
N be a sequence that converges to x .

For all sufficiently large k 2N , there exists a point yk 2 CVN on a standard geodesic
segment k from xk to �ˆ.k/ satisfying d

sym
CVN

.yk ; �ˆ.a// � D . The segments k

then accumulate [7, Theorem 6.6] to an optimal greedy folding line  W R! CVN

from x to bnd.ˆ/. There exists a point y lying on the image of  (obtained as an
accumulation point of the points yk ) such that d

sym
CVN

.y; �ˆ.a//�D . We have

.xj bnd.ˆ//o D�1
2

inf
z2CVN

lim
n!C1

.h.�n/.z/C h.n/.z//;

with the notation from Section 1.2. It then follows from the triangle inequality that the
infimum in the above formula is achieved at any point z lying on the image of  . In
particular, one has

.xj bnd.ˆ//o D�1
2
.hx.y/C hbnd.ˆ/.y//:

Since �ˆ.k/ also converges to bnd.ˆ/ as k goes to C1, we have (all limits are taken
as k goes to C1, and we use d to denote dCVN

, and d sym to denote d
sym
CVN

, for ease
of notation) that

�2.xj bnd.ˆ//o
D lim

�
d. .�k/;y/C d.y; �ˆ.k//� d. .�k/; o/� d.o; �ˆ.k//

�
� lim

�
d. .�k/;y/C

�
d.�ˆ.a/; �ˆ.k//�D

�
� d. .�k/; o/� d.o; �ˆ.k//

�
D lim

�
d. .�k/;y/� d. .�k/; o/

�
� d.o; �ˆ.a//�D

� �d.y; o/� d.o; �ˆ.a//�D

� �2d sym.o; �ˆ.a//� 2D:

Geometry & Topology, Volume 22 (2018)



150 Camille Horbez

Since �ˆ.a/ 2 CV�N , there exists [2] a constant M > 0 such that d
sym
CVN

.o; �ˆ.a// �

MdCVN
.o; �ˆ.a//. This implies that

.xj bnd.ˆ//o �MK1nCD

and concludes the proof of Proposition 4.9.

4.4.2 Mean value of ˇC : hypothesis (H1) We now establish hypothesis (H1) from
Theorem 1.6 for the cocycle ˇC : this is the content of Corollary 4.13 below.

Proposition 4.12 Let � be a nonelementary probability measure on Out.FN / with
finite first moment with respect to dCVN

, and let � be the �–stationary probability
measure on @Ch CVN . Then there exists a measurable subset Y �@Ch CVN with �.Y /D1,
such that for all y 2 Y and all � > 0, there exists C > 0 such that

P
h

sup
n2N
jˇC.ˆn;y/� dCVN

.ˆ�1
n :o; o/j � C

i
� 1� �:

Proof Let Y � UE be a subset of @Ch CVN of �–measure 1 such that for all y 2 Y ,
any standard geodesic ray from o to y contains infinitely many D–right-contracting
subsegments (the existence of Y was established in [14, Proposition 4.25]). It suffices
to show that for all y 2 Y and P–ae sample path .ˆn/n2N of the random walk on
.Out.FN /; �/, one has

sup
n2N
jˇC.ˆn;y/� dCVN

.ˆ�1
n :o; o/j<C1:

Let y 2 Y . For P–ae sample path .ˆn/n2N of the random walk on .Out.FN /; �/,
there exists a D–right-contracting subsegment I on a standard geodesic ray � from o

to y , and z 2 I , such that for all sufficiently large n; k 2N , any geodesic ray from
ˆ�1

n :o to �.k/ passes at d
sym
CVN

–distance at most D from z . For all n 2N , we have
(we write d instead of dCVN

for ease of notation) that

jˇC.ˆn;y/� d.ˆ�1
n :o; o/j D lim

k!C1

ˇ̌
d.ˆ�1

n :o; �.k//� d.o; �.k//� d.ˆ�1
n :o; o/

ˇ̌
:

This is equal up to a bounded error to jdCVN
.ˆ�1

n :o; z/�dCVN
.o; z/�dCVN

.ˆ�1
n :o; o/j,

which is bounded above by 2d
sym
CVN

.o; z/ by the triangle inequality.

Corollary 4.13 Let � be a nonelementary probability measure on Out.FN / with
finite first moment with respect to dCVN

. Let L� be the drift of the random walk on
.Out.FN /; L�/ with respect to dCVN

, and let � be the unique �–stationary probability
measure on @Ch CVN . ThenZ

Out.FN /

Z
@Ch CVN

ˇC.g;y/ d�.y/ d�.g/D L�:
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Proof We first notice that by Kingman’s subadditive ergodic theorem, for P–ae sample
path .ˆn/n2N of the random walk on .Out.FN /; �/, the limit

lim
n!C1

1

n
dCVN

.ˆ�1
n :o; o/

exists, and is equal to

inf
n2N

Z
Out.FN /

d.ˆ�1:o; o/ d��n.ˆ/;

which is nothing but the drift L�. Proposition 4.12 therefore implies that for �–ae
y 2 @Ch CVN and P–ae sample path .ˆn/n2N of the random walk on .Out.FN /; �/,
one has

lim
n!C1

1

n
ˇC.ˆn;y/D L�:

Corollary 4.13 then follows from Birkhoff’s ergodic theorem, in the form provided by
Proposition 1.4.

4.5 Relating ˇ� , �CVN
and the length cocycle

We will relate the Busemann cocycle ˇ� , the function �CVN
and the length cocycle, in

order to reduce the proof of the central limit theorem (Theorem 0.2) to proving a central
limit theorem for ˇ� . The following proposition is a dual version of Proposition 4.12
for the cocycle ˇ� .

Proposition 4.14 Let � be a nonelementary probability measure on Out.FN / with
finite first moment with respect to dCVN

. Then for all x 2 UE and all � > 0, there exists
C > 0 such that

P
h

sup
n2N
jˇ�.ˆn;x/� �.ˆn/j � C

i
� 1� �:

Proof It suffices to prove that for all x 2 UE and P–ae sample path ˆ WD .ˆn/n2N

of the random walk on .Out.FN /; �/, one has

sup
n2N
jˇ�.ˆn;x/� �.ˆn/j<C1:

For P–ae sample path ˆ of the random walk, the standard geodesic ray �ˆ contains
infinitely many D–bicontracting subsegments [14, Proposition 4.25]. Let .xk/k2N 2

CVN
N be a sequence that converges to x . We have

jˇ�.ˆn;x/� �.ˆn/j D lim
k!C1

ˇ̌
dCVN

.xk ; ˆ
�1
n :o/� dCVN

.xk ; o/� dCVN
.o; ˆ�1

n :o/
ˇ̌
:

By the bicontraction property, there exists z 2 �ˆ.RC/ such that for all sufficiently
large k; n 2N , any standard geodesic segment from xk to ˆ�1

n :o passes at bounded
d

sym
CVN

–distance from z , and similarly any standard geodesic segment from o to ˆ�1
n :o
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passes at bounded d
sym
CVN

–distance from z . Therefore, jˇ�.ˆn;x/� �.ˆn/j is equal
up to a bounded error to

lim
k!C1

ˇ̌
dCVN

.xk ; z/� dCVN
.xk ; o/� dCVN

.o; z/
ˇ̌
D jh�x .z/� dCVN

.o; z/j;

which concludes the proof of Proposition 4.14.

The following proposition is a version of Proposition 4.14 above in the case where x

is a rational current associated to a primitive conjugacy class, instead of x 2 UE .

Proposition 4.15 Let � be a nonelementary probability measure on Out.FN / with
finite first moment with respect to dCVN

. Then for all g 2 PN and all � > 0, there
exists C > 0 such that

P

�
sup
n2N

ˇ̌̌̌
�.ˆn/� log

kˆn.g/ko

kgko

ˇ̌̌̌
� C

�
� 1� �:

Proof It is enough to prove that for P–ae sample path ˆ WD .ˆn/n2N of the random
walk on .Out.FN /; �/, we have

sup
n2N

ˇ̌̌̌
�.ˆn/� log

kˆn.g/ko

kgko

ˇ̌̌̌
<C1:

By [14, Proposition 4.25], for P–ae sample path ˆ WD .ˆn/n2N of the random walk,
the standard geodesic ray �ˆ contains infinitely many D–bicontracting subsegments.
Let g 2 PN , and let I be a D–bicontracting subsegment of �ˆ lying to the right of
�ˆ.Pr�ˆ

.g//.

For all n 2 N , let ˇn be a standard geodesic segment from o to ˆ�1
n :o. Then there

exists z0 2 I such that for all sufficiently large n 2 N , the segment ˇn contains a
point zn at bounded d

sym
CVN

–distance of z0 . In addition, Lemma 4.1 applied to ˇn

implies that for all n 2N , we haveˇ̌̌̌
dCVN

.zn; ˆ
�1
n :o/� log

kˆn.g/ko

kgkzn

ˇ̌̌̌
�K:

Since all points zn lie at the same d
sym
CVN

–distance from o (up to a bounded additive
error), there exists K0 > 0 such thatˇ̌̌̌

dCVN
.o; ˆ�1

n :o/� log
kˆn.g/ko

kgko

ˇ̌̌̌
�K0;

which is the desired inequality.
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4.6 Central limit theorem

We now complete the proof of the central limit theorem for the variables log kˆ.g/k
with g 2 PN .

Theorem 4.16 Let � be a nonelementary probability measure on Out.FN / with finite
second moment with respect to dCVN

. Let � > 0 be the drift of the random walk on
.Out.FN /; �/ with respect to dCVN

. Then there exists a centered Gaussian law N�
on R such that for every compactly supported continuous function F on R, and all
primitive elements g 2 PN , one has

lim
n!C1

Z
Out.FN /

F

�
log kˆ.g/k� n�

p
n

�
d��n.ˆ/D

Z
R

F.t/ dN�.t/;

uniformly in g .

Proof In view of Propositions 4.14 and 4.15, it is enough to show that there exist
x 2 UE and a centered Gaussian law N� on R such that for every compactly supported
continuous function F on R, one has

lim
n!C1

Z
Mod.S/

F

�
ˇ�.ˆ;x/� n�

p
n

�
d��n.ˆ/D

Z
R

F.t/ dN�.t/:

This follows from Theorem 1.6 applied to Y � WDUE and to Y C WD@Ch CVN (hypothesis
(H1) is checked in Corollary 4.13, applied to L�, and hypothesis (H2) is checked in
Proposition 4.9).
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