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Chord arc properties for constant mean curvature disks

WILLIAM H MEEKS, III
GIUSEPPE TINAGLIA

We prove a chord arc type bound for disks embedded in R3 with constant mean
curvature that does not depend on the value of the mean curvature. This bound is
inspired by and generalizes the weak chord arc bound of Colding and Minicozzi in
Proposition 2.1 of Ann. of Math. 167 (2008) 211–243 for embedded minimal disks.
Like in the minimal case, this chord arc bound is a fundamental tool for studying
complete constant mean curvature surfaces embedded in R3 with finite topology or
with positive injectivity radius.

53A10; 49Q05, 53C42

1 Introduction

We apply results of Colding and Minicozzi [2], Meeks and Rosenberg [5] and Meeks
and Tinaglia [9; 10; 8] to derive a chord arc bound for compact disks embedded in R3

with constant mean curvature. For clarity of exposition, we will call an oriented surface
† immersed in R3 an H –surface if it is embedded, connected and it has nonnegative
constant mean curvature H . We will call an H –surface an H –disk if the H –surface
is homeomorphic to a closed unit disk in the Euclidean plane; in general we will allow
an H –disk † to be nonsmooth along its boundary. We remark that this definition of
H –surface agrees with the one given in [10; 8], but differs from the one given in [9],
where we restrict to the case when H > 0.

It will be important to distinguish between intrinsic and extrinsic balls centered at points
of †; given p 2† and R> 0, we will denote by B†.p;R/ (resp. B.p;R/) the open
intrinsic (resp. open extrinsic) ball of center p and radius R and let B.R/D B.E0;R/,
where E0 is the origin in R3. We will denote by B†.p;R/ (resp. B.p;R/) the closed
intrinsic (resp. closed extrinsic) ball of center p and radius R and let B.R/ be the
closure of B.E0;R/.

Definition 1.1 Given a point p on a surface †�R3, †.p;R/ denotes the closure of
the component of †\B.p;R/ passing through p .
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We note that if the surface † in the above definition is transverse to @B.p;R/, then
†.p;R/ is the component of †\B.p;R/ passing through p . The main result of this
paper is the following theorem.

Theorem 1.2 (weak chord arc property for H –disks) There exists a ı1 2
�
0; 1

2

�
such

that the following holds:

Let † be an H –disk in R3. Then for all intrinsic closed balls B†.x;R/ in †� @†:

(i) †.x; ı1R/ is a disk with piecewise smooth boundary @†.x; ı1R/�@B.x; ı1R/.

(ii) †.x; ı1R/� B†
�
x; R

2

�
.

Theorem 1.2 gives rise to a more standard chord arc type result that closely resembles
the chord arc type result for 0–disks given by Colding and Minicozzi [2, Theorem 0.5];
see [10, Theorem 1.2] for this application.

We clarify that Theorem 1.2 in this manuscript depends on the extrinsic one-sided
curvature estimate for H –disks [8, Theorem 1.1]. On the other hand, the intrinsic
one-sided curvature estimate for H –disks [8, Theorem 4.5] relies on Theorem 1.2 in
this manuscript.

Other applications of the results in this manuscript can be found in Meeks and
Tinaglia [11].
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figures that appear in this paper.
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2 Proof of Theorem 1.2

The proof of Theorem 1.2 relies on three results that appear in [10; 8], and for the
sake of completeness, we include their statements here. Theorems 2.1 and 2.2 are
generalizations of results that were proved by Colding and Minicozzi in the minimal
case in [1].
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Theorem 2.1 (one-sided curvature estimate for H –disks [8, Theorem 1.1]) There
exist " 2

�
0; 1

2

�
and C > 0 such that for any R> 0, the following holds: Let D be an

H –disk such that

D\B.R/\fx3 D 0g D∅ and @D\B.R/\fx3 > 0g D∅:
Then

(1) sup
x2D\B."R/\fx3>0g

jADj.x/�
C

R
;

where jADj denotes the norm of the second fundamental form of D . In particular, if
D\B."R/\fx3 > 0g ¤∅, then H < C

R
.

Theorem 2.2 (limit lamination theorem for H –disks [10, Theorem 1.1]) Fix " > 0

and let fMngn be a sequence of Hn –disks in R3 containing the origin and such that
@Mn � ŒR3 �B.n/� and jAMn

j.E0/ � ". Then, after replacing by some subsequence,
exactly one of the following two statements hold:

(A) The surfaces Mn converge smoothly with multiplicity one or two on compact
subsets of R3 to a helicoid M1 containing the origin. Furthermore, every
component � of Mn \ B.1/ is an open disk whose closure x� in Mn is a
compact disk with piecewise smooth boundary, and where the intrinsic distance
in Mn between any two points in x� is less than 10.

(B) There are points pn 2Mn such that

lim
n!1

pn D
E0 and lim

n!1
jAMn

j.pn/D1;

and the following hold:
(a) The surfaces Mn converge to a foliation of R3 by planes and the conver-

gence is C ˛ for any ˛ 2 .0; 1/ away from the line containing the origin and
orthogonal to the planes in the foliation.

(b) There exists compact subdomains Cn of Mn with ŒMn\B.1/�� Cn � B.2/
and @Cn � B.2/�B.1/, each Cn consisting of one or two pairwise disjoint
disks, where each disk component has intrinsic diameter less than 3 and
intersects B

�
1
n

�
. Moreover, each connected component of Mn\B.1/ is an

open disk whose closure in Mn is a compact disk with piecewise smooth
boundary.

Corollary 2.3 [10, Corollary 4.6] There exist constants " 2 .0; 1/ and C > 1 such
that the following holds: Let †1 , †2 and †3 be three pairwise disjoint Hi –disks with
@†i � ŒR3�B.1/� for i D 1; 2; 3. If B."/\†i 6D∅ for i D 1; 2; 3, then

sup
B."/\†i ; iD1;2;3

jA†i
j � C:
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2.1 A weak chord arc property for certain H –disks.

Throughout this section and the next one, † will denote a compact H –disk in R3

with piecewise smooth boundary.

The following main result in this section generalizes the similar [2, Proposition 2.1]
for minimal disks to certain H –disks. The reader should keep in mind that the convex
hull property of minimal surfaces fails in the case of H –surfaces with H > 0, and this
failure contributes to making the proof of the next proposition and some other results
in this paper more difficult than in the H D 0 case.

Proposition 2.4 There exists ı2 2
�
0; 1

2

�
such that the following holds:

If † satisfies @†� @B.p;R/ and p 2†, then for all s 2 .0;R�:

(i) †.p; ı2s/ is a disk with piecewise smooth boundary @†.p; ı2s/� @B.p; ı2s/.

(ii) †.p; ı2s/� B†
�
p; s

2

�
.

Proof Suppose that † satisfies @† � @B.p;R/ and p 2 †. We first prove that
items (i) and (ii) of the proposition hold for some ı2 2

�
0; 1

2

�
in the special case that

s DR. Arguing by contradiction, suppose there is no such universal ı2 . Then there
exists a sequence †.n/ of Hn –disks and a sequence Rn of positive numbers such that

(i) E0 2†.n/.

(ii) @†.n/� @B.Rn/.

(iii) Either †.n/
�
E0; 1

n
Rn

�
is not a disk or it is not contained in B†.n/

�
E0; 1

2
Rn

�
.

Let z†.n/ be the sequence of rescaled disks .n=Rn/†.n/; see Figure 1. Note that,
for all n, @z†.n/� @B.n/ and either z†.n/.E0; 1/ is not a disk or it is not contained in
B z†.n/

�
E0; n

2

�
.

After replacing by a subsequence, one of the following three cases holds:

(i) limn!1max
x2z†.n/\B.1/ jAz†.n/.x/j D 0;

(ii) limn!1max
x2z†.n/\B.1/ jAz†.n/.x/j D1;

(iii) limn!1max
x2z†.n/\B.1/ jAz†.n/.x/j DL 2 .0;1/.

First consider the case that limn!1max
x2z†.n/\B.1/ jAz†.n/.x/jD0. Then, for n large,

z†.n/.E0; 1/ is an almost totally geodesic disk whose diameter is bounded by 3 and that
is a small graph over its projection to the unit disk in the .x1;x3/–plane, which gives
a contradiction.
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n
1

zxn �
E0

z†.n/

z†.n/.E0; 1/
�!

Figure 1: The component z†.n/.E0; 1/ inside the rescaled surface z†.n/

Next, suppose that limn!1max
x2z†.n/\B.1/ jAz†.n/.x/j D 1 and, after going to a

subsequence, let pn 2
z†.n/\B.1/ be a sequence of points such that

lim
n!1

pn D p 2 B.1/ and lim
n!1

jAz†.n/.pn/j D1:

Then we can apply Theorem 2.2 to the sequence of translated surfaces †0.n/ D
1
3
Œz†.n/�pn�. In particular, since limn!1 jA†0.n/.E0/j D1, case (B) of Theorem 2.2

applies. Note that the origin, as a point contained in z†.n/, has become the point �1
3
pn

in †0.n/ and, by our hypothesis, †0.n/
�
�

1
3
pn;

1
3

�
is not a disk or it is not contained

in B†0.n/

�
�

1
3
pn;

n
6

�
. By case (B) of Theorem 2.2, since

ˇ̌
1
3
pn

ˇ̌
�

1
3

, we have that

†0.n/
�
�

1
3
pn;

1
3

�
� Œ†0.n/\B.1/�� Dn � B.2/;

where Dn is a disk with intrinsic diameter bounded by 3 and @Dn � B.2/� B.1/.
Let �n denote †0.n/

�
�

1
3
pn;

1
3

�
. Since �n � Dn and the intrinsic diameter of Dn is

bounded by 3, in order to obtain a contradiction it suffices to prove that �n is a disk.
In the case where Dn intersects @B

�
�

1
3
pn;

1
3

�
transversely, �n is a smooth compact

surface and the following arguments can be simplified; therefore, on a first reading of
the next paragraph the reader might want to consider this special generic case first.

Since �n is a two-dimensional semianalytic set in R3 and �n \ @B
�
�

1
3
pn;

1
3

�
is

an analytic subset of the sphere @B
�
�

1
3
pn;

1
3

�
, by [3] it follows that �n admits a

triangulation by analytic simplices, and the interiors of the 2–dimensional simplices
are contained in B

�
�

1
3
pn;

1
3

�
because otherwise, by analyticity, �n � @B

�
�

1
3
pn;

1
3

�
,

which is false. Since the inclusion map of Dn is an injective immersion, then it
follows that �n is a semianalytic subset of Dn that can be triangulated with a finite
number of closed 2–dimensional analytic simplices whose interiors are contained
in �n\B

�
�

1
3
pn;

1
3

�
and �n\ @B

�
�

1
3
pn;

1
3

�
is a connected 1–dimensional analytic
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subset of Dn , where we identify Dn with its image in R3 ; note that �n\@B
�
�

1
3
pn;

1
3

�
does not contain any isolated points by the mean curvature comparison principle. By
the elementary topology of the disk Dn and using arguments as in [12], one can check
that �n fails to be a disk with piecewise smooth analytic boundary if and only if there
exists a simple closed piecewise analytic curve �.n/ contained in the 1–dimensional
simplicial subcomplex of �n\B

�
�

1
3
pn;

1
3

�
such that �.n/ does not bound a disk in

�n\B
�
�

1
3
pn;

1
3

�
. In the case that Dn is transverse to @B

�
�

1
3
pn;

1
3

�
, we can choose

�.n/ to be the boundary curve of a component of Dn\
�
R3�B

�
�

1
3
pn;

1
3

��
that has

its entire boundary in @B
�
�

1
3
pn;

1
3

�
.

Arguing by contradiction, suppose �n is not a compact disk. Let Dn denote the
compact subdisk of Dn with boundary �.n/ � Dn \ @B

�
�

1
3
pn;

1
3

�
and notice that

Dn 6� B
�
�

1
3
pn;

1
3

�
. Hence, there is a point qn 2 Dn that has maximal distance

Tn >
1
3

from the �1
3
pn . Since the boundary of Dn lies in @B

�
�

1
3
pn;

1
3

�
and Dn

lies in R3 � B
�
�

1
3
pn;

1
3

�
near @Dn , then qn is an interior point of Dn not con-

tained in B
�
�

1
3
pn;

1
3

�
and Dn lies inside the closed ball B

�
�

1
3
pn;Tn

�
and intersects

@B
�
�

1
3
pn;Tn

�
at the point qn . By the mean curvature comparison principle applied

at the point qn , the constant mean curvature of Dn is at least 1=Tn . By Theorem 2.2
the constant mean curvature values of the surfaces Dn are tending to zero as n goes to
infinity (portions of the surfaces †0.n/ are converging to planes), so the interior points
qn 2Dn � Dn � B.2/ are diverging to infinity in R3 as n goes to infinity, which is a
contradiction and proves that �n must be a disk.

Finally, suppose that

lim
n!1

max
x2z†.n/\B.1/

jAz†.n/.x/j DL 2 .0;1/

and, after going to a subsequence, let pn 2
z†.n/\B.1/ be a sequence of points such

that
lim

n!1
pn D p 2 B.1/ and lim

n!1
jAz†.n/.pn/j DL:

In this case, after going to a subsequence, one of the following subcases holds:

(3A) limn!1max
x2z†.n/\B.2/ jAz†.n/.x/j<1;

(3B) limn!1max
x2z†.n/\B.2/ jAz†.n/.x/j D1.

If case (3A) holds, then by applying Theorem 2.2 to the sequence of translated surfaces
z†.n/�pn we obtain that, after going to a subsequence, z†.n/�pn converges smoothly
with multiplicity one or two on compact subsets of R3 to a helicoid containing the
origin, which is a surface of negative curvature. This being the case then, for n

sufficiently large,
jAz†.n/.

E0/j> " 2 .0; 1/
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and case (A) of Theorem 2.2 applies to the sequence of surfaces z†.n/. In particular,
every component � of z†.n/\B.1/ is an open disk whose closure x� in z†.n/\B.1/
is a compact disk with piecewise smooth boundary, and where the intrinsic distance in
z†.n/ between any two points in x� is less than 10. This contradicts our assumption.

If case (3B) holds then one can obtain a contradiction by arguing similarly to case (ii).
This completes the proof that for some ı2 2

�
0; 1

2

�
in the case s DR. This fixes the

value of ı2 .

Fix s 2 .0;R/. By the arguments in the previous case where s DR, †.p; s/ admits
an analytic triangulation and it is the closure in † of a connected open surface. Hence
by the elementary topology of a disk, the set y†Œp; s� � † that is the closure of the
complement of the annular component of †�†.p; s/ that contains @† is a piecewise-
smooth subdisk of †; also note that p 2 y†Œp; s� and @y†Œp; s� � @B.s/. Applying
the previously proved case where s D R to the H –disk y†Œp; s� and the subdomain
y†Œp; s�.p; s/ (which is equal to the domain †.p; s/), one has that †.p; ı2s/ is a disk
with @†.p; ı2s/� @B.p; ı2s/ and †.p; ı2s/� B†

�
p; s

2

�
.

This finishes the proof of the proposition.

2.2 Expanding the scale of being ı2 weakly chord arc

We begin by giving a definition characterizing certain intrinsic geodesic balls of †.

Definition 2.5 (weakly chord arc) Given ı 2
�
0; 1

2

�
, an intrinsic ball B†.x;R/�†

is said to be ı weakly chord arc if:

(i) For all s 2 .0;R/, B†.x; s/� Int.†/.

(ii) For all s 2 .0;R�,

(a) †.x; ıs/ is a disk;
(b) †.x; ıs/� B†

�
x; s

2

�
.

Remark 2.6 Suppose that x 2†. If an intrinsic ball B†.x;R/�†� @†, then for
any s 2 .0;R/, B†.x; s/ is contained in the interior of †. Also, if @†� @B.x;R/,
then Proposition 2.4 implies that B†.x;R/ is ı2 weakly chord arc.

Definition 2.7 Given ı 2
�
0; 1

2

�
and x 2†� @†,

R.x; ı/D supfR< dist.x; @†/ j the ball B†.x;R/ is ı weakly chord arcg:
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Our definition of the R.x; ı/ function is the same as the one given in [5] and differs
somewhat from the related Rı.x/ function defined in [2].

We now state and prove a proposition that in certain cases allows us to prove that
if a given ball B†.x;R/ in † is ı2 weakly chord arc, then B†.x; 5R/ is also ı2
weakly chord arc; here, ı2 is the constant defined in Proposition 2.4. The next result
corresponds to the closely related [2, Proposition 3.4] and [5, Proposition 8].

Proposition 2.8 There exists a constant Cb > 5 such that if B†.y;CbR/�†� @†

satisfies

“every intrinsic subball B†.z;R/� B†.y;CbR/ is ı2 weakly chord arc”,

then B†.y; 5R/ is ı2 weakly chord arc. In particular, R.y; ı2/� 5R.

Proof Arguing by contradiction, suppose that Proposition 2.8 fails. Then there exist a
sequence of Hn –disks †.n/ and constants Cn > 5n and Rn > 0 satisfying:

(i) B†.n/.yn;CnRn/�†.n/� @†.n/.

(ii) Every intrinsic subball B†.n/.z;Rn/� B†.n/.yn;CnRn/ is ı2 weakly chord
arc.

(iii) B†.n/.yn; 5Rn/ is not ı2 weakly chord arc.

Let us first assume that, after passing to a subsequence,

†.n/.yn; 5Rn/\ @B†.n/.yn;CnRn/D∅ for all n:

Since B†.n/.yn;CnRn/ � †.n/ � @†.n/, the above intersection equation implies
†.n/.yn; 5Rn/ � †.n/ � @†.n/. By the arguments in the last paragraph of the
proof of Proposition 2.4, †.n/ contains a compact subdisk y†.n/ � † � @† with
@y†.n/� @B.yn; 5Rn/ and †.n/.yn; 5Rn/D y†.n/.yn; 5Rn/. Since

B†.n/.yn; 5Rn/D B y†.n/.yn; 5Rn/;

Remark 2.6 implies B†.n/.yn; 5Rn/ is ı2 weakly chord arc, which is a contradiction
to item (iii) above. Hence, for the remainder of the proof we shall assume that

†.n/.yn; 5Rn/\ @B†.n/.yn;CnRn/¤∅ for all n:

Since †.n/.yn; 5Rn/ is path connected, we can find a path n �†.n/.yn; 5Rn/ start-
ing at yn and ending at a point of @B†.n/.yn;CnRn/. Homothetically scale the surfaces
†.n/ by 1=Rn from the points yn to obtain new surfaces z†.n/ passing through yn ;
we will use tilde to denote other related scaled objects as well. Balls of radius CnRn

then become balls of radius Cn > 5n, and balls of radius Rn become balls of radius 1.
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CnRn

1
2
CnRn

yn

zn.i/

zn.j /

n

†.n/.yn; 5Rn/

1

Rn

d†.n/!1

Figure 2: d†.n/ denotes the intrinsic distance in †.n/ .

The corresponding expanded path zn �
z†.n/.zyn; 5/� B.zyn; 5/ joins zyn D yn with a

point of @B.zyn; 5/ at an intrinsic distance Cn from zyn . Since limn!1 CnD1, there
exists a subset zSn D fzzn.1/; zzn.2/; : : : ; zzn.k.n//g � zn\B z†.n/

�
zyn;

1
2
Cn

�
satisfying:

(P1) limn!1 k.n/D1.

(P2) The intrinsic distance in z†.n/ between any two of the points of zSn tends to
infinity as n goes to infinity.

In the original scale, we have corresponding finite sets

Sn D fzn.1/; zn.2/; : : : ; zn.k.n//g � n\B†.n/
�
yn;

1
2
CnRn

�
I

see Figure 2.

We claim that B z†.n/.zz; 1/ is ı2 weakly chord arc for any zz 2 zSn , which after
scaling, is equivalent to proving that B†.n/.z;Rn/ is ı2 weakly chord arc. Since
zz 2 B z†.n/

�
zyn;

1
2
Cn

�
, B z†.n/.zyn;Cn/ � z†.n/� @z†.n/ and Cn > 5, the intrinsic tri-

angle inequality implies that B z†.n/.zz; 1/ � B z†.n/.zyn;Cn/ and so B†.n/.z;Rn/ �

B†.n/.yn;CnRn/. The main hypothesis in the statement of the proposition implies
under these conditions that B†.n/.z;Rn/ is ı2 weakly chord arc. This proves the
desired claim and so, in particular, z†.n/.zz; ı2/ is a disk contained in B z†.n/

�
zz; 1

2

�
.
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By the last claim and condition (P2) above, the disks z†.zz; ı2/ are pairwise disjoint
for distinct points zz of zSn for n large. At this point it is useful to make another
normalization of the surfaces †.n/ by translating them by the vector �Eyn and so the
points yn are now equal to the origin: with this normalization, zynD ynD

E0. Note that
for any zz 2 zSn , the disk z†.n/.zz; ı2/ is contained in B.6/. This follows since zz 2B.5/
and ı2 2

�
0; 1

2

�
. The number of disks z†.n/.zz; ı2/ centered at points zz 2 zSn goes to

infinity as n goes to infinity, by condition (P1) in our choice of the points. Hence, after
replacing by a subsequence, there is a point q 2 B.5/, where the number of points in
B

�
q; 1

n

�
\ zSn goes to infinity as n goes to infinity. In particular, we may assume that

for each n, there exist three distinct points zz1.n/, zz2.n/ and zz3.n/ in B
�
q; 1

n

�
\ zSn .

Since the intrinsic distances between any two of these points is diverging to infinity and
z†.n/.zzi.n/; ı2/�B z†.n/

�
zzi.n/;

1
2

�
for each i , the disks fz†.n/.zzi.n/; ı2/ j i D 1; 2; 3g

form a pairwise disjoint collection.

It follows that for n large, the boundaries of the disks fz†.n/.zzi.n/; ı2/ j i D 1; 2; 3g are
contained in R3�B

�
q; 1

2
ı2

�
. Hence, by Corollary 2.3, there exists a small ı0 > 0 such

that the components fy†.n; i/ j i D 1; 2; 3g of z†.n/.zzi.n/; ı2/\B.q; ı0/ containing the
respective points zzi.n/ have second fundamental forms bounded by a universal constant
and so, after possibly replacing ı0 by a smaller positive number, these components are
disks which are graphical over their projections to a plane passing through q . After
replacing by another subsequence and after reindexing, a sequence of pairs y†.n; 1/,
y†.n; 2/ of these graphs converges to a stable compact H –disk D passing through q ,
for some value of H . Moreover, we will assume that the inner products of the unit
normal vectors of y†.n; 1/ and y†.n; 2/ are positive, even when H D 0. Repeated
applications of Corollary 2.3 together with a prolongation argument, as carried out in
the proof of [2, Proposition 3.4] and in the proof of [5, Proposition 8], demonstrates
that D is contained in the image of a complete immersion f W F # R3 of constant
mean curvature H � 0 of bounded norm of the second fundamental form for some
complete surface F . Indeed, after possibly replacing by a subsequence and reindexing,
the sequence of surfaces

B z†.n/.zz1.n/; n/[B z†.n/.zz2.n/; n/

converges smoothly to f .F / with multiplicity at least two.

Since f .F / is a limit of embedded surfaces, f satisfies the additional property that it
is almost-embedded in the sense that if p1 ¤ p2 are points in F with the same image
p in f .F /, then images of small intrinsic neighborhoods of p1 and p2 locally lie
on one side of each other at p ; note that by the maximum principle for H –surfaces,
this nonembeddedness property of F can only occur if H > 0 and the mean curvature
vectors at p of these two respective neighborhoods are negatives of each other. Since
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complete almost-embedded H –surfaces of bounded norm of the second fundamental
form are properly immersed in R3 by [7, Corollary 2.5] (also see [6, Theorem 6.1]),
f is a proper immersion of F into R3.

If the universal cover of the limit surface f .F / is a stable H –surface, then f .F / is a
plane [4; 13] that intersects B.5/. But if the image surface f .F / is a plane P , then for
n sufficiently large, B z†.n/.zz1.n/; 11/ would become arbitrarily close to a planar disk
of radius 11 contained in P and which intersects B.5/, and so @Bz†.n/.zz1.n/; 11/�

ŒR3�B.5/�. Since the intrinsic distance between zz1.n/ and zz2.n/ is going to infinity
as n goes to infinity, this implies that zz1.n/ and zz2.n/ cannot be connected by a curve
in z†.n/\B.5/. This contradiction would prove the proposition. Thus, it suffices to
prove the following claim:

Claim 2.9 The universal cover of F is stable.

Proof Let …W h zF ; zpi ! hF;pi denote the universal cover of the pointed surface
hF;pi, where f .…. zp// D f .p/ D q 2 D . The proof of this claim uses standard
arguments to construct a nonzero Jacobi field on an arbitrary open connected subset
�� zF with compact closure. Since the norm of the second fundamental form of zF is
bounded, there is a normal disk bundle N of fixed radius that submerses in R3. Let
i W N !R3 denote the submersion; then we give N the flat metric induced by i . We
consider the surface zF to be the zero section of N and the map �W N ! zF given by
the nearest point projection is smooth. Let � denote the unit normal vector field to zF .

Let �n be the lift (preimage) in N of

ŒB z†.n/.zz1.n/; n/[B z†.n/.zz2.n/; n/�\ i.N /

via the submersion i , where we can make choices of preimages z0
1
.n/ 2 i�1.zz1.n//

and z0
2
.n/ 2 i�1.zz2.n// that converge to the same point q0 2 i�1.q/. By the nature

of the convergence, �n converges smoothly to zF in N with multiplicity at least two.
Namely, each point p 2 zF has a neighborhood Up which is the uniform limit of at
least two disjoint domains Up;1.n/ and Up;2.n/ in �n . Each of these domains is a
graph over Up via the nearest point projection � and the normal vectors of such graphs
at related points have inner products converging to 1 as n goes to infinity.

Let �� zF be an arbitrary open connected subset with compact closure and let z�� zF
be a precompact, simply connected domain containing � and the point q0. The usual
holonomy construction and the convergence with multiplicity at least two gives that
there exist two disjoint domains �1.n/ and �2.n/ in �n such that the following holds:
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each �i.n/ is a graph over z� via the nearest point projection, and z0
1
.n/ 2�1.n/ and

z0
2
.n/ 2�2.n/. Namely, there exists un

i W
z�!R such that

�i.n/D fpCun
i .p/�.p/ j p 2�g:

Because �1.n/ and �2.n/ are disjoint, we can assume that un
2
> un

1
. Moreover, by

our previous choice of the points zz1.n/ and zz2.n/, we may assume that the unit normal
vectors of �1.n/ and of �2.n/ at corresponding points over points of � have positive
inner products converging to 1 as n goes to infinity. A standard compactness argument
using the Harnack inequality shows that the positive function

un
2
�un

1

un
2
.q0/�un

1
.q0/

converges to a positive Jacobi function w over z�. Thus wj� is a positive Jacobi
function over �, which implies that � is stable. Since � was an arbitrary precompact
domain in F , this finishes the proof of the claim.

As mentioned previously, Claim 2.9 completes the proof of the proposition.

2.3 The function aı

For the remainder of Section 2, † will be the H –disk in the statement of Theorem 1.2.
We claim that if the theorem holds whenever † is a smooth H –disk, then it holds in
general. To see that this claim holds, assume ı1 2

�
0; 1

2

�
is such that Theorem 1.2 holds

for smooth H –disks and let † be an H –disk which is nonsmooth along its boundary.
Suppose B†.x;R/�†� @† and consider the conditions below:

(C1) †.x; ı1R/ is a disk with piecewise smooth boundary @†.E0; ı1R/� @B.ı1R/.

(C2) †.x; ı1R/� B†
�
x; R

2

�
:

The compact intrinsic ball B†.x;R/ is contained in the interior of a smooth sub-H –
disk †0� .†�@†/, so B†.x;R/DB†0.x;R/ and †.x; ı1R/D†0.x; ı1R/. Using
that Theorem 1.2 holds for †0 then implies that the two conditions (C1) and (C2) hold.
So henceforth we will assume that † is a smooth H –disk.

We claim that for ı 2
�
0; 1

2

�
, the function

Gı.z/D
d†.z; @†/

R.z; ı/
W †� @†! .0;1/

is bounded on †�@† and is equal to 1 in some small neighborhood of @†. To see this,
first note that if p2†�@† has distance at least " from @† for some ">0, then R.p; ı/

is greater than some positive constant that only depends on " and †. This is because the
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norm of the second fundamental form of † is bounded and so for any "0<" sufficiently
small, there exists "00 < "0 such that B†.p; "

0/ is a graph over its projection to its
tangent plane at p with small norm of its gradient and †

�
p; 1

2
"0

�
� B†

�
p; 1

2
"0C "00

�
,

with lim"0!0 "
00="0 D 0. Since ı < 1

2
, R.p; ı/ is bounded from below outside of any

small "–regular neighborhood of @†. On the other hand, since the geodesic curvature
of @† and the norm of the second fundamental form are both bounded, the same
argument shows that for some sufficiently small " > 0;R.p; ı/ is equal to d†.p; @†/,
when p 2 †� @† and d†.p; @†/ < ". This proves that the function G is bounded
and is equal to 1 in some neighborhood of @†.

Definition 2.10 Let ı 2
�
0; 1

2

�
. Then we define

aı D sup
z2.†�@†/

d†.z; @†/

R.z; ı/
D sup.Gı/:

The next lemma and its proof correspond to [5, Lemma 11].

Lemma 2.11 Let ı0 2
�
0; 1

2

�
. If aı0 < c with c 2 Œ2;1/, then Theorem 1.2 holds for

† with ı1 D ı0=c .

Proof Suppose that B†.x;R/�†� @† for some R> 0 and x 2†. By definition
of aı0 ,

aı0 �
d†.x; @†/

R.x; ı0/
>

R

R.x; ı0/
;

which implies that R.x; ı0/ > R
c

. Since R.x; ı0/ > R
c

, the definition of R.x; ı0/

implies that †
�
x; ı0R

c

�
is a disk and

†
�
x; ı0

R

c

�
� B†

�
x;

1

2
�

R

c

�
:

Thus, since †
�
x; 1

c
ı0R

�
D†

�
x; ı0R

c

�
and R

c
<R, we conclude that †

�
x; 1

c
ı0R

�
is a

disk and
†

�
x;
ı0

c
R

�
� B†

�
x;

1

2
R

�
;

and so Theorem 1.2 holds for † with ı1 D 1
c
ı0 .

2.4 Locating the smallest scale which is not ı weakly chord arc

The proof of the next lemma uses a standard technique for finding a smallest scale for
which some property holds on a surface. The property we are considering here is that
of being ı weakly chord arc. In this case we take the proof directly from the proof of
the similar [2, Lemma 3.39].
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Lemma 2.12 Let ı 2
�
0; 1

2

�
. Then there exists a point y 2† and a number R1 > 0

such that:

(i) aıR1 <
1
2
d†.y; @†/.

(ii) R.x; ı/ >R1 for every x 2 B†.y; aıR1/.

(iii) B†.y; 5R1/ is not ı weakly chord arc.

Proof Recall the function Gı on † � @† is defined by Gı.x/D d†.x; @†/=R.x; ı/

and extends to a bounded function on † which has a constant value 1 near @†. Thus,
aıD sup.Gı/ is a finite number that is greater than or equal to 1. Choose y to be a point
in †� @† such that Gı.y/ is greater than 1

2
aı . Hence, if we define d@ D d†.y; @†/,

then 1
2
aı < d@=R.y; ı/DGı.y/, or equivalently,

(2) aıR.y; ı/ < 2d@:

Now choose R1 D
1
4
R.y; ı/ and we will show this definition of R1 satisfies the

statements in the lemma. This value of R1 and (2) give the inequality aıR1 <
1
2
d@ ,

which is statement (i) in the lemma. By definition of R1 , R.y; ı/D 4R1 and by the
definition of R.y; ı/ as a supremum, the ball B†.y; 5R1/ is not ı weakly chord arc,
which proves (iii).

By (i), aıR1 <
1
2
d@ , and so, B†.y; aıR1/ � B†

�
y; 1

2
d@

�
. So if we check that (ii)

holds for points in B†
�
y; 1

2
d@

�
, then (ii) holds. If x 2 B†

�
y; 1

2
d@

�
, then by the

triangle inequality, 1
2
d@ � d†.x; @†/. This inequality, the definition of Gı and the

choice of y give the inequalities
d@

2R.x; ı/
�

d†.x; @†/

R.x; ı/
DGı.x/� aı < 2Gı.y/D

2d@

R.y; ı/
:

Therefore, R.x; ı/ > 1
4
R.y; ı/DR1 . This completes the proof of statement (ii) and

the lemma now follows.

2.5 The proof of Theorem 1.2

We now prove Theorem 1.2. By Lemma 2.11, we just need to prove that aı is bounded
independently of † for some fixed constant ı 2

�
0; 1

2

�
.

Let ıD ı2 , where ı2 is as given in Proposition 2.4. We now prove aı is bounded from
above by Cb , where Cb is as given in Proposition 2.8. Suppose there exists a † with
aı > Cb .

By Lemma 2.12, there exists a point y 2† and an R1 such that:

(i) B†.y; aıR1/� B†
�
y; 1

2
d†.y; @†/

�
.
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(ii) R.x; ı/ >R1 for every x 2 B†.y; aıR1/.

(iii) B†.y; 5R1/ is not ı weakly chord arc.

By the definition of R.x; ı/ and statement (ii), we have that B†.x;R1/ is ı weakly
chord arc for every x 2 B†.y;CbR1/� B†.y; aıR1/. But Proposition 2.8 implies
that B†.y; 5R1/ is ı weakly chord arc, contradicting statement (iii) above. This
contradiction completes the proof of Theorem 1.2.

3 Applications of Theorem 1.2

The next result gives a useful intrinsic one-sided curvature estimate; its proof uses
Theorem 1.2 and the extrinsic one-sided curvature estimate given in Theorem 2.1. This
next result is also stated as [8, Theorem 4.5]; in the case that H D 0, the next theorem
follows from [2, Corollary 0.8].

Theorem 3.1 (intrinsic one-sided curvature estimate for H –disks) There exist "I 2�
0; 1

2

�
and CI � 2

p
2 such that for any R > 0, the following holds: Let D be an

H –disk such that

D\B.R/\fx3 D 0g D∅

and x 2 D\B."I R/, where dD.x; @D/�R. Then

(3) jADj.x/�
CI

R
:

In particular, H < CI=R.

Proof Let " and C be the constants given in Theorem 2.1 and let ı1 be the constant
given in Theorem 1.2. We next check that the constants "I D ı1" and CI D 2C=ı1
satisfy the conditions in the theorem.

Without loss of generality, we may assume that x 2 D\B."I R/\ fx3 > 0g, where
dD.x; @D/�R. By Theorem 1.2, the surface D0 WD†.x; ı1R/�D is an H –disk with
its boundary in @B.x; ı1R/. Since " 2

�
0; 1

2

�
, we have dR3.x; E0/ < "ı1R < 1

2
ı1R,

and so the triangle inequality implies B
�

1
2
ı1R

�
\@B.x; ı1R/D∅. Hence, †.x; ı1R/

must have its boundary in R3 � B
�

1
2
ı1R

�
. Therefore, the scaled surface .2=ı1/D0

satisfies the conditions of the disk described in Theorem 2.1; in other words,�
2

ı1
D0

�
\B.R/\fx3 D 0g D∅ and @

�
2

ı1
D0

�
\B.R/\fx3 > 0g D∅:
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Since the scaled point .2=ı1/x 2 ..2=ı1/D0/\B."/\ fx3 > 0g, Theorem 2.1 gives
jA.2=ı1/D0 j..2=ı1/x/�

C
R

, and so

jAD0 j.x/�
2

ı1

C

R
D

CI

R
;

which completes the proof of the theorem.

The following result is a direct consequence of some of the arguments in the proof of
Theorem 1.2.

Theorem 3.2 Given " > 0 and m 2 .0;1/, there exists R.m; "/ >m such that the
following holds: Let † be a complete H –surface with boundary such that for any
x 2†,

Inj†.x/�minf"; d†.x; @†/g:

If B†.y;R/�†� @† with R�R.m; "/, then

†.y;m/� B†

�
y;

R

2

�
:

Proof Arguing by contradiction, suppose there exist " > 0 and m 2 .0;1/ such that
for any n> 1, there exists a compact Hn –surface †.n/ with

Inj†.n/.x/�minf"; d†.n/.x; @†.n//g;

and yn 2†.n/ such that B†.yn; n/�†� @† but

†.n/.yn;m/ 6� B†.n/

�
yn;

n

2

�
:

We now follow the arguments in the proof of Proposition 2.8 to give a sketch of the
proof, leaving the details to the reader. Without loss of generality, after rescaling by 1

m

and normalizing by translations, we can assume that mD 1 and that yn D
E0. Also we

may assume that " 2 .0; 1/, since if the theorem holds for a smaller positive choice
of ", then it holds for the original choice.

Since †.n/.E0; 1/ is path connected, we can find an embedded path n �†.n/.E0; 1/

starting at E0 and ending at some point of @B†.n/
�
E0; n

2

�
. As n goes to infinity, there

exists a subset Sn D fzn.1/; : : : ; zn.k.n//g � n with

(i) limn!1 k.n/D1.

(ii) The intrinsic distance in †.n/ between any two of the points of Sn tends to
infinity as n goes to infinity.
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The hypothesis Inj†.x/�minf"; d†.x; @†/g implies that if d†.n/.x; @†.n// > " for
some x 2†.n/, then the geodesic ball B†.n/.x; "/ is a disk. Thus, Theorem 1.2 gives
that †.n/.x; ı1"/ is a compact disk with piecewise smooth boundary in @B.x; ı1"/ and
†.n/.x; ı1"/� B†.n/

�
x; "

2

�
. In particular this is true for any z 2 Sn . Recall that the

number of disks †.n/.z; ı1"/ centered at points z in Sn diverges as n!1. Hence,
after reindexing and replacing by a subsequence, there is a point q 2 B.1/, where the
number of points in B

�
q; 1

n

�
\Sn goes to infinity as n goes to infinity. In particular,

we may assume that for each n, there exist three distinct points z1.n/; z2.n/; z3.n/

in B
�
q; 1

n

�
\ Sn . Since the intrinsic distances between any two of these points is

diverging to infinity and †.n/.zi.n/; ı1"/ � B†.n/
�
zi.n/;

"
2

�
for i 2 f1; 2; 3g, the

disks f†.n/.zi.n/; ı1"/ j i D 1; 2; 3g form a pairwise disjoint collection. Arguing
similarly as in the prolongation argument in the proof of Proposition 2.8, in the limit
we obtain a complete stable minimal surface F (which is a plane), which can be
used to prove that the points z1.n/; z2.n/; z3.n/ can not be contained in the embedded
arc n � B.1/. This gives a contradiction and completes sketch of the proof of the
theorem.

Remark 3.3 Theorem 3.2 can be improved in various ways. For example, Theorem 1.2
implies that the hypothesis

Inj†.x/�minf"; d†.x; @†/g

can be replaced by the weaker condition that there exists an " > 0 such that for all
x 2† such that d†.x; @†/ > ", the intrinsic ball B†.x; "/ is contained in a simply
connected subdomain of †.
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