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Complete minimal surfaces
densely lying in arbitrary domains of Rn

ANTONIO ALARCÓN

ILDEFONSO CASTRO-INFANTES

In this paper we prove that, given an open Riemann surface M and an integer n� 3 ,
the set of complete conformal minimal immersions M ! Rn with X.M / D Rn

forms a dense subset in the space of all conformal minimal immersions M ! Rn

endowed with the compact-open topology. Moreover, we show that every domain
in Rn contains complete minimal surfaces which are dense on it and have arbitrary
orientable topology (possibly infinite); we also provide such surfaces whose complex
structure is any given bordered Riemann surface.

Our method of proof can be adapted to give analogous results for nonorientable
minimal surfaces in Rn .n � 3/ , complex curves in Cn .n � 2/ , holomorphic null
curves in Cn .n� 3/ , and holomorphic Legendrian curves in C2nC1 .n 2N/ .

49Q05; 32H02

1 Introduction and main results

The existence of complete minimal surfaces densely lying in R3 is well known. The
first example of such, due to Rosenberg, was obtained by Schwarzian reflection on a
fundamental domain, is simply connected, and has bounded curvature. Later, Gálvez
and Mira [24] found complete dense simply connected minimal surfaces in R3 , in
explicit coordinates, as solutions to certain Björling problems. Finally, López [30]
constructed complete dense minimal surfaces in R3 with weak finite total curvature,
arbitrary genus, and parabolic conformal type; so far, these are the only known examples
with nontrivial topology. In a parallel line of results, Andrade [13] gave an example
of a complete simply connected minimal surface in R3 which is not dense in the
whole space but whose closure has nonempty interior. It is therefore a natural question
whether a given domain in R3 contains complete minimal surfaces which are dense on
it; as far as the authors’ knowledge extends, no domain is known to enjoy this property
besides R3 itself.
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The aim of this paper is to answer the above question by showing a general existence
result for complete dense minimal surfaces in any given domain D �Rn for arbitrary
dimension n� 3. We provide such surfaces with arbitrary orientable topology and flux
map; moreover, if n� 5 we give examples with no self-intersections. Furthermore, if
DDRn then we construct such surfaces not only with arbitrary topology but also with
arbitrary complex structure. To be precise, our first main result may be stated as follows.

Theorem 1.1 Let D � Rn .n � 3/ be a domain, M be an open Riemann surface,
pW H1.M IZ/ ! Rn be a group homomorphism, K � M be a smoothly bounded
Runge compact domain, and X W K ! Rn be a conformal minimal immersion of
class C1.K/. Assume that X.K/�D and that the flux map FluxX W H1.KIZ/!Rn

of X satisfies FluxX . /D p. / for all closed curves  �K .

Then, for any � > 0, there are a domain ��M and a complete conformal minimal
immersion Y W �!Rn satisfying the following properties:

(I) K �� and � is a deformation retract of M and homeomorphic to M .

(II) kY �Xk1;K < � .

(III) FluxY . /D p. / for all closed curves  ��.

(IV) Y .�/�D and the closure satisfies Y .�/DD .

(V) Y is one-to-one if n� 5.

Furthermore, if D DRn we may choose �DM .

Theorem 1.1 gives the first examples of complete dense minimal surfaces in Rn

for n > 3. Notice that the density of Y .M / in D does not allow the immersions
Y W �!D in the theorem to be proper maps.

We emphasize that, while certainly wild, complete dense minimal surfaces in Rn .n� 3/

are surprisingly abundant. Indeed, if we denote by CMI.M;Rn/ the space of all
conformal minimal immersions of a given open Riemann surface M into Rn (which
is nonempty by the results in Alarcón and López [10]), Theorem 1.1 ensures that those
conformal minimal immersions M !Rn which are complete and have dense image
form a dense subset of CMI.M;Rn/ with respect to the compact-open topology.

It is also worth mentioning at this point that it is not hard to find dense minimal surfaces
in Rn for any n� 3. Indeed, solving the Björling problem for any real analytic regular
dense curve in Rn and any tangent plane distribution along it gives such a surface; we
thank Pablo Mira for providing us with this simple argument. Obviously, this method
only produces simply connected examples and does not guarantee their completeness.
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As will become apparent later in this introduction, constructing complete dense minimal
surfaces in Rn , prescribing their topology and even their complex structure, is a much
more arduous task which requires a number of powerful and sophisticated tools of the
theory that have been developed only recently.

It is well known that a general domain D � Rn does not contain minimal surfaces
with arbitrary complex structure. Indeed, if for instance D is relatively compact then it
only admits minimal surfaces of hyperbolic conformal type (see Farkas and Kra [17,
page 179]). We also prove in this paper that every domain D �Rn contains complete
minimal surfaces which are dense on it and whose complex structure is any given
bordered Riemann surface.

Theorem 1.2 Let D � Rn .n � 3/ be a domain and M DM [ bM be a compact
bordered Riemann surface. Every conformal minimal immersion X W M ! Rn of
class C1.M /, with X.M /�D , may be approximated uniformly on compact subsets
of M DM nbM by complete conformal minimal immersions Y W M !Rn assuming
values in D and such that Y .M /DD and FluxY D FluxX . Moreover, if n� 5 then
the approximating immersions Y can be chosen to be one-to-one.

Recall that a compact bordered Riemann surface is a compact Riemann surface M with
nonempty boundary bM �M consisting of finitely many pairwise disjoint smooth
Jordan curves. The interior M DM nbM of M is called a bordered Riemann surface.
By a conformal minimal immersion M ! Rn of class C1.M / we mean a map of
class C1.M / whose restriction to M is a conformal minimal immersion.

We shall prove Theorems 1.1 and 1.2 in Section 3. The main tools in our method of proof
come from the strong connection between minimal surfaces in Rn and complex analysis;
in particular, Oka theory (see the note by Lárusson [28] and the surveys by Forstnerič
and Lárusson [21], Forstnerič [19], and Kutzschebauch [27] for an introduction to
this theory, and the monograph by Forstnerič [18] for a comprehensive treatment; see
eg Alarcón and Forstnerič [4; 6] or Alarcón, Forstnerič, and López [7] for a discussion
of the interplay between minimal surfaces and Oka manifolds). To be more precise,
our proof relies on a Runge–Mergelyan type approximation theorem for conformal
minimal immersions of open Riemann surfaces into Rn (see Alarcón and López [10]
for nD 3 and Alarcón, Forstnerič, and López [7] for arbitrary dimension), a general
position theorem for conformal minimal surfaces in Rn for n � 5 (see [7]), and the
existence of approximate solutions to certain Riemann–Hilbert type boundary value
problems for conformal minimal surfaces in Rn where the complex structure of the
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central surface is a compact bordered Riemann surface (see Alarcón and Forstnerič [5]
for n D 3 and Alarcón, Drinovec Drnovšek, Forstnerič, and López [1] for n � 3).
Actually, the Riemann–Hilbert method is not explicitly applied in the present paper
but it plays a fundamental role in the proof of [1, Lemma 4.1], which we use in a
strong way. Furthermore, our method of proof also exploits the technique by Forstnerič
and Wold [23] for exposing boundary points on a bordered Riemann surface, which
pertains to Riemann surface theory.

All the above-mentioned tools are also available for some other families of surfaces
which are the focus of interest, namely, nonorientable minimal surfaces in Rn for n�3,
complex curves in the complex Euclidean spaces Cn for n � 2, holomorphic null
curves in Cn for n � 3, and holomorphic Legendrian curves in C2nC1 for n 2 N .
Thus, our methods easily adapt to give results analogous to Theorems 1.1 and 1.2 in all
these geometric contexts; we motivate, state, and discuss some of them in Section 4.

2 Preliminaries

Given n2NDf1; 2; 3; : : : g, we denote by j � j, dist. � ; �/, and length. �/ the Euclidean
norm, distance, and length in Rn , respectively. Given a set A�Rn we denote by A

the topological closure of A in Rn .

If K is a compact topological space and f W K!Rn is a continuous map, we denote by

kf k0;K WDmaxfjf .p/j W p 2Kg

the maximum norm of f on K . If K is a subset of a Riemann surface M , then for
any r 2 ZC DN [f0g we denote by

kf kr;K

the standard Cr–norm of a function f W K!Rn of class Cr .K/, where the derivatives
are measured with respect to a fixed Riemannian metric on M (the precise choice of
the metric will not be important).

Given a smooth connected surface S (possibly with nonempty boundary) and a smooth
immersion X W S !Rn .n� 3/, we denote by

distX W S �S !RC D Œ0;C1/

the Riemannian distance induced on S by the Euclidean metric of Rn via X :

distX .p; q/D infflength.X. // W  � S any arc connecting p and qg for p; q 2S:
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Likewise, if K � S is a relatively compact subset we define

distX .p;K/ WD inffdistX .p; q/ W q 2Kg for p 2 S:

An immersed open surface X W S ! Rn .n � 3/ is said to be complete if the image
by X of any proper path  W Œ0; 1/! S has infinite Euclidean length; this is equivalent
to the Riemannian metric induced on S by the Euclidean metric of Rn via X being
complete.

Let M be an open Riemann surface and n� 3 be an integer. A conformal (ie angle-
preserving) immersion X D .X1; : : : ;Xn/W M !Rn is minimal (ie X has everywhere-
vanishing mean curvature vector) if, and only if, X is a harmonic map in the classical
sense: 4X D 0. Denoting by @ the C–linear part of the exterior differential d D @C@

on M (here @ is the C–antilinear part of d ), the 1–form @X D .@X1; : : : ; @Xn/ with
values in Cn is holomorphic, has no zeros, and satisfies

Pn
jD1.@Xj /

2D 0 everywhere
on M . It follows that the real part <.@X / is an exact real 1–form on M . On the other
hand, the flux map (or simply the flux) of X is defined as the group homomorphism

FluxX W H1.M IZ/!Rn

of the first homology group H1.M IZ/ of M with integer coefficients, given by

FluxX . /D

Z


=.@X /D�i

Z


@X for  2H1.M IZ/;

where = denotes the imaginary part and i WD
p
�1. We refer eg to Osserman’s

monograph [32] for a standard reference on minimal surface theory.

A compact subset K �M is said to be Runge (also called holomorphically convex
or O.M /–convex) if its complement M nK has no relatively compact connected
components on M ; by the Runge–Mergelyan theorem [33; 31; 14] this is equivalent
to that every continuous function K ! C , holomorphic in the interior VK , may be
approximated uniformly on K by holomorphic functions M !C .

A compact bordered Riemann surface is a compact Riemann surface M with nonempty
boundary bM �M consisting of finitely many pairwise disjoint smooth Jordan curves;
its interior M DM n bM is called a bordered Riemann surface. It is classical that
every compact bordered Riemann surface M is diffeomorphic to a smoothly bounded
compact domain in an open Riemann surface. By a conformal minimal immersion
of class C1.M / of a compact bordered Riemann surface M into Rn , we mean a
map M ! Rn of class C1.M / whose restriction to M is a conformal minimal
immersion.
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3 Proofs of the main results

In this section we prove Theorems 1.1 and 1.2; both will follow from a recursive
application of the following approximation result.

Lemma 3.1 Let D�Rn .n� 3/ be a domain, M DM [bM be a compact bordered
Riemann surface, and X W M!Rn be a conformal minimal immersion of class C1.M /

such that
X.M /�D:

Given a compact domain K �M , points p0 2
VK and x1; : : : ;xk 2D .k 2N/, and

numbers � > 0 and � > 0, there is a conformal minimal immersion Y W M ! Rn of
class C1.M / satisfying the following conditions:

(i) Y .M /�D .

(ii) kY �Xk1;K < � .

(iii) dist.xj ;Y .M // < � for all j 2 f1; : : : ; kg.

(iv) FluxY D FluxX .

(v) distY .p0; bM / > �.

We will prove Lemma 3.1 in Section 3.3; we first proceed with the proofs of the main
results of the paper.

3.1 Proof of Theorem 1.1 assuming Lemma 3.1

Let D �Rn, M, pW H1.M IZ/!Rn, K �M, X W K!Rn, and � > 0 be as in the
statement of Theorem 1.1.

Set M0 WDK and choose an exhaustion of M by connected Runge compact domains
fMj gj2N such that the Euler characteristic �.Mj n

VMj�1/ is �1 or 0 for all j 2N and

(1) M0 b M1 b � � �b
[

j2ZC

Mj DM:

Existence of such is well known; see for instance [11, Lemma 4.2] for a simple proof.

Fix a countable subset C D fzj gj2N �D with

(2) C DD:

Set N0 WDM0 DK , Y0 WDX , and if n� 5 assume without loss of generality that Y0

is an embedding (as we may in view of [7, Theorem 1.1]). Also fix a point p0 2
VN0 .
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Take a sequence of positive real numbers f�j gj2N & 0 which will be specified later.

We shall recursively construct a sequence fNj ;Yj gj2N of smoothly bounded Runge
compact domains Nj � M and conformal minimal immersions Yj W Nj ! Rn of
class C1.Nj / satisfying the following properties for all j 2N :

(aj) Yj .Nj /�D .

(bj) Nj �Mj and Nj is a strong deformation retract of Mj .

(cj) kYj �Yj�1k1;Nj�1
< �j .

(dj) dist.zk ;Yj .Nj // < �j for all k 2 f1; : : : ; j g.

(ej) distYj
.p0; bNj / > j .

(fj) FluxYj
. /D p. / for all closed curves  �Nj .

(gj) If D DRn then Nj DMj .

(hj) If n� 5 then Yj is an embedding.

Observe that condition (aj) always holds in the case D DRn .

Assume for a moment that we have already constructed such a sequence and let us
show that if each �j > 0 in the recursive procedure is chosen sufficiently small (in
terms of the geometry of Yj�1 ) then the sequence fYj gj2N converges uniformly on
compact subsets of

(3) � WD
[

j2N

Nj �M

to a conformal minimal immersion

Y WD lim
j!C1

Yj W �!Rn

satisfying the conclusion of the theorem. Indeed, first of all notice that the properties
(bj) and (gj), along with (1) and (3), ensure condition (I) in the statement of the theorem
and that �DM if D DRn . Now, choosing the �j so that

(4)
X
j2N

�j < �;

we have in view of (cj) that the limit map Y exists and satisfies condition (II). Fur-
thermore, if the sequence f�j gj2N decreases to zero fast enough then, by Harnack’s
theorem, Y is a conformal minimal immersion. Likewise, by (cj), (ej), and (fj), we
have that Y is complete and satisfies (III) whenever each �j > 0 is small enough.
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Let us now check condition (IV). For the first part observe that the properties (aj)
ensure that Y .�/�D ; let us show that Y .�/\ bD D∅. For that, we choose

(5) �j <
1

j 2
dist.Yj�1.Nj�1/; bD/ for all j 2N:

Notice that the term on the right-hand side of the above inequality is positive by (aj),
and hence such an �j > 0 exists. Take p 2� and let us show that dist.Y .p/; bD/ > 0;
this will ensure that Y .�/�D . Choose j0 2N such that p 2Nj�1 for all j � j0 .
Then

dist.Yj�1.p/; bD/� jYj�1.p/�Yj .p/jC dist.Yj .p/; bD/

(cj)
< �j C dist.Yj .p/; bD/

(5)
<

1

j 2
dist.Yj�1.p/; bD/C dist.Yj .p/; bD/:

Thus, dist.Yj .p/; bD/� .1� 1=j 2/ dist.Yj�1.p/; bD/ for all j � j0 , and so

dist.Yj0Ci.p/; bD/� dist.Yj0
.p/; bD/

j0CiY
jDj0C1

�
1�

1

j 2

�
for all i 2N:

Taking limits in the above inequality as i !C1 we obtain

dist.Y .p/; bD/� 1
2

dist.Yj0
.p/; bD/ > 0;

where the latter inequality is ensured by (aj0
); take into account that Yj0

.Nj0
/ is

compact. This shows that Y .�/�D .

In order to check the second part of condition (IV) pick a point z 2D and a positive
number ı > 0 and let us show that dist.z;Y .�// < ı ; this will imply that Y .�/DD .
Indeed, in view of (2) there exists j0 2N such that the point zj0

2 C �D meets

(6) jzj0
� zj< ı=3:

Moreover, since f�j g & 0, there exists j1 2 N such that �j1
< ı=3, and so the

properties (dj) guarantee that for any j � j1 ,

(7) dist.zk ;Yj .Nj // < ı=3 for all k � j:

Finally, (4) ensures the existence of j2 2N such that
P1

kDj2
�k < ı=3, and hence, the

properties (cj) imply that for all j > j2 ,

(8) kY �Yjk1;Nj
< ı=3:
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Combining (6), (7), and (8) we obtain that, for any j >maxfj0; j1; j2g,

dist.z;Y .�//� jz� zj0
jC dist.zj0

;Y .�//
(3)
� jz� zj0

jC dist.zj0
;Y .Nj //

� jz� zj0
jC dist.zj0

;Yj .Nj //CkYj �Y k1;Nj
< ı:

This proves that Y .�/ is dense on D and hence condition (IV).

Finally, assume n� 5 and let us show the limit map Y W �!Rn is one-to-one provided
that the positive numbers f�j gj2N are taken sufficiently small. It suffices to choose

(9) �j <
1

2j 2
inffjYj�1.p/�Yj�1.q/j W p; q 2Nj�1; d.p; q/ > 1=j g;

where d. � ; � / is any fixed Riemannian distance on M . Indeed, pick points p; q 2�,
p¤ q , and let us check Y .p/¤ Y .q/. Choose j0 2N large enough that p; q 2Nj�1

and d.p; q/ > 1=j for all j � j0 ; such a j0 exists in view of (bj) and (3). Then

jYj�1.p/�Yj�1.q/j � jYj�1.p/�Yj .p/jC jYj .p/�Yj .q/jC jYj .q/�Yj�1.q/j

(cj)
< 2�j CjYj .p/�Yj .q/j

(9)
<

1

j 2
jYj�1.p/�Yj�1.q/jC jYj .p/�Yj .q/j:

As above, this gives jYj .p/�Yj .q/j � .1�1=j 2/jYj�1.p/�Yj�1.q/j for all j � j0 ,
and hence

jYj0Ci.p/�Yj0Ci.q/j � jYj0
.p/�Yj0

.q/j

j0CiY
jDj0C1

�
1�

1

j 2

�
for all i 2N:

Taking limits we obtain that

jY .p/�Y .q/j � 1
2
jYj0

.p/�Yj0
.q/j> 0;

where the latter inequality follows from (hj0
). This implies that Y is one-to-one,

proving condition (V) in the statement of the theorem.

To complete the proof it remains to construct the sequence fNj ;Yj gj2N satisfying
the required properties. We proceed in a recursive way. The basis of the induction is
given by the pair .N0;Y0/ which clearly meets properties (a0 ), (b0 ), (e0 ), (f0 ), (g0 ),
and (h0 ); whereas (c0 ) and (d0 ) are vacuous. For the inductive step assume that we
have .Nj�1;Yj�1/ satisfying (aj�1 )–(hj�1 ) and let us construct .Nj ;Yj / enjoying
the corresponding properties. We distinguish two different cases depending on the
Euler characteristic of Mj n

VMj�1 .
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Noncritical case �.Mj n
VMj�1/D0 By the Mergelyan theorem for conformal min-

imal immersions (see [7, Theorem 5.3]) we may assume without loss of generality that
Yj�1 extends, with the same name, to a conformal minimal immersion M !Rn with

(10) FluxYj�1
D p:

Next, we choose Nj �Mj as any smoothly bounded compact neighborhood of Nj�1

such that

(11) Yj�1.Nj /�D

and that Nj�1 is a strong deformation retract of Nj ; such an Nj exists in view
of (aj�1 ). Because �.Mj n

VMj�1/D 0, it follows that Nj is a strong deformation
retract of Mj as well. This proves (bj). If D DRn then we choose, as we may since
(11) is always satisfied, Nj DMj , ensuring condition (gj).

Now, in view of (11), we may apply Lemma 3.1 to the domain D , the compact bor-
dered Riemann surface Nj , the conformal minimal immersion Yj�1W Nj !D �Rn

of class C1.Nj /, the compact domain Nj�1 �
VNj , the points p0 2

VK � VNj�1 , the
points z1; : : : ; zj 2 D , and the positive numbers �j and j > 0. This provides a
conformal minimal immersion Yj W Nj !Rn of class C1.Nj / enjoying the following
properties:

(i) Yj .Nj /�D .

(ii) kYj �Yj�1k1;Nj�1
< �j .

(iii) dist.zk ;Yj .Nj // < �j for all k 2 f1; : : : ; j g.

(iv) FluxYj
. /D FluxYj�1

. / for all closed curves  �Nj .

(v) distYj
.p0; bNj / > j .

Furthermore, we may assume by [7, Theorem 1.1] that

(vi) if n� 5 then Yj is an embedding.

We claim that .Nj ;Yj / meets conditions (aj)–(hj). Indeed, (bj) and (gj) are already
ensured. On the other hand, conditions (aj), (cj), (dj), (ej), and (hj) coincide with
(i), (ii), (iii), (v), and (vi), respectively, whereas (fj) is implied by (iv) and (10). This
concludes the proof of the inductive step in the noncritical case.

Critical case �.Mj n
VMj�1/D�1 In this case there is a smooth Jordan arc

˛ � VMj n
VNj�1 , with its two endpoints in bNj�1 and otherwise disjoint from Nj�1 ,

such that
S WDNj�1[˛ � VMj
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is a Runge admissible subset in M in the sense of [7, Definition 5.1] and a strong
deformation retract of Mj . Fix a nowhere-vanishing holomorphic 1–form � on M

(such always exists by the Oka–Grauert principle; see Forstnerič [18, Theorem 5.3.1];
for an alternative proof see Alarcón, Fernández, and López [2, Proof of Theorem 4.2]).
Next, consider a generalized conformal minimal immersion . zY ; f �/ on S in the sense
of [7, Definition 5.2] such that

zY jNj�1
D Yj�1; zY .˛/�D; and

Z


f � D ip. / for all closed curves  in S :

Such trivially exists in view of (aj�1 ), (fj�1 ), and the path-connectedness of D . By [7,
Theorem 5.3] we may approximate zY in the C1.S/–topology by conformal minimal
immersions zYj�1W M ! Rn having p as flux map and being embeddings if n � 5.
For any close enough such approximation zYj�1 of zY there exists a compact neighbor-
hood N 0j�1 of S in VMj such that N 0j�1 �M is a smoothly bounded Runge compact
domain, S is a strong deformation retract of N 0j�1 , and zYj�1 formally meets conditions
(aj�1 )–(hj�1 ) besides (gj�1 ). It follows that the Euler characteristic �.Mj n

VN 0j�1/

equals 0, which reduces the proof of the inductive step to the noncritical case.

This concludes the recursive construction of the sequence fNj ;Yj gj2N with the desired
properties, and hence the proof of the theorem.

3.2 Proof of Theorem 1.2 assuming Lemma 3.1

Let K0 �M be a smoothly bounded compact subset and let � > 0. To prove the
theorem it suffices to find a complete conformal minimal immersion Y W M !Rn such
that the following conditions are satisfied:

(a) kY �Xk1;K0
< � .

(b) FluxY D FluxX .

(c) Y .M /�D and Y .M /DD .

(d) If n� 5 then Y is one-to-one.

Up to enlarging K0 if necessary, we may assume that K0 is a strong deformation
retract of M . Pick any countable subset C D fzj gj2N of D such that

(12) C DD:

Fix a point p0 2
VK0 ¤∅ and choose a sequence of positive numbers f�j gj2N & 0

that will be specified later. Set Y0 WDX W M !D �Rn and, if n� 5, assume without
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loss of generality that Y0 is an embedding (see [7, Theorem 1.1]). We shall inductively
construct a sequence fKj ;Yj gj2N of smoothly bounded compact domains

(13) K0 b K1 b K2 b � � �b
[

j2N

Kj DM

and conformal minimal immersions fYj W M !Rngj2N of class C1.M /, satisfying
the following properties for all j 2N :

(Ij) Yj .M /�D .

(IIj) kYj �Yj�1k1;Kj�1
< �j .

(IIIj) dist.zk ;Yj .Kj // < �j for all k 2 f1; : : : ; j g.

(IVj) FluxYj
. /D FluxYj�1

. / for all closed curves  �M .

(Vj) distYj
.p0; bKj / > j .

(VIj) If n� 5 then Yj is an embedding.

We construct the sequence in an inductive procedure similar to the one in the proof
of Theorem 1.1. The basis of the induction is accomplished by the pair .K0;Y0/

which clearly satisfies (I0 ), (V0 ), and (VI0 ); conditions (II0 ), (III0 ), and (IV0 ) are
vacuous. For the inductive step we assume that we already have .Kj�1;Yj�1/ satis-
fying (Ij�1 )–(Vj�1 ). By (Ij�1/ we may apply Lemma 3.1 to the conformal minimal
immersion Yj�1 , the compact domain Kj�1 , the point p0 2

VK0 �
VKj�1 , the points

z1; : : : ; zj 2 D , and the positive numbers �j > 0 and j > 0, obtaining a conformal
minimal immersion Yj W M !Rn of class C1.M / satisfying the following properties:

(i) Yj .M /�D .

(ii) kYj �Yj�1k1;Kj�1
< �j .

(iii) dist.zk ;Y .M // < �j for all k 2 f1; : : : ; j g.

(iv) FluxYj
D FluxYj�1

.

(v) distYj
.p0; bM / > j .

Further, by [7, Theorem 1.1] we may assume that

(vi) if n� 5 then Yj is an embedding.

Conditions (Ij ), (IIj ), (IVj ), and (VIj ) coincide with (i), (ii), (iv), and (vi). Finally,
since the inequalities in (iii) and (v) are both strict, conditions (IIIj ) and (Vj ) hold
for any large enough smoothly bounded compact domain Kj �M being a strong
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deformation retract of M . At each step in the recursive construction, we choose such
a Kj containing Kj�1 in its interior and being large enough that (13) is satisfied.
This completes the inductive step and concludes the construction of the sequence
fKj ;Yj gj2N satisfying conditions (Ij )–(VIj ).

We claim that choosing the number �j >0 sufficiently small (depending on the geometry
of Yj�1 ) at each step in the recursive construction, the sequence fYj gj2N converges
uniformly on compact subsets in M to a limit map

Y WD lim
j!1

Yj W M !Rn

which satisfies conditions (a)–(d). Indeed, reasoning as in the proof of Theorem 1.1,
(IIj ) ensures that the limit map Y is a conformal minimal immersion and meets (a). On
the other hand, (IVj ) implies (b); (Vj ) and (IIj ) guarantee the completeness of Y ; (c)
follows from (Ij ), (IIj ), and (IIIj ); and properties (IIj ) and (VIj ) give condition (d).
This completes the proof.

3.3 Proof of Lemma 3.1

Without loss of generality we may assume that k D 1; the general case follows from a
standard finite recursive application of this particular one. Define x WD x1 .

We may also assume without loss of generality that M is a smoothly bounded compact
domain in an open Riemann surface R. Pick a point p 2 bM and a smooth embedded
arc  �RnM having p as an endpoint, being otherwise disjoint from M , and such that

S WDM [ 

is a Runge admissible subset of R in the sense of [7, Definition 5.1]. Let q 2R nM

denote the other endpoint of  .

Fix a nowhere-vanishing holomorphic 1–form � on R. Consider a generalized confor-
mal minimal immersion . zX ; f �/ on S in the sense of [7, Definition 5.2] such that the
C1.S/–map zX W S !Rn satisfies the following properties:

(A) zX jM DX .

(B) zX j �D .

(C) zX .q/D x .

Existence of such is trivial; recall that X.M /�D and that D is path-connected.
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� �

V

q p

W W 0

K

M

�.M /

Figure 1: The diffeomorphism �W M ! �.M /� U

Fix a constant ı > 0 to be specified later.

The Runge–Mergelyan theorem for conformal minimal immersions [7, Theorem 5.3]
provides a conformal minimal immersion zY W R!Rn such that

(D) k zY � zXk1;S < ı , and

(E) Flux zY .˛/D Flux zX .˛/ for all closed curves ˛ �M .

Since X assumes values in D , properties (A) and (B) ensure that zX .S/ � D , and
hence, choosing ı > 0 sufficiently small, (D) guarantees the existence of a small open
neighborhood U of S in R such that

(14) zY .U /�D:

Next we use the method of exposing boundary points on a compact bordered Rie-
mann surface. Choose small open neighborhoods W 0 b W b U nK and V b U

of p and  in U , respectively. By Forstnerič and Wold [23, Theorem 2.3] (see also
Forstnerič [18, Theorem 8.8.1]) there exists a smooth diffeomorphism

(15) �W M ! �.M /� U

satisfying the following properties (see Figure 1):

(F) �W M ! �.M / is a biholomorphism.

(G) � is ı–close to the identity in the C1–norm on M nW 0 .

(H) �.p/D q 2 b�.M / and �.M \W 0/�W [V .

We claim that the conformal minimal immersion zY ı �W M ! Rn of class C1.M /

formally satisfies conditions (i)–(iv) in the statement of the lemma provided that ı > 0
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is chosen sufficiently small. Indeed, by (14) and (15) we have that zY .�.M // � D ,
proving (i). On the other hand, since K �M nW 0 , properties (G), (D), and (A) give
that k zY ı��Xk1;K <� , whenever ı > 0 is small enough, which ensures condition (ii).
Finally, properties (H), (D), and (C) guarantee (iii) for any ı < � , whereas (F), (E),
and (A) imply (iv).

Finally, [1, Lemma 4.1] enables us to approximate the immersion zY ı � W M ! Rn

in the C0.M /–topology, and hence in the C1.K/–topology, by conformal minimal
immersions Y W M ! Rn of class C1.M / satisfying (v) and FluxY D Flux zY ı� ; the
latter ensures (iv). Clearly, any close enough such approximation Y of zY ı� still
satisfies conditions (i), (ii), and (iii). This concludes the proof of Lemma 3.1.

The proofs of Theorems 1.1 and 1.2 are now complete.

4 Analogous results for other families of surfaces

As we already pointed out in the introduction of this paper, all the tools required
in the proofs of Theorems 1.1 and 1.2 (ie the Runge–Mergelyan approximation, the
general position result, and the Riemann–Hilbert method) are also available for some
other interesting objects; namely, nonorientable minimal surfaces, complex curves, and
holomorphic null and Legendrian curves. Therefore, our techniques easily adapt to give
analogous results to Theorems 1.1 and 1.2 for all these families of surfaces; we shall
now discuss some of them, leaving the details of the proofs to the interested reader.

4.1 Nonorientable minimal surfaces in Rn

These surfaces appeared in the very origin of minimal surface theory (we refer to the
seminal paper by Lie [29] from 1878) and there is a large literature devoted to their
study. Conformal nonorientable minimal surfaces in Rn for n� 3 are characterized
as the images of conformal minimal immersions X W M !Rn such that X ı IDX ,
where IW M !M is an antiholomorphic involution without fixed points on an open
Riemann surface M . For such an immersion we have that

(16) FluxX .I� /D�FluxX . / for all  2H1.M IZ/:

Recently Alarcón, Forstnerič, and López introduced in [8] new complex analytic tech-
niques in the study of nonorientable minimal surfaces in Rn ; in particular, they provided
all the required tools in our method of proof (see also Alarcón and López [12] for the
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Runge–Mergelyan approximation in dimension 3). As happens in the orientable case,
the general position of nonorientable minimal surfaces is embedded in Rn for all n� 5.
Thus, completely analogous results to Theorems 1.1 and 1.2 may be proved in the
nonorientable framework under the necessary condition (16) on the flux map.

4.2 Complex curves in Cn

All the above-mentioned tools are classical for holomorphic immersions of open
Riemann surfaces into Cn for n � 2, with being embedded the general position
for n� 3. We refer to Bishop [14] for the Runge–Mergelyan approximation (see also
Runge [33] and Mergelyan [31]) and to Drinovec Drnovšek and Forstnerič [15] and
Alarcón and Forstnerič [3; 6] for the Riemann–Hilbert method (see also the introduction
of Drinovec Drnovšek and Forstnerič [16] for a survey on this subject).

For example, by following the proof of Theorem 1.1 one may show the following result:

Theorem 4.1 Let M be an open Riemann surface. The set of complete holomor-
phic immersions M ! Cn .n � 2/ with dense images forms a dense subset in the
set O.M;Cn/ of all holomorphic functions M !Cn endowed with the compact-open
topology. Furthermore, if n� 3 then the set of all complete holomorphic one-to-one
immersions M !Cn with dense images is also dense in O.M;Cn/.

We emphasize that the novelty of Theorem 4.1 is that it concerns complete immersions;
obviously, the set of all holomorphic immersions M ! Cn is much larger than the
subset consisting of the complete ones. Indeed, without completeness, there are many
general such results in the literature. For instance, if we consider the space O.S;Z/ of
all holomorphic maps of a Stein manifold S (we refer to Gunning and Rossi [25] and
Hörmander [26] for the theory of Stein manifolds) into an Oka manifold Z , endowed
with the compact-open topology, then the basic Oka property with approximation
and interpolation (see Forstnerič [18, Theorem 5.4.4]) easily implies that those maps
in O.S;Z/ having dense image form a dense subset; further, if dim Z � 2 dim S

(respectively, dim Z � 2 dim S C 1) then, by general position (see [18, Theorem 7.9.1
and Corollary 7.9.3]), the subset of immersions (respectively, one-to-one immersions)
with dense image is also dense in O.S;Z/. On the other hand, if dim S � dim Z then
there are strongly dominating surjective holomorphic maps S!Z (see Forstnerič [20]).

Along the same lines, Forstnerič and Winkelmann proved in [22] that, for any connected
complex manifold Z (not necessarily Oka), the set of all holomorphic maps of the unit
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disk D �C into Z with dense images is dense in O.D;Z/; see also Winkelmann [34]
for a previous partial result in this direction.

4.3 Holomorphic null curves in Cn

These are holomorphic immersions F D .F1; : : : ;Fn/W M !Cn .n� 3/ of an open
Riemann surface M into Cn which are directed by the null quadric

AD fz D .z1; : : : ; zn/ 2Cn
W z2

1 C � � �C z2
n D 0g;

equivalently, which satisfy the nullity condition

.dF1/
2
C � � �C .dFn/

2
D 0 everywhere on M:

Notice that the punctured null quadric A� D A n f0g is an Oka manifold (see Alarcón
and Forstnerič [4, Example 4.4]). These curves are closely related to minimal surfaces
in Rn since the real and the imaginary part of a null curve M !Cn are flux-vanishing
conformal minimal immersions M !Rn (see eg Osserman [32]). The tools required
to prove analogous results to Theorems 1.1 and 1.2 for holomorphic null curves have
been provided recently in Alarcón and López [10], Alarcón and Forstnerič [4; 5], and
Alarcón, Drinovec Drnovšek, and Forstnerič [1]. In this framework, the general position
is embedded for n� 3.

4.4 Holomorphic Legendrian curves in C2nC1

These are holomorphic immersions FD.X1;Y1; : : : ;Xn;Yn;Z/WM!C2nC1 .n2N/

of an open Riemann surface M into C2nC1 which are tangent to the standard holo-
morphic contact structure of C2nC1 , equivalently, such that

dZC

nX
jD1

Xj dYj D 0 everywhere on M:

All the needed tools in this case were furnished by Alarcón, Forstnerič, and López in [9],
with being embedded the general position for all n 2 N . Holomorphic Legendrian
curves are complex analogues of real Legendrian curves in R2nC1 , which play an
important role in differential geometry, in particular, in contact geometry.

Recall a complex contact manifold is a complex manifold W of odd dimension 2nC1�3

endowed with a holomorphic contact structure L; the latter is a holomorphic vector
subbundle of complex codimension one in the tangent bundle TW such that every
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point p 2 W admits an open neighborhood U � W in which LjU D ker � for a
holomorphic 1–form � on U satisfying �^.d�/n¤0 everywhere on U . A holomorphic
immersion F W M ! W is said to be Legendrian if it is everywhere tangent to the
contact structure:

dFp.TpM /� LF.p/ for all p 2M:

By Darboux’s theorem (see [9, Theorem A.2]) every complex contact manifold .W;L/

of dimension 2nC 1 is locally contactomorphic to C2nC1 endowed with its standard
holomorphic contact structure. Thus, as a direct consequence of the results analogous
to Theorems 1.1 and 1.2 for Legendrian curves in C2nC1 one easily obtains:

Corollary 4.2 Let .W;L/ be a complex contact manifold. Every point p 2W admits
an open neighborhood U �W with the following property: Given a domain V b U

there are holomorphic Legendrian one-to-one immersions M ! V which are dense
on V and are complete with respect to every Riemannian metric in W , where M

is either a given bordered Riemann surface or some complex structure on any given
smooth orientable connected open surface.

The proof of the above corollary follows the one of [9, Corollary 1.3]; we refer the
reader there for the details. It remains as an open question whether every complex
contact manifold, endowed with a Riemannian metric, admits complete dense complex
Legendrian curves.
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[19] F Forstnerič, Oka manifolds: from Oka to Stein and back, Ann. Fac. Sci. Toulouse
Math. 22 (2013) 747–809 MR

Geometry & Topology, Volume 22 (2018)

http://dx.doi.org/10.1007/s00208-013-0931-4
http://dx.doi.org/10.1007/s00208-013-0931-4
http://msp.org/idx/mr/3118624
http://dx.doi.org/10.1007/s00222-013-0478-8
http://dx.doi.org/10.1007/s00222-013-0478-8
http://msp.org/idx/mr/3211044
http://dx.doi.org/10.1007/s00208-015-1189-9
http://msp.org/idx/mr/3412347
http://dx.doi.org/10.1007/978-3-319-20337-9
http://dx.doi.org/10.1007/978-3-319-20337-9
http://msp.org/idx/mr/3587463
http://dx.doi.org/10.1007/s00209-015-1586-5
http://msp.org/idx/mr/3489056
http://msp.org/idx/arx/1603.01691
http://dx.doi.org/10.1112/S0010437X1700731X
http://msp.org/idx/mr/3705282
http://dx.doi.org/10.4310/jdg/1335273387
http://msp.org/idx/mr/2916039
http://dx.doi.org/10.1007/s12220-012-9306-4
http://dx.doi.org/10.1007/s12220-012-9306-4
http://msp.org/idx/mr/3107678
http://dx.doi.org/10.2140/gt.2015.19.1015
http://dx.doi.org/10.2140/gt.2015.19.1015
http://msp.org/idx/mr/3336277
http://dx.doi.org/10.1090/S0002-9939-99-05323-X
http://msp.org/idx/mr/1664289
http://dx.doi.org/10.2140/pjm.1958.8.29
http://msp.org/idx/mr/0096818
http://dx.doi.org/10.1215/S0012-7094-07-13921-8
http://msp.org/idx/mr/2352132
http://dx.doi.org/10.1512/iumj.2012.61.4686
http://dx.doi.org/10.1512/iumj.2012.61.4686
http://msp.org/idx/mr/3085613
http://dx.doi.org/10.1007/978-1-4612-2034-3
http://msp.org/idx/mr/1139765
http://dx.doi.org/10.1007/978-3-642-22250-4
http://dx.doi.org/10.1007/978-3-642-22250-4
http://msp.org/idx/mr/2975791
http://dx.doi.org/10.5802/afst.1388
http://msp.org/idx/mr/3137250


590 Antonio Alarcón and Ildefonso Castro-Infantes
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