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Detecting sphere boundaries of hyperbolic groups

BENJAMIN BEEKER

NIR LAZAROVICH

We show that a one-ended simply connected at infinity hyperbolic group G with
enough codimension-1 surface subgroups has @GŠS2. By work of Markovic (2013),
our result gives a new characterization of virtually fundamental groups of hyperbolic
3–manifolds.

20F65, 20F67, 20H10

1 Introduction

We recall the following well-known conjecture.

Conjecture 1.1 (Cannon’s conjecture [9]) Let G be a hyperbolic group. If @GŠ S2

then G acts geometrically on the hyperbolic space H3.

Markovic [17] described the following criterion under which the conjecture is true.

Theorem 1.2 Let G be a hyperbolic group that acts faithfully on its boundary @GDS2

and contains enough quasiconvex surface subgroups. Then G acts geometrically on the
hyperbolic space H3.

Kahn and Markovic [14] showed that the fundamental group of a hyperbolic 3–manifold
contains enough quasiconvex surface subgroups. This shows that Markovic’s criterion is
also necessary. More about the history of Cannon’s conjecture and the work preceding
Markovic’s criterion can be found in a survey about boundaries of hyperbolic groups
by Kapovich and Benakli [15].

In this paper we prove that it is possible to replace the assumption that the boundary at
infinity is homeomorphic to S2 by the assumption of vanishing of the first cohomology
of G at infinity (see Section 2.3 for the definitions). In other words, we have the
following result.

Theorem 1.3 (main result) Let G be a one-ended hyperbolic group. Assume that
G has vanishing first cohomology over Z=2 at infinity and that G contains enough
quasiconvex codimension-1 surface subgroups. Then @G Š S2.
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Combining this result with Markovic [17] and Kahn and Markovic [14], we get the
following.

Corollary 1.4 Let G be a hyperbolic group. The following are equivalent:

(1) G acts geometrically on H3.

(2) @G Š S2, and G contains enough quasiconvex surface subgroups.

(3) G is one-ended, has vanishing first cohomology over Z=2 at infinity and contains
enough quasiconvex codimension-1 surface subgroups.

The main tool we use is the Kline sphere characterization, which was proven by
Bing [5].

Theorem 1.5 (Kline sphere characterization theorem) Let M be a topological space
which is

(1) nondegenerate, metrizable, compact, connected, locally connected,

(2) not separated by any pair of points, and

(3) separated by any Jordan curve.

Then M Š S2.

The outline of the proof of the main result, and of the paper, is as follows. In Section 2,
we provide the necessary preliminaries for the proof. We end Section 2 with a summary
of the additional assumptions one can make of the group G . In Lemma 3.2 in Section 3,
we prove that no pair of points separates the boundary of such a group. In Sections 4–10,
we prove that any Jordan curve separates, using ideas from Jordan’s original proof of
the Jordan curve theorem which we outline in Section 4 (see Hales [13] for details).

Bestvina and Mess [4] studied the topological properties of boundaries of hyper-
bolic groups, and in particular showed that if G is hyperbolic and R is a ring, then
H i.G;RG/' LH i�1.@G;R/ (Čech reduced cohomology). They then use their results
to show that if moreover G is the fundamental group of a closed 3–manifold K ,
then @G Š S2. In their proof they use a similar characterization of the sphere due to
Zippin [22]. However, the proof that every Jordan curve on @G separates relies on
extending it to a separating surface in the 3–manifold zK . This step is impossible in
the setting of our work, and a major part of this paper is devoted to replacing this step
with a cube complex analogue; see Section 4 for details.
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Figure 1: The torus link of the counterexample

We would like to mention the following question, which was raised by the referee.
Does Theorem 1.3 remain true when replacing the assumption of enough quasiconvex
codimension-1 surface subgroups by the assumption that any two points in @G are
separated by some Jordan curve? We remark that our techniques rely heavily on the
existence of a CAT.0/ cube complex on which G acts, which is constructed using
the quasiconvex codimension-1 surface subgroups, and thus do not apply to this more
general setting.

We finish the introduction with an example of a one-ended hyperbolic group that has
enough quasiconvex codimension-1 surface subgroups and whose boundary is not a
sphere.

Let L be the flag complex triangulation of the 2–dimensional torus consisting of 96

triangles illustrated in Figure 1, where the edges of the hexagon labeled by a, b and
c are glued accordingly to obtain a torus. Let G be the right-angled Coxeter group
associated with L. That is, G is the group given by the presentation

G D
˝
s 2L.0/ j s2

D 1 for all s 2L and Œs; s0�D 1 for all fs; s0g 2L.1/
˛

The group G acts properly and cocompactly on the Davis complex X associated with L,
which happens to be the unique CAT.0/ cube complex whose link is isomorphic to L

at each vertex (see Lazarovich [16]).

The group G is hyperbolic since L has no isometrically embedded geodesic of
length 2� (when considered with the spherical metric), and it is one-ended since the
link L does not have a separating simplex. The hyperplane stabilizers are isomorphic
to the right-angled Coxeter groups associated with the link of a vertex in L, which
are 6–cycle graphs in our case. Thus, the hyperplane stabilizers are Fuchsian groups,
which implies that G has enough codimension-1 surface subgroups.
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Fix some vertex x 2 X , and let p be the projection map from @X to its link,
Link.x;X/, which assigns to each boundary point � the direction in Link.x;X/
of the unique geodesic that connects x to � . Since X has extendable geodesics,
one can lift any curve on Link.x/ to the boundary @X . Therefore, the induced map
�1.@X/! �1.Link.x;X//'Z2 is onto, and the boundary @G is not homeomorphic
to S2.

Acknowledgements The authors would like to thank Michah Sageev for his support
and helpful comments. We also thank Antoine Clais and Jason Manning for finding
a mistake in a previous version of this paper. Beeker is supported by ISF grant
1941/14. Lazarovich acknowledges the support received by the ETH Zurich Postdoctoral
Fellowship Program and the Marie Curie Actions for People COFUND Program.

2 Preliminaries

We begin by a survey of definition and results concerning CAT.0/ cube complexes
and quasiconvex subgroups of hyperbolic groups. For a more complete survey, see
Sageev [19].

2.1 CAT.0/ cube complexes and hyperplanes

Definition 2.1 (CAT.0/ cube complexes) A cube complex is a complex made by
gluing unit Euclidean cubes (of varying dimension) along their faces using isometries.
A cube complex is CAT.0/ if it is CAT.0/ with respect to the quotient metric induced
by endowing each cube with the Euclidean metric (see [8]).

As was first observed by Sageev [18], CAT.0/ cube complexes naturally carry a
combinatorial structure given by the associated hyperplanes and halfspaces. We now
recall their definition and properties.

Definition 2.2 (hyperplanes) Let X be a CAT.0/ cube complex. The equivalence
relation on the edges of X generated by e � e0 when e and e0 are parallel edges in a
square of X is called the parallelism relation. The equivalence classes of edges under
the parallelism relation are the combinatorial hyperplanes of X . The convex hull of
the midpoints of the edges of a combinatorial hyperplane is called a hyperplane. We
denote the set of hyperplanes in X by yHD yH.X/.

The main features of hyperplanes are summarized in the following.
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Proposition 2.3 Let X be a CAT.0/ cube complex. Then every hyperplane yh 2 yH is
naturally a CAT.0/ cube complex of codimension-1 in X , and X n yh has exactly two
components.

Definition 2.4 The components of X n yh are the halfspaces of X associated to (or
bounded by) yh. The set of halfspaces is denoted by H D H.X/. There is a natural
map yW H! yH , which maps each halfspace to its bounding hyperplane. The set of
halfspaces also carries a natural complementation involution �W H!H , which maps
each halfspace h to the other component h� of X n yh.

2.2 Cubulating hyperbolic groups

Recall the following definitions about quasiconvex subgroups of Gromov hyperbolic
groups.

Definition 2.5 A quasiconvex subgroup H of a hyperbolic group G is codimension-1
if G=H has more than one end. The group G has enough codimension-1 subgroups if
every two distinct points in @G can be separated by the limit set of a codimension-1
quasiconvex subgroup.

By results of Sageev [18], Gitik, Mitra, Rips and Sageev [11] and Bergeron and Wise [3]
we have the following.

Theorem 2.6 Let G be a hyperbolic group with enough codimension-1 subgroups,
then G acts properly cocompactly on a finite-dimensional CAT.0/ cube complex whose
hyperplane stabilizers belong to the family of codimension-1 subgroups.

This theorem is the starting point for our proof: since the group G in Theorem 1.3 is
assumed to have enough codimension-1 surfaces subgroups, it therefore acts properly
and cocompactly on a finite-dimensional CAT.0/ cube complex X with surface group
hyperplane stabilizers. The proof of the main theorem is then based on understanding
how the limit sets of hyperplanes interact and how they determine the topology of the
boundary of G .

Recall that any quasiconvex subgroup H in G is itself a hyperbolic group and there is
a well-defined homeomorphic embedding @H ! @G whose image is the limit set of
H in @G . In particular, in our situation, the stabilizer of each hyperplane yh in X acts
properly cocompactly on the hyperplane and thus is a quasiconvex surface subgroup.
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Its boundary is therefore a circle, which embeds as the limit set of yh in @G D @X . We
denote this limit set by @yh.

However, for halfspaces we have to distinguish between two kinds of limit sets: the
closed limit set @h and the open limit set @ıh. The former is simply the limit set of h
as a subset of X , while the latter is the set of all geodesic rays in h which do not stay
at a bounded distance from yh. Equivalently, we have @hD @yht @ıh. As their names
suggest the open (resp. closed) limit sets are indeed open (resp. closed) subsets of @G .
Moreover, we have the following.

Lemma 2.7 The open limit sets of halfspaces form a basis for the topology of
@G D @X .

Proof Let x0 be a fixed vertex in X . Identify @X with the visual Gromov boundary
from x0 . Let � 2 @X , and let  be a geodesic ray such that  .1/D � and  .0/D x0 .
Let H be the set of halfspaces h such that  nh is nonempty and bounded. The set H
is infinite (since otherwise  traverses only finitely many hyperplanes, which would
contradict that  is unbounded) and does not contain pairs of disjoint halfspaces. Since
X is finite-dimensional, H must contain an infinite descending chain of halfspaces
h1 � h2 � � � � . Moreover, d.x0; hn/!1, and since halfspaces are convex and X

is ı–hyperbolic, it follows that diam.@hn/! 0 (with respect to a visual metric on
the boundary). Moreover, since the hn form a descending chain of halfspaces that
cross  , it follows that  does not remain within a bounded distance from the bounding
hyperplanes yhn for all n. Thus, � 2 @ıhn and @ıhn forms a local basis at � .

Recall from Caprace and Sageev [10] that a cube complex is essential if there is no
halfspace which is at bounded distance from its bounding hyperplane. The rank rigidity
results in [10] imply that if G is a hyperbolic group that acts properly and cocompactly
on a CAT.0/ cube complex X , then there is a convex G –invariant subcomplex Y �X

which is essential, and the open limit set of every halfspace is nonempty. For that
reason, we assume from now on that X is essential.

2.3 Properties of groups at infinity

In this section we define topological properties of spaces and groups at infinity. We
begin with the following general definition.
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Definition 2.8 Let F be a contravariant (resp. covariant) functor from the category of
topological spaces Top to the category of groups Grp. Then, let F1 (resp. F1 ) be
the functor from the category of noncompact topological spaces (with proper continuous
maps as morphisms) that assigns to a space X the direct limit (resp. inverse limit) of
the directed set F.X nK/, where K ranges over the compact subsets in X .

Applying the above definition to the contravariant functor H 1.� IR/, we say that X has
vanishing first cohomology over a ring R at infinity if for every compact set K �X

and every 1–cocycle ˛ on X nK there exists a bigger compact set K0 such that ˛
restricted to X nK0 is a coboundary.

Similar definitions can be defined by applying the above definition to �1 , Hn.� IR/

and H n.� IR/. We recall in particular the following well-studied notion.

A topological space X is said to be simply connected at infinity if for every compact set
K there exists a compact set K0 �K such that any loop in X nK0 is null homotopic
in X nK , ie if the map �1.X nK0/! �1.X nK/ is trivial.

We remark that any space which is simply connected at infinity has, in particular,
vanishing first cohomology over Z=2.

Definition 2.9 Let G be a group of type F (ie has a compact K.G; 1/), and let X

be the universal cover of a compact K.G; 1/ of G . We say that G has vanishing
first cohomology over a ring R at infinity (resp. is simply connected at infinity) if X

has vanishing first cohomology over a ring R at infinity (resp. is simply connected at
infinity).

More generally, if G has a finite-index subgroup H of type F, then we say that G

has vanishing first cohomology over a ring R at infinity (resp. is simply connected at
infinity) if H has vanishing first cohomology over a ring R at infinity (resp. is simply
connected at infinity).

Brick [7] showed that being simply connected at infinity is a property of finitely
presented groups, which is a quasi-isometric invariant.

Lemma 2.10 The notions defined above do not depend on the compact K.G; 1/ and
the choice of a finite-index subgroup.

Proof Let X and Y be two compact K.G; 1/. Then there exists a G–equivariant
homotopy equivalence f W zX! zY which is proper. We prove it for the nth cohomology
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functor. Since this map is proper, it induces a map

H n.Y nK/!H n.X nf �1.K//!H n
1.X /;

and thus, a map H n
1.f /W H

n
1.Y /!H n

1.X /. Similarly, the G –equivariant homotopy
inverse map gW zY ! zX induces a map H n

1.g/W H
n
1.X /!H n

1.Y /. The composition
f ıg induces a map H n

1.f /ıH
n
1.g/W H

n
1.X /!H n

1.X /. Since f ıg is homotopic
to the identity by an homotopy of G –equivariant proper maps, it follows that the induced
map in H n

1 is the identity map. Similarly, H n
1.g/ ıH n

1.f / is the identity map.

Let H1 and H2 be two finite-index type-F subgroups of G . Then H1\H2 is also a
finite-index type-F subgroup of G . Therefore, one can assume H1 �H2 �G . But in
this case any compact K.G; 1/ for H2 has a finite cover which is a K.G; 1/ of H1 .
This completes the proof, since the defined notions only depend on the universal cover
of the finite K.G; 1/.

Since every torsion-free hyperbolic group G is of type F (for example, its Rips complex
for sufficiently large parameter r is the universal cover of a compact K.G; 1/), the
notions defined above can be defined for every torsion-free hyperbolic group. It is a very
well-known question whether hyperbolic groups are virtually torsion-free. However, in
the context of Theorem 1.3, G is a hyperbolic group that acts properly cocompactly on
a CAT.0/ cube complex. It follows from works of Haglund and Wise [12] and Agol [1]
that G is virtually torsion-free. Therefore, the assumption that G has vanishing first
cohomology over Z=2 at infinity is well-defined for G . By replacing G by its finite-
index torsion-free subgroup, it is enough to prove the theorem for torsion-free groups.
Hence, in the remainder of the paper we assume that G is torsion-free.

We remark that, in the context of Theorem 1.3, since G is torsion-free and acts properly
and cocompactly on the CAT.0/ cube complex X it follows that X is the universal
cover of a compact K.G; 1/ (namely X=G ), and thus, by assumption, X has vanishing
first cohomology over Z=2 at infinity.

2.4 Summary of preliminaries

In the previous subsections we have seen that under the assumptions of Theorem 1.3,
one can make further assumptions on G . In this subsection we collect the assumptions
we made on G that will be used in the remainder of the paper:

� The group G is hyperbolic, one-ended and torsion-free.
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� There exists a finite-dimensional CAT.0/ cube complex X such that:
– The group G acts freely and cocompactly on X .
– The hyperplane stabilizers are surface subgroups.
– The cube complex X is essential, and in particular, open limit sets of

halfspaces are nonempty.
– The cube complex X has vanishing first cohomology at infinity.

3 Connectivity and nonseparation by a pair of points

In this section we prove that no pair of points can separate the boundary of a group
that satisfies the assumption of the main theorem (Theorem 1.3).

Recall the following result of Bowditch [6].

Theorem 3.1 Let G be a one-ended word-hyperbolic group such that @G ¤ S1. Then:

(1) The boundary is path connected and locally path connected and has no global
cutpoints.

(2) The following are equivalent:
(a) The group G does not split essentially over a two-ended subgroup
(b) The boundary @G has no local cutpoint.
(c) The boundary @G is not separated by a pair of points.
(d) The boundary @G is not separated by a finite set of points.

The following lemma and corollary apply to the setting of Theorem 1.3, since we
assume that G has enough codimension-1 quasiconvex surface subgroups. However,
we chose to phrase them in a more general setting.

Lemma 3.2 Let G be a one-ended hyperbolic group that contains enough codimension-
1 quasiconvex one-ended subgroups. Then @G is not separated by any pair of points.

Proof Let �; � 2 @G be distinct points. Let yh be a hyperplane such that � 2 @ıh and
� 2 @ıh� . Let AD @h and BD @h� . The closed sets A and B satisfy .Anf�g/[BD

@Gnf�g and .Anf�g/\BD@yh. By Theorem 3.1(1) we know that @Gnf�g is connected,
and thus each of the two halves A n f�g and B is connected (since we assumed
@yh is connected). Similarly, A and B n f�g are connected. Finally, @G n f�; �g D
.A n f�g/[ .B n f�g/ is connected as a union of connected intersecting sets.

By Theorem 3.1(2) we have the following.
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Corollary 3.3 Let G be a one-ended hyperbolic group that contains enough codimen-
sion-1 quasiconvex one-ended subgroups. Then @G does not have any local cutpoints
and is not separated by any finite number of points.

The following lemma is a direct corollary of the above, and will be used later on in
Lemma 9.3.

Lemma 3.4 (no blob lemma) Let M be a compact, path connected, locally path
connected metric space with no cutpoints. Then for all � > 0 there exists ı > 0 such
that for all x 2M and for all A� B.x; ı/ there is at most one component of M nA

which is not contained in B.x; �/.

Proof Assume for contradiction that there is � > 0 such that for all n 2N there is a
point xn 2M and a subset An � B

�
xn;

1
n

�
and two distinct components Bn and Cn

of M nAn which have points bn and cn , respectively, outside B.x; �/. By passing to
a subsequence if necessary, we may assume that the sequences xn , bn and cn converge
to x , b and c , respectively. Since d.bn;xn/ > � (resp. d.cn;xn/ > � ) we deduce that
d.b;x/� � (resp. d.c;x/� � ).

The space M has no cutpoint, therefore we can connect b and c with a path  that
does not pass through x . Since An! x , for n big enough An is disjoint from  . By
local path connectivity, for n big enough bn and b (resp. c and cn ) can be connected
by a short path b (resp. c ) that avoids An . The concatenated path b �  � c from
bn to cn avoids An and thus contradicts the assumption that Bn and Cn are distinct
components of M nAn .

4 Outline of the proof of Jordan’s theorem

The aim of this section is to provide a short outline of the proof that any Jordan curve
on @G separates. From this section on, let G and X be a group and a CAT.0/ cube
complex satisfying the assumptions made in Section 2.4.

We first recall Jordan’s original proof of the Jordan curve theorem. Let P be a polygonal
curve. One can associate a parity function to P which, for a point x 2 R2 nP and
a generic ray l starting at x , counts the number of intersections of l with P mod 2.
It is easy to see that this parity function is constant on the connected components of
R2 nP . Now, for a Jordan curve J , one approximates J with polygonal curves Pn ,
and proves that the sequence of the parity functions of the polygonal curves Pn has a
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limit which is constant on connected components of R2 nJ (and does not depend on
the choice of approximating polygonal curves). The final crucial step is to show that
this parity function indeed obtains two values, which shows that R2 nJ has at least
two components. A more subtle point in the proof of Jordan’s theorem is the proof that
each of the two parity regions is connected, but luckily we will not need to prove this,
since we are only interested in showing that the Jordan curve separates. The details of
Jordan’s proof of his theorem can be found in a paper by Hales [13].

The main idea in our proof is to replace polygonal path approximations with “piecewise
hyperplane paths” (or “PH paths”). Those are paths in @X which are piecewise subseg-
ments of limit sets of hyperplanes (which are homeomorphic to circles). In Section 8
we give a precise definition and show that every Jordan curve can be approximated by
PH curves.

In order to obtain a parity function we first approximate the PH paths by “grids”.
Roughly speaking a grid is a collection of hyperplanes which are connected along
“connectors”. Precise definitions and examples are given in Sections 5.1 and 5.2. In
Section 6 we describe how, given an (oriented) grid, one can assign a 1–cocycle
(over Z=2) which is defined in X outside a large enough ball. Using the vanishing of
the first cohomology over Z=2 at infinity, one can find a 0–chain defined outside a
bigger ball in X whose coboundary is this 1–cocycle. The 0–chain extends to a map
which is defined on the boundary except at the grid. We call it “the parity function of
the grid”. Its construction and properties are discussed in Section 7.

In Section 9, we show how one obtains a parity function of a PH curve by taking the
limit of the parity functions of approximating grids. We then define the parity function
for a Jordan curve, by taking the limit of the parities of a sequence of approximating
PH curves.

The crucial part, as in Jordan’s proof, is to show that the limiting parity obtains two
values. This is done in the final section, Section 10, by analyzing how (certain) PH
curves intersect a given hyperplane. This is strongly based on Proposition 7.7, which
analyzes the ways in which two hyperplanes can intersect.

5 Intersections of hyperplanes

Since our proof involves studying intersections of hyperplanes which have surface
group stabilizers, we begin by recalling the following well-known elementary fact
about surface groups.
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Fact Finitely generated subgroups of surface groups are one of the following: trivial,
cyclic, free or of finite index.

Recall that the intersection of two quasiconvex subgroup of a hyperbolic group is
quasiconvex [20], and the limit set of the intersection is the intersection of limit sets
of the two subgroups [11]. Since our hyperplane stabilizers are quasiconvex surface
subgroups, any two intersecting hyperplane stabilizers do so on either a trivial, cyclic,
free or finite-index quasiconvex subgroup. This means that the intersection of their
limit sets is either empty, a pair of points, a Cantor set or the whole circle.

5.1 Connectors

Let yh and yk be two intersecting hyperplanes. A connector is a pair .C; fyh;ykg/, which
by abuse of notation we will simply denote by C , where C is a nonempty clopen
proper subset ∅¤ C ¨ @yh\ @yk. In particular, @yh\ @yk is not the whole circle. We say
that the connector C is supported on the hyperplanes yh and yk.

Connectors .C1; fyh1;yk1g/ and .C2; fyh2;yk2g/ are disjoint if either fyh1;yk1g\f
yh2;yk2gD∅

or C1\C2 D∅.

Let I1; I2; : : : ; In be disjoint intervals in @yh whose endpoints are disjoint from @yh\@yk

and such that C D @yh \ @yk \
S

j Ij . To each interval Ij we assign the number
typeyh.Ij / D 1 2 Z=2 if the two endpoints of Ij are in different sides of yk, and
typeyh.Ij /D 0 otherwise.

Next, we extend this definition to the connector C by assigning its type in yh to be

typeyh.C /D
nX

jD1

typeyh.Ij / 2 Z=2:

It is easy to verify that this definition depends only on C , yh and yk and does not
depend on the choice of the open cover by intervals I1; : : : In (by passing to a common
subdivision of the two open covers). Notice that any nonempty clopen subset of a
connector is a connector and that if P is a clopen partition of a connector C , then
typeyh.C /D

P
D2P typeyh.D/.

Finally, we define the type of C by type.C; yh;yk/ D .typeyh.C /; typeyk.C //. We will
later show in Proposition 7.7 that the only possible types, under our assumptions, are
.0; 0/ and .1; 1/.
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5.2 Grids and oriented grids

Let yh be a hyperplane and let yk1; : : : ;ykn be a collection of (not necessarily distinct)
hyperplanes that intersect yh. Let Cyh D fC1; : : : ;Cng be a set of disjoint connectors
such that each Ci is supported on yh and yki . The choice of Cyh is admissible ifP

i typeyh.Ci/D 0.

Remark 5.1 The following examples show how this definition behaves for nD 0; 1; 2:

� If nD 0, then Cyh D∅, and it is admissible.

� If nD 1, then Cyh D fC1g is admissible if and only if typeyh.C1/D 0.

� If nD 2, then CyhDfC1;C2g is admissible if and only if typeyh.C1/D typeyh.C2/.

We comment at this point that admissible sets of connectors correspond to trivial classes
in the first cohomology at infinity of yh over Z=2 (which is isomorphic to Z=2), and in
fact they are the coboundary (at infinity) of exactly two 0–chains. We call an extension
of such a 0–chain to the boundary an “orientation” for yh. We make this comment
explicit, avoiding the use of cohomology at infinity, in the following definition and
claim.

Definition 5.2 Let yh be a hyperplane and let Cyh be an admissible collection of disjoint
connectors on yh. A function ˛

@yhW @
yhn
S

Cyh!Z=2 is called an orientation if for each
� 2 @yh there exists an open neighborhood V of � in @yh such that either

� V intersects exactly one connector C 2Cyh which is supported on yh and another
hyperplane yk, and the function ˛

@yh on V nC is the characteristic function of @k
of an orientation k of the hyperplane yk (which depends on V ), or

� V does not intersect any connector and ˛
@yh is constant on V .

Claim 5.3 Given a hyperplane yh and an admissible collection of disjoint connec-
tors Cyh , there are exactly two orientations ˛

@yhW @
yh n
S

Cyh! Z=2, and they differ by
the constant function 1.

Proof Since Cyh is a finite set of disjoint closed subsets of @yh, one can find a partition
I1; : : : ; In of the circle @yh into subintervals whose endpoints �0; �1; : : : ; �n D �0 are
disjoint from the connectors Cyh , and each interval intersects at most one connector.
Take �0 , the joint endpoint of I1 and In , and define ˛

@yh.�0/ 2 Z=2 arbitrarily. We
show that this choice defines ˛

@yh uniquely.
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yh

yh

yk1 yk2

yh1
yh2

yhn

: : : : : :

Cn

C1

C2
C1 C2

yh3

Figure 2: Examples of grids, from left to right, Examples 5.5, 5.6 and 5.7.
The hyperplanes are shown in dotted lines. The connectors and an arbitrary
choice of orientation are the thick solid lines.

For each interval Im , if Im intersects a connector C then we define typeyh.Im/ WD

typeyh.Im \ C /, and if it does not intersect any connector we set typeyh.Im/ D 0.
The assumption that Cyh is admissible amounts to saying that

Pn
jD1 typeyh.Ij / D 0.

Now one can define the function ˛
@yh on the endpoints of the partition by ˛

@yh.�m/D

˛
@yh.�0/C

Pm
jD1 typeyh.Ij /.

Let Im be one of the intervals. If Im does not intersect any connector then let ˛
@yh

be the constant function ˛
@yh.�m�1/ D ˛@yh.�m/ on Im . Otherwise, Im intersects a

connector C that is supported on yh and yk. Since ˛
@yh.�m/�˛@yh.�m�1/D typeyh.Im/,

there is an orientation k of yk such that ˛
@yh is equal to 1@k on �m�1 and �m . Thus we

can define ˛
@yh D 1@k on Im .

Clearly this construction satisfies the required condition. Moreover, since the construc-
tion of this function is invariant under subdivisions of the partition I1; : : : ; Im , we
conclude that it is the unique function that satisfies the required conditions.

Definition 5.4 (grids and oriented grids) A grid � is a pair .H ;C / of a finite
collection of hyperplanes H and a finite collection of disjoint connectors C which
are supported on hyperplanes in H , satisfying that for each yh 2H the set Cyh of the
connectors in C which are supported on yh is admissible.

An oriented grid � D .H ;C ; f˛
@yh j
yh 2H g/ is a grid .H ;C / together with a choice

of a orientations ˛
@yh for each yh 2H .

Before we proceed to the construction of the cocycle we give the three main examples
of grids that we will use. See Figure 2 and compare with Remark 5.1.

Example 5.5 (a hyperplane grid) The grid consisting of one hyperplane H D fyhg

and no connectors.
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Example 5.6 (an arc grid) The grid consisting of three hyperplanes H D fyh;yk1;yk2g

and two disjoint connectors C1 and C2 of yh with yk1 and yk2 , respectively, such that
type.Ci ; yh;yki/ D .1; 0/. We remark that we will see in Proposition 7.7 that .1; 0/
connectors cannot exist under our assumptions, and hence arc grids cannot occur.

Example 5.7 (a cycle grid) The grid H consisting of cyclically intersecting hyper-
planes fyh1; : : : ; yhng and disjoint connectors C D fC1; : : : ;Cng such that each Ci is
supported on yhi and yhiC1 (mod n) and satisfies type.Ci ; yhi ; yhiC1/D .1; 1/.

We end this section with the following remark.

Remark 5.8 If we replace a connector of a grid by its partition into disjoint clopen
sets we obtain a new grid. An orientation for the original grid will remain an orientation
for the new. In what follows, this operation will not make any substantial difference,
thus we may identify two grids if they have the same hyperplanes and a common
partitioning of their connectors.

6 Constructing cocycles

To an oriented grid � D .H ;C ; f˛
@yh j
yh 2H g/ we assign a 1–cocycle defined outside

a ball in X in several steps.

Step 1 Fix x0 2X . Let C 2 C be a connector supported on yh and yk. Since yh\yk
is quasi-isometric to a tree, there exists a big enough ball B.x0;R/ in X such that
C can be written as a finite union of limit sets of the components of yh\yk nB.x0;R/.
Let R0 > 0 be big enough such that the above is true for all C 2C .

By Remark 5.8, we may assume that the connectors are exactly the limit sets of these
components. We denote the component of yh\yk nB.x0;R0/ that corresponds to C

by LC .

Step 2 For each yh 2 H let Tyh be the set of all halfspaces t 2 yH.yh/ in the cube
complex yh (ie tD yh\ h0 for some halfspace h0 in X ) that satisfy:

� t\B.x0;R0/D∅.

� @t is contained in a neighborhood V as in Definition 5.2, and in particular it
intersects at most one connector C ;
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� The halfspace t does not intersect any of the sets LC of the connectors in Cyh
except if @t intersects a connector C supported on yh and yk, in which case
t\ykD t\ LC , and in particular t\ LC is a hyperplane in the cube complex t.

By Lemma 2.7, for every � 2 @yh there exists t 2 Tyh such that � 2 @ıt. Let R1 >R0

be such that B.x0;R1/ contains yh n
S

t2Tyh
t for all yh 2H .

Step 3 We define the function ˛yhW yh
.0/ nB.x0;R1/!Z=2 in the following way. On

each halfspace t2 Tyh either @t does not intersect any connector, in which case ˛
@yhj@t is

constant, and we define ˛yhjt to be the constant function with the same value. Otherwise,
@t intersects exactly one connector C which is supported on yh and yk, and there exists
a halfspace k bounded by yk such that ˛

@yhj@t D 1@kj@t . We define ˛yhjt D 1kjt .

Since vertices in a hyperplane correspond to edges in the cube complex, we identify
the function ˛yh with the corresponding function on the edges of X nB.x0;R1/ which
are transverse to yh.

Claim 6.1 The sum ˛ D
P
yh2H

˛yh is a 1–cocycle on X nB.x0;R1/.

Proof Let S be a square in X nB.x0;R1/, and let yh and yk be the two hyperplanes
which are transverse to the edges of S . Let eyh and e0

yh
(resp. eyk and e0

yk
) be the pair of

opposite edges of S which are transverse to yh (resp. yk) (see Figure 3). We have to
show that

˛.eyh/C˛.e
0

yh
/C˛.eyk/C˛.e

0

yk
/D 0:

In other words, we have to show that if one pair of opposite edges in S has different
values of ˛ then so does the other pair.

Assume that the two opposite edges of S which are transverse to yh have different
values of ˛ , ie

˛.eyh/C˛.e
0

yh
/D 1:

Then, if we view eyh and e0
yh

as vertices of yh, there exists a halfspace t 2 Tyh of yh such
that the two vertices are in t, and there exists a connector C such that these two vertices
are separated by the hyperplane LC \ t of t. Thus, the other pair of opposite edges eyk
and e0

yk
of S , viewed as an edge in yh are transverse to the hyperplane LC \ t of t. This

implies that yk 2H and the connector C which correspond to LC is supported on yh
and yk. Since LC also separates eyk and e0

yk
, now viewed as vertices in yk, they must also

have different values of ˛ .
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eyh
e0
yh

e0
yk

eyk

yh

yk

S

LC

Figure 3: A square S , and the hyperplanes yh and yk that cross it. The 1–
cocycle ˛ obtains the value 1 on the top and right edges. If, on one pair of
opposite edges, ˛ obtains different values, then so it does on the other pair.

We remark that a priori the definition of ˛ depends on R0 and R1 . However, any two
such 1–cocycles coincide outside a large enough ball in X .

7 The parity function of a grid

Let � D .H ;C ; f˛
@yh j
yh 2H g/ be an oriented grid, and let ˛ be the 1–cocycle on

X nB.x0;R1/ defined in the previous section. Since X has trivial first cohomology
over Z=2 at infinity, we deduce that there is R>R1 such that ˛ is a coboundary in
X nB.x0;R/. That is, there exists a 0–chain � W X .0/ nB.x0;R/! Z=2 such that
ı� D ˛ . Since X is one-ended (ie connected at infinity), any two such 0–chains are
equal up to a constant outside a possibly bigger ball. We call the function � the parity
function of the grid � .

Let us denote by @� the set f� j ˛
@yh.�/D 1 for some yh 2H g[

S
C2C C � @X . For

example, in Figure 2, the set @� are the thick solid lines.

Lemma 7.1 The limit of the 0–chain � along geodesic rays defines a function on
@X n @� , which we denote as well by � . This function is constant on connected
components of @X n @� , and in particular continuous.

Proof It is enough to prove that any point in @X n @� has a neighborhood V in
X [ @X on which � is constant.

For a point � 2 @X n @� there is a neighborhood halfspace t disjoint from @� and
from B.x0;R/. This halfspace, by definition, does not meet the cocycle ˛ and thus
the parity function on t is constant.
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Since the parity function is defined uniquely up to constants, it makes more sense to con-
sider the function �� W .@Xn@�/2!Z=2 (similarly, �� W .X .0/nB.x0;R//

2!Z=2)
given by ��.x;y/D �.x/��.y/. Moreover, for a path P whose endpoints are in
the domain of � we define ��.P / to be the value of �� on the pair of endpoints
of P .

Example 7.2 Let yh be a hyperplane and let � D .H D fyhg;C D∅; ˛
@yh D 1/ be the

hyperplane grid described in Example 5.5. Then ˛ D 1yh , @� D @yh, and the parity
function is � D 1h for some choice of halfspace h of yh, which extends to the boundary
to the function � D 1@hj@Xn@yh . We denote this parity function by �yh . Similarly, the
function ��yh is the function that returns 0 if the two points are on the same side of yh,
and returns 1 if they are separated by yh.

Remark 7.3 Using this notation, we can rewrite the notation introduced in Section 5.1
as follows. If C is a connector supported on yh, yk and Ij is an interval on yh as in the
definition of type.C /. Then

typeyh.Ij /D��yk.Ij /

The next lemma follows from the definitions.

Lemma 7.4 Let �1 and �2 be two oriented grids with disjoint or identical connectors.
Then we denote by �1C�2 the pair � D .H1 [H2;C14C2/. The pair � is a grid,
and there exists an orientation on � which satisfies ˛

@yhD ˛1;@yhC˛2;@yh when all of the
functions are defined. Moreover, the cocycle (resp. the parity function) associated to �
is the sum of the cocycles (resp. the parity functions) associated with �1 and �2 .

Lemma 7.5 Let � 2@�n
S

C2C C and let yh1; : : : ; yhn2H be all the hyperplanes such
that � 2 @yhi and ˛

@yhi
.�/D 1. Then there is a neighborhood V of � in X [ @X n @�

on which

�� D

nX
iD1

��yhi
:

Proof Let k be a halfspace neighborhood of � , disjoint from the connectors C and
from B.x0;R/ such that for i D 1; : : : ; n, k\yhi 2 Tyhi

(see Step 2 in Section 6). The
definition of ˛ and ˛

@yhi
.�/D 1 imply that ˛.yh\k/D 1. Thus, on k the cocycle ˛ is the

sum of the corresponding hyperplane cocycles (see Example 7.2), ie ˛ D
Pn

iD1 1yhi\k
,

and the lemma follows.
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By subdividing a path which avoids the connectors of a grid into small enough segments
and applying the previous lemma, one can deduce the following.

Corollary 7.6 Let P be a path in @X whose endpoints are in @X n @� and which
is disjoint from

S
C2C C . For each yh 2 H let Jyh;1; : : : ;Jyh;n be n D n.yh/ disjoint

subintervals of P such that P \ ˛�1
@yh .1/ �

Sn
jD1 Jyh;j , where the endpoints of each

subinterval Jyh;i are disjoint from @yh and its interior intersects @yh in ˛�1

@yh
.1/. Then

��.P /D
X
yh2H

nX
jD1

��yh.Jyh;j /:

Proposition 7.7 Under the assumptions of Section 2.4, there is no connector of type
.1; 0/.

Proof Assume that yh and yk have a connector C such that type.C; yh;yk/D .1; 0/. By
the dynamics of Stab.yh/ on @yh we can find such yk and C in any small open set in @yh.

�

�

h

h�

P1

P2

I1 I2

yh

yk1
yk01

yk2
yk02

C2 C 0
2

C 0
1C1

Figure 4: The hyperplanes yh and yki and yk0i are drawn as dotted lines. The
paths P1 and P2 between � and � are shown. The boundary of the grid
which contradicts the existence of type-.1; 0/ connectors is the pair of solid
horizontal lines.

Since X is assumed to be essential, the open limit sets of halfspaces @ıh and @ıh�

are nonempty. Let � and � be points in @ıh and @ıh� , respectively. By the cyclic
connectivity theorem (by Ayres [2] and Whyburn [21]), since our space has no cutpoints
we can find two disjoint paths P1 and P2 connecting � and � (see Figure 4). Let
Ai D @yh\Pi for i D 1; 2.
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Let I1; I2; : : : ; In be disjoint intervals of yh disjoint from A2 and such that the union
of their interiors contain A1 . Let ı > 0 be such that ı–neighborhoods of the endpoints
of I1; : : : ; In are pairwise disjoint and disjoint from P1 [ P2 . For each Ii find
two hyperplanes yki and yk0i contained in the ı–neighborhoods of the two endpoints
of Ii , and two connectors Ci and C 0i supported on yh and on yki and yk0i , respectively,
with type.Ci ; yh;yki/D type.C 0i ; yh;yk

0
i/D .1; 0/, as described above, in each such open

neighborhood.

The grid .H D fyh1;yk1;yk
0
1
; : : : ;ykn;yk

0
ng; C D fC1;C

0
1
; : : : ;Cn;C

0
ng/ is the sum of arc

grids described in Example 5.6. Orient the grid such that ˛
@yh is 1 on A1 (and 0

on A2 ).

By Corollary 7.6 applied to P1 (with n.yh/ D 1, Jyh;1 D P1 and n.yki/ D n.yk0i/ D 0

for i D 1; : : : ; n), we get that �.�/� �.�/ D ��.P1/ D ��yh.P1/ D 1 because P1

intersects the grid exactly as it would intersect the hyperplane grid yh, and we recall
that � and � are on different sides of yh, thus have different parity.

On the other hand, P2 does not intersect the grid, and thus �.�/��.�/D��.P2/D 0.
This contradicts the existence of connectors of type .1; 0/.

The following useful corollary is a direct consequence of Proposition 7.7.

Corollary 7.8 For two hyperplanes yh and yk, assume that there exists two points of @yh
on different sides of @yk. Then the hyperplanes yh and yk share a .1; 1/ connector.

8 Approximations of curves and arcs

Let J be a Jordan curve or arc. In this section, we assume that the Jordan arc J is
parametrized by Œ0; 1�. Given a parameter t , the associated point is J.t/; conversely, if
x is a point on J its parameter will be denoted by J�1.x/. A segment between two
points � and � on the arc J is denoted Œ�; ��J .

Definition 8.1 A piecewise-hyperplane curve or PH curve (resp. PH arc) is a (not
necessarily simple) parametrized curve (resp. arc) P on @X which has a partition into
finitely many oriented segments I1; : : : ; In such that:

(1) Each segment Ii is a segment of the boundary @yh of some hyperplane yh. In
fact, the choice of the hyperplane yh is implicitly part of the data, but to avoid
cumbersome notation we will simply write Ii � @yh and say that Ii is supported
on yh.
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(2) Any two segments which are supported on the same hyperplane yh are disjoint.

(3) For all 1� i � n (resp. 1� i < n) the last point of Ii is the first point of IiC1 .
It is called a vertex of P , and we say that it is supported on the pair .yh;yk/, where
Ii and IiC1 are supported on yh and yk, respectively.

(4) For every vertex � supported on .yh;yk/, the pair .yh;yk/ supports a .1; 1/ connector.

An �–approximating PH curve (resp. arc) for J is a PH curve (resp. arc) which is at
distance less than � from J with respect to the sup metric.

The following lemmas show that given a Jordan curve one can construct PH approxi-
mations of the curve with certain technical restrictions that will be useful later on. We
first prove this in the case of an arc.

A set H of limit sets of halfspaces is a ı–cover of a set S in the boundary if it is a
cover of S and if every element in H has diameter less than ı .

Lemma 8.2 Let J be a Jordan arc such that the two endpoints �0 and �1 of J are on
the boundaries of the hyperplanes @yk0 and @yk1 , respectively. Let yh be a hyperplane
such that @yh does not intersect J except maybe for its endpoints. Let K be a finite set
of hyperplanes. For every � > 0, there exists ı such that for any two distinct halfspaces
@ıh0 and @ıh1 not in K of diameter less than ı covering �0 and �1 , respectively, there
exists a ı–cover H D f@ıhig of J and an �–approximating PH arc P supported onS
@yhi such that

� the set H is disjoint from K ,

� P has at most one segment on each @yhi ,

� the endpoints of P lie on @yk0 and @yk1 ,

� the first and last segments of P are supported on @yh0 and @yh1 , respectively,

� the hyperplanes yh0 and yh1 share .1; 1/ connectors with yk0 and yk1 , respectively,
and

� P intersects @yh only on @yh0 and @yh1 .

Proof Let 0< ı < �
3

be such that for any two points � and � on J at distance less
than ı , the segment Œ�; ��J has diameter less than �

2
, and such that for i D 0; 1 there

exists a point on @yki at distance greater than ı from �i .
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Let @ıh0 and @ıh1 be open limit sets of halfspaces of diameter less than ı covering
�0 and �1 , respectively. Note that by the choice of ı , there are points of @yki in both
sides of @yhi , which by Corollary 7.8 ensures that @yhi and @yki share a .1; 1/ connector.

Let ı0<ı be such that J n.@ıh0[@
ıh1/ is at distance more than ı0 from @yh, �0 and �1 ,

and such that no halfspace in K has diameter less than ı0 . Let H0 D f@ıh2; : : : @
ıhng

be a minimal finite ı0–cover of J n .@ıh1 [ @
ıh1/. Then H D f@ıh0; : : : @

ıhng is a
minimal finite ı–cover of J such that

� the set H disjoint from K ,

� the only limit set containing �0 is @ıh0 ,

� the only limit set containing �1 is @ıh1 , and

� the only limit sets that may intersect @yh are @ıh0 and @ıh1 .

Let ı00 be smaller than the diameter of any @yhi .

For i D 0; : : : ; n define yi D sup J�1.@ıhi/ 2 Œ0; 1�. We define a successor function
S as follows: S.i/D j , where J.yi/ 2 @

ıhj and yj is maximal under this condition.
Note that the function satisfies yS.i/ > yi , unless i D 1 (in which case yi D 1). These
conditions ensure that there exists p such that �1 2 @ıhSp.0/ D @

ıh1 .

For all 1 < i � p , let vi be an intersection point of @yhS i�1.0/ and @yhS i .0/ . Let
@ıh0

1
; : : : ; @ıh0p be distinct hyperplanes of diameter less than ı00 that cover v1; : : : ; vp ,

respectively. By the choice of ı00 they do not belong to K , do not intersect @yh and do
not contain �0 or �1 . Moreover, each of @ıhS i�1.0/ and @ıhS i .0/ contains points on
both sides of @yh0i . By Corollary 7.8, @yh0i shares .1; 1/ connectors with both @yhS i�1.0/

and @yhS i .0/ . Let v0i and v00i be in the intersection of @yh0i with @yhS i�1.0/ and @yhS i .0/

respectively. Let v00
0

(resp. v0
pC1

) be the point in the intersection of @yh0 and @yk0 (resp.
@yh1 and @yk1 ) which is closest to �0 (resp. �1 ). Let Ii be one of the two intervals of
@yhS i .0/ with endpoints v00i and v0

iC1
. Let I 0i be one of the two intervals of @yh0i with

endpoints v0i and v00i .

Let � be such that subpaths of J parametrized by Œx��;xC�� have diameter less than ı
and yS.i/�yi > 2� for all i ¤ 1. We obtained a PH arc P D .I0; I

0
1
; I1; : : : ; I

0
p; Ip/,

which we parametrize continuously, such that v0i and v00i have parameters yS i�1.0/� �

and yS i�1.0/C �, respectively (with the convention that the parameter of v00
0

is 0 and
of v0

pC1
is 1).

It remains to show that the path P is at distance � from J with respect to the sup metric.
Points in Ii and J.yS i .0// are in @hS i�1.0/ and are thus at distance less than ı . The
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points J.yS i�1.0// and J.yS i .0// belong to @ıhS i .0/ and thus are at a distance less
than ı , which by the definition of ı implies that the path J.ŒyS i�1.0/;yS i .0/�/ connect-
ing them on J has diameter less than �

2
, and thus also J.ŒyS i�1.0/C �;yS i .0/� ��/.

Hence Ii and J.ŒyS i�1.0/C �;yS i .0/� ��/ are at distance less than �
2
C 3ı < � .

Similarly, I 0i is at distance less than 2ı from J.yS i�1.0//, and so

J.ŒyS i�1.0/� �;yS i�1.0/C ��/

are at distance less than 3ı < � from I 0i . This completes the proof that P is an �–
approximation of J that satisfies the requirements of the lemma.

In what follows we will denote by Œx;y�yh one of the two subsegments of the limit set
of a hyperplane @yh that connect x and y (which are not necessarily distinct).

Definition 8.3 Given a path J and a hyperplane @yh, a ı–bypass of x 2 J \@yh on @yh
is a segment Œx;y�yh of @yh with y 2 J \ @yh such that Œx;y�yh can be partitioned into a
finite union

Sn�1
iD0 Œx

i ;xiC1�yh (with x0 D x and xn D y ) of disjoint segments (except
at their extremities) of diameter less than ı , with extremities in J \ @yh and such that
for every � 2 Œxi ;xiC1�

@yh\J we have J�1.�/� J�1.xiC1/. A ı–bypass Œx;y�yh is
maximal if J�1.y/ is maximal amongst all ı–bypasses of x (ie if Œx;y0�yh is another
ı–bypass then J�1.y0/� J�1.y/). A maximal bypass is degenerate if x D y .

Remarks 8.4 Let J be a path.

(1) If Œx;y�yh is a ı–bypass, then J�1.�/� J�1.y/ for all � 2 Œx;y�yh\J .

(2) If Œx;y�yh is a maximal ı–bypass, then for any z 2 Œx;y�yh \ J , the segment
Œz;y�yh is a maximal ı–bypass.

(3) There exists � such that for all maximal ı–bypass Œx;y�yh , the segment of J

parametrized by .J�1.y/;J�1.y/C �/ does not intersect @yh.

(4) If two maximal ı–bypasses Œx;y�yh and Œx0;y0�yh intersect, then y D y0 . Indeed,
otherwise we can suppose that J�1.y0/ < J�1.y/. From (1), the element y

cannot belong to Œx0;y0�yh , so Œx;y�yh 6� Œx0;y0�yh . Therefore either x0 or y0

belongs to Œx;y�yh ; using (2), we get a contradiction.

(5) For every x 2 J \ @yh there exists a maximal ı–bypass. Indeed, the set of
endpoints y of ı–bypasses Œx;y�yh is closed.
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Definition 8.5 A detour of ı–bypasses is a set of maximal bypasses fŒxi ;yi �yhg

such that for any two bypasses Œxi ;yi �yh and Œxj ;yj �yh , either J�1.yi/ < J�1.xj /

or J�1.yj / < J�1.xi/.

A detour is covering if, for any element z 2 J \ @yh, there is one bypass Œx;y�yh of the
detour such that J�1.x/� J�1.z/� J�1.y/, or, equivalently, J \ @yh�

S
i Œxi ;yi �J .

From Remark 8.4(4), bypasses of a detour are disjoint.

Lemma 8.6 There exists a finite covering detour.

Proof We construct the detour by induction: take the element x of smallest parameter
that is not covered by the detour, and by Remark 8.4(5) add a maximal bypass of x .
Remark 8.4(3) implies that the process finishes in a finite number of steps.

Lemma 8.7 Let J be an arc such that the two endpoints �0 and �1 of J are on the
boundaries of the hyperplanes @yk0 and @yk1 , respectively. Let � > 0 and let yh be a
hyperplane. There exists an �–approximating PH arc P which satisfies the following
two conditions:

� The hyperplanes supporting the first and last segments of P share a .1; 1/
connector with yk0 and yk1 , respectively.

� Any intersection of P with @yh is along a segment of P \ @yh.

Proof Let ı1 < �
9

such that for any two points � and � on J at distance less than ı1
the segment Œ�; ��J has diameter less than �

3
. This ensures that a ı1 –bypass Œx;y�yh

is an �
3
Cı1 –approximation of the segment Œx;y�J (with the natural parametrization

of Œx;y�yh by ŒJ�1.x/;J�1.y/� which agrees with J on the endpoints xi 2 J \ @yh

of its subdivision as it appears in the definition of a ı–bypass). Indeed, Œx;y�yh is a
union of segments Œxi ;xiC1�yh of diameter less than ı1 and with extremities on J with
increasing parameter. By the choice of ı1 , each Œxi ;xiC1�J has diameter less than �

3
.

Since the parameters are increasing, the segments Œxi ;xiC1�J on J are disjoint (except
at their extremities), and each Œxi ;xiC1�yh is an �

3
Cı1 –approximation of Œxi ;xiC1�J .

Let DD fŒx1;y1�yh; : : : ; Œxn;yn�yhg be a finite covering detour of ı1 –bypasses, ordered
by their parameter along the curve J . Let ı2 < ı1 be such that each bypass is at
distance at least 2ı2 from any other. Let ı3 < ı2 be such that each pair of points �
and � on @yh at distance less than ı3 has a path from � to � on @yh with diameter less
than ı2 .
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Let Ji be the segment Œyi ;xiC1�J on J for all i D 0; : : : ; n (where y0 D �0 and
xnC1 D �1 ). Each of the endpoints of Ji are on @yh except maybe for J0 and Jn ,
which are on @yk0 and @yk1 .

Let ı < ı3 be obtained from Lemma 8.2 for all the Ji . Take covers @ıhi;x and @ıhi;y

of xi and yi , respectively, of diameter less than ı , such that the limit sets of their
bounding hyperplanes are all disjoint. It may happen that xi D yi if a bypass is
degenerate, but by taking @ıhi;y small enough, we can ensure that its boundary does
not intersect that of @ıhi;x . Since D is covering, the interior of each Ji does not
intersect @yh.

Using Lemma 8.2, let Pi be an �–approximation of Ji whose first and last segments
are supported on @yhi;y and @yhiC1;x , respectively. Moreover, we may assume that the
�–approximations Pi are supported on distinct hyperplanes. Indeed we can construct
them one after the other and at each step adding all the used hyperplanes to the set K
of Lemma 8.2.

Let �i and �i be the first and last points of Pi , respectively. By construction, the
point �i (resp. �i ) is at distance less than ı from yi�1 (resp. xi ). Thus there is a
segment Œ�i ; �iC1�yh on @yh at distance less than ı2 from Œxi ;yi �yh , and by the choice
of ı2 these paths are disjoint and not reduced to a point (since �i ¤ �iC1 ). Thus
Œ�i ; �iC1�yh is an �

3
Cı1Cı2 < �–approximation of Œxi ;yi �yh . By concatenating Pi and

Œ�i ; �iC1�yh alternatingly, we obtain an �–approximating PH arc of J satisfying the
required properties.

Lemma 8.8 Let J be a Jordan curve, let � > 0 and let yh be a hyperplane. Then there
exists an �–approximating PH curve P such that any intersection of P with @yh is
along a segment of P .

Proof Up to taking � small enough we can assume that the diameter of J is larger
than � .

To approximate a curve, we do the following: if J D @yh, then the approximation is @yh;
otherwise there is a point � 2 J n @yh. Let � < �

2
be such that for any two points � and

� on J at distance less than �, one of the segments of J with extremities � and � has
diameter less than �

2
.

Let k be a halfspace such that @ık contains � , it has diameter less than � and such that
@yk does not intersect @yh. This is possible since � is not on @yh. Let �0 and �1 be two
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points of J \@yk. Let J0 be the path between �0 and �1 of diameter less than �
2

, and let
J1 be the complementary path. Notice that any segment of @yk is an �–approximation
of J0 . Applying Lemma 8.7 to J1 (and the hyperplanes k1 D k2 D k), let P1 be a
ı–approximation of J1 with 0 < ı < � which is less than the diameter of k. The
approximation P1 of J1 begins and ends on k and thus can be closed by a segment to
form an approximation of J . Notice that (2) of Definition 8.1 is ensured by the fact
that k cannot be used in P1 , and (4) follows from Lemma 8.7.

9 The parity function of a Jordan curve

9.1 The parity function of a PH curve

Let P be a PH curve. We assign a parity function to P in the following way. Let ı > 0

be smaller than half the minimal distance between the vertices of P . For each vertex
� of P which is supported on the two hyperplanes yh and yk, let C be a type-.1; 1/
connector which is small enough that in each of @yh and @yk the connector is contained
in an interval which stays in the ı–neighborhood of � (one can find such a connector
using the dynamics of StabG.yh\yk/ on @yh\ @yk). Let � be the grid consisting of the
hyperplanes on which P is supported and the connectors which we assigned to each
vertex of P . We choose the orientation so that outside of the ı–neighborhoods of the
vertices of P , we have P D @� (one can do so, since each connector is of type .1; 1/
and contained in an interval which stays in the ı–neighborhood of the corresponding
vertex).

Lemma 9.1 For � > 0 small enough, there exists ı > 0 such that outside an �–
neighborhood of the vertices of P and outside P , the parity function of � (associated
to ı ) does not depend on the choice of connectors (up to constants).

Proof By Corollary 3.3, for any � > 0 there exists ı > 0 small enough such that any
two points in @X outside the �–neighborhood of the vertices of P can be connected
with a path that stays outside the ı–neighborhood of the vertices of P . We note
that this path satisfies the conditions of Corollary 7.6 and, since it does not enter the
ı–neighborhood of the vertices of P , it does not depend on the choice of connectors.

We deduce the following:

Corollary 9.2 For a PH curve P , the parity �� of the grid constructed above for ı
has a limit as ı! 0 which is defined outside P .
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J

P

P 0

�i �iC1
�iC2�i�1

�0i�1 �0i

�0
iC1

�0iC2
Qi�1

Qi QiC1 QiC2

�i�1
�i

�iC1 �iC2

Figure 5: The Jordan curve J (middle), two approximating PH curves P

(top) and P 0 (bottom) and the transverse auxiliary PH curves Qi

9.2 The parity function of a Jordan curve

We would like to follow the same idea, approximating the Jordan curve J with PH
curves, and taking the limit of their parity functions as the definition of the parity
function of J .

Lemma 9.3 Let J be a Jordan curve. Let � > 0, there exists � > 0 such that for any
two �–approximating PH curves P and zP for J the parity functions of P and zP are
equal (up to constants) outside an �–neighborhood of J .

Proof By the no blob lemma (Lemma 3.4) let �0 be such that outside any set that is
contained in a ball B.�; �0/ there is at most one component which is not contained
in B.�; �/. By local connectedness, let 0 < � < 1

4
�0 be such that any two points in

B.�; �/ can be connected by a path in B
�
�; 1

2
�0
�
.

Let P and zP be two �–approximating PH curves for J . Let �0 > 0 be smaller than
the diameter of the hyperplanes of P and zP , and let P 0 be an �0 approximating PH
curve for J such that the diameter of the hyperplanes of P 0 are smaller than �0 .

It suffices to show that the parity functions of P 0 and P (similarly, zP ) coincide (up to
constants) outside the �–neighborhood of J .

Let �0; �1; : : : ; �n D �0 be a partition of J into intervals of diameter less than � . Let
�i and �0i be the corresponding points on P and P 0 at distance less than � from �i . By
perturbing these points if necessary, we may assume that f�i ; �0ig

n�1
iD0

are 2n distinct
points, and that they are not vertices of P and P 0 (see Figure 5). Since � < 1

4
�0 ,

the interval between �i and �iC1 on P (resp. �0i and �0
iC1

on P 0 ) is contained in
B
�
�i ;

1
2
�0
�
.
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By Lemma 8.8 and the definition of � , connect �i and �0i by a PH arc Qi in B
�
�i ;

1
2
�0
�
.

Form the short closed path Pi by connecting �i , �iC1 , �0i , �0
iC1

along P , QiC1 ,
P 0 , Qi . We note that by the construction, each Pi is contained in B

�
�i ;

1
2
�0
�
.

Let ı < 1
2
�0 be such that the ı–neighborhoods of all the vertices of both P and P 0

and the arcs Qi are disjoint. Choose a connector in the ı–neighborhood of each vertex
(including connectors for the endpoints of Qi with P and P 0 ). Let � , � 0 and �i

be the grids described in Section 9.1 for P , P 0 and Pi . Note that, by construction,
�C� 0 D

P
i �i (in the notation of Lemma 7.4).

Since each Pi is contained in B
�
�i ;

1
2
�0
�

and ı < 1
2
�0 , the boundary @�i of the

corresponding grid is contained in B.�i ; �
0/. This implies that the complement of

each @�i has at most one component which is not contained in the �–neighborhood
of J . Thus, the parity function �i of �i is constant outside the �–neighborhood
of J . If we denote by � and � 0 the parity functions of P and P 0 , respectively,
then, by Lemma 7.4, � �� 0 D

P
i �i . We deduce that � �� 0 is constant outside an

�–neighborhood of J .

This implies the following.

Corollary 9.4 For a Jordan curve J , the parity �� for an � approximating PH curve
has a limit as �! 0, which is defined outside J .

10 Jordan’s theorem

Proposition 10.1 Let P be a PH curve, and let �i be a vertex of P . Let Ji and
JiC1 be the segments of P on @yhi and @yhiC1 , respectively, which are incident to �i .
Assume Ji does not intersect @yhiC1 except at �i . Let Ii be an open interval in @yhiC1

which is disjoint from P and such that one of its endpoints is �i . Then points on Ii

have the same parity with respect to P as any point in h�
iC1

which is close enough to
JiC1 , where hiC1 is the halfspace of yhiC1 which contains Ji .

Proof We write � D �i , J 0 D Ji , J D JiC1 , I D Ii , yh0 D yhi and yh D yhiC1 (see
Figure 6).

Clearly all the points on I have the same parity, because they are connected with a
path that does not meet P , namely a subinterval of I . By Lemma 7.5, around any
point of J different of � , the parity function is the characteristic function of h or h� .
Thus, all the points in h� which are close enough to J have the same parity.
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J 0

JI
@yh

@yh0

�

@yt

A

A1

A2

A3

Figure 6: The two possible cases of the arcs of @yt drawn on the same figure.
Beneath the horizontal, an arc A which does not cross J 0 and connects I

and J . Above the horizontal, a collection of arcs Ai which cross J 0 .

Thus it suffices to find two points, one on I and the other in h� close enough to J ,
that have the same parity.

Let t be a halfspace neighborhood of � which is small enough that t\ .P [ @yh/ �
I [J [J 0 . The connected components of @ytn@yh are arcs which stay on one side of yh.
If one of these arcs A connects I with J and is contained in h� , then since it does
not cross P we deduce that its endpoint on I has the same parity as any other point
on A, and in particular points which are arbitrarily close to J in h� .

If not, let us analyze how the arcs of @yt n @yh0 intersect J 0 . First we observe that only
finitely many arcs of @yt n @yh intersect J 0 . We denote them by A1; : : : ;An .

Let � be the parity function of P , and let �yt be the parity function of the single
hyperplane grid yt, ie �yt is (up to a constant) the characteristic function of @t.

If we follow the segment J 0 , we see that one of its endpoints is in @t and the other
is in @t� . Therefore the difference in the value of �yt between the two endpoints is 1.
On the other hand, by Corollary 7.6, it is the sum over the types of intersections of J 0

with the hyperplane yt. We break this sum apart by arcs Ai :

1D��yt.J
0/D

X
i

typeyh0.Ai \J 0/D
X

i

typeyt.Ai \J 0/D
X

i

��yh0.Ai/;

where the third equality follows from Proposition 7.7. Note that any arc Ai whose
endpoints lie on the same side of � , ie both on I or both on J , contributes 0 to the
sum because its endpoints have the same parity with respect to � .

Therefore, there exists i such that the arc Ai whose endpoints are on I and J and such
that ��yh0.Ai \J 0/D 1. Since Ai intersects P only in J 0 and is contained in @h, it
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follows that points on I have different parity than points in @h which are close enough
to J , from which the desired conclusion follows.

Corollary 10.2 Let P be a PH curve and let �i and �iC1 be two consecutive vertices
of P . Let Ji , JiC1 and JiC2 be the segments of P on @yhi , @yhiC1 and @yhiC1 ,
respectively, which are incident with �i and �iC1 in the obvious way. Assume Ji and
JiC2 do not intersect @yhiC1 except at �i and �iC1 , respectively, and P intersects
JiC1 only at the segment JiC1 . Let Ii (resp. IiC2 ) be an open interval on @yhiC1

which is disjoint from P and one of its endpoints is �i (resp. �iC1 ).

Then Ji and JiC2 are on the same side of yhiC1 if and only if Ii and IiC2 have the
same parity with respect to P .

In other words, if we denote by ��.JiC1/ the difference of parities between Ii and
IiC2 with respect to P and by ��yh.JiC1/ the difference of parities between Ji and
JiC2 with respect to the parity function �yh of the grid defined by yh (see Example 7.2),
then the previous corollary shows that ��.JiC1/D��yh.JiC1/.

Theorem 10.3 Let J be a Jordan curve. There are two points on which the associated
parity function �J takes different values. In particular, J separates @X into at least
two components.

Proof Let �1 and �2 be two distinct points on J , and let A and B be the two arcs
on J that connect �1 to �2 . Let yh be a hyperplane that separates �1 and �2 .

Let r be the distance between A\ @yh and B \ @yh, and let � < r
2

. By Lemma 8.8, let
P be an approximating PH curve for J such that the parity functions �J and � of J

and P , respectively, coincide outside an �–neighborhood of J or P , and such that
P intersects yh along segments of P . It suffices to find two points on @yh which are at
distance � from P with different parity with respect to � . By abuse of notation we
denote by A and B the corresponding approximating arcs on P .

We partition @yh into intervals A1;B1;A2;B2; : : :Am;Bm such that the endpoints of
each Ai and Bi are at distance � from P , and each Ai intersects J only in A and
Bi intersects J only in B .

We denote by �yh the parity function defined by the hyperplane yh. The difference
��yh.A/D��yh.B/D�yh.�1/��yh.�2/D 1 since �1 and �2 are on different sides of yh.
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On the other hand, we can compute it using Corollary 7.6 and the notation introduced
above, and get

1D��yh.A/D

mX
jD1

X
Ji�Aj

��yh.Ji/;

where the second sum runs over all segments Ji of P which are contained in Aj .

By Corollary 10.2, we can replace the sum by

1D

mX
jD1

X
Ji�Aj

��.Ji/D

mX
jD1

��.Aj /;

where ��.Aj / denotes the difference in the parity of the two endpoints of Aj with
respect to � .

From this it follows that one of the intervals Aj has ��.Aj /D1, and thus its endpoints
have different parity, as desired.
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