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Hyperbolic extensions of free groups

SPENCER DOWDALL

SAMUEL J TAYLOR

Given a finitely generated subgroup � � Out.F/ of the outer automorphism group
of the rank-r free group F D Fr , there is a corresponding free group extension
1! F !E� ! �! 1 . We give sufficient conditions for when the extension E� is
hyperbolic. In particular, we show that if all infinite-order elements of � are atoroidal
and the action of � on the free factor complex of F has a quasi-isometric orbit
map, then E� is hyperbolic. As an application, we produce examples of hyperbolic
F–extensions E� for which � has torsion and is not virtually cyclic. The proof of
our main theorem involves a detailed study of quasigeodesics in Outer space that
make progress in the free factor complex. This may be of independent interest.

20F28, 20F67; 20E06, 57M07

1 Introduction

Let F D Fr denote the free group of rank r � 3 and consider its group Out.F/ of
outer automorphisms. These groups fit into the short exact sequence

1�!F i
�!Aut.F/ p

�!Out.F/�! 1;

where a 2 F is mapped to its corresponding inner automorphism ia , which is defined
by x 7! axa�1 for x 2 F . Hence, for any � � Out.F/ we obtain the extension of F

1�!F i
�!E�

p
�!� �! 1;

where E� is equal to the preimage p�1.�/ � Aut.F/. In fact, any extension of F
induces a homomorphism to Out.F/ and thereby produces an extension of the above
form (see Section 2.5 for details). This paper will address the following question:

What conditions on � � Out.F/ imply that the extension E� is a hyperbolic group?

This question fits in to a long history of understanding hyperbolic group extensions that
goes back to Thurston’s work on the hyperbolization of fibered 3–manifolds. From
a group-theoretic perspective, the combination theorem of Bestvina and Feighn [4]
provides a combinatorial framework to understand the structure of more general hyper-
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bolic group extensions. Using this, Farb and Mosher’s influential work [16] initiated
the systematic study of hyperbolic extensions of surface groups (see Section 1.2). Our
answer to the question above continues this investigation in the setting of free group
extensions.

1.1 Statements of results

To state our main theorem, we briefly recall the relevant definitions and refer the
reader to Section 2 for additional details. First, an outer automorphism � 2 Out.F/
is atoroidal, or hyperbolic, if no power of � fixes any nontrivial conjugacy class
in F . Similarly, � 2 Out.F/ is fully irreducible if no power of � preserves the
conjugacy class of any proper free factor of F . The (free) factor complex F for the
free group F is the simplicial complex in which each k–simplex corresponds to a
set ŒA0�; : : : ; ŒAk� of kC1 conjugacy classes of proper free factors of F with properly
nested representatives: A0 < � � �< Ak . Note that there is an obvious simplicial action
Out.F/Õ F . We prove the following:

Theorem 1.1 Suppose that each infinite-order element of a finitely generated subgroup
��Out.F/ is atoroidal and that some orbit map �!F is a quasi-isometric embedding.
Then the free group extension E� is hyperbolic.

Remark Bestvina and Feighn [5] have proven that the factor complex F is hyperbolic.
Hence, the hypotheses of Theorem 1.1 additionally imply that the subgroup � is itself
hyperbolic and that all infinite-order elements of � are fully irreducible. See Section 2.8
for details.

Theorem 1.1 provides combinatorial conditions on a subgroup � � Out.F/ which
guarantee that the corresponding extension E� is hyperbolic. This is similar to the better
understood situation of hyperbolic extensions of surface groups. For surface group
extensions, it follows from work of Farb and Mosher [16], Kent and Leininger [25] and
Hamenstädt [18], that a subgroup H of the mapping class group induces a hyperbolic
extension of the surface group if and only if H admits a quasi-isometric embedding
into the curve complex of the surface. See Section 1.2 for details.

Remark Unlike the surface group case (see Theorem 1.2), the converse to Theorem 1.1
does not hold: there exists subgroups � � Out.F/ for which E� is hyperbolic but �
does not quasi-isometrically embed into F . For example, Theorem 2.13, which is due
to Brinkmann [11], shows that any � 2Out.F/ that is atoroidal but not fully irreducible
generates a cyclic subgroup of this form.

The proof of Theorem 1.1 requires several steps and is completed in Section 8 (see
Corollary 8.3). The first of these steps is to show that the assumption that the orbit
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map �! F is a quasi-isometric embedding implies a strong quasiconvexity property
for the orbit of � in Outer space X, the space of F–marked metric graphs. This follows
from our next main result, Theorem 4.1, which says that quasigeodesics in Outer space
that make definite progress in the factor complex are stable. For the statement, the
injectivity radius of G 2 X is the length of the shortest loop in the marked metric
graph G , and the �–thick part X� is the set of points with injectivity radius at least � .
Additionally, � W X ! F denotes the (coarse) map that associates to each marked
graph G 2X the collection �.G/ of nontrivial free factors that arise as the fundamental
group of a proper subgraph of G .

Theorem 4.1 Let 
 W I!X be a K–quasigeodesic whose projection � ı
 W I! F is
also a K–quasigeodesic. Then there exist constants A; �>0 and K 0�1 depending only
on K (and the injectivity radius of the terminal endpoint 
.IC/ when IC <1) with
the following property: if �W J!X is any geodesic with the same endpoints as 
 , then

(i) 
.I/; �.J /� X� ,

(ii) dHaus.
.I/; �.J // < A, and

(iii) � ı �W J ! F is a (parametrized) K 0–quasigeodesic.

In the statement of Theorem 4.1, 
 and � are directed (quasi)geodesics with respect to
the asymmetric Lipschitz metric dX on Outer space, and dHaus denotes the Hausdorff
distance with respect to the symmetrized Lipschitz distance; see Section 2 for a more
detailed discussion of this terminology. Theorem 4.1 is analogous to the stability
theorem of Hamenstädt [19] for quasigeodesics in Teichmüller space that make definite
progress in the curve complex.

Theorem 1.1 allows one to easily construct hyperbolic extensions of free groups using
ping-pong arguments on hyperbolic Out.F/–graphs. For example, we can recover
(Theorem 9.3) the theorem of Bestvina, Feighn and Handel [7] which states that
if f1; : : : ; fk are atoroidal, fully irreducible elements of Out.F/, then for all sufficiently
large N � 1 the extension E� is hyperbolic for � D hf N1 ; : : : ; f N

k
i � Out.F/.

(In [7], this is proven for k D 2.) Further, we use Theorem 1.1 to construct the first
examples of hyperbolic free group extensions E� for which � � Out.F/ has torsion
and is not virtually cyclic. First, say that f 2 Out.F/ is independent for a finite
subgroup H � Out.F/ if f and hf h�1 have no common powers for each h 2H n 1.
We prove the following:

Theorem 9.4 Let H be a finite subgroup of Out.F/ and let f 2 Out.F/ be a hyper-
bolic, fully irreducible outer automorphism that is independent for H . Then for all
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sufficiently large N � 1, the subgroup

� D hH;f N i

is isomorphic to H �Z and the F-by-.H�Z/ extension E� is hyperbolic.

1.2 Motivation from surface group extensions and some previous results

In [16], Farb and Mosher introduced convex cocompact subgroups of Mod.S/, the
mapping class group of an orientable surface S . We will discuss the case where S is
further assumed to be closed. A finitely generated subgroup � �Mod.S/ is convex
cocompact if for some (any) x 2 Teich.S/, the Teichmüller space of the surface S ,
the orbit � � x � Teich.S/ is quasiconvex with respect to the Teichmüller metric. (See
the papers of Farb and Mosher [16] and Kent and Leininger [25; 24] for definitions
and details.) Similar to the situation described above, a subgroup � �Mod.S/ gives
rise to a surface group extension

1! �1.S/!E� ! �! 1:

Farb and Mosher show that if E� is hyperbolic then � is convex cocompact. Moreover,
they prove that if � is assumed to be free, then convex cocompactness of � implies that
the extension E� is hyperbolic [16]. The assumption that � is free was later removed
by Hamenstädt in [18]. Hence, the surface group extension E� is hyperbolic exactly
when � �Mod.S/ is convex cocompact. We note that the first examples of hyperbolic
surface group extensions follow from work of Thurston, whose geometrization theorem
for fibered 3–manifolds produces examples of hyperbolic surface-by-cyclic groups.
Later, Mosher [29] constructed more general hyperbolic surface-by-free groups using
the combination theorem of Bestvina and Feighn [4].

Since their introduction, there have been several additional characterizations of convex
cocompact subgroups of Mod.S/. A particularly useful characterization of convex
cocompactness is the following theorem of Kent and Leininger and Hamenstädt. In the
statement, C.S/ denotes the curve complex for the closed surface S .

Theorem 1.2 (Kent and Leininger [25]; Hamenstädt [18]) A finitely generated sub-
group � �Mod.S/ is convex cocompact if and only if some (any) orbit map �!C.S/

is a quasi-isometric embedding.

From this we see that the surface group extension E� is hyperbolic if the orbit
map from � � Mod.S/ into the curve complex is a quasi-isometric embedding.
Hence, strong geometric features of surface group extensions arise from combina-
torial conditions on their corresponding subgroups of Mod.S/. With Theorem 1.1,
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we provide analogous conditions under which combinatorial information about a
subgroup � � Out.F/ implies geometric information about the corresponding free
group extension E� .

Remark The condition that every infinite-order element of � is atoroidal is necessary
for E� to be hyperbolic, but this condition is not implied by having a quasi-isometric
orbit map into the factor complex F . This contrasts with the surface group situation
(see Theorem 1.2), where having a quasi-isometric orbit map �! C.S/ automatically
implies every infinite-order element of � is pseudo-Anosov. Indeed, there are elements
of Out.F/ that act with positive translation length on F but are not atoroidal. By
Bestvina and Handel [9], these all arise as pseudo-Anosov mapping classes on surfaces
with a single puncture. Since such outer automorphisms each fix a conjugacy class
in F (corresponding to the loop enclosing the puncture), they cannot be contained in a
subgroup � for which E� is hyperbolic.

We conclude this section with a brief review of previous examples of hyperbolic
extensions of free groups. In [4], Bestvina and Feighn produce examples of hyper-
bolic free-by-cyclic groups (ie � Š Z) using automorphisms assumed to satisfy the
Bestvina–Feighn flaring conditions. Later, Brinkmann [11] showed that any atoroidal
automorphism induces a hyperbolic free-by-cyclic group by showing that all such
automorphisms satisfy these flaring conditions. This is recorded in Theorem 2.13.

The first examples where � � Out.F/ is not cyclic are given in [7]. There, Bestvina,
Feighn and Handel show that if one starts with fully irreducible and atoroidal ele-
ments �; 2 Out.F/ that do not have a common power, then there is an N � 1 such
that � D h�N ;  N i is a rank-2 free group and the corresponding extension E� is
hyperbolic. A different proof of this fact (still using the Bestvina–Feighn combination
theorem) is given by Kapovich and Lustig [23], who additionally show that for large N
each nonidentity element of � is fully irreducible.

1.3 Outline of proof

To show that the extension E� is hyperbolic, we use the combination theorem of Mj
and Sardar [28], which is recalled in Section 2.4. Their theorem states that if a metric
graph bundle satisfies a certain flaring property (terminology coming from the Bestvina–
Feighn combination theorem), then the bundle is hyperbolic. Using the map between the
Cayley graphs of E� and � as our graph bundle, we show in Section 8 that this flaring
property is implied by the following conjugacy flaring property of � � Out.F/. First
let S be a finite symmetric generating set for � with associated word norm j � jS . Also
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fix a basis X for F . We say that � has .�;M/–conjugacy flaring for the given � > 1
and positive integer M 2N if the following condition is satisfied:

For all ˛2F and g1; g22� with jgi jS �M and jg1g2jSDjg1jSCjg2jS ,
we have

�k˛kX �maxfkg1.˛/kX ; kg�12 .˛/kXg;

where k � kX denotes conjugacy length (ie the shortest word length with
respect to X of any element in the given conjugacy class).

Proposition 8.1 shows that if � � Out.F/ has conjugacy flaring, then E� has the
Mj–Sardar flaring property, and hence, E� is hyperbolic. Thus it suffices to show that
any � � Out.F/ satisfying the hypotheses of Theorem 1.1 has conjugacy flaring. This
is accomplished by using the geometry of Outer space.

First, Theorem 4.1 is used to show that geodesic words in .�; j � jS / are sent via the
orbit map � ! X to quasigeodesics that fellow-travel a special class of paths in X,
called folding paths. Therefore, by the definition of distance in X (Proposition 2.5),
the conjugacy length of ˛ 2 F along the quasigeodesic in � is proportional to the
conjugacy length of ˛ along the nearby folding path. Thus it suffices to show that
the length of every conjugacy class “flares” along any folding path that remains close
to the orbit of � in X, meaning that the length grows at a definite exponential rate
in either the forward direction or the backward direction. (See Section 6 for details.)
Proposition 6.11 proves exactly this type of flaring for folding paths that remain close
to the orbit of any group � that satisfies the hypotheses of Theorem 1.1.

To summarize: If the orbit map �!F is a quasi-isometric embedding and every infinite-
order element of � is atoroidal then folding paths between points in the orbit � �R
(for R 2 X) have the flaring property (Section 6). This, together with the fact that
these folding paths fellow-travel the image of geodesics in the group � (Theorem 4.1),
implies that � has conjugacy flaring (Theorem 6.5). Finally, Proposition 8.1 shows
that conjugacy flaring of � implies that the hypotheses of the Mj–Sardar theorem are
satisfied and that � is hyperbolic.
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2 Preliminaries

2.1 Paths

Throughout this paper, the notation I (or sometimes J ) will be used to denote a closed,
connected interval I � R. We write I˙ 2 R[ f˙1g for the positive and negative
endpoints of I , respectively, and correspondingly write I D ŒI�; IC�. By a discrete
interval, we simply mean the integer points I \Z of an interval I �R.

A path in a topological space Y is a map 
 W I ! Y . If Y is a metric space, then
the path 
 is said to be a geodesic if dY .
.a/; 
.b//D ja� bj for all a; b 2 I (that
is, if 
 is an isometric embedding of I into Y ). A discrete geodesic is similarly a
map 
 W .I \Z/! Y of a discrete interval into Y such that dY .
.a/; 
.b//D ja� bj
for all a; b 2 I \Z. The space Y is a said to be a geodesic metric space if it is a
metric space and for any points yC; y� 2 Y there exists a finite geodesic 
 W I ! Y

with 
.I˙/D y˙ .

2.2 Coarse geometry

Suppose that X and Y are metric spaces. Given a constant K � 1, a map f W X ! Y

is said to be a K–quasi-isometric embedding if for all a; b 2X we have

1

K
dX .a; b/�K � dY .f .a/; f .b//�KdX .a; b/CK:

More generally, the map is said to be coarsely K–Lipschitz if the rightmost inequality
above holds. A K–quasi-isometry is a K–quasi-isometric embedding f W X ! Y

whose image f .X/ is D–dense for some D � 0. (This the equivalent to the existence
of a K 0–quasi-isometric embedding gW Y !X for which f ıg and g ı f are within
bounded distance of IdY and IdX , respectively.)

A K–quasigeodesic in a metric space Y is a K–quasi-isometric embedding 
 W I! Y

of an interval I � R into Y . Similarly, a discrete K–quasigeodesic is a K–quasi-
isometric embedding 
 W .I \Z/! Y of a discrete interval into Y .

Geometry & Topology, Volume 22 (2018)



524 Spencer Dowdall and Samuel J Taylor

For A� 0, the A–neighborhood of a subset Z of a metric space Y will be denoted by

NA.Z/ WD
˚
y 2 Y W inffd.z; y/ W z 2Zg< A

	
:

The Hausdorff distance between two subsets Z;Z0 � Y is then defined to be

dHaus.Z;Z
0/ WD inff� > 0 WZ �N�.Z

0/ and Z0 �N�.Z/g:

Finally, when Y is a geodesic metric space, a subset Z�Y is said to be A–quasiconvex
if every (finite) geodesic with endpoints in Z is contained NA.Z/.

2.3 Gromov hyperbolicity

Given ı � 0, a geodesic metric space Y is ı–hyperbolic if every geodesic triangle 4
in Y is ı–thin, meaning that each side of 4 lies in the ı–neighborhood of the union of
the other two sides. A metric space is hyperbolic if it is ı–hyperbolic for some ı � 0.
It is a fact (see [10, Proposition III.H.1.17]) that if X is a ı–hyperbolic space then
there is a constant ı0 D ı0.ı/ such that every triangle 4 has a ı0–barycenter, meaning
a point c 2X that lies within ı0 of each side of 4.

Every hyperbolic metric space Y has a Gromov boundary @Y defined to be the
set of equivalence classes of admissible sequences in Y , where a sequence fyng is
admissible if limn;m.yn jym/x D1 and two sequences fyng and fzng are equivalent
if limn;m.yn j zm/xD1 for some basepoint x 2Y . (Here .a j b/x denotes the Gromov
product .d.a; x/Cd.b; x/�d.a; b//=2 of a; b 2Y with respect to x 2Y .) Notice that
by the triangle inequality, the notions of “admissible” and “equivalent” do not depend
on the point x 2 Y . One says that the admissible sequence y1; y2; : : :2 Y converges to
the point fyng 2 @Y . In particular, every quasigeodesic ray 
 W Œ0;1/! Y converges
to a well-defined endpoint at infinity 
.1/ WD f
.n/g1nD1 2 @Y , and we note that any
two quasigeodesic rays whose images have finite Hausdorff distance converge to the
same endpoint at infinity. We refer the reader to [12, Section 2.2] for additional details.

Consequently, to each quasigeodesic 
 W I ! Y we may associate two well-defined
endpoints 
.IC/; 
.I�/ 2 Y [ @Y , where 
.I˙/ is understood to be a point of @Y
when I˙ D˙1 and is a point of Y when I˙ 2R. With this terminology, we have
the following well-known consequence of hyperbolicity; see [10, Theorem III.H.1.7]
for a proof.

Proposition 2.1 (stability of quasigeodesics) For any given K; ı > 0, there exists
a stability constant R0 D R0.ı;K/ > 0 with the following property: Let Y be a
ı–hyperbolic space. If 
 W I ! Y and �W J ! Y are K–quasigeodesics with the same
endpoints, then 
.I/ and 
 0.I 0/ have Hausdorff distance at most R0 from each other.
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Thinness of triangles in a hyperbolic spaces extends to ideal triangles: that is, given ı�0
there is a constant ı00 such that every geodesic triangle with vertices in X [ @X is
ı00–thin, and there exists a barycenter point c 2X that lies within ı00 of each side of
the triangle [35, Theorem 6.24].

Hyperbolic groups Let � be a finitely generated group. For any finite generating
set S , we may build the corresponding Cayley graph Cay.�; S/ and equip it with
the path metric in which all edges have length one. The group � is then given the
subspace metric, which is equal to the word metric for the given generating set S . Up
to quasi-isometry, this metric is independent of the choice of generating set. Since
the inclusion � ,! Cay.�; S/ is a 1–quasi-isometry, we often blur the distinction
between � and its Cayley graph when considering � as a metric space. Accordingly,
the group � is said to be ı–hyperbolic if there is a finite generating set whose Cayley
graph is ı–hyperbolic. In this case, boundary @� of � is defined to be the Gromov
boundary of the Cayley graph. Equivalently @� is the set of equivalence classes of
discrete quasigeodesic rays 
 W N! � .

2.4 Metric bundles

We will make use of the concept of metric graph bundles introduced by Mj and Sardar
in [28]. Let X and B be connected graphs equipped their respective path metrics
(in which each edge has length 1), and let pW X ! B be a simplicial surjection.
Write V.B/ for the vertex set of the graph B . We say that X is a metric graph bundle
over B if there is a function f W N!N such that:

� For each vertex b 2 V.B/, the fiber Fb D p�1.b/ is a connected subgraph of X
and the induced path metric db on Fb satisfies db.x; y/� f .dX .x; y// for all
vertices x and y of Fb .

� For any adjacent vertices b1; b2 2 V.B/ and any vertex x1 2 Fb1 , there is a
vertex x2 2 Fb2 that is adjacent to x1 .

Suppose that pW X!B is a metric graph bundle. By a k–qi lift of a geodesic 
 W I!B

(where k � 1) we mean any k–quasigeodesic z
 W I ! X such that p.z
.n// D 
.n/
for all n 2 I \Z. We then say that the metric bundle pW X ! B satisfies the flaring
condition if for all k � 1 there exists �k > 1 and nk;Mk 2N such that the following
holds: for any geodesic 
 W Œ�nk; nk�!B and any two k–qi lifts z
1 and z
2 satisfying
d
.0/.z
1.0/; z
2.0//�Mk we have

�k �d
.0/.z
1.0/; z
2.0//�maxfd
.nk/.z
1.nk/; z
2.nk//; d
.�nk/.z
1.�nk/; z
2.�nk//g:

The following combination theorem of Mj and Sardar [28] is the key tool that allows us
to prove hyperbolicity of group extensions. It builds on the original Bestvina–Feighn
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combination theorem [4] (in the case where B is a tree) and is also related to a
combination theorem of Hamenstädt [18].

Theorem 2.2 (Mj and Sardar [28]) Suppose that a metric graph bundle pW X ! B

satisfies:

(1) B is ı–hyperbolic, and each fiber Fb D p�1.b/, for b 2 V.B/, is ı–hyperbolic
with respect to the path metric db induced by X .

(2) For each b 2 V.B/, the set of barycenters of ideal triangles in Fb is D–dense.

(3) The flaring condition holds.

Then X is a hyperbolic metric space.

2.5 Free group extensions

In general, an F–extension is any group E that fits into a short exact sequence of the
form

(1) 1! F !E!Q! 1:

We often blur the distinction between the group E and the short exact sequence itself.
Every such extension gives rise to a homomorphism �W Q!Out.F/ by sending q 2Q
to the outer automorphism class of .˛ 7! zq˛zq�1/ 2 Aut.F/, where zq 2E is any lift
of q . Since different choices of lift give automorphisms that differ by conjugation by
an element of F , this gives a well defined homomorphism to Out.F/. Conversely, any
homomorphism �W Q!Out.F/ gives rise to an F–extension E� via the fiber product
construction:

E� WD f.t; q/ 2 Aut.F/�Q W p.t/D �.q/g:

Indeed, if E is the extension in (1) with corresponding homomorphism �W Q!Out.F/,
then EŠE� . In the case of a subgroup � �Out.F/, we write E� for the F–extension
induced by the inclusion � ,! Out.F/.

As in the introduction, there is a canonical short exact sequence

1�!F i
�!Aut.F/ p

�!Out.F/�! 1:

This sequence is natural for F–extensions in the sense that any extension E as in (1)
with corresponding homomorphism �W Q! Out.F/ fits into a commutative diagram

1 F E ŠE� Q 1

1 F Aut.F/ Out.F/ 1
i p

y� �
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in which y� is the restriction of the projection Aut.F/�Q!Aut.F/ to E� . Therefore
y� surjects E� onto the preimage of �.Q/ � Out.F/ in Aut.F/. From this we note
that the ker.y�/D 1� ker.�/ � Aut.F/�Q ; thus y� and � have isomorphic kernels.
Moreover, we see that in the case of a subgroup � � Out.F/, the extension E�
mentioned above is isomorphic to the preimage E� D p�1.�/� Aut.F/.

Note that in order for the extension E� to be hyperbolic, it is necessary that the
map �W Q! Out.F/ have finite kernel and for its image to by purely hyperbolic; in
which case the above shows E� is quasi-isometric to E�.Q/ . Otherwise, it is easily
seen that E� contains a Z˚Z and thus that E� cannot be hyperbolic. Hence, to
address the question of hyperbolicity of F–extensions, it suffices to focus on the case
of extensions E� associated to subgroups � �Out.F/. With this perspective, we only
consider such extensions E� throughout the rest of this paper.

2.6 Metric properties of Outer space

Outer space Let F denote the free group of rank r D rk.F/. Since F is fixed
throughout our discussion, its rank r will often be suppressed from the notation.
Letting R denote the r–petal rose (that is, a wedge of r circles) with vertex v 2 R,
we fix once and for all an isomorphism F Š �1.R; v/. A graph is a 1–dimensional
CW complex, and a connected, simply connected graph is a tree. A core graph is
a graph all of whose vertices have valence at least 2. Any connected graph G with
nontrivial, finitely generated fundamental group has a unique core subgraph whose
inclusion into G is a homotopy equivalence. This subgraph is called the core of G .

Culler and Vogtmann’s [14] Outer space X of marked metric graphs will play a central
role in our discussion. A marked graph .G; g/ is a core graph G together with a
homotopy equivalence gW R! G , called a marking. A metric on G is a function
`W E.G/!R>0 from the set of edges of G to the positive real numbers; we say that an
edge e 2E.G/ of G has length `.e/. The volume of G is defined to be

P
e2E.G/ `.e/.

We view the metric ` as making G into a path metric space in which each edge e
has length `.e/. A marked metric graph is then defined to be the triple .G; g; `/, and
we say that two triples .G1; g1; `1/ and .G2; g2; `2/ are equivalent if there is a graph
isometry �W G1!G2 that preserves the markings in the sense that �ıg1 is homotopic
to g2 . Outer space X is the set of equivalence classes of marked metric graphs of
volume 1. We use the notation yX to denote unprojectivized Outer space, which is the
space of marked metric graphs with no restriction on volume. When discussing points
in X or yX we typically suppress the marking/metric and just write the core graph.

Conjugacy classes The marking R!G attached to a point G 2X allows us to view
any nontrivial conjugacy class ˛ in F as a homotopy class of loops in the core graph G .
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Following the notation of [5], we denote the unique immersed loop in this homotopy
class by ˛jG , which we view as an immersion of S1 into G . We use `.˛jG/ to
denote the length of ˛ in G 2 X, that is, the sum of the lengths of the edges crossed
by ˛jG , counted with multiplicities. Note that if X D fx1; : : : ; xrg is a free basis of F
and G 2X is the rose whose edges each have length 1=r and are consecutively labeled
by the elements x1; : : : ; xr , then r �`.˛jG/ is simply the conjugacy length k˛kX of ˛
with respect to the free basis X . That is, r �`.˛jG/Dk˛kX is the length of the shortest
word in the letters x˙1 ; : : : ; x

˙
r that represents an element of the conjugacy class ˛ .

We often blur the distinction between an element of F and its conjugacy class.

The standard topology on X is defined to be the coarsest topology such that all of the
length functions `.˛j � /W X! RC are continuous [14]. Though we will not discuss
it, this topology may also be obtained as a simplicial complex with missing faces, or
as the equivariant Gromov–Hausdorff topology (see [14] and [31]). For � > 0, we
additionally define the �–thick part of X to be the subset

X� WD fG 2 X W `.˛jG/� � for every nontrivial conjugacy class ˛ in F g:

Lipschitz metric A difference of markings from G 2 X to H 2 X is any (not nec-
essarily cellular) map �W G!H that is homotopic to h ı g�1 , where g and h are
the markings on G and H , respectively. The Lipschitz distance from G to H is then
defined to be

dX.G;H/ WD infflog.Lip.�// W � ' h ıg�1g;

where Lip.�/ denotes the Lipschitz constant of the difference of markings � . While
dX is in general asymmetric (that is, dX.G;H/¤ dX.H;G/), we often regard it as a
metric since it satisfies definiteness (dX.G;H/ D 0 if and only if G D H ) and the
ordered triangle inequality (dX.E;H/� dX.E;G/C dX.G;H/). Its symmetrization

d
sym
X .G;H/ WD dX.G;H/C dX.H;G/

is therefore an honest metric on X, which we note induces the standard topology [17].
The preference to work with the asymmetric metric dX comes from the fact, discussed
below, that folding paths are directed geodesics, whereas the symmetrized metric on X

is not a geodesic metric.

Note that for any ˛ 2 F and any difference of marking �W G!H , by definition we
have `.˛jH/� Lip.�/ � `.˛jG/. This implies that

(2) log
�

sup
˛2F

`.˛jH/

`.˛jG/

�
� log

�
inf
�

Lip.�/
�
D dX.G;H/:
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We will see below that this is, in fact, an equality; see also [17] and [3]. It follows
that for any free basis X D fx1; : : : ; xrg of F and any point G 2 X, there is a
constant K D K.X;G/ � 1 such that .1=K/k˛kX � `.˛jG/ � Kk˛kX for every
conjugacy class ˛ in F .

Coping with asymmetry Since the Lipschitz metric dX is not symmetric, some care
must be taken when discussing distances in X. Thankfully, the difficulty is somewhat
mitigated in the thick part X� .

Lemma 2.3 (Handel and Mosher [20]; Algom-Kfir and Bestvina [2]) For any � > 0,
there exists M� � 1 such that for all G;H 2 X� we have

dX.H;G/� d
sym
X .H;G/D d

sym
X .G;H/�M� � dX.G;H/:

Nevertheless, whenever discussing neighborhoods, we always use the symmetrized
distance d sym

X . That is, the A–neighborhood of a subset Z � X is defined to be

NA.Z/ WD
˚
G 2 X W inffd sym

X .G;H/ WH 2Zg< A
	
:

In particular, if G 2 NA.Z/, then there exists some H 2 Z such that dX.G;H/
and dX.H;G/ are both less than A. Note that by [17], if Z � X is compact, then so
is the closed neighborhood NA.Z/. The Hausdorff distance between two subsets of X
is then defined as usual using these symmetrized neighborhoods.

We will say that two paths 
 W I!X and 
 0W I 0!X have the same terminal endpoint
either if IC; I

0
C <1 and 
.IC/D 
 0.I 0C/ or if ICD I 0CD1 and the sets 
.Œt;1//

and 
 0.Œt 0;1// have finite Hausdorff distance for all t 2 I and t 0 2 I 0 . Having the
same initial endpoint is defined similarly. Accordingly, 
 and 
 0 are said to have the
same endpoints if their initial and terminal endpoints agree.

By a geodesic in X we always mean a directed geodesic, that is, a path 
 W I!X such
that dX.
.s/; 
.t//D t � s for all s < t . Similarly a K–quasigeodesic in X means a
path 
 W I! X such that

1

K
.t � s/�K � dX.
.s/; 
.t//�K.t � s/CK

for all s < t . Note that a K–quasigeodesic typically will not be a K–quasigeodesic
when traversed in reverse.

Convention 2.4 Our default metric on X is the Lipschitz metric and geodesics are
directed geodesics with respect to this metric. When discussing neighborhoods and
Hausdorff distance, however, we make use of the symmetrized metric as discussed
above.
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2.7 Navigating Outer space

Optimal maps For any G;H 2 X, there exists a (nonunique) difference of markings
�W G!H that realizes the infimum in the definition of dX.G;H/ [17; 3]. Such a map
is called optimal. Here, we describe some structure of optimal maps and refer to the
references above for details. Firstly, we say that a difference of markings �W G!H

is linear on edges if � has a constant slope �.e/ on each edge e of G , meaning that �
is a local �.e/–homothety on e with respect to the local path metrics on G and H .
In this case Lip.�/ D maxef�.e/g. We define the tension subgraph 4� to be the
subgraph of G consisting of maximally stretched edges, that is, the edges e of G
with �.e/D Lip.�/. Since every difference of markings is homotopic rel vertices to a
map that is linear on edges and whose Lipschitz constant is no greater than the original,
we may always suppose optimal maps are linear on edges.

Train tracks Let us define a segment Œp; q� between points p; q 2G to be a locally
isometric immersion Œ0; L�!G of an interval Œ0; L��R sending 0 7! p and L 7! q .
A direction at p 2 G is a germ of nondegenerate segments Œp; q� with p ¤ q . A
map �W G!H that is linear on edges with slope �.e/¤ 0 for all edges e of G then
induces a derivative map D� which sends a direction at p to a direction at �.p/. We
say that two directions at p 2 G are in the same gate if the directions are identified
by D� . The gates form an equivalence relation on the set of directions in G .

An unordered pair fd; d 0g of distinct directions at a vertex v of G is called a turn.
The turn fd; d 0g is illegal (with respect to � ) if d and d 0 belong to the same gate
and is legal otherwise. Accordingly, the set of gates in G is also called the illegal
turn structure on G induced by � . An illegal turn structure is moreover a train track
structure if there are at least two gates at each p 2G . This is equivalent to requiring
that � is locally injective on (the interior of) each edge of G and that every vertex has
at least two gates.

For any G;H 2X there is an optimal map �W G!H such that 4� is a core graph and
the illegal turn structure induced by the restriction of � to 4� is a train track structure
[17; 3]. Hence, the tension subgraph4� contains an immersed loop that is legal (crosses
only legal turns). If ˛ denotes the conjugacy class represented by a legal loop contained
in 4� , it follows that `.˛jH/ D Lip.�/ � `.˛jG/. Conversely, any difference of
markings �W G!H satisfying `.˛jH/DLip.�/ �`.˛jG/ for some conjugacy class ˛
is necessarily optimal. The existence of optimal maps thus shows that the inequality
in (2) is in fact an equality. We collect these facts into the following proposition:

Proposition 2.5 (see Francaviglia and Martino [17] or Algom-Kfir [1]) There exists,
for every G 2 X, a finite set CG of primitive conjugacy classes, called candidates,
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whose immersed representatives in G cross each edge at most twice and such that for
any H 2 X,

dX.G;H/D max
˛2CG

log
`.˛jH/

`.˛jG/
D sup
˛2F

log
`.˛jH/

`.˛jG/
:

Folding For a linear difference of markings �W G!H , if 4� DG and � induces a
train track structure on G , then � induces a unique folding path 
 D 
� W Œ0; L�! X

with 
�.0/DG and 
�.L/DH such that dX.
�.s/; 
�.t//D t�s for 0� s� t �L.
Thus 
� is a (directed) geodesic from G to H . The path 
� is obtained by “folding
all illegal turns at unit speed”, as follows: Fix some sufficiently small � > 0. Then
for 0� s � � , form the quotient graph yGs obtained by declaring two points x; y 2G
to be equivalent if �.x/D �.y/ and d.x; v/D d.y; v/ � s for some vertex v of G .
Then � factors through the quotient map G! yGs , and yGs inherits a natural metric so
that this quotient map is a local isometry on each edge of G . If we let Ls D vol. yGs/,
then the rescaled graph xGs D .1=Ls/ yGs lies in X (ie has volume 1), and � factors
as a composition G ! xGs ! H of two optimal maps with Lipschitz constants Ls
and L=Ls , respectively. Accordingly, we set 
�.log.Ls//D xGs . This defines 
�.t/
for all sufficiently small t � 0. Staring now with the optimal map xG�!H , we may
repeat this procedure to define 
�.t/ for more values of t . While it is not obvious, after
finitely many iterations we will eventually arrive at 
�.L/DH . See [5, Proposition 2.2]
for a justification of this claim and a more detailed construction of 
� .

Remark The folding paths used this paper, as defined above, are sometimes called
“greedy folding paths” [5] or “fast folding lines” [17] in the literature. These are a
special case of the more flexible “liberal folding paths” that are sometimes considered
(see the appendix of [6]) and which include the original Stallings paths [32].

If 
� W Œ0; L�! X is a folding path, as described above, we often use Gt , t 2 Œ0; L�,
to denote 
�.t/. Observe that for all 0� s � t � L, the construction of 
� provides
induced optimal maps 
�st W Gs!Gt , which we refer to as folding maps. These maps
compose so that 
�rt D 


�
st ı 


�
rs for r � s � t , and we additionally have 
�0L D �

and 
�tt D IdGt for all t . Furthermore, for all t > s , the maps 
�st W Gs!Gt (i) induce
the same train track structure on Gs (independent of t ), (ii) send legal segments
(segments crossing only legal turns) to legal segments, and (iii) have associated folding
paths exactly given by the restrictions 
� jŒs;t� .

Lastly, we note that it is also possible to construct bi-infinite folding paths, by which
we mean a directed geodesic 
 W R! X together with maps 
st W Gs ! Gt (where
Gt D 
.t/) for all s � t satisfying the above properties.

Geometry & Topology, Volume 22 (2018)



532 Spencer Dowdall and Samuel J Taylor

Standard geodesics It is not true that any two points of G;H 2X may be connected
by a folding path. There is, however, a nonunique standard geodesic from G to H [17].
In [5, Proposition 2.5], Bestvina and Feighn give a detailed construction of such a
standard geodesic, which we summarize here: First, take an optimal map �W G!H

that is linear on edges and consider the tension subgraph 4� of G . Let †G �X denote
the simplex of all (volume-1) length functions on the marked graph G . By shortening
some of the edges outside of 4� (and rescaling to maintain volume 1), one may then
find a point G0 2†G in the closed simplex together with an optimal difference of
markings �0W G0!H whose tension graph 4�0 is all of G0 and such that

dX.G;H/D dX.G;G
0/C dX.G

0;H/:

If 
1 denotes the linear path in †G from G to G0 (which when parametrized by
arclength is a directed geodesic) and 
2 D 
�

0

denotes the folding path from G0 to H
induced by �0 , it follows from the equation above that the concatenation 
1
2 is a
directed geodesic from G to H .

Let us introduce the following terminology. By a rescaling path we mean a linear
path I!X in a closed simplex †G parametrized by arclength. While such a path can in
principle have infinite length in the negative direction (if the volume of a core subgraph
tends to 0 as t !�1), every rescaling path has finite length in the forward direction
since a subgraph can only stretch until its volume is equal to 1. More specifically:

Lemma 2.6 If Gt , t 2 Œ0; L�, is a rescaling path with G0 2 X� , then L� log.2=�/.

Proof Let ˛ be any candidate for G0 , so the immersed loop representing ˛ in G0
crosses each edge at most twice. Since G0 and GL represent the same marked graphs
up to collapsing some edges of G0 , the loop ˛jGL crosses no edge more than twice.
Thus we have `.˛jGL/ � 2. On the other hand `.˛jG0/ � � by assumption. Thus
`.˛jGL/=`.˛jG0/� 2=� . Since this holds for every candidate of G , Proposition 2.5
implies that LD dX.G0; GL/� log.2=�/, as claimed.

In general, by a standard geodesic we mean a (directed) geodesic 
 W I ! X that is
either a folding path, a rescaling path, or a concatenation 
 W I ! X of a rescaling
path 
 W Is! X and a folding path 
 W If ! X, where in the latter case we require
that IsC D If� 2 R, that I D Is [ If , and that the concatenation is a directed
geodesic. In this latter case the folding image of the standard geodesic is denoted by
Imf.
/D 
.If /, and the scaling image is similarly denoted by Imsc.
/D 
.Is/. For
notational convenience, when the standard geodesic 
 W I!X is simply a rescaling path,
we define Imsc.
/D
.I/ and Imf.
/D
.IC/ (recall that IC<1 for rescaling paths);
when 
 is simply a folding path we define Imf.
/D 
.I/ and either Imsc.
/D 
.I�/

Geometry & Topology, Volume 22 (2018)



Hyperbolic extensions of free groups 533

or Imsc.
/D∅ depending on whether I� 2R or I� D�1. In particular, note that
the Imf.
/ is nonempty for every standard geodesic.

Folding and unfolding In Section 5 of [5], Bestvina and Feighn give a detailed
account of what happens to an immersed path in the graph Gt under folding and
unfolding. We review the basics here, as they will be needed in Section 6. For
additional details and examples, see [5].

Fix a folding path 
.t/DGt with t 2 Œa; b�, and let pb be an immersed path in Gb . It
is always possible to lift (or unfold) pb to an immersed path pt in Gt with the property
that pt maps to a path in Gb whose immersed representative, rel endpoints, is pb .
(Recall that the folding path 
 comes equipped with folding maps 
tbW Gt ! Gb .)
These lifts are not necessarily unique, but Bestvina and Feighn show that we can remove
segments from the ends of pb to obtain unique lifts. This is their unfolding principle,
which we state as the following lemma:

Lemma 2.7 (unfolding principle [5]) With the setup above, lifting pb to Gt is
unique between the first and last illegal turns of pb , including the germs of directions
beyond these turns.

The process of lifting (uniquely) an immersed segment pb whose endpoints are at
illegal turns is called unfolding. Note that the unfolding principle applies to an illegal
turn itself. In particular, if ˛ is a conjugacy class of F and pb is either a subpath
of ˛jGt with endpoints illegal turns or an illegal turn of ˛jGb , then pb unfolds to a
path (or an illegal turn) pt that is contained in ˛jGt . Moreover, multiple occurrences
of pb in ˛jGb all unfold to pt as a subpath of Gt . This all follows from the unfolding
principle.

Similarly, we can understand the image of certain subpaths pa of ˛jGa under the
folding path Gt . Note that the image of pa in Gt is not necessarily contained in
the image of ˛jGt , even after tightening (ie passing to the immersed representative).
However, if there is a subpath pb of ˛jGb with endpoints at illegal turns which unfolds
to pa in ˛jGa , then unfolding gives a unique path pt of Gt whose endpoints are at
illegal turns of Gt . By the above paragraph, these unfolded paths have the property
that pt is a subsegment of ˛jGt for all t 2 Œa; b�.

Projecting to standard geodesics In [5, Definition 6.3] Bestvina and Feighn define
for any folding path 
 W I!X a projection Pr
 W X!
.I/ onto the image of the folding
path. (One could alternately think of the projection as landing in the domain interval I .)
As the definition of Pr
 .H/ is rather technical — in short it involves looking at the
infimum of times t for which a certain cover of 
.t/ contains an immersed legal
segment of length 3 — we delay a careful discussion until Section 4.1 where a precise
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construction of the projection Pr
 W X! 
.I/ is given in Definition 4.9. However,
although Pr
 does coarsely agree with the closest-point projection to 
.I/ in special
circumstances (see Lemma 4.11), we caution that Pr
 is generally unrelated to the
closest-point projection onto 
.I/.

Taking the existence of this projection for granted for the time being, we presently
extend this construction in the natural way to any standard geodesic 
 W I ! X by
declaring Pr
 WDPr
f W X! Imf.
/, where ID Is[If and 
f D 
 jIf is the folding
portion of 
 . (Recall that Imf.
/¤∅ for every standard geodesic 
 .)

2.8 The free factor complex

The (free) factor complex F of F is the simplicial complex whose vertices are conjugacy
classes of nontrivial, proper free factors of F . A collection of vertices fŒA0�; : : : ; ŒAk�g
determines a k–simplex if, after reordering and choosing conjugacy representatives,
we have A0 < � � � < Ak . The free factor complex was first introduced by Hatcher
and Vogtmann in [21]. When it should cause no confusion to do so, we will usually
drop the conjugacy symbol from the notation and denote a conjugacy class of free
factors by A 2 F0 .

We equip the factor complex F with its simplicial path metric. That is, we geometrically
view F as the simplicial graph F1 equipped with the path metric in which each edge
has length 1. For our purposes, the significance of the factor complex stems from the
following foundational result of Bestvina and Feighn:

Theorem 2.8 (Bestvina and Feighn [5]) The factor complex F is Gromov-hyperbolic.

There is a natural (coarse) projection � W X! F defined by sending G 2 X to the set
of free factors corresponding to proper subgraphs of G . That is,

�.G/D f�1.G
0/ WG0 is a proper, connected, noncontractible subgraph of Gg � F0;

where �1.G0/� �1.G/ is identified with a free factor of F via the marking R!G .
This projection is a key tool in the proof of Theorem 2.8 above. For G 2 X , it is
quickly verified that diamF.�.G//� 4 [5, Lemma 3.1].

Let us define the factor distance between two points G;H 2 X to be

dF.G;H/D diamF.�.G/[�.H//:

Corollary 3.5 of [5] shows that dF.G;H/ � 12edX.G;H/C 32. In fact, as indicated
in [5], this may easily be strengthened to show that � is coarsely 80–Lipschitz:

Lemma 2.9 For any G;H 2 X we have dF.G;H/� 80 dX.G;H/C 80.
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Proof Let LDdX.G;H/, and let 
 W Œ0; L�!X be a standard geodesic from G to H .
If kDdLe, then we may find times 0D t0< � � �<tkDL so that dX.
.ti /; 
.tiC1//�1
for all 0� i < k . By Corollary 3.5 of [5], we have dF.
.ti /; 
.tiC1//� 12eC 32 for
each i , and thus that dF.G;H/� .12eC32/k� 80LC80 by the triangle inequality.

Similarly, we will use the following easy lemma:

Lemma 2.10 Suppose that there is a nontrivial conjugacy class ˛ which has length
less than 1 on both G;H 2 X. Then dF.G;H/� 10.

Proof Such a conjugacy class would determine an immersed loop contained in a
proper core subgraph of each graph. Hence, ˛ is simultaneously contained in free
factors A and B appearing in the diameter-4 projections of G and H , respectively. In
this case, dF.A;B/� 2 [33, Section 3.2], showing that the union �.G/[�.H/ has
diameter at most 10.

In the process of showing that F is hyperbolic, Bestvina and Feighn also prove the
following very useful result; it essentially says that the projection onto a folding path
is strongly contracting when viewed from the factor complex.

Proposition 2.11 (Bestvina and Feighn [5, Proposition 7.2]) There exists a universal
constant B (depending only on rk.F/) such that the following holds. If H;H 0 2 X

satisfy dX.H;H 0/�M and 
 W I! X is a standard geodesic with dX.H; 
.t//�M
for all t , then dF.Pr
 .H/;Pr
 .H 0//� B.

Remark While Proposition 7.2 of [5] is only stated for the projection to a finite-length
folding path, it clearly holds for our generalized projection to a finite-length standard
geodesic. By considering an exhaustion by finite-length subpaths, the result is also
seen to hold for infinite-length standard geodesics.

2.9 Out.F/ basics

We recall some of the structure of automorphisms of F and the dynamics of their
actions on X and F . The group Out.F/ acts naturally on X by changing the marking:
� � .G; g; `/ D .G; g ı y��1; `/, where y��1W R ! R is any homotopy equivalence
whose induced map on F Š �1.R/ is in the outer automorphism class ��1 2 Out.F/.
One may easily verify that G 7! � �G defines an isometry of .X; dX/. Each outer
automorphism � 2 Out.F/ permutes the set F0 of conjugacy classes of free factors
via � � ŒA� D Œ�.A/�, and this extends to a simplicial (and hence isometric) action
of Out.F/ on F . The actions of Out.F/ on X and F are equivariant with respect to
the projection � W X! F : for each G 2 X, we have, as subsets of F ,

�.� �G/D � ��.G/:
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Full irreducibility We are primarily interested in elements � 2 Out.F/ that are fully
irreducible, meaning that no positive power of � fixes the conjugacy class of any free
factor of F . Hence � is fully irreducible if and only if its action on F has no periodic
vertices. In fact, Bestvina and Feighn have shown the following:

Theorem 2.12 (Bestvina and Feighn [5]) An element � 2 Out.F/ acts with positive
translation length on the free factor complex F if and only if � is fully irreducible.

Recall that the (stable) translation length of � 2 Out.F/ acting on F is by definition

`F.�/D lim
n!1

1

n
dF.A; �

nA/;

for any A 2 F0 . It is well known (and easily verified) that `F.�/ does not depend on
the choice of A and that `F.�n/D n �`F.�/. Having positive translation length implies
that for any A 2 F0 , the orbit map Z! F defined by n 7! �n �A is a quasigeodesic
in F . In Section 9 we also discuss translation lengths of elements of Out.F/ acting on
a different hyperbolic complex. Regardless of the context, we call an isometry of a
hyperbolic space loxodromic if it acts with positive translation length.

Hyperbolicity An element �2Out.F/ is said to be hyperbolic or atoroidal if �i .˛/¤˛
for every nontrivial conjugacy class ˛ in F and every i �1. While neither hyperbolicity
nor full irreducibility implies the other, there are many automorphisms of F that have
both these properties. Hyperbolic elements of Out.F/ are essential to our discussion
because of the following theorem of Brinkmann.

Theorem 2.13 (Brinkmann [11]) The outer automorphism class of ˆ 2 Aut.F/ is
hyperbolic if and only if the semidirect product F ÌˆZ is a Gromov-hyperbolic group.

We say that � � Out.F/ is purely hyperbolic if every infinite-order element of �
is hyperbolic. Before concluding this section, we observe that when � is purely
hyperbolic there is a uniform upper bound (depending only on rk.F/) on the number
of elements of � that fix any given conjugacy class. To this end, for ˛ a conjugacy
class in F set

�˛ D f� 2 � W �.˛/D ˛g:

Lemma 2.14 There is a constant er depending only on the rank r D rk.F/ such that
for any purely hyperbolic � �Out.F/ we have j�˛j � er for each nontrivial conjugacy
class ˛ of F .

Proof Since � is purely hyperbolic, �˛ is a torsion subgroup of Out.F/. It is known
that any torsion element survives in the quotient Out.F/!GLr.Z=3Z/ [14] and so �˛
injects into GLr.Z=3Z/. Hence, we may take er D jGLr.Z=3Z/j.
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3 Quasiconvexity and folding paths

For the main results of Section 4 we will need to know that outgoing balls in the
Lipschitz metric are quasiconvex with respect to folding paths. This is proven in
Corollary 3.3. We first show in Proposition 3.2 that the length of every conjugacy class
is quasiconvex along folding paths.

We begin by recalling some notation from [5]. For a folding path Gt , t 2 I , define the
illegality m.Gt0/ of Gt0 at time t0 to be

m.Gt0/D
X
v

X
�v

.j�vj � 1/;

where v varies over the vertices of Gt and �v varies over all gates of Gt0 at the
vertex v (so each �v is an equivalence class of directions at v ). Note that if we
set M D 6 rk.F/� 6, which bounds twice the number of edges of any graph in X,
then 1�m.Gt /�M for all t . We often write mt for m.Gt / when the folding path
is understood. For any conjugacy class ˛ , we additionally let kt D k.˛jGt / denote
the number of illegal turns in ˛jGt .

In Corollary 4.5 and Lemma 4.4 of [5], Bestvina and Feighn show that the function
t 7! `.˛jGt / is piecewise exponential and that its right derivative at time t0 is given by

`.˛jGt0/� 2
k.˛jGt0/

m.Gt0/
:

Using this, they prove the following estimate:

Lemma 3.1 (Bestvina and Feighn [5, Lemma 4.10]) Suppose that Gt , t 2 Œ0; L�, is
a folding path and that ˛ is any conjugacy class in F . Then for all t 2 Œ0; L� we have

`.˛jGt /�maxf2k.˛jG0/; `.˛jGL/g:

Proposition 3.2 (quasiconvexity of lengths along folding paths) Let Gt , t 2 Œ0; L�,
be a folding path, and let ˛ be any conjugacy class in F . Then

`.˛jGt /� 6 rk.F/ �maxf`.˛jG0/; `.˛jGL/g:

Proof Let l 2 Œ0; L� be the supremum of times for which the piecewise exponential
function t 7! `.˛jGt / is decreasing on Œ0; l/. Hence the right derivative of `.˛jGt /
at time l is nonnegative. If l D L, then we are done. Otherwise, by the derivative
formula above we have `.˛jGl/� 2.kl=ml/� 2.kl=6r/, where r D rk.F/. Hence

kl � 3r � `.˛jGl/� 3r � `.˛jG0/

Geometry & Topology, Volume 22 (2018)



538 Spencer Dowdall and Samuel J Taylor

by the choice of l . Applying Lemma 3.1, we see that for all t 2 Œl; L�,

`.˛jGt /�maxf2kl ; `.˛jGL/g

�maxf6r � `.˛jG0/; `.˛jGL/g:

Since `.˛jGt /� `.˛jG0/ for all t 2 Œ0; l�, this completes the proof.

Corollary 3.3 (outgoing balls are folding-path-quasiconvex) There exists a universal
constant A (depending only on rk.F/) such that the following holds. For any H 2 X
and R > 0, if 
 W Œ0; L�! X is a folding path 
.t/ D Gt with dX.H;G0/ � R and
dX.H;GL/�R , then for all t 2 Œ0; L� we have

dX.H;Gt /�RCA:

Proof Applying Proposition 3.2, for any time t 2 Œ0; L� we have

dX.H;Gt /D sup
c2F

log
`.cjGt /

`.cjH/

� sup
c2F

log
�
6 rk.F/ �

maxf`.cjG0/; `.cjGL/g
`.cjH/

�
� log.6 rk.F//Cmax

�
sup
c2F

log
`.cjG0/

`.cjH/
; sup
c2F

log
`.cjGL/

`.cjH/

�
� log.6 rk.F//CR:

4 Stability for F–progressing quasigeodesics

In this section we explore the structure of quasigeodesics in Outer space that project to
parametrized quasigeodesics in the factor complex. We show that, as in a hyperbolic
space, such quasigeodesics are stable in the sense that they fellow-travel any geodesic
with the same endpoints. More specifically, we prove the following.

Theorem 4.1 (F–progressing quasigeodesics are stable) Let 
 W I ! X be a K–
quasigeodesic whose projection � ı 
 W I! F is also a K–quasigeodesic. Then there
exist constants A; � > 0 and K 0 � 1 depending only on K (and the injectivity radius of
the terminal endpoint 
.IC/ when IC <1) with the following property: if �W J !X

is any geodesic with the same endpoints as 
 , then

(i) 
.I/; �.J /� X� ,

(ii) dHaus.
.I/; �.J // < A, and

(iii) � ı �W J ! F is a (parametrized) K 0–quasigeodesic.
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Our proof relies crucially on the projection Pr
 W X! 
.I/ from Outer space to the
image of any standard geodesic 
 W I! X. As recorded in Proposition 2.11, Bestvina
and Feighn prove that this projection is strongly contracting when viewed in the factor
complex, and they use this to show that F is ı–hyperbolic [5]. The projection � ı 

of 
 to the factor complex is also shown to be an unparametrized Kf –quasigeodesic,
where Kf depends only on rk.F ) [5]. As a quasigeodesic, the nearest-point retraction
n�ı
 W F! �.
.I// onto the image �.
.I// is coarsely L0–Lipschitz for some L0
that depends only on ı and Kf . The next lemma verifies that n�ı
 W F! �.
.I//

agrees with the Bestvina–Feighn projection � ı Pr
 W F! �.
.I// up to uniformly
bounded error.

Lemma 4.2 There is a constant D1 � 0, depending only on rk.F ), such that for
any H 2 X and any standard geodesic 
 W I! X we have

dF.�.Pr
 .H//;n�ı
 .�.H///�D1:

Proof To simplify notation, set yC D �.Pr
 .H//, C D �.H/ and A0 D n�ı
 .C /;
both of these points lie on the unparametrized Kf –quasigeodesic �.
.I//. Now
let y� and �0 be folding paths whose images in F join C to yC and A0 , respectively. We
are now in the situation of [5, Proposition 9.1], which states that there is a Q0 on �.�0/
whose distance from yC is no greater than B1 , where B1 is a uniform constant.

Since �.�0/ is an unparametrized Kf –quasigeodesic, any geodesic ŒC; A0� in F joining
C and A0 contains a point Q0 with dF.Q0;Q0/�R0 , where R0 DR0.ı;Kf / is the
constant from Proposition 2.1. Hence, dF.Q0; yC/�B1CR0 . Since no factor on �.
/
is closer to C than A0 , we must have dF.Q0; A0/ � B1CR0 . Hence, we conclude
that dF.A0; yC/� 2.B1CR0/. Thus the lemma holds with D1 D 2.B1CR0/.

The proof of Theorem 4.1 will take the rest of the section and require several lemmas.
In fact, we first prove the theorem in the special case that � is a standard geodesic
(Proposition 4.7) and complete the general proof in Section 4.1. We note that only the
special case is needed for the proof of our main result.

First, we observe that quasigeodesics that make definite progress in the factor graph
cannot become arbitrarily thin.

Lemma 4.3 Let 
 W I ! X be a K–quasigeodesic whose projection � ı 
 W I ! F

is also a K–quasigeodesic. Then there is an � > 0 depending only on K such that

.i/ 2 X� for all i 2 I with i CK.KC 11/ 2 I .

Furthermore, for any i 2 I with i CK.K C 11/ … I (so that necessarily IC <1),
we have 
.i/ 2 X�0 for some �0 > 0 depending only on K and the injectivity radius
of 
.IC/.

Geometry & Topology, Volume 22 (2018)



540 Spencer Dowdall and Samuel J Taylor

Proof Since 
 is a K–quasigeodesic in F , we have dF.
.i/; 
.j //� .1=K/jj�i j�K .
If b � 0 is chosen to equal K.KC 11/, then 
.i/ and 
.i C b/ have distance in the
factor complex at least 11. By Lemma 2.10, this implies that there is no nontrivial
conjugacy class having length less than 1 in each of 
.i/; 
.i C b/ 2 X. If there
exists ˛ 2 F with `.˛j.
.i//D � � 1, our choice of b thus forces `.˛j
.i C b//� 1.
Hence we find that

KbCK � dX.
.i/; 
.i C b//� log
`.˛j
.i C b//

`.˛j
.i//
� log 1

�
:

This ensures � � e�.KbCK/ , and so we conclude 
.i/ 2 Xe�.KbCK/ for all i 2 I

with i C b 2 I .

Finally suppose IC <1 and that 
.IC/ 2 X�0 . If i 2 I fails to satisfy i C b 2 I ,
then for any nontrivial ˛ 2 F we similarly have

KbCK � dX.
.i/; 
.IC//� log
`.˛j
.IC//

`.˛j
.i//
� log

�0

`.˛j
.i//
:

Thus `.˛j
.i//� �0e�.KbCK/ for every nontrivial ˛ 2 F , which proves the claim.

Proposition 4.4 Let 
 W I!X be a K–quasigeodesic whose projection � ı
 W I!F

is also a K–quasigeodesic, and let �W J ! X be a standard geodesic with the same
endpoints as 
 . Then there exists a constant D0 � 0 depending only on K such that:

(i) For each i 2 I there is a ti 2 J such that dX.
.i/; �.ti //�D0 .
(ii) For each j 2 J there is a sj 2 I such that dX.
.sj /; �.j //�D0 .

Proof We first prove (i). Let B be the universal constant from Proposition 2.11, and
let � 0 D R0.ı;maxfK;Kf g/ be the fellow-traveling constant (Proposition 2.1) for
maxfK;Kf g–quasigeodesics in a ı–hyperbolic space (recall that F is ı–hyperbolic).
Set � D � 0CD1 , where D1 is the constant appearing in Lemma 4.2. Define

M D 2K2BCK; C0 D
M�K

K
D 2KB and L0 D 2K.BC 2� CK/:

Suppose that Œa; b��I is a subinterval such that dX.
.t/; Imf.�//�M for all t 2 Œa; b�.
Setting nDd.b�a/=C0e, we then have the sequence of points qj D
.aC..b�a/=n/j /
for j D 0; : : : ; n. Notice that these points enjoy

dX.qj ; qjC1/�K

�
b�a

n

�
CK �K.C0/CK DM

for each j D 0; : : : ; n�1. Since dX.qj ; Imf.�//�M by assumption, Proposition 2.11
now implies that

dF.Pr�.qj /;Pr�.qjC1//� B

for all j D 0; : : : ; n� 1.
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Recall that by Lemma 4.2, �.Pr�.qj // 2 �.Imf.�// is within distance D1 from the
closest-point projection of �.qj / 2 F to the path �.�.J //. (Note that �.�.J // D
�.Imf.�// since rescaling paths have constant projection in F by construction.) Since
� ı 
 and � ı � are both (unparametrized) maxfK;Kf g–quasigeodesics and F is
ı–hyperbolic, these paths have Hausdorff distance at most � 0 in F . It follows that
for each j D 0; : : : ; n we also have dF.�.qj /; �.Pr�.qj /// � � 0CD1 D � . By the
triangle inequality, we now have

dF.
.a/; 
.b//� dF.q0;Pr�.q0//C
n�1P
jD0

dF.Pr�.qj /;Pr�.qjC1//C dF.Pr�.qn/; qn/

� nBC 2�

�

�
b�a

C0
C 1

�
BC 2�

D
b�a

2K
CBC 2�:

On the other hand, by hypothesis we also have dF.
.a/; 
.b// � .b � a/=K �K .
Combining these, we find that

b� a � 2K.BC 2� CK/D L0:

That is, L0 is an upper bound for the length of any subinterval of I on which 
 stays at
least distance M from Imf.�/. Said differently, for any t 2 I , there exists 0� t 0 �L0
such that dX.
.tCt 0/; Imf.�//<M . (When tCL0 2 I , this is clear. When tCL0 … I ,
then we necessarily have IC <1 and the assumption that 
 and � have the same
ends ensures 
.IC/ 2 Imf.�/.) In particular, we conclude that

dX.
.t/; Imf.�//� dX.
.t/; 
.t C t
0//C dX.
.t C t

0/; Imf.�//�KL0CKCM:

This proves (i) with D0 DKL0CKCM .

We now prove (ii). Let E0 denote the maximum value of D0 DKL0CKCM and
of the quasiconvexity constant A provided by Corollary 3.3. Note that E0 �K . For
each point i 2 I , let

Ui D fy 2 Imf.�/ W dX.
.i/; y/� 4E0g:

By the proof of (i), we know that there exists a point yi 2Ui with dX.
.i/; yi /� 2E0 ;
in particular Ui contains the length-2E0 subinterval of Imf.�/ starting at yi . Let
Wi � Imf.�/ denote the smallest connected interval containing Ui . It follows that each
interval Wi with �.JC/…Wi has length at least 2E0 . By Corollary 3.3 we additionally
know that dX.
.i/; w/� 4E0CA� 5E0 for all w 2Wi .

Using that the projection � W X ! F is coarsely 80–Lipschitz (Lemma 2.9) we
see that diamF �.f
.i/g [ Wi / � 80.10E0/. In particular, if i; j 2 I satisfy the
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inequality ji � j j � 2 � 80.10KE0/, then dF.
.i/; 
.j //� 2 � 80.10E0/, ensuring that
�.Wi / and �.Wj / are disjoint. In particular, this implies Wi \Wj D∅. On the other
hand, if i; j 2 I satisfy i < j and .j � i/� 1, then

dX.
.i/; yj /� dX.
.i/; 
.j //C dX.
.j /; yj /�K.1/CKC 2E0 � 4E0;

showing that yj 2 Ui by definition. Thus Wi and Wj intersect whenever ji � j j � 1.
This implies that the union

W D
[
i2I

Wi

is a connected subinterval of Imf.�/. We claim that in fact W D Imf.�/.

To see this, first suppose that IC <1, in which case we also have JC <1 and

.IC/D�.JC/2 Imf.�/ by assumption. In particular, �.JC/2WIC�W by definition.
If instead ICDJCD1, then the above shows that for any t 2J we can find infinitely
many disjoint intervals Wi � �.Œt;1// that each have length at least 2E0 . Thus
W \ �.Œt;1// is an infinite-length interval and so covers the positive end of Imf.�/.

Now suppose I�DJ�D�1. In this case, we claim � cannot have an initial rescaling
segment (ie that Imsc.�/D∅ and consequently that �.J /D Imf.�/). Indeed, if Imsc.�/

were nonempty then it must have infinite length in the negative direction. Since it
is a rescaling path, this implies Imsc.�/ contains arbitrarily thin points (Lemma 2.6).
However this contradicts the fact that 
.I/ is contained in some thick part X� (by
Lemma 4.3) and that the initial rays of 
 and � have finite Hausdorff distance. Therefore,
Imf.�/ has infinite length in the negative direction and the same argument as above
shows that W \ �..�1; t �/ has infinite length for any t 2 J . Whence W D Imf.�/

as claimed.

Finally suppose I�¤�1. Let t 2 J be such that �.t/D yI� 2UI� � Imf.�/. Then
dX.
.I�/; �.t//� 4E0 by definition, and since � is a geodesic, it follows that

dX.
.I�/; �.s//D dX.�.J�/; �.s//� 4E0

for all s 2 ŒJ�; t �. In particular, UI� �W contains the left endpoint of Imf.�/, which
proves the desired equality W D Imf.�/. Moreover, the above equation shows that
any point y 2 Imsc.�/ satisfies dX.
.I�/; y/� 4E0 . Therefore we conclude that for
every s 2 J the point �.s/ 2 Imsc.�/[W satisfies dX.
.I/; �.s//� 5E0 . Hence (ii)
holds with D0 D 5E0 .

Lemma 4.5 (thinness prevents factor progress) Suppose that 
 W Œ0; L� ! X is a
finite-length geodesic and that 
.t/ is �–thin for all t 2 Œ0; L�. Then

dX.
.0/; 
.L//� log
�
1

�

�
dF.
.0/; 
.L//�20

20
:
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Proof We may suppose N D dF.
.0/; 
.L// > 11, for otherwise there is nothing
to prove. Set a0 D 0. Supposing by induction that ai 2 Œ0; L/ has been defined for
some i � 0, we then set

aiC1 D supft 2 Œai ; L� W dF.
.ai /; 
.t//� 15g:

In this way, we obtain a sequence of times 0D a0< � � �<anDL. Notice that provided
aiC1 < L, we necessarily have dF.
.ai /; 
.aiC1C ı// � 16 for all ı > 0. Further-
more, for all sufficiently small ı , the graphs 
.aiC1/ and 
.aiC1C ı/ necessarily
have embedded loops representing the same conjugacy class, and so the projections
�.
.aiC1// and �.
.aiC1 C ı// must overlap. Therefore the union of �.
.ai //
and �.
.aiC1// has diameter at least 12. By Lemma 2.10, this implies that there is no
nontrivial conjugacy class with length less than 1 in both graphs 
.ai / and 
.aiC1/.
Since by assumption `.ˇj
.ai // < � for some nontrivial ˇ 2 F , it follows that
`.ˇj
.aiC1//� 1 and thus that

dX.
.ai /; 
.aiC1//� log
`.ˇj
.aiC1//

`.ˇj
.ai //
> log 1

�
:

Therefore, since 
 is a geodesic, we find that

(3) dX.
.a0/; 
.an//D

n�1X
iD0

dX.
.ai /; 
.aiC1//� .n� 1/ log 1
�
:

On the other hand, for each i > 0 we can find arbitrarily small numbers ı > 0 so that
dF.
.ai�1/; 
.ai � ı// � 15. Since ı here can be taken arbitrarily small, it follows
that 
.ai � ı/ and 
.ai / necessarily share an embedded loop. Consequently �.
.ai //
and �.
.ai � ı// overlap, and so we conclude

dF.
.ai�1/; 
.ai //� 20:

By the triangle inequality, it follows that

(4) dF.
.0/; 
.L//D dF.
.a0/; 
.an//� 20n:

Combining equations (3) and (4) gives the claimed result.

Lemma 4.6 Let 
 W I ! X be a K–quasigeodesic such that � ı 
 W I ! F is a
K–quasigeodesic and 
.I/�X� . Then there exists �0>0, depending only on � and K ,
such that any standard geodesic �W J ! X with the same endpoints as 
 is �0–thin,
ie �.J /� X�0 .

Proof Let E � 1 be the maximum of K and the constant D0 that is provided by
Proposition 4.4, and choose �1� � sufficiently small, so that log.1=�1/�40E2 . Notice
that �1 depends only on K and � . The facts that 
.I/� X� and that � and 
 have

Geometry & Topology, Volume 22 (2018)



544 Spencer Dowdall and Samuel J Taylor

finite Hausdorff distance (since they share the same endpoints) imply that there is
some �0 such that �.J /� X�0 . Choosing �0 < � , we then have �.J /; 
.I/� X�0 .

Let us write Gt D �.t/ for t 2 J . Suppose now that .a0; b0/� J is a subinterval such
that Gt … X�1 for all t 2 .a0; b0/ (ie Gt has an immersed loop of length less than �1 ).
Since �jŒa0;b0� is a geodesic, Lemma 4.5 implies that

dX.Ga0 ; Gb0/� log
�
1

�1

�
dF.Ga0 ; Gb0/�20

20
:

By Proposition 4.4, we can find points a; b 2 I so that dX.
.a/; Ga0/ � E and
dX.
.b/; Gb0//�E . Together with the fact that � W X! F is coarsely 80–Lipschitz,
this implies

dX.Ga0 ; Gb0/� log
�
1

�1

�
dF.
.a/; 
.b//�160E�20

20

� log
�
1

�1

�
jb�aj=E�161E�20

20
:

On the other hand, since 
.a/ and G.a0/ are �0–thick, dX.Ga0/; 
.a// � E �M�0 ,
for M�0 as in Lemma 2.3. So by the triangle inequality,

dX.Ga0 ; Gb0/� dX.Ga0 ; 
.a//C dX.
.a/; 
.b//C dX.
.b/; Gb0/

�E �M�0 CEjb� ajC 2E:

Combining these inequalities, and using log.1=�1/� 40E2 , we find that

jb� aj �M�0 C 2C 322E
2
C 40E:

By the triangle inequality it follows that

jb0� a0j � dX.Ga0 ; 
.a//C dX.
.a/; 
.b//C dX.
.b/; G.b
0//

�E �M�0 CEjb� ajCECE

� 2E �M�0 C 4EC 322E
3
C 40E2:

In particular, this shows that J cannot contain an infinite-length subinterval on which
� is �1–thin. Thus J 0 WD ft 2 J WGt … X�1g is a disjoint union of finite subintervals
of J . Each component of J thus has the form .c0; d 0/ � I 0 where Gc0 ; Gd 0 2 X�1
but Gt …X�1 for all t 2 .c0; d 0/. (Note that if I˙¤˙1, then 
.I˙/2X�1 by choice
of �1 � � .) Since Gc0 ; Gd 0 2 X�1 , a repetition of the above argument now implies

jd 0� c0j � L;

where L WD2E �M�1C4EC322E
3C40E2 depends only on E and �1 (and hence only

on K and � ). Consequently, since � is a geodesic, for any t 2 Œc0; d 0� and ˛2F we have

�1 � `.˛jGd 0/� e
L`.˛jGt /;
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which implies that Gt 2 X�0 for �0 WD �1e
�L . Since this estimate holds for every

point t 2 J 0 and �0 depends only on K and � , the result follows.

Before proving Theorem 4.1 in its full generality, we focus on the case where the
geodesic � is a standard geodesic.

Proposition 4.7 The conclusions of Theorem 4.1 hold under the additional assumption
that �W J ! X is a standard geodesic.

Proof Let 
 W I! X be a K–quasigeodesic whose projection � ı 
 W I! F is a K–
quasigeodesic, and let �W J!X be any standard geodesic with the same endpoints as 
 .
By Lemma 4.3, 
 is �–thick for some ��0 depending only on K (and on the injectivity
radius of 
.IC/ when IC <1). Lemma 4.6 therefore provides an �0 � 0, depending
only on K and � , such that �.t/ 2X�0 for all t 2 J . Thus conclusion (i) holds.

By applying Proposition 4.4 in conjunction with the symmetrization estimate from
Lemma 2.3, we see that for each i 2I there is a ti 2J with d sym

X .
.i/; �.ti //�M�0D0 .
Similarly for every j 2 J there is some sj 2 I such that d sym

X .
.sj /; �.j //�M�0D0 .
Thus conclusion (ii) holds with ADM�0D0 since we have shown that

dHaus.
.I/; �.J //�M�0D0:

It is now easy to see that � ı �W J ! F is a parametrized quasigeodesic: Consider any
times a; b 2 J with a < b . Since � is coarsely 80–Lipschitz, we automatically have

dF.�.a/; �.b//� 80 � dX.�.a/; �.b//C 80D 80jb� ajC 80:

On the other hand, by the above there exist times s; t 2I such that d sym
X .
.s/; �.a// and

d sym
X .
.t/; �.b// are both bounded by M�0D0 . By the triangle inequality, it follows that

dX.
.s/; 
.t//� dX.�.a/; �.b//� 2M�0D0 D jb� aj � 2M�0D0:

Since 
 is a directed K–quasigeodesic by assumption, this implies

.t � s/�
1

K
dX.
.s/; 
.t//�K �

1

K
jb� aj �

2M�0D0
K

�K:

Since � ı 
 W J ! F is also a K–quasigeodesic, we may extend this to conclude

jb� aj �K.t � s/C 2M�0D0CK
2
�K

�
KdF.�.a/; �.b//CK

�
C 2M�0D0CK

2:

Therefore, � ı � is a K 0–quasigeodesic for K 0 D maxf80; 2K2 C 2M�0D0g. This
proves conclusion (iii).

4.1 More on Bestvina–Feighn projections

Proposition 4.7 above suffices to prove our main result on hyperbolic extensions of free
groups (Theorem 1.1). However for completeness, and to strengthen the quasiconvexity
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results in Section 5, it is desirable to prove the more general result Theorem 4.1 which
applies to arbitrary geodesics. This subsection is devoted to that purpose.

Heuristically, Theorem 4.1 follows easily from Proposition 4.7 and some ideas in
Bestvina and Feighn [5]. Specifically, as remarked in [5, Corollary 7.3], Bestvina and
Feighn’s Proposition 7.2 (Proposition 2.11 here) essentially says that folding paths
that make definite progress in the factor complex are strongly contracting in Outer
space, which generalizes Algom-Kfir’s result [1]. One should then apply this notion
of strong contracting to conclude that such folding paths are stable (using standard
arguments). However, to make this precise, we first require a more detailed discussion
of the projection Pr
 W X! 
.I/.

Following [5], given a free factor A2F0 and a point G 2X, we write AjG for the core
subgraph of the cover of G corresponding to the conjugacy class of A in F Š �1.G/.
We say that AjG is the core of the A–cover. Restricting the covering map thus
gives a canonical immersion AjG ! G that identifies �1.AjG/ with A � �1.G/.
The graph AjG is equipped with a metric structure by pulling back the edge lengths
from G . Similarly, whenever G is given an illegal turn structure (eg if G lies on a
folding path), we may pull back this structure via AjG!G , equipping AjG with an
illegal turn structure as well. When A is a cyclic free factor generated by a primitive
element ˛ 2 F , we note that AjG agrees with our already defined ˛jG .

Setting I D .18 Mm.3r�3/C6/.2r�1/, where r D rk.F/ and Mm denotes the maximum
number of illegal turns in any train track structure on any G 2 X, Bestvina and Feighn
then define the following projections from F to folding paths in X:

Definition 4.8 Let 
 W I!X be a folding path, and let A2F0 be a proper free factor.
The left and right projections of A to 
 are respectively given by

left
 .A/ WD infft 2 I W AjGt has an immersed legal segment of length 3g 2 I ;

right
 .A/ WD supft 2 I W AjGt has an immersed illegal segment of length I g 2 I ;

where here an illegal segment means a segment that does not contain a legal segment
of length 3.

Using this, the Bestvina–Feighn projection Pr
 is defined as follows:

Definition 4.9 (Bestvina–Feighn projection) Let 
 W I ! X be a folding path. For
H 2 X, the left and right projections of H are defined to be

left
 .H/ WD inf
A2�.H/

left
 .A/ and right
 .A/ WD sup
A2�.H/

right
 .A/:

The projection of H to 
.I/ is then given by Pr
 .H/ WD 
.left
 .H//.
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Note that every candidate conjugacy class ˛ 2 CH at H 2 X is primitive and thus
generates a cyclic free factor of F ; thus we may view ˛ as a point in F0 . Since the
immersion ˛jH!H lands in a proper subgraph of H , we additionally have ˛�A for
some A 2 �.H/. Therefore, Bestvina and Feighn’s Proposition 6.4 and Corollary 6.11
immediately give the following estimates regarding the above projections.

Proposition 4.10 (Bestvina and Feighn) Let 
 W I ! X be a folding path and let
H 2 X be any point. Then for every candidate ˛ 2 CH of H , we have

Œleft
 .˛/; right
 .˛/�� Œleft
 .H/; right
 .H/�� I :

Moreover, the set
�.
.Œleft
 .H/; right
 .H/�//� F

has uniformly bounded diameter depending only on rk.F/.

As a consequence, we may deduce that Pr
 .H/ coarsely agrees with the closest-point
projection of H to 
.I/ in the case that 
 makes definite progress in F .

Lemma 4.11 Let 
 W I ! X be a folding path whose projection � ı 
 W I ! F is a
K–quasigeodesic. Then there exists D � 0, depending only on K and rk.F/ (and
the injectivity radius of 
.IC/ when IC <1) satisfying the following: If H 2 X

and t0 2 I are such that

dX.H; 
.t0//D inffdX.H; 
.t// W t 2 Ig;

then d sym
X .
.t0/;Pr
 .H//�D .

Proof We write Gt D 
.t/ for t 2 I . Let us define

LD inffleft
 .˛/ W ˛ 2 CH g and RD supfright
 .˛/ W ˛ 2 CH g:

Note that each candidate ˛ 2 CH is a simple class and that, by definition of left
 .˛/,
the loop ˛jGs cannot contain a legal segment of length 3 for any s < L. Therefore,
Lemma 5.8 of [5] and the fact that � ı 
 is a K–quasigeodesic together imply that
there exists T � 0 depending only on K and rk.F/ such that for all t � T we have

`.˛jGL�t / > 2`.˛jGL/:

Since this estimate holds for each candidate, Proposition 2.5 implies that 2 dX.H;GL/<
dX.H;GL�t / for all t � T . Similarly, for all s > R the loop ˛jGs contains immersed
legal segments contributing to a definite fraction of `.˛jGs/. Thus, by Corollary 4.8
of [5], the length `.˛jGs/ grows exponentially beyond R and so after increasing T if
necessary we have

`.˛jGRCt / > 2`.˛jGR/
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and consequently 2 dX.H;GR/ < dX.H;GRCt / for all t � T . Given any time t0 2 I

satisfying
dX.H;Gt0/D inffdX.H; 
.t// W t 2 Ig;

it follows that t0 necessarily lies in ŒL�T;RCT �.

By Proposition 4.10, we know that �.
.ŒL;R�// has bounded diameter and bounded F–
distance from �.Pr
 .H//. Therefore, since �ı
 is a K–quasigeodesic, there exists D0 ,
depending only on K and rk.F/, such that js0� t0j �D0 , where s0 2 I is the time for
which Gs0DPr
 .H/. By Lemma 4.3, we additionally know 
.I/�X� for some � >0
depending on K (and the injectivity radius of 
.IC/ when IC<1). Therefore, since 

is a directed geodesic, we may conclude d sym

X .Gt0 ;Pr
 .H//�M�D
0 , as desired.

Lemma 4.11 shows that whenever 
 W I! X is a standard geodesic for which � ı 
 is
a K–quasigeodesic, then the closest-point projection X! 
.I/ coarsely agrees with
Pr
 W X! 
.I/. Thus, since 
 makes definite progress in F , Proposition 2.11 implies
that 
 is strongly contracting. That is, there exists D , depending only on rk.F/ and K
(and the injectivity radius of 
.IC/ if IC<1), such that if dX.H;H 0/�dX.H; 
.I//,
then any closest-point projections of H and H 0 to 
.I/ are at most d sym

X –distance D
apart. We are therefore in the situation of the standard Morse lemma (see eg Section 5.4
of [1]), which gives the following stability result.

Lemma 4.12 (Morse lemma for F–progressing folding paths) Suppose 
 W I!X is
a standard geodesic for which � ı
 W I!F is a K–quasigeodesic. Then for any K 0� 1
there exists B depending only on rk.F/, K and K 0 (and the injectivity radius of 
.IC/
when IC<1/ such that dHaus.
.I/; �.J //�B for every K 0–quasigeodesic �W J!X

with the same endpoints as 
 .

Using this, we may finally give the proof of Theorem 4.1:

Proof of Theorem 4.1 Let 
 W I! X be a K–quasigeodesic such that � ı 
 is also
a K–quasigeodesic, and let �; A > 0 and K 0 � 1 be the corresponding constants
provided by Proposition 4.7. Choose a standard geodesic �0W J 0! X with the same
endpoints as 
 . Then by Proposition 4.7 we know that �0.J 0/ � X� and that � ı �0

is a K 0–quasigeodesic. Now consider an arbitrary geodesic �W J ! X with the same
endpoints as 
 , and thus also �0 . Applying Lemma 4.12 to � and the folding path �0 ,
we find that

dHaus.�.J /; �
0.J 0//� B

for some B depending only on � and K 0 . Consequently �.J /�X�0 , where �0D e�B� .
Since �0.J 0/ and 
.I/ have Hausdorff distance at most A by Proposition 4.7, it also
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follows that dHaus.�.J /; 
.I// � B CA. Finally, as in the proof of Proposition 4.7
above, these two facts easily show that � ı � is a K 00–quasigeodesic for some K 00

depending only on �0 and ACB .

5 Quasi-isometric into F implies quasiconvex in X

Consider a finitely generated subgroup ��Out.F/. For any finite generating set S �� ,
we then consider the word metric d� D d�;S on � defined by d�.g; h/D jg�1hjS ,
where j � jS denotes word length with respect to S . This is just the restriction of the
path metric on the Cayley graph Cay.�; S/ to � D .Cay.�; S//0 . In this section we
explain various ways in which the geometry of � relates to that of X or F .

For any free factor A 2 F0 , we may consider the orbit map .�; d�/! .F; dF/ given
by g 7! g �A. We say that this map is a qi-embedding if it is a K–quasi-isometric
embedding for some K � 1. We remark that if some orbit map into F is a quasi-
isometric embedding, then so is any orbit map into F .

Definition 5.1 We say � � Out.F/ qi-embeds into F if � is finitely generated and
any orbit map into F is a qi-embedding.

Given a point H 2X, we say that the orbit � �H is quasiconvex if it is A–quasiconvex
for some A � 0, meaning that every (directed) geodesic between points of � �H
lies in the (symmetric) A–neighborhood NA.� �H/ (see Section 2.6). We record the
following straightforward consequence of quasiconvexity.

Lemma 5.2 Let � �Out.F/ be finitely generated with corresponding word metric d� ,
and suppose H 2X is such that � �H �X is quasiconvex. Then the orbit map g 7!g �H

defines a quasi-isometric embedding .�; d�/! .X; dX/.

Proof Let S � � be the generating set inducing the word metric d� . By assumption,
there exists A� 0 such that � �H is A–quasiconvex. Choose �D �.H;A/ > 0 so that
NA.� �H/� X� . Since Out.F/ acts properly discontinuously on X, the set

D D fg 2 � W d
sym
X .H; g �H/� 2ACM�g

is finite, and we may set K Dmaxg2D d�.1; g/.

Letting 
 W Œ0; L�! X be a (directed) geodesic from g �H to g0 �H , our hypothesis
implies 
 �NA.� �H/ and thus that 
.t/2X� for all t 2 Œ0; L�. Setting N D bLc, we
may find h0; : : : ; hNC12� so that h0Dg , hNC1Dg0 and d sym

X .
.i/; hi �H/<A for
all i D 0; : : : ; N . In particular, we see that for each i D 0; : : : ; N the element h�1i hiC1
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translates H by at most d sym
X –distance 2ACM� and hence has d�.1; h�1i hiC1/�K .

Thus
d�.g; g

0/� d�.h0; h1/C � � �C d�.hN ; hNC1/

D

NX
iD0

d�.1; h
�1
i hiC1/

�K.N C 1/�K.LC 1/

DKdX.g �H;g
0
�H/CK:

On the other hand, if K 0 D maxfdX.H; s �H/ W s 2 Sg, then dX.g �H;g
0 �H/ �

K 0d�.g; g
0/. Therefore g 7! g �H is a maxfK 0; Kg–quasi-isometric embedding.

Definition 5.3 A subgroup ��Out.F/ is said to be quasiconvex in X if the orbit � �H
is quasiconvex for every H 2 X.

We remark that knowing a single orbit � �H is quasiconvex in X does not necessarily
seem to imply that � is quasiconvex: it is conceivable that some other orbit � �H 0

could fail to be quasiconvex.

We now employ the results of Section 4 to show that every subgroup that qi-embeds
into the factor complex is quasiconvex in Outer space:

Theorem 5.4 Let � � Out.F/ be finitely generated. If � qi-embeds into F , then �
is quasiconvex in X.

Proof Let H 2 X be arbitrary and let A 2 �.H/� F . Since � W X! F is coarsely
Lipschitz and g 7! g �A gives a quasi-isometric embedding � ! F , the orbit map
OW �!X defined by O.g/Dg �H is also a quasi-isometric embedding. Let g1; g22�
be given. For any (discrete) geodesic path �W f1; : : : ; N g ! � from g1 to g2 , the
image O ı � is thus a quasigeodesic path in X joining g1 �H and g2 �H such that
� ıO ı � is also a quasigeodesic in F . Theorem 4.1 then implies that any geodesic

 W I! X from g1 �H to g2 �H stays uniformly close to the image of O ıp , which
is contained in � �H . Hence, � is quasiconvex in X.

6 Quasiconvex orbit implies conjugacy flaring

Consider a subgroup � � Out.F/ with finite generating set S � � and corresponding
word length j � jS . Fix also a basis X of F . We say that � has .�;M/–conjugacy flaring
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for the given � > 1 and positive integer M 2N if the following condition is satisfied:

For all ˛2F and g1; g22� with jgi jS �M and jg1g2jSDjg1jSCjg2jS ,
we have

�k˛kX �maxfkg1.˛/kX ; kg�12 .˛/kXg;

where k � kX denotes conjugacy length (ie the shortest word length with
respect to X of any element in the given conjugacy class).

In this section we show that any purely hyperbolic subgroup ��Out.F/ that qi-embeds
into F has conjugacy flaring. In fact, our argument only relies on the following weaker
hypothesis. Before making the definition, we first recall that a (finite) geodesic in � may
be encoded by a sequence of group elements .g0; : : : ; gN / such that d�.gi ; gj /Dji�j j
for all i; j D 0; : : : ; N . For R 2 X, the image of this geodesic in the orbit � �R is
simply the set of points g0 �R; : : : ; gN �R .

Definition 6.1 (QCX condition) Consider a subgroup � �Out.F/ and point R 2 X.
We say that the orbit � �R is A–QCX if for any geodesic .g0; : : : ; gN / in � there
exists a folding path �W J ! X with Hausdorff distance at most A from the image
of .g0; : : : ; gN /, that is

dHaus.�.J /; fg0 �R; : : : ; gN �Rg/� A;

such that d sym
X .�.J�/; g0 �R/� A and d sym

X .�.JC/; gN �R/� A.

We summarize this property by saying the image of the geodesic .g0; : : : ; gN / in
� �R � X has Hausdorff distance at most A from a folding path in X with the correct
orientation. Note that for an arbitrary subgroup � , there is no direct correspondence
between quasiconvexity and this QCX condition. However, we have the following
relationship when � is hyperbolic.

Lemma 6.2 Suppose that � � Out.F/ is finitely generated, ı–hyperbolic, and that
� �R � X is A–quasiconvex. Then � �R is A0–QCX for some A0 .

Proof Let d� be a word metric on � such that .�; d�/ is ı–hyperbolic. By Lemma 5.2
the orbit map g 7! g �R defines a K–quasi-isometric embedding .�; d�/! .X; dX/

for some K . Let .g0; : : : ; gN / be any geodesic in � and let 
0W I0!X be a standard
geodesic from g0 �R to gN �R . Then by quasiconvexity we have 
0.I0/�NA.� �R/.
Note that NA.� �R/�X� for some � > 0 (since R has positive injectivity radius). The
scaling image Imsc.
0/ of 
0 thus lives in X� and hence has length at most log.2=�/ by
Lemma 2.6. Setting A0DACM�.log.2=�/C1/, it follows that if 
 W Œ0; L�!X is the
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folding portion of 
0 and mDbLc, then we may find group elements h0; : : : ; hm with
h0D g0 and hmD gN such that d sym

X .
.i/; hi �R/�A0 for all i D 0; : : : ; m 2 Œ0; L�.
It follows that for i < j ,

j � i � 2A0 � dX.hi �R; hj �R/� j � i C 2A0:

Thus the map i 7! hi �R is a discrete 2A0–quasigeodesic in .X; dX/; consequently, the
sequence g0Dh0; : : : ; hmDgN is a K 0–quasigeodesic in � for some K 0DK 0.K;A0/.
Since � is ı–hyperbolic, Proposition 2.1 implies that for each j 2 f0; : : : ; mg there
exists i 2 f0; : : : ; N g with d�.hj ; gi /�R0 DR0.K 0; ı/. Noting that

d
sym
X .hj �R; gi �R/�M�.Kd�.hj ; gi /CK/;

it follows that

fh0 �R; : : : ; hm �Rg �NM�.KR0CK/.fg0 �R; : : : ; gN �Rg/:

Because we also have 
.Œ0; L�/ � NM�CA0.fh0 � R; : : : ; hm � Rg/ by the selection
of h0; : : : ; hm , the claim follows with A0 DM�.KR0CK/CM�CA0 .

Corollary 6.3 If � � Out.F/ qi-embeds into F , then for every R 2 X there exists
A� 0 such that the orbit � �R is A–QCX.

Proof By Theorem 5.4 we know that every orbit � �R is quasiconvex in X. Since F

is hyperbolic, the hypothesis that � qi-embeds into F also implies that � is finitely
generated and ı–hyperbolic for some ı � 0. Lemma 6.2 thus implies the claim.

We also have the following simple consequence of being A–QCX:

Lemma 6.4 Suppose � � Out.F/ is finitely generated and that the orbit � �R � X is
A–QCX. Then g 7! g �R gives a quasi-isometric embedding .�; d�/! .X; dX/.

Proof Let g1; : : : ; gN be a geodesic in � from gDg1 to g0DgN . By using a folding
path 
 W I ! X with Hausdorff distance at most A from the image of .g1; : : : ; gN /,
an argument exactly as in Lemma 5.2 shows that d�.g; g0/ and dX.g �R; g0 �R/ agree
up to bounded additive and multiplicative error depending only on R and A.

Having established this terminology, we now turn to the main result of this section:

Theorem 6.5 Suppose that � � Out.F/ is finitely generated and purely hyperbolic
and that for some R 2 X the orbit � �R is A–QCX. Then � has .2;M/–conjugacy
flaring for some M 2N depending only on A and R .
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The proof of Theorem 6.5 will take several steps. We first show in Proposition 6.11
that, provided � is purely hyperbolic, a corresponding flaring property holds for the
length of any conjugacy class along any folding path that remains within the symmetric
A–neighborhood of the orbit � �R � X. When the orbit � �R is A–QCX we use this
flaring on folding paths to deduce a similar flaring in the orbit � �R . Measuring this
flaring from R , where `. � jR/ coarsely agrees with the conjugacy length k � kX , then
yields Theorem 6.5. We first require the following lemma, which is central to this
section. It implies that there is a uniform bound on how long a conjugacy class can
stay short along our folding paths.

Lemma 6.6 Fix � � Out.F/ and R 2 X. For any L0 � 0 and A0 � 0, there is
a D0 � 0 satisfying the following: if ˛ 2 F is nontrivial and 
 W I ! X is a folding
path with Gt D 
.t/ 2NA0.� �R/ for all t 2 I , then either

diamft 2 I W `.˛jGt /� L0g �D0

or there is an infinite-order element � 2 � with �.Œ˛�/D Œ˛�.

Proof Let �˛ be the subgroup of elements of � that fix the conjugacy class of ˛ .
If �˛ is a torsion group, then j�˛j � er by Lemma 2.14.

Let a and b be the infimum and supremum of the set ft 2 I W `.˛jGt /� L0g. Then,
by Proposition 3.2, for all t 2 Œa; b� we have `.˛jGt / �ML0 , where M D 6 rk.F/.
It follows that if d0 � 3A0 , then for all t; t C d0 2 Œa; b� the points Gt and GtCd0
cannot both be A0–close (in symmetric distance) to the same orbit point of � �R (since
d sym
X .Gt ; GtCd0/� dX.Gt ; GtCd0/D d0 > 2A0 ).

Set N D b.b� a/=d0c and for each 0� n�N select �n 2 � such that

d
sym
X .�n �R;GaCd0n/� A0:

By our choice of d0 , we have, for 0 � i; j � N , that �i D �j if and only if i D j .
By assumption, ˛ 2 F has length at most ML0 in GaCd0n ; therefore we have that
`.��1n .˛/jR/� eA0ML0 for all 0� n�N . Let C denote the number of immersed
loops in R of length at most eA0ML0 ; we note that C depends only on R , A0 and L0 .
It follows that if N > C.er C 1/ then we may find distinct 0 � k0 < � � � < ker � N
such that

��1k0 .˛/D �
�1
k1
.˛/D � � � D ��1ker

.˛/:

Since the �ki are all distinct, this implies that �˛ contains at least er C 1 elements,
and hence, an infinite-order element. Otherwise N � C.er C 1/ and thus we conclude

b� a � d0.N C 1/� d0.C.er C 1/C 1/:

Setting D0 D d0.C.er C 1/C 1/ completes the proof.
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We next examine how the length of a loop varies over a folding path Gt that is near
the orbit of � . Our arguments are inspired by Section 5 of [5], however, the use of
Lemma 6.6 greatly simplifies our analysis.

For a folding path Gt and a conjugacy class ˛ , recall that ˛jGt is the core of the
˛–cover of Gt . We think of ˛jGt as having edge lengths and illegal turn structure
induced from Gt . As such, ˛jGt is composed of legal segments separated by illegal
turns. We say that a collection of consecutive illegal turns in ˛jGt survive to ˛jGt 0
for t � t 0 if no illegal turn in the collection becomes legal in the process of folding
from Gt to Gt 0 nor do two illegal turns of the collection collide. In other words, a
collection of consecutive illegal turns of ˛jGt survive to ˛jGt 0 if and only if there is a
collection of consecutive illegal turns of ˛jGt 0 and a bijection between the illegal turns
in both collections induced by the process of unfolding an illegal turn of ˛jGt 0 to an
illegal turn of ˛jGt (see Lemma 2.7 and the surrounding discussion). Set Mm equal to
the maximum number of illegal turns in any train track structure on any G 2 X. Note
that Mm� 2 rk.F/� 2.

Lemma 6.7 (illegal turns don’t survive) Suppose that � � Out.F/ is purely hyper-
bolic and that R 2 X. For each l � 0 and A0 � 0 there exists Dl � 0 satisfying the
following property. If Gt is a folding path with Gt 2NA0.� �R/ for all t 2 Œa; b� and
˛ is a conjugacy class such that ˛jGa has a segment containing MmC 1 consecutive
illegal turns that survive to ˛jGb and the length of each legal segment between these
illegal turns in ˛jGb is no greater than l , then b� a �Dl .

Proof Let st be the segment spanning the consecutive surviving illegal turns in ˛jGt
for a� t � b . Since the number of illegal turns in sb is greater than the total number of
illegal turns in Gb , there are a pair of illegal turns of sb that project to the same illegal
turn of Gb under the immersion ˛jGb!Gb . Let s0

b
be the subsegment between two

such turns and let �b denote the loop obtained by projecting s0
b

to Gb and identifying
its endpoints.

By the unfolding principle of [5] (Lemma 2.7), there is a subsegment s0t of st that maps
to the segment s0

b
after folding and tightening and such that the illegal turn endpoints

of s0t map to the same illegal turn in Gt (just as in Gb ). Hence, we may form the loop �t
by identifying these endpoints in Gt . We note �t is immersed for each a� t �b except
possibly at the illegal turn corresponding to the endpoints of s0t and that the conjugacy
class of �t maps to the conjugacy class of �b under the folding map Gt !Gb , again
by the unfolding principle. Let � denote this conjugacy class in F .

By construction, the length of �b is bounded by l �. MmC1/ and the number of illegal turns
of �a is no more than MmC1, since these illegal turns all survive in Gb by assumption.

Geometry & Topology, Volume 22 (2018)



Hyperbolic extensions of free groups 555

By Lemma 3.1, `.�t / � 2l � . MmC 1/ for all a � t � b . Then, by Lemma 6.6 either
�.�/D � for some infinite-order � 2� or we have b�a�Dl for some Dl depending
only on A0 , l and R . Since � is purely hyperbolic, the claim follows.

Recall the notation from Section 3: if Gt is a folding path and ˛ is a conjugacy class,
then kt D k.˛jGt / denotes the number of illegal turns of ˛jGt and mt denotes the
illegality of Gt . The following lemma is similar to Lemma 5:4 of [11]. Again, we use
that our folding path is near the orbit of � as a replacement for having a single train
track map, as was the case in [11]. Let r D rk.F/.

Lemma 6.8 Let Gt be a folding path with Gt 2NA0.� �R/ for t 2 Œa; b� and let pb be
an immersed path in Gb whose endpoints are illegal turns such that k.pb/� 2.2r � 2/
and pb contains no legal segment of length L� 3. Let pt be the corresponding path
in Gt whose endpoints are illegal turns which is obtained from pb by unfolding. Then

�0 � k.pt /

2.2r � 2/
� `.pt /� L � k.pt /;

where �0 is the minimal injectivity radius of any graph in NA0.� �R/.

Proof Any path in Gt with at least 2r � 2 illegal turns contains a loop in Gt which
has length at least �0 . The lemma now easily follows.

We find the following terminology helpful. Suppose that Gt , t 2 Œa; b�, is a folding path
and that ˛ is a nontrivial conjugacy class in F . As mentioned earlier, the immersed
loop ˛jGt ! Gt consists of legal segments separated by illegal turns. We let ˛leg

t

denote the subset of ˛jGt consisting of maximal legal segments of length at least 3,
and we write leg.˛jGt / for the length of ˛leg

t . This is the legal length of ˛jGt . The
complement ˛jGt �˛leg

t consists of finitely many disconnected segments, and we write
ilg.˛jGt / for the sum of the lengths of the components of ˛jGt �˛leg

t that contain at
least MmC 1 illegal turns (counting the endpoints). This is the illegal length of ˛jGt .
Finally we write ntr.˛jGt / for the sum of the lengths of the remaining components
of ˛jGt �˛leg

t , that is, those components with fewer than MmC 1 illegal turns. This is
the neutral length of ˛jGt . By construction we thus have

`.˛jGt /D leg.˛jGt /C ilg.˛jGt /C ntr.˛jGt /:

Notice that, since every component of ˛leg
t has length at least 3, there are at most

.leg.˛jGt /=3/C 1 components of ˛jGt � ˛leg
t . On the other hand, each component

contributing to ntr.˛jGt / has length at most 3 Mm by definition, and so we find that

ntr.˛jGt /� Mm.leg.˛jGt /C 3/:
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The previous two lemmas allow us to show that the illegal length of ˛jGt decreases
exponentially fast along a folding path that remains close to the orbit of � .

Lemma 6.9 (illegal turn mortality rate) Suppose that � is purely hyperbolic and that

 W Œa; b�! X is a folding path with Gt D 
.t/ 2NA0.� �R/ for all t . Then for every
nontrivial conjugacy class ˛ we have

ilg.˛j
.a//� �0 Mm

3.2r�2/.2 MmC1/

�
2 MmC1

2 Mm

�.b�a/=D3
� ilg.˛j
.b//;

where �0 is the minimal injectivity radius of any point in NA0.� �R/, r D rk.F/, and
D3 is the constant from Lemma 6.7.

Proof Let pb be a component of ˛jGb�˛leg
b

contributing to ilg.˛jGb/, and write pt
for the corresponding path in ˛jGt (ie pt 0 unfolds to pt for t � t 0 ). First note that
for t 2 Œa; b�, the hypotheses on pb imply that every legal subsegment of pt has length
less than 3 (since legal segments of length at least 3 grow under folding) and the
number of illegal turns in pt is at least MmC 1 (since k.pt / is nonincreasing in t ).

Suppose that t 2 Œa; b� is such that t �D3 2 Œa; b�. Partition pt into sC 1 subpaths

pt D p
1
t � � �p

s
t � qt ;

where each pit has MmC 1 illegal turns and qt has fewer than MmC 1 illegal turns
(counting endpoints). Thus the number of illegal turns in pt is k.pt /D s MmC k.qt /,
where in the case that qt is degenerate we view it as a segment with one illegal turn so
that k.qt /D 1. By our condition on qt and the assumption that k.pt /� . MmC 1/, it
follows that

k.pt /

Mm
� sC 1 and 1�

k.pt /� 1

Mm
�
k.pt /

2 Mm
:

Unfolding these pit to subsegments of pt�D3 and applying Lemma 6.7, we conclude
that the number of illegal turns in each subsegment increases by at least 1. Thus

k.pt�D3/� s. MmC 1/C k.qt /D k.pt /C s

� k.pt /C
k.pt /

Mm
� 1

� k.pt /C
k.pt /

2 Mm

D

�
2 MmC1

2 Mm

�
k.pt /:
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So long as a � t �nD3 � b , we may inductively apply this argument to conclude that

k.pa/� k.pt�nD3/�

�
2 MmC1

2 Mm

�n
k.pt /:

Using Lemma 6.8 to compare lengths with number of illegal turns, we conclude that

`.pa/�

�
�0

4r�4

�
k.pa/

�

�
�0

4r�4

��
2 MmC1

2 Mm

�b.b�a/=D3c
k.pt /

�

�
�0 Mm

3.2r�2/.2 MmC1/

��
2 MmC1

2 Mm

�.b�a/=D3
`.pb/:

Summing these estimates over each component of ˛jGb contributing to ilg.˛jGb/
gives the desired result.

There is a similar estimate for the growth of legal length in the forward direction.

Lemma 6.10 For any folding path Gt , t2Œa; b�, every nontrivial conjugacy class ˛2F
satisfies

leg.˛jGb/� leg.˛jGa/
�
1
3

�
eb�a:

Proof Let pa be a component of ˛leg
a and let pb be the corresponding segment

in ˛jGb (so that pb unfolds to pa ). Then `.pa/� 3 by assumption, so Corollary 4.8
of [5] gives

`.pb/� 2C .`.pa/� 2/e
b�a
� `.pa/

�
1�

2

`.pa/

�
eb�a � 1

3
`.pa/e

b�a:

Summing over the segments contributing to leg.˛jGa/ now proves the claim.

Combining these estimates easily leads to uniform flaring along folding paths that stay
close to the orbit � �R :

Proposition 6.11 (flaring in folding paths) Suppose � �Out.F/ is purely hyperbolic
and that R 2X is such that � �R is A0–QCX. Then for all �1 � 1 there exists D1 � 1
such that the following holds: for any nontrivial conjugacy class ˛ , any folding path

 W I ! X with Gs D 
.s/ 2 NA0.� �R/, and any parameters t 2 R and d � D1
satisfying Œt � d; t C d�� I , we have

�1 � `.˛jGt /�maxf`.˛jGt�d /; `.˛jGtCd /g:

Proof Fix t 2 I .
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Case 1 Suppose ilg.˛jGt / � `.˛jGt /=2. Then Lemma 6.9 provides a constant D0

such that for all d �D0 with Œt � d; t �� I we have

`.˛jGt�d /� ilg.˛jGt�d /� 2�1 � ilg.˛jGt /� �1 � `.˛jGt /:

Case 2 Suppose ilg.˛jGt / < `.˛jGt /=2 and leg.˛jGt /¤ 0. In this case we have

`.˛jGt /D ilg.˛jGt /C leg.˛jGt /C ntr.˛jGt /

�
1
2
`.˛jGt /C leg.˛jGt /C Mm.leg.˛jGt /C 3/;

which gives `.˛jGt / < 2.1C Mm/ leg.˛jGt /C6. Note that 3� leg.˛jGt / by definition
of (nonzero) legal length. Lemma 6.10 now provides a constant D00 such that for
all d �D00 with Œt; t C d�� I we similarly have

`.˛jGtCd /� leg.˛jGtCd /� �14.1C Mm/ leg.˛jGt /� �1 � `.˛jGt /:

Case 3 Suppose ilg.˛jGt / < `.˛jGt /=2 and leg.˛jGt /D 0. Then the above shows
`.˛jGt / � 6. Thus by Lemma 6.6, applied with L0 D 6�1 shows that there exists a
constant D0 such that for all d �D0 we have `.˛jGtCd / > L0 � �1`.˛jGt /.

We are now prepared to prove the main result of this section:

Proof of Theorem 6.5 Fix a finite generating set S � � and a free basis X of F .
We must produce M 2 N such that for every nontrivial ˛ 2 F and all g1; g2 2 �
with jgi jS �M and jg1g2j D jg1jS Cjg2jS we have

2k˛kX �maxfkg1.˛/kX ; kg�12 .˛/kXg:

Recall first that, by Proposition 2.5, there exists a constant K D K.X;R/ such
that .1=K/k˛kX � `.˛jR/ � Kk˛kX for every conjugacy class ˛ in F . We apply
Proposition 6.11 with �1 D 2K2e2A and obtain a corresponding constant D1 . By
Lemma 6.4, we know that g 7! g �R defines a quasi-isometric embedding of .�; d�/
into .X; dX/. Thus we may choose M 2N sufficiently large that every g 2 � with
jgjS �M satisfies dX.R; g �R/�D1C2A. We claim � has .2;M/–conjugacy flaring.

Let g1; g2 2 � be any elements with jgi jS �M and jg1g2jS D jg1jS C jg2jS . It
follows that there exists a geodesic .h�k; : : : ; h�1; e; h1; : : : ; hj / in � with h�kDg�11
and hj D g2 . In particular, k D jg1jS and j D jg2jS . Since � � R is A–QCX
by hypothesis, there exists a folding path 
 W I ! X that has Hausdorff distance at
most A from the image of .h�k; : : : ; hj /. Writing Gt D 
.t/, we may thus choose
times a < s < b in I so that

(5) d
sym
X .Ga; h�k �R/� A; d

sym
X .Gs; R/� A; d

sym
X .Gb; hj �R/� A:
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Since jg�11 jS ; jg2jS �M , the above remarks imply that

dX.h�k �R;R/D dX.R; g1 �R/ and dX.R; hj �R/D dX.R; g2 �R/

are both bounded below by D1C 2A. Thus by the triangle inequality we have

dX.Ga; Gs/�D1 and dX.Gs; Gb/�D1;

which is equivalent to s� a �D1 and b� s �D1 . Since the folding path 
.I/ lies
in NA.� �R/ and the orbit � �R is A–QCX by assumption, Proposition 6.11 now
ensures that

2K2e2A � `.˛jGs/�maxf`.˛jGa/; `.˛jGb/g

for every nontrivial ˛ 2 F . Finally, since dX � d
sym
X , (5) implies that

`.˛jGa/� e
A`.˛jg�11 �R/; `.˛jGb/� e

A`.˛jg2 �R/; `.˛jR/� eA`.˛jGs/:

Combining the above estimates and using the rule `.˛jg�1 �R/D `.g.˛/jR/ yields

2k˛kX � 2K`.˛jR/

�
1

K
e�A maxf`.˛jGa/; `.˛jGb/g

�
1

K
maxf`.g1.˛/jR/; `.g�12 .˛/jR/g

�maxfkg1.˛/kX ; kg�12 .˛/kXg:

Since this holds for every nontrivial ˛ 2 F , we have proved the claim.

7 The Cayley graph bundle of a free group extension

Fix � � Out.F/ with finite generating set S D fs1; : : : ; sng, and fix a free basis
X D fx1; : : : ; xrg for F . Recalling that the extension E� is naturally a subgroup
of Aut.F/, choose lifts ti 2 Aut.F/ of si for each 1� i � n so that E� is generated
as a subgroup of Aut.F/ by W D fix1 ; : : : ; ixr ; t1; : : : ; tng. That is,

E� D hix1 ; : : : ; ixr ; t1; : : : ; tni � Aut.F/:

Here, ix is the inner automorphism given by conjugation by x 2 F , ie ix.˛/D x˛x�1

for ˛ 2 F . Note that by construction,

t ixt
�1
D it.x/ 2 Aut.F/

for each x 2 F and each t 2 Aut.F/. For convenience, set yX D fix1 ; : : : ; ixr g and
yF D h yXi, so that yF is the image of F in Aut.F/. Note that yF is also the kernel
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of the homomorphism E� ! � . In general, for g 2 � we denote a lift of g to an
automorphism in the extension E� by zg .

Let T DCay.F ; X/, E DCay.E� ; W / and BDCay.�; S/, where Cay. � ; � / denotes
the Cayley graph with the specified generating set equipped with the path metric in
which each edge has length one. Set R to be the standard rose on the generating set X ,
so that RD T=F . There is an obvious equivariant simplicial map

pW E! B

obtained from the surjective homomorphism E� ! � . In detail, pW E! B is defined
to be the homomorphism E� ! � on the vertices of E and maps edges of E to
either vertices or edges of B , depending on whether the given edge corresponds to a
generator in X or S , respectively. Note that for each b 2� , the preimage TbDp�1.b/
is the simplicial tree (isomorphic to T ) with vertices labeled by the coset zbyF (zb any
lift of b ) and edges labeled by yX . We write db for the induced path metric on the
fiber Tb over b 2 � .

In Example 1:8 of [28], it is verified that pW E ! B is a metric graph bundle. We
provide the details here for completeness. We first make the following observation.

Lemma 7.1 Let g1; g2 be vertices of p�1.b/D Tb . Then g�11 g2 2 yF Š F and

db.g1; g2/D jg
�1
1 g2j yX :

Proof Since Tb is a graph (it is a tree), db.g1; g2/ counts the minimal number of
edges traversed by any path from g1 to g2 that remains in Tb . Such a path consists of
edges labeled by generators in W coming from yX . As any such path represents g�11 g2 ,
we have g�11 g2 2 yF and db.g1; g2/� jg�11 g2j yX . Conversely, writing g�11 g2 in terms
of fi˙x1 ; : : : ; i

˙
xr
g produces a path in Tb from g1 to g2 . Thus db.g1; g2/� jg�11 g2j yX .

Lemma 7.2 The equivariant map of Cayley graphs pW E!B is a metric graph bundle.

Proof For each n2N , the n–ball fg2E� W jgjW �ng is finite. Thus we may define the
properness function f W N!N by setting f .n/Dmaxfji˛j yX W i˛ 2

yF and ji˛jW � ng.
Then for any b 2 � and any g1; g2 in Tb D p�1.b/, Lemma 7.1 implies that

db.g1; g2/D jg
�1
1 g2j yX � f .jg

�1
1 g2jW /D f .dE.g1; g2//;

as required. Lastly, suppose b1; b2 2 B are adjacent vertices and that g1 2 Tb1 is any
vertex over b1 . Then b2 D b1s for some s 2 S . If t 2 W is the chosen lift of s ,
then g1t is adjacent to g1 in E and satisfies p.g1t / D b1s D b2 , as desired. This
completes the proof that pW E! B is a metric graph bundle.
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Using our choice of generators in W , we may define canonical lifts of paths in B
through any particular point in a fiber. For N 2N , let 
 W Œ�N;N �! B be any edge
path in B (by which we mean a path that maps each integer j to a vertex and each
intervening interval Œj; j C1� isometrically onto an edge) and let z
.0/ be any vertex in
the fiber T
.0/ . For each integer �N � j <N , the product sj D 
.j /�1
.j C1/ then
lies in the generating set S , and we let tj be the chosen lift of sj to W . Thus for j > 0
we have 
.j / D 
.0/s0 � � � sj�1 and 
.�j / D 
.0/s�1

�1 � � � s
�1
�j . Accordingly, the

canonical lift of 
 through z
.0/2 T
.0/ is defined to be the edge path z
 W Œ�N;N �! E
given by

z
.j /D z
.0/t0 � � � tj�1 and z
.�j /D z
.0/t�1�1 � � � t
�1
�j

for each integer 0�j �N . Observe that p.z
.j //D
.j /, so that z
 is in fact a lift of 
 .
Moreover, since pW E! B is 1–Lipschitz, when the original path 
 W Œ�N;N �! B is
a geodesic, so is the canonical lift of 
 through any point in T
.0/ . These lifts will be
instrumental in establishing the flaring property for the metric graph bundle E! B ,
which we do in Proposition 8.1.

8 Conjugacy flaring implies hyperbolicity of E�

In this section we complete the proof of our main theorem and show that the F–extension
group E� is hyperbolic when � � Out.F/ is purely hyperbolic and qi-embeds into
the factor complex F . We first show that conjugacy flaring for the group � implies
that the metric bundle E! B defined in Section 7 has the flaring property. Combining
with Theorem 2.2, this will show that E , and consequently E� , is hyperbolic.

Proposition 8.1 (conjugacy flaring implies the flaring property) Suppose a finitely
generated subgroup � � Out.F/ satisfies .�;N /–conjugacy flaring for some � > 1
and N 2N . Then the corresponding metric graph bundle pW E!B satisfies the flaring
condition.

Proof By hypothesis, there is a finite generating set S D fs1; : : : ; sng of � and a
free basis X D fx1; : : : ; xrg of F with respect to which � has .�;N /–conjugacy
flaring (see Section 6). As in Section 7, we then consider the generating set W D
fix1 ; : : : ; ixr ; t1; : : : ; tng of E� , where ti denotes a chosen lift of si , and the natural
simplicial surjection pW E ! B , where E D Cay.E� ; W / and B D Cay.�; S/. As
before, set yX equal to the subset of the generators of W coming from X and denote
the isomorphic image of F in E� by yF D h yXi.

To establish the flaring property, we must show that for every k � 1 there exists �k > 1
and nk;Mk 2N such that for any geodesic 
 W Œ�nk; nk�! B and any two k–qi lifts

Geometry & Topology, Volume 22 (2018)



562 Spencer Dowdall and Samuel J Taylor

z
1 and z
2 satisfying d
.0/.z
1.0/; z
2.0//�Mk we have

�k �d
.0/.z
1.0/; z
2.0//�maxfd
.nk/.z
1.nk/; z
2.nk//; d
.�nk/.z
1.�nk/; z
2.�nk//g:

In fact, we show that in terms of the given conjugacy flaring constants .�;N / we may
take �k D .�C 1/=2 and nk DN (each independent of k ) so that given any k � 1, if

Mk D 2.�C 2ek/=.�� 1/;

then the flaring condition holds with these constants. Here ek D f .N C 1C kN C k/,
where f . � / is the properness function for the bundle E! B .

Let 
 W Œ�N;N �! B be a geodesic and set b D 
.0/. Suppose that two k–qi lifts
z
1; z
2W Œ�N;N � ! E are given. (Hence, p.z
i .j // D 
.j / for i D 1; 2 and each
integer j .) Recall from Section 7 that T
.j / D p�1.
.j // is a simplicial tree with
edges labeled by the free basis yX of yF . With respect to this basis, the element
z
1.0/

�1z
2.0/ 2 yF may not by cyclically reduced. However, there is some x 2 yX such
that i˛ D z
1.0/�1z
2.0/x 2 yF is cyclically reduced. Then i˛ has the property that
ki˛k yX D ji˛j yX and that ji˛j yX differs from db.z
1.0/; z
2.0//D jz
1.0/

�1z
2.0/j yX by at
most 1. Set z1 D z
1.0/ and z2 D z
2.0/x 2 Tb , so that by construction,

z1i˛ D z2:

For each integer �N � j < N , let us set sj D 
.j /�1
.j C 1/ 2 S . Since 

is a geodesic, the products g D s�N � � � s�1 2 � and h D s0 � � � sN�1 2 � satisfy
jgjS D jhjS DN and jghjS D jgjS CjhjS . Thus .�;N /–conjugacy flaring implies

maxfkg.˛/kX ; kh�1.˛/kXg � � � k˛kX

D � � j˛jX

D � � ji˛j yX

� � � .db.z
1.0/; z
2.0//� 1/:

Let z
z1 ; z
z2 W Œ�N;N �!E be the canonical (geodesic) lifts of 
 W Œ�N;N �!B through
the points z1 and z2 , respectively. Let us also write zgD t�N � � � t�1 and zhD t0 � � � tN�1 ,
where ti is the chosen lift of si 2 S in the generating set W of E� . By construction,
zg and zh are also lifts of g; h 2 � �Out.F/ to E� �Aut.F/. Recall that the canonical
lifts z
zj are defined so that

z
zj .�N/D zj t
�1
�1 � � � t

�1
�N D zj zg

�1 and z
zj .N /D zj t0 � � � tN�1 D zj
zh

for j D 1; 2. Therefore

z
z1.�N/
�1
z
z2.�N/D .zgz

�1
1 /.z2zg

�1/D zgi˛ zg
�1
D izg.˛/;

z
z1.N /
�1
z
z2.N /D .

zh�1z�11 /.z2zh/ D zh
�1i˛ zh D izh�1.˛/:
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Hence, the endpoints of our canonical lifts of 
 satisfy

d
.�N/.z
z1.�N/; z
z2.�N//Djz
z1.�N/
�1
z
z2.�N/jyXDjizg.˛/jyXDjzg.˛/jX�kg.˛/kX

and

d
.N/.z
z1.N /; z
z2.N //Djz
z1.N /
�1
z
z2.N /jyXDjizh�1.˛/jyXDj

zh�1.˛/j
X
�kh�1.˛/k

X
:

In light of conjugacy flaring, it follows that we have

maxfd
.�N/.z
z1.�N/; z
z2.�N//;d
.N/.z
z1.N /; z
z2.N //g���.db.z
1.0/; z
2.0//�1/:

Let us now estimate the distances between our canonical lifts z
zj and the given lifts z
j
of 
 . By metric properness, for j D 1; 2 we have

d
.N/.z
zj .N /; z
j .N ///

� f .dE.z
zj .N /; z
j .N ///

� f
�
dE.z
zj .N /; z
zj .0//C dE.z
zj .0/; z
j .0//C dE.z
j .0/; z
j .N //

�
� f .N C 1C kN C k/D ek :

We similarly have d
.�N/.z
zj .�N/; z
j .�N//� ek for j D 1; 2. The triangle inequal-
ity thus gives

d
.�/.z
1.�/; z
2.�//� d�.z
z1.�/; z
z2.�//� 2ek for � D˙N:

Combining with our above estimate, it follows that the given lifts z
1 and z
2 satisfy

maxfd
.�N/.z
1.�N/; z
2.�N//; d
.N/.z
1.N /; z
2.N //g���db.z
1.0/; z
2.0//���2ek:

Therefore whenever db.z
1.0/; z
2.0//�Mk D 2.�C 2ek/=.�� 1/, so that

� � db.z
1.0/; z
2.0//��� 2ek � � � db.z
1.0/; z
2.0//�
1
2
.�� 1/db.z
1.0/; z
2.0//

D
1
2
.�C 1/db.z
1.0/; z
2.0//;

we obtain the inequality required by the flaring property. This completes the proof.

Theorem 8.2 (hyperbolic extensions) Suppose that � �Out.F/ is purely hyperbolic
and that there exists R2X such that � �R is A–QCX. Then the corresponding extension
group E� is hyperbolic.

Proof Since E is the Cayley graph of E� , it suffices to show that E is hyperbolic. We
show that the metric graph bundle E!B satisfies the three conditions for hyperbolicity
appearing in Theorem 2.2 (the Mj–Sardar theorem). Conditions .1/ and .2/ are obvious
since each fiber is isomorphic to the universal cover of a rk.F/–petal rose. Since the
hypotheses imply that � has conjugacy flaring (Theorem 6.5), condition .3/ follows
from Proposition 8.1. Hence, E� is hyperbolic.
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Corollary 8.3 Suppose � � Out.F/ is purely hyperbolic and qi-embeds into F .
Then E� is hyperbolic.

Proof This follows immediately from Corollary 6.3 and Theorem 8.2.

9 Applications

In this section, we produce examples of hyperbolic extensions of the free group F
using the main result of this paper. We begin by defining a version of the intersection
graph I for F , which is an Out.F/–graph introduced by Kapovich and Lustig in [22].
First, let I 0 be the graph whose vertices are conjugacy classes of F and where two
vertices are joined by an edge if there is a very small simplicial tree F Õ T in which
each conjugacy class fixes a point. (Recall that a simplicial tree is very small if edge
stabilizers are maximal cyclic and tripod stabilizers are trivial.) Define I to be the
connected component of I 0 that contains the primitive conjugacy classes. We note
that there is a coarsely Lipschitz surjective map ‚W F ! I given by mapping the
free factor A to the set of primitive conjugacy classes that are contained in A. Note
that ‚W F! I is Out.F/–equivariant.

Second, recall that the action of a group G on a hyperbolic metric space X is WPD
if G is not virtually cyclic and for every g 2G with positive translation length on X ,
the following property holds: for every R� 0 and every x 2X there is an N � 1 such
that the set

f� 2G W dX .x; �.x//�R and dX .gN .x/; �.gN .x///�Rg

is finite. It is further required that the group G contains an element that acts with
positive translation length on X . This property was first defined by Bestvina and
Fujiwara in [8], where it was shown that the action of the mapping class group on the
curve complex is WPD. The following theorem was communicated to us by Patrick
Reynolds. For complete proofs see Mann [26] and [15, Theorem 4.2, Proposition 4.4].

Theorem 9.1 (Mann and Reynolds) The graph I is hyperbolic and f 2Out.F/ acts
with positive translation length on I if and only if f is atoroidal and fully irreducible.
Moreover the action Out.F/Õ I is WPD.

Following Bestvina and Fujiwara, we say that loxodromic elements f1; f2 2 G are
independent if their quasigeodesic axes in X do not contain rays that have finite
Hausdorff distance from one another. Said differently, f1 and f2 are independent
if they determine four distinct points on the Gromov boundary of X . The WPD
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condition can be used to understand how distinct loxodromic elements can fail to be
independent. In particular, Proposition 6 of [8], implies that f1 and f2 are independent
if and only if they do not have a common power. Since Theorem 9.1 states that
the action Out.F/ Õ I is WPD, two hyperbolic, fully irreducible automorphisms
f1; f2 2 Out.F/ are independent if and only if they have no common power. Thus the
notion of independence of two fully irreducibles (with respect to the action Out.F/ÕI )
is intrinsic to the algebra of Out.F/.

Using Theorem 9.1, we have an (a priori weaker) version of our main theorem:

Theorem 9.2 Let � � Out.F/ be a finitely generated subgroup such that some (any)
orbit map into I is a quasi-isometric embedding. Then the corresponding extension E�
is hyperbolic.

Proof Fix A2F and let OW �!F be the corresponding orbit map into the free factor
complex. By assumption ‚ ıOW �! I is a quasi-isometric embedding. Since ‚ is
coarsely Lipschitz, O must also be a quasi-isometric embedding. Moreover, since all
outer automorphisms with positive translation length of I are hyperbolic, � must be
purely hyperbolic, ie each infinite-order element is atoroidal. Now apply Corollary 8.3
to conclude that E� is hyperbolic.

We remark that our subsequent work [15] implies that Theorem 9.2 is equivalent to our
main theorem Theorem 1.1.

Our first application is a new proof of the following theorem of Bestvina, Feighn
and Handel [7], where we allow for any number of hyperbolic, fully irreducible
automorphisms.

Theorem 9.3 Let f1; : : : ; fk 2 Out.F/ be a collection of pairwise independent, hy-
perbolic, fully irreducible outer automorphisms. Then for sufficiently large N � 1,
every nonidentity element of

� D hf N1 ; : : : ; f Nk i

is hyperbolic and fully irreducible. Moreover, � is isomorphic to the free group of
rank k and the extension E� is hyperbolic.

Proof The proof that the subgroup quasi-isometrically embeds into I follows from
a standard geometric ping-pong argument for groups acting on hyperbolic spaces,
exactly as in the proof of Theorem 1:4 (abundance of Schottky groups) in Kent
and Leininger [25]. One can also deduce the result from [34, Lemma 3.2]. The point is
that we are dealing with a collection of independent loxodromic automorphisms of a
hyperbolic graph. To conclude that E� is hyperbolic, apply Theorem 9.2.
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Our next application produces the first examples, to the authors’ knowledge, of hy-
perbolic F–extensions E� where � is has torsion and is not virtually cyclic. First,
for a finite group H � Out.F/ say that a hyperbolic, fully irreducible f 2 Out.F/
is independent for H if f and hf h�1 are independent for each h 2H . Hence, f
is independent for H if and only if H \ comm.f / D ∅, where comm.f / is the
commensurator of f in Out.F/.

Theorem 9.4 Let H be a finite subgroup of Out.F/ and let f 2 Out.F/ be a hyper-
bolic, fully irreducible outer automorphism that is independent for H . Then for all
sufficiently large N � 1, the subgroup

� D hH;f N i

is isomorphic to H � Z and quasi-isometrically embeds into I . Therefore, the
F-by-.H�Z/ extension E� is hyperbolic.

Proof Fix x 2 I and for each h 2H set fh D hf h�1 . Let D Dmaxh2H d.x; hx/.
Consider the Cayley graph Ch of hfhi and the equivariant orbit map Ch! I obtained
by mapping f i

h
to f i

h
.hx/ and edges to geodesic segments. Since f has positive

translation length on I by Theorem 9.1, the maps Ch! I are all K0–quasi-isometric
embeddings (for some K0 � 1). Let us write �˙

h
W Œ0;1/! I for the positive and

negative subrays of Ch! I based at hx . Since the fh for h 2 H are all pairwise
independent, no distinct pair of rays in the set f�C

h
; ��
h
gh2H have finite Hausdorff

distance.

Similar to [25], we now consider the following set of paths in I . For any h1; h22H and
�1; �2 2 fC;�g with ��1

h1
¤ �

�2
h2

, we may build a bi-infinite path in I by traversing ��1
h1

with the reverse parametrization, then following a geodesic from h1x to h2x (which
has length at most D ), and lastly traversing the ray ��2

h2
with the usual parametrization.

As there are finitely many such paths and the chosen rays ��1
h1

and ��2
h2

have infinite
Hausdorff distance, there exists a uniform constant K1 � 1 such that each of these
paths is a K1–quasigeodesic in I . Subpaths of these K1–quasigeodesics, and their
images under the isometric action of Out.F/ on I , we call f –pieces.

Since I is hyperbolic, there exist L;K2 � 1 such that any L–local, K1–quasigeodesic
is a K2–quasigeodesic [10]. In particular, if 
 W I ! I is any path that agrees with
some f –piece on every length-L subinterval of I , then 
 is a K2–quasigeodesic.

Now take N to be an integer larger than L and D , and let � W H �Z! Out.F/ be
the homomorphism that restricts to the identity on H and maps the generator t of Z
to f N . Let � D hH;f N i be the image of this homomorphism and let C be the
Cayley graph of H �Z for the generating set ft; h W h 2 H g, metrized so that each
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edge labeled h 2H has length D and each edge labeled t has length N . We define
a �–equivariant map OW C! I as follows: For each vertex w 2H �Z of C, we set
O.w/D �.w/x . For h2H , the edge in C from 1 to h is mapped by O to any geodesic
from x to hx , and the edge in C from 1 to t is mapped by O to the f –piece from x

to f Nx using the parametrization coming from the quasigeodesic C1 ! I . Now
extend O by equivariance. Observe that O maps the length-..aCb/NCD/ path in C

from 1 to tahtb to an f –piece in I , for all a; b 2Z and h2H . Thus by construction,
O maps any geodesic in C to a path that agrees with f –pieces on all subintervals
of length at most L. Using the constant K2 obtained above, it follows that O sends
every geodesic path in C to a K2–quasigeodesic in I and thus that OW C! I is a
K2–quasi-isometric embedding. Since the metric on C differs from the word metric
on H �Z (with our chosen generators) by a multiplicative factor of no more than N ,
we conclude that � W H �Z! I is an NK2–quasi-isometric embedding.

Finally, to see that � is an isomorphism, note that � itself is a quasi-isometric embedding
into Out.F/. This is a simple consequence of the fact that any orbit map from Out.F/
to I is coarsely Lipschitz. Hence, � must have finite kernel. Since each finite-order
g 2H �Z is conjugate into H , and H injects into � � Out.F/, we must have that
� W H �Z! � is an isomorphism. Since Theorem 9.2 implies that E� is hyperbolic,
this completes the proof.

Remark Note that for � D hH;f N i ŠH �Z as in Theorem 9.4, the subgroup

�0 D hH;f
NHf �N i

is undistorted and isomorphic to H �H . Hence, the F-by-.H�H/ extension E�0
is also hyperbolic. In the situation of surface group extensions, Honglin Min has
constructed convex cocompact subgroups of the mapping class group that are isomorphic
to the free product of two finite groups [27].

Finally, we show how to construct examples of hyperbolic, fully irreducible f 2Out.F/
that are independent for a given finite group H � Out.F/. First, say that the finite
group H �Out.F/ is projectively good if its image under the surjective homomorphism
Out.F/ ! GLr.Z/ does not contain �I (where r D rk.F/). Note that any finite
group H embeds into the outer automorphism group Out.F.H// with projectively
good image, where F.H/ is the free group on H . This may be achieved by using the
left action of H on itself to embed H into Aut.F.H// as permutation automorphisms
whose images in GLjH j.Z/ are permutation matrices.

Example 9.5 Let H be any projectively good, finite subgroup of Out.F/ satisfying
rk.F/ � 3. We show that there is a hyperbolic, fully irreducible f 2 Out.F/ that is
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independent for H . By Theorem 9.4, this shows that there is a hyperbolic group G
fitting into the exact sequence 1! F!G!H �Z! 1: As any finite group embeds
into the outer automorphism group of some free group with projectively good image,
this shows that there exist extensions of the above form for any finite group H .

Suppose that H � Out.F/ is a finite, projectively good subgroup. Write r D rk.F/.
As in Lemma 2.14, the restriction of the homomorphism Out.F/! GLr.Z/ to H is
injective and we identify H with its image in GLr.Z/.

Claim 9.6 There is a matrix A 2 GLr.Z/ such that for any h 2H n 1, the matrices
hAh�1 and A have no common power.

We complete the argument before proving the claim. Let A be a matrix as in the
claim. Now an application of the main result of Clay and Pettet [13] implies that
there is a hyperbolic, fully irreducible outer automorphism f whose image in GLr.Z/
is A. We then have that f is independent for the finite group H . Otherwise, there is
an h 2H n 1 and integers r; s such that hf rh�1 D f s . Applying the homomorphism
Out.F/!GLr.Z/ we see that this equation contradicts our choice of A. Hence, f is
independent for H . To complete the example, it now suffices to prove the claim.

Proof of Claim 9.6 By assumption, the finite subgroup H � GLr.Z/ does not
contain �I . Hence, the action H Õ RP r�1 is effective and if we denote the fixed
subspace of h 2 H by Vh , we have that VH D

S
h2Hn1 Vh is a union of positive-

codimension projective hyperplanes. Hence, RP r�1 nVH is open.

Now let B 2 GLr.Z/ be the block diagonal matrix consisting of
�
2
1
1
1

�
in the upper

left 2� 2 corner and the identity matrix in the lower right corner. The eigenvalues
for B are �, 1 and ��1 , where � is the golden ratio. Moreover, the �–eigenspace is
one-dimensional and so defines a point Œv� 2RP r�1 . Since RP r�1 nVH is open and
every orbit of GLr.Z/Õ RP r�1 is dense [30, Lemma 8.5], there is a C 2 GLr.Z/
such that C Œv� … VH . Setting A D CBC�1 , we see that the �–eigenspace of A is
one-dimensional and is not projectively fixed by any h 2H n1. Hence, no power of A
can equal any power of hAh�1 for h 2H n 1. This completes the proof.
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