Volume 22, issue 1 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22, 1 issue

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
De Rham theory of exploded manifolds

Brett Parker

Geometry & Topology 22 (2018) 1–54
Abstract

This paper extends de Rham theory of smooth manifolds to exploded manifolds. Included are versions of Stokes’ theorem, de Rham cohomology, Poincaré duality, and integration along the fiber. The resulting de Rham cohomology theory of exploded manifolds is used in a separate paper (arXiv:1102.0158) to define Gromov–Witten invariants of exploded manifolds.

Keywords
exploded manifolds, de Rham cohomology
Mathematical Subject Classification 2010
Primary: 58A12, 55N35
References
Publication
Received: 11 February 2011
Revised: 29 January 2017
Accepted: 7 March 2017
Published: 31 October 2017
Proposed: Tomasz Mrowka
Seconded: Dan Abramovich, Jim Bryan
Authors
Brett Parker
Mathematical Sciences Institute
Australian National University
Canberra ACT
Australia