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A mathematical theory of the gauged linear sigma model

HUIJUN FAN
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We construct a mathematical theory of Witten’s Gauged Linear Sigma Model (GLSM).
Our theory applies to a wide range of examples, including many cases with nonabelian
gauge group.

Both the Gromov–Witten theory of a Calabi–Yau complete intersection X and the
Landau–Ginzburg dual (FJRW theory) of X can be expressed as gauged linear sigma
models. Furthermore, the Landau–Ginzburg/Calabi–Yau correspondence can be
interpreted as a variation of the moment map or a deformation of GIT in the GLSM.
This paper focuses primarily on the algebraic theory, while a companion article will
treat the analytic theory.
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1 Introduction

In 1991 a celebrated conjecture of Witten [50] asserted that the intersection theory of
Deligne–Mumford moduli space is governed by the KdV hierarchy. His conjecture was
soon proved by Kontsevich [34]. The KdV hierarchy is the first of a family of integrable
hierarchies (Drinfeld–Sokolov/Kac–Wakimoto hierarchies) associated to integrable
representations of affine Kac–Moody algebras. Immediately after Kontsevich’s solution
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of Witten’s conjecture, a great deal of effort was spent in investigating other integrable
hierarchies in Gromov–Witten theory. In fact, this question was very much in Witten’s
mind when he proposed his famous conjecture in the first place. Around the same time,
he also proposed a sweeping generalization of his conjecture [51; 52]. The core of
his generalization is a remarkable first-order, nonlinear, elliptic PDE associated to an
arbitrary quasihomogeneous singularity. It has the simple form

(1) x@ui C @W=@ui D 0;

where W is a quasihomogeneous polynomial, and ui is interpreted as a section of an
appropriate orbifold line bundle on an orbifold Riemann surface C .

During the last decade, a comprehensive treatment of the Witten equation has been
carried out, and a new theory like Gromov–Witten has been constructed by Fan, Jarvis
and Ruan [23; 24; 25]. In particular, Witten’s conjecture for ADE-integrable hierarchies
has been verified (for the A series by Faber, Shadrin and Zvonkine [22] and Lee [36],
and for the D and E series by Fan, Jarvis and Ruan [25]).

The so-called FJRW theory has applications beyond the ADE-integrable hierarchy
conjecture. For example, it can be viewed as the Landau–Ginzburg dual of a Calabi–
Yau hypersurface

XW D fW D 0g �W PN�1

in weighted projective space. The relation between the Gromov–Witten theory of XW
and the FJRW theory of W is the subject of the Landau–Ginzburg/Calabi–Yau corre-
spondence, a famous duality from physics. More recently, the LG/CY correspondence
has been reformulated as a precise mathematical conjecture, and a great deal of progress
has been made on this conjecture; see Chiodo and Ruan [13; 14], Chiodo, Iritani and
Ruan [12], Lee, Priddis and Shoemaker [37] and Priddis and Shoemaker [44].

A natural question is whether the LG/CY correspondence can be generalized to complete
intersections in projective space, or more generally to toric varieties. The physicists’
answer is “yes”. In fact, Witten considered this question in the early 1990s [51] in his
effort to give a physical derivation of the LG/CY correspondence. In the process, he
invented an important model in physics called the gauged linear sigma model (GLSM).
From the point of view of partial differential equations, the gauged linear sigma model
generalizes the Witten equation (1) to the gauged Witten equation

x@Aui C @W=@ui D 0;(2)

�FA D �;(3)

where A is a connection of a certain principal bundle, and � is the moment map
of the GIT quotient, viewed as a symplectic quotient. In general, both the Gromov–
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Witten theory of a Calabi–Yau complete intersection X and the LG dual of X can be
expressed as gauged linear sigma models. Furthermore, the LG/CY correspondence
can be interpreted as a variation of the moment map � (or a deformation of GIT) in
the GLSM.

The main purpose of this article and its companion [26] is to construct a rigorous
mathematical theory for the gauged linear sigma model. This new model has many
applications and some of them are already under way (see for example Ross and
Ruan [47] and work in progress of Ross, Ruan and Shoemaker, and Clader, Janda
and Ruan [19]).

An important phenomenon in FJRW theory is that the state space is a direct sum of
narrow and broad sectors. The theory for the narrow sectors admits a purely algebraic
construction in terms of cosection localization. A similar situation holds for the GLSM:
we have both broad and narrow sectors, but the narrow sectors are a subset of a larger
class called compact type. We show in this paper how to use cosection localization to
describe the GLSM algebraically for sectors of compact type. The analytic theory for
more general broad sectors, and the relation to other approaches like that of Tian and
Xu [49], will appear in a companion article [26].

1.1 Brief description of the theory

The input data of our new theory is

(I) A finite-dimensional vector space V over C .

(II) A reductive algebraic group G � GL.V /.

(III) A G–character � with the property V sG.�/D V
ss
G .�/. We say that it defines a

strongly regular phase X� D ŒV==�G�.

(IV) A choice of C�–action (R–charge) on V (denoted by C�R ) that is compatible
with G , ie commuting with G–action, and such that G \C�R D hJ i has finite
order d . Denote the subgroup of GL.V / generated by G and C�R by � .

(V) A G–invariant superpotential W W V !C of degree d with respect to the C�R–
action with the property that the GIT quotient CR� of the critical locus Crit.W /
is compact.

(VI) A stability parameter " > 0 in Q. We also often write "D 0C to indicate the
limit as " # 0 or "D1 to indicate the limit as "!1.

(VII) If " > 0, a � character # that defines a good lift of � , meaning that #jG D �
and V ss

� .#/D V
ss
G .�/. The good lift provides some stability conditions for the

moduli space. But in the case of "D 0C the good lift is unnecessary.
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With the above input data we construct a theory with following main ingredients:

(I) A state space This is the relative Chen–Ruan cohomology of the quotient X� D

ŒV==�G� with an additional shift by 2q :

HW;G D

M
˛2Q

H ˛
W;G D

M
‰

H‰;

where the sum runs over those conjugacy classes ‰ of G for which X�;‰ is nonempty,
and where

H ˛
W;G DH

˛C2q
CR .X� ; W

1;Q/D
M
‰

H˛�2 age.
/C2q.X‰; W
1
‰ ;Q/;

and

H‰ DH
�C2q
CR .X�;‰; W

1;Q/D
M
˛2Q

H˛�2 age.
/C2q.X�;‰; W
1
‰ ;Q/:

Here W1 DRe.W /�1.M;1/� ŒV==�G� for some large, real M (see Section 4.1 for
details).

(II) The moduli space of LG quasimaps We denote by CR� D ŒCritss
G.�/=G� �

ŒV==�G�D ŒV
ss
G .�/=G� the GIT quotient (with polarization � ) of the critical locus of W .

Our main object of study is the stack

LGQ";#
g;k
.CR� ; ˇ/

of Landau–Ginzburg quasimaps to CR� (see the precise definition in Section 4.2). The
definition of the stack works equally well if the vector space V is replaced by a closed
subvariety, but we have focused on the case of V DCn for simplicity.

The main technical theorem of the article is:

Theorem 1.1.1 LGQ";#
g;k
.CR� ; ˇ/ is a proper Deligne–Mumford stack whenever CR�

is proper.

(III) A virtual cycle The stack LGQ";#
g;k
.CR� ; ˇ/ is naturally embedded into the stack

LGQ";#g;k.ŒV==�G�;ˇ/. The latter is not compact, but it admits a two-term perfect obstruc-
tion theory with a cosection whose degeneracy locus is precisely LGQ";#

g;k
.CR� ; ˇ/.

Applying Kiem and Li’s theory [32] of cosection localized virtual cycles, and adapting
the cosection introduced to the LG model by Chang, Li and Li [6; 7] to the stack
LGQ";#

g;k
.ŒV==�G�; ˇ/, we can construct a virtual cycle

ŒLGQ";#
g;k
.CR� ; ˇ/�

vir
2H�.LGQ";#

g;k
.CR� ; ˇ/;Q/
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with virtual dimension

dimvir D

Z
ˇ

c1.V==�G/C .ycW;G � 3/.1�g/C k�
X
i

.age.
i /� q/;

where ycW;G is the central charge (see Definition 3.2.3).

(IV) Numerical invariants Once we construct the virtual cycle, we can define
correlators

h�l1.˛1/; : : : ; �lk .˛k/i D

Z
ŒLGQ";#

g;k
.CR� ;ˇ/�vir

Y
i

ev�i .˛i / 
li
i ;

where ˛i 2HW;G is of compact type (see Definition 4.1.4). One can define a generating
function in the standard fashion. These invariants satisfy the usual gluing axioms
whenever all insertions are narrow.

Almost all known examples in physics satisfy the conditions of our input data, and
hence our theory applies. We list several examples in the paper. To keep this article to
a reasonable length, we will not spend much time on the many applications, but rather
we focus on the algebraic construction of the theory in this paper and on the analytic
construction in its companion article [26].

We should mention that the equation for the case W D 0 has been studied already in
mathematics under the name symplectic vortex equation. There is a large amount of
work on this in both the algebraic and symplectic setting. A particularly important
piece of work for us is the theory of stable quotients — see Marian, Oprea and Pandhari-
pande [38] — and stable quasimaps; see Cheong, Ciocan-Fontanine, Kim and Maulik
[10; 15; 16; 33]. In fact, our new theory can be treated as a unification of FJRW theory
with stable quasimaps.

There are two important special cases which we use to check the consistency of our
theory. The first one is the theory of stable maps with p–fields by Chang and Li [6],
which corresponds to the geometric phase of our theory with an " D 1 stability
condition. The other one is the hybrid model of Clader [17; 18]. Unfortunately, that
hybrid model only works for a very restrictive situation. The theory we describe here
corresponds to a much more general situation, including complete intersections of
toric varieties and even quotients by nonabelian groups. But an understanding of the
failure of the hybrid model for general complete intersections motivated much of our
construction. In this article, we will focus on the sectors of compact type and our
construction will be completely algebraic. Finally, the virtual cycle construction relies
on Kiem and Li’s theory of cosection localized virtual cycles — see Kiem and Li [32] —
and using the cosection introduced to the LG model by Chang, Li and Li [7].
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The GLSM can be viewed as a generalization of FJRW theory from a hypersurface
with a finite abelian gauge group G to more general spaces with an arbitrary reductive
gauge groups.

The results of this article were first announced by the second author at the workshop
Geometry and Physics of the Gauged Linear Sigma Model in March, 2013 in Michigan.
In the lecture, the second author gave a complete construction of the moduli space. The
only thing missing was the full detail of the proof of various properties of the moduli
space. We apologize for the long delay in producing those details.

Acknowledgments Jarvis thanks Emily Clader, Dan Edidin and Bumsig Kim for
helpful conversations. Ruan would like to thank Kentaro Hori for many helpful
conversations on GLSM, Huai-Liang Chang, Jun Li, Wei-Ping Li for many helpful
discussions on the cosection technique, and Emily Clader for helpful discussions on the
hybrid model. A special thank goes to E Witten for introducing us to the gauged Witten
equation and for many insightful conversation over the years. Finally, we thank the
referee for many helpful suggestions, which greatly improved the paper. Ruan’s work
was partially supported by NSF grants DMS 1159265 and DMS 1405245. Jarvis’s
work was partially supported by NSF grant DMS 1564502.

2 Brief review of FJRW theory

In this section, we review the basic elements of FJRW theory. Our new generalization
will follow the blueprint of this older case closely.

2.1 The basic construction

The basic starting point is a C�–action on CN with positive weights .c1; : : : ; cN /
and a nondegenerate polynomial W 2 CŒx1; : : : ; xN � of degree d > 1 with re-
spect to the C�–action. We also choose a gauge group G of diagonal symme-
tries of W . We think of both C� and G as subgroups of GL.N;C/. Let J D
.exp.2�ic1=d/; : : : ; exp.2�icN =d// 2C� � GL.N;C/. We require C�\G D hJ i.

In order for the Witten equation (1) to make sense, we work with roots of the log-
canonical bundle

!log;C D !C

� kX
iD1

yi

�
:

Specifically, we work on the space of W–curves, which are tuples

.C ; 'j W L
˝d
j ! !

˝cj
log;C / for j 2 f1; : : : ; N g;
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where C is a stable orbifold curve, each Lj is an orbifold line bundle on C , and
each 'j W L˝dj ! !

˝cj
log;C makes Lj in to a d th root of the cth

j power of !log;C . Some
additional conditions are also required of the W–structure, namely:

(I) At each point y the induced representation �pW Gy! .C�/N of the local group
Gy of C at y on the sum

L
N
iD1Li is faithful.

(II) If s is the number of monomials W1; : : : ; Ws of W , then for each i D 1; : : : ; s
the isomorphisms f'j gNiD1 induce isomorphisms

Wi .L1; : : : ;LN /D

NO
jD1

L
˝eij
j

�
�!!log;C ;

where the eij are the exponents of Wi .

Let W
W;G
g;k

be the stack of stable W–curves with the property that at each marked point
y the image of the local group Gy under the representation �y W Gy! .CC �/N lies
in G . In the formulation we have given here, FJRW theory naturally corresponds to
the orbifolded Landau–Ginzburg A–model for the superpotential W on the orbifold
ŒCN=Gmax�. As we will describe below, it is possible to generalize it to ŒCN=G� for
any subgroup G containing the element J . But the current theory does not work for
any group smaller than hJ i in any generality.

A marked point yj of a W–curve is called narrow if the fixed point locus Fix.�y.Gy//�
CN is just f0g. The point yj is called broad otherwise, and any coordinates zi for
CN fixed by Gy are called broad variables.

There are several natural morphisms of W
W;G
g;k

analogous to the morphisms of the stack
xMg;k.X; ˇ/ of stable maps, including a stabilization map. Forgetting the W–structure

and the orbifold structure gives a morphism

stW W W;G
g;k

! xMg;k :

A key result in the theory states that W
W;G
g;k

is a compact, smooth complex orbifold
with projective coarse moduli space, and st is a finite morphism (but not representable).

2.2 The Polishchuk–Vaintrob construction

Polishchuk and Vaintrob [42] have given an alternative formulation for the W–structures
in terms of principal bundles. Although it is maybe not quite as easy to see how to
define the Witten equation in this construction, it simplifies the description of the stack
of W–curves and has the advantage of making clear that the resulting stacks depend
only on the (finite, abelian) group G and not on the superpotential W . This construction
also inspires part of our generalization to the more general theory for arbitrary (infinite
and possibly nonabelian) groups.
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Let G � Aut.W / be a finite subgroup containing J , and let � be the subgroup
of .C�/N generated by G and C�R D f.�

c1 ; : : : ; �cN / j � 2 C�g, where this C�R
corresponds the quasihomogeneity of W . It is easy to see that

(4) G \C�R D hJ i:

We can define a surjective homomorphism

�W �!C�

by sending G to 1 and .�c1 ; : : : ; �cN / to �d . Equation (4) shows that the map �
is well-defined and that ker.�/ D G . Let V!log;C denote the principal C�–bundle
associated to !log;C .

Definition 2.2.1 A �–structure on an orbicurve C is:

(I) A principal �–bundle P on C such that the corresponding map C ! B� to
the classifying stack B� is representable.

(II) A choice of isomorphism ~W ��P Š V!log;C . Here ��P denotes the principal
C�–bundle on C induced from P by the homomorphism � .

An equivalent way to state (II) is to recognize that the homomorphism � induces a
morphism of stacks B�W B� ! BC� and (II) is equivalent to the requirement that
the composition B� ıPW C ! BC� be equal to the morphism of stacks C ! BC�

induced by the line bundle !log;C .

Let’s match this new definition with the definition of a W–structure. The projections
�i W � � .C�/N !C� to the i th factor for each i 2 f1; : : : N g define a collection of
line bundles .L1; : : : ;LN /. It is easy to check that �di D �

ci . And thus we have

L d
i D !

ci
C ;log:

Let W D
P
j Wj . We want to show Wj .L1; : : : ;LN /D!C ;log for each j 2f1; : : : ; N g.

The monomial Wj induces a homomorphism .C�/N!C� . By our initial assumptions,
we have Wj jG D 1. Therefore, Wj W �=G! C� . By checking Wj on the subgroup
C�R D f.�

c1 ; : : : ; �cN /g we can easily show that the above homomorphism is an
isomorphism. Hence, Wj .�1; : : : ; �N /D � . This implies Wj .L1; : : : ;LN /D !C;log .

Let Gyi be the local group of C at the marked point yi the morphism C ! B�
implies that each Gyi has a homomorphism to � . Let 
yi be the canonical generator
of Gyi . Its image .
1; : : : ; 
N / in .C�/N gives us the familiar presentation of the
local group. The fact that !C;log has no orbifold structure implies that Gyi actually
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maps to ker.�/DG � � . And representability of the morphism C ! B� implies that
the map Gyi ! ker.�/DG is injective, so we have .
1; : : : ; 
N / 2G � .C�/N.

A complete proof of the equivalence of this definition with our original definition is
given in [42, Proposition 3.2.2].

2.3 The virtual cycle

A choice of W–structure does not solve the problem completely. Suppose ui 2�0.Li /
and L1; : : : ;LN is a W–structure. Then

x@ui 2�
0;1.Li /; @W=@ui 2�

0;1
log .
xL �1i /;

where �0;1log means a .0; 1/–form with possible singularities of order 1. So the Witten
equation (1) has singular coefficients! This is a fundamental phenomenon for the
application of the Witten equation. One of the most difficult conceptual advances in
the entire theory was to generate the A–model state space from the study of the Witten
equation. Now it is understood that the singularity of the Witten equation is the key.
Unfortunately, the appearance of singularities makes the Witten equation very difficult
to study analytically. The general construction of the FJRW virtual cycle is analytic.
However, there is a subsector (the narrow sector) which admits a purely algebraic
treatment in terms of cosection localization.

In any case, our treatment of the moduli space of solutions of the Witten equation
allows us to construct a virtual cycle

ŒWg;k.
1; : : : ; 
k/�
vir
2H�.Wg;k.
1; : : : ; 
k/;Q/˝

Y
i

HN
i .C
N
i ; W1
i ;Q/

G :

This naturally leads us to the state space

HW;G D

Y
i

HN
i .CN
i ; W1
i ;Q/
G :

The space HW;G in FJRW theory is analogous to the cohomology of the target in
Gromov–Witten theory.

Pushing down ŒWg;k.
/�vir to the stack of stable curves xMg;k and Poincaré dualizing

ƒWg;k.˛1; : : : ; ˛k/ WD
jGjg

deg.st/
PD st�

�
ŒWg;k.
/�

vir
\

kY
iD1

˛i

�
:

gives a cohomological field theory, in the sense of Kontsevich and Manin.

The general construction of [25] is analytic. However, for narrow sectors the Witten
equation has only the zero solution. This leads to an algebraic treatment in this subsector.
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In this case, the Witten equation breaks into two separate equations,

x@ui D 0; @W=@ui D 0:

The first equation says that ui is a holomorphic section. The second equation implies all
the ui vanish, by nondegeneracy of W . In this case, the virtual cycle can be formulated
in terms of the topological Euler class. Our original construction of this cycle was
not quite algebraic because we used the complex conjugate at one point. The effort
to remove it leads to several algebraic treatments, including those of Polishchuk and
Vaintrob [41; 42], Chiodo [11] and Chang, Kiem, Li and Li [32; 6; 7]. We will use
many of their ideas in this paper to construct the virtual cycle for the compact type
sector of the gauged linear sigma model.

3 Gauged linear sigma model (GLSM)

We will describe a broad generalization of FJRW theory and use it to provide a
mathematical theory of gauged linear sigma models.

3.1 Quotients

Geometric invariant theory (GIT) is a fundamental tool in our constructions. It is also
often useful to describe quotients in terms of symplectic reductions. Here we briefly
fix notation and conventions and also describe the connection between the GIT and
symplectic pictures.

3.1.1 Geometric invariant theory Unless otherwise indicated, we will always work
with a reductive algebraic group G acting on a finite-dimensional vector space V . For
a given character � W G!C� , we write L� for the line bundle V �C with the induced
linearization.

We call a point of v 2 V stable with respect to the linearization � (or � –stable) if

(I) the stabilizer StabG.v/D fg 2G j gv D vg is finite, and

(II) there exists a k > 0 and an f 2 H 0.V;Lk
�
/ such that f .v/ ¤ 0 and every

G–orbit in Df D ff ¤ 0g is closed.1

Mumford, Fogarty and Kirwan [39] use the name properly stable to describe what we
call stable.

For a closed G–invariant subvariety Z � V , we are interested in several different
quotients:

1This always holds if all the points in Df have finite stabilizer.
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� ŒZ=G� the stack quotient of Z by G .

� Z=affG , the affine quotient given by Z=affG D Spec.CŒZ��G/, where CŒZ��
is the ring of regular functions on Z .

� ŒZ==�G�D ŒZ
ss
G.�/=G�, the GIT quotient stack.

� Z==�G D ProjZ=affG

�L
k�0H

0.Z;Lk
�
/G
�
, the underlying coarse moduli space

of ŒZ==�G�.

In this paper we are primarily concerned with characters � 2 yGQ DHom.G;C�/˝Q
such that every semistable point of Z is stable: ZsG.�/DZ

ss
G.�/. This implies that

the GIT quotient is a Deligne–Mumford stack.

Definition 3.1.1 We say that � 2 yGQ (or the corresponding linearization L� ) is
strongly regular on Z if Zss

G.�/ is not empty and ZsG.�/DZ
ss
G.�/.

The linearization L� induces a line bundle on ŒZ==�G�, which we denote by L� . GIT
guarantees that there is a line bundle M on Z==�G that is relatively ample over the
affine quotient and that pulls back to Lk

�
for some positive integer k .

For a fixed Z , changing the linearization gives a different quotient. The space of
(fractional) linearizations is divided into chambers, and any two linearizations lying
in the same chamber have isomorphic GIT quotients. We will call the isomorphism
classes of these quotients phases. If the linearizations lie in distinct chambers, the
quotients are birational to each other, and are related by flips [48; 20]. This variation of
GIT and the way the quotients change when crossing a wall of a chamber is important
in the theory of the gauged linear sigma model.

3.1.2 Symplectic reductions It is often useful to think of GIT quotients as symplectic
reductions. Take Z �Cn with the standard Kähler form ! D

P
i dzi ^dxzi . Since G

is reductive, it is the complexification of a maximal compact Lie subgroup H, acting
on Z via a faithful unitary representation H � U.n/. Denote the Lie algebra of H
by h.

We have a Hamiltonian action of H on Z with moment map �Z W Z! h� for the
action of H on Z , given by

�Z.v/.Y /D
1
2
xvTYv D 1

2

X
i;j�n

xviYi;j vj

for v 2Z and Y 2 h. If � 2 h� is a value of the moment map, then the locus ��1.H�/
is an H –invariant set, and the symplectic orbifold quotient of Z at � is defined as

ŒZ==
spl
� H�D Œ��1Z .H�/=H�D Œ��1Z .�/=H� �;
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where H� is the stabilizer in H of � . The symplectic quotients ŒZ==spl
� H� depend on

a choice of � 2 h�. As in the GIT case, there is a chamber structure for the image of �
such that:

(I) For any two regular values � and � 0 in the same chamber, the quotients ŒZ==spl
� H�

and ŒZ==spl
� 0 H� are isomorphic.

(II) The quotients associated to regular values in different chambers are birational to
each other.

(See [39, Section 8] for details.)

3.1.3 Relation between GIT and symplectic quotients Although we are primarily
interested in GIT quotients, identifying the phases is sometimes easier in the symplectic
setting, so it is useful to understand the relation between the two formulations.

To do this, we first observe we can G–equivariantly compactify the vector space V by
embedding it into V D P .V ˚C/ in the obvious way, with the trivial G–action on
the factor C . For any integer n > 0, define a G–linearization on V by letting G act
on the fiber of O.n/D OV .n/ by multiplication by � .

Proposition 3.1.2 For each n > 0, let V ss
�;n

denote the semistable locus in V with
respect to the previously defined linearization on O.n/. There exists a finite M > 0

such that V \V ss
�;n

is equal to the affine semistable locus V ss
G .�/ for all n�M.

Proof We have V ss
G .�/D

S
t Dt , where the union runs over all G–invariant global

sections t of Lk for all k > 0, and Dt is the distinguished open set fx j t .x/¤ 0g.
Any such t corresponds to a polynomial g 2CŒV �� such that G acts on g as ��k.

Similarly, we have V ss
�;n
D
S
sDs , where the union runs over all G–invariant sections s

of O.kn/ for all k > 0. Any such s corresponds to a polynomial f 2CŒV �� of degree
at most kn such that G acts on f as ��k. Clearly, every such section s defines a
section of Lk

�
on V , and hence .V ss

�;n
\V /� V ss

G .�/ for every n > 0.

Conversely, since V is quasicompact in the Zariski topology, we may choose a finite
number of G–invariant sections t1; : : : ; tm such that V ss

G .�/D
Sm
iD1Dti . For each i ,

let gi 2 CŒV �� be the polynomial corresponding to the section ti of Lki
�

and let di
be the degree of gi . Letting M Dmax.d1=k1; : : : ; dm=km/ implies that each gi has
degree no more than Mki and thus defines a G–invariant section of O.nki / for every
n�M. Therefore, V ss

G .�/� .V
ss
�;n
\V / for all n�M.

We can also extend the action of H to a Hamiltonian action of H on V with an
extended moment map z�W V ! h� such that V \��1.�/D V \ z� .
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To relate the GIT quotient ŒV==G� to the symplectic quotient ŒV==spl
� H� we use the

Kempf–Ness theorem and the so-called shifting trick. For our purposes, these can be
combined into the following theorem, which is essentially [20, Theorem 2.2.4].

Theorem 3.1.3 Taking derivations of the character � defines a weight �� 2 h� and a
very ample line bundle L� on G=B for some Borel subgroup B of G . The manifold
G=B inherits the Fubini–Study symplectic structure via the projective embedding of
G=B defined by L� . Let �L� W G=B ! h� be the corresponding moment map. This
also defines a line bundle pr�2.L� / on V �G=B and a moment map �� W V �G=B!h�

by �� .v; gB/D �V .v/C�L� .gB/. We have

Œ.V �G=B/==pr�2.L� /
G�D Œ��1� .0/=H�D Œ��1.��� /=H��� �D ŒV==

spl
���H�;

where H��� is the stabilizer of ��� in H. This can be extended to rational characters
� 2 yGQ by taking appropriate powers of the corresponding line bundles.

Corollary 3.1.4 Whenever the coadjoint orbit of �� in h� is trivial, so that G=B is a
single point (eg in the case that G is abelian), then we have pr�2 L� DL� and

ŒZ==
spl
���H�D ŒZ==�G�

for any G–invariant quasiprojective subvariety Z � V .

For us the main use of this corollary is that it allows us to identify the phases of the
GIT quotient by examining the critical points of the moment map.

3.2 GLSM

The gauged linear sigma model (GLSM) requires an additional C�–action on V called
the R–charge and a superpotential on the quotient. We will be especially interested in
the critical locus of the superpotential.

Our basic setup is the following: Let V be an n–dimensional vector space over C ,
and let G � GL.V / be a reductive algebraic group over C with identity component
G0 such that G=G0 is finite. We call G the gauge group. If the gauge group action
on V factors through SL.V / then we say that it satisfies the Calabi–Yau condition.

Assume that V also admits a C�–action .z1; : : : ; zn/! .�c1z1; : : : ; �
cnzn/, which

we denote by C�R . We think of C�R as a subgroup of GL.V;C/. This means we require
gcd.c1; : : : ; cn/D 1. Unlike the case of FJRW theory, we allow the weights ci of C�R
to be zero or negative.
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Definition 3.2.1 Fix a polynomial W W V ! C of degree d ¤ 0 with respect to the
C�R–action (ie quasihomogeneous) and invariant under the action of G . The polynomial
W will be called the superpotential for our theory.

Remark 3.2.2 For any strongly regular phase � , the complex dimension of X� D

ŒV==�G� is n� dim.G/.

Definition 3.2.3 Let N D n�dim.G/. We define the central charge of the theory for
the pair .W;G/ to be

(5) ycW;G DN � 2

nX
jD1

cj

d
:

And we define

(6) J D

�
exp

�
2�i

c1

d

�
; : : : ; exp

�
2�i

cn

d

��
;

which is an automorphism of W of order d .

It will sometimes be convenient to write qi D ci=d and q D
Pn
iD1 qi so that

ycW;G DN � 2q and J D .exp.2�iq1/; : : : ; exp.2�iqn//:

Note that the C�R–action is closely related to what the physics literature calls R–charge.
More precisely, R–charge is the C�–action given by the weights .2c1=d; : : : ; 2cn=d/;
but for our purposes, C�R is more useful, and we will sometimes abuse language and
call it the R–charge.

Definition 3.2.4 We say that the actions of G and C�R are compatible if:

(I) They commute: gr D rg for any g 2G and any r 2C�R .

(II) We have G \C�R D hJ i.

Definition 3.2.5 We define � to be the subgroup of GL.V;C/ generated by G

and C�R . If G and C�R are compatible, then every element 
 of � can be written as

 D gr for g 2G and r 2C�R ; that is,

� DGC�R:

The representation 
 D gr is unique up to an element of hJ i. Moreover, there is a
well-defined homomorphism

(7) �W � DGC�R!C�; g.�c1 ; : : : ; �cn/ 7! �d :
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We denote the target of � by H D �.C�R/DC�, to distinguish it from C�R . This gives
the exact sequence

(8) 1!G! �
�
�!H ! 1:

Moreover, there is another homomorphism

(9) �W �!G=hJ i; gr 7! ghJ i:

This is also well-defined, and gives another exact sequence,

1!C�R! �
�
�!G=hJ i ! 1:

Definition 3.2.6 Let � W G!C� define a strongly regular phase X� D ŒV==�G�. The
superpotential W descends to a holomorphic function W W X� !C . Let Critss

G.�/D

fv 2 V ss
G .�/ j @W=@xi D 0 for all i D 1; : : : ; ng � V ss denote the semistable points of

the critical locus. The group G acts on Critss
G.�/ and the stack quotient is

CR� D ŒCritss
G.�/=G�D fx 2X� j dW D 0g �X� ;

where dW W TX�!TC� is the differential of W on X� . We say that the pair .W;G/
is nondegenerate for X� if the critical locus CR� �X� is compact.

3.2.1 Characters, lifts and GIT stability

Definition 3.2.7 Given any G–character � 2 yG , we say that a character # 2 y� D
Hom.�;C�/ is a lift of � if its restriction to G is equal to � :

#jG D �:

Proposition 3.2.8 Given any character � 2 yG , there is a lift of � to some # 2 y� .
Composition of this lift with the inclusion C�R � � induces a character C�R!C� .

Given any two lifts #; # 0 2 y� , the ratio #�1# 0 induces a character on C�R of weight
divisible by d , which factors through the composition C�R � �

�
�!C� .

Conversely, given any lift # of � and given any l 2 Z, there is a unique lift # 0 of �
such that #�1# 0 induces a character on C�R of weight ld .

Finally, the d th power �d of any character � factors through G=hJ i, inducing a
character x� W G=hJ i !C�. This gives a lift of �d via � �

�!G=hJ i
x��!C�, which we

denote by #d0 . The induced character on C�R has weight 0.
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Proof Given a character � 2 yG , the element J 2 G \ C�R must satisfy �.J / D

exp.2�ia=d/ for some a 2 Z. For any 
 2 � , write 
 D gr with g 2 G and
r D .�c1 ; : : : ; �cn/ 2 C�R . Define #.gr/ D �.g/�a . This is a well-defined group
homomorphism because the only possible ambiguity in the representation of 
 is due
to elements in G\C�R D hJ i. That is to say, the only ambiguity is whether an element
is written as g � rJ k or gJ k � r . We calculate

#.g rJ k/D �.g/�aJ ka D �.gJ k/�a D #.gJ k r/:

So the lift # is well-defined. This proves the existence of a lift of � .

The ratio of any two lifts of � is a lift of the trivial G–character. The induced character
on C�R must therefore be trivial on J , and hence must have weight divisible by d .
Moreover, given any lift # with C�R–weight a , we can define a new character by
# 0.gr/ D �.g/�aCld. It is immediate that #�1# 0 induces a character on C�R of
weight ld

The final statement about �d is immediate from the definition.

It will also be useful to consider fractional characters rather than just integral characters.

Definition 3.2.9 We write yGQ as a shorthand for yG˝Z QDHom.G;C�/˝Z Q and
y�Q as a shorthand for y�˝Z QDHom.�;C�/˝Z Q. A lift of � 2 yGQ is a fractional
character # 2 y�Q such that #jG D � .

Corollary 3.2.10 Given any � 2 yGQ and any � 2bC�R ˝QŠQ, there exists a unique
lift # 2 y�Q of � that induces � .

In the next proposition we list many of the properties of �– and G–actions and
characters that are relevant for our use of geometric invariant theory. Many of these
are simple, but we find it useful to state them explicitly.

Proposition 3.2.11 (I) Given any character # 2 y� , the # –semistable locus V ss
� .#/

for the �–action on V is a subset of the #jG –semistable locus V ss
G .#/ for the

G–action on V
V ss
� .#/� V

ss
G .#/:

(II) For any two characters #; # 0 2 y� such that #jG D # 0jG , we have

H 0.V;Lk#/
G
DH 0.V;Lk# 0/

G

for every nonnegative integer k . Furthermore, the G–semistable loci agree:

V ss
G .#/D V

ss
G .#

0/:

Geometry & Topology, Volume 22 (2018)



A mathematical theory of the gauged linear sigma model 251

(III) For any character # 2 y� and any nonnegative integer k , the group � acts
on the G–invariant space of sections H 0.V;Lk

#
/G, hence this space gives a

representation of C�R and can be decomposed into eigenspaces:

H 0.V;Lk#/
G
D

M
l2Z

El;# ;

where C�R acts on El;# with weight l 2 Z.
Moreover, d must divide l for any nontrivial (nonzero) component El;# .

(IV) For any two characters #; # 0 2 y� that agree when restricted to G , and for any
integer l , the eigenspace El;# is equal to an eigenspace El 0;# 0 for some integer l 0.
That is, the decomposition into components is the same for # and # 0, but the
weight of the C�R–action on each component depends on the choice of character.

(V) For any character � 2 yG and any positive integer k , let # be any lift of �k (# is
not necessarily equal to the kth power of a lift of � ). We have

H 0.V;L#/
�
�H 0.V;Lk� /

G

and
V ss
� .#/� V

ss
G .�

k/D V ss
G .�/:

(VI) Given any character � 2 yG and any nonnegative integer k , the set of G–invariant
sections H 0.V;Lk

�
/G is the direct sum, over all # lifting �k, of the �–invariant

sections:
H 0.V;Lk� /

G
D

M
# lifting �k

H 0.V;L#/
� :

Moreover, the � –semistable locus V ss
G .�/ is the union of all the semistable loci

for the �–action with characters # , where # ranges over all lifts of �k and k
ranges over all positive integers:

V ss
G .�/D

[
k2Z>0

[
# lifting �k

V ss
� .#/:

(VII) For any character � 2 yG the G–semistable locus V ss
G .�/ and its complement,

the G–unstable locus V un
G .�/, are both preserved by � .

Proof (I) This is immediate from the definition of semistable.

(II) Again, this is immediate from the definitions.

(III) The fact that � acts on H 0.V;Lk
#
/G is a straightforward computation, which

follows from the fact that the action of C�R and G commute.
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This implies, in particular, that H 0.V;Lk
#
/G is a finite-dimensional representation of

C�R and can be decomposed into eigenspaces:

H 0.V;Lk#/
G
D

M
l2Z

El;# ;

where C�R acts on El;# with weight l 2 Z.

Finally, we note that if f 2 El;# is nontrivial, then since f is G–invariant it must
also be fixed by J 2G , but since J 2C�R we must have J �f D J lf D f , and hence
d divides l .

(IV) The character # W �!C� induces a character of C�R with some weight w 2 Z.
The action of r D .�c1 ; : : : ; �cn/ 2C�R on any section f 2H 0.V; Lk

#
/G is given by

.r � f /.v0/D #.r�1/f .rv0/ for every v0 2 V , so for f 2 El we have ��wf .rv0/D
�lf .v0/ and thus f .rv0/D �lCwf .v0/. That is, there exists an integer m such that
f .rv0/D�mf .v0/ for every v0 2V . This last result is independent of # . Applying this
in the case of # 0, the action of r on f is .r �f /.v0/D # 0.r�1/f .rv0/D �m�w

0

f .v0/,
where w0 is the weight of the character of C�R induced by # 0.

Thus any eigenspace El;# of H 0.V;L#/
G is also an eigenspace of H 0.V;L# 0/

G but
with possibly a different weight l 0.

(V) As a G–linearization, the line bundle L# is identical to L�k D L
k
�

, so any
�–invariant section � 0 2 H 0.V;L#/

� is also a G–invariant section of H 0.V;Lk
�
/,

and hence V ss
� .#/� V

ss
G .�

k/D V ss
G .�/.

(VI) Given any lift # of �d we have H 0.V;Lk
�
/G D

L
l Edl;# . For each l let # 0 be

the character # 0.gr/D #.gr/��dl , where g 2G and r D .�c1 ; : : : ; �cn/ 2C�R . This
shows that Edl;# D E0;# 0 D H 0.V;L# 0/

�. By Proposition 3.2.8, there is precisely
one such lift for each l . Thus we have

H 0.V;Lk� /
G
D

M
# 0 lifting �k

H 0.V;L# 0/
� :

Now we obviously have [
k2Z>0

[
# lifting �k

V ss
� .#/� V

ss
G .�/:

Conversely, given any v2V ss
G .�/ and any f 2H 0.V;Lk

�
/G for some positive integer k

with f .v/¤0, fix a choice of lift # of �k . We can decompose f as a sum fiC� � �Cfn
with each fj in the eigenspace Ej;# . Since f does not vanish at v 2V , then fl.v/¤ 0
for at least one integer l , so we may assume that, with respect to the character # , the
group C�R acts on f by multiplication by �l for some integer l . By (III) the integer l is
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divisible by d . Choosing # 0.gr/D#.gr/��el l shows that f 2E0;# 0DH 0.V;L# 0/
�,

so v 2 V ss
� .#

0/, as desired.

(VII) By (VI), given any v 2V ss
G .�/ there is a # lifting some �k such that v 2V ss

� .#/.
But V ss

� .#/ is preserved by � , and hence the �–orbit of V must lie in V ss
� .#/�V

ss
G .�/.

Lemma 3.2.12 For any � 2 yGQ , let #�; #0; #C 2 y�Q be the unique lifts such that
the induced characters of C�R have weight �1, 0 and 1, respectively. We have

V ss
G .�/D V

ss
� .#�/[V

ss
� .#0/[V

ss
� .#C/:

Proof Taking powers as necessary, we may assume that � 2 yG . The algebraL
k>0H

0.V;Lk
�
/G D

L
k>0H

0.V;L�k /
G is finitely generated, so there exists a

finite set f1; : : : ; fK 2
L
k>0H

0.V;L�k /
G such that for every v 2 V ss

G .�/ at least
one of the fi does not vanish on v . We may further assume that each fi is an element
of some H 0.V;L

ki
�
/G . Taking appropriate powers, we may assume that ki is the same

for all i and is divisible by d . Let k D ki be that common choice of ki .

Decompose H 0.V;L�k /
G DH 0.V;L#k0

/G D
L
l El;#k0

into isotypical pieces. By
Proposition 3.2.11, each l is divisible by d . When l D 0, we have

E0;#k0
�H 0.V;Lk#0/

� :

When l > 0 it is straightforward to see that

El;#k0
�H 0.V;L

kl=d

#C
/� ;

and when l < 0, we have

El;#k0
�H 0.V;L

�kl=d

#�
/� :

Therefore, we have

V ss
G .�/D V

ss
� .#�/[V

ss
� .#0/[V

ss
� .#C/:

In many cases, however, we can do much better than the previous lemma.

Definition 3.2.13 We say that a lift # 2 y�Q of � 2 yGQ is a good lift if V ss
� .#/DV

ss
G .�/.

Although not every � 2 yG has a good lift for every choice of (G–compatible) C�R–
action, most of the examples we discuss in this paper have this property.

Remark 3.2.14 Even when a point is both � –stable and # –semistable for some lift
# of � , the stabilizer in � of the point will often be infinite. Hence # –stability and
� –stability are not easily related, even if # is a good lift of � .
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3.2.2 Input data From now on we will assume that we have the following input
data:

(I) A finite-dimensional vector space V over C .

(II) A reductive algebraic group G � GL.V /.

(III) A choice of C�R–action on V which is compatible with G , and such that
G \C�R D hJ i has order d .

(IV) A G–character � defining a strongly regular phase X� D ŒV==�G�

(V) A good lift # of � , except when the stability parameter " is 0C (otherwise any
lift will work and all give the same results).

(VI) A nondegenerate, G–invariant superpotential W W V ! C of degree d with
respect to the C�R–action.

Here we provide one simple example to illustrate the ideas. In Section 7 we consider
many more of the important examples studied by Witten [53]. The reader who wants
to get right to the main results may skip this example on first reading; whereas, others
may wish to look at the additional examples in Section 7 before proceeding.

Example 3.2.15 (hypersurfaces) Suppose that G DC� and F 2CŒx1; : : : ; xK � is
a nondegenerate quasihomogeneous polynomial of G–weights .b1; : : : ; bK/ and total
degree b , as in FJRW theory. Let

W D pF W CKC1
!C:

Here, we assign G–weight �b to the variable p , so that W is G–invariant.

The critical set of W is given by the equations

@pW D F D 0; @xiW D p@xiF D 0:

This implies that either p ¤ 0 and .x1; : : : ; xK/ D .0; : : : ; 0/ or that p D 0 and
F.x1; : : : ; xK/D 0. Suppose that bi > 0 for i D 1; : : : ; K and b > 0. Consider the
quotient of CKC1 by G DC� with weights .b1; : : : ; bK ;�b/. If b D

PK
iD1 bi , then

we have a Calabi–Yau weight system, but we do not assume that here. The affine
moment map

�D
1

2

� KX
iD1

bi jxi j
2
� bjpj2

�
is a quadratic function whose only critical point is at zero. Therefore, the only critical
value is � D 0 and there are two phases, � > 0 or � < 0.
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� > 0 We have
KX
i

bi jxi j
2
D bjpj2C 2�:

For each choice of p , the set of .x1; : : : ; xK/2CK such that .x1; : : : ; xK ; p/2��1.�/
is a nontrivial ellipsoid E , isomorphic to S2K�1 ; and we obtain a map from the
quotient X

sympl
� to Xbase D ŒE=U.1/� D W P .b1; : : : ; bK/, corresponding to the

maximal collection of column vectors .b1; : : : ; bK/ of B . The space X
sympl
� can be

expressed as the total space of the line bundle O.�b/ over X
sympl
� . If

P
i bi D b , this

is the canonical bundle !W P.b1;:::;bK/ .

Alternatively, we can consider the GIT quotient ŒCKC1==�G�, where � has weight �e ,
with e > 0. One can easily see that the L� –semistable points are ..CK �f0g/�C/�
CK �CDCKC1 , and the first projection pr1W .C

K�f0g/�C! .CK�f0g/ induces
the map ŒV==�G�!W P .b1; : : : ; bK/.

Now we choose C�R–weights cxi D 0 and cp D 1, so that W has C�R–weight d D 1.
The element J is trivial, and the group � is a direct product � Š G �C�R , with �
and � just the first and second projections, respectively.

The critical locus CR� D fp D 0 D F.x1; : : : ; xK/g is a degree-b hypersurface in
the image of the zero section of ŒV==�G�Š O.�d/!W P .b1; : : : ; bK/. We call this
phase the Calabi–Yau phase or geometric phase.

We wish to find a good lift of � . To do this, consider any v2V ss
G .�/D ..C

K�f0g/�C/.
If ` is a generator of L�

�
over CŒV �� with G acting on ` with weight �e , if we choose

the trivial lift #0 of � , which corresponds to C�R acting trivially on `, then a monomial
of the form xkei `

k is �–invariant and does not vanish on points with xi ¤ 0, so every
point of CK �C with xi ¤ 0 is in V ss

� .#0/. Letting i range from 1 to K shows that
V ss
� .#0/D V

ss
G .�/. Thus #0 is a good lift of the character � . It is easy to see that #0

is the only good lift of � .

� < 0 We have

��1.�/D

�
.x1; : : : ; xK ; p/

ˇ̌̌ KX
iD1

bi jxi j
2
� � D bjpj2

�
For each choice of x1; : : : ;xK 2CK the set of p2C such that .x1; : : : ;xK ;p/2��1.�/
is the circle S1 � C , corresponding to the maximal collection .�b/, and we obtain
a map X

sympl
� ! ŒS1=U.1/�. If we choose the basis of U.1/ to be ��1 , then p

can be considered to have positive weight b . Moreover, every p has isotropy equal
to the bth roots of unity (isomorphic to Zb ). The quotient ŒS1=U.1/� is W P .b/ D
BZb D Œpt=Zb�.
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In the GIT formulation of this quotient, with � of weight �e , and e < 0, the
L� –semistable points are equal to .CK � C�/ � CKC1 . The second projection
pr2W .C

K �C�/!C� induces the map ŒV==�G�! BZb .

The toric variety X� D ŒV==�G� can be viewed as the total space of a rank-K orbifold
vector bundle over BZb . This bundle is actually just a Zb –bundle, where Zb acts by

.x1; : : : ; xK/ 7! .�
b1
b
x1; : : : ; �

bK
b
xK/; �b D exp

�
2�i

b

�
:

If W has C�R–weight b , then this is exactly the action of the element J in FJRW
theory. So the bundle X� is isomorphic to ŒCK=hJ i�. This is a special phase which is
sort of like a toric variety of a finite group instead of C�.

We can choose C�R to have weights cxi D bi and cp D 0. Now W has C�R–
weight d D b , and J D .�b1 ; : : : ; �bK ; 1/, where � D exp.2�i=d/. We have � D
f..st/b1 ; : : : ; .st/bK ; t�d / j s; t 2C�gDf.˛b1 ; : : : ; ˛bK ; ˇ/ j˛; ˇ2C�g, with �W �!
C� given by .˛b1 ; : : : ; ˛bK ; ˇ/ 7! ˛dˇ . Also the map �W � ! G=hJ i is given by
.˛b1 ; : : : ; ˛bK ; ˇ/ 7! ˇ .

A similar argument to the one we gave above (for the geometric phase) shows that the
trivial lift #0 is again a good lift of � .

The critical subset is the single point f.0; : : : ; 0/g in the quotient X� D ŒCK=Zd �. It
is clearly compact, so the polynomial W is nondegenerate. We call X� a Landau–
Ginzburg phase or a pure Landau–Ginzburg phase [53]. This example underlies
Witten’s physical argument of the Landau–Ginzburg/Calabi–Yau correspondence for
Calabi–Yau hypersurfaces of weighted projective spaces.

3.2.3 Choice of C�
R

Our theory does not really depend on C�R , but rather only on
the embedding of the groups G�� �GL.V /, on the sum qD

Pn
iD1 qi D

Pn
iD1 ci=d

of the C�R weights, and on the choice of lift # . Of course the choice of q and the
embedding of � in GL.V / put many constraints on C�R ; but they still allow some
flexibility.

For an example of this, consider the case when the gauge group G D .C�/m is an
algebraic torus. Let the action of the i th copy of C� on V DCn be given by

�i .x1; : : : ; xn/D .�
bi1
i x1; : : : ; �

bin
i xn/:

We call the integral matrix B D .bij / the gauge weight matrix. If the weight matrix
B D .bij / satisfies the Calabi–Yau condition

P
j bij D 0 for each i , then we have a

lot of flexibility in our choice of C�R , as shown by the following lemma:
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Lemma 3.2.16 If the gauge group G is a torus with weight matrix B D .bij / and
if we have a compatible C�R–action with weights .c1; : : : ; cn/ such that W has C�R–
weight d , then for any Q–linear combination .b01; : : : ; b

0
n/ of rows of the gauge weight

matrix B , we define a new choice of R–weights .c01; : : : ; c
0
n/D .c1Cb

0
1; : : : ; cnCb

0
n/.

Denote the corresponding C�–action by C�R0 .

Since the group � 0 generated by G and C�R0 lies inside the maximal torus of GL.n;C/,
it is abelian; and so we automatically have that G and C�R0 commute. We also have the
following:

(I) The group � 0 generated by G and C�R is the same as the group � generated by
G and C�R .

(II) The C�R0 –weight of W is equal to d .

(III) G\C�R0 DG\C�RDhJ i, where J is the element defined by (6) for the original
C�R–action.

(IV) If B is a Calabi–Yau weight system, then for both C�R and C�R0 the sum of the
weights q D

P
qi D

P
ci=d is the same and the central charge ycW is the same.

Proof For any element h0 2C�R0 we have h0D .tc
0
1 ; : : : ; tc

0
n/ 2C�R0 for some t 2C� .

Letting hD .tc1 ; : : : ; tcn/ 2C�R and g D .tb
0
1 ; : : : ; tb

0
n/ 2G , we have h0 D gh.

(I) From the equation h0 D gh, it is now immediate that GC�R DGC�R0 .

(II) Since the G–weight of W is zero we also have that C�R0 –weight of W is the
same as the C�R–weight of W .

(III) If h0 2 G \ C�R0 then 
 D gh for some g 2 G and h 2 C�R , but 
 2 G
implies that h 2G , so G \C�R0 �G \C�R , and a similar argument shows that
G \C�R �G \C�R0 .

(IV) For a Calabi–Yau weight system we have
P
j bij D 0 for each i , henceP

j b
0
j D 0, and the invariance of q and ycW follows.

Remark 3.2.17 Since � is preserved in the preceding lemma and lifts depend only
on � , any good lift # of � 2 yG for the original C�R–action is also a good lift for the
new C�R0 –action.

4 Moduli space and evaluation maps

Throughout this section we assume that we have a reductive G � GL.V / and that
C�R � GL.V / is a diagonal embedding of C� into GL.V / such that G and C�R are
compatible. Let � � GL.V / be the subgroup generated by G and C�R .
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We further assume that we have chosen a superpotential W W V ! C which is G–
invariant and has degree d with respect to the C�R–action.

Assume that � 2 yG defines a polarization L� such that V ss
G .�/ is nonempty and is

equal to V sG.�/. Denote by X� D ŒV==�G� the corresponding phase of the quotient
of V by the action of G and by CR� D ŒCrit.W /==�G� the phase of the critical locus
of W . Furthermore assume that # is a good lift of � if the stability parameter " is
not 0C.

Finally, assume that W defines a nondegenerate holomorphic map W W ŒV==�G�!C .

4.1 State space

The GLSM has a state space similar to that of FJRW theory. For complete intersections,
it has already been studied by Chiodo and Nagel (work in progress).

Definition 4.1.1 Let

IX D
�
f.v; g/ 2 V ss

� �G j gv D vg=G
�

denote the inertia stack of X (the group G acts on the second factor in the quotient
by conjugation).

For each conjugacy class ‰ �G , let

I.‰/D f.v; g/ 2 V ss
� �G j gv D v; g 2‰g

and
X�;‰ D ŒI.‰/=G�:

We have

(10) IX D
G
‰

X�;‰;

where ‰ runs over all conjugacy classes of G . However, since the action of G on
V ss
�
D V s

�
is proper (see [21, Section 2.1] for more on proper group actions), the set

I.‰/ is empty unless all the elements of ‰ are of finite order. Moreover, by [21,
Lemma 2.10] all but finitely many of the I.‰/ are empty, so the union in (10) has only
a finite number of nonempty terms.

Definition 4.1.2 We will abuse notation and denote the map induced by W on
X� as W W X ! C . Let W1 be the set W1 D .ReW /�1.M;1/ � ŒV==�G�

for some large, real M. Similarly, for each conjugacy class ‰ in G , denote by
W1‰ D .ReW /�1.M;1/�X‰ .
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We define the state space to be the vector space

HW;G D

M
˛2Q

H ˛
W;G D

M
‰

H‰;

where the sum runs over those conjugacy classes ‰ of G for which X�;‰ is nonempty,
and where

H ˛
W;G DH

˛C2q
CR .X� ; W

1;Q/D
M
‰

H˛�2 age.
/C2q.X‰; W
1
‰ ;Q/

and

H‰ DH
�C2q
CR .X�;‰; W

1;Q/D
M
˛2Q

H˛�2 age.
/C2q.X�;‰; W
1
‰ ;Q/;

That is, the state space is the relative Chen–Ruan cohomology with an additional shift
by 2q .

For each element g 2 G we write ŒŒg�� � G for the conjugacy class of g in G . We
often call the factor HŒŒg�� the ŒŒg��–sector, and we call the factor HŒŒ1�� the untwisted
sector.

Recall (see Definition 3.2.3) that N is the complex dimension of the GIT quotient
X� D ŒV==�G�

N D dim.ŒV==�G�/D n� dim.G/:

And similarly, for each ŒŒ
�� we let N
 denote the complex dimension of the sector XŒŒ
�� :

N
 D dim.X�;ŒŒ
��/D dim.Fix.
//� dim.ZG.
//;

where ZG.
/ is the centralizer of 
 in G .

Similar to the classical case, for every i 2Q, there is a perfect pairing

H i .XŒŒ
��; W
1
ŒŒ
��/˝H

2N
�i .XŒŒ
��; W
1
ŒŒ
��/!C;

dual to the intersection pairing of relative homology (see [25, Section 3] for more
details). Recall that the age satisfies

age.
/C age.
�1/D codim.X�;ŒŒ
��/DN �N
 ;

so applying the previous pairing to each sector, we obtain a nondegenerate pairing

h ; iW H
p
W;G ˝H

2yc�p
W;G !C;

where yc D ycW;G DN � 2q (see Definition 3.2.3).
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Definition 4.1.3 An element 
 2G is called narrow if the corresponding component
XŒŒ
�� � IX� is compact (or, equivalently, if its underlying coarse moduli space is
compact). In this case we also say that the corresponding sector HŒŒ
�� is narrow. If 

is not narrow, we call it (and the corresponding sector) broad.

The theory for narrow sectors is generally much easier to understand than for the broad
sectors, but some elements of the broad sectors also behave well, namely those which
are supported on a compact substack of IX� .

Definition 4.1.4 If W and G are nondegenerate for X� (that is, if CR� is compact)
then we say an element of HW;G is of compact type if its Poincaré dual is supported
on a compact substack of the inertial stack of IX� . Any narrow element is obviously
of compact type. Define HW;G;comp �HW;G to be the span of all the compact-type
elements.

If G is finite and W is nondegenerate, then narrow insertions are the only nonzero
elements of compact type.

4.2 Moduli space

Our moduli space will be a sort of unification of the quasimaps of [15; 16; 33; 10] with
an extension of the Polishchuk–Vaintrob description of the FJRW moduli space [42] to
reductive algebraic groups.

As before, we denote by CR� D X� D ŒCritss
G.�/=G� � ŒV==�G� D ŒV

ss
G .�/=G� the

GIT quotient (with polarization � ) of the critical locus of W . It will be useful also to
consider other affine varieties, so we let Z � V be a closed subvariety of V such that
ZsG.�/DZ

ss
G.�/¤∅, and we denote by Z� the quotient Z� D ŒZ==�G�D ŒZ

ss
G.�/=G�.

Our main object of study is the stack of Landau–Ginzburg quasimaps to Z� ,

LGQ";#
g;k
.Z� ; ˇ/;

with a special interest in the case of Z� D CR� . We will embed LGQ";#
g;k
.CR� ; ˇ/

into LGQ";#
g;k
.X� ; ˇ/, which plays a role analogous to the stack of stable maps with

p–fields [6; 7].

Before we define our moduli problem, we recall the definition of a prestable orbicurve.

Definition 4.2.1 A prestable orbicurve is a balanced twisted curve C (see Section 4
of [1]).
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A prestable orbicurve has a prestable underlying coarse curve (ie the only singularities
are nodes) and there is a contraction C!C 0 to a stable orbicurve C 0 (see [1, Section 9]).

Definition 4.2.2 Assume that the actions of G and C�R are compatible and that � 2 yG
defines a polarization L� such that the stable and semistable loci of Z � V are
nonempty and coincide. A prestable, k–pointed, genus-g , LG quasimap to Z� is a
tuple .C ; y1; : : : ; yk;P; u; ~/ consisting of

(A) a prestable, k–pointed orbicurve .C ; y1; : : : ; yk/ of genus g ,

(B) a principal (orbifold) �–bundle PW C ! B� over C ,

(C) a global section � W C ! E DP �� V ,

(D) an isomorphism ~W ��P ! V!log;C of principal C�–bundles ( V!log;C indicates
the principal C�–bundle associated to the line bundle !log;C ),

such that:

(I) The morphism of stacks PW C !B� is representable (ie for each point y of C ,
the induced map from the local group Gy to � is injective).

(II) The set of points b 2 C such that any point p of the fiber Pb over b is mapped
by � into an L� –unstable G–orbit of V is finite, and this set is disjoint from
the nodes and marked points of C .

(III) The image of the induced map Œ��W P! V lies in Z .

Definition 4.2.3 The points b occurring in condition (II) above are called basepoints
of the quasimap. That is, b 2 C is a basepoint if there is at least one point of the fiber
Pb over b that is mapped by � into an L� –unstable G–orbit of V .

Definition 4.2.4 Any G–character � defines a G–linearized line bundle L� on V ,
and hence a line bundle on ŒV==�G�. We denote this line bundle by L� .

Alternatively, we may construct L� as follows. Note that the stable locus V ss
G .�/

is a principal G–bundle over ŒV==�G� and thus defines a morphism ŒV==�G�! BG
to the classifying stack of G . The character � induces a map of classifying stacks
B�W BG ! BC� . Composing these maps gives a morphism ŒV==�G�! BC� and
hence a line bundle on ŒV==�G�. This is L� .

Definition 4.2.5 For any prestable LG quasimap Q D .C ; y1; : : : ; yk;P; �; ~/, a
�–equivariant line bundle L 2 Pic�.V / determines a line bundle L DP �� L over
E DP �� V , and pulling back along � gives a line bundle ��.L / on C .

In particular, any character ˛ 2 y� determines a �–equivariant line bundle L˛ on V and
hence a line bundle ��.L˛/ on C . Alternatively, we may construct ��.L˛/ by compos-
ing the map PW C ! B� with the map B˛W B�! BC� to get ��L˛W C

B˛ıP
��!BC�.
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Definition 4.2.6 For any ˛ 2 y� , we define the degree of ˛ on Q to be

degQ.˛/D degC .�
�.L˛// 2Q:

This defines a homomorphism degQW y�!Q.

For any ˇ 2 Hom.y�;Q/ we say that an LG quasimap QD .C ; x1; : : : ; xk;P; �; ~/

has degree ˇ if degQ D ˇ .

Remark 4.2.7 If # 2 y�Q is any character of � , then geometric invariant theory
guarantees the existence of a line bundle M on Z==#� such that M is relatively ample
over Z=aff� and such that for some n > 0 we have x��M D L˝n

#
on ŒZ==#��, or

equivalently,

(11) p���x��M DL˝n
#

as a �–equivariant bundle on Zss (see for example [3, Theorem 11.5]).

If # is also a good lift of � 2 yGQ and Z � V is a closed subvariety of V , we have the
following diagram of quotients:

(12)

Zss p
// ŒZ==�G�

�

��

�
// Z==�G

� 0

��

ŒZ==#��
x�
// Z==#�

The bundle � 0�.M/ is ample over Z=affG , and we have

(13) ��x��M D ��� 0�.M/D L˝n
�
:

Definition 4.2.8 A family of prestable, k–pointed, genus-g , LG quasimaps to Z�
over a scheme T is a tuple .$ W C ! T; y1; : : : ; yk;P; �; ~/ consisting of

(A) a flat family of prestable, genus-g , k–pointed orbicurves .$ W C!T; y1; : : : ;yk/

over T with (gerbe) markings Si � C , and sections yi W T !Si which induce
isomorphisms between T and the coarse moduli of Si for each i 2 f1; : : : ; kg,

(B) a principal �–bundle PW C ! B� over C ,

(C) a section � W C ! E DP �� V ,

(D) an isomorphism ~W ��P! V!log;C of principal C�–bundles,

such that the restriction to every geometric fiber of $ W C ! T induces a prestable,
k–pointed, genus-g , LG quasimap to Z� .
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Definition 4.2.9 A morphism between LG quasimaps .$ W C!T;y1; : : : ;yk;P;�;~/

and .$ 0W C 0 ! T 0; y01; : : : ; y
0
k
;P 0; � 0; ~0/ is a tuple of morphisms .�; �; �/, where

.�; �/ form a morphism of prestable orbicurves

C

$

��

�
// C 0

$ 0

��

T
�
// T 0

and �W P ! ��.P 0/ is a morphism of principal �–bundles such that the obvious
diagrams commute:

��.P/
~

//

��.�/

��

V!log;C

��

��.�
�.P 0//

��.~0/
// ��. V!log;C 0/

and

C
�

//

��.�/
%%

P �� Z

��1
��

��.P 0/�� Z

We now wish to define a stability condition for LG quasimaps. To do this we must first
define the length of an LG quasimap at a point.

Definition 4.2.10 Choose a polarization � 2 yG and a lift # of � . Given a prestable
LG quasimap QD .C ; y1; : : : ; yk;P; �; ~/ to ŒZ==�G� and any point y 2 C such that
the generic point of the component of C containing y maps to a # –semistable point,
we define the length of y with respect to Q and # to be

`.y/Dmin
�
.��.s//y

m

ˇ̌̌
s 2H 0.Z;Lm# /

� ; m > 0

�
;

where .��.s//y is the order of the vanishing of the section ��.s/ 2H 0.C ; ��L˝m
#

/

at y .

This definition differs from that in [16, Definition 7.1.1], in that it depends on the choice
of the lift # 2 y� rather than on the polarization � 2 yG , but the following properties
listed in [16, Section 7.1] still hold:

(I) For every y 2 C , if the generic point of the component of C containing y maps
to a # –semistable point, then we have

degC .�
�.L#//� `.y/� 0

with `.y/ > 0 if and only if y is a # –basepoint of Q.
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(II) If # is a good lift and B is the set of basepoints of Q, then the map � , when
restricted to C XB , defines a map

� W C XB! ŒZ==#��
x�
�!Z==#�:

Since B is disjoint from nodes and marks and Z==#� is projective over Z=aff� ,
this extends to a morphism �regW C ! Z==#� . Choose M 2 Pic.Z==#�/, as in
Remark 4.2.7, with p���x��M DL˝n for some n > 0. We have

degC .�
�.L#//�

1

n
degC .�

�
reg.M//D

X
y2C

`.y/:

(III) For any family of prestable LG quasimaps .C =T; y1; : : : ; yk;P; ~/ over T , the
function `W C !Q is upper semicontinuous.

Definition 4.2.11 Choose a polarization � 2 yG and a good lift # of � (see Definition
3.2.13).

Given a prestable LG quasimap QD .C ; x1; : : : ; xk;P; �; ~/ and any positive rational ",
we say that Q is "–stable (for the lift # ) if

(I) !log;C ˝ �
�.L#/

" is ample, and

(II) "`.y/� 1 for every y 2 C .

We say that Q is 1–stable if there exists an n > 0 such that Q is "–stable for all
" > n.

Remark 4.2.12 The 1–stability condition is equivalent to saying that there are no
basepoints (by condition (II) when " is large) and that on each component of C the
line bundle ��.L#/ has nonnegative degree (by condition (I) when " is large), with
the degree only being able to vanish on components where !log is ample.

We also wish to define another stability condition we call 0C stability. This is the
limiting stability condition as " # 0; but where "–stability requires a good lift, 0C
stability does not.

Definition 4.2.13 Given a polarization � 2 yG and a prestable LG quasimap Q D
.C ; x1; : : : ; xk;P; �; ~/, we say that Q is .0C/–stable if there exists a lift # (not
necessarily a good lift), such that

(I) every rational component has at least two special points (a mark yi or a node),
and

(II) on every component C 0 with trivial !log;C 0 , the line bundle ��.L#/ has positive
degree.
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It turns out that condition (II) holds for some lift if and only if it holds for all lifts. This
follows from the next proposition and its corollary.

Proposition 4.2.14 For any two lifts # and # 0 of � , the bundles ��.L#/ and
��.L# 0/ differ by a power of !log;C :

��.L#/
�1
˝ ��.L# 0/D !

a
log;C

for some a 2Q.

Proof We have (after clearing denominators, if necessary) that

.#�1# 0/.g/D ��1.g/�.g/D 1

for any g 2G . Hence #�1# 0 factors through � , and in fact we have #�1# 0 D �l for
some l . This gives ��.L#�1# 0/DL l

�
D !l=dlog;C .

Corollary 4.2.15 A prestable LG quasimap QD .C ; y1; : : : ; yk;P/ satisfies condi-
tion (II) for .0C/–stability for one lift of � if and only if it satisfies that condition for
every lift of � .

Proof By the previous proposition, the difference between the various lifts is a power
of !log;C and hence is trivial on these components.

Definition 4.2.16 A family of "–stable, k–pointed, genus-g , LG quasimaps to Z�
over a scheme T is a family of prestable k–pointed, genus-g , LG quasimaps to Z�
over T (see Definition 4.2.8) such that the induced LG quasimap on each geometric
fiber is "–stable.

Proposition 4.2.17 The automorphism group of any "–stable LG quasimap Q D
.C ; x1; : : : ; xk;P; �; ~/ is finite and reduced.

Proof Observe that we have an exact sequence

1! AutC .Q/! Aut.Q/! AutC ;

where AutC .Q/ is the group of automorphisms of Q fixing C . Thus we may break
the proof into two parts. First, the same argument as given in [16, Proposition 7.1.5]
shows that if C is irreducible but unstable (ie Aut.C / is infinite), then Aut.Q/ is finite.
Second, we prove that AutC .Q/ is finite.

The quasimap Q induces a morphism x� W V!log;C X F ! ŒV==�G�, where F is the
fiber in V!log;C over the set of basepoints B of � . Any element of AutC .Q/ must
fix V!log;C and the morphism x� W V!log;C XF ! ŒV==�G�. Since ŒV==�G� is a DM stack,
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the set of automorphisms of x� restricted to the generic point must be finite. But any
automorphism of the �–bundle P over a curve is completely determined by its value
on the generic point. Hence AutC Q is finite.

Finally, the automorphism group is reduced because we have restricted ourselves to
characteristic 0.

Definition 4.2.18 For a given choice of compatible G– and C�R–actions on a closed
affine variety Z � V , a strongly regular character � 2 yG , a good lift # of � and a
nondegenerate W , we denote the corresponding stack of k–pointed, genus-g , "–stable
(for # ) LG quasimaps into Z� of degree ˇ by

LGQ";#
g;k
.Z� ; ˇ/:

If "D 0C, we can dispense with the good lift and instead define

LGQ0C
g;k
.Z� ; ˇ/

to be the stack of k–pointed, genus-g , LG quasimaps into Z� of degree ˇ that are
.0C/–stable for any (and hence every) lift of � .

4.3 Example: hypersurfaces

We illustrate these ideas with the hypersurface described in Example 3.2.15. The reader
who wishes to move directly to the main results of this paper may skip this example on
first reading. For many more examples, see Section 7.

Example 4.3.1 (hypersurfaces, geometric phase) Consider again the situation of a
hypersurface in weighted projective space, as in Example 3.2.15, where G DC� and
V D CK �C with coordinates .x1; : : : ; xK ; p/. Let W D FpW CKC1 ! C have
G–weights .b1; : : : ; bK ;�b/.

In the geometric phase we have semistable locus .x1; : : : ; xK/¤ .0; : : : ; 0/, and critical
locus fpD 0; F.x1; : : : ; xK/D 0g. So the quotient CR� D fpD 0DF.x1; : : : ; xK/g

of the critical locus is a degree-b hypersurface in W P .b1; : : : ; bK/.

Choosing the C�R–weights .0; : : : ; 0; 1/ gives a hybrid model in which W has C�R–
weight d D 1 and � is a direct product � ŠG �C�R , with � and � just the first and
second projections, respectively. We use the trivial lift #0 as our good lift.

A principal �–bundle P on C with ��.P/Š V!log;C is equivalent to a line bundle L

on C with P D VL � V!log;C , where VL is the principal C�–bundle associated to the
line bundle L .
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The vector bundle P �� V is L˚K ˚ .L˝.�b/˝!log;C /, so the stack is

f.C ;L ; s1; : : : ; sK ; p/ j si 2H
0.C ;L /; p 2H 0.L �b˝!log;C /g

satisfying the stability conditions. Here C is a marked orbicurve and L is a line bundle
over C .

A particularly simple case is the 1–stable LG quasimaps to the critical locus CR� .
Since there are no basepoints in this case, .s1; : : : ; sK/ ¤ 0. The critical locus
requires p D 0 and F D 0; the quasimap � D .s1; : : : ; sK ; p/ corresponds to a
map C ! W P .b1; : : : ; bK/. Moreover, the image of the map must lie in XF D

fF D 0g � W P .b1; : : : ; bK/ and we have L D ��O.1/ D ��L#0 . So the 1–
stability condition for the trivial lift exactly corresponds to this map’s being a stable
map to XF . Therefore, LGQ1;#0

g;k
.CR� ; ˇ/ is the stack of stable maps to the crit-

ical locus CR� D fF D 0g � W P .b1; : : : ; bK/ of degree ˇ . Moreover, the stack
LGQ1;#0

g;k
.ŒV==�G�; ˇ/ is the space of stable maps with p–fields, studied in [6; 7].

There is a parallel theory of quasimaps into XF that has the same moduli space as
our construction in this example (the geometric phase of the hypersurface), but the
virtual cycle constructions are different. For "D1, Chang, Li, Li and Liu [8] proved
equivalence of the two theories using a sophisticated degeneration argument. A similar
argument probably works for other choices of ".

Example 4.3.2 (hypersurfaces, LG phase) Let’s now consider the LG phase of the
hypersurface in weighted projective space. The unstable locus is fp D 0g. We first
consider the same R–charge as before, ie cxi D 0 and cp D 1. We have a similar
moduli space

f.C ;L ; s1; : : : ; sK ; p/ j si 2H
0.C ;L /; p 2H 0.L �b˝!log;C /g;

satisfying the stability condition that p¤ 0. For the LG quasimaps to lie in the critical
locus requires si D 0. The basepoints are precisely the zeros of p , and the base locus
forms an effective divisor D with L �b˝!log;C ŠO.D/. So we can reformulate the
moduli problem as

f.C ;L ; s1; : : : ; sK/ j si 2H
0.C ;L /; L b

Š !log;C .�D/g;

which can be viewed as a weighted b–spin condition (see [47]). When "D1, there is
no basepoint, ie DD 0, and we obtain the usual b–spin moduli space corresponding to

L d
Š !log;C :

There are other choices of R–charge. For example, we can choose the C�R–action to
have weights cxi D bi and cp D 0. We have � D f.˛b1 ; : : : ; ˛bK ; ˇ/ j ˛; ˇ 2 C�g,
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with �W � ! C� given by .˛b1 ; : : : ; ˛bK ; ˇ/ 7! ˛dˇ . Also the map �W � ! G=hJ i

is given by .˛b1 ; : : : ; ˛bK ; ˇ/ 7! ˇ .

The stack LGQ";#0
g;k

.X� ; ˇ/ consists of pointed orbicurves C with line bundles L and
B such that BŠ !log;C ˝L �d and sections s1; : : : ; sN of L and p of B satisfying
the stability conditions. Again let’s consider LGQ1;#0

g;k
.CR� ; ˇ/. In this case, since

the semistable locus Critss
G.�/ consists of points of the form .0; : : : ; 0; p/ with p ¤ 0,

the sections s1; : : : ; sN must all vanish. Again, we can identify B D O.D/ for an
effective divisor. This implies

L d
Š !log;C .�D/:

Moreover, since � has weight �e for some e < 0, the trivial lift #0 corresponds to
the map �!C� given by .˛b1 ; : : : ; ˛bK ; ˇ/ 7! ˇ�e=d, and the pullback line bundle
��.L#0/ is precisely B�e=d, which is a d th root of OC . So the stability condition
just reduces to the requirement that !log;C be ample — that is, that the orbicurve C be
stable.

4.4 Evaluation maps

LG quasimaps to Z� D ŒZ==�G� are not quasimaps into Z� . Their target is the Artin
stack ŒZss

G.�/=��, so one might expect that evaluation maps would only land in the
inertia stack IŒZss

G.�/=�� of the stack ŒZss
G.�/=��. But we can define evaluation maps

LGQ";#
g;k
.Z� ; ˇ/

evi
�! IZ� D

G
‰

Z�;‰

to the inertia stack of the GIT quotient stack Z� , as follows.

Observe first that the log-canonical bundle !log;C and its corresponding principal C�–
bundle V!log;C have a canonical section at each marked point yi (call this section dz=z ).
Since G is the kernel of � , the preimage ��1� ~�1.dz=z/�Pjyi is a principal G–orbit
in P , and hence defines a principal G–bundle Q over the (orbifold) marked point yi .
The section � W C ! P �� V induces a section C ! Q �G V , which gives a map
fyig ! ŒZ=G�. Since the section � is never G–unstable at nodes and marked points,
this actually gives a map to Z� and not just to ŒZ=G�. Moreover, since yi is an
orbifold point of the form yi D Œzyi=Gyi � Š BGyi , the generator of the local group
Gyi must map to an element of the stabilizer of the image of zyi . That is, the evaluation
map takes values in the inertia stack IZ� .

Applying this construction to all LG quasimaps gives the desired evaluation morphisms

evi W LGQ";#
g;k
.Z� ; ˇ/! IZ� :
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The existence of the evaluation maps shows that we can decompose

(14) LGQ";#
g;k
.Z� ; ˇ/D

G
‰1;:::;‰k

LGQ";#
g;k
.Z� ; ˇ/.‰1; : : : ; ‰k/;

where the ‰i are conjugacy classes in G indexing the twisted sectors of IZ� , and the
factors LGQ";#

g;k
.Z� ; ˇ/.‰1; : : : ; ‰k/ are the open and closed substacks where the i th

evaluation morphism maps to the component (sector) Z�;‰i of IZ� .

Proposition 4.4.1 There is an integer e , depending only on W , G and the action of
� on V , such that for any prestable LG quasimap QD .C ; y1; : : : ; yk;P; �; ~/, the
degree of every line bundle on C lies in 1

e
Z, and for any marked point or node y of Q,

the order of the local group Gy at y is bounded by e .

Proof Recall that IX is indexed by a finite number of conjugacy classes, each of
finite order (see the discussion after Definition 4.1.1). Let e be the least common
multiple of these orders.

Let y be a marked point or node of C and let Gy be the local group of the orbifold
C at y . Since PW C ! B� is representable, the corresponding homomorphism
Gy!G � � must be injective, and hence Gy Š h
i for some 
 2G fixing �.y/ 2 V .
Therefore 
 must lie in one of the finite number of conjugacy classes corresponding to
nonempty components of IX , and hence the order of Gy must divide e .

This also shows that for any line bundle N on C the tensor power N ˝e is the
pullback of a line bundle on the coarse curve underlying C , and hence e times the
degree of N is an integer.

Example 4.4.2 Consider again the geometric phase of a hypersurface XF in weighted
projective space of Examples 3.2.15 and 4.3.1. The untwisted sector X�;ŒŒ1�� is broad
and is the line bundle O.�d/ over weighted projective space. Any subvariety of
weighted projective space defines an element of the state space of compact type, and
HW;G;comp can be identified with the ambient classes of H�CR.XF ;Q/.

The elements of the state space which are not of compact type correspond to the
so-called primitive cohomology of H�CR.XF ;Q/. These correspond to broad insertions
in FJRW theory.

5 Properties of the moduli space

5.1 Boundedness

In this section we develop some boundedness results that will be used in the proof of
Theorem 5.2.3 (specifically, to show that the stack of LG quasimaps is of finite type).
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Proposition 5.1.1 Given a lift # of � and any prestable LG quasimap

QD .C ; y1; : : : ; yk;P; �; ~/

such that � maps the generic point of a component C 0 of C to a # –semistable point
of V , the degree of the pullback bundle ��.L#/ on C 0 is nonnegative:

degC 0 �
�.L#/� 0:

Moreover, degC 0 �
�.L#/D 0 if and only if there are no # –basepoints on C 0 and com-

posing � with the natural map ŒV==#��! V==#� induces a constant map C 0! V==#� .

Proof We may assume that C is irreducible. Since the generic point of C maps to
a �–semistable point of V with respect to # , we must have some n > 0 for which
there exists a nonzero f 2H 0.V;Ln

#
/� such that f .�.y//¤ 0 for some y 2 C . Thus

��.f / is a nonzero element of H 0.C ; ��L˝n
#
/, and hence the degree of ��L˝n

#
must

be nonnegative.

Moreover, if � has no basepoints, but ��L# has degree 0, then the only global sections
of ��L n

#
are constant on C for every n > 0, hence the induced map C ! V==#� is

constant. The converse follows from Remark 4.2.7 — if there are no basepoints and
the induced map x� W C ! V==#� is constant, then there is an ample line bundle M on
V==#� such that ��L n

#
D x��M D OC .

Finally, if b is a # –basepoint of � , then every section in H 0.V;Ln
#
/� must vanish

at �.b/ and hence ��.f / is a nonzero section of ��L˝n
#

on C that has at least one
zero, and hence ��L˝n

#
must have positive degree.

Corollary 5.1.2 (compare to [15, Corollary 3.1.5]) The number of irreducible com-
ponents of the underlying curve of a k–pointed, genus-g , "–stable LG quasimap
QD .C ; y1; : : : ; yk;P; �; ~/ of degree ˇ is bounded in terms of g , k and ˇ.#/.

Proof Because the genus is bounded, the number of irreducible components of genus
greater than zero is bounded. Because the number of marked points is bounded, the
number of genus-0 components with at least three points is also bounded. It remains
only to consider the components of genus 0 with two or fewer marked points or those
of genus 1 with no marked points.

The existence of any unstable component (genus 0 and two or fewer marked points, or
genus 1 and no marks) for which degC �

�L# vanishes would contradict the conditions
of stability. This implies degC �

�L# >0 on each such component. By Proposition 4.4.1,
there is a uniform bound e such that degC �

�L# �
1
e

on each such component, and
hence the number of such components is bounded.
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Remark 5.1.3 The previous corollary also holds for .0C/–stable curves. The only
adjustment that must be made to the proof is that one may use any lift — not just a
good lift — in the argument that degC �

�L# �
1
e

.

Theorem 5.1.4 Fixing a prestable orbicurve C , a polarization � 2 yG , any character
� 2 y�Q and a rational number b , the family of prestable LG quasimaps Q from C to
Z� such that degC �

�L� D b is bounded.

The proof is similar to that of [16, Theorem 3.2.4], with additional complications
arising from the difference between � and G and from the fact that for any lift # , the
set V s� .#/ may be empty, even if # is a good lift of � .

It suffices to prove boundedness of the set S of principal �–bundles P over a fixed,
irreducible, orbicurve C with an isomorphism ~W �.P/ ! V!log;C which admit an
"–stable LG quasimap � W P ! V of class ˇ to ŒV==�G� (but the particular choice
of quasimap � is not fixed). We can also reduce to the case where C is nonsingular
because a principal �–bundle on a nodal orbicurve C is given by a principal bundle
zP on the normalization zC and a choice of an identification of the fibers zPpC Š

zPp�

over each node p , and for each node, these identifications are parametrized by the
group � .

We first consider the case that G is connected. In this case � is also connected, because
there is a surjective map from G �C�R to � .

Lemma 5.1.5 Let G �GL.V / be a connected reductive algebraic group. Let T 0 �G
be a maximal torus containing hJ i and let B 0 �G be a Borel subgroup containing T 0.
Let B � � DGC�R be the subgroup of � generated by B 0 and C�R , and let T � � be
the subgroup generated by T 0 and C�R .

The group � is reductive, and the subgroup B is a Borel subgroup of � containing T ,
which is a maximal torus of � . Moreover, we have B \G D B 0, and the unipotent
radical B 0u of B 0 is the same as the unipotent radical Bu of B .

Proof First, � is reductive because it is the quotient of the reductive group G �C�R
by the finite subgroup hJ i.

To see that B is Borel in � , observe first that since B 0 GB is normal in B , and the
quotient B=B 0 is abelian, then B is solvable in � . If C � � is any solvable subgroup
in � such that B 0 � C \G , we claim that B 0 D C \G . To see this, note that given
any subnormal series f1g D C0 GC1 G � � � GCn D C whose quotients Ck=Ck�1 are
all abelian, the corresponding series C0 \ G G � � � G Cn \ G shows that C \ G is
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solvable in G . But B 0 is Borel, hence is a maximal solvable subgroup in G (since
G is connected, Borel subgroups are maximal among all solvable subgroups — not
just among those that are Zariski-closed and connected — see [5, 11.17]). Thus, since
B 0 � C \G , we must have B 0 D C \G .

To see that B is Borel in � , it remains to show that B is maximal among the solvable
subgroups of � . Assume that S � � is a solvable subgroup of � with B � S .
Any element s 2 S � � can be written as s D gr , where g 2 G and r 2 C�R , and
g D sr�1 2 SB � S , so g 2 S \G . By the previous paragraph, we have S \G D B 0,
so g 2B 0 and gr 2B 0C�R DB . Therefore S DB , and B is maximal among solvable
subgroups of � , hence B is Borel in � .

The group T is abelian and contains T 0, and the quotient T=T 0 is isomorphic to
H ŠC�, by the map �W T !H ; see (7). By [5, Corollary, page 149] we have that T
is also a torus. Since hJ i � T 0, we have T 0\C�R D hJ i D B

0\C�R . So the sequence
(8) gives us B=B 0 D T=T 0 DH, and we have the diagram of short exact sequences

1 // T 0

Š

��

// T

��

�
// H

Š

��

// 1

1 // B 0=B 0u
// B=B 0u

�
// B=B 0 // 1

where the leftmost vertical arrow is an isomorphism because T 0 is the maximal torus
of B 0. Thus we have B=B 0u Š T . The maximal torus zT of B must contain T and is
isomorphic to B=Bu . Also Bu contains B 0u , so we have

T � _

��

Š
// B=B 0u

����

zT
Š
// B=Bu

Thus T D zT must be the maximal torus and Bu D B 0u .

We can now finish the proof of the theorem. By [45, Section 2.11] (see also [16,
Theorem 3.2.4]) we may choose a reduction to a principal B –bundle P 0 for each
principal �–bundle P in the set S . Let

RD fP 0 DP 0=Bu jP 2 Sg:

For each P 0, let dP0 W
yT !Q be given by

dP0.�/D degC .P
0
�T C�/:
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By [16, Lemma 3.2.7] and [29, Proposition 3.1 and Lemma 3.3], the set S is bounded
if the set R is bounded, and R is bounded if the set

D D fdP0 W
yT !Q jP 0 2Rg

is bounded.

The argument in the proof of [16, Lemma 3.2.8] shows there is a Q–basis f�1; : : : ; �mg
of yT 0˝Q such that for each �i we have V sT 0.�/� V

ss
T 0.�i /, and � D

P
i ai�i , with

ai > 0 for every i . For each choice of C , P and � , the generic point of C maps
by � into

V sG.�/� V
s
T 0.�/� V

ss
T 0.�i /:

By Lemma 3.2.12, for each i there are three standard lifts #� , #0 and #C of �i such
that

V ss
T 0.�i /D V

ss
T .#�/[V

ss
T .#0/[V

ss
T .#C/;

and such that the C�R–weight of #� , #0 and #C is �1, 0 and 1, respectively.

Therefore, for at least one of these three lifts (denote it simply by #i ), the generic point
of C must map to V ss

#i
.T /. That means there must exist some section s 2H 0.V;Ln

#i
/T

for some n > 0. This induces a section of P 0 �T L
n
#i

that does not vanish on the
generic point of C , and thus degC P 0 �T L#i � 0.

If 2g�2Ck� 0, let ' be the unique lift of the trivial T 0–character with C�R–weight 1.
The LG quasimap structure P! V!log;C means that degC .P

0�T C'/D degC !log;C D

2g � 2C k � 0. Similarly, if 2g � 2C k < 0, let ' be the unique lift of the trivial
T 0–character with C�R–weight �1. Again we have degC .P

0�T L'/D degC !
�1
log;C D

2� 2g� k > 0.

The characters f#1; : : : ; #n; 'g form a basis for yT ˝Q. Since the degree

degC P 0 �T L' D j2g� 2C kj

is fixed by g and k , it suffices to prove there are a finite number of possible values
for each degC P 0 �T L#i . To do this, note that there is a unique r 2 Z such that the
character � can be written as

� D

nX
iD1

ai#i C r':

This gives

degC �
�.L�/� r j2g� 2C kj D

nX
iD1

ai degC P 0 �T L#i :

All the coefficients ai and r are independent of C and P 0 and depend only on
the action of T on V and on characters �; '; #1; : : : ; #n 2 yT . Since the ai are all
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positive, every degC P 0 �T L#i is nonnegative and the left-hand side of this equation
is determined by g , k and b , it follows that the possible values for degC P 0 �T L#i
are all bounded. Since these degrees must all lie in 1

e
Z, there can only be a finite

number of them. Hence the set D is bounded, and we have shown the theorem in the
case that G is connected.

In the general case we assume that G is reductive with identity component G0 such
that G=G0 is finite, but G is not necessarily connected. Let �0 be the component of �
containing the identity element. Clearly G0C�R � �0 , so the group �=�0 is a quotient
of G=G0 , and hence it is finite.

Given an LG quasimap QD .P! V!log;C ! C ;P �
�!V /, the quotient P=�0 is a

principal �=�0–bundle over C , hence it is a prestable orbicurve, which we denote
by zC . The morphism P! V!log;C induces a morphism P! V!log;C �C zC Š V!log; zC ,
which, when combined with P �

�!V , defines an LG quasimap zQ with gauge group
G0 over zC and with polarization � jG0 induced from � by restriction to G0 . The
degree degG0

zQ
.� jG0/ is just 1

m
degQ � D b=m, so by the proof of the theorem in the

connected case, the subfamily of these LG quasimaps zQ with gauge group G0 over a
fixed zC is bounded. But the number of étale maps zC ! C of fixed degree j�=�0j is
finite, so the family of all such prestable LG quasimaps over C is bounded.

Corollary 5.1.6 For any ˇ 2 Hom.y�Q;Q/ the family of prestable LG quasimaps Q
from C to Z� of degree ˇ is bounded.

5.2 Finite-type Deligne–Mumford stack

To prove that LGQ";#
g;k
.Z� ; ˇ/ is a Deligne–Mumford stack we first define an interme-

diate stack.

Definition 5.2.1 Given � �
�!C�, let Ag;k !Bun�;g;k denote the stack of tuples

.C ; y1; : : : ; yk;P; ~/ consisting of a k–pointed, genus-g prestable orbicurve, a prin-
cipal �–bundle P on C , and an isomorphism ~W ��.P/! V!log;C with the property
that the induced morphism C ! B� is representable.

Lemma 5.2.2 The stack Ag;k is a smooth Artin stack, locally of finite type over C .

Proof By [16, Proposition 2.1.1] the stack Bun� is a smooth Artin stack, locally
of finite type over C . Let C denote the universal curve over Bun� ; let Vwlog;C

denote the principal C�–bundle associated to the log-canonical bundle of C; and
let P denote the universal �–bundle over C. As a stack Ag;k is isomorphic to
IsomC=Bun� .��.P/; Vwlog;C/, hence it is representable over Bun� . This proves that
Ag;k is an Artin stack of finite type over Bun� , hence locally of finite type over C .
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To see that it is smooth, we use an argument similar to the proof that Bun� is smooth
(see [16, Proposition 2.1.1]). First note that since C�R commutes with G , it lies in
the center of � , therefore the subgroup G � � inherits a �–action from the adjoint
action of � on itself. Since ker.�/DG , the infinitesimal automorphisms of the data
.P; ~/ are precisely those automorphisms of P over C which are also automorphisms
of P as a G–bundle over V!log;C . Over V!log;C these are given by Hom�.P; G/ D

H 0. V!log;C ;P �� G/.

Assume we are given a family C0 of prestable orbicurves over Spec.A0/, where A0 is
a finitely generated C–algebra A0 , and that we are given the data .P0; ~0/ over C0 .
Given a square-zero extension A of A0 with kernel I and an extension C of C0 over
Spec.A/, extensions of .P0; ~0/ to C are parametrized by H 1. V!log;C0 ;P�� g/˝A0 I,
where g is the Lie algebra of G . The obstruction to extending .P0; ~0/ to C lies
in H 2. V!log;C0 ;P �� g/˝A0 I. Since the fibers of the projection qW V!log;C0 ! C are
affine, the higher derived push forwards Riq�P �� g vanish for i > 0 and the Leray
spectral sequence degenerates. So H 2. V!log;C0 ;P�� g/DH

2.C0; q�.P�� g//. Since
C0 is a family of curves over an affine scheme, H 2.C0;P �� g/ vanishes, and the
deformations are unobstructed. Hence Ag;k is smooth over the stack Mg;k of prestable
orbicurves, which is also smooth.

Theorem 5.2.3 Let ˇ 2 Hom. yG;Q/. Fix either "D 0C or " > 0 and a good lift # .
Let Q be

Q D LGQ0C
g;k
.ŒV==�G�; ˇ/ or Q D LGQ";#

g;k
.ŒV==�G�; ˇ/:

Let MDMg;k denote the stack of prestable orbicurves Mg;k and let AD Ag;k . The
stack Q is a Deligne–Mumford stack of finite type over M. And if Z � V is a closed
subvariety with GIT quotient Z� D ŒZ==�G�, then LGQ";#

g;k
.Z� ; ˇ/ (or LGQ0C

g;k
.Z� ; ˇ/)

is a closed substack of Q .

If P ! C denotes the universal principal �–bundle P on the universal curve
� W C !Q and E DP �� V , then Q! A is representable and has a relative perfect
obstruction theory

(15) �Q=AW TQ=A! EQ=A DR
���E ;

where TQ=A is the relative tangent complex (dual to the relative cotangent complex
LQ=A ).

Proof Let � W C!A be the universal curve and let P be the universal �–bundle on C.
Let EDP�� V and let qW E! C be the projection. Chang and Li [6, Section 2.1]
show that the direct image cone QD C.q�E/, consisting of sections � of E over C is
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an Artin stack, and the projection �W Q! A is representable and quasiprojective with
relative perfect obstruction theory

(16) �Q=AW TQ=A! EQ=A DR
����

��E=C:

We can realize Q as the open substack of Q where the following conditions hold:

(I) The degree of � is ˇ .

(II) The section � maps the generic points of components of C to V ss
� .#/.

(III) The section � maps the nodes and the marked points to V ss
� .#/.

(IV) !log;C ˝ �
�L "
#

is ample.

(V) "`.y/� 1 for all y 2 C .

Therefore Q is an Artin stack with relative perfect obstruction theory (16) over A.
Since E is a vector bundle and � is a section, we have ���_

E=C
DE, giving the desired

relative perfect obstruction theory (15) for Q . Note that the obstruction theory for a
more general target ŒZ==�G� is not necessarily perfect.

The fact that Q is of finite type over C follows from the boundedness results of the
previous sections, as follows. Consider the obvious projection morphisms �W Q!M

and �W Q!A. By Corollary 5.1.2, the image of � is contained in an open and closed
substack S�M of finite type. By Theorem 5.1.4, � factors thorough an open substack
of finite type Aˇ � A lying over S. Since � is quasiprojective, this implies that Q is
of finite type.

The fact that Q is Deligne–Mumford follows from the finiteness of the automorphism
group. Finally, the condition that the image of � lie in Z is a closed condition, so
LGQ";#

g;k
.ŒZ==�G�; ˇ/ is a closed substack of Q .

5.3 Separatedness

Theorem 5.3.1 For any " and for any closed subvariety Z � V with GIT quotient
Z� D ŒZ==�G�, the Deligne–Mumford stack LGQ";#

g;k
.Z� ; ˇ/ (or LGQ0C

g;k
.Z� ; ˇ/) is a

separated stack.

The proof of the theorem follows, by the valuative criterion, from the following lemma.

Lemma 5.3.2 Let R be a discrete valuation ring over C . Let � be the generic point
of Spec.R/, and let 0 be the closed point. Consider two prestable LG quasimaps

Q1 D .C1; y1;1; : : : ; y1;k;P1; �1; ~1/ and Q2 D .C2; y2;1; : : : ; y2;k;P2; �2; ~2/
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over Spec.R/ that are isomorphic over �. Given a lift # (not necessarily good), if for
each i 2 f1; 2g the quasimap Qi satisfies the stability condition that !log;Ci ˝�

�
i .L#/

"

is ample on every fiber of Ci , then after possibly replacing R with a cover ramified
at 0, the isomorphism of Q1 with Q2 over � extends to an isomorphism over all of R .

Proof The proof is similar to that in [38; 16], but with additional complications arising
from the difference between � and G .

If C1 and C2 are the coarse underlying curves of C1 and C2 , respectively, then
semistable reduction (see [28, Proposition 3.48]) guarantees that, after possibly replac-
ing R with a cover ramified over 0, there is a prestable, k–pointed curve C; y1; : : : ; yk
over �DSpec.R/ and dominant morphisms �1W C!C1 and �2W C!C2 compatible
with the sections and such that each �i is an isomorphism away from the nodes of the
central fibers .Ci /0 .

The description of the universal deformation of twisted nodal curves in Remark 1.11
of [40] shows that one can define an orbicurve C with coarse underlying space C , and
C is compatible with the maps �i ; that is, we have dominant maps z�i W C ! Ci such
that the diagrams

C

��

z�i
// Ci

��

C
�i
// Ci

commute for i 2 f1; 2g, and the maps z�i are isomorphisms except possibly at the
nodes of the central fibers .Ci /0 .

Pulling back Q1 and Q2 to C gives prestable LG quasimaps on C that are isomorphic
over the generic fiber. For each i 2 f1; 2g let Bi denote the base locus in C of Qi . Let
U D C XB1 [B2 . The maps �i induce maps x�i W V!log;C jU ! ŒV==�G�. These maps
agree on the generic fiber, and the target ŒV==�G� is separated, so x�1 D x�2 on U. The
isomorphism f�W P1!P2 (which is �–equivariant over C� ) must, therefore, extend
to an isomorphism f over C� [U in such a way that it is G–equivariant over V!log;C .

The question now is whether the G–equivariant morphism f W P1!P2 over V!log;C

defines a �–equivariant morphism over C� [U. For any p 2P1 over the special fiber
and for any r 2C�R , there is a �–valued point zp of P1 which specializes to p . Since
f is �–equivariant over the generic fibers, we have

f .r zp�/D rf . zp�/:

And since the space P2 is separated, we must have

f .r zp/D rf . zp/;
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and hence f .rp/D rf .p/. Therefore, f is �–equivariant and defines an isomorphism
P1!P2 of principal �–bundles over C� [U.

Since the base loci Bi are disjoint from all nodes, the isomorphism is defined every-
where but a finite collection of (unorbifolded) points .B1 [B2/\ C0 in the central
fiber C0 , and by Hartogs’ theorem it must extend to all of C . Therefore, we may
assume that on C the bundles Pi are isomorphic and the maps �i are identified by
that isomorphism.

The morphisms z�i must contract precisely those components of the special fiber C0 for
which !log;C˝�

�.L#/
" is not ample. But this condition depends only on P and � , so

the same components are contracted for each i , and the isomorphisms .C1/�! .C2/�

and .P1/�! .P2/� extend to isomorphisms C1! C2 and P1!P2 , which gives
the isomorphism Q1 ŠQ2 .

5.4 Properness

Theorem 5.4.1 If Z==�G � V==�G is projective, then for every good lift # of � ,
every pair g and k , every ˇ 2 Hom.y�;Q/ and every ", the stack LGQ";#

g;k
.Z� ; ˇ/ (or

LGQ0C
g;k
.Z� ; ˇ/, with any lift) is proper (over Spec.C/).

Proof To begin, note that Z==�G is always projective over Z=affG and it is projective
(over Spec.C/) if and only if Z=affGDSpec.C/. And thus Z==�G is projective implies
that Z==#� is projective as well (but the Artin stack ŒZ==#�� need not be separated).

To prove properness of the stack LGQ";#
g;k
.Z� ; ˇ/, we use the valuative criterion. If �

is the spectrum of a complete discrete valuation ring with generic point � and special
point 0, assume we have a k–pointed, genus-g , "–stable LG quasimap Q�

(17) C� V!log;C�  P�
��
�!Z

over the generic fiber. After possibly shrinking � and making a base change ramified
only over 0, we may assume that the basepoints of Q� are sections bi W �! C� , with
i 2 f1; : : : ; mg, and that the lengths `.bi / are constant. We may also assume that the
generic fiber C� is smooth and irreducible. Let C�! � be the coarse underlying curve
of C� with corresponding sections xy1; : : : ; xyk , and xb1; : : : ; xbm .

The first step of the proof is to choose a suitable open set U 0 � C� , where the LG
quasimap is sufficiently well behaved that we can extend it to most of the central fiber.
Gluing this to the original LG quasimap and using Hartogs’ theorem will allow us to
extend this to an LG quasimap on the entire curve. For any semistable curve extending
C� to all of �, we also choose a section � of the log-canonical bundle on a coarse,
stable model (or on a special semistable model if 2g� 2C k � 0).
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We choose
U 0 D C� X fc1; : : : ; cn; b1; : : : ; bmg;

where the c1; : : : cn are sections of C� chosen as follows.

If C� with sections y1; : : : ; yk; b1; : : : ; bm is not stable as a pointed curve, then the
genus g of C� satisfies 2g�2CkCm� 0. If 2g�2CkCmD 0, then either kD 2
and !log;C� is trivial, or m > 0, and !log;C� is trivial on C� X fb1; : : : ; bmg. Letting
zC !� be any semistable curve over � whose coarse generic fiber agrees with C� ,

then repeatedly contracting all the �1–curves in the special fiber will give a new
(unorbifolded) curve C with no �1–curves in the special fiber. Every component of
this new curve C will either have genus 1 with no marked points, or have genus 0 with
two marked points or nodes, in either case, every component has a trivial log-canonical
bundle. In this case we take no additional sections (that is, nD 0), and we fix a section
� W C ! V!log;C .

Similarly, if 2g� 2C kCm< 0 and mD 1, then g D k D 0. Taking any semistable
curve over � whose coarse generic fiber agrees with C� and repeatedly contract-
ing �1–curves not containing b1 gives a curve C with only one component in the
special fiber, and it must contain the point b1 . The log-canonical bundle is trivial
over C X fb1g. Again, take no additional sections (that is, nD 0), and fix a section
� W C X fb1g ! V!log;C .

If 2g � 2C k Cm < 0 and m D 0, then g D 0, and 0 � k � 1. Choose c1 to be
any section that is disjoint from the section y1 (or let c1 be any section if k D 0). If
zC !� is any semistable curve (pointed with c1 and with y1 if k D 1) over � whose

coarse generic fiber agrees with C� , then repeatedly contracting all the �1–curves
in the special fiber (relative to both the y1 and c1 ) will give a new (unorbifolded)
curve C with no �1–curves in the special fiber. This new curve C will have trivial
log-canonical bundle. Fix a section � W C ! V!log;C .

Finally, consider the case where C� with sections y1; : : : ; yk; b1; : : : ; bm is a stable
curve. Since the stack of stable curves is proper, there is a unique family of genus-g ,
kCm–pointed stable curves C!� extending C�! �. We also denote by xy1; : : : ; xyk
and xb1; : : : ; xbm the extensions to C of the corresponding (coarse) sections of C� .

If the log-canonical bundle !log;C is trivial over C X fxb1; : : : ; xbmg, then we need no
additional sections, so nD 0.

If !log;C is not trivial over C X fxb1; : : : ; xbmg, we may choose a finite set of sections
xc1; : : : xcn of C !�, disjoint from the marks xyi and the basepoints xbi , such that the
corresponding C�–bundle V!log;C is trivial on the complement

U D C X fxc1; : : : ; xcn; xb1; : : : ; xbmg:
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Let c1; : : : ; cn be the corresponding sections of C� and let � W U ! V!log;C be a section
of the log-canonical bundle.

Now that we have chosen the c1; : : : ; cn in every case, we set

U 0 D C� X fc1; : : : ; cn; b1; : : : ; bmg:

Over U 0 the morphism ��W P� ! Z has no basepoints, so its image lies entirely
in Zss

G.�/, and it corresponds to a morphism x� 0W V!log;C jU 0 ! Z� . Composing with
� W U 0! V!log;C jU 0 gives a morphism ˛0 D x� 0 ı � W U 0!Z� .

The quotient Z� is Deligne–Mumford with a projective coarse moduli space, so by [10,
Lemma 2.5] there is a unique orbicurve zC� constructed from C� by possibly adding
additional orbifold structure at the points of C� XU

0
� D fb1; : : : ; bm; c1; : : : cng, and

a unique representable morphism ˛�W zC� ! Z� such that ˛�jU 0� D ˛
0. The stability

conditions on the generic fiber imply that the morphism ˛� is a balanced twisted stable
.kCmCn/–pointed map to Z� . By [1, Theorem 1.4.1] or [9, Theorem A], the stack
K bal
g;kCmCn

.Z� / of such maps is proper, so ˛� extends uniquely to a balanced twisted
.kCmCn/–pointed stable map ˛W zC !Z� .

If "¤ 0C, we have a good lift # , and there is an obvious morphism pW Z�! ŒZ==#��,
given by sending any T  Q

f
�!Z to

T  Q�G �
Qf
�!Z;

where Qf .q; 
/ D 
f .q/. Composing with ˛ , we have p ı ˛W zC ! ŒZ==#��. It is
straightforward to see that

(18) degC�
��L# � degC�

.p ı˛/�L# D
X
b2C

`.b/:

As in [16, 7.1.6], for each subcurve D of the special fiber of zC we define

deg.D;L#/D degD..p ı˛/
�L#/C

X
bi\D¤∅

`.bi /:

For each �1–curve D of the special fiber zC0 (ie an irreducible, rational component
that does not contain any of the marked points yi and only intersects the rest of the
special fiber in one point z ), we contract this �1–curve if and only if

(19) deg.D;L#/�
1

"
:

Repeat this process until there are no �1–curves satisfying (19). If "D 0C then we
just contract all �1–curves. We call the contracted curve yC . Denote the set of all the
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resulting points on yC by fz1; : : : ; zsg. For each zi , denote by ‰i the tree of rational
curves in zC that was contracted to zi . Let

yU D yC X fb1; : : : ; bm; c1; : : : ; cn; z1; : : : ; zsg;

Note that the generic fiber of yC is not the same as the original generic fiber C�
because yC may have additional orbifold structure at the points fb1; : : : ; bm; c1; : : : cng.
Nevertheless, these are equal on the open set yU \C� .

Let %W yC ! C be the natural map to the coarse underlying curve C of yC . Forgetting
the orbifold structure of yC at all the sections b1; : : : ; bm; c1; : : : ; cn gives a unique
(balanced, prestable) orbicurve C over � with coarse underlying curve C , with orbifold
structure matching C� on the generic fiber and with orbifold structure at the nodes of
the central fiber matching yC . From now on we will think of yU as an open subset of C

rather than of yC .

If the generic fiber C� with its sections y1; : : : ; yk; b1; : : : ; bm is stable, then let
f W C !C be the obvious contraction to the (coarse) stable model C of C . Otherwise,
let f W C ! C be the curve obtained by repeatedly contracting all rational curves that
do not contain any marked points yi , basepoints bi , or additional sections ci .

We now use the pullback of the trivialization � along f ı% to construct a trivialization
of V!log;C over yU .

First note that the log-canonical bundles !log satisfy the following two properties:

(I) For any prestable curve f W C!C with sections y1; : : : ;yk lying over xy1; : : : ; xyk ,
with generic fiber C� and no rational tails (with respect to the marks y1; : : : ;yk )
in the central fiber, we have

!log;C D f
�.!log;C /:

(II) For any pointed prestable orbicurve C ;y1; : : : ;yk with the map to its coarse
underlying curve C;y1; : : : ;yk denoted by %W C ! C , we have

%�.!log;C /D !log;C :

Except on uncontracted �1–trees of the central fiber, we have %�f �. V!log;C /D V!log;C ,
so in this case pulling back the trivialization � along f ı % immediately gives a
trivialization of V!log;C .

For each �1–tree ‰ of the central fiber, there is a neighborhood N of ‰ in C which
is the result of a sequence of successive blowups of points of ‰ . For each blowup, let
x be a local coordinate of the curve before blowing up (so the curve is locally of the
form SpecRŒŒx��). Removing the section x D 0, we can trivialize the log-canonical

Geometry & Topology, Volume 22 (2018)



282 Huijun Fan, Tyler J Jarvis and Yongbin Ruan

bundle (before blowing up) by dx=x 7! 12O . Removing the strict transform of xD 0
from the blowup, we have that !log;C is again trivialized by dx=x 7! 1. Repeat this
process for each blowup and for each �1–tree, and denote the sections removed (the
strict transform of each x D 0) by fd1; : : : ; dtg. We abuse notation and redefine yU to
be

yU D yC X fb1; : : : ; bm; c1; : : : ; cn; z1; : : : ; zs; d1; : : : ; dtg:

Combining the local trivialization with the pullback of � , we have now constructed a
trivialization of V!log;C on all of yU .

Let yU  Q!Zss
G.�/ be the principal G–bundle on yU corresponding to the morphism

˛W yU !Z� . The space zP DQ�G � is a principal �–bundle over yU with a natural
morphism i W Q! zP (given by sending a point with local coordinate .u; g/ 2 yU �G
to the point with local coordinate ..u; g/; 1/ 2 . yU �G/�G � ), and we may construct
a corresponding �–equivariant morphism z� W zP!Zss

G.�/ (by sending points of the
form i.q/ 2 zP to ˛.q/ and extending �–equivariantly to the rest of zP ).

Denote by bi;0 , ci;0 and di;0 be the intersection of the sections bi , ci and di , re-
spectively, with the central fiber C0 of C . The bundles and morphisms P� and
�� and zP and z� agree on the intersection C� \ yU , so they glue together to give a
principal �–bundle P and a morphism � W P!Z defined on the open set C� [ zU D

C X fb1;0; : : : ; bm;0; c1;0; : : : ; cn;0; z1; : : : ; zs; d1;0; : : : ; dt;0g.

By [16, Lemma 4.3.2], the principal �–bundle P extends from C� [ yU to all of C .
We also denote this extension by P . By Hartogs’ theorem, the morphism � W P!Z

extends uniquely over all of C .

Over zU we have ��W P 0!C� � zU, and we may combine this with the trivialization

%�f �� W C� � zU ! V!log;C j zU :

By construction this composition agrees with the LG quasimap structure P�! V!log;C

on C� \ zU, so these glue together to give a morphism P! V!log;C on all of C� [ yU.
Again, by Hartogs’ theorem this morphism extends uniquely to a morphism over all
of C . Thus we have constructed a family Q of prestable LG quasimaps

� C  V!log;C  P �
�!Z

whose generic fiber is the stable LG quasimap (17). It remains to show that the central
fiber of Q is "–stable.

The rest of the proof is very similar to the corresponding part of the proof of [16,
Theorem 7.1.6], but we include a sketch here for completeness. Let ‰1; : : : ; ‰s be the
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�1–trees in zC0 that were contracted (and the resulting points in the special fiber of C0
are z1; : : : ; zs ). The analog of (18) for the special fiber gives

degC0
��L# D deg zC0.p ı˛/

�L# C

sX
iD1

`.zi /C
X

b2C0;b 62fz1;:::;zsg

`.b/:

The degree of ��L# is constant in the fibers, and combining this with semicontinuity
of ` and using the previous equation we obtain, for each basepoint bi ,

`.bi;0/D `.bi /�
1

"

and similarly, for each contracted �1–tree ‰j we have

`.zj /D deg..p ı˛/�L# j‰j /C
X
b2‰j

`.b/D deg.‰j ;L#/�
1

"
:

Finally we verify that the ampleness criterion holds. First, any uncontracted �1–curve
D must have degD.�

�L#/ >
1
"

by construction, hence !log;C ˝�
�L "
#

is ample on D .

Second, for any component D with degD !log;C D 0, if D contains a # –basepoint,
we must have degD �

�L# > 0 by Proposition 5.1.1. If there are no # –basepoints of
� on D , then since # is a lift of � there must be no � basepoints on D , and D lies
entirely in yU, and so on D the bundle ��.L#/ is equal to ˛�.L� / (see Remark 4.2.7).
In that case, ˛W zC !Z� is a stable map that does not contract the component D , so
��.L#/D ˛

�.L� / is ample on the component D .

6 The virtual cycle

In this section, we construct the virtual cycle for the case where all insertions are
of compact type (see Definition 4.1.4). To do this, we use the cosection localization
techniques of Kiem and Li [32] as applied in [6; 7]. To use the cosection technique
we need a relative perfect obstruction theory for QD LGQ";#

g;k
.ŒX� �; ˇ/ over M and a

cosection
ObsQ! O

whose degeneracy locus is LGQ";#
g;k
.CR� ; ˇ/�Q .

6.1 Cosection and virtual cycle

As shown in Theorem 5.2.3, if P! C is the universal principal �–bundle on the uni-
versal curve � W C !Q and E DP�� V , then the map QDLGQ";#

g;k
.ŒV==�G�; ˇ/!A
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is representable and has a relative perfect obstruction theory

�Q=AW LQ=A! EQ=A DR
���E ;

where A D Ag;k is the smooth Artin stack of principal �–bundles P on twisted,
k–pointed, genus-g prestable curves C with an isomorphism ��P ! V!log;C to the
(punctured) log-canonical bundle such that the corresponding morphism C ! B� is
representable.

We wish to define a cosection, that is, a homomorphism ObsQ ! OQ from the ob-
structions of Q over the stack of prestable curves. To do this, we will proceed in
several steps. First we define a relative cosection ıW ObsQ=ADR

1��E !OQ from the
relative obstruction space over A. We then show this also induces a relative cosection
ObsQ=Mg;k

! OQ . Finally we show that this induces a cosection ObsQ! OQ .

To begin, note that the superpotential W W V ! C is equivariant with respect to the
homomorphism �W �!C�, so for any LG quasimap .C ; y1; : : : ; y;P; �; ~/ the map
W defines a morphism of vector bundles W W E DP �� V ! V!log;C �C� C D !log;C .
Differentiating along the section � gives another morphism of vector bundles

dW� W T E j� ! T!log;C j� :

But we have canonical isomorphisms T E j� Š E and T!log;C j� Š !log;C , so this gives
a map

(20) dW� W E ! !log;C :

Lemma 6.1.1 For any LG quasimap Q D .C ; y1; : : : ; yk;P; �; ~/ into ŒV==�G�, if
evi .Q/ lies in a compact substack of X�;g , then the map dW� W E ! !log;C factors
through the obvious inclusion !log;C .�yi /� !log;C .

In particular, if all the marked points are narrow, then dW� factors through the canonical
inclusion �W !C ! !log;C .

Proof To prove that dW� factors through !log;C .�yi / � !log;C is a local problem,
so it suffices to show that the map dW j�.yi /W V !C vanishes.

Assume that evi .Q/ lies in a compact substack of X�;g D ŒV
ss;g==�ZG.g/�, where

V ss;g is the fixed point locus of g in V ss . In particular, �.yi / 2 V ss;g.

As observed in Section 4.1, g must have finite order, and since we are in characteristic
zero, g must be semisimple. Choose coordinates x1; : : : ; xN on V to diagonalize g .
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We may assume that for some k the coordinates x1; : : : ; xk are fixed by g , while
xkC1; : : : ; xN are not fixed by g . Therefore

V ss;g
D fxkC1 D xkC2 D � � � D xN D 0g\V

ss:

If W jV ss;g is not zero, then it defines a polynomial on V ss;g. But the G–invariance of
W implies that W defines a function on X�;ŒŒg�� D ŒV

ss;g=ZG.g/�. And since X�;ŒŒg��

is compact, this function must be constant, hence W jV ss;g is constant.

Since W jV ss;g is constant, every monomial of W is either constant or contains at least
one xj for some j >k . Since W is G–invariant, every monomial that contains such an
xj must also contain another xl for l > k (otherwise the monomial is not fixed by 
 ).
Therefore every monomial in each partial derivative @W=@xi must also contain at least
one xj for j > k , and hence each @W=@xi and also dW must vanish on V ss;g.

We can now define the homomorphism ıW R1��E D ObsQ=A! OQ in any situation
where dW� factors through the canonical inclusion �W !C ! !log;C .

Definition 6.1.2 If dW� factors through the canonical inclusion �W !C ! !log;C , let
ıW E ! !C be the homomorphism corresponding to that factorization:

E

ı ##

dW�
// !log;C

!C

� ?

�

OO

By Serre duality, we have ı 2 Hom.E ; !C / Š H 0.C ; E _ ˝ !C / Š H 1.C ; E /_,
hence ı defines a homomorphism H 1.C ; E /! OC , and on the stack Q we have
ıW R1��E ! OQ , as desired.

Proposition 6.1.3 If evi .Q/ lies in either a narrow sector X�;g or a compact substack
of X�;g in the broad case, then the degeneracy locus of ı (the locus on Q where ı
vanishes) is precisely the closed substack LGQ";#

g;k
.CR� ; ˇ/�Q .

Proof The hypothesis guarantees that dW� factors through the canonical inclusion
�W !C ! !log;C , and hence that ı is defined. The stack LGQ";#

g;k
.CR� ; ˇ/ embeds in

Q as the locus where the image of � lies in Crit.W /, and this is, by definition, the
locus where dW� vanishes. Since dW� D � ı ı and � is injective, this is precisely the
locus where ı vanishes.

Next we show that ı induces a relative cosection ObsQ=Mg;k
!OQ by generalizing the

arguments of [17, Section 3.3]. To reduce clutter in our notation, we write MDMg;k

and continue to use A to denote Ag;k and Q to denote LGQ";#
g;k
.ŒV==�G�; ˇ/.
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Lemma 6.1.4 The homomorphism ıW ObsQ=A ! OQ induces a homomorphism
ObsQ=M! OQ (which we also denote by ı ).

Proof If pW Q!A is the obvious forgetful morphism, then we have the deformation
exact sequence

TA=M
�
�!ObsQ=A! ObsQ=M! 0:

So to verify that the cosection ı induces a cosection ObsQ=M! OQ , we must verify
that ı ı � D 0.

As we saw in the proof of Lemma 5.2.2, at any point AD .C ; y1; : : : ; yk;P! V!log;C /

of A the deformation space TA=M at A is H 1.C ;P��g/, where g is the Lie algebra of
G with the adjoint action of � . Let eW P��g!P��V DE ŠT E j� be given by send-
ing .z; ˛/2P��g to .z; ˛�.z//. Since W is G–invariant, we have that dW j� ıeD0,
hence ııeD0. Fiberwise, over any point .C ; y1; : : : ; yk;P! V!log;C ; � W P!V /2Q ,
the map � is just h1.e/, and hence ı ı � D 0. Thus ıW ObsQ=A ! OQ induces a
homomorphism from the cokernel ObsQ=M of � to OQ .

Finally, to apply the general theory of Kiem and Li [32], we must show that the relative
cosection ıW ObsQ=A! OQ induces an absolute cosection ObsQ! OQ , where ObsQ

is the absolute obstruction bundle, defined as the cokernel of a homomorphism � as
described below.

We have a distinguished triangle

p�LA! LQ! LQ=A
@
�!p�LA=MŒ1�:

Composing the dual @_ of the connecting homomorphism and the map �Q=A gives

�Q=A ı @
_
W p�TA! EQ=AŒ1�

and hence a map

�D h0.�Q=A ı @
_/W H 0.p�TA/! ObsQ=A :

We define ObsQ to be the cokernel of �.

To extend ıW ObsQ=A! OQ to ObsQ=Mg;k
, we must verify that ı ı �D 0. Because

� factors through H 1.TQ=A/ ! ObsQ=A , the vanishing of ı ı � follows from the
following lemma.

Lemma 6.1.5 If .CQ;P! V!log;C ; �/ denotes the universal LG quasimap structure
on Q and E is the sheaf of sections of the vector bundle P�� V , then the composition

(21) H 1.TQ=A/! ObsQ=A DR
1��E

ı
�!R1��!CQ D OQ

is zero.
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Proof The proof is very similar to the proofs of [6, Lemma 3.6] and [17, Lemma 3.4.4].
We sketch the proof here and refer the reader to [6; 17] for more details. Let !CA=A be
the relative dualizing sheaf of the universal curve CA over A, and let Vb.!CA=A/ denote
its corresponding vector bundle. Let Q D C.��!CA=A/ be the direct image cone of
!CA=A parametrizing global sections of !CA=A on curves in A (see [6, Definition 2.1]),
and let CQ be the universal curve over Q . Composing the function W with the section
� W CQ ! E defines a section " D W ı � 2 H 0.CQ; !CQ/, and hence a morphism
Q!Q . Denote by ẑ "W CQ! CQ the morphism of curves induced by (lifting) ˆ" .
This gives a commutative diagram

CQ

ˆ"

��

�
// Vb.E /

W
��

CQ
e0
// Vb.!CA=A/

where e0 is the tautological morphism. From this we see that the following diagram is
commutative:

��TQ=A

��

TC =CA

��

// ���_Vb.E /=CA

dW
��

�� ẑ�"TQ=A ẑ�
"TCQ=CA

// ẑ�
" e
0��_Vb.!CA=A

/=CA

Applying R1�� to the bottom right-hand arrow gives a homomorphism

H 1.ˆ�"TQ=A/!ˆ�"R
1�Q�!CQ=Q;

which vanishes because Q is a vector bundle over A and CQ is smooth over CA . As
described in [6, Equation (3.13)], this implies that the composition

H 1.TQ=A/!R1���
��_Vb.E /=CA

!R1���
�W ��_Vb.!CA=A

/=CA

is equal to the composition

H 1.TQ=A/!H 1.ˆ�"TQ=A/
0
�!ˆ�"R

1�Q�!CQ=Q;

and hence it vanishes. Using ��W ��_Vb.!CA=A
/=CA
D!CQ we see that the composition

(21) vanishes.

Now we can apply the general cosection localization theory of Kiem and Li [32] to
construct our virtual cycle.

Definition 6.1.6 Suppose that all the marked points have a narrow insertion or evi .Q/
lies in a compact substack of X�;g in the broad case, and that the cosection ı is defined

Geometry & Topology, Volume 22 (2018)



288 Huijun Fan, Tyler J Jarvis and Yongbin Ruan

as in Definition 6.1.2. The virtual cycle of the stack LGQ";#
g;k
.CR� ; ˇ/ is defined as

ŒLGQ";#
g;k
.CR� ; ˇ/�

vir
D ŒQ�vir

loc;

taken with respect to the cosection ı .

Lemma 6.1.7 ŒLGQ";#
g;k
.CR� ; ˇ/�

vir has virtual dimension

dimvir D

Z
ˇ

c1.V==�G/C .ycW;G � 3/.1�g/C k�
X
i

age.
i � q/:

Proof Cosection localization preserves the virtual dimension. Therefore, the virtual
dimension is the sum of the dimension of stack of �–bundle and the index of vector
bundle P �� V . Namely,

dimvir D 3g� 3C kC dim.G/gC c1.P �� V /�
X
i

age.
i /Cn.1�g/� dimG

D .n� dim.G/� 3/.1�g/C kC c1.P �� det.V //�
X
i

age.
i /:

Note that P �� det.V / is defined by a �–character. We choose its zero lift 1det.V /
and define Z

ˇ

c1.V==�G/D c1. 1det.V //:

By taking a higher multiple if necessary, we can assume P �� det.V / is a G�C�R–
bundle, ie the tensor product of 1det.V / and a C�R–bundle det.V /R . The C�R–bundle
has the property

det.V /dR D !
P
i ci

log :

Hence,
c1.det.V /R/D q.2.g� 1/� k/:

We can put everything together to obtain

dimvir D

Z
ˇ

c1.V==�G/C .ycW;G � 3/.1�g/C k�
X
i

age.
i � q/:

6.2 Correlators

Definition 6.2.1 Suppose that ˛i 2HW;G;comp . We define correlator

h�l1.˛1/; : : : ; �lk .˛k/i D

Z
ŒLGQ";#

g;k
.CR� ;ˇ/�vir

Y
i

ev�i .˛i / 
li
i :

One can define the generating function in a standard fashion.
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These invariants satisfy the gluing axioms for nodes that are narrow. The argument is
standard and we leave it to the reader (see for example the proof of [7, Theorem 4.8]).
For insertions that are not narrow, but where the evaluation map factors through a
compact substack of X� , a form of the gluing axioms should also hold. We will treat
this in a future paper. We do not expect a forgetful morphism or string/dilaton equations
to hold, except in the chamber where "D1.

7 Examples

In this section we consider several more examples of the GLSM, including some
important examples studied by Witten [53]. We begin with some general considerations
about toric quotients.

7.1 Toric quotients

The hypersurface in Examples 3.2.15 and 4.3.1 is a special case of a toric quotient, that
is, where the group GD .C�/m is an algebraic torus. The geometric and combinatorial
properties of the polarization are encoded in the weights of the .C�/m–action. Let
B D .bij / be the gauge weight matrix, as described in Section 3.2.3. Note that some
bij could be negative, and hence the resulting quotient could be fail to be compact, but
we always assume that B is of maximal rank (ie rank m).

An important case is that of Calabi–Yau weights, where
P
j bij D 0 for all i . In this

case, the quotient ŒV==�G� is Calabi–Yau and cannot be compact. In fact, ŒV==�G� or
X

sympl
� is compact if and only if B�1.0/\Rn

�0D f0g, meaning that if b1; : : : ;bn are
the column vectors of B , then the only nonnegative solution ˛D .˛1; : : : ; ˛n/2 .R�0/n

to the linear equation
˛1b1C � � �C˛nbn D 0

is the zero solution (see [43, Section 2]). Note that this condition is entirely independent
of the phase (� or � ).

If the above condition fails, the quotient is not compact. However, one can choose a
maximal collection of column vectors of B with the property above. After possibly
reindexing, we may write Cn D CK �CM with variables x1; : : : ; xK ; p1; : : : ; pM
such that CK corresponds to the maximal collection of column vectors. In this case
the subset Œ.CK �f0g/==� .C

�/m�� ŒCn==� .C
�/m� is compact and depends on a choice

of phase (� or � ). This compact piece may be empty, but if it is not empty, we call it a
maximal compact piece. In general, there may be several maximal compact pieces.
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A particularly interesting case is when ŒCn==� .C
�/m� D Œ.CK �CM /==� .C

�/m� is a
toric vector bundle over the maximal compact piece Xbase D ŒCK==� .C

�/m�. Each
remaining variable pj defines a line bundle Fj !Xbase . Each corresponding column
vector bpj of B can be written as

bpj D ˛1;jbx1 C � � �C˛K;jbxn

for some choice of ˛i;j � 0. Letting Di be the toric divisor corresponding to bxi , we
have

c1.Fj /D

KX
iD1

˛ijDi ; or Fj D

KO
iD1

O.˛ijDi /:

A very important subclass of the toric examples consists of the so-called hybrid models.

Definition 7.1.1 For a torus G D .C�/m, a phase � of .W;G/ is called a hybrid
model if

(I) the quotient X� !Xbase has the structure of a toric bundle over a compact base
Xbase , and

(II) the C�R–weights of the base variables are all zero.

Both the geometric and the LG phases of the hypersurface in Example 3.2.15 were
hybrid models. Several examples of hybrid models have been worked out in detail by
E Clader [18].

7.2 Complete intersections

Suppose that G D C� and that we have several quasihomogeneous polynomials
F1; F2; : : : ; FM 2CŒx1; : : : ; xK � of G–degree .d1; : : : ; dM /, where each variable xi
has G–weight bi >0. We assume that the Fj intersect transversely in W P .b1; : : : ; bK/
and define a complete intersection. Let

W D
X
i

piFi W C
KCM

!C;

where we assign G–weight �di to pi . In the special case that
P
i bi D

P
j dj , the

complete intersection defined by F1 D � � � D FM D 0 is a Calabi–Yau orbifold in
W P .b1; : : : ; bK/. One can view this as a toric LG model for the complete intersection.
We do not assume the Calabi–Yau condition here.

The critical set of W is defined by the equations

(22) @pjW D Fj D 0; @xiW D
X
j

pj @xiFj D 0:
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The moment map is
�D

X
i

1
2
bi jxi j

2
�
1
2

X
j

dj jpj j
2:

7.2.1 Phases As with the hypersurface, there are two phases, � > 0 and � < 0.
When � > 0, any choice of p1; : : : pM determines a nontrivial ellipsoid E � CK

of points .x1; : : : ; xK/ such that .x1; : : : ; xK ; p1; : : : ; pM / lies in ��1.�/. Quoti-
enting by U.1/, the first projection pr1W E �CM ! E induces a map X

sympl
� !

Xbase DW P .b1; : : : ; bK/, corresponding to the maximal collection of column vectors
.b1; : : : ; bK/. The full quotient is X

sympl
� D

L
j O.�dj / over Xbase . Similarly, for

� < 0, the toric variety is
L
i O.�bi / over W P .d1; : : : ; dM /.

� >0 The chamber � >0 is called the geometric phase. Here we have .x1; : : : ; xK/¤
.0; : : : ; 0/. In this case, we can choose our C�R–action to have weights cxi D 0 and
cpj D 1, which gives a hybrid model, and the trivial lift #0 is a good lift of � . The
polynomial W has C�R–degree d D 1, and the element J is trivial, so � ŠG �C�R .
The critical locus is defined by (22). Since the Fi intersect transversely, the dFi are
linearly independent for .x1; : : : ; xK/¤ .0; : : : ; 0/. Therefore, all the pi vanish, and
the critical set is the complete intersection

fF1 D � � � D FM D 0g

in the zero section of X� !W P .b1; : : : ; bK/.

� < 0 The chamber � < 0 is called the LG phase. If we happen to have d1 D � � � D
dr D d , we may take cxi D bi ; cpj D 0, and we again have a hybrid model with good
lift #0 . In this hybrid model case, we have

J D

�
exp

�
2�i

c1

d

�
; : : : ; exp

�
2�i

cn

d

�
; 1; : : : ; 1

�
;

and we have

� D f..st/b1 ; : : : ; .st/bn ; s�d ; : : : ; s�d / j s; t 2C�g

D f.˛b1 ; : : : ; ˛bn ; ˇd ; : : : ; ˇd / j ˛; ˇ 2C�g

with
�.˛b1 ; : : : ; ˛bn ; ˇ; : : : ; ˇ/D ˛dˇ:

Again, the critical locus is defined by (22), but now we have .p1; : : : ; pr/¤ .0; : : : ; 0/.
This implies that .x1; : : : ; xK/D .0; : : : ; 0/. So the critical set is the zero section of the
corresponding quotient X� D

L
i O.�bi /!W P .d; : : : ; d /. Thus, for each choice of

.p1; : : : ; pn/ 2W P .d; : : : ; d /, we have a pure LG model of superpotential
P
i piFi .

One can view this as a family of pure LG theories.
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7.2.2 LG quasimaps into complete intersections Now assume that d1 D � � � D
dr D d . In the geometric phase, with the trivial lift #0 , the stack of LG quasimaps is

f.C ;L ; s1; : : : ; sK ; p1; : : : ; pr/ W si 2H
0.C ;L /; pj 2H

0.C ;L �d ˝!log;C /g

satisfying the stability condition. We obtain a theory similar to that of the geometric
phase of the hypersurface in Example 4.3.1 and the corresponding p–field theory.

At the LG phase with "D1, with the trivial lift #0 , the moduli space consists of

� D .p1; : : : ; pr/W C !W P r�1.d; d; : : : ; d /;

where W P r�1.d; d; : : : ; d / is weighted projective space, corresponding to usual (un-
weighted) projective space with an order-d gerbe, and L �d ˝ !log;C Š ��O.1/.
Similar to FJRW theory, we have the condition

L d
Š !log;C ˝ �

�O.�1/:

This is the hybrid theory constructed by Clader [18].

Remark 7.2.1 When the Fj have different degrees dj , there is generally no good lift.
Moreover, the sections pj 2H 0.C ;L �dj ˝!log;C / are sections of different bundles,
so we do not have a simple stable map description as before. Physicists have referred
to this case as a pseudohybrid model [4]. We will come back to this on a different
occasion.

7.3 Hypersurface in a product

The previous examples all have a one-dimensional parameter space for � . We now
give an example of multiparameter model, namely a hypersurface of bidegree .b; b0/
in a product of weighted projective spaces

W P .b1; : : : ; bK/�W P .b01; : : : ; b
0
M /:

Consider the action of C� on CK with positive weights .b1; : : : ; bK/ and let z1; : : : ; zK
be the coordinates on CK. Its quotient is weighted projective space W P .b1; : : : ; bK/.
Consider another weighted projective space given by a different C� acting on CM with
weights .b01; : : : ; b

0
M /, and let w1; : : : ; wM be the coordinates on CM. We combine

these by setting G DC� �C� and letting G act on CKCM �C with weights�
b1 � � � bK 0 � � � 0 �b

0 � � � 0 b01 � � � b
0
M �b

0

�
:

That is, if the last factor C has coordinate p , then p has bidegree .b;�b0/.
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Let F be any bihomogeneous polynomial in CŒz1; : : : ; zK � ˝ CŒw1; : : : ; wM � of
bidegree .b; b0/ that is nondegenerate, in the sense that if

@F

@zi
D 0D

@F

@wj
for all i 2 f1; : : : ; Kg and j 2 f1; : : : ;M g;

then either z1 D � � � D zK D 0 or w1 D � � � D wM D 0. As in Example 3.2.15 let

W D pF;

so that W is G–invariant. The critical locus of W is�
p
@F

@zi
D 0; p

@F

@wj
D 0; F D 0

�
:

The moment map �W CKCM �C! u.1/˚ u.1/DR2 is

�1 D
1

2

�X
i

bi jzi j
2
� bjpj2

�
; �2 D

1

2

�X
j

b0j jwj j
2
� b0jpj2

�
:

The critical loci are

(i) fz1 D � � � D zK D 0; p D 0g;

(ii) fw1 D � � � D wM D 0; p D 0g;

(iii) fz1 D � � � D zK D w1 D � � � D wM D 0g.

The corresponding critical values are

(i) �1 D 0, �2 � 0;

(ii) �2 D 0, �1 � 0;

(iii) �1; �2 < 0, �1=b D �2=b0 .

These divide R2 into three phases.

�1; �2 > 0 In this phase we have .z1; : : : ; zK/ ¤ .0; : : : ; 0/ and .w1; : : : ; wM / ¤
.0; : : : ; 0/. The maximal collection is�

b1 � � � bK 0 � � � 0

0 � � � 0 b01 � � � b
0
M

�
The quotient can be expressed as the total space of the line bundle

O1.�b/˝O2.�b
0/DKW P.b1;:::;bK/˝KW P.b01;:::;b

0
M /

of bidegree .�b;�b0/ over W P .b1; : : : ; bK/�W P .b01; : : : ; b
0
M /.

In the GIT formulation, let L� have a generating section `, and let � have G–weights
.�e;�e0/ with e; e0 > 0. Any G–invariant section of L� is given by a polynomial in
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the zi and `, and can be written as a sum of G–invariant monomials in the zi and `,
so to find the unstable and semistable points it suffices to consider only the G–invariant
monomials of the form

KY
iD1

z
ai
i

MY
jD1

z
a0
j

KCj `
k :

Since both e and e0 are positive, any G–invariant monomial must have at least one ai
and at least one a0j not vanishing. This implies that the locus fz1D z2D � � � D zKCM g
is unstable. But any monomial of the form zei w

e0

j ` will be G–invariant and will vanish
only on the locus zi D wj D 0. Letting i and j range over all possible values shows
that every point that is not in fz1 D z2 D � � � D zKCM g is semistable.

Choose C�R to have weights .0; : : : ; 0; 1/, so that W has C�R–weight 1. Let #0 be the
lift of � with C�R–weight 0. Every monomial of the form zei w

e0

j ` is also C�R–invariant,
so #0 is a good lift of � .

The semistable points of the critical locus of W are given by the equations

p D 0; F D 0;

which is the hypersurface defined by the vanishing of F in the image of the zero section
of O1.�b/˝O2.�b

0/!W P .b1; : : : ; bK/�W P .b01; : : : ; b
0
M /. This is the geometric

phase.

�2 < 0, �1=b > �2=b
0 In this phase a similar analysis implies .z1; : : : ; zK/ ¤

.0; : : : ; 0/ and p ¤ 0.

The maximal collection is �
b1 � � � bK �b

0 � � � 0 �b0

�
We can quotient by .C�/2 , but since the two actions on zKCMC1 intertwine, we
do not obtain W P .b1; : : : ; bK/ � BZb . Instead, we obtain a nontrivial gerbe over
W P .b1; : : : ; bK/.

To be more specific, dividing by the first copy of C�, we obtain

O1.�b/!W P .b1; : : : ; bK/;

where O1.1/ is the standard C�–bundle associated with the first C� . Then, we quotient
out the second C� . We obtain a nontrivial BZb0 –bundle over W P .b1; : : : ; bK/, called
a gerbe. We denote it by W P .b1; : : : ; bK/�b=b

0

. Our quotient is the total space ofL
i O2.�b

0
i /.

We choose the C�R–action in this phase to have weights .0; : : : ; 0; b01; : : : ; b
0
M ; 0/.

Again, the lift #0 is a good lift of � .
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The semistable points of the critical locus are those with w1 D � � � D wM D 0 D F,
so this phase gives us a mixture of LG and geometric phases with the w–directions
corresponding to an LG model and the z–directions corresponding to a geometric
model.

�1 < 0, �1=b < �2=b
0 The analysis for this phase is similar to the previous one

and yields a different mixture of LG and geometric phase with the z–directions now
corresponding to an LG model and the w–directions corresponding to a geometric
model.

7.4 Nonabelian examples

The subject of gauged linear sigma models for nonabelian groups is a very active area of
research in physics and is far from complete. Here, we discuss the example of complete
intersection of Grassmannian varieties. One should be able to discuss everything in
the setting of complete intersections of quiver varieties, although the details have not
been worked out. It would be very interesting to explore mirror symmetry among
Calabi–Yau complete intersections in quiver varieties.

7.4.1 Complete intersection in a Grassmannian Consider a complete intersection
in the Grassmannian Gr.k; n/. The space Gr.k; n/ can be constructed as the GIT
quotient Mk;n==GL.k;C/, where Mk;n is the space of k �n matrices and GL.k;C/
acts as matrix multiplication on the left.

The Grassmannian Gr.k; n/ can also be embedded into PK for K D nŠ=kŠ.n� k/Š�1
by the Plücker embedding

A 7! . : : : ; det.Ai1;:::;ik /; : : : /;

where Ai1;:::;ik is the k � k submatrix of A consisting of the columns i1; : : : ; ik .

The group G DGL.k;C/ acts on the Plücker coordinates Bi1;:::;ik .A/D det.Ai1;:::;ik /
by the determinant, that is, for any U 2G , and A 2Mk;n we have

Bi1;:::;ik .UA/D det.U /Bi1;:::;ik .A/;

Let F1; : : : ; Fs 2CŒB1;:::;k; : : : ; Bn�kC1;:::;n� be degree-dj homogeneous polynomials
such that the zero loci ZFj D fFj D 0g and the Plücker embedding of Gr.k; n/ all
intersect transversely in PK. We let

Zd1;:::;ds D Gr.k; n/\
\
j

ZFj

denote the corresponding complete intersection.
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The analysis of Zd1;:::;ds is similar to the abelian case. Namely, let

W D
X
j

pjFj W Mk;n �Cs
!C

be the superpotential. We assign an action of GDGL.k;C/ on pj by pj!det.U /�dj .

The phase structure is similar to that of a complete intersection in projective space. The
moment map is given by �.A; p1; : : : ; ps/D 1

2

�
A NAT �

Ps
iD1 di jpi j

2
�
. Alternatively,

to construct a linearization for GIT, the only characters of GL.k;C/ are powers of the
determinant, so �.U /D det.U /�e for some e , and � will be positive precisely when
e is positive.

Let ` be a generator of CŒL�� over CŒV ��. Any element of H 0.V;L� / can be written
as a sum of monomials in the Plücker coordinates Bi1;:::;ik and the pj times `. Any
U 2G will act on a monomial of the form

Q
Bbi1;:::;iki1;:::;ik

Q
p
aj
j `m by multiplication by

det.U /
P
bi1;:::;ik�

P
djaj�me .

e > 0 In order to be G–invariant, a monomial must have
P
bi1;:::;ik > 0, which

implies that any point with every Bi1;:::;ik D 0 must be unstable, but for each m> 0
and each k–tuple .i1; : : : ; ik/ the monomial Bmei1;:::;ik`

m is G–invariant, so every point
with at least one nonzero Bi1;:::;ik must be � –semistable. Thus ŒV==�G� is isomorphic
to the bundle

L
j O.�dj / over Gr.k; n/.

Furthermore, W is quasihomogeneous of degree 1 with respect to the compatible
C�R–action

�.A; p1; : : : ; ps/D .A; �p1; : : : ; �ps/:

The trivial lift #0 is a good lift because each monomial of the form Bmei1;:::;ik`
m is

�–invariant for the action induced by #0 .

As in Section 7.2, the critical locus in this phase is given by p1 D � � � D ps D 0 D
F1 D � � � D Fs , so we recover the complete intersection F1 D � � � D Fs in Gr.k; n/.

As in the toric case, we call this phase the geometric phase.

e < 0 We call the case where e < 0 the LG phase. In this case, in order to be
G–invariant a monomial

Q
Bbi1;:::;iki1;:::;ik

Q
p
aj
j `m must have

P
aj > 0, which implies

that any point with every pj D 0 must be unstable, but for each m > 0 and each
j the monomial pmej `mdj is G–invariant, so every point with at least one nonzero
pj is � –semistable. Therefore V ss

G .�/ D Mk;n � .C
s X f0g/. Again, since the Fj

and the image of the Plücker embedding are transverse, the equations @Bi1;:::;ikW DP
j pj @Bi1;:::;ik

Fj D 0 imply that the critical locus is
��
f0g � .Cs X f0g/

�
=GL.k;C/

�
inside ŒV==�G�D

��
Mk;n � .C

s X f0g/
�
=GL.k;C/

�
. This phase does not immediately
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fit into our theory because we have an infinite stabilizer SL.k;C/ for any points of the
form .0; p1; : : : ; ps/. This means that the quotient ŒV==�G� is an Artin stack.

Hori and Tong [30] have analyzed the gauged linear sigma model of the Calabi–Yau
complete intersection Z1;:::;1 � Gr.2; 7/ which is defined by seven linear equations in
the Plücker coordinates. They gave a physical derivation that its LG phase is equivalent
to the Gromov–Witten theory of the so-called Pfaffian variety

Pf
�V2C7

�
D
˚
A 2

V2C7
W A^A^AD 0

	
:

It is interesting to note that the Pfaffian Pf
�V2C7

�
is not a complete intersection. For

additional work on this example, see [46; 35; 31; 2]

7.4.2 Complete intersections in a flag variety Another class of interesting examples
is that of complete intersections in partial flag varieties. The partial flag variety
Flag.d1; : : : ; dk/ parametrizes the space of partial flags

0� V1 � � � �Vi � � � �Vk DCn

such that dimVi D di . The combinatorial structure of the equivariant cohomology of
Flag.d1; : : : ; dk/ is a very interesting subject in its own right.

For our purposes, Flag.d1; : : : ; dk/ can be constructed as a GIT or symplectic quotient
of the vector space

k�1Y
iD1

Mdi ;diC1

by the group

G D

k�1Y
iD1

GL.di ;C/:

The moment map sends the element .A1; : : : ; Ak�1/ 2
Qk�1
iD1 Mi;iC1 to the element

1
2
.A1 NA

T
1 ; : : : ; Ak�1

NAT
k�1

/ 2
Qk�1
iD1 u.di /.

Let �i be the character of
Q
j GL.dj / given by the determinant of the i th factor. Each

character �i defines a line bundle on the vector space Md1;d2 � � � � �Mdk�1;dk, which
descends to a line bundle Li on Flag.d1; : : : ; nk/. A hypersurface of multidegree
.l1; : : : ; lk/ is a section of

N
j L

lj
j . To consider the gauged linear sigma model for

the complete intersection F1 D � � � D Fs D 0 of such sections, we again consider the
vector space

V D

k�1Y
iD1

Mdi ;diC1 �Cs;
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with coordinates .p1; : : : ; ps/ on Cs and superpotential

W D

sX
jD1

pjFj :

We define an action of G on pi by .g1; : : : ; gk�1/2G acts on pi as
Qk�1
jD1 det.gj /�lij ,

where lij is the j th component of the multidegree degree of Fi .

We may describe the polarization as

� D

k�1Y
iD1

det.gi /�ei ;

or the moment map as

�.A1; : : : ; Ak�1; p1; : : : ; ps/

D
1

2

�
A1 NA

T
1 �

sX
iD1

l1j jpj j
2; : : : ; Ak�1 NA

T
k�1�

sX
iD1

lk�1;j jpj j
2

�
:

This gives a phase structure similar to the complete intersection in a product of projective
spaces.

For example, when ei > 0 for all i 2 f1; : : : ; k � 1g we can choose a compatible
C�R–action with weight 1 on pj and weight 0 on each Ai , and the trivial lift #0 is a
good lift of � in this phase.

This example should be easy to generalize to complete intersections in quiver varieties.
It would be very interesting to calculate the details of our theory for these examples.

7.5 Graph spaces and generalizations

7.5.1 Graph spaces The graph moduli space is very important in Gromov–Witten
theory. It is used to define the I –function and prove genus zero mirror symmetry (see
for example [27]). We can construct it in the GLSM setting as follows. Suppose that
we have a phase � of a GLSM W W Cn=G!C with a certain R–charge C�R , defining
� and a good lift # of � .

We construct a new GLSM as follows. Let V 0 D V � C2 , and let C� act on C2

with weights .1; 1/. Let G0 DG �C� act on V 0 with the product action, so G acts
trivially on the last two coordinates and C� acts trivially on the first n coordinates.
Let � 0W G0!C� be given by sending any .g; h/ 2G�C� to � 0.g; h/D �.g/h�e for
some e > 0. The GIT quotient is the product ŒV 0==� 0G0�D ŒV==�G��P1. Let W 0 be
defined on V 0 by the same polynomial as W , so that the critical locus of W 0 is C2

times the critical locus of W , and the GIT quotient of the critical locus is P1 times the
corresponding quotient in the original GLSM.
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Keeping the same R–charge (that is, letting C�R acts trivially on the last two coordinates
of V 0 ), we have � 0D��C� , and we construct a lift # 0 of � 0 by sending .
; h/2��C�

to # 0.
; h/D #.
/h�e. It is easy to see that # 0 is a good lift of � 0 if # is a good lift
of � .

In the "D1 case, the last two coordinates .z1; z2/ induce a stable map C ! P1. For
the other "–stable case, we choose e� 0 such that stability condition for the second
C� is always in the 1–chamber. There is no basepoint for .z1; z2/ which induces a
stable map C ! P1. Therefore, it can be reformulated as a usual GLSM moduli space
of ŒV==�G� with the additional data of a stable map f W C ! P1.

7.5.2 Generalization of the graph space We can generalize slightly the graph mod-
uli space to obtain a new moduli space with a remarkable property. Let’s take the
quintic GLSM as an example. Now, we consider a new GLSM on C6C2=.C�/2 with
charge matrix �

1 1 1 1 1 �5 d 0

0 0 0 0 0 0 1 1

�
for an integer d > 0.

Let’s look at its chamber structure. The moment maps are

�1D
1
2
.jx1j

2
Cjx2j

2
Cjx3j

2
Cjx4j

2
Cjx5j

2
�5jpj2Cd jz1j

2/; �2D
1
2
.jz1j

2
Cjz2j

2/:

It has three chambers. We are interested in the chamber 0<�1<d�2 . This corresponds
to a character � of G D C� �C� with weights .�e1;�e2/ and 0 < e1 < de2 . The
unstable locus for this character is

f.x1; x2; x3; x4; x5; z1/D .0; 0; 0; 0; 0; 0/g[ f.p; z2/D .0; 0/g[ f.z1; z2/D .0; 0/g:

Taking the superpotential

W D

5X
iD1

x5i

and the R–charge of weight .0; 0; 0; 0; 0; 1; 0; 0/, we have

� DG �C�R D f.a; a; a; a; a; w; ba
d ; b/ j a; b; w 2C�g

and the map � takes .a; a; a; a; a; w; bad ; b/ to wa5. There is no good lift of � , so we
restrict to the case of "D 0C. We must choose some lift for the stability condition, so
we take #.a; b; w/D a�e1b�e2. Any other lift will give the same stability conditions.

The resulting moduli problem consists of˚
.C ;y1; : : : ;yk;A ;B;x1; : : : ;x5;p;z1;z2/

ˇ̌
xi 2H

0.C ;A /; p2H 0.C ;A �5˝!log;C /;

z1 2H
0.C ;A d

˝B/; z2 2H
0.C ;B/
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satisfying the stability condition that ��L# D A �e1B�e2 is ample on all components
where !log;C has degree 0.

This GLSM admits a C�–action on z2 . The induced action on the moduli space has
three types of fixed point loci: the Gromov–Witten locus, FJRW locus and the theory
of a point. This remarkable property gives us the hope that we can extract a relation
between Gromov–Witten theory and FJRW theory geometrically by using localization
techniques on this moduli space. A program is being carried out right now for the
"D 0C theory by Ross, Ruan and Shoemaker, and Clader, Janda and Ruan [19]. A
theory based on the same GIT quotient, but with a different stability condition, was
discovered and the localization argument was carried out independently by Chang, Li,
Li and Liu [8].
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