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The Hilbert scheme of a plane curve singularity
and the HOMFLY homology of its link
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We conjecture an expression for the dimensions of the Khovanov–Rozansky HOMFLY

homology groups of the link of a plane curve singularity in terms of the weight
polynomials of Hilbert schemes of points scheme-theoretically supported on the
singularity. The conjecture specializes to our previous conjecture (2012) relating the
HOMFLY polynomial to the Euler numbers of the same spaces upon setting t D�1 .
By generalizing results of Piontkowski on the structure of compactified Jacobians to
the case of Hilbert schemes of points, we give an explicit prediction of the HOMFLY

homology of a .k; n/ torus knot as a certain sum over diagrams.

The Hilbert scheme series corresponding to the summand of the HOMFLY homology
with minimal “a” grading can be recovered from the perverse filtration on the
cohomology of the compactified Jacobian. In the case of .k; n/ torus knots, this space
furnishes the unique finite-dimensional simple representation of the rational spherical
Cherednik algebra with central character k=n . Up to a conjectural identification of
the perverse filtration with a previously introduced filtration, the work of Haiman and
Gordon and Stafford gives formulas for the Hilbert scheme series when k DmnC 1 .

14H20, 14N35; 57M27

1 Overview

Let X be the germ of a complex plane curve singularity. Its topological properties are
captured by its link, the intersection of a representative of X with the boundary of a
small ball surrounding the singularity; see Arnol’d, Guseı̆n-Zade and Varchenko [5]
and Milnor [52].

We previously conjectured [56] that the HOMFLY polynomial of the link is recovered
from the Euler characteristics of certain moduli spaces associated to the singularity.
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Specifically, let the HOMFLY polynomial P be normalized by the skein relation

aP."/� a�1P.!/D .q� q�1/P.H/;(1)

a� a�1 D .q� q�1/P.
/:(2)

We write X Œn� for the Hilbert scheme of n points on X. We define an incidence variety

X Œl� �X ŒlCm� �X Œl�lCm� WD f.I; J / j I � J �M �J g;

where M is the maximal ideal at the central point.

Conjecture 1 [56] Let X be the germ of a plane curve singularity, with Milnor
number �. Then�

a

q

���1X
l;m

q2l.�a2/m�.X Œl�lCm�/DP.link of X /:

The object of the present article is to promote this to a homological conjecture. On
the right-hand side, we replace the HOMFLY polynomial with the Poincaré polynomial
of the triply graded HOMFLY homology of Khovanov and Rozansky [45]. This has
several slight variants; we discuss what is called by Rasmussen [60] the unreduced
homology, and denoted by H i;j;k.K/. It is infinite-dimensional, though finite in each
graded piece. We write its graded dimension as

P D
X
i;j;k

aiqj tkH i;j;k.K/:

We discuss our grading conventions for H at the end of this section; for the mo-
ment, let us say that the homological grading t is chosen as in Dunfield, Gukov and
Rasmussen [20], rather than in [45], so that P DPjtD�1 .

Recall that the cohomology of a complex algebraic variety admits a weight filtration W ,
in terms of which one may form the weight polynomial1

w.X/D
X
j;k

.�1/jCktkGrkW .H
j
c .X//:

The weight polynomial is characterized by two properties; first, it agrees with the
Poincaré polynomial if X is a proper smooth variety, and second, it factors through

1Other authors prefer the terms Serre polynomial, virtual Poincaré polynomial, and E–polynomial.
Its existence was conjectured by Serre, and follows from Deligne’s theory of weights and mixed Hodge
structures [16; 17; 18; 19]; for some discussion see Danilov and Khovanskii [15] and Durfee [22].
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the Grothendieck ring of varieties. That is, for Y closed in X, we have

w.X �Y /Dw.X/�w.Y /:

Conjecture 2 Let X be the germ of a plane curve singularity, with Milnor number �.
Then �

a

q

���1X
l;m

q2la2mtm
2

w.X Œl�lCm�/DP.link of X /:

Throughout we write Palg for the left-hand side of Conjecture 2. As in Oblomkov
and Shende [56] there is a useful equivalent formulation obtained by pushforward
along the forgetful map X Œl�lCm� ! X Œl� . By Nakayama’s lemma, the fibers are
Grass.Cm �Cr/ over the locus X Œl�r �X Œl� parametrizing subschemes whose ideals
require r generators. The weight polynomial of this Grassmannian is given by the
q–binomial coefficient

�
r
m

�
t2

. Thus, by the identity

rX
mD0

� r
m

�
t2
a2mtm

2

D

rY
kD1

.1C t2k�1a2/;

we may rewrite

X
l;m

q2la2mtm
2

w.X Œl�lCm�/D
X
l;r

q2lw.X Œl�r /

rY
kD1

.1C t2k�1a2/:

The series Palg enjoys the following symmetry and rationality properties:

Proposition 3 Let X have b branches and contribute ı to the arithmetic genus. Then
the expression .q�1 � q/bPalg is a Laurent polynomial in q with terms of degrees
between �2ı and 2ı . Moreover, it is invariant under q ! 1=.qt/. The number of
different powers of a2 appearing is at most one more than the multiplicity of the
singularity.

The polynomiality is known to hold for P — for unibranch singularities the scaling
factor corresponds to taking reduced HOMFLY homology — and the invariance was
predicted in [20], but remains conjectural. In the specialization of P to the HOMFLY

polynomial, the symmetry q!�1=q is manifest in the skein relation. The bound on
the degrees of a which appear corresponds to the fact that a singularity admits a braid
presentation in which the number of strands is equal to the multiplicity.
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It may be viewed as a defect that Palg is assembled from the cohomologies of many
different spaces. In fact, the coefficient of the lowest degree power of a ,

Pmin
alg WD q

1��
1X
lD0

q2lw.X Œl�/;

may be recovered from a single space, namely the compactified Jacobian. As the
previous proposition suggests, it is convenient to consider

Pmin
alg WD .q

�1
� q/bPmin

alg ;

where b is the number of analytic local branches of the singularity. If C is a rational
curve with X as its unique singularity, then we have

Pmin
alg D q

�2g.1� q2/.1� q2t2/

1X
lD0

q2lw.C Œl�/:

Let xJ l.C / be the moduli space of rank one, degree l , torsion-free sheaves on C ; it is
integral of dimension g and locally a complete intersection; see Altman, Iarrobino and
Kleiman [4; 3]. The choice of a degree l line bundle identifies xJ l.C / with xJ 0.C /.
We henceforth suppress the index for xJ .C / WD xJ 0.C /, which we term the compactified
Jacobian of C . There is a map C Œl�! xJ l.C / given by sending a subscheme to the
dual of the ideal sheaf cutting it out. For l � 0 this map is a projective space bundle
and so w.C Œl�/ is determined by w. xJ .C //. In fact, work of Maulik and Yun [49], or of
Migliorini and the third author [51], shows that we can recover the entire series Pmin

alg

from the perverse filtration on the cohomology of xJ0.C /. Specifically, according to
Fantechi, Göttsche and van Straten [25] there is a deformation � W C!B such that the
total space J of the relative compactified Jacobian J ! B is nonsingular. According
to Beı̆linson, Bernstein and Deligne [6] there is a decomposition R��CJ ŒgCdimB�DL

F i Œ�i �, where the Fi are perverse sheaves and i D�g; : : : ; g , where g is genus
of the generic fiber of the map � . We write pHi .J b/ WD F i jbŒ� dimB�; this is a
complex of vector spaces carrying a weight filtration. It can be shown that this does
not depend on the family C , and that moreover:

Proposition 4 [49; 51] Pmin
alg D

Pg
iD�g q

2iw
�
pHi . xJ 0.C //

�
.

Suppose X is a unibranch singularity, and let K be its link. Let H min.K/ denote
the part of the reduced HOMFLY homology with minimal a–grading (D �). Then in
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combination with Proposition 4, Conjecture 2 would imply that

H min.K/Š H�. xJ 0.X//:

The homological grading on the left-hand side is identified with the weight grading on
the right, and the q–grading on the left with the perverse filtration on the right.

To calculate Palg , it is necessary to work out the deformation theory of ideals and
nested ideals inside the local ring of functions for the singularity in question. In the
case when the singularity is described by a single Puiseux pair, eg if it is of the form
yk D xn, we can reduce the calculation to (nontrivial) combinatorics. The argument
is similar to Piontkowski’s calculation [59] of the stratification of the compactified
Jacobian of a rational curve with this singularity.

Let �k;nDfakCbn ja; b2Z�0g be the semigroup of degrees of elements of CŒŒtn; tk��.
We say i� �k;n is a semigroup ideal if it is closed under adding elements from �k;n .

Theorem 5 Let Xk;n be the germ of a singularity whose link is a .k; n/ torus knot
(that is, k; n>0 and .k; n/D1), and let �D�k;n . Then X Œl�lCm�

k;n
is stratified by linear

spaces enumerated by nested pairs of semigroup ideals j� i� jCfakCbn ja; b 2Z>0g

such that #.� n j/D l and #.j n i/Dm. (We write N.j� i/ for the dimension of this
linear space.)

Fix j� i and let f
1; : : : ; 
rg be the unique minimal subset of j which generates it as
a �–module. Let � j be the set of all elements of j with more than one expression of
the form j C 
 with j 2 j and 
 2 �. Then � j is again a semigroup ideal requiring r
generators, say s1; : : : ; sr , and

N.j� i/D
X

i2i

#.�>
in i/C
X

i…i

#.�>
in j/�
rX
aD1

#.�>san i/:

Remark The existence of this stratification implies that there are no cancellations
among monomials of Palg.Xk;n/ when setting t D�1. It is an interesting question
whether the analogous statement holds for all algebraic knots.

Using the formulas above, Palg can in principle be computed by summing up the
contributions; the computation is finite because for any i � cCN � �m;n , we have
N.i/DN.iC 1/ — X

Œ��

n;k
is stratified by the linear spaces which are naturally labeled

by the monomial ideals i and N.i/ is its dimension — and similarly for the nested case.
In a certain limit, the formulas simplify:
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Proposition 6 Write Xn;k for the germ at the origin of yn D xk and Xn;1 for that
of yn D 0. ThenX

l;m

q2la2mtm
2

w.X
Œl�lCm�

n;k
/D

X
l;m

q2la2mtm
2

w.X Œl�lCm�n;1 /CO.q2k/

and we calculateX
l;m

q2la2mtm
2

w.X Œl�lCm�n;1 /D

nY
iD1

1C a2q2i�2t2i�1

1� q2i t2i�2
:

This computation matches the formula for the “stable superpolynomial” of torus knots
conjectured in [20].

To understand Palg.Xk;n/ in general, it is profitable to consider the reformulation
in terms of the compactified Jacobian. For the unibranch singularities xk D yn, the
K–theory of the compactified Jacobian is known — see Varagnolo and Vasserot [62] —
to furnish a representation of the spherical Cherednik algebra of rank n and central
charge k=n. It will be shown elsewhere that the rational spherical Cherednik algebra
acts on its cohomology; see Oblomkov and Yun [57]. Moreover, the homological
grading (t ) and the perverse filtration (q ) have representation-theoretic meanings.

In the case k DmnC 1, the graded dimensions of conjecturally equivalent filtrations
can be readily calculated in a different geometric incarnation of the Cherednik algebra;
see Haiman [39] and Gordon and Stafford [28; 29]. We obtain a formula expressing
Pmin

alg .XmnC1;n/ as a sum over partitions of n. For a partition � ` n and a box x in
the diagram of �, we write a.x/ and l.x/ for the arm and leg, and a0.x/ and l 0.x/
for the coarm and coleg. We write �0 for the dual partition, and �.�/D

P��0
i

2

�
. We

have the following formula:

Conjecture 7 Let T1 D q2 and T 2 D 1=q2t2. Then t��Pmin
alg .XmnC1;n/ is given by

the formulaX
�`n

T
m�.�/
1 T

m�.�0/
2

.1�T1/.1�T2/
Q
x2�nf.0;0/g.1�T

l 0.x/
1 T

a0.x/
2 /Q

x2�.1�T
1Cl.x/
1 T

�a.x/
2 /.1�T

�l.x/
1 T

1Ca.x/
2 /

X
x2�

T
l 0.x/
1 T

a0.x/
2 :

In a subsequent article [34], we suggest how all of P.Xk;n/ (rather than just Pmin )
may be recovered from the analogous representation of the rational Cherednik algebra
(rather than just the spherical part). This leads to the following conjecture:
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Conjecture 8 Let T1Dq2, T2D1=.q2t2/ and ADa2t . Then .at/��Palg.XmnC1;n/

is given by the formulaX
�`n

T
m�.�/
1 T

m�.�0/
2

�
.1�T1/.1�T2/

Q
x2�nf.0;0/g.1�T

l 0.x/
1 T

a0.x/
2 /.1CAT

�l 0.x/
1 T

�a0.x/
2 /Q

x2�.1�T
1Cl.x/
1 T

�a.x/
2 /.1�T

�l.x/
1 T

1Ca.x/
2 /

�

X
x2�

T
l 0.x/
1 T

a0.x/
2 :

Formulas of this sort were first conjectured by Gorsky [30] in the case of T .n; nC 1/,
and subsequently in the physics literature by Dunin-Barkowski, Mironov, Morozov,
Sleptsov and Smirnov [21], and Aganagic and Shakirov [2] for T .n; nmC 1/.

Grading conventions for H

Our normalization of the HOMFLY homology is the one used in [20], rather than that
of Khovanov and Rozansky [45] or Rasmussen [60]. Specifically, our main interest
is in the group H .K/, which in the terminology of [60] is the unreduced HOMFLY

homology. It satisfies

H .K/ŠH .K/˝H�.S1/˝QŒX�;

where the group H .K/ is the reduced HOMFLY homology.

We normalize the homological (t ) grading on H .K/ so as to coincide with the
homological grading on reduced Khovanov homology under the spectral sequence
of [60]; for example, the Poincaré polynomial of H of the positive trefoil is given by

a2q�2t0C a4q0t3C a2q2t2:

The Poincaré polynomials of the reduced and unreduced homologies are related by

P.K/D
a�1C at

q�1� q
P.K/:

The Poincaré polynomial with respect to the homological grading (s ) of [45] may be
obtained by substituting t D s�1 and a2 D a2s in P . This reflects the fact that the
homological grading on sl.n/ homology is obtained as a linear combination of the a
and s gradings [60], and the fact that sl.2/ homology is dual to Khovanov homology.
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Latest developments

Since the first version of this paper appeared on arXiv, this area of research have seen
a lot of important developments. It would take another paper to properly discuss all of
the new results and connections between them, so here we just list a few references
which we find most relevant.

Abel, Elias and Hogancamp [1; 24; 41; 42] developed a completely new method of
computing Khovanov–Rozansky homology for a large class of knots and links, in
particular, for all .n;mn˙ 1/ torus knots. These computations confirm Conjectures 7
and 8.

Conjectures 23 and 24 were deeply generalized by Oblomkov and Rozansky [54; 55],
and by Gorsky, Rasmussen and Negut, [32; 33]. In particular, the sheaves Fk=n were
explicitly constructed and the coefficients gr=n.�/ were explicitly computed for all
k , n and r in [32]. Conjecture 24 was reformulated as a combinatorial “rational
shuffle conjecture” there, and it was later proved by Carlsson and Mellit [13; 50]. The
construction of the analogues of Fk=n for general knots and links appeared in Gorsky,
Negut, and Rasmussen [33] and Oblomkov and Rozansky [54; 55].

Acknowledgements We thank Emanuel Diaconescu, Pavel Etingof, Lothar Göttsche,
Ian Grojnowski, Mikhail Khovanov, Ivan Losev, Luca Migliorini, Rahul Pandharipande,
Ivan Smith, Cumrun Vafa, Ben Webster, Geordie Williamson and Zhiwei Yun for
helpful discussions. Oblomkov is supported by Sloan Foundation and NSF. Rasmussen
would like to thank the Simons Center for Geometry and Physics for its hospitality
and support while much of this work was done. Shende is supported by the Simons
Foundation.

2 Hilbert schemes and Jacobians

In this section, we develop some general facts about the series Palg : its rationality and
symmetry properties, behavior under blowups, and relation to the cohomology of the
compactified Jacobian. For the most part, these are straightforward consequences of
previous work.

2.1 Rationality and symmetry

In this section, we prove Proposition 3. We begin by reviewing [56, Section 4; 58,
Appendix B], presenting them now in the Grothendieck ring of varieties. This is the
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ring generated by the classes ŒV � of varieties V , the sum and product coming from
disjoint union and direct product, respectively. The classes are subject to the relation
ŒV nZ�D ŒV �� ŒZ� for Z a closed subvariety of V . If �W V ! A is a constructible
function, we write ŒV; �� WD

P
a2A a � Œ�

�1.a/�.

It is convenient to rewrite slightly the series Palg . Consider the locus X Œl�r � X Œl�

parametrizing subschemes whose ideals require r generators. By Nakayama’s lemma,
the projection X Œl�lCm�!X Œl� has fibers Grass.Cr �Cm/ over X Œl�r . Thus we haveX
l;m

q2la2mtm
2

ŒX Œl�lCm��D
X
l;r

q2l ŒX Œl�r �
X
m

a2mtm
2

ŒG.r;m/�D
X
l

q2l ŒX Œl�; ˆ�;

where the constructible function ˆ on X Œl� takes the value
P
m a

2mtm
2

ŒG.r;m/� at a
point corresponding to an ideal requiring r generators.

We pass to a complete curve C with a unique singularity at p , at which its germ
is X. There is a stratified map C Œl�!

`
l 0�l X

Œl 0� which forgets points away from
the singularity; we extend ˆ to C Œl� by pullback along this map. Then by a standard
stratification argument we haveX

l

q2l ŒX Œl�; ˆ�D

P
l q
2l ŒC Œl�; ˆ�

.1� q2/b
P
l q
2l Œ zC Œl��

;

where zC is the normalization of C .

Essentially by definition, ˆ depends only on the isomorphism class as a sheaf of the
ideal sheaf of the subscheme, and does not change when this sheaf is tensored by a
line bundle. Moreover, it is shown in [56] (using the planarity of the singularities and
applying the Auslander–Buchsbaum theorem) that ˆ of a sheaf and its dual agree. In
other words, it satisfies the hypothesis of the following lemma, whose statement and
proof are modeled on Lemma 3.13 of [58].

Lemma 9 Let C be a Gorenstein curve of arithmetic genus g . Let � be a constructible
function on the moduli space xJ .C / of rank one, torsion-free sheaves. Assume that for
any rank one, torsion-free sheaf F and any line bundle L, we have �.F�/D �.F/D
�.F ˝L/. Denote also by � the function induced on C Œn� by composition with the
Abel–Jacobi map.

Then there exist classes Nh.C; �/ in the Grothendieck group of varieties (with coeffi-
cients in the ring in which � takes values) such that
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.1� q/.1� qL/
1X
nD0

qnŒC Œn�; ��D

gX
hD0

Nh.C; �/ � .1� q/
h.1� qL/hqg�h;

where L D ŒA1� is the class of the affine line. In particular, denoting by ZC .q/ the
quantity on either side of the above formula, we have ZC .q/D .q2L/gZC .1=qL/.

Proof The following useful properties of Gorenstein curves may be found in an article
of Hartshorne [40]. Let C be a Gorenstein curve, and let F be a torsion-free sheaf
on C . Write F � for Hom.F;OC /. Then Ext�1.F;OC /D 0 and F D .F �/�. Serre
duality holds in the form Hi .F /DH1�i .F �˝!C /�. For F rank one and torsion-free,
define its degree d.F / WD �.F /��.OC /. This satisfies d.F /D�d.F �/, and, for L
any line bundle, d.F ˝L/D d.F /C d.L/.

We proceed with the proof of the lemma. Fix a degree 1 line bundle O.1/ on C . We
map C Œd�! xJ 0.C / by associating the ideal I �OC to the sheaf

I� DHom.I;OC /˝O.�d/I

the fiber is P .H0.C; I�//. For F a rank one, degree zero, torsion-free sheaf, we write
the Hilbert function as hF .d/ D dim H0.C;F ˝O.d//. Then since, over the strata
with constant Hilbert function, the map from the Hilbert schemes to the compactified
Jacobian is the projectivization of a vector bundle, we have the equality

1X
dD0

qd ŒC Œd�; ��D
X
a2A

X
h

aŒfF j hF D h; �.F/D ag�
1X
dD0

qd ŒPh.d/�1�:

Fix hD hF for some F . Evidently h is supported in Œ0;1/, and, by Riemann–Roch
and Serre duality, is equal to d C1�g in .2g�2;1/. Inside Œ0; 2g�2�, it increases
by either 0 or 1 at each step. Let �˙.h/D fd j 2h.d � 1/� h.d � 2/� h.d/D˙1g;
evidently �� � Œ0; 2g� and �C � Œ1; 2g� 1�, and

Zh.q/ WD.1�q/.1�qL/
1X
dD0

qd ŒPh.d/�1�D
X

d2��.F/

qdLh.d/�1�
X

d2�C.F/

qdLh.d�1/:

This is a polynomial in q of degree at most 2g , hence so is ZC .q/.

Let G D F� ˝ !C ˝ O.2 � 2g/ and h_ D hG . By Serre duality and Riemann–
Roch, h_.d/ D h.2g � 2 � d/C d C 1 � g , so in particular, d 2 �˙.h_/ if and
only if 2g � d 2 �˙.h/. It follows that q2gLgZh.1=qL/ D Zh_.q/. As ZC .q/ DP
hŒfF j hF D hg�Zh.q/, we obtain the final stated equality.
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Proof of Proposition 3 Take the curve C to be rational, recall that �D2ıC1�b [52],
and note that in Lemma 9 we used the variable q rather than q2. Then we see that there
exist classes Nh in the Grothendieck ring of varieties (with coefficients in ZŒa; t �)
such that

Palg Dw

�
a2ı�b.q�1� q/�b

ıX
hD0

Nh.C; �/ � .q
�1
� q/h.q�1� qL/h

�
:

From this expression, we see immediately that .q�1�q/bPalg is a Laurent polynomial
in q with coefficients between q�2ı and q2ı which is invariant under q ! 1=qt .
Finally note the degree of Nh in a2 is bounded by the multiplicity of the singularity,
as this is the maximal number of generators which any ideal will require [11, Exercise
4.6.16]. This completes the proof of Proposition 3.

Remark When b D 1, the link of X is a knot, and the product .q � q�1/Palg.X/

corresponds under Conjecture 2 to a�1Cat times the Poincaré polynomial of H .K/.
In particular, all of its terms are positive. For b > 1, the quantity .q� q�1/bPalg.X/

is somewhat less natural from the point of view of the HOMFLY homology. For a
two-component link, .q � q�1/2Palg.X/ will typically have negative terms, so it
cannot coincide with the Poincaré polynomial of the completely reduced homology
considered in [60].

2.2 Blowups

If X is the germ of a plane curve singularity, we can blow up X at the central point
to obtain the germ of a new singularity zX. The effect of this operation on the link
of the singularity is well-known. If m is the multiplicity of X, we can write the link
of X as the closure of a m–strand braid � . Then the link of zX is the closure of the
braid ���2 , where ��2 denotes a full left-handed twist on m strands.

Now let � be an arbitrary braid with closure x� , and let n and N be the minimum and
maximum powers of a appearing in P.x�/. The Morton–Franks–Williams inequality
says that w�m�n�N �wCm, where w and m denote the writhe and number of braid
strands in m, respectively. Let Pmin and Pmax be the coefficients of aw�m and awCm

in P.x�/. Then, according to a theorem of Kalman [43], Pmin.���2/DPmax.x�/. For
algebraic knots, an analogous statement holds at the level of Palg :

Proposition 10 If X is the germ of a unibranch plane curve singularity with multi-
plicity m, then Pmax

alg .X/D t
m2Pmin

alg .
zX/.
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Proof It is a classical result that �.X/D �. zX/Cm.m� 1/. Thus the proposition is
equivalent to saying that

1X
lD0

q2lw.X Œl�lCm�/D qm.m�1/
1X
lD0

q2lw. zX Œl�/:

We will show that X ŒlCm.m�1/=2�lCm.mC1/=2� Š zX Œl� .

Let us write OX D CŒŒx; y��=f .x; y/. By the Weierstrass preparation theorem and
unibranchness we may choose variables so that

f .x; y/D ymCym�1x2f1.x/Cy
m�2x3f2.x/C � � �C x

mC1fm.x/

Then x�mf
�
x; x:y

x

�
2C

��
x; y
x

��
, and O zX DC

��
x; y
x

��
=x�mf

�
x; x � y

x

�
. In particular,

O zX=OX is generated as an OX –module by 1; y
x
; : : : ;

�y
x

�m�1 . Therefore,

xm�1O zX D .x
m�1; xm�2y; : : : ; ym�1/�OX :

As f 2 .x; y/m�1 , we have

dimOX=.x; y/m�1 D dim CŒŒx; y��=.x; y/m�1 D 1
2
m.m� 1/:

Moreover, for any J �O zX , we have

dimOX=xm�1J D dimOX=xm�1O zX C dimO zX=J D
1
2
m.m� 1/C dimO zX=J:

An identical argument shows dimOX=xmJ D 1
2
m.m C 1/ C dimO zX=J. Finally,

xmJ � .x; y/xm�1J. In fact, these are equal since y
x
J � J.

Therefore, we define a map ˆW zX Œl� ! X ŒlCm.m�1/=2�lCm.mC1/=2� by ˆ.J / D

.xm�1J; xmJ /. The map is injective because x is not a zero divisor.

To see that ˆ is surjective, suppose we are given OX –ideals OX � J � I � .x; y/J
with dim.J=I /Dm. As J is a free CŒŒx��–module of rank m, dimC J=xJ Dm and
therefore I D xJ. On the other hand, since X has multiplicity m, we certainly have
dimC J=.x; y/J �m. We conclude xJ D .x; y/J. In particular, yJ � xJ ; therefore
y
x
J � J, ie J is an O zX –module. It is elementary to show that any O zX –submodule

J �OX must satisfy J � xm�1O zX .

Remark The result holds for nonunibranch singularities as well; the proof is more
technical and will appear elsewhere.
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2.3 Relation with the compactified Jacobian

In this subsection, we provide background and context for the statement of Proposition 4.
Recall that for a smooth curve C , the Hilbert schemes C Œn� are just symmetric
products, and as such their cohomology may be computed by taking Sn invariants:
H�.C Œn�;C/DH�.C n;C/Sn D .H�.C;C/˝n/Sn. On the other hand, Hi .J.C /;C/DViH1.C;C/. This leads to the following formula of Macdonald [48]:

(3)
1X
dD0

2dX
iD0

q2dHi .C Œd�;C/D
P2g
iD0 q

2i
Vi
.H1.C;C//

.1� q2/.1� q2C.�1//
D

P2g
iD0 q

2iHi .J.C /;C/
.1� q2/.1� q2C.�1//

:

The Tate twists in the denominator are necessary to make this an equality of Hodge
structures. Since all spaces are smooth and compact, taking weight polynomials
amounts to replacing C.�1/ by t2 and Hi . � / by t i dim Hi . � /.

Proposition 4 says that an analogous formula holds for a singular plane curve C , but
we must take into account the perverse filtration on H�. xJ 0.C //. More precisely, let
pHi . xJ 0.C // be the i th associated graded piece of the perverse filtration on H�. xJ 0.C //.
Then the main result of [49; 51] is that

(4) .1� q2/.1� q2t2/

1X
dD0

q2dw.C Œd�/D

2gX
iD0

q2iw
�
pHi . xJ 0.C //

�
:

The q! 1=qt symmetry of the left-hand side proven in Proposition 3 manifests on
the right-hand side as (relative) Poincaré duality.

We recall the definition of the perverse filtration for the interested reader. Let � W C!B

be a family of curves over a smooth base, with the general fiber smooth and some
special singular fiber C D Cb we are interested in. Let �J W J ! B be the relative
compactified Jacobian. As shown in [25], there exist families such that J is smooth;
fix any such. Then from the decomposition theorem of Beı̆linson, Bernstein, and
Deligne [6] we learn that

R�J� CŒgC dimB�D
M

.pRgCi�J� CŒgC dimB�/Œ�i �:

Passing to the central fiber, we write

pHi .Jb/ WD .pRgCi�J� CŒgC dimB�/bŒ�g� i �:
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These are complexes of mixed Hodge modules, which should be Tate-twisted to ensure
Hj .Jb/D

L
Hj .pHi .Jb//.2

It is sensible to take weight polynomials of the pHi .Jb/. It is shown in [49; 51] that

(5) .1� q2/.1� q2t2/

1X
dD0

2dX
iD0

q2dw.CŒd�
b
/D

gX
iD�g

q2iw.pHi .Jb//:

As the left-hand side did not depend on the family, we learn a posteriori the same
for the right-hand side. Equation (5) is proven by showing that no summand of
R�J� CŒgCdimB� and R� Œd�� CŒdCdimB� is supported in positive codimension, and
thus we can check on the generic point where the assertion reduces to (3). For the
Jacobians this follows from Ngô’s support theorem [53]; the geometric content of
[49; 51] was to establish the same for the Hilbert schemes.

3 Equations for Hilbert schemes

In this section we prove that the Hilbert schemes and nested Hilbert schemes for
unibranch singularities with a single Puiseux pair (eg xk D yn with k and n coprime)
admit a stratification by cells which admit bijective morphisms from various AN. We
give explicitly the dimensions N in terms of certain combinatorial data. Our approach
is adapted from the methods of Piontkowski [59].

3.1 Semigroups, stratifications and syzygies

Let X be the germ of a unibranch plane curve singularity with complete local ring
OX �CŒŒt ��. We have the valuation ordW CŒŒt ��nf0g!N , given by �tkCO.tkC1/ 7!k .
The set � WD ord.OXnf0g/ is a semigroup. Given an ideal J �OX , the set ord.J nf0g/
is a �–module, which we call the symbol of J. We will study the geometry of the
moduli space of ideals with given symbol,

X Œj� WD fJ �OX j ord.J /D jg:

Let CŒ��DCŒt i j i 2 ��. For a �–submodule j�Z, we write jD .tj j j 2 j/CŒ�� for
the associated monomial ideal, and c.j/ WDminfj 2 j j j CN � jg for its conductor.

2This direct sum decomposition is not canonical, but it does come from a canonical filtration; these
matters are irrelevant here.
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We choose a basis of OX compatible with the monomial basis of CŒ��:

�i D t
i
C

X
j>i

aij t
j ; i 2 �:

Evidently the multiplication matrix in this basis is upper triangular:

(6) �˛ ��ˇ D �˛Cˇ C
X


>˛Cˇ

C



˛;ˇ
�


Below we use the map

grW OX !CŒ��; gr.f / WD tord.f /.Œtord.f /�f /;

where .Œt i �f / denotes the coefficient of t i in f . We say f 2OX lifts at i 2CŒ�� if
and only if gr.f /D at i.

Suppose we are given an ideal J with symbol j. For any element j 2 j there is a
unique lift �j 2 J of the form

�j D �j C
X

k2�>jnj

�
k�j
j �k;

where �k�jj 2 C This observation motivates us to study the following map. Fix
generators 
1; : : : ; 
n of j. Let GenD Spec CŒ�

k�
j
j j k 2 �>
j n j� be an affine space

of dimension N D
P
j j�>
j n jj. Then we define deformations of the generators

�
j .�
�

�
/D �
j C

X
k2�>
jnj

�
k�
j
j �k

and an “exponential” map

Exp
 W Gen!
a

X Œn�; � 7! .�
1 ; : : : ; �
n/:

Note that Exp
 .�/ may have different colengths at different �; taking a flattening
stratification shows Exp
 is constructible. It is easy to see from [56, Theorem 27]
that Exp�1
 .X Œ#�nj�/D Exp�1
 .X Œj�/ and that the map restricts to a bijective morphism
Exp
 W Exp�1
 .X Œj�/!X Œj� . From now on, we tacitly identify X Œj� with Exp�1
 .X Œj�/�

Gen. We illustrate the behavior at points � 2 Gen nExp�1
 .X Œj�/:

Example Let OX DCŒŒt3; t7�� and jDh6; 10i. Then .t6Ct7; t10/2Gen is generated
by elements of orders 6 and 10, and 14…h6; 10i. On the other hand, ord.t6Ct7; t10/D
h6; 10; 14i because t7.t6C t7/� t3.t10/D t14, so .t6C t7; t10/ … Exp�1
 .X Œj�/.
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That is, although the orders of the generators of the ideal Exp.�/ generate j, it can
and does happen that some OX –linear combination of the generators has order … j.
To prevent this from happening one needs to control the syzygies (relations between
generators).

The choice of generators 
i of the ideal j determines a surjection GW CŒ��˚n ! j.
Extend this to a presentation

(7) 0 CŒ��=j CŒ�� G
 �CŒ��˚n S

 �CŒ��˚m;

where the matrix of syzygies S D .Es1; : : : ; Esm/ is homogenous, in the sense that
.Esi /j D u

j
i t
�i�
j for some constants uji 2C . We call �i the order of the syzygy Esi .

We regard G as a row vector, and Esi as the columns of S .

The choice of � 2Gen determines a lift G� 2HomOX .O
˚n
X ;OX / of G by the formula

.G�/j WD �
j .�
�

�
/D �
j C

X
k2�>
jnj

�
k�
j
j �k :

We define ord and gr on O˚nX ; note that these do not act entrywise:

ordW O˚nX ! Z; ord.v/Dminford.vj /C 
j g;

grW O˚nX !CŒ��n; gr.v/j WD td�
j Œtd�
j �vj ; d D ord.v/:

We define grW HomOX .O
˚m
X ;O˚nX /!HomCŒ��.CŒ��

˚m;CŒ��˚n/ column by column
by the formula gr.s1; : : : ; sm/D .gr s1; : : : ; gr sm/.

Lemma 11 Fix � 2 Gen. The following are equivalent:

(1) There exists S 2 HomOX .O
˚m
X ;O˚nX / such that gr.S/D S and every entry of

G� ıS has order at least c.j/.

(2) There exists zS 2 HomOX .O
˚m
X ;O˚nX / such that gr.zS/D S and G� ı zS D 0.

(3) � 2X Œj� .

Proof (1)D) (2) From a column s of S , we will produce a column Qs of zS . By the
hypothesis each term of G�s is in j. Thus we can write G�s D

P
fi�
i for some fi .

Then set Qs D s� .f1; : : : ; fn/. The converse (2)D) (1) is obvious.

(3)D) (2) Let Es be a column of S ; then Esj D cj t l�
j for some constants ci such
that

P
cj D 0. Let us define a first approximation sl by .sl/j D cj�l�
i ; evidently

gr.sl/D Es and each term of G�sl has order greater than l . By hypothesis, these terms
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have order in j>l . Assume now we have found sr such that gr.sr/D Es and each term
of G�sr has order in j>r . Then we can write gr.G�sr/ D

Pn
jD1 bj t

d�
j t
j , where
d D ord.G�sr/ and bj td�
j 2CŒ�� for j D 1; : : : ; n. The induction step is given by
the formula srC1 D sr � .b1�d�
1 ; : : : ; bn�d�
n/.

(2)D) (3) Assume Exp
 .�/ …X
Œj� . Then there is ' 2O˚nX such that ord.G�.'// … j.

Observe this implies G.gr.'1/; : : : ; gr.'n//D 0. Since gr.'/ lies in the kernel of G , it
is a linear combination of the columns of S . Take  to be the standard lift of this linear
combination. Therefore we found  2O˚nX such that G�. /D 0 and gr. /D gr.'/.
We have ord.' � / > ord.'/ and G�.' � /D G�.'/. Continuing this process, we
may produce an element z' of arbitrarily high order with ord.G�.'// … j. However,
ord.G�.z'// > ord.z'/, so once z' > c.j/ we find a contradiction.

Let �Syz be the (infinite-dimensional) space parametrizing possible syzygies S with
gr.S/D S . From the lemma it follows that X Œj� is the image in Gen of the variety in
X �Gen� �Syz cut out by the equation GıSD 0. We now describe a finite-dimensional
affine slice Syz� �Syz such that X\SyzDX Œj� . For each s 2 j�c.j/ fix a decomposition
s D 
g.s/C �.s/ for �.s/ 2 �.

Let Syz be the affine space with coordinates �s��iis , where i D 1; : : : ; m and c.j/ >
s > �i . To a point � in Syz we assign an n�m matrix with entries

.S�/
j
i D u

j
i ��i�
j C

X
c.j/>s>�i
g.s/Dj

�
s��i
is �s�
j :

Proposition 12 The subvariety of Gen � Syz defined by the equation G� ı S� D
O.tc.j// maps bijectively onto X Œj� .

Proof By Lemma 11, we must show that if any matrix S 2 HomOX .O
˚m
X ;O˚nX /

satisfies grS D S and G� ı S D 0, then there is a unique matrix of the above form
such that G� ıS� DO.tc.j//.

First we check uniqueness. Suppose given �, � and �0 such that G� ıS� D G� ıS�0 D
0 mod tc.j/. On the one hand, the columns of gr.S�0 �S�/ are in the subspace W 0j �
Wj D

L
j CŒ��<c.j/�
j spanned by elements of the form t�.s/eg.s/ , where eg.s/ is

the unit vector in the g.s/th summand. By inspection, kerG \W 0j D 0. On the other
hand, the columns of gr.S�0 �S�/ are necessarily in the kernel of G .
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For existence, it suffices to observe that G.W 0j / D G.Wj/ D j<c.j/ . Indeed, we can
compute S� by induction: let fj1 < j2 < � � � < jN g D j\ Œ0; c.j/� and suppose we
have found �k such that

vk WD G� ıS�k D 0 mod tjk :

By assumption � 2X Œj� , so the entries of the vector vk have orders which are elements
of j. Hence, by the construction of W 0j there is �02Syz such that gr.G�ıS�0/Dgr.vk/.
Thus for �kC1 WD �k � �0 we have

G� ıS�kC1 D 0 mod tjkC1 :

For future use we write the matrix entries .G� ıS�/i D
P
j .G�/j .S�/

j
i explicitly:

X
j

 
u
j
i ��i�
j �
j C

X
c.j/�
j>s>�i

g.s/Dj

�
s��i
is �s�
j �
j C

X
k2�>
jn j

u
j
i �
k�
j
j ��i�
j �k

C

X
c.j/�
j>s>�i

g.s/Dj
k2�>
jn j

�
s��i
is �

k�
j
j �s�
j �k

!

Let I �CŒ��
�
; ��
�;�� be the ideal defining the Hilbert scheme X Œj� , ie the ideal generated

by the entries of G� ıS� . Then we write X Œj�<r � Spec CŒ�<r
�
; �<r
�;� � for the subscheme

cut out by the ideal I<r WD I \CŒ�<r
�
; �<r
�;� �.

Expand .G� ı S�/i in the basis �k , and denote by Eqri the coefficient of �rC�i .
Implicitly Eqri does not occur if rC�i … � or rC�i � c.j/. Accounting for the upper
triangularity of the basis �k , we see the nontrivial equations Eqri are of the form

Lri C terms in �<r and �<r ;

Lri WD ıj\.�i ;c.j//.r C �i /�
r
i;rC�i

C

nX
jD1

ı�nj.r C 
j /u
j
i �
r
j :

As I<rC1D .I<r ;Eqr1; : : : ;Eqrm/, the space X Œj�<rC1 is cut out of X Œj�<r�Spec CŒ�r ; �r �

by the ideal .Eqr1; : : : ;Eqrm/. We write

�r W X
Œj�
<rC1!X

Œj�
<r

for the projection. Once r is greater than the conductor c.j/, we have X Œj�<r DX Œj� by
the equivalence of (1) and (2) of Lemma 11. Thus it remains to study the fibers in the
sequence

X Œj�
�c.j/
���!X

Œj�
<c.j/

�c.j/�1
�����! � � �

�0
�!X

Œj�
<0 D pt:
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For general singularities, the projections are not surjective and the fibers are hard to
control. However, when the linear forms Lri are independent, the fibers are affine
spaces of constant dimension and the projections are surjective. We show next that this
independence holds when the singularity is unibranch with a single Puiseux pair, and
compute the dimensions of fibers.

3.2 � D hn; ki

We now restrict ourselves to singularities X with semigroup � generated by two
relatively prime integers, n and k . The prototypical example is xn D yk, but in fact
such singularities vary with moduli [64]. We will show in these cases that the Hilbert
schemes are stratified by affine cells.

We often picture � in terms of the coordinate plane, in which we write ni C kj in
the unit square with bottom-left coordinate .i; j /. As every element m 2 � admits a
unique presentation in the form m D akC bn with 0 � a < n, each occurs exactly
once in the semi-infinite strip of height n in the first quadrant. Ideals correspond to
Young diagrams (or staircases) contained in the strip containing at most k columns
of height strictly between 0 and n. For example, we assign the following staircase to
.t21; t23; t24/�CŒŒt4; t5�� (bold numbers correspond to monomials in the ideal):

15 19 23 27 31 35 39 43
10 14 18 22 26 30 34 38
5 9 13 17 21 25 29 33
0 4 8 12 16 20 24 28

To see the generators and syzygies it is better to draw the infinite staircase of which
the elements in the ideal are above and those not in the ideal are below. For example,
in the above case we get:

20 24 28 32 36 40 44 48 52 56
15 19 23 27 31 35 39 43 47 51
10 14 18 22 26 30 34 38 42 46
5 9 13 17 21 25 29 33 37 41
0 4 8 12 16 20 24 28 32 36
�5 �1 3 7 11 15 19 23 27 31
�10 �6 �2 2 6 10 14 18 22 26
�15 �11 �7 �3 1 5 9 13 17 21

The generators of the ideal are the concave corners of the staircase. We order them
.
1; : : : ; 
m/ in such a way that if one began ascending the staircase at 
1 then one
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would encounter them in order. For example, in the above we may take 
1 D 24,

2 D 21 and 
3 D 23. Moreover, we take the labels modulo m, ie 
k D 
mCk . We
write �i for the outside convex corner encountered between 
i and 
iC1 . That is,
writing 
i D aikCbin with 0� ai <p , we define �i D aiC1qCbip . In the example
above, we have �1 D 29, �2 D 31 and �3 D 28. It is obvious from the pictorial
description that the module of syzygies of .t
1 ; : : : ; t
m/ is generated over CŒ�� by
the elements !i D ei t�i�
i � eiC1t�i�
iC1 for i D 1; : : : ; m.

Theorem 13 For jD .
1; : : : ; 
m/� � D hn; ki, the scheme X Œj� admits a bijective
morphism from AN.j/, where

N.j/D
X
i

j�>
in jj �
X
i

j�>�in jj:

Proof We will study the maps X Œj�<rC1!X
Œj�
<r . We have seen that X Œj�<rC1 is cut out

of Spec CŒ�r
�
; �r
�;�� by some equations Eqri , where by our description of the syzygies

i D 1; : : : ; r . We have written Lri for the linear term of Eqri . Once we show that Lri
are linearly independent, it will follow that the zero locus of the Eqri is isomorphic to
the zero locus of the Lri . Thus X Œj�<rC1 is a vector bundle over X Œj�<r of fiber dimension

�m
�
C#�r

�;��# Eqri D
mX
iD1

ı�nj.rC
i /C

mX
iD1

ıj\.0;c.j//.rC�i /�

mX
iD1

ı�\.0;c.j//.rC�i /

D

mX
iD1

ı�nj.rC
i /�

mX
iD1

ı�nj.rC�i /:

Summing over r gives the claimed value of N.j/.

It remains to prove the linear independence of the forms Lri . If r C �i … j\ .�i ; c/
then Lri does not depend on variables �r

�;� . On the other hand, if r C �i 2 j\ .�i ; c/
then Lri does depend on �r

�;� . Moreover, the linear forms Lri , r C �i 2 j\ .�i ; c/

are mutually linearly independent and linear span of these forms does not contain a
nontrivial linear form independent of �m

�;� . Thus to finish the proof we need to show
that the linear forms

Lri ; r C �i 2 � n j

are linearly independent. The easiest proof of this statement uses a pictorial interpreta-
tion of the syzygies and the linear forms Lri which we explain below.

Suppose we are given i and r > 0 such that r C �i 2 � n j. From our description of
the syzygies we see that Lri is of the form

Geometry & Topology, Volume 22 (2018)



The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link 665

�riC1ı�nj.
iC1C r/��
r
i ı�nj.
i C r/:

We can visualize the nontrivial coefficients of the Lri in the following way. Begin with
an m�m matrix A with Ai i D �1 and AiC1;i D 1 (where the latter equation is to
be interpreted mod m). If r C �i … � n j, we delete the i th column of A. Finally, we
replace some of the nonzero coefficients with 0, depending on the value of ı�nj.
iCr/.

To interpret the condition r C �i 2 � n j, write r D ˛kCˇn and let v be the vector
.˛; ˇ/. Consider the new infinite staircase obtained by translating the original staircase
by v . Then rC�i 2� n j if and only if the translate of the convex corner corresponding
to �i shifts to a square below the original staircase and above the (rather simpler)
staircase defined by the elements of � .

Now if r C �i 2 � n j for all i , the entire translate of the infinite staircase by v would
lie below the infinite staircase. This would imply j� jC r , which is impossible, since
r > 0. Thus there is at least one deleted column in the matrix A. Without loss of
generality, we may renumber the 
i so that the final column is deleted. The remaining
matrix is supported on the diagonal and on the off-diagonal just below it. After deleting
additional columns, the remaining matrix will be block diagonal. The number of blocks
will be the number of “runs” of consecutive undeleted columns, and the size of each
block will be .i C 1/� i , where i is the length of the run.

More geometrically, each block corresponds to a connected component of the inter-
section of the shifted infinite staircase with the region below the original staircase and
above the �–staircase. For example, in the case of the picture below, the matrix consists
of three blocks of sizes i D 1; 2; 1:
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Now we need to show that the diagonal blocks are of maximal rank. There are four
types of diagonal block, depending on how the path exits the finite staircase. These
four types are shown in the figure below:

As in the previous figure, the fine dotted line marks the translated copy of the infinite
staircase, the heavy solid line is the finite staircase, and the heavy dashed lines mark
the boundary of the first quadrant. In the first three cases the corresponding diagonal
blocks are of maximal rank but in the last case the matrix is degenerate. To finish the
proof, we must check that the last case does not occur. Indeed, if it did, we see from the
picture that the fine dotted curve would have a unique connected component between
the heavy dotted curve and the bold curve. Thus the fine dotted curve would lie under
the bold curve, but we showed above that this is impossible.

Remark The above argument actually shows that X Œj� 'AN.j/. Indeed, in the proof
we show that � W X Œj�<rC1!X

Œj�
<r is a smooth affine fibration. But by construction the

fibration is a subfibration of the trivial fibration and the linear part of the equations
defining the subfibration does not depend on the point on X Œj�<r . Thus � is a trivial
fibration.

3.3 Nested Hilbert schemes

We turn to the study of the nested Hilbert schemes. Let M be the maximal ideal of OX .
Recall that X Œa�b� �X Œa� �X Œb� was defined to be the locus

f.J; I / 2X Œa� �X Œb� j J � I �MJ g:

This space admits a stratification by type of semigroup-module. Indeed let X Œj�i� �
X Œj� �X Œi� be the locus of f.J; I / 2X Œj� �X Œi� j J � I �MJ g. Evidently

X Œa�b� D
a

#�njDa
#�niDb

X Œj�i�

For the source of the nested version of the “exponential” map, we take an affine space
Gen with coordinates �k�
ii , where k 2 �>
in j if 
i … i and k 2 �>
in i if 
i 2 i. We
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define, as before,
�
j .�

�

�
/ WD �
j C

X
s

�
s�
j
j �s�
j

and set
J.��

�
/D .�
i .�

�

�
//;

I.��
�
/D .�
i .�

�

�
/ j 
i 2 i/CMJ.�

�

�
/:

Finally we define Exp.��
�
/D .J.��

�
/; I.��

�
//. This constructible map induces a bijective

morphism Exp�1
 .X Œj�i�/ ! X Œj�i� . The locus Exp�1
 .X Œj�i�/ is characterized by
requiring ord.J.�//D j and ord.I.�//D i, which is equivalent to requiring that the
syzygies of j and i lift to J.�/ and I.�/ respectively. In fact, because by construction
I.�/�MJ.�/, we see that

ord.J.�//D ord.J.�/ nMJ.�//[ ord.MJ.�//� j[ ord.I.�//:

Therefore it suffices to check that ord.I.�// D i, or in other words we need only
concern ourselves with the syzygies of i.

Rather than continue a general treatment, we restrict to the case when � D hn; ki, in
which the syzygies are easier to describe.

Theorem 14 Let j D .
1; : : : ; 
m/ � � D hn; ki and j � i � jCm. Let �i be the
degrees of the syzygies of j. Then X Œj�i� admits a bijective morphism from AN.j�i/ ,
where

N.j� i/D
X

i…i

j�>
in jjC
X

i2i

j�>
in ij �

mX
iD1

j�>�in ij:

Proof We must determine the locus in Gen in which the syzygies of i lift. Here
we drop our numbering convention of the generators of j and instead number them

1; : : : ; 
l ; 
lC1; : : : ; 
m so that j n iD f
1; : : : ; 
lg. Then a not necessarily minimal
set of generators for i is f
1Cn; 
1Ck; : : : ; 
l Cn; 
l Ckg[ f
lC1; : : : ; 
mg. From
this, for instance from the pictorial description, it is easy to see that the degrees of the
minimal syzygies are among �1; : : : ; �m; 
1CnCk; : : : ; 
lCnCk , where the �i are
the syzygies of j. Note that the syzygies of degree 
i CpC q between the generators
of degree 
i C n and 
i C k always lift to I.�/. Indeed, if fi is the generator of
degree 
i , then the generators of degrees 
i Cn and 
i C k are just �nfi and �kfi ,
thus the syzygy in question is �n.�kfi /��k.�nfi /D 0.

We denote the generators of i as follows:

�2i�1D
iCn; �2iD
iCk for iD1; : : : ; l; �iClD
i for iD lC1; : : : ; m:
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We have reduced the problem of determining when � 2 X Œj�i� to determining when
the syzygies of the form .Esi /j D u

j
i t
�i��j for j D 1; : : : ; mC l and i D 1; : : : ; m lift.

These are generated by the syzygies in which only two entries uji are nonzero.

As in the unnested case, we introduce a subspace Syz of all possible such syzygies,
so that X Œj�i� will be cut out of Gen� Syz by explicit equations. Thus fix, for each
s 2 i, a splitting s D �g.s/ C �.s/ with �.s/ 2 �. Let Syz be an affine space with
coordinates �s��iis , where i D 1; : : : ; m and c.i/ > s > �i . To a point � in Syz we
assign an .mC l/�m matrix with entries

.S�/
j
i D u

j
i ��i��j C

X
c.i/>s>�i
g.s/Dj

�
s��i
is �s��j :

By an argument similar to that in the unnested case, X Œj�i� is cut out of Gen� Syz
by the equation G� ı S� D 0 mod tc.i/. Denoting by I the ideal generated by the
matrix entries of G� ıS� , we may again define the successive approximations X Œj�i�<r �

CŒ�<r
�
; �<r
�;� � as the locus cut out by I \ CŒ�<r

�
; �<r
�;� �. Then X Œj�i�<rC1 is cut out of

X
Œj�i�
<r � Spec CŒ�<r

�
; �<r
�;� � by the coefficients Eqri of �rC�i in the matrix entries of

G� ıS� . The terms depending on �r
�

and �r
�;� are linear, and we denote them by Lri :

(8)

Eqri D L
r
i C terms in �<r and �<r ;

Lri D ıi\.�i ;c.j//.r C �i /�
r
i;rC�i

C

lX
sD1

.u2s�1i Cu2si /ı�nj.r C 
s/�
r
s

C

mX
sDlC1

ulCsi ı�ni.r C 
s/�
r
s I

here Eqri D 0 if r C �i … � or r C �i � c.i/.

As in the proof of Theorem 13, from the shape of the forms Lri we see that we only
need to show that the linear forms

Lri ; r C �i 2 � n i

are linearly independent. From the structure of the coefficients uij we see that for
r C �i 2 � n i the linear form Lri is equal to

lX
sD1

.u2s�1i Cu2si /ı�nj.r C 
s/�
r
s C

mX
sDlC1

ulCsi ı�ni.r C 
s/�
r
s :

At this point, it is convenient to reorder the generators of j consecutively along the
staircase, as we did in the unnested case. Once we have done so, we see that the matrix
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of coefficients of the Lri is obtained as in the unnested case: we start with the same
matrix A, delete some columns (corresponding to those �i C r … � n i), and then set
some coefficients to zero. The set of coefficients which is set to zero is smaller than
that in the unnested case, since the support of ı�ni is larger than that of ı�ni .

Hence, to compute the rank of the space spanned by the linear forms Lri for rC�i 2�ni,
one has to analyze connected components of the intersection of the periodic path
associated to j and shifted by a vector v (as in Theorem 13) with the area under the
path associated to i and above the path associated to �. The path jC r cannot lie
completely under the path for i: if it did, it is easy to see that we would have jC r � j.
For r > 0, we have already shown this is impossible. The remainder of the argument
proceeds exactly as in the proof of Theorem 13.

Thus we conclude that �r W X
Œj�i�
<rC1!X

Œj�i�
<r is a vector bundle with fibers of dimension

#�r
�
C #�r

�;�� # Eqri . By construction,

#�r
�
D

lX
iD1

ı�nj.r C 
i /C

mX
iDlC1

ı�ni.r C 
i /;

#�r
�;� D

mX
iD1

ıi\.0;c.i//.r C �i /;

while on the other hand the nontrivial Eqri impose

# Eqri D
mX
iD1

ı�\.0;c.i//.r C �i /

independent conditions. Summing over these terms and summing over m gives the
stated dimension.

4 Examples

In this section we verify that the predictions of Conjecture 2 agree with previously
known or conjectured values of the HOMFLY homology for torus knots. We first
consider the “stable” HOMFLY homology, whose Poincaré polynomial is defined by

P.T .n;1//D lim
k!1

�
q

a

���1
P.T .n; k//:
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This limit exists by a theorem of Stošić [61]. It was conjectured in [20] that

P.T .n;1//D

nY
iD1

1C a2q2i�2t2i�1

1� q2i t2i�2
:

Proposition 6 from the introduction says that the analogous statement holds for Palg .

Proof of Proposition 6 The assertion Palg.Xn;1/DPalg.Xn;k/CO.q
2k/ follows

immediately from the fact that all ideals parametrized by the spaces X Œl�lCm�n;1 and
X
Œl�lCm�

n;k
for l < k contain the ideal .x; y/k . But modulo this ideal the equations

yn D xk and yn D 0 are identical, so for l < k we have X Œl�lCm�n;1 DX
Œl�lCm�

n;k
.

Recall that X Œl�lCm�
n;k

is a union of affine spaces corresponding to staircases with some
marked external corners sitting in the semi-infinite strip of height n in the first quadrant.
There is a condition on which staircases occur, but any fixed staircase will contribute for
all sufficiently large k . By inspection of the formula in Theorem 13, the contributions
converge as well.

Let S D .nsn ; .n�1/sn�1 ; : : : ; 1s1/ be a staircase with si columns of height i . For any
subset †� f1; : : : ; ng, we form †0 by subtracting 1 from each element of †. Write
S [† for the staircase with additional columns with heights from †, and similarly
S [†0. Every admissible nested pair of semigroup ideals j � i has staircase of the
form S [†� S [†0 for some S and †; to recover S from the staircases of j and i,
delete every column in which those staircases differ.

It remains to sum the contributions of the staircases. When kCn2 is greater than the
number of boxes in the staircase, one calculates from Theorem 13 that

ContS D q2
P
isi t2

P
.i�1/si

nY
iD1

.1C a2q2i�2t2i�1/:

Summing over staircases gives the stated formula.

When combined with the symmetry of Palg , Proposition 6 is enough to determine
Palg.X2;n/ and Palg.X3;n/.

Corollary 15 We have

1� q2

1C a2t

�
q

a

�2k�1
Palg.X2;2kC1/D

1C a2q2t3

1� q4t2
� q4kt2k

�
q4t2C a2q2t3

1� q4t2

�
;

1� q2

1C a2t

�
q

a

�2k�2
Palg.X2;2k/D

1C a2q2t3

1� q4t2
C q4kt2k

�
q2C a2t

1� q4t2

��
1� q2t2

1� q2

�
:
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Corollary 16 We have

1�q2

1Ca2t

�
q

a

�6k�1
Palg.X3;3kC1/

D
.1Ca2q2t3/.1Ca2q4t5/

.1�q4t2/.1�q6t4/
� q2C6kt2C4k

.q2Ca2t /.1Ca2q2t3/.1Cq2t2Cq4t2/

.1�q6t2/.1�q6t4/

Cq4C12kt4C6k
.q2Ca2t /.q4Ca2t /

.1�q6t2/.1�q4t2/
;

1�q2

1Ca2t

�
q

a

�6kC1
Palg.X3;3kC2/

D
.1Ca2q2t3/.1Ca2q4t5/

.1�q4t2/.1�q6t4/
� q4C6kt4C4k

.q2Ca2t /.1Ca2q2t3/.1Cq2Cq4t2/

.1�q6t2/.1�q6t4/

Cq8C12kt6C6k
.q2Ca2t /.q4Ca2t /

.1�q6t2/.1�q4t2/
:

Proof We recall that ı.X2;n/D 1
2
.n�1/ and ı.X3;n/Dn�1. Thus, by Proposition 6,

the equality in each case holds modulo q2ıC2. By inspection, the right-hand side is a
polynomial in q of degree 4ı ; Proposition 3 implies the same for the left-hand side. It
remains only to observe that the symmetry imposed by Proposition 3 on the left-hand
side also holds on the right.

In the .2; n/ case, these formulas match the known value of P [44]; in the .3; n/ case,
the resulting formula matches a conjectural formula for P advanced in [20].

5 Torus knots and Cherednik algebras

In this section, we make some conjectures about the structure of Palg.Xn;k/. The
main thrust of these conjectures is that the HOMFLY homology of torus knots should be
related to the representation theory of rational Cherednik algebras. We will explore this
idea more fully in a subsequent paper [34]. Here, we focus on the problem of writing
explicit formulas for Palg.Xn;k/.

For the moment, we restrict attention to the unnested Hilbert scheme series Pmin
alg .

As we explained in Section 2, Pmin
alg .X/ admits an alternate description in terms of

the perverse filtration on the cohomology of the compactified Jacobian of a complete
rational curve with a unique singularity of type X. When X is unibranch of the form
ynDxk, it can be shown using the techniques of Z. Yun’s thesis that the cohomology of
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the compactified Jacobian furnishes the unique simple representation of Hsph
n .k=n/, the

spherical rational Cherednik algebra of type An�1 and central character k=n [63; 57].3

It is moreover the case that the perverse filtration on H�. xJ / is compatible with the
natural bigrading on Hsph

n .k=n/; ie it is a good filtration in the sense of Gordon and
Stafford [28; 29]. An a priori different good filtration on Hsph

n .k=n/ can be constructed
by means of results of Calaque, Enriquez and Etingof [12] (see details below). We
conjecture these filtrations have at least the same associated graded dimensions. When
nDmkC 1, a formula for the character of the filtration of [12] is established by the
work of Gordon and Stafford [28; 29], which gives a prediction for the lowest-order
coefficient of a in the superpolynomial of the .n;mnC 1/ torus knot.

5.1 Filtrations on rational Cherednik algebras

We recall some relevant definitions. The symmetric group Sn acts on the free algebra
Chx1; : : : ; xn; y1; : : : ; yni by permuting the variables.

Definition 17 For any complex number � , the rational Cherednik algebra Hn.�/ is
the quotient of the algebra CŒSn�Ë Chx1; : : : ; xn; y1; : : : ; yni by the relations

nX
iD1

xi D 0D

nX
iD1

yi ; Œxi ; xj �D 0D Œyi ; yj �;

Œxi ; yj �D
1

n
� �sij for i ¤ j:

Using the symmetrizer
e D

1

nŠ

X
�2Sn

�

we form the spherical rational Cherednik algebra Hsph
n .�/ WD eHn.�/e .

We fix the following grading on Hn.�/ and Hsph
n .�/:

deg.xi /D 1; deg.yi /D�1; deg.�/D 0 for � 2 Sn:

The grading is equivalently given by the eigenvalue of the operator Œh; � �, where
hD

P
i xiyi .

3Varagnolo and Vasserot have shown that the equivariant K–theory of this space admits the action
of the double affine Hecke algebra, and presumably an application of their methods in Borel–Moore
homology would yield a construction of its trigonometric degeneration. We however have been unable to
use their approach to construct the rational Cherednik algebra representation geometrically.
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In studying the representation theory of Hn.�/, it is natural to restrict to the category
O of Hn.�/–modules which are locally nilpotent under the action of operators yi and
decompose into a direct sum of finite-dimensional generalized eigenspaces of h. We
recall from [9; 7; 8; 27] some basic facts about this abelian category. The simple objects
are enumerated by Young diagrams of size n. Denoting by L�.�/ the representation
corresponding to the Young diagram �, the subspace annihilated by the yi furnishes
the irreducible representation of Sn corresponding to �. For � > 0, L�.�/ is finite-
dimensional if and only if � corresponds to the trivial representation and � D k=n with
k 2Z and .k; n/D 1. We denote this module by L� . One may analogously define the
category of Osph of Hsph

n .�/–modules; the map M 7! eM is an equivalence between
O and Osph for all � , except rational � from .�1; 0/ with denominator smaller than
or equal to n [10].

The element h gives a Z–grading to elements M of O or Osph ,

Mi D fm 2M j h.m/D img:

Definition 18 [28; 29] Let M be a module in O (resp. Osph ). A filtration

ƒW ƒi;jM �ƒiC1;jM; ƒi;jM �ƒi;jC1M

is good if

z �Mij �MiCk;jCl for any z with degree k in the xi and degree l in the yi ;

Mk D

M
i�jDk

Mk \ƒ
i;jM;

Mk \ƒ
i;jM D 0 if i � j < k;

and the corresponding associated graded module is a finitely generated Z�Z–graded
module over CŒSn�Ë CŒx1; : : : ; xn; y1; : : : ; yn� (resp. CŒx1; : : : ; xn; y1; : : : ; yn�Sn ).

The procedure of [57] realizing Lk=n as the cohomology of the compactified Jacobian
of a curve with singularity Xn D Y k matches the grading on Lk=n to the associated
graded structure of the perverse filtration on the Jacobian; the process of taking asso-
ciated graded destroys the homological grading on the Jacobian, but leaves a (good)
filtration on Lk=n . Another, a priori different, good filtration is given by the following
construction of [12]:

Proposition 19 The representation eLk=n of Hsph
n .k=n/ has a good filtration.
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Proof First, let us notice that eHn.k=n/e�Hn.k=n/ bimodule eHn.k=n/ has a good
filtration. Since this bimodule provides a Morita equivalence between eHn.k=n/e–
modules and Hn.k=n/–modules, it is enough to construct a good filtration on the
spherical modules.

According to [12, Theorem 9.8], there is an isomorphism of vector spaces eLk=n Š
eLn=k , which identifies

Pk
iD1 x

a
i y

b
i 2H

sph
k
.n=k/ and

Pn
iD1 x

a
i y

b
i 2H

sph
n .k=n/ for

all positive a and b as endomorphisms of this vector space. The spherical subalgebra
is spanned by these elements, hence this isomorphism carries good filtrations to good
filtrations.

As explained in [7],

eLk=nC1 D eLk=n˝eHn.k=n/e Pk=n; with Pk=n WD eHn
�
k

n
C 1

�
ıe;

where ı WD
Q
i<j .xi �xj /. In particular, it is shown in [7] that Pk=n has the structure

of an .eHn.k=n/e�eHn.k=nC1/e/–bimodule. Thus, if eLk=n has a good filtration,
the above construction induces a good filtration on eLk=nC1 .

Thus by the Euclidean algorithm, we may construct a good filtration on any Lk=n
starting from a good filtration on L1 . This latter module is one-dimensional, so we
may give it the trivial filtration ƒ0;0L1 D 0 and ƒ>0;>0 D L1 .

Conjecture 20 The homological filtration and the filtration of Proposition 19 agree.

Remark Let Hn.k=n/ be the quotient of CŒSn�Ë CŒxx1; : : : ; xxn; xy1; : : : ; xyn� by the
relations

Œxxi ; xxj �D Œxyi ; xyj �D 0;

Œxyi ; xxj �D ksij for i ¤ j;

Œxyi ; xxi �D
1

n�1
� k

X
j¤i

sij :

Let X WD
P
i xxi and Y WD

P
i xyi . Then CŒY ; X� is isomorphic to the algebra of

differential operators on C , and Hn.k=n/ is embedded via

xi 7! xxi �
1

n
X; yi 7! xyi �

1

n
Y :

Moreover, Hn.k=n/ commutes with X and Y , so Hn.k=n/DHn.k=n/�CŒY ; X�.
Given an Hn.k=n/–module M , we can produce an Hn.k=n/–module just by ten-
soring over C with CŒX�. It is natural to expect that an action of Hn.k=n/ may
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be constructed on the Hilbert scheme homologies
L
i;n Hi .X Œn�/ as an algebra of

correspondences, compatibly with the action of Hn.k=n/ on the cohomology of the
compactified Jacobian.

5.2 Results of Haiman [39] and Gordon and Stafford [28; 29]

Let Hilb.n/ be the locus in the Hilbert scheme of n points in C2 with center of mass
at the origin. Note that C2 �Hilb.n/ is the usual Hilbert scheme of n points in C2.
There is a functor

ˆW eHn.�/e–module M with a good filtration ƒ 7! Sƒ;M 2 Coh.Hilb.n//;

The sheaf Sƒ;M may depend on the filtration, though its support does not.

The functors ˆ interact well with the shift functors. Let T be the tautological rank n
sheaf on Hilb.n/ whose fiber at a given point is the structure sheaf of the corresponding
subscheme. Then

(9) ˆ
�
M ˝eHn.k=n/e eHn

�
k

n
C 1

�
ıe
�
Dˆ.M/˝ det T :

In addition, if L1=n is equipped with the trivial filtration, and Z � Hilb.n/ is the
subvariety parametrizing schemes supported at the origin, then

(10) ˆ.L1=n/DOZ :

Combining with vanishing results of Haiman gives:

Theorem 21 [29] Consider the module eLmC1=n of eHn.mC1=n/e equipped with
the filtration of Proposition 19. Then

ˆ.eLmC1=n/DOZ ˝ .det T /˝m:

Moreover, if T1 and T2 are the equivariant characters of .C�/2,X
i;j

T i1T
j
2 dim gri;jƒ eLmC1=n D �C��C�.OZ ˝ .det T /˝m/:

The equivariant character is computed [39] by localization in equivariant K–theory. As
the calculation is in any case restricted to Z , we may compute on the usual Hilbert
scheme .C2/Œn� rather than Hilb.n/. The fixed points are enumerated by partitions �
of n. For a box x in the diagram of a partition �, we use the standard notations a.x/
and l.x/ for its arm and leg, and a0 and l 0 for the coarm and coleg. We write �0 for
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the dual partition to �, and �.�/ WD
P
x2� l

0.x/D
P��0

i

2

�
. The equivariant weights

are

T� D
X
x2�

T
l 0.x/
1 T

a0.x/
2 ;(11)

det T� D T
�.�/
1 T

�.�0/
2 ;(12)

T .C2/
Œn�

�
D

Y
x2�

.1�T
1Cl.x/
1 T

�a.x/
2 /.1�T

�l.x/
1 T

1Ca.x/
2 /;(13)

OZ j� D T�.1�T1/.1�T2/
Y

x2�nf.0;0/g

.1�T
l 0.x/
1 T

a0.x/
2 /;(14)

and so in all �C��C�.OZ ˝ .det T /˝m/ is given by the formula

(15)
X
�`n

T
m�.�/
1 T

m�.�0/
2

.1�T1/.1�T2/
Q
x2�nf.0;0/g.1�T

l 0.x/
1 T

a0.x/
2 /Q

x2�.1�T
1Cl.x/
1 T

�a.x/
2 /.1�T

�l.x/
1 T

1Ca.x/
2 /

�

X
x2�

T
l 0.x/
1 T

a0.x/
2 :

5.3 Formulas for torus knots

The precise relation between the filtration in the construction of [57] and the filtration
of [28; 29] is such that the equivariant variables T1 and T2 are related to the perverse
and homological q and t as follows:

(16) T1 WD q
2; T2 WD

1

q2t2
:

Combining Proposition 4 and Conjecture 20 we expect:

Conjecture 22 .at/��Pmin
alg .Xk;n/D

P
i;j T

i
1T

j
2 dim gri;jƒ eLk=n:

From the above results of Haiman [39] and Gordon and Stafford [28; 29], we expect
more explicitly that .at/��Pmin

alg .XmnC1;n/ is given by (15). For general k=n, one
might hope that the sheaf Fk=n constructed by Gordon and Stafford [28] is C��C�–
equivariant and that, moreover, we again haveX

i;j

T i1T
j
2 dim grƒi;j .Lk=n/D �C��C�.Fk=n/:
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This conjecture can be extended to describe the entire polynomial Palg.Xn;k/. Recall
that T splits as T 0

L
OHilb . We write A WD a2t and

ƒ�AT 0� WD
n�1X
iD0

AiƒiT 0�:

Conjecture 23 For any coprime .k; n/, there exists a C��C�–equivariant sheaf Fk=n
such that .at/��Palg.Xk;n/D �C��C�.Fk=n˝ƒ

�AT 0�/.

Remark In [34] it will be clarified that Conjecture 23 amounts to an assertion that the
coefficients of a in Palg.Xn;k/ correspond to representations of hyperspherical rational
Cherednik algebras. The assertion above is consistent with Fk=n˝ det T D F.kCn/=n .

The weights of ƒ�AT 0� are

.ƒ�AT 0�/� D
Y

x2�nf.0;0/g

.1CAT
�l 0.x/
1 T

�a0.x/
2 /:

Thus, when k DmnC 1 we obtain Conjecture 8 from the introduction. For general
.k; n/ we lack an explicit description of the sheaf Fk;n , but computer experiments with
the combinatorial formula for the Poincaré polynomial of the Hilbert scheme suggest:

Conjecture 24 There exist gr=n.�/ such that

.at/��Palg.XmnCr;n/D
X
j�jDn

gr=n.�/

T .C2/
Œn�

�

.1�T1/.1�T2/.ƒ
�T 0/�.ƒ�AT 0�/�.det T /m�

with the following properties:

ın �gr=n.�/ 2 ZŒT˙11 ; T˙12 �;(17)

gr=n.�
0/D gr=n.�/jT1DT2; T2DT1 ;(18)

gr=n.�/D g.n�r/=n.�/jT1D1=T1; T2D1=T2T
�.�/
1 T

�.�0/
2 ;(19)

g1=n.�/D
X
x2�

T
l.x/
1 T

a.x/
2 ;(20)

where ın D
Q
0<i;j<n.1�T

i
1T

j
2 /.

The conjecture is confirmed by computer experiment up to n<9. The last two formulas
combined produce explicit formulas for the superpolynomial of T .n;mn�1/ analogous
to those for T .n;mnC 1/.
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Our calculation of the stable superpolynomial in Proposition 6, together with the
symmetry of (18), imply that

gr=n..1
n//D T

.n�1/.r�1/=2
1

T n1 � 1

T1� 1
; gr=n..n//D T

.n�1/.r�1/=2
2

T n2 � 1

T2� 1
:

Computer calculations suggest the following formulas, which we have checked for
n < 8:

gr=n.2; 1
n�2/D .Œn� r�T1 CT2Œr�1=T1/T

.n�1/.r�1/=2
1 ;

gr=n.3; 1
n�3/D T

.r�1/.n�1/=2
1 Œ.n� 2r/_ 0�T1 CT

.r�1/.n�3/=2
1 T2Œ.n� r/^ r�T1

CT
.n�r�1/.n�3/=2
1 T 22 Œ.n� r/^ r�1=T1

CT
.n�r�1/.n�1/=2�nC2
1 T 32 Œ.2r �n/_ 0�1=T1 ;

where Œn�t WD .tn� 1/=.t � 1/, a^ b WDmin.a; b/ and a_ b WDmax.a; b/.

For nD 5, the following data together with the symmetries discussed above is enough
to determine gr=5.�/ for all r and �:

r gr=5.2
2; 1/

1 .1CT1CT
2
1 /C .1CT1/T2

2 .T 21 CT
3
1 /C .T1CT

2
1 /T2CT

2
2

3 T 41 C .T
2
1 CT

3
1 /T2C .T1CT

2
1 /T

2
2

4 .T 31 CT
4
1 /T2C .T

2
1 CT

3
1 CT

4
1 /T

2
2

The predicted answers become increasingly complicated as n grows. Below we show
the answers in the case r D 3 and nD 7 (formulas for higher n and different r are
available by request to the authors):

g3=7.22111/

D
T 21
�
T 71C2T

6
1CT

5
1 .T2C1/CT

4
1 .2T2C1/C2T

3
1 T2CT

2
1 .T

2
2CT2/CT1T

2
2CT

2
2

�
1CT 21

;

g3=7.2221/D

T 21
�
T 61 T2CT

5
1 .T

2
2CT2�1/CT

4
1 .2T

2
2 �1/CT

3
1 .T

3
2CT

2
2 �T2/

CT 21 .T
3
2 �T

2
2 �T2/�2T1T

2
2C.T

4
2 �T

3
2 �T

2
2 /
�

T 22 T1�1
;
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g3=7.3211/D

T1
�
T 61 .T2C1/CT

5
1 .T

2
2C3T2C1/CT

4
1 .T

3
2C4T

2
2C3T2/

CT 31 .4T
3
2C6T

2
2CT2/CT

2
1 .T 2

4
C5T 32C3T

2
2 /

CT1.2T
4
2C3T

3
2CT

2
2 /CT

4
2

�
.T2C1/.T

2
1CT1C1/

;

g3=7.322/D

T 61 .T
2
2CT2�1/CT

5
1 .T

3
2C2T

2
2 /CT

4
1 .T

4
2C2T

3
2 �T

2
2 �T2/

CT 31 .T
4
2 �T

3
2 �2T

2
2 /CT

2
1 .T

5
2 �2T

3
2 �T

2
2 /�T1T

4
2

T 21 T2�1
;

g3=7.4111/D T
3
1 .T2C1/CT

2
1 T2CT1.T

3
2CT

2
2CT2/CT

3
2 :

Appendix: Combinatorics of HOMFLY homology
by Eugene Gorsky

This appendix relates the combinatorics of the cells in the Hilbert scheme of a plane
curve singularity with one Puiseaux pair to the existing results [35; 36; 23] on the
combinatorics of diagonal harmonics and DAHA representations. This connection
justifies some of the conjectures made in [30], where a relation between .q; t/–Catalan
numbers and torus knot homology was proposed.

As an outcome of this combinatorial study, the authors wrote a computer program
computing the polynomials Palg.T .k; n// for any k and n. These polynomials agree
with all conjectured [2; 14; 21] formulas for the superpolynomials of torus knots. The
output of the program is available by request to the authors.

A.1 Reformulation of Theorem 5

Let us recall the setup of Theorem 5.

One has a semigroup � generated by two coprime integers k and n, a semigroup
ideal i with generators i1; : : : ; ir and syzygies s1; : : : ; sr , and a semigroup ideal
jD i n fi1; : : : img.

Then by Theorem 5 the dimension of the cell in the Hilbert scheme of a curve singularity
with semigroup � labeled by the ideal i equals

N.i/D

rX
aD1

#.�>ian i/�
rX
aD1

#.�>san i/;
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while the dimension of the cell in the nested Hilbert scheme labeled by the pair i� j

equals

N.i� j/D

mX
aD1

#.�>ian i/C
rX

aDmC1

#.�>ian j/�
rX
aD1

#.�>san j/:

Let us relate the values of N.i/ and N.i� j/.

Lemma A.1 The following identity holds:

N.i� j/�N.i/D

rX
aDmC1

mX
bD1

�.ia < ib/�

rX
aD1

mX
bD1

�.sa < ib/:

Proof Note that

N.i� j/�N.i/D

rX
aDmC1

Œ#.�>ian j/� #.�>ian i/��
rX
aD1

Œ#.�>san j/� #.�>san i/�:

It remains to remark that for every x 2 � one has

#.�>xn j/� #.�>xn i/D
mX
aD1

�.x < ia/:

Theorem A.2 Let

ˇb.i/ WD

rX
aD1

�.ia < ib/�

rX
aD1

�.sa < ib/:

Then

(A-1)
rX

mD0

zmq.
m
2/

X
#.inj/Dm

qN.i�j/ D qN.i/
rY
bD1

.1C zqˇb.i//:

Proof Note that, by Lemma A.1,�m
2

�
CN.i� j/

D

mX
aD1

mX
bD1

�.ia < ib/CN.i/C

rX
aDmC1

mX
bD1

�.ia < ib/�

rX
aD1

mX
bD1

�.sa < ib/

DN.i/C

rX
aD1

mX
bD1

�.ia < ib/�

rX
aD1

mX
bD1

�.sa < ib/

DN.i/C

mX
bD1

ˇb.i/;
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therefore
rX

mD0

zmq.
m
2/

X
#.inj/Dm

qN.i�j/ D
X
m

X
b1;:::;bm

zmqN.i/Cˇb1 .i/C���Cˇbm .i/

D qN.i/
rY
bD1

.1C zqˇb.i//:

The geometric meaning of Theorem A.2 is not known to the authors. However, it is
quite useful for the computations with the nested Hilbert scheme.

Definition A.3 Let us call a number x an n–generator of i if x 2 i, but x�n … i.

Lemma A.4 The number ˇb.i/ equals the number of n–generators of i on �ib�k; ib�.

Proof Note that if u is a n–generator of i then there exist a unique .k; n/–generator
ia and a unique syzygy sc such that ia D u� l1k and sc D uC l2k . All elements of
the form ia C lk are n–generators for 0 � l < l1C l2 . Now the statement follows
from the equation

�.ia < ib/��.sa < ib/D

l1Cl2�1X
lD0

�
�.iaC lk < ib/��.iaC .l C 1/k < ib/

�
D

l1Cl2�1X
lD0

�.iaC lk 2 �ib � k; ib�/:

For semigroup ideals i� j let us define l.i/D #.� n i/ and m.i; j/D #.i n j/. Recall
that the following formula is a corollary of Theorem 5:

Palg.T .p; q//D
�
a

q

��.C/�1X
i�j

q2la2mtm
2C2N.i�j/:

Here �.C/D .k� 1/.n� 1/ is the Milnor number of the corresponding singularity.

Applying Theorem A.2, we obtain the following result:

Corollary A.5 We have

(A-2) Palg.T .k; n//D
�
a

q

��.C/�1X
i

q2l.i/t2N.i/
rY

mD1

.1C t2ˇm.i/�1a2/:
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A.2 Compactified Jacobian

In what follows we need some detailed information on the structure of the compactified
Jacobian of a singularity with semigroup �, which will allow us to give a conjectural
reformulation of the results of [49; 51].

Definition A.6 [59] Let � be a 0–normalized �–semimodule, ie 0 2��Z�0 , and
�C� ��. The dimension of � is defined as

dim�D

n�1X
jD0

#.Œaj ; aj C kŒ n�/;

where .0D a0 < a1 < � � �< an�1/ are the n–generators of �.

Theorem A.7 [59] The Jacobi factor of the singularity with semigroup � admits
the natural cell decomposition with affine cells C� . The cells are parametrized by the
0–normalized �–semimodules �, and the dimension of the cell equals dim�.

We will parametrize these cells by certain Young diagrams. Consider the n�k rectangle
R and draw the diagonal from the top-left to the bottom-right corner.

Definition A.8 Let RC � R be the subset consisting of boxes which lie under the
left-top to right-bottom diagonal.

Label the boxes of R and around with integers, so that the shift by 1 up subtracts n,
and the shift by 1 to the right subtracts k . We normalize these numbers so that
kn is in the box .0; 0/ (note that this box is not in the rectangle R , as we start
enumerating boxes from 1). In other words, the numbers are given by the linear
function f .x; y/D kn� kx�ny . One can see that the labels of the boxes of RC are
positive, while all other numbers in R are negative. Moreover, numbers in the boxes
of RC are exactly the numbers from the complement Z�0n�, and each such number
appears only once in RC . In particular, the area of RC is equal to ıD 1

2
.k�1/.n�1/.

Definition A.9 [31] For a 0–normalized �–semimodule �, let D.�/ denote the set
of boxes with labels belonging to � n�.

Definition A.10 [47] Let D be a Young diagram, with c 2D . Let a.c/ and l.c/
denote the lengths of the arm and leg for c . For each real nonnegative x define

hCx .D/D #
�
c 2D

ˇ̌̌ a.c/

l.c/C 1
� x <

a.c/C 1

l.c/

�
:
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The following theorem is the main result of [31].

Theorem A.11 The dimensions of cells can be expressed through the hC statistic:

dimC� D
1
2
.k� 1/.n� 1/� hC

n=k
.D.�//:

Conjecture A.12 One can match the following generating functions for the Hilbert
scheme of points and the compactified Jacobian:

Palg.aD 0; q; t/D
X
i

q2l.i/t2N.i/ D
1

1� q2

X
D

q2jDjC2h
C

n=k
.D/t2jDj;(A-3)

Palg.aD 0; q; t/D
X
D

q2jDjC2h
C

n=k
.D/t2jDj:(A-4)

Remark This conjecture is expected to be the combinatorial counterpart of the gen-
eralized Macdonald formula (5), proved in [49; 51]. Namely, jD.�/j D #.� n�/ is
expected to be related to the perverse filtration on the cohomology of the compactified
Jacobian.

To formulate the analogous conjecture for the nested Hilbert scheme, we have to
define the analogues of ˇ–statistic for the admissible diagrams. Roughly speaking,
we consider the complement to a diagram D as an ideal whose generators correspond
to the SE corners of D and syzygies correspond to the ES corners of D . To get the
corresponding semigroup ideal one has to replace a number x by kn�k�n�x , thus
reversing the order.

Definition A.13 Consider a diagram D corresponding to a semigroup module �.
Let Pm denote the numbers in the SE corners, and Qi denote the numbers in the ES
corners. Then

ˇ.Pm/D
X
i

�.Pi > Pm/�
X
i

�.Qi > Pm/:

Example Consider a semigroup generated by 5 and 6, and a module

�D f0; 1; 2; 5; 6; : : :g:

Its diagram has the form:
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19

14

9

13

8

7 1

2

4

3

–5

–2

–9

–10–4

We have
fPig D f�5;�4; 3; 4g; fQj g D f�10;�9;�2g:

Therefore,

ˇ.�5/D 3� 1D 2; ˇ.�4/D 2� 1D 1; ˇ.3/D 1; ˇ.4/D 0:

Conjecture A.14 One can match the following generating functions for the Hilbert
scheme of points and the compactified Jacobian:

Palg.a; q; t/D
X
i

q2l.i/t2N.i/
rY

mD1

.1C t2ˇm.i/�1a2/(A-5)

D
1C a2t

1� q2

X
D

q2jDjC2h
C

n=k
.D/t2jDj

rY
mD1

.1C a2q�2ˇ.Pm/t /;

Palg.a; q; t/D
X
D

q2jDjC2h
C

n=k
.D/t2jDj

rY
mD1

.1C a2q�2ˇ.Pm/t /:(A-6)

A.3 Comparison of combinatorial statistics

Let us denote the right-hand side of Conjecture A.14 by PDAHA.T .n;mnC 1//. The
bivariate polynomial

C .m/n .q; t/ WDPDAHA.T .n;mnC 1/; aD 0/

was introduced by A Garsia and M Haiman [26] in connection with the conjectures
of [38] on the structure of the module of diagonal harmonics, eventually proved in [39].
In a special case, the polynomials Cn.q; t/ WD C

.1/
n .q; t/ are called the .q; t/–Catalan

numbers.

When .p; q/D .n; nC1/, the statistic hC
.nC1/=n

.D/ is also called dinv.D/. Therefore,
Theorem A.11 can be reformulated for this case as

dim�D D
� n
2

�
� dinv.D/:
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Theorem A.15 [37] The .q; t/–Catalan numbers admit the description

(A-7) Cn.q; t/D
X
D

qdinv.D/t .
n
2/�jDj:

Modulo Conjecture A.12, we obtain the identity

Palg.T .n; nC 1/; aD 0/DPDAHA.T .n; nC 1/; aD 0/:

It has been conjectured in [46] that the analogue of (A-7) holds for the .n;mnC 1/
case:

(A-8) C .m/n .q; t/D
X
D

qh
C

.mnC1/=n
.D/tm.

n
2/�jDj:

Modulo this conjecture and Conjecture A.12, the identity

Palg.T .n;mnC 1/; aD 0/DPDAHA.T .n;mnC 1/; aD 0/

holds as well.

The combinatorial statistics for higher a–levels for the .n; nC 1/ case were proposed
in [23]. For their definition we will use a combinatorial bijection on Dyck paths,
described in [37].

Definition A.16 Let � be an .n; nC1/–semimodule, and let a0; : : : ; an�1 be its
n–generators. Define a Young diagram G.�/ with columns g.a0/; : : : ; g.an�1/.

The following result describes the properties of the map G .

Theorem A.17 [31] The following statements hold in the .n; nC 1/ case:

(1) For any �, the diagram G.�/ is below the diagonal.

(2) The correspondence between � and G.�/ is bijective.

(3) This bijection coincides with the bijection from [37] exchanging dinv and area
statistics with area and bounce statistics.

Remark We conjecture that the map G is bijective in general.

Definition A.18 Let bi Dn�1�i�g.ai / be the number of cells in column i between
the diagram G.�/ and the diagonal.

The following theorem was conjectured in [23] and proved in [36].
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Theorem A.19 [36] We have

PDAHA.T .n; nC 1//D
X
D

qdinv.D/t .
n
2/�jDj

Y
bi>biC1

.1C a2q�bi t /:

Two following lemmas show that this combinatorial formula is equivalent to (A-6).

Lemma A.20 Let ai and aiC1 be two consecutive n–generators of a �–semimodule
� with a diagram D . Then the following statements are equivalent:

bi >biC1 () g.ai /D g.aiC1/ () aiC12� () ai �n is an SE corner of D:

ai �n

ai

ai C 1

Proof Since g.ai /� g.aiC1/, one can check that

bi > biC1 () g.ai /D g.aiC1/:

Let c be the maximal number such that Œai ; c� 2�; suppose that ai < c < aiC1 . Since
c is not a n–generator, c�n 2� implies cC1 2�, a contradiction; therefore c D ai
or c D aiC1 .

In the first case let d be the maximal number such that Œai C 1; d �[�D∅, then

d C 1 2� D) d CnC 1 2� D) g.aiC1/ > g.ai /;

a contradiction; therefore c D aiC1 and Œai ; aiC1���.

Lemma A.21 The following relation holds:

ˇ.ai �n/D bi :

Proof By definition, g.ai /D #.Œai ; ai CnŒ n�/, so

n�g.ai /D #.Œai ; ai CnŒ\�/:

For every j < i there exists a unique element of the form aj C kn on Œai ; ai C n�,
which are not n–generators. The remaining n�1�i�g.ai / elements are n–generators
of �, hence the desired relation follows from Lemma A.4.
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Example Let us return to the example on page 683:

19

14

9

13

8

7 1

2

4

3

–5

–2

–9

–10–4

We showed that

ˇ.�5/D 3� 1D 2; ˇ.�4/D 2� 1D 1; ˇ.3/D 1; ˇ.4/D 0:

The 5–generators corresponding to the internal corners are 0, 1 and 8. Since g.0/D
g.1/D g.2/D 2, the diagram G.�/ looks like

On the diagram G.�/, we count b.0/D 2, b.1/D 1 and b.8/D 1.

Finally, since jDj D 8 and hC6=5 D 10 � jG.D/j D 4, the contribution of this �–
semimodule in (A-6) equals

q24t16.1C a2q�2t /2.1C a2q�4t /:

References
[1] M Abel, M Hogancamp, Categorified Young symmetrizers and stable homology of

torus links, II, Selecta Math. 23 (2017) 1739–1801 MR

[2] M Aganagic, S Shakirov, Knot homology from refined Chern–Simons theory, preprint
(2011) arXiv

Geometry & Topology, Volume 22 (2018)

http://dx.doi.org/10.1007/s00029-017-0336-4
http://dx.doi.org/10.1007/s00029-017-0336-4
http://msp.org/idx/mr/3663594
http://msp.org/idx/arx/1105.5117


688 Alexei Oblomkov, Jacob Rasmussen and Vivek Shende

[3] A B Altman, A Iarrobino, S L Kleiman, Irreducibility of the compactified Jacobian,
from “Real and complex singularities” (P Holm, editor), Sijthoff and Noordhoff, Alphen
aan den Rijn, Netherlands (1977) 1–12 MR

[4] A B Altman, S L Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980)
50–112 MR

[5] V I Arnol’d, S M Guseı̆n-Zade, A N Varchenko, Singularities of differentiable maps,
II, Monographs in Mathematics 83, Birkhäuser, Boston (1988) MR

[6] A A Beı̆linson, J Bernstein, P Deligne, Faisceaux pervers, from “Analysis and topol-
ogy on singular spaces, I”, Astérisque 100, Soc. Math. France, Paris (1982) 5–171
MR

[7] Y Berest, P Etingof, V Ginzburg, Cherednik algebras and differential operators on
quasi-invariants, Duke Math. J. 118 (2003) 279–337 MR

[8] Y Berest, P Etingof, V Ginzburg, Finite-dimensional representations of rational
Cherednik algebras, Int. Math. Res. Not. 2003 (2003) 1053–1088 MR

[9] Y Berest, P Etingof, V Ginzburg, Morita equivalence of Cherednik algebras, J. Reine
Angew. Math. 568 (2004) 81–98 MR

[10] R Bezrukavnikov, P Etingof, Parabolic induction and restriction functors for rational
Cherednik algebras, Selecta Math. 14 (2009) 397–425 MR

[11] W Bruns, J Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathe-
matics 39, Cambridge Univ. Press (1993) MR

[12] D Calaque, B Enriquez, P Etingof, Universal KZB equations: the elliptic case, from
“Algebra, arithmetic, and geometry: in honor of Yu I Manin, I” (Y Tschinkel, Y Zarhin,
editors), Progr. Math. 269, Birkhäuser, Boston (2009) 165–266 MR

[13] E Carlsson, A Mellit, A proof of the shuffle conjecture, preprint (2015) arXiv

[14] I Cherednik, Jones polynomials of torus knots via DAHA, Int. Math. Res. Not. 2013
(2013) 5366–5425 MR

[15] V I Danilov, A G Khovanskii, Newton polyhedra and an algorithm for computing
Hodge–Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 925–945 MR In
Russian; translated in Math. USSR-Izv. 29 (1987) 279-298

[16] P Deligne, Théorie de Hodge, I, from “Actes du Congrès International des Mathémati-
ciens” (M Berger, J Dieudonné, J Leray, J-L Lions, P Malliavin, J-P Serre, editors),
volume 1, Gauthier-Villars, Paris (1971) 425–430 MR

[17] P Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5–57
MR

[18] P Deligne, Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. 44 (1974) 5–77
MR

Geometry & Topology, Volume 22 (2018)

http://msp.org/idx/mr/0498546
http://dx.doi.org/10.1016/0001-8708(80)90043-2
http://msp.org/idx/mr/555258
http://dx.doi.org/10.1007/978-1-4612-3940-6
http://dx.doi.org/10.1007/978-1-4612-3940-6
http://msp.org/idx/mr/966191
https://publications.ias.edu/deligne/paper/396
http://msp.org/idx/mr/751966
http://dx.doi.org/10.1215/S0012-7094-03-11824-4
http://dx.doi.org/10.1215/S0012-7094-03-11824-4
http://msp.org/idx/mr/1980996
http://dx.doi.org/10.1155/S1073792803210205
http://dx.doi.org/10.1155/S1073792803210205
http://msp.org/idx/mr/1961261
http://dx.doi.org/10.1515/crll.2004.020
http://msp.org/idx/mr/2034924
http://dx.doi.org/10.1007/s00029-009-0507-z
http://dx.doi.org/10.1007/s00029-009-0507-z
http://msp.org/idx/mr/2511190
http://msp.org/idx/mr/1251956
http://dx.doi.org/10.1007/978-0-8176-4745-2_5
http://msp.org/idx/mr/2641173
http://msp.org/idx/arx/1508.06239
http://dx.doi.org/10.1093/imrn/rns202
http://msp.org/idx/mr/3142259
http://mi.mathnet.ru/izv1541
http://mi.mathnet.ru/izv1541
http://msp.org/idx/mr/873655
https://doi.org/10.1070/IM1987v029n02ABEH000970
http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0431.0436.ocr.pdf
http://msp.org/idx/mr/0441965
http://dx.doi.org/10.1007/BF02684692
http://msp.org/idx/mr/0498551
http://dx.doi.org/10.1007/BF02685881
http://msp.org/idx/mr/0498552


The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link 689

[19] P Deligne, Poids dans la cohomologie des variétés algébriques, from “Proceedings of
the International Congress of Mathematicians” (R D James, editor), volume 1, Canad.
Math. Congress, Montreal (1975) 79–85 MR

[20] N M Dunfield, S Gukov, J Rasmussen, The superpolynomial for knot homologies,
Experiment. Math. 15 (2006) 129–159 MR

[21] P Dunin-Barkowski, A Mironov, A Morozov, A Sleptsov, A Smirnov, Superpolyno-
mials for torus knots from evolution induced by cut-and-join operators, J. High Energy
Phys. (2013) art. id. 021 MR

[22] A H Durfee, Algebraic varieties which are a disjoint union of subvarieties, from
“Geometry and topology” (C McCrory, T Shifrin, editors), Lecture Notes in Pure and
Appl. Math. 105, Dekker, New York (1987) 99–102 MR

[23] E S Egge, J Haglund, K Killpatrick, D Kremer, A Schröder generalization of
Haglund’s statistic on Catalan paths, Electron. J. Combin. 10 (2003) art. id. R16
MR

[24] B Elias, M Hogancamp, On the computation of torus link homology, preprint (2016)
arXiv

[25] B Fantechi, L Göttsche, D van Straten, Euler number of the compactified Jacobian
and multiplicity of rational curves, J. Algebraic Geom. 8 (1999) 115–133 MR

[26] A M Garsia, M Haiman, A remarkable q; t –Catalan sequence and q–Lagrange in-
version, J. Algebraic Combin. 5 (1996) 191–244 MR

[27] V Ginzburg, N Guay, E Opdam, R Rouquier, On the category O for rational Chered-
nik algebras, Invent. Math. 154 (2003) 617–651 MR

[28] I Gordon, J T Stafford, Rational Cherednik algebras and Hilbert schemes, Adv. Math.
198 (2005) 222–274 MR

[29] I Gordon, J T Stafford, Rational Cherednik algebras and Hilbert schemes, II: Repre-
sentations and sheaves, Duke Math. J. 132 (2006) 73–135 MR

[30] E Gorsky, q; t –Catalan numbers and knot homology, from “Zeta functions in alge-
bra and geometry” (A Campillo, G Cardona, A Melle-Hernández, W Veys, editors),
Contemp. Math. 566, Amer. Math. Soc., Providence, RI (2012) 213–232 MR

[31] E Gorsky, M Mazin, Compactified Jacobians and q; t –Catalan numbers, I, J. Combin.
Theory Ser. A 120 (2013) 49–63 MR

[32] E Gorsky, A Negut,, Refined knot invariants and Hilbert schemes, J. Math. Pures Appl.
104 (2015) 403–435 MR

[33] E Gorsky, A Negut,, J Rasmussen, Flag Hilbert schemes, colored projectors and
Khovanov–Rozansky homology, preprint (2016) arXiv

[34] E Gorsky, A Oblomkov, J Rasmussen, V Shende, Torus knots and the rational
DAHA, Duke Math. J. 163 (2014) 2709–2794 MR

Geometry & Topology, Volume 22 (2018)

http://www.mathunion.org/ICM/ICM1974.1/Main/icm1974.1.0079.0086.ocr.pdf
http://msp.org/idx/mr/0432648
http://projecteuclid.org/euclid.em/1175789736
http://msp.org/idx/mr/2253002
http://dx.doi.org/10.1007/JHEP03(201
http://dx.doi.org/10.1007/JHEP03(201
http://msp.org/idx/mr/3046744
http://msp.org/idx/mr/873286
http://www.combinatorics.org/Volume_10/Abstracts/v10i1r16.html
http://www.combinatorics.org/Volume_10/Abstracts/v10i1r16.html
http://msp.org/idx/mr/1975766
http://msp.org/idx/arx/1603.00407
http://msp.org/idx/mr/1658220
http://dx.doi.org/10.1023/A:1022476211638
http://dx.doi.org/10.1023/A:1022476211638
http://msp.org/idx/mr/1394305
http://dx.doi.org/10.1007/s00222-003-0313-8
http://dx.doi.org/10.1007/s00222-003-0313-8
http://msp.org/idx/mr/2018786
http://dx.doi.org/10.1016/j.aim.2004.12.005
http://msp.org/idx/mr/2183255
http://dx.doi.org/10.1215/S0012-7094-06-13213-1
http://dx.doi.org/10.1215/S0012-7094-06-13213-1
http://msp.org/idx/mr/2219255
http://dx.doi.org/10.1090/conm/566/11222
http://msp.org/idx/mr/2858925
http://dx.doi.org/10.1016/j.jcta.2012.07.002
http://msp.org/idx/mr/2971696
http://dx.doi.org/10.1016/j.matpur.2015.03.003
http://msp.org/idx/mr/3383172
http://msp.org/idx/arx/1608.07308
http://dx.doi.org/10.1215/00127094-2827126
http://dx.doi.org/10.1215/00127094-2827126
http://msp.org/idx/mr/3273582


690 Alexei Oblomkov, Jacob Rasmussen and Vivek Shende

[35] J Haglund, Conjectured statistics for the q; t –Catalan numbers, Adv. Math. 175 (2003)
319–334 MR

[36] J Haglund, A proof of the q; t –Schröder conjecture, Int. Math. Res. Not. 2004 (2004)
525–560 MR

[37] J Haglund, The q ,t –Catalan numbers and the space of diagonal harmonics, University
Lecture Series 41, Amer. Math. Soc., Providence, RI (2008) MR

[38] M D Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic
Combin. 3 (1994) 17–76 MR

[39] M Haiman, Vanishing theorems and character formulas for the Hilbert scheme of
points in the plane, Invent. Math. 149 (2002) 371–407 MR

[40] R Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J.
Math. Kyoto Univ. 26 (1986) 375–386 MR

[41] M Hogancamp, Categorified Young symmetrizers and stable homology of torus links,
preprint (2015) arXiv

[42] M Hogancamp, Khovanov–Rozansky homology and higher Catalan sequences,
preprint (2017) arXiv

[43] T Kálmán, Meridian twisting of closed braids and the Homfly polynomial, Math. Proc.
Cambridge Philos. Soc. 146 (2009) 649–660 MR

[44] M Khovanov, Triply-graded link homology and Hochschild homology of Soergel
bimodules, Internat. J. Math. 18 (2007) 869–885 MR

[45] M Khovanov, L Rozansky, Matrix factorizations and link homology, II, Geom. Topol.
12 (2008) 1387–1425 MR

[46] N A Loehr, Conjectured statistics for the higher q; t –Catalan sequences, Electron. J.
Combin. 12 (2005) art. id. R9 MR

[47] N A Loehr, G S Warrington, A continuous family of partition statistics equidistributed
with length, J. Combin. Theory Ser. A 116 (2009) 379–403 MR

[48] I G Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962) 319–343
MR

[49] D Maulik, Z Yun, Macdonald formula for curves with planar singularities, J. Reine
Angew. Math. 694 (2014) 27–48 MR

[50] A Mellit, Toric braids and .m; n/–parking functions, preprint (2016) arXiv

[51] L Migliorini, V Shende, A support theorem for Hilbert schemes of planar curves, J.
Eur. Math. Soc. 15 (2013) 2353–2367 MR

[52] J Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies
61, Princeton Univ. Press (1968) MR

[53] B C Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes
Études Sci. 111 (2010) 1–169 MR

Geometry & Topology, Volume 22 (2018)

http://dx.doi.org/10.1016/S0001-8708(02)00061-0
http://msp.org/idx/mr/1972636
http://dx.doi.org/10.1155/S1073792804132509
http://msp.org/idx/mr/2038776
http://msp.org/idx/mr/2371044
http://dx.doi.org/10.1023/A:1022450120589
http://msp.org/idx/mr/1256101
http://dx.doi.org/10.1007/s002220200219
http://dx.doi.org/10.1007/s002220200219
http://msp.org/idx/mr/1918676
http://dx.doi.org/10.1215/kjm/1250520873
http://msp.org/idx/mr/857224
http://msp.org/idx/arx/1505.08148
http://msp.org/idx/arx/1704.01562
http://dx.doi.org/10.1017/S0305004108002016
http://msp.org/idx/mr/2496349
http://dx.doi.org/10.1142/S0129167X07004400
http://dx.doi.org/10.1142/S0129167X07004400
http://msp.org/idx/mr/2339573
http://dx.doi.org/10.2140/gt.2008.12.1387
http://msp.org/idx/mr/2421131
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r9.html
http://msp.org/idx/mr/2134172
http://dx.doi.org/10.1016/j.jcta.2008.07.001
http://dx.doi.org/10.1016/j.jcta.2008.07.001
http://msp.org/idx/mr/2475023
http://dx.doi.org/10.1016/0040-9383(62)90019-8
http://msp.org/idx/mr/0151460
http://dx.doi.org/10.1515/crelle-2012-0093
http://msp.org/idx/mr/3259038
http://msp.org/idx/arx/1604.07456
http://dx.doi.org/10.4171/JEMS/423
http://msp.org/idx/mr/3120745
http://msp.org/idx/mr/0239612
http://dx.doi.org/10.1007/s10240-010-0026-7
http://msp.org/idx/mr/2653248


The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link 691

[54] A Oblomkov, L Rozansky, Knot homology and sheaves on the Hilbert scheme of
points on the plane, preprint (2016) arXiv

[55] A Oblomkov, L Rozansky, Affine braid group, JM elements and knot homology,
preprint (2017) arXiv

[56] A Oblomkov, V Shende, The Hilbert scheme of a plane curve singularity and the
HOMFLY polynomial of its link, Duke Math. J. 161 (2012) 1277–1303 MR

[57] A Oblomkov, Z Yun, Geometric representations of graded and rational Cherednik
algebras, Adv. Math. 292 (2016) 601–706 MR

[58] R Pandharipande, R P Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc.
23 (2010) 267–297 MR

[59] J Piontkowski, Topology of the compactified Jacobians of singular curves, Math. Z.
255 (2007) 195–226 MR

[60] J Rasmussen, Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19
(2015) 3031–3104 MR
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