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Long-time behavior of 3–dimensional Ricci flow
B: Evolution of the minimal area of simplicial complexes

under Ricci flow

RICHARD H BAMLER

In this second part of a series of papers on the long-time behavior of Ricci flows
with surgery, we establish a bound on the evolution of the infimal area of simplicial
complexes inside a 3–manifold under the Ricci flow. This estimate generalizes an
area estimate of Hamilton, which we will recall in the first part of the paper.

We remark that in this paper we will mostly be dealing with nonsingular Ricci flows.
The existence of surgeries will not play an important role.

49Q05, 53C44; 57M20

1 Introduction and statement of the results

Consider a closed 3–manifold M with �2.M/D 0, a finite 2–dimensional simplicial
complex V (see Definition 3.1 below for details), possibly with boundary, and a
continuous map f0W V !M such that f0 restricted to each edge of @V is a smooth
immersion. Suppose that .gt /t2ŒT1;T2� , T1 > 0 is a Ricci flow (ie @tgt D�2Ricgt )
on M such that scalt � � 3

2t
for all t 2 ŒT1; T2�. For every t 2 ŒT1; T2� let

At .f0/ WD inffareat f 0 W f 0 ' f0 relative to @V g

be the infimum over the time-t areas of all maps f 0W V !M that are homotopic to f0
relative to @V . By this we mean that there is a continuous maps H W V � Œ0; 1�!M

such that H. � ; 0/ D f0 , H. � ; 1/ D f 0 and H. � ; s/ D f0 on @V for all s 2 Œ0; 1�.
Then the main result of this paper is that in the forward barrier sense1

(1-1) d

dtC
At .f0/�

3

4t
At .f0/CCt ;

1If hW Œa; b/! R is a function, t0 2 Œa; b/ and c 2 R , then we say that dh.t/=dtCjt0 � c in the
forward barrier sense if for any ı > 0 the inequality h.t/� h.t0/C .cC ı/.t � t0/ holds on an interval
of the form Œt0; t0C �t0;ı / .
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where Ct is a time-dependent constant that only depends on the topology of V and
the geometry of f0j@V with respect to the metric gt in a controlled way. We refer
to Proposition 5.5 for more details. In Bamler [D], the result of this paper will be
applied to simplicial complexes V and maps f0 as constructed in Bamler [C] to prove
a conjecture of Perelman.

Consider for a moment the case in which V is a compact surface, possibly with
boundary. In this case the estimate (1-1) is known, or at least folklore. It follows from
an argument due to Hamilton (see [3, Section 11]), which makes use of the fact that
for every time t 2 ŒT1; T2� we can choose a time-t minimal map ft W V !M whose
area is equal to At .f0/. The argument also makes use of the Gauss–Codazzi equations
and the Gauss–Bonnet theorem. So for example, in the case in which V is closed, the
constant Ct becomes �2��.V /, where �.V / denotes the Euler characteristic of V .
We remark that even in the surface case Hamilton’s argument is not quite sufficient for
our particular setting, since we cannot exclude the existence of branch points, ie we
cannot guarantee that the minimal map ft is an immersion. This issue can however
be overcome as we demonstrate in Proposition 2.2 below, where we will establish the
case in which V is a disk.

Consider the general case in which V is a simplicial complex. An inspection of the
arguments described in the previous paragraph shows that if the existence of an area-
minimizing map ft W V !M is guaranteed, then all of Hamilton’s estimates can be
carried out. Here we have to make use of the Euler–Lagrange equations for ft along
the edges of V , which state that around every edge the faces meet in directions that
add up to zero. This additional set of equations implies that certain boundary integrals
arising in the application of Gauss–Bonnet cancel each other out.

Unfortunately, an existence and regularity theory for such minimizers ft does not exist
to the author’s knowledge and seems to be difficult to achieve. We note that, however,
if we allow the combinatorial structure of V to vary, then a result of Choe [1] — which
relies heavily on this fact — states: for every Riemannian metric g on M , there is
a finite, 2–dimensional simplicial complex Vg and a smooth, minimal embedding
fg W Vg !M such that the complement of fg.Vg/ is a topological ball. Such embed-
dings would be interesting in the final part [D] of our series, but it seems to be difficult
to control the number of vertices of Vg and this number influences the bound Ct in
the area evolution estimate of At .f0/. In fact, it is very likely that there are metrics
g1; g2; : : : on M for which the number of vertices of the corresponding minimal
simplicial complex Vgk diverges.
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In order to get around this issue, we will employ the following trick. Instead of looking
for a minimizer of the area functional, we will find a minimizer of the perturbed
functional

(1-2) f 7! areaf C�`.f jV .1//:

Here �>0 is a small constant, `.f jV .1// denotes the sum of the lengths of f restricted
to all edges of V and f W V !M is any map that is homotopic to f0 . The existence
and regularity of a minimizer for the perturbed functional follows now easily (apart
from some issues arising from possible self-intersections of the 1–skeleton). However,
the extra term �`.f jV .1// introduces an extra term in the Euler–Lagrange equations
along each edge of V and hence the boundary integrals in the evolution estimate for
the minimum of this perturbed functional will not cancel each other out, but add up
to a new term. Luckily, it will turn out that this term has the right sign to derive an
evolution estimate similar to (1-1). Now, letting � go to 0, we obtain the desired
evolution estimate for At .f0/.

This paper is organized as follows. In Section 2 we present Hamilton’s area estimate for
spheres (see Proposition 2.1) and for disks (see Proposition 2.2). Both of these estimates
will be needed in [D]. For spheres, Hamilton’s argument is straightforward and the
computations in this case exhibit the idea underlying the subsequent area estimates very
clearly. For disks, an issue arises due to possible branch points, which can be resolved
by a trick. In Section 3 we define simplicial complexes and Section 4 contains the
existence and regularity discussion for maps from simplicial complexes that minimize
the perturbed area functional (1-2). The results of this section will then be used in
Section 5 to derive the infimal area evolution estimate for simplicial complexes, ie
the bound (1-1). Proposition 5.5 in that section will be our main result. We note that
Sections 3–5 are independent of Section 2.

Most results in this paper will be phrased in terms of Ricci flows with surgery and
precise cutoff M as introduced in [A]. The reason for this is that we want to apply
these results without change in [D]. However, the possible existence of surgeries is
inessential and does not create any issues. For the purposes of this paper it is only
important to be familiar with properties (1) and (5) of the definition of Ricci flows
with surgery and precise cutoff (see [A, Definition 2.11]). Property (1) ensures that we
have the bound sect � � 3

2t
for all times t , and property (5) implies that areas cannot

increase by a trivial surgery. Specifically, this property implies that for every surgery
time T whose surgeries are all trivial and every � > 0 there is some t� < T such that
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for all t 2 .t�; T / there is a .1C�/–Lipschitz map �WM.t/!M.T / that is equal
to the identity on the part of the manifold that is not affected by the surgery process
at time T . We will be able to conclude from this property that quantities of the type
At .f0/ are lower semicontinuous in time.

We refer to the introduction of [0] for acknowledgements and historical remarks.

2 Area evolution of spheres and disks

In this subsection we recall area estimates for minimal spheres and disks under Ricci
flow. They were first developed by Hamilton [3, Section 11]. The estimates needed in
this series of papers are however slightly different from those of Hamilton, which is
why we have decided to carry out their proofs.

The first proposition gives us an area estimate for 2–spheres and will be used in the
proof of [D, Proposition 4.5] to show that after some time, all time slices in a Ricci
flow with surgery are irreducible and all subsequent surgeries are trivial.

Proposition 2.1 Let M be a (3–dimensional) Ricci flow with surgery and precise
cutoff and closed time slices, defined on the time interval ŒT1; T2� with 0 < T1 < T2 .
Assume that the surgeries are all trivial and that �2.M.t// 6D 0 for all t 2 ŒT1; T2�. For
every time t 2 ŒT1; T2� denote by A.t/ the infimum of the areas of all homotopically
nontrivial immersed 2–spheres. Then the quantity

t1=4.t�1A.t/C 16�/

is monotonically nonincreasing on ŒT1; T2�. Moreover,

T2 <
�
1C

1

16�
T �11 A.T1/

�4
T1:

Proof Compare also with [9, Lemmas 18.10 and 18.11]. Let t0 2 ŒT1; T2/. By
[13] and either [2] or [8], there is a noncontractible, conformal, minimal immersion
f W S2!M.t0/ with areat0 f D areaS2 f

�.g.t0//D A.t0/. We remark that, using
the methods in the proof of Proposition 2.2 below, it is enough to assume that f is only
smooth. Call † D f .S2/ �M.t/. Then † is either a 2–sphere or an RP 2 with a
finite number of self-intersections. We can estimate the infinitesimal change of the area
of † (we count the area twice if † is an RP 2 ) while we vary the metric in positive
time direction (and keep f constant!). Using the t�10 –positivity of the curvature on

Geometry & Topology, Volume 22 (2018)



Long-time behavior of 3–dimensional Ricci flow, B 849

M.t0/, the fact that the interior sectional curvatures are not larger than the ambient
ones as well as Gauss–Bonnet, we conclude

d

dtC

ˇ̌̌
tDt0

areat .†/D�
Z
†

trt0.Rict0 jT†/ dvolt0

D�
1

2

Z
†

scalt0 dvolt0 �
Z
†

secM.t0/
t0

.T†/ dvolt0

�
3

4t0
areat0.†/�

Z
†

sec† dvolt0

�
3

4t0
areat0.†/� 2��.†/D

3

4t0
A.t0/� 4�:

Here, secM.t0/
t0

.T†/ denotes the ambient sectional curvature of M.t0/ tangential
to † and sec†t0 denotes the interior sectional curvature of †. We conclude from this
calculation that d

�
t1=4.t�1A.t/C16�/

�
=dtCjtDt0 � 0 in the barrier sense and, hence,

the quantity t1=4.t�1A.t/C 16�/ is monotonically nonincreasing in t away from the
singular times.

We will now show that A.t/ is lower semicontinuous. We can restrict ourselves to the
case in which t0 is a surgery time. Let tk % t0 be a sequence converging to t0 and
choose minimal 2–spheres †k �M.tk/ with areatk †k D A.tk/. By property (5) of
[A, Definition 2.11], we find diffeomorphisms �k WM.tk/!M.t0/ that are .1C�k/–
Lipschitz for �k! 0. So A.t0/� lim infk!1.1C�k/2A.tk/D lim infk!1A.tk/.

The lower semicontinuity implies that t1=4.t�1A.t/C 16�/ is monotonically nonin-
creasing on ŒT1; T2�. The bound on T2 follows from the fact that A.T2/ > 0.

In the next proposition we estimate the area evolution of minimal disks that are bounded
by a given loop of controlled geodesic curvature. This fact will be used in the main part
of the proof of [0, Theorem 1.1], which can be found in [D], to exclude the long-time
existence of short contractible loops, as asserted in [D, Proposition 4.4]. Note that in
contrast to Hamilton’s setting, we cannot exclude the existence of branch points at the
boundary of these disks. This difference creates some analytical difficulties.

Proposition 2.2 Let M be a (3–dimensional) Ricci flow with surgery and precise
cutoff and closed time slices, defined on the time interval ŒT1; T2� with T2 > T1 > 0.
Assume that all surgeries of M are trivial.

Let 
t �M.t/ be a time-dependent embedded, disjoint loop in M.t/ that does not hit
surgery times and is stationary in time (ie between two surgery times 
t to a fixed loop).
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Assume moreover that 
t is contractible in M.t/ for all t 2 ŒT1; T2� and denote by
A.t/ the infimum of the areas of all smooth maps f W D2!M.t/ whose restriction to
@D2 D S1 parametrizes the loop 
t .

Assume that there are constants �; a > 0 such that, for all t 2 ŒT1; T2�,

(i) the geodesic curvatures along 
t satisfy the bound j�
t ;t j< �t
�1=2 ,

(ii) the length of 
t satisfies the bound `.
t / < at�1=2 .

Then the quantity
t1=4.t�1A.t/C 4.2� � a�//

is nonincreasing on ŒT1; T2�.

In particular, if a� < 2� , then

T2 <

�
1C

T �11 A.T1/

4.2� � a�/

�4
T1:

Proof Let t0 2 ŒT1; T2�. By [10] we find a time-t0 area-minimizing continuous map
f W D2!M.t0/ that is smooth on IntD2 and whose restriction to the boundary @D2

parametrizes 
t0 . Moreover, f is almost conformal and harmonic on IntD2 and we
have A.t0/D areaf �.g.t0//. Next, we use [6] to conclude that f is even smooth up
to the boundary and an immersion away from finitely many branch points.

Analogously to in the proof of Proposition 2.1, we can carry out the first part of the
computation of the infinitesimal change of the area of f as we vary the metric only:

(2-1) d

dt

ˇ̌̌
tDt0

areaf �.g.t//D�
Z
D2

trf �.RicM.t0/
t0

/

�
3

4t0
A.t0/�

Z
D2

secM.t0/.df / dvolf �.g.t0//;

where secM.t0/.df / denotes the sectional curvature in the normalized tangential direc-
tion of f . Observe that the last integrand is a continuous function on D2 since the
volume form vanishes wherever this tangential sectional curvature is not defined.

In order to avoid issues arising from possible branch points (especially on the boundary
of D2 ), we employ the following trick (inspired by [12]): Let " > 0 be a small
constant and consider the flat Riemannian disk .D" D D2; "2geucl/. The identity
map h"W D2!D" is a conformal and harmonic diffeomorphism and hence the map
f" D .f; h"/W D

2 !M.t0/�D" is a conformal and harmonic embedding. Denote
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its image by †" D f".D
2/. Since the sectional curvatures on the target manifold

M.t0/�D" arise from pulling back the sectional curvatures on M.t0/ via the projection
onto the first factor, we have

(2-2) lim
"!0

Z
†"

secM.t0/�D".T†"/ dvolt0 D
Z
D2

secM.t0/.df / dvolf �.g.t0//:

We can now proceed as in the proof of Proposition 2.1, using the fact that the interior
sectional curvatures of †" are not larger than the corresponding ambient ones as well
as the Gauss–Bonnet theorem:

(2-3)
Z
†"

secM.t0/�D".T†"/ dvolt0 �
Z
†"

sec†".T†"/ dvolt0

D 2��.†"/C

Z
@†"

�
†"
@†";t0

dst0 :

Here �†"
@†";t0

denotes the intrinsic geodesic curvature of @†";t0 within †";t0 . Note that
�.†"/D �.D

2/D 1.

We now estimate the last integral. Let 
t0;"W S
1.lt0;"/! @†" for i D 1; : : : ; m be a

unit-speed parametrization of the boundary of †" . Denote by 
M.t0/
t0;"

.s/ its component
function in M.t0/ and by 
D"t0;".s/ that in D" . Furthermore, let �t0;".s/ be the outward-
pointing unit-normal field along 
t0;".s/ that is tangent to †" . As before, denote by
�
M.t0/
t0;"

.s/ and �D"t0;".s/ the components in the direction of M.t0/ and D" , respectively.
Note that

(2-4) 0D h
 0t0;".s/; �t0;".s/i D
˝
.


M.t0/
t0;"

/0.s/; �
M.t0/
t0;"

.s/
˛
C
˝
.

D"
t0;"
/0.s/; �

D"
t0;"
.s/
˛
:

Since f is conformal, we obtain that˝
.


M.t0/
t0;"

/0.s/; �
M.t0/
t0;"

.s/
˛
D
˝
df ..


D"
t0;"
/0.s//; df .�

D"
t0;"
.s//

˛
D �t0;".s/

˝
.

D"
t0;"
/0.s/; �

D"
t0;"
.s/
˛

for some �t0;".s/ � 0. So the first summand on the right-hand side of (2-4) is a
nonnegative multiple of the second summand. So these summands cannot have opposite
signs and hence

(2-5)
˝
.


M.t0/
t0;"

/0.s/; �
M.t0/
t0;"

.s/
˛
D
˝
.

D"
t0;"
/0.s/; �

D"
t0;"
.s/
˛
D 0:

Now note that 
M.t0/
t0;"

is a parametrization of 
t0 whose geodesic curvature is bounded
by �t�10 . Moreover, the geodesic curvature of 
D"t0;" is equal to "�1 . Denote the
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geodesic curvature of 
t0 in M.t0/ at any p 2 
t0 by �
t0 ;t0.p/. Using (2-5), we
conclude that

(2-6)
Z
@†"

�
†"
@†";t0

dst0 D�

Z lt0;"

0

D
D

ds

�
d

ds


M.t0/
t0;"

.s/
�
; �

M.t0/
t0;"

.s/
E
ds

�

Z lt0;"

0

D
D

ds

�
d

ds


D"
t0;"
.s/
�
; �
D"
t0;"
.s/
E
ds

D

Z lt0;"

0

˝
�
t0 ;t0.


M.t0/
t0;"

.s//; �
M.t0/
t0;"

.s/
˛
j.


M.t0/
t0;"

/0.s/j2 ds

C

Z lt0;"

0

"�1j.

D"
t0;"
/0.s/j2

"2geucl
j�
D"
t0;"
.s/j"2geucl

ds:

As indicated, the norms of the vectors in the last integral are taken with respect
to "2geucl .

We now analyze the first integral on the right-hand side of (2-6) by substituting


M.t0/
t0;"

W S1.lt0;"/! 
t0 by a unit speed parametrization z
t0 W S
1.lt0/! 
t0 , where

lt0 D `.
t0/. In doing this, we have to replace s by .

M.t0/
t0;"

/�1.z
t0.s//, where
.


M.t0/
t0;"

/�1W 
t0 ! S1 denotes the inverse map of 
M.t0/
t0;"

. Moreover, the length
element ds changes by a factor of j.
M.t0/

t0;"
/0.s/j�1 . So we obtain

(2-7)
Z lt0;"

0

˝
�
t0 ;t0.


M.t0/
t0;"

.s//; �
M.t0/
t0;"

.s/
˛
j.


M.t0/
t0;"

/0.s/j2 ds

D

Z lt0

0

˝
�
t0 ;t0.z
t0.s//; �

M.t0/
t0;"

�
.


M.t0/
t0;"

/�1.z
t0.s//
�˛

�
ˇ̌
.


M.t0/
t0;"

/0
�
.

D"
t0;"
/�1.z
t0.s//

�ˇ̌
ds:

Next, we estimate the last integral in (2-6) by substituting the map 
D"t0;"W @D
2! @D2

by the identity. Similarly to before, we have to replace s by .
D"t0;"/
�1.s/, where

.
D"t0;"/
�1W @D2! @D2 denotes the inverse map of 
D"t0;" , and change ds by a factor of

j.
D"t0;"/
0.s/j�1geucl . Additionally, using the fact that the norm of �D"t0;".s/ with respect to

the metric "2geucl is bounded by 1, we obtain

(2-8)
Z lt0;"

0

"�1j.

D"
t0;"
/0.s/j2

"2geucl
j�
D"
t0;"
.s/j"2geucl

ds

� "

Z lt0;"

0

j.

D"
t0;"
/0.s/j2geucl

ds

D

Z
@D2

ˇ̌
.

D"
t0;"
/0..


D"
t0;"
/�1.s//

ˇ̌
"2geucl

ds:
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Now we let "! 0. Observe that, away from the branch points of f ,

lim
"!0

�
M.t0/
t0;"

..

M.t0/
t0;"

/�1.s//D �
f
t0
.s/;

where �ft0 is the outward-pointing unit normal vector field along 
t0 that is tangential
to f . Moreover, away from the branch points of f ,

lim
"!0

ˇ̌
.


M.t0/
t0;"

/0..

D"
t0;"
/�1.s//

ˇ̌
D 1; lim

"!0

ˇ̌
.

D"
t0;"
/0..


D"
t0;"
/�1.s//

ˇ̌
"2geucl

D 0:

So, using (2-6), (2-7) and (2-8) gives us

(2-9) lim
"!0

Z
@†"

�
†"
@†";t0

dst0 D

Z

t0

h�
t0 ;t0.s/; �
f
t0
.s/i dst0 ���t

�1=2
0 `.
t0/>�a�:

Combining this with (2-1), (2-2) and (2-3) yields

d

dt

ˇ̌̌
tDt0

areaf �.g.t//� 3

4t0
A.t0/� 2� C a�:

So, in the barrier sense,

d

dtC

ˇ̌̌
tDt0

A.t/�
3

4t0
A.t0/� 2� C a�:

Thus,
d

dtC
Œt1=4.t�1A.t/C 4.2� � a�//�� 0:

Analogously to in the proof of Proposition 2.1, we conclude that A.t/ is lower semi-
continuous. The desired monotonicity follows now immediately. The bound on T2
follows again from the fact that A.T2/ > 0.

3 Simplicial complexes

We briefly recall the notion of simplicial complexes, which will be used throughout
the whole paper. Note that in the following we will only be interested in simplicial
complexes that are 2–dimensional, pure and locally finite. For brevity we will always
implicitly assume these properties when referring to the term “simplicial complex”.

Definition 3.1 (simplicial complex) A 2–dimensional simplicial complex V is a
topological space that is the union of embedded, closed 2–simplices (triangles), 1–
simplices (intervals) and 0–simplices (points) such that any two distinct simplices are
either disjoint or their intersection is equal to another simplex whose dimension is
strictly smaller than the maximal dimension of both simplices. V is called finite if the
number of these simplices is finite.
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In this paper, we assume V moreover to be locally finite and pure. The first property
demands that every simplex of V is contained in only finitely many other simplices
and the second property states that every 0– or 1–dimensional simplex is contained
in a 2–simplex. We will also assume that all 2– and 1–simplices are equipped with
differentiable parametrizations that are compatible with respect to restriction.

We will often refer to the 2–simplices of V as faces, the 1–simplices as edges and
the 0–simplices as vertices. The 1–skeleton V .1/ is the union of all edges and the
0–skeleton V .0/ is the union of all vertices of V . The valency of an edge E � V .1/

denotes the number of adjacent faces, ie the number of 2–simplices that contain E .
The boundary @V is the union of all edges of valency 1.

We will also use the following notion for maps from simplicial complexes into mani-
folds.

Definition 3.2 (piecewise smooth map) Let V be a simplicial complex, M an
arbitrary differentiable manifold (not necessarily 3–dimensional) and f W V !M a
continuous map. We call f piecewise smooth if f restricted to the interior of each
face of V is smooth and bounded in W 1;2 and if f restricted to each edge E � V .1/

is smooth away from finitely many points.

Given a Riemannian metric g on M and a sufficiently regular map f W V !M (eg
piecewise smooth) we define its area, area.f /, to be the sum of area.f jIntF / over all
faces F � V and the length of the 1–skeleton `.f jV .1// to be the sum of the lengths
`.f jE / over all edges E � V .1/ .

4 Existence of minimizers of simplicial complexes

4.1 Introduction and overview

In this section .M; g/ will always be a compact Riemannian manifold (not necessarily
3–dimensional) with �2.M/D 0. We will also fix the following notation: for every
continuous contractible loop 
 W S1!M we denote by A.
/ the infimum over the
areas of all continuous maps f W D2!M that are continuously differentiable on the
interior of D2 , bounded in W 1;2 and for which f j@D2 D 
 .

Consider a finite simplicial complex V as well as a continuous map f0W V ! M

such that f0j@V is a smooth embedding. The goal of this section is motivated by the
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question of finding an area-minimizer within the same homotopy class of f0 , ie a map
f W V !M that is homotopic to f0W V !M relative to @V and whose area is equal
to

A.f0/ WD inffareaf 0 W f 0 ' f0 relative to @V g:

(Here the maps f 0W V !M are assumed to be continuous and continuously differen-
tiable when restricted to V nV .1/ and V .1/ as well as bounded in W 1;2 when restricted
to each face of V .) This problem, however, seems to be very difficult, since it is not
clear how to control eg the length of the 1–skeleta of a sequence of minimizers.

To get around these analytical issues, we instead seek to minimize the quantity
area.f /C `.f jV .1//. Here `.f jV .1// denotes the sum of the lengths of all edges
of V under f . It will turn out that this change has no negative effect when we apply
our results to the Ricci flow in Section 5. To summarize, we are looking for maps
f W V !M that are homotopic to f0 relative to @V and for which area.f /C`.f jV .1//
is equal (or close) to

A.1/.f0/ WD inffarea.f 0/C `.f 0jV 1/ W f
0
' f0 relative to @V g:

We will be able to show that such a minimizer exists in a certain sense. More specifically,
we will find a map f W V .1/!M of regularity C 1;1 on the 1–skeleton that can be
extended onto V to a minimizing sequence for A.1/ . This implies that the sum of
A.f j@F / over all faces F �V plus `.f / is equal to A.1/.f0/. So the existence problem
for f is reduced to solving the Plateau problem for each loop f j@F . The only difficulty
that we may encounter then is that f j@F might a priori have (finitely or infinitely many)
self-intersections. Unfortunately, taking this possibility into account makes several
arguments quite tedious and might obscure the main idea in a forest of details.

The second goal of this section (see Section 4.4) is to understand the geometry of a
minimizer along the 1–skeleton. In the case in which f W V .1/!M is injective, our
findings can be presented as follows. In this case we can solve the Plateau problem for
the loop f j@F for each face F � V and extend f W V .1/!M to a map f W V !M

that is smooth on V nV .1/ and C 1;1 on V .1/ and C 1;˛ on every (closed) face away
from the vertices. Consider and edge E � V .1/ n @V of valency vE and denote
by �W E! TM the geodesic curvature (defined almost everywhere) of f jE and let
�
.1/
E ; : : : ; �

.vE/
E W E ! TM be unit vector fields that are normal to f jE and outward

pointing tangential to f restricted to those faces F � V that are adjacent to E . A
simple variational argument will then yield the identities

(4-1) �
.1/
E C � � �C �

.vE/
E D �E and h�

.1/
E C � � �C �

.vE/
E ; �E i � 0:
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This set of equalities and inequalities is the second main result of this section and
some time is spent on expressing these identities in the case in which the loops f j@F
are allowed to have self-intersections. We remark that in the case in which f jV .1/ is
injective this equality and a bootstrap argument can be used to show that f is actually
smooth on each (closed) face away from V .0/ .

Observe that in general it might happen that two or more edges are mapped to the
same segment under f (this could also happen for subsegments of these edges or
for subsegments of one and the same edge). It would then become necessary to take
the sum over all faces that are adjacent to either of these edges on the left-hand side
of (4-1) and a multiple of �E on the right-hand side of the equation in (4-1). These
combinatorics become even more involved by the fact that, at least a priori, f j@F can
for example intersect in a subset of empty interior but positive measure.

All important results of this section will be summarized in Proposition 4.11.

4.2 Construction and regularity of the map on the 1–skeleton

Consider again the given continuous map f0W V !M for which f0j@V is a smooth
embedding and let f1; f2; : : : W V !M be a minimizing sequence for A.1/.f0/. More
specifically, we want each fk to be continuous and homotopic to f0 relative to @V ,
continuously differentiable when restricted to V nV .1/ and V .1/ as well as bounded
in W 1;2 when restricted to each face and

lim
k!1

.area.fk/C `.fkjV .1///D A
.1/.f0/:

By compactness of M we may assume that, after passing to a subsequence, fkjV .0/
converges pointwise. Next, observe that every edge E � V .1/ is equipped with
a standard parametrization by an interval Œ0; 1� (see Definition 3.1). We can then
reparametrize each fk such that for every edge E � V .1/ the restriction fkjE is
parametrized by constant speed. Since `.fkjE / is uniformly bounded, we can pass
to another subsequence such that fK jE converges uniformly. So we may assume that
fkjV .1/ converges uniformly to a Lipschitz map f W V .1/!M and that `.f jV .1//�
lim infk!1 `.fkjV .1//. It is our first goal to derive regularity results for f . Before
doing this we characterize the map f , so that we can forget about the sequence fk .

Lemma 4.1 The map f is homotopic to f0jV .1/ relative to @V and is parametrized
by constant speed, and if F1; : : : ; Fn are the faces of V , then

A.f j@F1/C � � �CA.f j@Fn/C `.f /D A
.1/.f0/:
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Moreover, for every continuous map f 0W V .1/ ! M that is homotopic to f0jV .1/

relative to @V we have

A.f 0j@F1/C � � �CA.f
0
j@Fn/C `.f

0/� A.1/.f0/:

Proof The fact that f is homotopic to f0jV .1/ relative to @V follows from the uniform
convergence.

For every face Fj consider the boundary loop f j@Fj W @Fj � S
1 ! M which is a

Lipschitz map. Recall that the loops fkj@Fj converge uniformly to f j@Fj . So, using
the exponential map and assuming that k is large enough, we can find a homotopy
Hk W @Fj � Œ0; 1�!M between fkj@Fj and f j@Fj that is Lipschitz on @Fj � Œ0; 1�
and smooth on @Fj � .0; 1/ and whose area goes to 0 as k !1. Gluing Hk to-
gether with fkjFj W Fj !M and mollifying around the seam yields a continuous map
f �
j;k
W Fj ! M that is smooth on IntFj such that f �

j;k
j@Fj D f j@Fj and such that

areaf �j;k � areafkjFj goes to 0 as k!1 (here we are using the fact that fkjFj is
bounded in W 1;2 ). Hence A.f j@Fj /� lim infk!1 areafkjFj and we obtain

A.f j@F1/C � � �CA.f j@Fn/C `.f /

� lim inf
k!1

�
area.fkj@F1/C � � �C area.fkj@Fn/C `.fkjV .1//

�
D A.1/.f0/:

For the reverse inequality it remains to establish the last statement of the claim. This
will then also imply that limk!1 `.fkj@V .1//D `.f / and hence that f is parametrized
by constant speed.

Consider a continuous and rectifiable map f 0W V .1/!M that is homotopic to f0jV .1/
relative to @V . We can find smoothings f 0

k
W V .1/!M of f 0 such that f 0

k
converges

uniformly to f 0 and limk!1 `.f 0k/D `.f
0/. Now, for every face Fj , we can again

find a homotopy H 0
j;k
W @Fj �Œ0; 1�!M of small area between f 0j@Fj and f 0

k
j@Fj and

by another gluing argument, we can construct continuous maps f 00
j;k
W Fj !M with

f 00
j;k
j@Fj D f

0
k
j@Fj that are smooth on IntFj such that limk!1 areaf 00

j;k
DA.f 0j@Fj /.

Hence, we can extend each f 0
k
W V .1/!M to a map f 00

k
W V !M of the right regularity

such that

A.f 0j@F1/C � � �CA.f
0
j@Fn/C `.f

0/D lim
k!1

�
area.f 00k /C `.f

00
k jV .1//

�
� A.1/.f0/:

This proves the desired result.

We also need the following isoperimetric inequality:
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Lemma 4.2 Let 
 W S1!Rn be a rectifiable loop such that 
 restricted to the lower
semicircle of S1 parametrizes an interval on the x1–axis x2 D � � � D xn D 0 and

 restricted to the upper semicircle has length l . Denote by a the maximum of the
euclidean norm of the .x2; : : : ; xn/ component of all points on 
 (ie the maximal
distance from the x1–axis). Then A.
/� la .

Proof Let x
 W Œ0; l�! Rn be a parametrization by arclength of 
 restricted to the
upper semicircle of S1 . Let 0 D s0 < s2 < � � � < sm D l be a subdivision of the
interval Œ0; l�. Let yi be the x1–coordinate of x
.si / and �i a straight segment between
x
.si / and .yi ; 0; : : : ; 0/ for each i D 0; : : : ; m. For each i D 1; : : : ; m, let x
i be the
loop that consists of x
 jŒsi�1;si � , �i�1 , �i and the interval between .yi�1; 0; : : : ; 0/
and .yi ; 0; : : : ; 0/. We set A�.s0; : : : ; sm/D A.
1/C � � �CA.
m/.

Let i 2 f1; : : : ; m� 1g. We claim that if we remove si from the list of subdivisions,
then the value of A�.s0; : : : ; sm/ does not increase. In fact, if yi�1 � yi � yiC1 or
yi�1 � yi � yiC1 , then this is claim is true since any two maps hi ; hiC1W D2!M

that restrict to 
i and 
iC1 on S1 can be glued together along �i . On the other hand,
if yi�1 � yiC1 � yi , then hi and hiC1 can be glued together along the union of �i
with the interval between .yiC1; 0; : : : ; 0/ and .yi ; 0; : : : ; 0/. The other cases follow
analogously. Multiple application of this finding yields A.
/� A�.s0; : : : ; sm/.

Now let 
 0i be the loop that consists of the straight segment between x
.si�1/ and x
.si /,
the segments �i�1 and �i , and the interval between .yi�1; 0; : : : ; 0/ and .yi ; 0; : : : ; 0/.
Moreover, let 
 00i be the loop that consists of the straight segment between x
.si�1/
and x
.si / and the curve x
 jŒsi�1;si � . Then, by the isoperimetric inequality and some
basic geometry,

A.
i /� A.

0
i /CA.


00
i /� a`.x
 jŒsi�1;si �/CC.`.x
 jŒsi�1;si �//

2:

Adding up this inequality for all i D 1; : : : ; m yields

A.
/� A�.s0; : : : ; sm/� al C

mX
iD1

C.`.x
 jŒsi�1;si �//
2:

The right-hand side converges to 0 as the mesh size of the subdivisions approaches
zero.

The following lemma is our main regularity result:

Lemma 4.3 The map f W V .1/!M has regularity C 1;1 on every edge E � V .1/ .
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Proof Let E � V 1 be an edge and equip E with a smooth parametrization of
an interval such that f jE is parametrized by constant speed. We now establish
the regularity of the map fE D f jE W E ! M up to the endpoints of E . Assume
`.f jE / > 0, since otherwise we are done. After scaling the interval by which E is
parametrized, we may assume without loss of generality that fE is parametrized by
arclength, ie that

`.fE jŒs1;s2�/D s2� s1 for every interval Œs1; s2��E:

Let " > 0 be smaller than the injectivity radius of M and observe that, whenever
we choose exponential coordinates .y1; : : : ; yn/ around a point p 2M , under these
coordinates we have the following comparison with the euclidean metric geucl :

(4-2) jg�geuclj< C1r
2

for some uniform constant C1 (here r denotes the radial distance from p ). Assume
moreover that " is chosen small enough such that g is 2–bilipschitz to geucl .

Consider three parameters s1; s2; s3 2 E such that s1 < s2 < s3 < s1C 1
10
". We set

xi D fE .si /, l D js3� s1j D `.fE jŒs1;s3�/ as well as d D dist.x1; x3/ and we denote
by 
 a minimizing geodesic segment between x1 and x3 . Consider now the competitor
map f 0 that agrees with f on .V .1/ nE/[ .E n .s1; s2// and that maps the interval
Œs1; s3� to the segment 
 .

Let us first bound the area gain for such a competitor. Denote by 
�W S1!M the loop
that consists of the curves fE jŒs1;s3� and 
 . Choose geodesic coordinates .y1; : : : ; yn/
around x1 such that 
 can be parametrized by .t; 0; : : : ; 0/ and denote by a the
maximum of the euclidean norm of the .y2; : : : ; yn/–component of fE on Œs1; s3�.
By Lemma 4.2 we have

A.
�/� 8la:

(Recall that g is 2–bilipschitz to the euclidean metric.) Let F1; : : : ; Fv be the faces
that are adjacent to E . Then for each j D 1; : : : ; v we have

A.f 0j@Fj /� A.f j@Fj /CA.

�/� A.f j@Fj /C 8la:

Moreover, `.f 0/� `.f /� l C d . So, by the inequality of Lemma 4.1, we obtain

(4-3) l � d � 8v � la:

Now let l 0 be the length of the segment parametrized by fE jŒs1;s3� with respect to
the euclidean metric geucl in the coordinate system .y1; : : : ; yn/. Then 1

2
l 0 � l � 2l 0 .
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Moreover, we obtain the following improved bound on l 0 using (4-2):

l D

Z s3

s1

p
g.f 0E .s/; f

0
E .s// ds �

Z s3

s1

p
.1�C1.l

0/2/geucl.f
0
E .s/; f

0
E .s// ds

�

p
1� 4C1l2 l

0:

By basic trigonometric estimates with respect to the euclidean metric in the coordinate
system .y1; : : : ; yn/ we obtain

d2C 4a2 � .l 0/2:

So

(4-4) .1� 4C1l
2/.d2C 4a2/� l2:

Plugging in (4-3) yields, with c D 1
4
v�2 ,

.1� 4C1l
2/.l2d2C c.l � d/2/� l4:

And hence, for l < 1
4
C
�1=2
1 ,

1
2
c.l � d/2 � l2.l � d/.l C d/C 4C1l

4d2 � 2l3.l � d/C 4C1l
6:

This inequality implies that if l �d � l3 , then 1
2
c.l �d/� 2l3C 4C1l

3 . So in either
case (if l � d � l3 or if l � d < l3 ) there is a universal constant C2 such that

(4-5) l � d � C2l
3:

In particular, if l is smaller than some uniform constant, then

1
2
d � l � 2d:

We will in the following always assume that this bound holds whenever we compare
the intrinsic and extrinsic distance between two close points on fE .

Next, we plug (4-5) back into (4-4) and obtain a bound on a for small l :

a �

s
.l � d/.l C d/C 4C1l2d2

4.1� 4C1l2/
�

p
C2l3 � 2l C 4C1l2d2 � C3l

2

for some uniform constant C3 . Now consider the point x2 on fE .Œs1; s3�/, set l1 D
`.fE jŒs1;s2�/ and let ˛ � 0 be the angle between the geodesic segment 
 from x1

to x3 and the geodesic segment 
1 from x1 to x2 . Observe that the angle ˛ between

 and 
1 is the same with respect to both g and geucl . Moreover, by our previous
conclusion applied to x1 and x2 instead of x1 and x3 , the length of 
1 is bounded
from below by 1

2
l1 . So by basic trigonometry we find that there are uniform constants
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"0 > 0 and C4 <1 such that

(4-6) ˛ � C4l if l1 � 1
2
l and l < "0:

We can now establish the differentiability of fE . Let s; s0; s00 2 E be such that
s < s0 < s00 < s C "0 , set x D fE .s/, x0 D fE .s0/ and x00 D fE .s00/, and choose
minimizing geodesic segments 
 0 between x and x0 and 
 00 between x and x00 . Let
˛ � 0 be the angle between 
 0 and 
 00 at x . For each i � 1 for which sC 2�i 2 E
we set xi D fE .sC 2�i / and we choose a minimizing geodesic segment 
i between
x and xi . Choose, moreover, indices i 0 � i 00 � 1 such that 2�i

0

� s0� s < 2�i
0C1 and

2�i
00

� s00� s < 2�i
00C1 . Then, by (4-6),

˛ �^x.
 00; 
i 00/C^x.
i 00 ; 
i 00C1/C � � �C^x.
i 0�2; 
i 0�1/C^x.
i 0�1; 
 0/

� C4.s
00
� s/CC42

�i 00
CC42

�i 00�1
C � � �

� C4.s
00
� s/C 2C42

�i 00
� 3C4.s

00
� s/:

Note also that by (4-5) the quotients `.
 0/=.s0� s/ and `.
 00/=.s00� s/ converge to 1
as s00! s . Altogether, this shows that the right-derivative of fE exists, has unit length
and that

(4-7) ^x
�
d

dsC
fE .s/; 


00
�
� 3C4.s

00
� s/:

The existence of the left-derivative together with the analogous inequality follows in the
same way. In order to show that the right- and left-derivatives agree in the interior of E ,
it suffices to show for any s 2 IntE , that the angle at fE .s/ between the geodesic
segments to fE .s�s0/ and fE .sCs0/ goes to � as s0! 0. This follows immediately
from (4-6) and the fact that the sum of the angles of small triangles in M goes to � as
the circumference goes to 0.

Finally, we establish the Lipschitz continuity of the derivative f 0E .s/. Let s1; s3 2E
be such that s1 < s3 < s1C "0 and let s2 D 1

2
.s1C s3/ be the midpoint on fE . Let 


and 
1 be defined as before and let 
3 be the geodesic segment between x2 D fE .s2/
and x3 D fE .s3/. Using (4-2) we find that if we choose geodesic coordinates around
x1 or x3 , then we can compare angles at different points on fE .Œs1; s3�/ up to an error
of O.js3� s1j2/. So we can estimate, using (4-6) and (4-7),

^.f 0E .s1/; f
0
E .s3//

�^.f 0E .s1/; 
1/C^.
1; 
/C^.
; 
3/C^.
3; f 0E .s3//CO.js3� s1j
2/

� 3C4js2� s1jC 2C4js3� s1jC 3C4js3� s2jCO.js3� s1j
2/� C5js3� s1j

for some uniform constant C5 . This finishes the proof.
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Now if for every face F � V the map f j@F is injective (ie an embedding in a
proper parametrization), then by solving the Plateau problem for each face (see [10])
we obtain an extension Qf W V ! M of f that is homotopic to f0 and for which
area Qf C `. Qf jV .1// D A.1/.f0/. So in this case the existence of the minimizer is
ensured. In general, however, we need take into account the possibility that f j@F has
self-intersections. Note that there might be infinitely many such self-intersections and
the set of self-intersections might even have positive 1–dimensional Hausdorff measure.
This adds some technicalities to our discussion.

4.3 Results on self-intersections and the Plateau problem

The following lemma states that two intersecting curves agree up to order 2 almost
everywhere on their set of intersection.

Lemma 4.4 Let 
 W Œ0; l�!M be a curve of regularity C 1;1 that is parametrized by
arclength. Then the geodesic curvature along 
 is defined almost everywhere, that is,
there is a vector field �W Œ0; l�! TM along 
 , ie �.s/ 2 T
.s/M for all s 2 Œ0; l�, and
a null set N � Œ0; l� such that at each s 2 Œ0; l� nN the curve 
 is twice differentiable
and the geodesic curvature at s equals �.s/.

Consider now two such curves 
1W Œ0; l1�!M and 
2W Œ0; l2�!M with geodesic
curvature vector fields �1 and �2 . Assume additionally that 
1 and 
2 are injective
embeddings that are contained in a coordinate chart .U; .x1; : : : ; xn// in such a way
that there is a vector v 2Rn with the property that h
 0i .s/; vi ¤ 0 with respect to the
euclidean metric for all s 2 Œ0; li � and i D 1; 2.

Let X1 D fs 2 Œ0; l1� W 
1.s/ 2 
2.Œ0; l2�/g and X2 D fs 2 Œ0; l2� W 
2.s/ 2 
1.Œ0; l1�/g
be the parameter sets of self-intersections. Then there is a continuously differentiable
map 'W Œ0; l1�! R whose derivative vanishes nowhere such that '.X1/ D X2 and
such that 
1.s/D 
2.'.s// whenever s 2X1 . Moreover, there are null sets Ni �Xi
such that '.N1/ D N2 and such that for all s 2 X1 n N1 we have '0.s/ D ˙1,

 01.s/D 


0
2.'.s//'

0.s/ and �1.s/D �2.'.s//.

Proof The first statement follows from the fact that a Lipschitz function is differen-
tiable almost everywhere. Observe that the geodesic curvature can be computed in
terms of the first and second derivatives of the curve in a local coordinate system.

Let 'W Œ0; l1�! R be the composition of the projection s 7! h
1.s/; viRn with the
inverse of the projection s 7! h
2.s/; viRn (the scalar product h � ; � iRn is taken in the
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coordinates .x1; : : : ; xn/). Then, by definition, '.X1/ D X2 and 
1.s/ D 
2.'.s//
whenever s 2X1 . Moreover, '0.s/¤ 0 for all s 2 Œ0; l1�.

Next, let N 0i � Œ0; li � be the null sets from the first part outside of which �i is equal
to the geodesic curvature of 
i . Let, moreover, N �1 � X1 be the set of isolated
points of Xi . Note that N �1 is a null set. We now claim that the lemma holds for
N1 D X1 \ .N

0
1 [ '

�1.N 02/[N
�
1 / and N2 D X2 \ .'.N1/[N 02/. The sets N1 and

N2 are null sets. Now let s 2X1 nN1 . Observe that, for s0 close to s , we have


1.s
0/D 
1.s/C .s

0
� s/
 01.s/C

1
2
.s0� s/2�1.s/C o..s

0
� s/2/:

Similarly, for every s00 close to '.s/,


2.s
00/D 
1.s/C .s

00
�'.s//
 02.'.s//C

1
2
.s00�'.s//2�2.'.s//C o

�
.s00�'.s//2

�
:

Since s …N �1 , there is a sequence of parameters s0
k
! s with s0

k
¤ s and sk 2X1 such

that, with s00
k
D'.s00

k
/, we have 
1.s0k/D 
2.s

00
k
/. Since ' is continuously differentiable,

s00k �'.s/D '
0.s/.s0k � s/C o.s

0
k � s/:

So we obtain from the expansions for 
1 and 
2 that

.s0k � s/

0
1.s/C o.s

0
k � s/D 
1.s

0
k/� 
1.s/

D 
2.s
00
k/� 
2.'.s//D '

0.s/.s0k � s/

0
2.'.s//C o.s

0
k � s/:

This implies that 
 01.s/D 

0
2.'.s//'

0.s/, and '0.s/D˙1 follows from the fact that
j
 01.s/j D j


0
2.s/j D 1.

Next, consider the metric h � ; � i
1.s/ at the point 
1.s/. Use this metric to pair the
expansions for 
1 and 
2 with an arbitrary vector v� 2Rn that is orthogonal to 
 01.s/
and hence also to 
 02.'.s// (with respect to h � ; � i
1.s/ ). Then

1
2
.s0k�s/

2
h�1.s/; v

�
i
1.s/Co..s

0
k�s/

2/D h
1.s
0
k/�
1.s/; v

�
i
1.s/

D h
2.s
00
k/�
1.s/; v

�
i
1.s/

D
1
2
.s0k�s/

2
h�2.'.s//; v

�
i
1.s/Co..s

0
k�s/

2/:

So h�1.s/; v�i
1.s/ D h�2.'.s//; v
�i
1.s/ . Since �1.s/ and �2.'.s// are orthogonal

to 
 01.s/ with respect to h � ; � i
1.s/ , we conclude that �1.s/D �2.'.s//.

In the remainder of this subsection, we state the solution of the Plateau problem for
loops with (possibly infinitely many) self-intersections. We will hereby always make
use of the following terminology:
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Definition 4.5 Let 
 W S1!M be a continuous and contractible loop. A continuous
map f W D2!M is called a solution to the Plateau problem for 
 if f is smooth,
harmonic and almost conformal on the interior of D2 , and if areaf DA.
/ and there
is an orientation-preserving homeomorphism 'W S1! S1 such that f jS1 D 
 ı' .

We will also need a variation of the Douglas-type condition.

Definition 4.6 (Douglas-type condition) Let 
 W S1!M be a piecewise C 1 immer-
sion that is contractible in M . We say that 
 satisfies the Douglas-type condition if for
any distinct pair of parameters s; t 2 S1 with s ¤ t and 
.s/D 
.t/, the following
is true: Consider the loops 
1 and 
2 that arise from restricting 
 to the arcs of S1

between s and t . Then
A.
/ < A.
1/CA.
2/:

We can now state a slightly more general solution of the Plateau problem.

Proposition 4.7 Consider a loop 
 W S1!M that is a piecewise C 1–immersion and
that is contractible in M . Assume first that 
 satisfies the Douglas-type condition.
Then the following holds:

(a) There is a solution f W D2!M to the Plateau problem for 
 .

(b) If 
 has regularity C 1;1 on U \ S1 for some open subset U � D2 then for
every ˛ < 1 the map f (from assertion (a)) locally has regularity C 1;˛ on U .
Moreover, the restriction f jS1 has nonvanishing derivative on U \ S1 away
from finitely many branch points.

Similarly, if 
 has regularity Cm;˛ for some m� 2 and ˛ 2 .0; 1/ on U \S1 ,
then f locally has regularity Cm;˛ on U .

(c) Assume that 
k W S1 ! M is a sequence of continuous maps that uniformly
converge to 
 . Moreover, assume that each 
k is C –Lipschitz for some uniform
C < 1. Consider solutions to the Plateau problem fk W D

2 ! M for each
such 
k . Then there are conformal maps  k W D2 ! D2 such that the maps
fk ı k W D

2!M subconverge uniformly on D2 and smoothly on IntD2 to a
map f W D2!M that solves the Plateau problem for 
 .

Furthermore, if 
 has regularity C 1;1 on U \S1 for some open subset U �D2

and 
k locally converges to 
 on U \S1 in the C 1;˛ sense for some ˛ 2 .0; 1/,
then the sequence fk actually converges to f on U in the C 1;˛

0

sense for every
˛0 < ˛ .
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Next assume that 
 does not necessarily satisfy the Douglas-type condition and let
p be the number of places where 
 is not differentiable (ie where the right- and left-
derivatives don’t agree). Then there are finitely or countably infinitely many loops

1; 
2; : : : W S

1!M that are piecewise C 1–immersions and contractible in M such
that:

(d) The loops 
i satisfy the Douglas-type condition.

(e) Each 
i is composed of finitely many subsegments of 
 in such a way that each
such subsegment of 
 is used at most once for the entire sequence 
1; 
2; : : : .

(f) For each i let pi be the number of places where 
i is not differentiable. Then
pi D 2 for all but finitely many i andX

i

.pi � 2/� p� 2:

(g) We have
A.
/D

X
i

A.
i /:

(h) For any set of solutions f1; f2; : : : W D2 ! M to the Plateau problems for

1; 
2; : : : and every ı > 0 there is a map fı W D2 !M and an open subset
Dı �D

2 such that the following holds: fı jS1 D 
 and fı restricted to each
connected component of Dı is a diffeomorphic reparametrization of some fi
restricted to an open subset of D2 in such a way that every i is used for at most
one component of Dı . Moreover,

areafı jD2nDı < ı and areafı < A.
/C ı:

Proof We first prove the first part of assertion (c). Since 
k uniformly converges to 

and the curves are uniformly Lipschitz, we can find maps Hk W S1 � Œ0; 1�!M that
are C 0–Lipschitz for some uniform C 0 <1, smooth on S1 � .0; 1/ and that satisfy
Hk. � ; 0/D 
 , Hk. � ; 1/D 
k and limk!1 areaHk D 0 (compare with the proof of
Lemma 4.1). So

lim
k!1

areafk D lim
k!1

A.
k/D A.
/:

Next, recall that there are orientation-preserving homeomorphisms 'k W S1! S1 such
that fkjS1 D 
k ı'k . Let s1; s2; s3 2 S1 be three pairwise distinct points and choose
orientation-preserving conformal maps  k W D2! D2 such that  k.si / D '�1k .si /

for all i D 1; 2; 3 and k D 1; 2; : : : . Then each map fk ı k is still a solution to the
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Plateau problem for 
k and .fk ı k/jS1 D 
k ı'k ı k . So we may replace fk by
fk ı k and 'k by 'k ı k and assume in the following, without loss of generality,
that 'k.si /D si for each i D 1; 2; 3 and k D 1; 2; : : : .

By compactness and since the maps 'k are monotone (ie 'k restricted to the arcs
between s1 , s2 and s3 is monotone), we may pass to a subsequence and assume that the
'k converge pointwise to some monotone map 'W S1!S1 with '.si /D si . We claim
that ' is continuous. Assume not. Then there is a point s0 2 S1 such that the left and
right limits t� D lims%s0 '.s/ and tC D lims&s0 '.s/ at s0 don’t agree, ie t� ¤ tC .
If 
.t�/¤ 
.tC/, then we can derive a contradiction as in [11, Lemma 9.3.2]. Note
that, due to almost conformality of fk , its energy satisfiesZ

IntD2
jdfkj

2
D 2 areafk D 2A.
k/:

It remains to consider the case 
.t�/ D 
.tC/. An inspection of the arguments of
[11, Lemma 9.3.2] shows that we can still derive a contradiction under the following
assumption: there are constants d; ı > 0 such that, for any 0 < " < ı and sufficiently
large k (depending on "), any embedded smooth curve � W Œ0; 1�!D2 that connects a
point in Œs0� ı; s0� "� with a point in Œs0C "; s0C ı� (in S1 ) satisfies `.fk ı�/� d .

We will now assume that this assumption does not hold. That is, for any d; ı >0 there is
an 0 < "< ı and a sequence �k W Œ0; 1�!D2 of embedded smooth curves that connect
a point in Œs0� ı; s0� "� with a point in Œs0C "; s0C ı� such that `.fk ı �k/ < d for
infinitely many k . Note that, since 'k! ' pointwise and ' is monotone, we can find
for any � > 0 a ı > 0 such that, for any 0 < " < ı and sufficiently large k (depending
on "), we have jt��'k.s/j< � for all s 2 Œs0� ı; s0� "� and jtC�'k.s/j< � for all
s 2 Œs0C "; s0C ı�. Combining these two facts, we can pass to a subsequence and find
a sequence of embedded smooth curves �k W Œ0; 1�!D2 whose endpoints lie in S1

such that �k.0/; �k.1/! s0 , 'k.�k.0//! t� , 'k.�k.1//! tC and

lim
k!1

`.fk ı �k/D 0:

We will now argue that such a scenario contradicts the Douglas-type condition for 
 . Let
x
1; x
2W S

1!M be the loops arising from restricting 
 to the arcs a1; a2�S1 between
t� and tC . For every k let D1;k and D2;k be the closures of the two components of
D2 n �k.Œ0; 1�/, so that for each i D 1; 2, the arc 'k.@Di;k \ @D2/ contains more and
more points of ai as k!1. For each i D 1; 2 and k D 1; 2; : : : we can combine
fkjDi;k with Hk restricted to the subset .@Di;k\@D2/� Œ0; 1�� @D2� Œ0; 1�, mollify
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around the seam and obtain a continuous map f 0
i;k
W D2!M whose restriction to the

interior is smooth and bounded in W 1;2 and such that

(4-8) lim
k!1

.areaf 0i;k �fkjDi;k /D 0:

Moreover, f 0
i;k
j@D2 describes the loop that is the concatenation of 
 j'k.@Di;k\@D2/ ,

fk ı �k and two curves corresponding to Hk restricted to the two radial lines of
.@Di;k\@D

2/� Œ0; 1�, whose lengths go to 0 as k!1. So f 0
i;k
j@D2 can be obtained

from x
i by attaching a loop of length lk ! 0 along a subsegment and deleting the
overlap. Using the isoperimetric inequality and (4-8), it follows that, for some uniform
C 00 <1,

A.x
i /� lim inf
k!1

.areaf 0i;kCCl
2
k /D lim inf

k!1
areafkjDi;k :

Letting k!1 yields

A.
1/CA.
2/� lim inf
k!1

.areafkjD1;k C areafkjD2;k /D lim
k!1

areafk D A.
/;

which contradicts the Douglas-type condition.

Summarizing our findings, we have shown that 'W S1! S1 is continuous. Since '
is monotone and '.si /D si for i D 1; 2; 3, we deduce that ' is also surjective and
has mapping degree 1. Moreover, by the monotonicity of the 'k , we obtain that the
convergence 'k! ' is actually uniform. So fkjS1 converges uniformly to 
 ı' . The
subconvergence of the fk to a harmonic and conformal f W D2!M with f jS1D
ı'
now follows as in the proof of [11, Theorem 9.4.3]. Note that in this proof, the sequence
“zn” coming from [11, Lemma 9.4.8] can be chosen to be the sequence fk and [11,
Theorem 9.4.2] is redundant, since the fk are already energy-minimizing. The fact that

 may have self-intersections does not create any issues, since it was only used in the
proof of [11, Lemma 9.4.8]. In order to finish the proof of the first part of assertion (c),
it only remains to show that ' is injective, ie that ' cannot be constant on a nonempty,
open arc a � S1 . Assume that such an arc a existed and choose p 2M such that
fpg D f .a/D 
.'.a//. Let 
�W .�1; 1/!M be any smooth, embedded curve with

.0/D p and choose an open U �D2 such that p 2 U \ @D2 � a . Using [6], we
obtain that f must be constant on U , which is a contradiction.

Next, we prove assertion (a) using the first part of assertion (c). By perturbing 
 , we
can find a sequence of smooth embeddings 
k W S1!M that are uniformly Lipschitz
and that uniformly converge to 
 . Using [11, Theorem 9.4.3] (see also [10]), there
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is a solution fk W D2!M to the Plateau problem for each 
k . By the first part of
assertion (c), we can pass to a limit and obtain a solution to the Plateau problem for 
 .

The proof of assertion (b) in the case in which 
 is C 2 on U \S1 can be found in [6].
We remark that in the case in which 
 is only C 1;1 on U \S1 and g is locally flat
on U , assertion (b) is a consequence of [7]. For our purposes, however, it is enough
to note that the methods of the proof of [6] carry over to the case in which 
 is only
C 1;1 on U \ S1 . We briefly point out how this can be done: The first step in [6]
consists of the choice of a local coordinate system .x1; : : : ; xn/ in which 
 is locally
mapped to the xn–axis. For the subsequent estimates, this coordinate system has to be
of class C 2 . In the case in which 
 is only C 1;1 on U \S1 , we can choose a sequence
of coordinate systems .xk1 ; : : : ; x

k
n / that are uniformly bounded in the C 2 sense, and

that converge to a coordinate system .x11 ; : : : ; x
1
n / of regularity C 1;1 in every C 1;˛

norm and in this coordinate system 
 is locally mapped to the xn–axis. The minimal
surface equation in the coordinate system .xk1 ; : : : ; x

k
n / implies an equation of the form

j4ykj �ˇjrykj2 for ykD .xk1 ; : : : ; x
k
n�1/ıf , where ˇ can be chosen independently

of k . Moreover, yk restricted to U \S1 converges to 0 in every C 1;˛ norm as k!1.
Let U 000 b U 00 b U 0 b U be arbitrary compactly contained open subsets. A closer
look at the proof of the “Hilfssatz” in [5] yields that for every r > 0 we have the
estimate jykj< Cr on U 0\ .D2.1� r/ nD2.1� 2r// if k is large depending on r .
Here C is independent of k . It thus follows that kykkC1.U 00\D2.1�r// < C for every
r > 0 and large k . This implies ky1kC1.U 00/ < C and hence kykkC1.U 00/ < 2C for
large k . Standard elliptic estimates applied to the equation j4ykj< 4ˇC 2 then yield
that kykkC1;˛.U 000/ <C

0 for large k . The regularity of xkn ıf and the fact that branch
points are isolated also follow similarly to in [6].

The second part of assertion (c) follows in a similar manner. We just need to choose the
local coordinate systems .xk1 ; : : : ; x

k
n / so that both .xk1 ; : : : ; x

k
n /ı
 and .xk1 ; : : : ; x

k
n /ı
k

locally converge to the xn–axis in the C 1;˛ sense.

Now consider the case in which 
 does not satisfy the Douglas-type condition. Then
the remaining assertions follow from the methods of Hass [4]. For completeness, we
briefly recall his proof.

We will inductively construct a (finite or infinite) sequence of straight segments
�1; �2; : : :�D

2 between pairs of points s; t 2 S1 with 
.s/D 
.t/ such that any two
distinct segments don’t intersect in their interior and such that the following holds for
all k � 0: Consider the (unique) extension 
k W S1[�1[ � � � [�k!M of the map 

that is constant on each �i . Then the sum A.
kj@�/ over all connected components
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� � IntD2 n .�1 [ � � � [ �k/ is equal to A.
/. (Note that every such component is
bounded by some of the �i and some arcs of S1 .)

Having constructed segments �1; : : : ; �k , we will choose �kC1 as follows: Consider
all components � � IntD2 n .�1 [ � � � [ �k/ such that 
kj@� does not satisfy the
Douglas-type condition (or, to be precise, such that the loop that is composed of the
restriction of 
 to S1\@� does not satisfy the Douglas-type condition). If there is no
such �, then we are done. Otherwise we pick an � for which `.
 jS1\@�/ is maximal.
By our assumption, we can find a straight segment � �D2 connecting two distinct
parameters s; t 2 S1\ @� such that, if we denote by �0 and �00 the two components
of � n � 0 , then

(4-9) A.
kj@�/D A.
kj@�0/CA.
kj@�00/:

So if we choose �kC1 D � for any such � , then the extension


kC1W S
1
[ �1[ � � � [ �kC1!M

still satisfies the same assumption as above. Now pick � amongst all such straight seg-
ments such that minf`.
 jS1\@�0/; `.
 jS1\@�00/g is larger than 1

2
times the supremum

of this quantity over all such � and set �kC1 D � .

Having constructed the sequence �1; �2; : : : , we let X � D2 be the closure of
�1 [ �2 [ � � � and we let 
X W S1 [X !M be the direct limit of all extensions 
k .
Then all components �� IntD2 nX are bounded by finitely many straight segments
and arcs of S1 . We now show that A.
/ is equal to the sum of A.
X j@�/ over
all such components: Let �1; : : : ; �N be arbitrary, pairwise distinct components of
IntD2nX . Then there is a k0 such that for all k >k0 these components lie in different
components �1;k; : : : ; �N;k of IntD2 n .�1 [ � � � [ �k/. Moreover, �j;k ! �j as
k !1. So limk!1A.
X j@�j;k / D A.
X j@�j / for each j D 1; : : : ; N . Since the
choice of the �j was arbitrary, this shows that the sum of A.
X j@�/ over all connected
components �� IntD2 nX is not larger than A.
/. The other direction follows from
the subadditivity of A applied to a large but finite number of components of IntD2 nX
along with an isoperimetric estimate bounding the area of the remaining components.

Next we show that, for each component � � IntD2 nX , the loop 
X j@� satisfies
the Douglas-type condition. If not, then we could separate � into two nonempty
components �0 and �00 along a straight line � between two parameters s; t 2 S1

for which 
.s/D 
.t/ so that (4-9) holds for 
X instead of 
k . Choose a sequence
�k � IntD2 n .�1 [ � � � [ �k/ such that �1 � �2 � � � � and such that �k ! � as
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k!1. Let, moreover, �0
k

and �00
k

be the components of �k n� such that �0
k
!�0

and �00
k
! �00 . Then limk!1A.
kj@�k / D A.
X j@�/ and limk!1A.
kj@�0

k
/ D

A.
X j@�0/ and limk!1A.
kj@�00
k
/D A.
X j@�00/. Moreover, for all k � 1,

A.
1j@�01
/CA.
1j@�001

/�A.
kj@�0
k
/CA.
kj@.�01n�

0
k
//CA.
kj@�00

k
/CA.
kj@.�001n�

00
k
//

DA.
kj@�0
k
/CA.
kj@�00

k
/CA.
kj@.�1n�k//

DA.
kj@�0
k
/CA.
kj@�00

k
/CA.
kj@�1/�A.
kj@�k /:

Letting k!1 yields

A.
1j@�01
/CA.
1j@�001

/� A.
1j@�1/:

Since the opposite inequality is trivially true, we must have equality. This, however,
yields a contradiction, because by our construction of the sequence �1; �2; : : : we must
have picked � earlier and hence �k D � for some k .

Assertions (d), (e) and (g) are direct consequences of the construction. By the fact that

 is a piecewise immersion, we can deduce that all but finitely many components of
�� IntD2 nX are bounded by exactly two straight segments and two arcs. Assertion
(f) follows by counting edges and vertices. Finally, the functions fı of assertion (h)
can be constructed by parametrizing the solutions fi by the corresponding component
of IntD2 nX and mollifying.

The following variational property is a direct consequence of assertion (h) and will be
used twice in this paper.

Lemma 4.8 Consider a contractible, piecewise C 1–immersion 
 W S1!M , let 
i be
the loops from the second part of Proposition 4.7 and consider solutions fi W D2!M

to the Plateau problem for each 
i . Let .gt /t2Œ0;"/ be a smooth family of Riemannian
metrics such that g0 D g (not necessarily a Ricci flow) and denote by At .
/ the
infimum over the areas of all spanning disks with respect to the metric gt . Then, in the
barrier sense,

d

dtC

ˇ̌̌
tD0

At .
/�
X
i

Z
D2

d

dt

ˇ̌̌
tD0

dvolf �
i
.gt /

(Here dvolf �
i
.gt / denotes the volume form of the pull-back metric f �i .gt /.)

Proof Due to the smoothness of the family .gt /, we can find a constant C <1 such
that for any two vectors v;w 2 TM based at the same point and every t 2

�
0; 1
2
"
�

we
have

jgt .v; w/�g0.v; w/� t@tg0.v; w/j � Ct
2
jvj0jwj0:
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Now let ı >0 be a small constant and consider the map fı W D2!M from Proposition
4.7(h). It follows that there is a constant C 0 <1 which is independent of ı and such
that, for small t ,ˇ̌̌̌

areat fı � area0 fı � t
Z
D2

d

dt

ˇ̌̌
tD0

dvolf �
ı
.gt /

ˇ̌̌̌
� C 0t2 area0 fı :

So we find that

At .
/� area0 fı C t
Z
D2

d

dt

ˇ̌̌
tD0

dvolf �
ı
.gt /CC

0t2 area0 fı :

By the properties of fı and the fact that the integrand in the previous integral is bounded
by a multiple of dvolf �

ı
.gt / independently of ı , it follows that for fixed t and for

ı! 0 the right-hand side of the previous inequality goes to

A0.
/C t
X
i

Z
D2

d

dt

ˇ̌̌
tD0

dvolf �
i
.gt /CC

0t2A0.
/:

This yields the desired barrier.

4.4 The structure of a minimizer along the 1–skeleton

Consider now, again, the C 1;1 regular map f W V .1/!M from Section 4.2. The goal
of this subsection is to derive a variational identity in the spirit of (4-1). However, due
to possible self-intersections of f , this undertaking becomes a quite delicate issue
and it will be important to analyze the combinatorics of these self-intersections. Note
that, at least a priori, there could be infinitely many such self-intersections and the set
of self-intersections could have positive measure (and possibly empty interior). Our
main result will be Lemma 4.10 and inequality (4-16) therein, which will be needed
subsequently. At this point we recall that, by definition, f j@V D f0j@V is a smooth
embedding. So no edge at the boundary has a self-intersection and any two distinct
edges may only intersect in their endpoints.

We denote by F1; : : : ; Fn the faces and by E1; : : : ; Em the edges of V in such a way
that E1; : : : ; Em0 are the edges of @V . For every k D 1; : : : ; m let lk be the length of
f jEk and let 
k W Œ0; lk�!M be a parametrization of f jEk by arclength. Since the
maps 
k have regularity C 1;1 (see Lemma 4.3), we can find for each k D 1; : : : ; n a
vector field �k W Œ0; lk�! TM along 
k (ie �k.s/ 2 T
k.s/M ) that equals the geodesic
curvature of 
k almost everywhere (see Lemma 4.4).

Next, we apply Proposition 4.7 for each loop f j@Fj for j D 1; : : : ; n and obtain
loops 
j;1; 
j;2; : : : which satisfy assertions (d)–(h) of this proposition. Without loss
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of generality, we may assume that each 
j;i is parametrized by arclength, ie that

j;i W S

1.lj;i / ! M , where lj;i is the length of 
j;i . As before, we choose vector
fields �j;i W S1.lj;i /! TM along each 
j;i that represent the geodesic curvature almost
everywhere. Now, let fj;i W D2!M be an arbitrary solution to the Plateau problem
for each loop 
j;i . Proposition 4.7(b) yields that fj;i is C 1;˛ up to the boundary
except at the finitely many points where 
j;i is not differentiable. So we can choose
unit vector fields �j;i W S1.lj;i /! TM along each 
j;i that are orthogonal to 
j;i and
outward-pointing tangential to fj;i everywhere except at finitely many points.

For each edge Ek and each adjacent face Fj we can consider the collection of
subsegments of the 
j;i that lie on Ek . These subsegments are pairwise disjoint
and are equipped with the vector fields �j;i . We can hence construct a vector field
along 
k that is equal to each of the �j;i on the corresponding subsegment and zero
everywhere else. Doing this for all faces Fj that are adjacent to Ek yields vector fields
�
.1/

k
; : : : ; �

.vk/

k
W Œ0; lk�! TM along 
k , where vk is the valency of Ek . Note that

j�.u/
k
j � 1 for all k D 1; : : : ; m and uD 1; : : : ; vk .

With this notation at hand we can derive the following variation formula:

Lemma 4.9 For every continuous vector field X 2 C 0.M ITM/ that vanishes on
f .@V \V .0// we haveˇ̌̌̌
ˇ
mX
kD1

Z lk

0

� vkX
uD1

�
.u/

k
.s/; X
k.s/

�
ds

C

mX
kDm0C1

�
�

Z lk

0

h�k.s/; X
k.s/i ds� h

0
k.0/; X
k.0/iC h


0
k.lk/; X
k.lk/i

�ˇ̌̌̌
ˇ

�

m0X
kD1

Z lk

0

jX
k.s/j ds:

Proof Let X 2C1.M ITM/ be a smooth vector field that vanishes on f .@V \V .0//
and consider the smooth flow ˆW R�M !M , @tˆt DX ıˆt , of X . Observe that
ˆt .x/D x for all x 2 f .@V \ V .0// and t 2 R. For each t 2 R let f 0t W V

.1/!M

be the map that is equal to ˆt ı f jV .1/n@V on V .1/ n @V and equal to f j@V on @V .
By Lemma 4.1, for all t 2R,

A.f 0t j@F1/C � � �CA.f
0
t j@Fn/C `.f

0
t /� A

.1/.f0/;
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where equality holds for t D 0. So we obtain that, in the barrier sense,

(4-10) d

dtC

ˇ̌̌
tD0

.A.f 0t j@F1/C � � �CA.f
0
t j@Fn/C `.f

0
t //� 0:

Next we compute the derivative of each term on the left-hand side. First note that, for
all k Dm0C 1; : : : ; m,

(4-11) d

dtC

ˇ̌̌
tD0

`.ˆt ı 
k/

D�

Z lk

0

h�k.s/; X
k.s/i ds� h

0
k.0/; X
k.0/iC h


0
k.lk/; X
k.lk/i:

Next we estimate the derivatives of the area terms. To do this, note that for each
sufficiently differentiable map hW D2 ! M the area of ˆt ı h with respect to the
metric g is equal to the area of h with respect to the metric ˆ�t .g/. So we can
use Lemma 4.8 and the first variation formula for the area to deduce that, for each
j D 1; : : : ; n,

(4-12) d

dtC

ˇ̌̌
tD0

A.ˆt ıf j@Fj /�
X
i

Z
D2

d

dt

ˇ̌̌
tD0

d volf �
j;i
.ˆ�t .g//

D

X
i

Z
D2

divfj;i .X ıfj;i /:

Here

divfj;i .X ıfj;i /D
2X
uD1

hrdfj;i .eu/.X ıfj;i /; dfj;i .eu/i

for an orthonormal frame field e1; e2 on D2 (note that due to almost conformality, the
volume form d volf �

j;i
.g/ cancels with the inverse of f �j;i .g/). Since fj;i is harmonic,

we have

divfj;i .X ıfj;i /D
2X
uD1

rdfj;i .eu/h.X ıfj;i /; dfj;i .eu/iD

2X
uD1

reuhX ıfj;i ; dfj;i .eu/i:

So, by Stokes’ theorem,Z
D2

divfj;i .X ıfj;i /D
Z
@D2
hX ıfj;i ; dfj;i .s/i ds D

Z
S1.lj;i /

h�j;i .s/; X
j;i .s/i ds;

where in the second term s 2 @D2 is viewed both as a point in @D2 and a unit tangent
vector. Plugging this back into (4-12) yields

(4-13) d

dtC

ˇ̌̌
tD0

A.ˆt ıf j@Fj /�
X
i

Z
S1.lj;i /

h�j;i .s/; X
j;i .s/i ds:
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Now consider, for each k D 1; : : : ; m0 , the loop that is composed of 
k and ˆt ı 
k
(recall that the endpoints of 
k are left-invariant by ˆt ). This loop bounds the disk that
is described by the map Ht;k W Œ0; lk�� Œ0; t �!M with .s; t 0/ 7!ˆt 0.
k.s//. Note that
areaHt;k D t

R lk
0 jX
k.s/j dsCO.t

2/ for small t . Moreover, since each loop f 0t j@Fj
can be obtained from ˆt ıf j@Fj by possibly replacing some 
k by ˆt ı 
k , we have

A.f 0t j@F1/C � � �CA.f
0
t j@Fn/

� A.ˆt ıf j@F1/C � � �CA.ˆt ıf j@Fn/C areaHt;1C � � �C areaHt;m0 :

So taking the derivative at t D 0 yields, together with (4-13),

d

dtC

ˇ̌̌
tD0

.A.f 0t j@F1/C � � �CA.f
0
t j@Fn//

�

mX
jD1

X
i

Z
S1.lj;i /

h�j;i .s/; X
j;i .s/i dsC

m0X
kD1

Z lk

0

jX
k.s/j ds:

Together with (4-10) and (4-11) this yields
mX
jD1

X
i

Z
S1.lj;i /

h�j;i .s/; X
j;i .s/i ds

C

mX
kDm0C1

�
�

Z lk

0

h�k.s/; X
k.s/i ds� h

0
k.0/; X
k.0/iC h


0
k.lk/; X
k.lk/i

�

C

m0X
kD1

Z lk

0

jX
k.s/j ds � 0:

Note that, by rearrangement,
mX
jD1

X
i

Z
S1.lj;i /

h�j;i .s/; X
j;i .s/i ds D

mX
kD1

Z lk

0

� vkX
uD1

�
.u/

k
.s/; X
k.s/

�
ds:

So our conclusions applied to X and �X show that the desired inequality holds for
all smooth vector fields that vanish on f .@V \V .0//. By continuity it must also hold
for all continuous vector fields that vanish on f .@V \V .0//.

We can now use this inequality to derive the following identities:

Lemma 4.10 For every x 2 f .V .0// n f .V .0/ \ @V / the (normalized) directional
derivatives of f at every vertex of V .0/ that is mapped to x , in the direction of each
adjacent edge, add up to zero.
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Moreover, for every k D 1; : : : ; m and for almost all s 2 Œ0; lk� the following holds: if

k.s/ … f .@V /, then

(4-14)
mX
k0D1

X
s02Ek0

f .s0/Df .s/

vk0X
uD1

�
.u/

k0
.s0/�

ˇ̌
f �1.f .s//

ˇ̌
� �k.s/D 0:

Otherwise,

(4-15)
ˇ̌̌̌ mX
k0D1

X
s02Ek0

f .s0/Df .s/

vk0X
uD1

�
.u/

k0
.s0/�

�ˇ̌
f �1.f .s//

ˇ̌
� 1

�
� �k.s/

ˇ̌̌̌
� 1:

Furthermore, we have the integral inequality

(4-16)
nX

jD1

X
i

Z
S1.lj;i /

h�j;i .s/; �j;i .s/i ds � �

m0X
kD1

Z lk

0

j�k.s/j ds:

Proof Recall that all �k and �j;i are uniformly bounded. Let X be a (not necessarily
continuous) vector field on M that vanishes on f .@V \V .0//. For any " > 0 let X ."/

be a vector field that agrees with X on f .V .0//, vanishes outside an "–neighborhood
of f .V .0// and satisfies jX ."/j � C everywhere for some uniform constant C <1.
For example, X ."/ can be obtained from X by making X continuous near each point of
f .V .0// and multiplying with an appropriate cutoff function. If we apply the variation
formula in Lemma 4.9 to each such X ."/ , then the contribution of the integrals goes to
zero as "! 0, while the other two terms are independent of ". So letting "! 0 yields

mX
kD1

�
�h
 0k.0/; X
k.0/iC h


0
k.lk/; X
k.lk/i

�
D 0:

This implies the very first part of the claim and simplifies the variation formula: for
every continuous vector field X 2 C 0.M ITM/ we have

(4-17)
ˇ̌̌̌ mX
kD1

Z lk

0

� vkX
uD1

�
.u/

k
.s/; X
k.s/

�
ds�

mX
kDm0C1

Z lk

0

h�k.s/; X
k.s/i ds

ˇ̌̌̌
�

m0X
kD1

Z lk

0

jX
k.s/j ds:

Choose N < 1 large enough that the following holds: each curve 
k restricted
to a subinterval of length 1

N
lk is embedded and whenever two curves 
k1 and 
k2

restricted to subintervals of length 1
N
lk1 and 1

N
lk2 intersect, then we are in the situa-

tion of Lemma 4.4, ie we can find a coordinate chart .U; .x1; : : : ; xn// that contains
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these subsegments and in which we can find a vector v 2 Rn with the property
that h
 0

k1
; vi; h
 0

k2
; vi ¤ 0 on both subsegments with respect to the euclidean metric.

Consider now the index set I D f1; : : : ; mg � f0; : : : ; N � 1g and define, for every
.k; e/ 2 I and every subset I 0 � I with .k; e/ 2 I 0 , the domain

Dk;e;I 0 D
n
s 2

h
e

N
lk;
eC1

N
lk

i
W 
k.s/ 2 
k0

�h
e0

N
lk0 ;

e0C1

N
lk0
i�

if and only if .k0; e0/ 2 I 0
o
:

These sets are measurable and, for all .k; e/ 2 I ,

P[
I 0�I
.k;e/2I 0

Dk;e;I 0 D
h
e

N
lk;

eC1

N
lk

i
:

Moreover, since f j@V D f0j@V is injective, we find that Dk;e;I 0 is empty or finite
whenever there are two distinct pairs .k0; e0/; .k00; e00/ 2 I 0 for which k0; k00 �m0 .

Consider now two pairs .k1; e1/ and .k2; e2/ and I 0 � I with .k1; e1/; .k2; e2/ 2 I 0

and assume that Dk1;e1;I 0 (and hence also Dk2;e2;I 0 ) is nonempty. We can now
apply the second part of Lemma 4.4 and obtain a continuously differentiable map
'W Œe1=N; .e1C 1/=N �! R, whose derivative vanishes nowhere, for which the fol-
lowing holds: '.Dk1;e1;I 0/D Dk2;e2;I 0 and 
k1.s/D 
k2.'.s// for all s 2 Dk1;e1;I 0 .
Moreover, for almost every s 2Dk1;e1;I 0 we have '0.s/D˙1 and �k1.s/D �k2.'.s//.
So the following three identities hold for every continuous vector field X 2C 0.M ITM/:Z

Dk1;e1;I 0
h�k1.s/; X
k1 .s/

i ds D

Z
Dk2;e2;I 0

h�k2.s/; X
k2 .s/
i ds;(4-18)

Z
Dk1;e1;I 0

� vk2X
uD1

�
.u/

k2
.'.s//; X
k1 .s/

�
ds D

Z
Dk2;e2;I 0

� vk2X
uD1

�
.u/

k2
.s/; X
k2 .s/

�
ds;(4-19)

Z
Dk1;e1;I 0

� vk2X
uD1

�
.u/

k2
.'.s//; �k1.s/

�
ds D

Z
Dk2;e2;I 0

� vk2X
uD1

�
.u/

k2
.s/; �k2.s/

�
ds:(4-20)

Next we express both sides of (4-17) as sums of integrals over the domains Dk;e;I 0 :ˇ̌̌̌X
I 0�I

� X
.k;e/2I 0

Z
Dk;e;I 0

� vkX
uD1

�
.u/

k
.s/; X
k.s/

�
ds�

X
.k;e/2I 0

k>m0

Z
Dk;e;I 0

h�k.s/; X
k.s/i ds

�ˇ̌̌̌

�

X
I 0�I

X
.k;e/2I 0

k�m0

Z
Dk;e;I 0

jX
k.s/j ds:
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We will now group integrals whose values are the same. To do this set

I0 D f1; : : : ; m0g � f0; : : : ; N � 1g

and, for each ∅ ¤ I 0 � I , choose a pair .kI 0 ; eI 0/ 2 I 0 such that .kI 0 ; eI 0/ 2 I0
whenever I 0 \ I0 ¤ ∅. Using (4-18) and (4-19) we may then express the integrals
over the domains Dk;e;I 0 in the last inequality in terms of integrals over the domains
DkI 0 ;eI 0 ;I 0 . This yields

(4-21)
ˇ̌̌̌ X
∅¤I 0�I

Z
DkI 0 ;eI 0 ;I 0

� mX
kD1

X
s02Ek

f .s0/Df .s/

vkX
uD1

�
.u/

k
.s0/

�jI 0\.InI0/j��kI 0 .s/; X
kI 0 .s/

�
ds

ˇ̌̌̌
�

X
∅¤I 0�I
I 0\I0¤∅

Z
DkI 0 ;eI 0 ;I 0

jX
k.s/j ds:

Note that all summands involving ∅ ¤ I 0 � I for which I 0 \ I0 contains more
than one element vanish since those consist of integrals over a finite set. So, for all
remaining summands and all .k; e/ 2 I 0 � I , for almost every s 2Dk;e;I 0 the quantity
jI 0\.I nI0/j is equal to jf �1.f .s//j if 
k.s/…f .@V / (or equivalently if I 0\I0D∅)
or equal to jf �1.f .s//j�1 if 
k.s/2 f .@V / (or equivalently if jI 0\I0j D 1). So the
first factor in the scalar product on the left-hand side of (4-21) is equal to the left-hand
side of (4-14) or (4-15), depending on I 0 , almost everywhere.

We will now show by induction on jI 0j that, for every ∅¤ I 0 � I , (4-14) or (4-15)
holds for almost every s 2 DkI 0 ;nI 0 ;I 0 . Using the previous conclusions, which related
Dk;e;I 0 to DkI 0 ;eI 0 ;I 0 for any other .k; e/2I 0 , this will then imply the desired statement.
So let ∅ ¤ I� � I and assume that, for all ∅ ¤ I 0 ¨ I� , (4-14) or (4-15) holds
for almost every s 2 DkI 0 ;nI 0 ;I 0 . This implies that the terms involving subsets I 0 in
the sums on both sides of the inequality (4-21) vanish whenever ∅ ¤ I 0 ¨ I and
I 0\ I0 D∅.

Consider now some s0 2DkI� ;eI� ;I� . Then we can find an open neighborhood U �M
around 
kI� .s0/ such that


k

�h
e

N
lk;

eC1

N
lk

i�
\U ¤∅

if and only if .k; e/ 2 I� . So as long as X 2 C 0.M ITM/ is supported in U , the
summands in (4-21) involving ∅¤ I 0 � I with ∅¤ I 0 6� I� vanish. Therefore the
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only summands that are not a priori zero are the summand involving the subset I 0 D I
and all proper subsets I 0 ¨ I� for which jI 0\ I0j D 1.

Consider first the case in which I�\ I0 D∅. Then the previous conclusion implies
that only the summand involving I� on the left-hand side of (4-21) is not a priori zero
and that the right-hand side of this equation is zero. SoZ

DkI� ;eI� ;l�

� mX
kD1

X
s02Ek

f .s0/Df .s/

vkX
uD1

�
.u/

k
.s0/�

ˇ̌
f �1.f .s//

ˇ̌
� �kI� .s/; X
kI� .s/

�
ds D 0

for all X 2 C 0.M ITM/ that are supported in U . Since the restriction of 
kI� .s/ to�
.eI�=N/lkI� ; ..eI� C 1/=N /lkI�

�
is an embedding, this implies thatZ

DkI� ;eI� ;l�

� mX
kD1

X
s02Ek

f .s0/Df .s/

vkX
uD1

�
.u/

k
.s0/�

ˇ̌
f �1.f .s//

ˇ̌
� �k.s/; X.s/

�
ds D 0

for every compactly supported continuous vector function

X 2 C 0
�

�1kI�

.U /\

�
eI�

N
lkI� ;

eI� C 1

N
lkI�

��
:

So (4-14) holds almost everywhere on

DkI� ;eI� ;l� \ 

�1
kI�
.U /\

�
eI�

N
lkI� ;

eI� C 1

N
lkI�

�
:

Since s0 was chosen arbitrarily within DkI� ;eI� ;I� , this shows that (4-14) holds for
almost every s 2 DkI� ;eI� ;l� , which finishes the induction in the first case.

Next consider the case in which I� \ I0 D f.kI� ; eI�/g. Then for every nonzero
summand in (4-21) involving I 0 we have .kI 0 ; eI 0/ D .kI� ; eI�/ DW .k0; e0/. Since
the union of all domains Dk0;e0;I 0 for which .k0; e0/ 2 I 0 is equal to the interval�
.e0=N/lk0 ; ..e0C 1/=N /lk0

�
, inequality (4-21) implies that

ˇ̌̌̌Z e0C1

N
lk0

e0
N
lk0

� mX
kD1

X
s02Ek

f .s0/Df .s/

vkX
uD1

�
.u/

k
.s0/�

�ˇ̌
f �1.f .s//

ˇ̌
� 1

�
� �k0.s/; X
k0 .s/

�
ds

ˇ̌̌̌

�

Z e0C1

N
lk0

e0
N
lk0

jX
k.s/j ds
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for all X 2C 0.M ITM/ that are supported in U . As in the first case, we conclude that

ˇ̌̌̌Z e0C1

N
lk0

e0
N
lk0

� mX
kD1

X
s02Ek

f .s0/Df .s/

vkX
uD1

�
.u/

k
.s0/�

�
jf �1.f .s//j � 1

�
� �k0.s/; X.s/

�
ds

ˇ̌̌̌

�

Z e0C1

N
lk0

e0
N
lk0

jX.s/j ds

for every compactly supported continuous vector function

X 2 C 0
�

�1k0 .U /\

�
e0

N
lk0 ;

e0C 1

N
lk0

��
:

Thus (4-15) holds for almost all s 2 Dk0;e0;I� �
�
.e0=N/lk0 ; ..e0C 1/=N /lk0

�
and

finishes the induction in the second case.

Finally, we prove (4-16). Observe that by rearrangement we have

nX
jD1

X
i

Z
S1.lj;i /

h�j;i .s/; �j;i .s/i ds D

mX
kD1

vkX
uD1

Z lk

0

h�
.u/

k
.s/; �k.s/i ds:

Using (4-20) we conclude further that

nX
jD1

X
i

Z
S1.lj;i /

h�j;i .s/; �j;i .s/i ds

D

mX
kD1

vkX
uD1

Z lk

0

h�
.u/

k
.s/; �k.s/i ds

D

X
I 0�I

X
.k;e/2I 0

Z
Dk;e;I 0

� vkX
uD1

�
.u/

k
.s/; �k.s/

�
ds

D

X
∅¤I 0�I

Z
DkI 0 ;eI 0 ;I 0

� mX
kD1

X
s02Ek

f .s0/Df .s/

vkX
uD1

�
.u/

k
.s0/; �kI 0 .s/

�
ds:

We now apply (4-14) to all summands for which I 0\I0D∅ and (4-15) to all summands
for which I 0\I0¤∅. Then we obtain that the right-hand side of the previous equation
is bounded from below by
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X
∅¤I 0�I
I 0\I0D∅

Z
DkI 0 ;nI 0 ;I 0

jI 0j � h�kI 0 .s/; �kI 0 .s/i ds

C

X
∅¤I 0�I
I 0\I0¤∅

Z
DkI 0 ;nI 0 ;I 0

�
.jI 0j � 1/ � h�kI 0 .s/; �kI 0 .s/i � j�kI 0 .s/j

�
ds

� �

X
∅¤I 0�I
I 0\I0¤∅

Z
DkI 0 ;nI 0 ;I 0

j�kI 0 .s/j ds

D�

m0X
kD1

Z lk

0

j�k.s/j ds:

This establishes the claim.

4.5 Summary

We conclude this section by summarizing the important results that are needed in
Section 5.

Proposition 4.11 Consider a compact Riemannian manifold .M; g/ with �2.M/D 0.
Let V be a finite simplicial complex whose faces are F1; : : : ; Fn and f0W V !M a con-
tinuous map such that f0j@V is a smooth embedding. Furthermore, let 
k W Œ0; lk�!M

for k D 1; : : : ; m0 be arclength parametrizations of f restricted to the edges of @V
and �k W Œ0; lk�! TM the geodesic curvature of 
k

Then the following is true:

(a) There is a map f W V .1/ ! M that restricted to every edge E � V .1/ is a
C 1;1–immersion such that f is homotopic to f0jV .1/ relative to @V and

A.f j@F1/C � � �CA.f j@Fn/C `.f /D A
.1/.f0/:

(b) Consider for each j D 1; : : : ; n the loop f j@Fj and apply Proposition 4.7 to
obtain the loops 
j;i W S1.lj;i /!M . Let pj;i be the (finitely many) places where

j;i is not differentiable. Then pj;i D 2 for almost every i and j , andX

i

.pj;i � 2/� 1:

(c) For each loop 
j;i , as defined in assertion (b), consider an arbitrary solution
fj;i W D

2!M to the associated Plateau problem with respect to the metric g .
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Consider moreover a smooth family .gt /t2Œ0;"/ of metrics with g0 D g and
denote by At . � /, the infimal area A. � / with respect to the metric gt . Then for
any j D 1; : : : ; n we have in the barrier sense

d

dtC

ˇ̌̌
tD0

At .f j@Fj /�
X
i

Z
D2

d

dt

ˇ̌̌
tD0

d volf �
j;i
.gt / :

(d) For each loop 
j;i the geodesic curvature �j;i W S1.lj;i /! TM is defined almost
everywhere. Consider again the maps fj;i W D2 ! M from before and let
�j;i W S

1.lj;i /! TM be unit vector fields along 
j;i that are orthogonal to 
j;i
and outward pointing tangential to fj;i . Then

nX
jD1

X
i

Z
S1.lj;i /

h�j;i .s/; �j;i .s/i ds � �

m0X
kD1

Z lk

0

j�k.s/j ds:

Proof Assertion (a) is a consequence of Lemma 4.1, the preceding discussion and
Lemma 4.3. Assertion (b) is a restatement of Proposition 4.7(f). For this, note that
f j@Fj is differentiable everywhere except possibly at its three corners. Assertion (c) is
a restatement of Lemma 4.8 and (d) is a restatement of (4-16) in Lemma 4.10.

Remark 4.12 For any � > 0 consider the quantity

A.�/.f0/ WD inffarea.f 0/C�`.f 0jV .1// W f
0
' f0 relative to @V g:

Then all assertions of Proposition 4.11 hold with A.1/ replaced by A.�/ (in (a) we
have to insert the factor � in front of `.f /). This follows by rescaling the metric g by
a factor of �.

5 Area evolution under Ricci flow

5.1 Overview

In this section let M be a closed 3–manifold with �2.M/ D 0. Consider a finite
simplicial complex V whose faces are denoted by F1; : : : ; Fn and a continuous map
f0W V !M such that f0j@V is a smooth embedding.

Consider a Ricci flow .gt /t2ŒT1;T2� on M such that scalt � � 3
2t

on M for all
t 2 ŒT1; T2�. The goal of this section is to study the evolution of the time-dependent
quantity

At .f0/ WD inffareat f 0 W f 0 ' f0 relative to @V g;
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as introduced in Section 4. We now explain our strategy in this section. Assume first
that for some time t0 2 ŒT1; T2� there is an embedded minimizer f W V !M in the
homotopy class of f0 (relative to @V ), ie areat0 f D At0.f0/. Then by a simple
variational argument, we can conclude that at every edge E � V .1/ n@V the unit vector
fields �.1/E ; : : : ; �

.vE/
E along f jE that are orthogonal to f jE and outward-pointing

tangential to the vE faces which are adjacent to E satisfy the identity

(5-1) �
.1/
E C � � �C �

.vE/
E D 0:

We can then use Hamilton’s method (as presented in the proofs of Propositions 2.1
and 2.2) to compute the time derivative of the area of the minimal disk f jFj , for every
j D 1; : : : ; n,

(5-2) d

dt

ˇ̌̌
tDt0

areat .f jFj /�
3

4t0
areat0.f jFj /C� �

Z
@Fj

h�@Fj ; �@Fj i:

Here �@Fj is the unit vector field which is normal to f j@Fj and outward-pointing
tangential to f jFj and �@Fj is the geodesic curvature of f j@Fj . Now we add up these
inequalities for j D 1; : : : ; n. The sum of the integrals on the right-hand side can be
rearranged and grouped into integrals over each edge of @V . By (5-1), the integrals
over each edge E � V .1/ n @V cancel each other out and we are left with the integrals
over edges E � @V . So

d

dt

ˇ̌̌
tDt0

areat f �
3

4t0
areat0.f jFj /C�nC

X
E�@V

Z
E

j�E j:

This implies that, in the barrier sense,

(5-3) d

dtC

ˇ̌̌
tDt0

At .f0/�
3

4t0
areat0.f jFj /C�nC

X
E�@V

Z
E

j�E j:

Unfortunately, as mentioned in Section 4, an existence theory for such a minimizer f
is hard to come by. We will however be able to establish the bound (5-3) without the
knowledge of this existence using the following trick. For every � > 0 consider the
quantity

A
.�/
t .f0/ WD inffareat .f 0/C�`t .f 0jV .1// W f

0
' f0 relative to @V g;

as introduced in Remark 4.12. It is not hard to see that, for each t 2 ŒT1; T2�,

(5-4) A
.�/
t .f0/� At .f0/ and lim

�!0
A
.�/
t .f0/D At .f0/:
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The existence theory for a minimizer of A.�/t .f0/ is far easier and has been carried
out in Section 4. Assume for the purpose of clarity that for some time t0 there
is an embedded, smooth minimizer f W V !M for the corresponding minimization
problem, ie areat0 fC�`t0.f jV .1//DA

.�/
t0
.f0/. Then identity (5-1) becomes (compare

with (4-1))

�
.1/
E C � � �C �

.vE/
E D ��E :

So, when adding up inequality (5-2) for all j D 1; : : : ; n and grouping the integrals on
the right-hand side by edge, we find that, luckily, the extra term that arises due to this
modified identity has the right sign:

d

dt

ˇ̌̌
tDt0

areat f �
3

4t0
areat0.f jFj /C�nC

X
E�@V

Z
E

j�E j �
X

E�V .1/n@V

Z
E

h��E ; �E i

�
3

4t0
areat0.f jFj /C�nC

X
E�@V

Z
E

j�E j:

Now choose a function �W ŒT1; T2�! .0; 1/ such that �0.t/ < �Kt�.t/, where Kt is
a bound on the Ricci curvature at time t . This is always possible. Then we can check
that

d

dt

ˇ̌̌
tDt0

A
.�.t//
t .f0/�

3

4t0
areat0.f jFj /C�n�

X
E�@V

Z
E

j�@Fj j:

Since �.t/ can be chosen arbitrarily small, we are able to derive (5-3) using (5-4).

Note that this is a simplified picture of the arguments that will be presented in the next
subsection. The main difficulty that needs to be overcome stems from the fact that
f W V !M is in general only defined on the 1–skeleton and not smooth there, and
that f might have self-intersections.

5.2 Main part

In the following lemma we deduce a bound on a curvature integral over a minimal disk
with smooth boundary. The statement and its proof are similar to parts of the proofs of
Propositions 2.1 and 2.2.

Lemma 5.1 Let f W D2 ! M be a smooth, harmonic, almost conformal map and
set 
 D f@D2 . Denote by �W S1 D @D2! TM the geodesic curvature of 
 and by
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�W S1! TM the unit vector field along 
 that is orthogonal to 
 and outward-pointing
tangential to f away from possible branch points. ThenZ

D2
secM .df / dvolf �.g/ � 2� C

Z
S1
h�.s/; �.s/i � j
 0.s/j ds:

(Here secM .df / denotes the sectional curvature of M in the direction of the image
of df . Note that the integrand on the left-hand side is well-defined since the volume
form vanishes whenever df is not injective.)

Proof In order to avoid issues arising from possible branch points (especially on
the boundary of †), we employ the following trick (compare with the proof of
Proposition 2.2): Let geucl be the euclidean metric on D2 and consider for every " > 0
the Riemannian manifold .D"DD2; "geucl/. The identity map h"W D2! .D2; "geucl/

is a harmonic and conformal diffeomorphism and hence the map

f" D .f; h"/W D
2
!M �D"

is a harmonic and conformal embedding. Denote its image by †"D f".D2/�M �D" .
Since the sectional curvatures on the target manifold are bounded, we have

lim
"!0

Z
†"

secM�D".T†"/ dvolD
Z
†

secM .df / dvolf �.g/;

where dvol on the left-hand side denotes the induced volume form and the integrand
denotes the function on †" that assigns to each point the (ambient) sectional curvature
of M �D" in the direction of its tangent space.

Since †" is a minimal surface, its interior sectional curvatures are not larger than the
corresponding ambient ones. So, combining this with Gauss–Bonnet, we obtainZ

†"

secM�D".T†"/ dvol�
Z
†"

sec†" dvolD 2� C
Z
@†"

�
†"
@†"

ds:

Here �†"
@†"

denotes the geodesic curvature of the boundary circle viewed as a curve
within †" . Now, similarly to in the proof of Proposition 2.2 (more specifically,
see (2-9)), we can estimate the last integral. Then we obtain that

lim
"!0

Z
@†"

�
†"
@†"

ds D

Z
S1
h�.s/; �.s/ij
 0.s/j ds:

This implies the claim.
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Next, we extend the bound of Lemma 5.1 to minimal disks that are bounded by not
necessarily embedded, piecewise C 1;1 loops which satisfy the Douglas-type condition.

Lemma 5.2 Let 
 W S1!M be a continuous loop that is a piecewise C 1;1–immersion
and let �1; : : : ; �p be the angles between the right- and left-derivatives of 
 at the points
where 
 is not differentiable. (Observe that �i D 0 means that both derivatives agree.)
Assume that 
 satisfies the Douglas-type condition (see Definition 4.6). Then there is a
solution to the Plateau problem f W D2!M for 
 which has the following property:

The function f is C 1;˛ up to the boundary away from finitely many points. Let
�W S1 ! TM be the unit vector field along 
 that is orthogonal to 
 and outward-
pointing tangential to f away from possibly finitely many points and let �W S1! TM
be almost everywhere equal to the geodesic curvature of 
 . ThenZ

D2
secM .df / dvolf �.g/ � 2� � �1� � � � � �pC

Z
S1
h�.s/; �.s/i � j
 0.s/j ds:

Proof The proof uses an approximation method.

Let s1; : : : ; sp 2 S1 be the places where 
 is not differentiable and choose a small
constant ">0. Observe that there is a function �W .0; 1/! .0; 1/ with limx!0 �.x/D0
(which may depend on .M; g/ and 
 ) such that: we can replace 
 in a small neigh-
borhood of each si by a small arc of length � .�i C �."//" and geodesic curvature
bounded by "�1 such that the resulting curve 
�W S1!M is a C 1–immersion. It
then follows that if ��W S1!M is almost everywhere equal to the geodesic curvature
of 
� , we haveZ

S1
j��.s/� �.s/j � j
�0.s/j ds � �1C � � �C �pCp�."/CpC":

Here C is a C 1;1 bound on 
 . Next, we mollify 
� to obtain a smooth immersion

��W S1!M such that if ���W S1!M is the geodesic curvature of 
�� , we haveZ

S1
j���.s/� �.s/j � j
��0.s/j ds � �1C � � �C �pCp�."/CpC"C ":

Finally, we perturb 
�� to a smooth embedding 
���W S1 ! M whose geodesic
curvature ����W S1!M satisfiesZ

S1
j����.s/� �.s/j � j
���0.s/j ds � �1C � � �C �pCp�."/CpC"C 2":

These constructions have shown that we can find a sequence 
1; 
2; : : : W S1!M of
smoothly embedded loops with uniform Lipschitz constant that uniformly converge
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to 
 and that locally converge on S1 n fs1; : : : ; sqg to 
 in the C 1;˛ sense such that
the geodesic curvatures �k W S1! TM satisfy

(5-5) lim sup
k!1

Z
S1
j�k.s/� �.s/j � j


0
k.s/j ds � �1C � � �C �q:

Now let f1; f2; : : : W D2 !M be solutions of the Plateau problem for these loops.
By Proposition 4.7(b) the maps fk are smooth up to the boundary. Moreover, by
Proposition 4.7(c) we conclude that, after passing to a subsequence and a possible
conformal reparametrization, the maps fk W D2!M converge uniformly on D2 and
smoothly on IntD2 to a map f W D2!M , which solves the Plateau problem for 
 .
By Proposition 4.7(b) the map f has local regularity C 1;˛ up to the boundary away
from finitely many points for all ˛ < 1. So, by Proposition 4.7(c), the convergence
fk! f is locally in C 1;˛ away from finitely many points.

We now conclude first that

(5-6) lim
k!1

Z
D2

secM .dfk/ dvolf �
k
.g/ D

Z
D2

secM .df / dvolf �.g/:

Moreover, if we denote by �k W S1!M the unit normal vectors to 
k that are outward
tangential to fk , we obtain that

(5-7) lim
k!1

Z
S1
h�k.s/; �.s/i � j


0
k.s/j ds D

Z
S1
h�.s/; �.s/i � j
 0.s/j ds:

Note also thatˇ̌̌̌Z
S1
h�k.s/; �k.s/i � j


0
k.s/j ds�

Z
S1
h�k.s/; �.s/i � j


0
k.s/j ds

ˇ̌̌̌
�

Z
S1
j�k.s/� �.s/j � j


0
k.s/j:

Together with (5-5) and (5-7), this implies

lim inf
k!1

Z
S1
h�k.s/; �k.s/i � j


0
k.s/j ds � ��1� � � � � �qC

Z
S1
h�.s/; �.s/i � j
 0.s/j ds:

Finally, applying Lemma 5.1 for each fk , we obtain together with (5-6) and the previous
estimate that
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Z
D2

secM .df / dvolf �.g/ D lim
k!1

Z
D2

secM .dfk/ dvolf �
k
.g/

� 2� C lim inf
k!1

Z
S1
h�k.s/; �k.s/i � j


0
k.s/j ds

� 2� � �1� � � � � �pC

Z
S1
h�.s/; �.s/i � j
 0.s/j ds:

We can now apply the previous bound together with the results of Proposition 4.11
to control the time derivative of the quantity A.�/t . We remark that the proof of this
lemma is again similar to parts of Propositions 2.1 and 2.2.

Lemma 5.3 Let 0 < T1 < T2 <1 and .gt /t2ŒT1;T2/ be a smooth solution of the
Ricci flow on M on which scalt � � 3

2t
for all t 2 ŒT1; T2/. Assume that the Ricci

curvature of gt is bounded by some constant K <1 for all t 2 ŒT1; T2�.

Let, moreover, V be a finite simplicial complex whose faces are denoted by F1; : : : ; Fn
and f0W V ! M a continuous map such that f0j@V is a smooth embedding. At
every time t 2 ŒT1; T2/ let 
k;t W Œ0; lk;t �!M for k D 1; : : : ; m0 be time-t arclength
parametrizations of f restricted to the edges of @V and �k;t W Œ0; lk;t � ! TM the
geodesic curvature of each 
k;t at time t .

Now let �W ŒT1; T2/ ! .0;1/ be a continuously differentiable function such that
�0.t/� �K�.t/ for all t 2 ŒT1; T2/. Then we can bound the evolution of the quantity
A.�.t//t .f0/ as follows. For every t 2 ŒT1; T2/ we have, in the barrier sense,

d

dtC
A
.�.t//
t .f0/�

3

4t
A
.�.t//
t .f0/C�nC

m0X
kD1

Z lk;t

0

j�k;t .s/jt ds:

Proof Let t0 2 ŒT1; T2�. We first apply Proposition 4.11(a) (see also Remark 4.12) at
time t0 and obtain a C 1;1 map f W V .1/!M that is homotopic to f0jV .1/ relative to
@V and for which

nX
jD1

At0.f j@Fj /C�.t0/`t0.f /D A
.�.t0//
t0

.f0/:

Consider, for each j D 1; : : : ; n, the loop f j@Fj and apply Proposition 4.7 to obtain
the loops 
j;i W S1.lj;i /! M . As in Proposition 4.11(b) let pj;i be the number of
places where 
j;i is not differentiable and let �j;i W S1.lj;i /! TM be the geodesic
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curvature along 
j;i . Recall that each 
j;i satisfies the Douglas-type condition and that,
for each j D 1; : : : ; n,X

i

At0.
j;i /D At0.
j / and
X
i

.pj;i � 2/� 1:

Next, we apply Lemma 5.2 at time t0 to obtain a solution to the Plateau problem
fj;i WD

2!M for each 
j;i such that for the unit normal vector field �j;i W S1.lj;i /!TM
that is outward-pointing tangential to fj;i we haveZ

D2
secMt0 .dfj;i / dvolf �

j;i
.gt0 /
� �.2�pj;i /C

Z
S1.lj;i /

h�j;i .s/; �j;i .s/it0 ds:

We can now apply Proposition 4.11(c) (or Lemma 4.8) and Proposition 4.11(b) to
conclude that, in the barrier sense, for all j D 1; : : : ; n,

d

dtC

ˇ̌̌
tDt0

At .f j@Fj /�
X
i

Z
D2

d

dt

ˇ̌̌
tDt0

dvolf �
j;i
.gt /

D�

X
i

Z
D2

trf �
j;i
.gt0 /

.Rict0.dfj;i ; dfj;i // dvolf �
j;i
.gt0 /

D�

X
i

�
1

2

Z
D2
.scalt0 ıfj;i / dvolf �

j;i
.gt0 /
C

Z
D2

secMt0 .dfj;i / dvolf �
j;i
.gt0 /

�
�

3

4t0

X
i

At0.
j;i /C
X
i

�.pj;i � 2/�
X
i

Z
S1.lj;i /

h�j;i .s/; �j;i .s/i ds

�
3

4t0
At0.
j /C� �

X
i

Z
S1.lj;i /

h�j;i .s/; �j;i .s/i ds:

Now Proposition 4.11(d) implies that if we sum this inequality over all j D 1; : : : ; n,
then the integral term can be estimated by a boundary integral:

d

dtC

ˇ̌̌
tDt0

nX
jD1

At .f j@Fj /�
3

4t0

nX
jD1

At0.
j /C�nC

m0X
kD1

Z lk;t0

0

j�k;t0.s/jt0 ds:

It remains to estimate the distortion of the length of f . Since the Ricci curvature is
bounded by K on ŒT1; T2�, we find

d

dt

ˇ̌̌
tDt0

.�.t/`t .f //� �K�.t0/`t0.f /C�.t0/ �K`t0.f /� 0:

Finally, observe that for all t � t0 we have, by Lemma 4.1,

A
.�.t//
t .f0/�

nX
jD1

At .f j@Fj /C�.t/`t .f /:
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The equality is strict for t D t0 and the time derivative of the right-hand side is bounded
by exactly the desired term in the barrier sense. This finishes the proof of the lemma.

Letting the parameter � go to zero yields the following estimate, which does not require
a global curvature bound.

Lemma 5.4 Let 0<T1<T2�1 and .gt /t2ŒT1;T2/ be a smooth solution of the Ricci
flow on M on which scalt � � 3

2t
for all t 2 ŒT1; T2/.

Let, moreover, V be a finite simplicial complex whose faces are denoted by F1; : : : ; Fn
and f0W V ! M a continuous map such that f0j@V is a smooth immersion. At
every time t 2 ŒT1; T2/ let 
k;t W Œ0; lk;t �!M for k D 1; : : : ; m0 be time-t arclength
parametrizations of f0 restricted to the edges of @V and �k W Œ0; lk;t � ! TM the
geodesic curvature of each 
k;t at time t .

Then we can bound the evolution of At .f0/ as follows in the barrier sense:

d

dtC
At .f0/�

3

4t
At .f0/C�nC

m0X
kD1

Z lk;t

0

j�k;t .s/jt ds:

Proof Note that by a perturbation argument we only need to consider the case in
which f0j@V is an embedding. Moreover, we can without loss of generality restrict to
a time interval on which the Ricci curvature is bounded by some constant K <1. For
brevity set

Rt D �nC

m0X
kD1

Z lk;t

0

j�k;t .s/jt ds:

Note that Rt is continuous with respect to t . Let " > 0 be a small constant and apply
Lemma 5.3 with �.t/D " exp.�Kt/. We obtain

d

dtC
A
." exp.�Kt//
t .f0/�

3

4t
A
." exp.�Kt//
t .f0/CRt :

Now let t0 2 ŒT1; T2/ and consider the solution of the differential equation

d

dt
Ft0;".t/D

3

4t
Ft0;".t/CRt and Ft0;".t0/D A

." exp.�Kt0//
t0

.f0/:

It follows that
A
." exp.�Kt//
t .f0/� Ft0;".t/ for all t � t0:

Letting "! 0 and using the fact that lim�!0A
.�/
t .f0/D At .f0/ yields

At .f0/� Ft0;0.t/ for all t � t0;
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where Ft0;0 satisfies the differential equation

d

dt
Ft0;0.t/D

3

4t
Ft0;0.t/CRt and Ft0;0.t0/D At0.f0/:

So Ft0;0.t/ is a barrier for At .f0/ with the required properties.

We can finally state our third main result:

Proposition 5.5 Let M be a Ricci flow with surgery with precise cutoff defined on a
time interval ŒT1; T2/, where 0<T1<T2�1, assume that all surgeries are trivial and
assume that �2.M.t//D 0 for all t 2 ŒT1; T2/. Consider a finite simplicial complex V
whose faces are denoted by F1; : : : ; Fn .

Let f0W V !M.T1/ be a continuous map such that f0;0 D f0j@V is a smooth im-
mersion. Consider a smooth family of immersions f0;t W @V !M.t/ parametrized
by time that extend f0;0 and that don’t meet any surgery points. Assume moreover
that there is a constant � <1 such that for each t 2 ŒT1; T2/ the following is true:
Let 
k;t W Œ0; lk;t �!M.t/ for k D 1; : : : ; m0 be time-t arclength parametrizations of
f0;t restricted to the edges of @V and �k W Œ0; lk;t �! TM.t/ the geodesic curvature
of each 
k;t at time t . Then

m0X
kD1

Z lk;t

0

�
j�k;t .s/jt Cj@t


?
k;t .s/jt

�
ds � �:

(Here @t
?k;t .s/ is the component of @t
k;t .s/ that is perpendicular to 
k;t .)

For every time t 2 ŒT1; T2/ denote by A.t/ the infimum over the areas of all piecewise
smooth maps f W V !M.t0/ such that f j@V D f0;t and such that there is a homotopy
between f0 and f in space-time that restricts to f0;t 0 on @V .

Then the quantity
t1=4.t�1A.t/� 4�n� 4�/

is monotonically nonincreasing on ŒT1; T2/ and, if T2 D1, we have

lim sup
t!1

t�1A.t/� 4�nC 4�:

Proof Note that the property of having precise cutoff implies that the metric g.t/ has
t�1–positive curvature, which in turn entails that scalt �� 3

2t
(see [A, Definitions 2.10

and 2.11(1)]). Note also that we can mollify each f W V !M.t/ that is C 1 on V .1/
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and V nV .1/ and that is W 1;2 on each face of V to a map that is piecewise smooth.
So A.t/D At .f0/.

So the monotonicity of the desired quantity away from surgery times follows directly
from Lemma 5.4 together with a variational estimate dealing with the fact that f0;t can
move in time (similarly as in the proof of Lemma 4.9). By [A, Definition 2.11] the value
of A.t/ cannot increase under a surgery, ie the function A.t/ is lower semicontinuous.
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