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Long-time behavior of 3–dimensional Ricci flow
C: 3–manifold topology and combinatorics of

simplicial complexes in 3–manifolds

RICHARD H BAMLER

In the third part of this series of papers, we establish several topological results that
will become important for studying the long-time behavior of Ricci flows with surgery.
In the first part of this paper we recall some elementary observations in the topology
of 3–manifolds. The main part is devoted to the construction of certain simplicial
complexes in a given 3–manifold that exhibit useful intersection properties with
embedded, incompressible solid tori.

This paper is purely topological in nature and Ricci flows will not be used.

57M50; 53C44, 57M15

1 Introduction

In this paper we establish several topological results that will be needed in the last part
[D] of this series of papers.

In the first part, Section 2, we recall facts from the topology of 3–manifolds, which
will be frequently used in this and the subsequent paper.

In the second part of this paper, Section 3, we prove a rather combinatorial–topological
result (see Proposition 3.2). For clarity, we will first describe a much weaker version
of this result.

Consider a closed 3–manifold M that does not contain any hyperbolic pieces in
its geometric decomposition, eg a component of the thin part Mthin.t/ from [A,
Proposition 3.16]. We claim that then there is a finite, 2–dimensional simplicial
complex V , as well as a continuous map f0W V !M with the following property:
if � �M is an embedded incompressible loop in M (meaning that the fundamental
group of � injects into the fundamental group of M ), then � intersects the image of
every continuous map f W V !M that is homotopic to f0 .
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In the case in which M is a 3–torus, this statement follows in an elementary way:
we can choose V to be the disjoint union of three 2–tori and f0W V !M to be an
embedding that maps those 2–tori to 2–tori that generate the second homology of M .
The fact that every homotope of f0 intersects every noncontractible loop of M can
then be seen by a standard intersection number argument.

For the purposes of [D], we will however need a somewhat stronger statement, which
as it turns out, is far more difficult to prove. This statement is also captured by
Proposition 3.2. We will now describe this stronger statement in a somewhat restricted
setting.

Assume again that M is a closed 3–manifold that cannot be covered by a 2–torus
bundle over a circle. Then we claim that there is a finite, 2–dimensional simplicial
complex V and a continuous map f0W V !M such that the following holds: Consider
an arbitrary solid torus S � M , S � S1 �D2 , that is incompressible in M (ie
whose S1 –fibers are incompressible in M ) and a map f W V !M that is homotopic
to f0 . Moreover, consider an arbitrary Riemannian metric g on M . Then there is a
“compressing domain” for S whose area, with respect to g , is bounded in terms of the
area of f By this we mean that there is a smooth domain †�R2 and a smooth map
hW †!M such that h.@†/� @S and such that h restricted to the exterior circle of
† is noncontractible in @S and h restricted to each interior circle of † is contractible
in @S . This map h can be chosen such that its area with respect to g satisfies the
bound

areag h< C areag f;

where C is a constant that only depends on the topology of M . Essentially, h will arise
from the intersection f .V /\S , taking into account multiple overlaps and multiply
counted faces. Note that this intersection can a priori be arbitrarily complex, without
any bound on the number of edges, and it is a difficult task to extract a compressing
domain out of it whose area is sufficiently controlled.

It is not known to the author whether such a statement remains true if M is covered
by a 2–torus bundle over a circle. In this case, however, we can make use of the
special topology of M and we will be able to prove a different statement, which will
be sufficient for the arguments in [D]; more specifically, we will construct a sequence
of continuous maps

f1; f2; : : : W V !M
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Long-time behavior of 3–dimensional Ricci flow, C 895

with the same simplicial complex V as a domain such that for every embedded,
incompressible loop � �M , every n�1 and every map f 0nW V !M that is homotopic
to fnW V !M , the image f 0n.V / intersects � at least n times. By this we mean that
f 0�1

n .�/ contains at least n points.

We refer to [0] for historical remarks and acknowledgements.

In the following we will assume that all manifolds are orientable and 3–dimensional,
unless stated otherwise.

2 Preliminaries on 3–dimensional topology

In this section we present important topological facts, which we will frequently use in
the course of this and the subsequent paper [D]. A more elaborate discussion of most
of these results can be found in [3]. In the following, all manifolds are assumed to be
connected and 3–dimensional.

Definition 2.1 (prime manifold) A manifold M is called prime if it cannot be
represented as a connected sum M DM1 # M2 of two manifolds M1 and M2 that
are not diffeomorphic to spheres (� S3 ).

Definition 2.2 (irreducible manifold) A manifold M is called irreducible if every
smoothly embedded 2–sphere S �M bounds a smoothly embedded 3–disk D �M ,
ie @D D S .

Recall that a manifold is prime if and only if it is either irreducible or diffeomorphic to
S1 �S2 (see [3, Proposition 1.4]). We furthermore have:

Proposition 2.3 An orientable manifold M is irreducible if and only if �2.M /D 0.

Proof The backward direction follows from the sphere theorem (see [3, Theorem 3.8]).
For the forward direction suppose that �2.M / D 0 and let S �M be a smoothly
embedded sphere. So S is contractible and, by [3, Proposition 3.10], it bounds
a compact contractible submanifold N � M . Following [3, Proposition 3.7], we
conclude that if we attach a 3–disk to N , we obtain a closed, simply connected
manifold M 0 . By the resolution of the Poincaré conjecture, M 0 � S3 and hence N is
a 3–disk.
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Definition 2.4 (incompressibility) Let X be a topological space and Y � X a
connected subspace. Then we call Y (algebraically) incompressible in X if the induced
map �1.Y /! �1.X / is injective. Otherwise, we call Y (algebraically) compressible.

Proposition 2.5 (Dehn’s lemma) Let M be a manifold with boundary. If C � @M

is an embedded loop that is nullhomotopic in M , then C bounds an embedded disk D

in M , ie @D D C and D\ @M D C .

Proof See [3, Corollary 3.2].

Proposition 2.6 Let M be a manifold (possibly with boundary) and S �M a 2–
sided embedded, connected surface. Then S is algebraically compressible if and only
if there is an embedded loop C � S that is homotopically nontrivial in S and that
bounds an embedded compressing disk D �M which meets S only in its boundary,
ie @D D C and D\S D C .

In particular, the statement holds if S D @M .

Proof See [3, Corollary 3.3].

We can now define what we mean by a geometric decomposition.

Definition 2.7 (geometric decomposition of irreducible manifold) Let M be a com-
pact, orientable and irreducible 3–manifold whose boundary consists of 2–tori. A
geometric decomposition of M is a collection of pairwise disjoint, smoothly embedded
2–tori T1; : : : ;Tm �M such that

(i) each torus Ti is incompressible in M (see Definition 2.4), and

(ii) each component of M n.T1[� � �[Tm/ is either hyperbolic (ie it can be endowed
with a complete metric of constant negative sectional curvature and finite volume)
or it is Seifert (ie it carries a Seifert fibration that can be extended regularly to
the closure of each of its ends).1

The decomposition is called minimal if no smaller subcollection of tori satisfies proper-
ties (i) and (ii).

If all components of M n .T1 [ � � � [ Tm/ are Seifert, then the manifold is called a
(prime) graph manifold and the decomposition is called a Seifert decomposition.

1It may happen that the boundaries of two ends of such a component coincide. In this case it may not
be possible to extend a (or any) Seifert fibration of this component to its closure, because the extensions
of the fibration on the closure of each end may not be the same. Note also that a Seifert fibration on an
orientable manifold can only have exceptional fibers of cone type.
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Long-time behavior of 3–dimensional Ricci flow, C 897

For a minimal geometric decomposition, none of the components of M n.T1[� � �[Tm/

is diffeomorphic to T 2 �R unless m D 1 and T1 is nonseparating. Moreover, the
following is true for a minimal geometric decomposition: Choose Seifert fibrations on
each Seifert component of the decomposition, and consider a torus Ti that is adjacent
to a Seifert component on both sides. Then the Seifert fibrations on either side of Ti

extend to two nonisotopic fibrations on Ti .

Lastly, we mention that a minimal geometric decomposition is unique up to isotopy (see
[3, Theorem 1.9]). So it is reasonable to speak of the (minimal) geometric decomposition
of a manifold.

The statement of the geometrization conjecture is now the following:

Theorem 2.8 (geometrization conjecture) Every closed, orientable, irreducible mani-
fold admits a minimal geometric decomposition.

Next, we will show that 3–manifolds that are not diffeomorphic to spherical space
forms or S2 �S1 have a sufficiently complex topology and hence cannot be covered
by or decomposed into certain elementary pieces.

Lemma 2.9 Let M be a closed, irreducible manifold and let T �M be an embedded,
2–sided, compressible torus. Then T separates M into two components U and V (ie
M D U [V and U \V D T ) and we can distinguish the following cases:

(a) Neither of the components U or V is diffeomorphic to a solid torus S1 �D2 .
Then the compressing disks D for T either all lie in U or in V and for each
such D a tubular neighborhood of D [ V or D [U (depending on whether
D � U or D � V ) is diffeomorphic to a 3–ball.

(b) Only one of the components U or V is diffeomorphic to a solid torus. Assume
that this component is U . Then T has compressing disks in U . If it also has
compressing disks in V , then U is contained in an embedded 3–ball in M and
U is compressible in M (ie the map ZŠ �1.U /! �1.M / is not injective).

(c) Both U and V are diffeomorphic to solid tori. Then M is diffeomorphic to a
spherical space-form.

Proof For the first part see [3, page 11]. Let D be a compressing disk for T and
assume that D � U . Again by [3, page 11], we know that either U is a solid torus
or a tubular neighborhood of D [V is diffeomorphic to a 3–ball. So, if in case (a)
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there are compressing disks for T in both U and V , then M is covered by two
embedded 3–balls and we have M � S3 by Lemma 2.10(a) (observe that the proof
of Lemma 2.10(a) does not make use of this lemma). However, this contradicts the
fact that an embedded 2–torus in S3 bounds a solid torus on at least one side (see [3,
page 11]). Case (b) follows similarly.

Consider now case (c). Let K1;K2 � �1.T /Š Z2 be the kernels of the projections
�1.T /!�1.U / and �1.T /!�1.V /. If K1DK2 , then M �S1�S2 contradicting
the assumptions on M . So K1 6DK2 . Let ai 2Ki be generators. By an appropriate
choice of coordinates, we can assume that a1D .1; 0/2Z2 and a2D .p; q/2Z2 with
0� p < q . Then M is diffeomorphic to the lens space L.p; q/.

Lemma 2.10 Let M be a closed manifold and assume that M D U [V . Then:

(a) If U and V are diffeomorphic to a ball, then M � S3 .

(b) If U is diffeomorphic to a solid torus S1�D2 and V is diffeomorphic to a ball,
then M � S3 .

(c) If U and V are diffeomorphic to a solid torus � S1�D2 , then M is either not
irreducible or it is diffeomorphic to a spherical space form.

Proof In case (a), we can assume that U and V are the interiors of compact embedded
3–disks. So @U � V . By Alexander’s theorem (see [3, Theorem 1.1]), @U bounds a
3–disk in V . So @U bounds a 3–disk on both sides and hence M � S3 .

Case (b) follows along the same lines; note that every embedded sphere in a solid torus
bounds a ball.

For case (c) we can assume that M is irreducible. Moreover, by adding collar neigh-
borhoods, we can assume that @U \@V D∅. Let T D @U and V 0DM n Int U . Then
T is compressible in V and, by Proposition 2.6, we find a spanning disk D � Int V .
If also D � U , then U nD is a 3–ball and M D .U nD/[V and we are done by
case (b). So assume that D � V 0 . Then by Lemma 2.9(b), either V 0 is a solid torus
or U is contained in an embedded 3–ball B �M . In the latter case, M D B [ V

and we are again done by case (b). Finally, if V 0 is a solid torus, we are done by
Lemma 2.9(c).

Lemma 2.11 Let M be a manifold and T �M an embedded 2–torus that separates
M into two connected components whose closures U;V � M are diffeomorphic
to Klein2

z�I and S1 �D2 , respectively. Then M is either not irreducible or it is
diffeomorphic to a spherical space form.

Geometry & Topology, Volume 22 (2018)
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Proof Consider the double cover yU !U for which yU � T 2�I . This cover extends
to a double cover �M !M . Let T 0 � �M be the torus that projects to the zero section
in Klein2

z�I . Then, as in the last part of the proof of Lemma 2.9(c), we can write�M D S1 #T 0 S2 , where S1 and S2 are solid tori. So �M is either diffeomorphic to
S1 �S2 or a lens space. In the first case, M is either diffeomorphic to S1 �S2 or
RP3 # RP3 and in the second case, M is still spherical (see also [1]).

The following lemma will be important in the proof of [D, Lemma 2.7].

Lemma 2.12 Let M be compact, orientable, irreducible manifold (possibly with
boundary) that is not diffeomorphic to a spherical space form. Consider a compact,
connected 3–dimensional submanifold N �M whose boundary components are tori
and that carries a Seifert fibration. Assume that each boundary component T � @N

that is compressible in M either bounds a solid torus � S1 �D2 on the other side
or T separates M into two components and is incompressible in the component of
M nT that does not contain N (if T � @M , then this component is empty).

Then there are two cases: In the first case there is one boundary torus T � @N that
bounds a solid torus on the same side as N . In the second case every boundary
component of N either bounds a solid torus on the side opposite to N or it is even
incompressible in M . Moreover, in the second case, the generic Seifert fibers of N are
incompressible in M .

Proof Some of the following arguments can also be found in [2; 5]. Denote the
boundary tori of N by T1; : : : ;Tm . Assume that there is a component Ti that bounds
a solid torus Si on the side opposite to N such that the Seifert fibers in Ti are
incompressible in Si . Then we can extend the Seifert fibration of N to Si . So assume
in the following that for any Ti that bounds a solid torus Si on the other side, the
Seifert fibers of Ti are nullhomotopic in Si . Denote by O the base orbifold of the
Seifert fibration on N and call the projection � W N !O . We remark that since M is
orientable, the only singular points of O are cone points. Each Ti corresponds to a
boundary circle Ci D �.Ti/� @O .

We first show that there is at most one Ti that bounds a solid torus Si on the side
opposite to N (we will call it from now on T1 ): Assume, there were two such
components T1 and T2 and denote the respective solid tori by S1 and S2 . Let ˛ �O

be an embedded arc connecting C1 and C2 that does not meet any singular points.
The preimage Z˛ D �

�1.˛/�N is an annulus whose boundary components are each
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nullhomotopic in S1 or S2 , respectively. Let D1 � S1 and D2 � S2 be compressing
disks for Z˛ \ @S1 and Z˛ \ @S2 , respectively. Then †˛ D D1 [Z˛ [D2 is an
embedded 2–sphere. Since D1 and D2 are nonseparating in S1 and S2 , respectively,
we conclude that †˛ is nonseparating in M . This contradicts the assumption that M

is irreducible.

Next, we show that if T1 bounds a solid torus S1 on the side opposite to N , then the
topological surface underlying O is a planar domain: Assume not. Then there is an
embedded, nonseparating arc ˛ �O whose endpoints are distinct and lie in C1 . As
before, this arc yields a nonseparating sphere †˛ �M , contradicting the irreducibility
assumption of M .

Assume now for the rest of the proof that none of the tori Ti bound a solid torus on the
same side as N . We will show in the following that then none of the tori Ti bounds a
solid torus on either side, and that all Ti as well as the generic Seifert fibers on N are
incompressible in M .

First assume that T1 bounds a solid torus S1 (on the side opposite to N ). So the
topological surface underlying O is a planar domain. We can find a collection of
pairwise disjoint, embedded arcs ˛1; : : : ; ˛k � O with endpoints in C1 that do not
meet any singular points and that cut O into smaller pieces, each of which contain at
most one singular point or one boundary component, and that are bounded by at most
two of the arcs ˛i and parts of C1 . The corresponding spheres †˛1

; : : : ; †˛k
�M

bound closed 3–balls B1; : : : ;Bk �M . Any two such balls are either disjoint or one
is contained in the other. Hence, either there is one Bi containing all other balls or there
are two balls Bi , Bj such that any ball is contained in one of them. In the first case set
U D S1[Bi and in the second case set U D S1[Bi [Bj . From the position of the
balls relatively to S1 we conclude that U is diffeomorphic to a solid torus. Moreover,
we can find a component P � O n .˛1 [ � � � [ ˛k/ whose boundary contains the arc
˛i or the arcs ˛i and j̨ (depending on whether U D S1[Bi or U D S1[Bi [Bj )
such that N D .Bi \N /[��1.P / or N D ..Bi [Bj /\N /[��1.P /, respectively.
We can now distinguish the following cases:

� If P contains an orbifold singularity, then ��1.P / is diffeomorphic to a solid
torus and M DU [��1.P / and we obtain a contradiction using Lemma 2.10(c).

� If P contains a boundary component Cl of O , then we argue as follows: In this
case P is diffeomorphic to an annulus. Let ˛0 � P be an arc connecting Cl

with C1 and choose a compressing disk D0 � S1 for the arc Z˛0 \ @S1 . Then
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Z˛0 [D0 is a compressing disk for Tl . By our assumptions, Tl does not bound
a solid torus. So, by Lemma 2.9(a), a tubular neighborhood of Tl [Z˛0 [D0 is
diffeomorphic to a 3–ball. Since P is diffeomorphic to an annulus, this tubular
neighborhood can be extended to a tubular neighborhood whose boundary is
contained in U . This implies that M is covered by a solid torus and a ball, and
Lemma 2.10(b) gives us a contradiction.

Hence, none of the Ti bound a solid torus on either side.

We argue that the generic Seifert fibers of N are incompressible in N : Using
Lemma 2.10(c), we find that O cannot be a bad orbifold (ie the tear drop or the
football) or a quotient of the 2–sphere. So, we can find a (possibly noncompact) cover
yO!O such that yO is smooth and corresponding to this a cover yN !N such that we

have an S1 –fibration yN ! yO . Observe that yO is not a 2–sphere, because otherwise,
by Lemma 2.10(c), yN � S3 , in contradiction to our assumptions. Using the long exact
homotopy sequence and the fact that �2. yO/D 0, we conclude that a lift of any generic
S1 –fiber  �N is incompressible in yN implying that  is incompressible in N .

Next we show that any generic S1 –fiber  of N is incompressible in M : Assume
that there is a nullhomotopy f W D2!M for a nonzero multiple of  . By a small
perturbation, we can assume that f is transversal to the boundary tori T1; : : : ;Tm .
So f �1.T1[ � � � [Tm/ consists of finitely many circles. Look at one of those circles
 0 �D2 that is innermost in D2 and assume f . 0/ � Ti . If f j 0 is homotopically
trivial in Ti , then we can alter f such that  0 can be removed from the list. So
assume that f j 0 is homotopically nontrivial in Ti . Let D0 � D2 be the disk that
is bounded by  0 . Then by Proposition 2.6 and Lemma 2.9(b) we have f .D0/�N .
Since the generic Seifert fibers of N are incompressible in N , the restriction f j 0
cannot be homotopic to such a fiber, so it projects down to an arc that is homotopic to
a nonzero multiple of the boundary circle Ci under � . Hence, a nonzero multiple of
Ci is homotopically trivial in �1;orbifold.O/. We conclude that O can only be a disk
with possibly one orbifold singularity. But this implies that N is diffeomorphic to a
solid torus, in contradiction to our assumptions.

It remains to show that all tori Ti are incompressible in M . By Lemma 2.9(a), we
conclude that if Ti is compressible in M , then Ti is contained in an embedded 3–
ball. But this however contradicts the fact that the generic Seifert fibers of N are
incompressible in M .
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3 Construction and analysis of simplicial complexes in M

3.1 Setup and statement of the results

In this section, we construct a simplicial complex V that will be used in [D] in combi-
nation with the area evolution result from [B]. We moreover analyze the intersections of
images of V with solid tori in M . The results of this section are topological; however,
we will need to make use of some combinatorial geometric arguments in the proofs.

We first recall the notion of simplicial complexes (compare also with [B, Definition 3.1]).

Definition 3.1 (simplicial complex) A (2–dimensional) simplicial complex V is
a topological space that is the union of embedded, closed 2–simplices (triangles),
1–simplices (intervals) and 0–simplices (points) such that any two distinct simplices
are either disjoint or their intersection is equal to another simplex whose dimension is
strictly smaller than the maximal dimension of both simplices. V is called finite if the
number of these simplices is finite.

In this paper, we assume V moreover to be locally finite and pure. The first property
demands that every simplex of V is contained in only finitely many other simplices
and the second property states that every 0– or 1–dimensional simplex is contained
in a 2–simplex. We will also assume that all 2– and 1–simplices are equipped with
differentiable parametrizations that are compatible with respect to restriction.

We will often refer to the 2–simplices of V as faces, the 1–simplices as edges and
the 0–simplices as vertices. The 1–skeleton V .1/ is the union of all edges and the
0–skeleton V .0/ is the union of all vertices of V . The valency of an edge E � V .1/

denotes the number of adjacent faces, ie the number of 2–simplices that contain E .
The boundary @V is the union of all edges of valency 1.

Next let M be a closed, orientable, irreducible 3–manifold that is not a spheri-
cal space form. Consider a (not necessarily minimal) geometric decomposition of
T1; : : : ;Tm�M of M , ie the components of M n.T1[� � �[Tm/ are either hyperbolic
or Seifert (see Definition 2.7 for more details). We will assume from now on that the
decomposition has been chosen so that no two hyperbolic components are adjacent
to one another. This can always be achieved by adding a parallel torus next to a
torus between two hyperbolic components and hence adding another Seifert piece
� T 2 � .0; 1/. Let Mhyp be the union of the closures of all hyperbolic pieces of
this decomposition and MSeif the union of the closures of all Seifert pieces. Then
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M D Mhyp [MSeif and Mhyp \MSeif D @Mhyp D @MSeif is a disjoint union of
embedded, incompressible 2–tori. Note that this construction parallels the “thick–thin
decomposition” from [A, Proposition 3.16].

The goal of this section is to establish the following proposition. In this proposition, we
need to distinguish the cases in which M is covered by a T 2 –bundle over a circle (ie
in which M is the quotient of a 3–torus, the Heisenberg manifold or the solvmanifold)
and in which it is not. It is not known to the author whether part (a) of the proposition
actually holds in both cases.

Proposition 3.2 There is a finite simplicial complex V and a constant C <1 such
that the following holds:

(a) In the case in which M is not covered by a T 2 –bundle over a circle there is a
map

f0W V !M with f0.@V /� @MSeif

that is a smooth immersion on @V such that the following holds: Let S �

Int MSeif , S � S1 �D2 , be an embedded solid torus whose fundamental group
injects into the fundamental group of M (ie S is incompressible in M ). Let,
moreover, f W V ! M be a piecewise smooth map that is homotopic to f0

relative @V and g a Riemannian metric on M . Then f .V /\S ¤ ∅ and we
can find a compact, smooth domain †�R2 and a smooth map hW †! S such
that h.@†/� @S and such that h restricted to the interior boundary circles of †
of is contractible in @S and h restricted to the exterior boundary circle of † is
noncontractible in @S and such that

area h< C areaf:

(b) In the case in which M is covered by a T 2 –bundle over a circle the following
holds: @V D 0 and there are continuous maps

f1; f2; : : : W V !M

such that for every n� 1, every map f 0nW V !M that is homotopic to fn and
every embedded loop � �M , with the property that all nontrivial multiples of �
are noncontractible in M , the map f 0n intersects � at least n times, ie f 0�1

n .�/

contains at least n points.

We will first establish part (a) of the proposition in Sections 3.2–3.6 and then part (b)
in Section 3.7.
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3.2 Preliminary considerations for the case in which M is not covered by
a T 2–bundle over a circle

Assume in this subsection that M is not covered by a T 2 –bundle over a circle. In order
to establish part (a) of Proposition 3.2, it suffices to construct a simplicial complex V

and a map f0W V !M with the desired properties for every component M 0 �MSeif ,
ie f0.@V / � @M

0 , and check that the inequality involving the areas holds for every
solid torus S �M 0 and every homotope f of f0 . We will hence from now on fix a
single component M 0 �MSeif .

The next lemma ensures that we can pass to a finite cover of M 0 and simplify the
structure of M 0 . This simplification is not really needed in the following analysis, but
it makes its presentation more comprehensible.

Lemma 3.3 Under the assumptions of this subsection there is a finite cover y� 0W �M 0!

M 0 such that the following holds: There is a Seifert decomposition yT1; : : : ; yTm �
�M 0

such that the components of Int �M 0 n . yT1[� � �[
yTm/ are diffeomorphic to the interiors

of manifolds �Mj D†j �S1 for j D 1; : : : ; k , where each †j is a compact orientable
surface (possibly with boundary). The diffeomorphisms can be chosen in such a way
that they can be smoothly extended to the boundary tori.

Moreover, one of the following cases holds:

(A) �M 0 is diffeomorphic to T 2 � I with mD 0 and k D 1.

(B) �M 0 is closed and diffeomorphic to an S1 –bundle over a closed, orientable
surface † with �.†/ < 0. In particular, we may assume that mD k D 1 and
the surface † arises from †1 by gluing together its two boundary circles.

(C) †j has at least one boundary component and �.†j / < 0 for all j D 1; : : : ; k

and at each torus Ti the fibers coming from the S1 –fibration induced from either
side are not homotopic to one another.

Proof The arguments in this proof are similar to those in [4, Proposition 4.4].

Let T1; : : : ;Tm � M 0 be a Seifert decomposition of M 0 , that is, T1 , . . . , Tm are
pairwise disjoint, embedded, incompressible 2–tori such that the components of
Int M 0 n .T1[ � � � [Tm/ are diffeomorphic to the interiors of compact Seifert spaces
M 0

1
; : : : ;M 0

m of M 0 n .T1 [ � � � [Tm/ whose quotient spaces are compact orbifolds
O1; : : : ;Om (possibly with boundary) whose singularities are of cone type.

We first analyze the 2–orbifolds O1; : : : ;Om . By Lemma 2.9(c) and the fact that M

is aspherical we conclude that each Oj is good, ie its interior is diffeomorphic to an
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isometric quotient of S2 , R2 or H2 (observe that otherwise we would be able to cover
M by two solid tori). By the same argument and the fact that every orbifold covering
of Oj induces a covering of Mj , it follows that Oj can also not be a quotient of S2 .
So each Oj is an isometric quotient of R2 or H2 .

If Int Oj is diffeomorphic to an isometric quotient of R2 , then there is a finite covering
yOj !Oj such that yOj is diffeomorphic to a torus or an annulus. Let �M 0

j !M 0
j be

the induced covering. In the first case m D j D 1 and �M D �M 0 D �M 0
j carries an

S1 –fibration over T 2 . Since T 2 fibers over a circle, this would however imply that�M fibers over a circle with T 2 –fibers, in contradiction to our assumptions. So yOj

is diffeomorphic to an annulus and �M 0
j � T 2 � I . We mention the following fact,

which we will use later in the proof: For every natural number N � 1, the covering
yOj !Oj can be chosen so that its restriction to every boundary component of yOj is

an N –fold covering over a circle. We can moreover pass to a covering �Mj !
�M 0

j ,�Mj � T 2 � I such that the composition �Mj !
�M 0

j !M 0
j over each boundary torus

of M 0
j is an N 2 –fold covering of nj WD 1 or nj WD 2 tori over a torus that is induced

by the sublattice N Z2 � Z2 .

If Int Oj is diffeomorphic to an isometric quotient of H2 , then, by an argument from
[4, Lemma 4.1], for every large enough N � 2 we can find a finite orbifold covering
yOj !Oj such that yOj is a manifold and such that the covering map restricted to each

boundary component of yOj is an N –fold covering of the circle. Consider the induced
covering �M 0

j !M 0
j , where �M 0

j is an S1 –bundle over Int yOj . If yOj is closed, then
we are in case (B) of the lemma, so assume in the following that none of the yOj is
closed. The S1 –fibration on each �M 0

j can then be trivialized, ie �M 0
j D
yOj �S1 . We

can hence pass to a further N –fold covering �Mj !
�M 0

j using an N –fold covering of
the S1 –factor. Then for some nj � 1 the composition �Mj !

�M 0
j !M 0

j over each
boundary torus of M 0

j is the disjoint union of nj many N 2 –fold coverings over the
torus, induced by a sublattice N Z2 � Z2 .

Now choose N large enough that the construction of the last two paragraphs can be
carried out for every j D 1; : : : ;m. Observe that the coverings over every Ti coming
from the coverings over the two adjacent M 0

j consist of equivalent pieces. Let N0 D

n1 � � � nk and consider N0=nj many disjoint copies of �Mj for each j D 1; : : : ; k . Then
these copies can be glued together along their boundary to obtain a covering �M 0!M 0 .
The Seifert decomposition on M 0 induces a Seifert decomposition yT 0

1
; : : : ; yT 0m0 of �M 0

all of whose pieces are products.
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We are now almost done. As a final step we successively remove tori yT 0i that are
adjacent to Seifert components � T 2 � .0; 1/. Since �M cannot be a T 2 –bundle over
a circle, these Seifert components can never be adjacent to such a torus yT 0i from both
sides. At the end of this process, we are either left with a single piece � T 2 � I

and we are in case (A) of the lemma or none of the Seifert pieces are diffeomorphic
to T 2 � I . In the latter case we also remove tori yT 0i for which the S1 –fibers coming
from either side are homotopic to one another. This will either result in two distinct
Seifert components getting joined together or in identifying two boundary tori of a single
Seifert component. If at any point in this process the new Seifert component is closed,
then we undo the last step and we are in case (B). Otherwise, we are in case (C).

We will now show that Proposition 3.2(a) is implied by the following proposition.

Proposition 3.4 Let M0 be an arbitrary 3–manifold with �2.M0/D 0 and M �M0

be an embedded, connected, orientable, compact 3–manifold with incompressible
toroidal boundary components such that the fundamental group of M injects into the
fundamental group of M0 .

Assume that M satisfies one of the following conditions:

(A) M � T 2 � I .

(B) M is the total space of an S1 –bundle over a closed, orientable surface † with
�.†/ < 0.

(C) M admits a Seifert decomposition T1; : : : ;Tm �M such that the components
of Int M n .T1[ � � � [Tm/ are diffeomorphic to the interiors of Mj D†j �S1

for j D 1; : : : ; k , where each †j is a compact orientable surface with at least
one boundary component and �.†j / < 0. The diffeomorphisms can be chosen
in such a way that they can be smoothly extended to the boundary tori. Moreover,
at each Ti the fibers of the S1 –fibrations induced from the manifold Mj on
either side are not homotopic to one another.

Then there is a constant C <1, a simplicial complex V and a continuous map

f0W V !M with f0.@V /� @M

that is a smooth immersion on @V such that the following holds:

Let S � Int M , S � S1 �D2 , be an embedded solid torus whose fundamental group
injects into the fundamental group of M (ie S is incompressible in M ). Let, moreover,
f W V !M0 be a piecewise smooth map that is homotopic to f0 relative to @V in M0
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and g a Riemannian metric on M0 . Then f .V /\S ¤∅ and we can find a compact,
smooth domain †�R2 and a smooth map hW †! S such that h.@†/� @S and such
that h restricted to the interior boundary circles of † of is contractible in @S and h

restricted to the exterior boundary circle of † is noncontractible in @S , and such that

area h< C areaf:

Proof that Proposition 3.4 implies Proposition 3.2(a) Let M DMhyp[MSeif be a
closed, orientable, irreducible manifold as defined in Section 3.1 and M 0 a component
of MSeif . By van Kampen’s theorem the fundamental group of M 0 injects into that
of M . Consider now the finite covering y� 0W �M 0 !M 0 from Lemma 3.3. Choose
p 2 �M 0 and consider the push forward y� 0�.�1. �M 0;p// inside �1.M; y� 0�.p//. This
subgroup induces a covering y� W �M !M , which can be viewed as an extension of
y� 0W �M 0!M 0 . Still, the fundamental group of �M 0 injects into that of �M .

The cases (A)–(C) of Lemma 3.3 for �M 0 correspond to the conditions (A)–(C) in
Proposition 3.4. So we can apply Proposition 3.4 for M  �M 0 and M0 

�M , and
obtain a simplicial complex V and a map Of0W V ! �M 0 (observe that �2. �M / D

�2.M / D 0 by Proposition 2.3 and by the fact that M is irreducible). Set f0 D

y� ı Of0W V !M . Then we can lift any homotopy between f0 and a map f W V !M

to a homotopy between Of0 and Of W V ! �M such that f D y� ı Of . Consider now an
incompressible solid torus S �M 0 and choose a component yS � y��1.S/\ �M 0 . Since
y� 0 is a finite covering, we find that yS is a solid torus as well, which is incompressible
in �M 0 . So Proposition 3.4 provides a compact, smooth domain † � R2 and a map
OhW †! �M such that Oh restricted to the exterior boundary circle of † is noncontractible
in @ yS , but Oh restricted to the other boundary circles is contractible in @ yS . Therefore,
hD y� ı Oh has the desired topological properties and we have

area hD area Oh< C area Of D C areaf:

This finishes the proof.

In the following four subsections, we will frequently refer to the conditions (A)–(C).
We first finish off the case in which M satisfies condition (A).

Proposition 3.5 Proposition 3.4 holds if M satisfies condition (A).

Proof Observe that M � T 2 � I � S1 � S1 � I . Denote by A1 and A2 the two
embedded annuli of the form

fptg �S1
� I; S1

� fptg � I �M:
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Let V be their disjoint union and f0W V !M be the map that restricts to the inclusion
on each component of V . Moreover, fix a triangulation on V to give it the structure of
a simplicial complex.

Note that every noncontractible loop � � Int M has nonzero intersection number
with one of the maps f0jA1

or f0jA2
. Consider now the solid torus S �M and let

� � Int S be a noncontractible loop inside S (and hence also inside M ). Choose
i 2 f1; 2g such that f0jAi

has nonzero intersection number with � . Then so does f jAi
.

Let f 0W Ai !M be a small perturbation of f jAi
that is transversal to @S and for

which areaf 0 < 2 areaf . Still, f 0 has nonzero intersection number with � .

Denote the components of f 0�1.S/ by Q1; : : : ;Qp �Ai � S1 � I . The sum of the
intersection numbers of f 0jQj

with � is nonzero. Moreover, by the choice of i none
of these components Qj can contain a circle that is noncontractible in Ai . So each
Qj is contained in a closed disk Q0j �Ai with @Q0j � @Qj , which arises from filling
in all its interior boundary circles. Note that any two such disks, Q0j1

;Q0j2
are either

disjoint or one is contained in the other. By a maximality argument, we can choose
j 2 f1; : : : ;pg such that the intersection number of f 0jQj

with � is nonzero, but
such that Q0j does not contain any other Qj 0 with the same property. Then f 0 has to
have zero intersection number with � on every component of Q0j nQj . Hence, f 0

restricted to every circle of @Qj n @Q
0
j is contractible in @S and f 0 restricted to @Q0j

is noncontractible. So if we choose †DQj �Q0j �D2 �R2 and hD f 0jQj
, then

the desired properties are fulfilled and area h< areaf 0 < 2 areaf .

It remains to prove Proposition 3.4 in the cases in which M satisfies condition (B)
or (C). Its proof in these two cases will be carried out in Section 3.6. The proof makes
use of a simplicial complex V , which will be constructed and analyzed in the following
subsection and relies on a certain combinatorial convexity estimate on V , which will
be derived in Section 3.4 for case (C) and in Section 3.5 for case (B).

3.3 Combinatorial geometry of zM if M satisfies condition (B) or (C)

In this subsection we will set up the proof of Proposition 3.4. In particular, we will
construct the simplicial complex V and introduce the tools that will be needed in the
following two subsections.

Assume that M satisfies condition (B) or (C) in Proposition 3.4, ie M is a compact,
connected, orientable 3–manifold with incompressible toroidal boundary components.
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If M satisfies condition (C), we fix the Seifert decomposition T1; : : : ;Tm of M as well
as the identifications of the components of Int M n .T1[� � �[Tm/ with the interiors of
the products Mj �†j �S1 for j D 1; : : : ; k . Here †1; : : : ; †m are compact surfaces
with at least one boundary component and negative Euler characteristic. If M satisfies
condition (B), then we set m D k D 1 and we can find a torus T1 �M such that
M nT1 is diffeomorphic to the interior of the product †1�S1 , where †1 is a compact,
orientable surface with two boundary circles, which can be obtained from † by cutting
along a nonseparating, embedded loop. Moreover, �.†1/D �.†/ < 0. In either case,
we assume that the diffeomorphisms that identify the interior of each Mj with the
corresponding component of Int M n .T1[ � � �[Tm/ can be continued smoothly up to
the boundary tori. If M satisfies condition (C), then the fibrations coming from either
side of each torus Ti are assumed to be nonhomotopic to one another and in case (B)
we assume that the fibration on M1 has been chosen such that both fibrations agree.

We will mainly be working in the universal covering zM of M . Let � W zM !M be
the covering projection.

Definition 3.6 (chambers) The closures K � zM of components of the preimages
of components of M n .T1 [ � � � [ Tm/ under � are called chambers and the set of
chambers is denoted by K .

Definition 3.7 (walls) The components W of @ zM and of the preimages ��1.Ti/

for i D 1; : : : ;m are called walls and the set of walls is denoted by W . We say that
two distinct chambers K1;K2 2 K are adjacent if they share a common wall.

By van Kampen’s theorem every chamber K 2K can be viewed as the universal cover
of MjK

for a unique jK 2 f1; : : : ; kg. So K � z†jK
�R. The boundary of K is

a disjoint union of walls that cover exactly the tori Ti and the boundary tori of M

that are adjacent to MjK
, and these tori stand in one-to-one correspondence with the

boundary circles of †jK
. Moreover, every wall is diffeomorphic to R2 . For later

purposes, we will replace the j –index by K and write for example MK DMjK
and

†K D†jK
. Note that the interior of every chamber is disjoint from the union of all

walls. So the complement of the union of all walls in zM is equal to the union of the
interiors of all chambers.

Lemma 3.8 Every wall W 2W with W 6� @ zM separates zM into two components.
So every two distinct chambers K1;K2 2 K can only intersect in at most one wall
W DK1\K2 and the adjacency graph of K is a tree.
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Proof If W 2W did not separate zM , then we could find a loop  � zM that intersects
W transversally and exactly once, ie its intersection number with W is 1. However
 � zM must be contractible.

On each torus Ti and boundary torus of M we fix an affine structure and a point
ei 2 Ti for the remainder of this subsection. These affine structures induce an affine
structure on all walls W 2 W . We can assume that the product structures on each
Mj �†j �S1 are chosen so that the circle fibers on each boundary component of Mj

coming from the S1 –factor and the boundary circle of the †j are geodesic circles in
the corresponding torus Ti .

Now, for each j D 1; : : : ; k we choose an embedded section Sj �Mj � †j � S1

of the form †j � fptg. Next, we choose embedded and pairwise disjoint arcs inside
each †j , whose endpoints lie in the boundary of †j and that cut the interior of †j into
a topological ball. Denote their union by C �j �†j and set Cj D C �j �S1 . Now let

V D T1[ � � � [Tm[S1[ � � � [Sk [C1[ � � � [Ck :

The complement Int M nV is a disjoint union of k topological balls � .†1nC
�
1
/�.0; 1/,

: : : ; .†k nC �
k
/� .0; 1/.

By construction, V can be viewed as an embedded, finite and pure 2–dimensional
polygonal complex with @V � @M . The notion of a “polygonal complex” generalizes
the notion of a “simplicial complex” from Definition 3.1, by allowing the faces to be
polygons instead of 2–simplices. The 1–skeleton V .1/ of V , viewed as a polygonal
complex, is the union of @Sj , @Cj and Cj \Sj for all j D 1; : : : ; k . And the set of
vertices V .0/ of V is contained in T1[� � �[Tm[@M . By subdividing the polygonal
faces of V into triangles, we can give V the structure of a finite and pure simplicial
complex. In doing so, we increase the number of edges and faces of V , but the topology
of V still remains the same. In the following, we will fix this simplicial structure, and
the structure of V as a polygonal complex will not be essential for us anymore.

Consider now the universal covering � W zM !M and set zV D ��1.V /� zM . Then
zV inherits the structure of an infinite simplicial complex with @ zV � @ zM and the
components of Int zM n zV are topological balls on which � is injective. Their boundaries
are diffeomorphic to simplicial 2–spheres.

Definition 3.9 (cells) The closure Q of any component of zM n zV is called a cell
and the set of cells is denoted by Q. Two distinct cells are called adjacent if their
intersection contains a point of zV n zV .1/ . Here zV .1/ denotes the 1–skeleton of zV ,
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viewed as a simplicial complex. (Note that the notion of adjacent cells would be the
same if zV .1/ denoted the 1–skeleton of zV with respect to the inherited polygonal
structure on zV as opposed to the simplicial structure.)

So every chamber K 2 K is equal to the union of cells Q � K . Identify K with
z†K�R as before and set CK DCjK

and C �
K
DC �jK

. The structure of zV in K can then
be understood as follows: Let zC �

K
be the preimage of C �

K
under the universal covering

map z†K !†K . Then zV \K is equal to the union of ��1.CK /\K � zC �
K
�R with

��1.SK /\K and @K . So the arrangement of the cells Q � K is reflected by the
identity

(3-1)
[

Q2Q;Q�K

Int QD .Int z†K n
zC �K /� .R nZ/:

We will always refer to the first factor in this cartesian product as the horizontal direction
and to the second factor as the vertical direction. In the next definition we group cells
that share the same horizontal coordinates.

Definition 3.10 (columns) Consider a chamber K 2 K and choose the identification
K Š z†K �R as in the last paragraph. Then the closure E of each component of
.Int z†K n

zC �
K
/�R is called a column. The set of columns of K is denoted by EK .

We say that two distinct columns E1;E2 2 EK are adjacent if they intersect. An
ordered tuple .E0; : : : ;En/ of columns for which Ei is adjacent to EiC1 is called a
chain between E0 and En and n is called its length. It is called minimal if its length
is minimal amongst all chains between the same columns.

So each chamber K 2K is equal to the union of all its columns E 2 EK and every such
column E consists of cells Q�E , which are arranged in a linear manner. Next, we
define distance functions with respect to the horizontal and vertical direction in (3-1).

Definition 3.11 (horizontal and vertical distance within a chamber) Let K 2 K
be a chamber and E1;E2 2 EK two columns. We define their horizontal distance
distHK .E1;E2/ (within K ) to be the minimal length of a chain between E1 and E2 . For
two cells Q1;Q2 �K with Q1 �E1 and Q2 �E2 we define the horizontal distance
distHK .Q1;Q2/D distHK .E1;E2/ (within K ). We say that Q1 and Q2 are vertically
aligned (within K ) if distHK .Q1;Q2/D 0, ie if Q1 and Q2 lie in the same column.

For two cells Q1;Q2 �K we define the vertical distance distVK .Q1;Q2/ (within K )
by the minimal number of times that an arc  W Œ0; 1�! K with  .0/ 2 Int Q1 and
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 .1/ 2 Int Q2 intersects ��1.SK /, ie the number of integers between the second
coordinates of both cells in (3-1). We say that Q1 and Q2 are horizontally aligned
(within K ) if distVK .Q1;Q2/D 0.

Obviously, both distance functions satisfy the triangle inequality. Two cells Q1;Q2�K

are adjacent if and only if distHK .Q1;Q2/CdistVK .Q1;Q2/D 1. And they are disjoint
if and only if this sum is � 2 and not both summands are equal to 1.

Lemma 3.12 Assume that M satisfies condition (B) or (C). Consider a chamber
K 2 K . Then the set of columns EK together with the adjacency relation describes a
tree with constant valency � 4. So, for every two columns E1;E2 2 EK , there is a
unique minimal chain between E1 and E2 , and a chain between E1 and E2 is the
minimal one if and only if it contains each column not more than once. Moreover, for
every three columns E1;E2;E3 2 EK there is a unique column E� 2 EK that lies on
all three minimizing chains between every pair of E1 , E2 and E3 .

Finally, for every two columns E1;E2 2 EK with distHK .E1;E2/� 2, there is at most
one wall W 2W that is adjacent to both E1 and E2 .

Proof By an intersection number argument as in the proof of Lemma 3.8, we find that
a loop in z†K cannot cross a component of zC �

K
� z†K exactly once. This establishes

the tree property.

Now assume that there are two distinct boundary components B1;B2 � @z†K that are
adjacent to two distinct components U1;U2 �

z†Kn
zC �

K
at the same time. Since z†K

is simply connected, the closure of the set B1[B2[U1[U2 separates z†K into two
open components A1 and A2 , one of which, say A1 , has compact closure. So A1

only contains finitely many components of z†K n
zC �

K
and all these components are only

adjacent to each other or to U1 or U2 . This however contradicts the tree property.

In the following we want to understand the adjacency structure of Q on zM . As a first
step we analyze its structure near walls.

Lemma 3.13 There is a constant C0 <1 such that the following holds:

Let W 2 W with W 6� @M be a wall and let K;K0 2 K be the chambers that are
adjacent to W from either side. Then the columns E 2 EK and E0 2 EK 0 intersect W

in affine strips E\W and E0\W (ie domains bounded by two parallel straight lines).
In the case in which M satisfies condition (B), these strips are all parallel and if M
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satisfies condition (C), each pair of strips coming from K and K0 are not parallel to
one another; so they intersect in a nonempty compact set.

We furthermore have the following estimates between the horizontal and vertical dis-
tance functions in K and K0 :

(a) Assume that M satisfies condition (B) or (C) and let Q1;Q2 �K be cells that
are adjacent to a common cell Q0 �K0 . Then

distHK .Q1;Q2/; distVK .Q1;Q2/ < C0:

(b) Assume that M satisfies condition (C) and let Q1;Q2 �K and Q0
1
;Q0

2
�K0

be cells such that Q1 , Q0
1

and Q2 , Q0
2

are adjacent pairs and such that Q0
1

and
Q0

2
are vertically aligned. Then

distVK .Q1;Q2/; distVK 0.Q
0
1;Q

0
2/ < C0 distHK .Q1;Q2/CC0:

(c) Assume that M satisfies condition (C) and consider cells Q1;Q2;Q3;Q4 �K .
Assume that Q1 , Q2 and Q3 , Q4 are vertically aligned pairs and assume that
there are columns E0

1
;E0

2
2 EK 0 such that Q1 and Q4 are adjacent to some

cells in E0
1

and Q2 and Q3 are adjacent to some cells in E0
2

. Then

jdistVK .Q1;Q2/� distVK .Q3;Q4/j< C0:

(d) Assume that M satisfies condition (C) and consider cells Q1;Q2 � K and
Q0

1
;Q0

2
� K0 such that Q1 , Q0

1
and Q2 , Q0

2
are adjacent pairs and that

distHK .Q1;Q2/; distHK 0.Q
0
1
;Q0

2
/� 3. Then

distVK .Q1;Q2/; distVK 0.Q
0
1;Q

0
2/ < C0:

(e) Assume that M satisfies condition (B) and consider cells Q1;Q2 � K and
Q0

1
;Q0

2
�K0 such that Q1 , Q0

1
and Q2 , Q0

2
are adjacent pairs. Then

distVK .Q1;Q2/ < distVK 0.Q
0
1;Q

0
2/CC0 distHK .Q1;Q2/CC0:

(f) Assume that M satisfies condition (B) or (C) and consider cells Q1;Q2 �K

and Q0
1
;Q0

2
�K0 such that Q1 , Q0

1
and Q2 , Q0

2
are adjacent pairs. Then

distHK .Q1;Q2/; distVK .Q1;Q2/

< C0 distHK 0.Q
0
1;Q

0
2/CC0 distVK 0.Q

0
1;Q

0
2/CC0:

(g) Assume that M satisfies condition (B) or (C) and consider cells Q1;Q2;Q3 ,
Q4 �K and Q0

1
;Q0

2
;Q0

3
;Q0

4
�K0 such that Qi and Q0i are adjacent for all
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i D 1; : : : ; 4. Assume moreover that distHK .Q1;Q2/ D distHK .Q3;Q4/ and
distVK .Q1;Q2/D distVK .Q3;Q4/ in an oriented sense, ie the cells Q1 , Q2 , Q3

and Q4 form a “parallelogram” along W . Then

jdistHK 0.Q
0
1;Q

0
2/� distHK 0.Q

0
3;Q

0
4/j; jdistVK 0.Q

0
1;Q

0
2/� distVK 0.Q

0
3;Q

0
4/j< C0:

Proof Note first that in all cases (a)–(g) the cells Qi and Q0i are adjacent to W

(meaning that Qi and Q0i intersect W ). The cells of K and K0 that are adjacent
to W are arranged in a doubly periodic pattern along W . So we can introduce
euclidean coordinates .x1;x2/W W ! R2 such that for any two cells Q1;Q2 � K

that are adjacent to W and any points p1 2 Q1 \W and p2 2 Q2 \W we haveˇ̌
distHK .Q1;Q2/�jx1.p1/�x1.p2/j

ˇ̌
<C and

ˇ̌
distVK .Q1;Q2/�jx2.p1/�x2.p2/j

ˇ̌
<

C for some uniform constant C . Similarly, we can find Euclidean coordinates
.x0

1
;x0

2
/W W !R2 with the analogous behavior for the cells of K0 that are adjacent

to W such that the origins of .x1;x2/ and .x0
1
;x0

2
/ agree. The transformation matrix

A 2R2�2 with A.x1;x2/D .x
0
1
;x0

2
/ is invertible. In case (C) we have A12 ¤ 0 and

in case (B) we have A12 D 0;A11 ¤ 0 and A22 D 1. All assertions of the lemma now
follow from the corresponding statements for these two coordinate systems.

Next, consider a smooth arc  W Œ0; 1�! zM .

Definition 3.14 (general position) We say that  is in general position if its endpoints
 .0/;  .1/ 62 zV and if  intersects zV transversally and only in zV n zV .1/ . If Q1;Q2 2Q
are two cells with  .0/2Q1 and  .1/2Q2 , then we say that  connects Q1 with Q2 .

Let �; H > 0 be constants whose value will be determined later, in Section 3.6. In
the course of the following three subsections, we will need to assume that � is small
enough and H is large enough to make certain arguments work out.

Definition 3.15 (length and distance) The (combinatorial) length j j of an arc
 W Œ0; 1�! zM in general position is defined as

j j D �.number of intersections of  with ��1.S1[ � � � [Sk//

CH.number of intersections of  with ��1.T1[ � � � [Tm//

C .number of intersections of  with ��1.C1[ � � � [Ck//:

The (combinatorial) distance dist.Q1;Q2/ between two cells Q1;Q2 2 Q is the
minimal combinatorial length of all arcs in general position between Q1 and Q2 . An
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arc  W Œ0; 1�! zM in general position is said to be (combinatorially) minimizing if
its length is equal to the combinatorial distance between the two cells that contain its
endpoints.

Observe that .Q; dist/ is a metric space. On a side note, it is an interesting “coincidence”
that this metric space approximates the conjectured geometric behavior of the Ricci
flow metric t�1gt lifted to the universal cover zM .

Our main characterization of combinatorially minimizing arcs will be stated in Propo-
sition 3.20 in case (C) and in Proposition 3.26 in case (B). We conclude this subsection
by pointing out three basic properties of combinatorially minimizing arcs.

Lemma 3.16 If  W Œ0; 1� ! zM is combinatorially minimizing, then so is every
orientation-preserving or -reversing reparametrization and every subsegment of 
whose endpoints don’t lie in zV .

Proof Obvious.

Lemma 3.17 For any cell Q 2 Q, the preimage �1.Q/ under a combinatorially
minimizing arc  W Œ0; 1�! zM is a closed interval, that is,  does not reenter Q after
exiting it.

Proof Otherwise we could replace  by a shorter arc.

Lemma 3.18 Assume that  W Œ0; 1�! zM is combinatorially minimizing and stays
within some chamber K 2 K . Let E0; : : : ;En 2 EK be the columns that  intersects
in that order. Then .E0; : : : ;En/ is a minimal chain in EK .

Moreover,  intersects each component of ��1.S1[ � � � [Sk/ at most once. So, if the
endpoints of  lie in cells Q1;Q2 2Q, then

j j D dist.Q1;Q2/D distHK .Q1;Q2/C � distVK .Q1;Q2/:

Finally, for any two cells Q1;Q2 �K we have

dist.Q1;Q2/� distHK .Q1;Q2/C � distVK .Q1;Q2/:

Proof This follows from the cell structure of K (see also (3-1)).

3.4 A combinatorial convexity estimate if M satisfies condition (C)

In this subsection we assume that M satisfies condition (C) in Proposition 3.4. We
will analyze the combinatorial distance function on Q in this case. The main result in
this section will be the combinatorial convexity estimate in Proposition 3.24.
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Lemma 3.19 There are constants �� > 0 and H� < 1 such that if � � �� and
H �H� , the following holds:

Consider two chambers K;K0 2 K that are adjacent to a common wall W DK\K0

from either side and assume that  W Œ0; 1�!K [K0 is combinatorially minimizing.
Then  intersects W at most twice.

(a) If  intersects W exactly once, then there is a unique column E 2 EK in K

that is both adjacent to W and that intersects  . The same is true in K0 .

(b) If  intersects W exactly twice and  .0/;  .1/ 2 K , then there is a unique
column E0 2 EK 0 such that  is contained in K[E0 . Moreover there are exactly
two columns E1;E2 2 EK that are adjacent to W and that intersect  . And we
have distHK .E1;E2/ >H .

(c) If  does not intersect W , but intersects two columns E1;E2 2 EK that are
both adjacent to W , then distHK .E1;E2/ < 3H .

Proof We first establish assertion (a). Assume without loss of generality that  .0/2K

and  .1/ 2K0 . Let Q�K be the last cell that  intersects inside K and Q0 �K0

the first cell in K0 . So Q;Q0 are adjacent. Let E 2 EK be the column that contains
Q and E0 the column that contains Q0 . Assume that contrary to the assertion there is
another column E1 ¤E 2 EK that is adjacent to W and intersects  . Choose a cell
Q1 �E1 that intersects  . Then, by Lemma 3.18,

dist.Q1;Q
0/D dist.Q1;Q/CH D distHK .E1;E/C � distVK .Q1;Q/CH:

Let Q2 � E1 be the cell that is horizontally aligned with Q. Then, by the triangle
inequality and Lemma 3.18,

dist.Q2;Q
0/� dist.Q2;Q/C dist.Q;Q0/� distHK .E1;E/CH:

On the other hand, again by the triangle inequality and Lemma 3.18,

dist.Q2;Q
0/C � distVK .Q1;Q/� dist.Q2;Q

0/C dist.Q1;Q2/

� dist.Q1;Q
0/

D distHK .E1;E/C � distVK .Q1;Q/CH:

It follows that

dist.Q2;Q
0/D distHK .E1;E/CH:
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Since E1\W and E0\W are nonparallel strips in W , we can find cells Q3 �E1

and Q0
3
�E0 that are adjacent to each other and, by Lemma 3.13(b), we can estimate

distVK .Q2;Q3/D distVK .Q;Q3/; distVK 0.Q
0;Q03/ < C0 distHK .E1;E/CC0:

We then conclude

distHK .E1;E/CH D dist.Q2;Q
0/� dist.Q2;Q3/C dist.Q3;Q

0
3/C dist.Q03;Q

0/

< 2�.C0 distHK .E1;E/CC0/CH:

For � < .4C0/
�1 this implies distHK .E1;E/ < 1 and hence E1 DE .

Next, we show assertion (b). Let E1;E2 2 EK be the columns that  intersects right
before intersecting W for the first time and right after intersecting W for the second
time. Let E0

1
;E0

2
2 EK 0 be the first and last columns that  intersects inside K0 .

Assertion (a) applied to the subsegments of  between  .0/ and E0
2

and between E0
1

and  .1/ yields that E0 WD E0
1
D E0

2
. Since the subsegment of  that is contained

in K0 has both of its endpoints in E0 , it has to be fully contained in it. Moreover,
assertion (a) implies that there are no other columns than E1 and E2 in K that are
adjacent to W and intersect  .

It remains to show the inequality on the horizontal distance between E1 and E2 .
We will do this by comparing the intrinsic and extrinsic distance between these two
columns. Choose Q1 � E1 and Q0

1
� E0 such that  crosses W between Q1 and

Q0
1

for the first time and pick Q2 �E2 and Q0
2
�E0 accordingly. So Q1 , Q0

1
and

Q2 , Q02 are adjacent pairs. Lemma 3.13(b) provides the bound distVK .Q1;Q2/ <

C0 distHK .Q1;Q2/CC0 . So

2H � dist.Q1;Q2/� distHK .Q1;Q2/C � distVK .Q1;Q2/

< .1C �C0/ distHK .Q1;Q2/C �C0:

The desired inequality follows for � < .2C0/
�1 and H > 2. This finishes the proof of

assertion (b).

We can now show that  intersects W at most twice. Assume not. After passing to a
subsegment and possibly reversing the orientation, we may assume that  intersects
W exactly three times and that  .0/ 2 K ,  .1/ 2 K0 . By assertion (b) applied to
subsegments of  which intersects W exactly twice, we find that there are columns
E1;E3 2 EK and E0

2
;E0

4
2 EK 0 , which are all adjacent to W , such that  crosses W

first between E1 and E0
2

, then between E0
2

and E3 and finally between E3 and E0
4

.
Choose cells Q1 � E1 , Q0

1
;Q0

2
� E0

2
, Q2;Q3 � E3 and Q0

3
� E0

4
such that 
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crosses W first between Q1 and Q0
1

, then between Q0
2

and Q2 and finally between
Q3 and Q0

3
. So

dist.Q1;Q
0
3/

D dist.Q1;Q
0
1/C dist.Q01;Q

0
2/C dist.Q02;Q2/C dist.Q2;Q3/C dist.Q3;Q

0
3/

D 3H C � distVK 0.Q
0
1;Q

0
2/C � distVK .Q2;Q3/:

Since E1\W and E0
4
\W are nonparallel strips in W , we can find cells Q� �E1

and Q�0 �E0
4

that are adjacent to each other. By Lemma 3.13(c),

distVK .Q1;Q
�/ < distVK .Q2;Q3/CC0; distVK 0.Q

�0;Q03/ < distVK 0.Q
0
1;Q

0
2/CC0:

So

dist.Q1;Q
0
3/� dist.Q1;Q

�/C dist.Q�;Q�0/C dist.Q�0;Q03/

< � distVK .Q2;Q3/C �C0CH C � distVK 0.Q
0
1;Q

0
2/C �C0

D dist.Q1;Q
0
3/� 2H C 2�C0:

We obtain a contradiction for �C0 <H .

Finally, we show assertion (c). Assume now that  does not intersect W and choose
cells Q1 �E1 and Q2 �E2 that intersect  . Since  stays within K we have

dist.Q1;Q2/D distHK .E1;E2/C � distVK .Q1;Q2/:

Let Q3�E2 be the cell that is horizontally aligned with Q1 . By the triangle inequality
and the previous equation,

dist.Q1;Q3/D distHK .E1;E2/:

Let Q0
1
� K0 be a cell that is adjacent to Q1 and let E0 2 EK 0 be the column

that contains Q0
1

. Since E0 \W and E2 \W are nonparallel strips, we can find
cells Q0

2
� E0 and Q00

2
� E2 that are adjacent. By Lemma 3.13(b), we have

distVK .Q
00
2
;Q3/; distVK 0.Q

0
1
;Q0

2
/ < C0 distHK .E1;E2/CC0 . So

distHK .E1;E2/

D dist.Q1;Q3/� dist.Q1;Q
0
1/C dist.Q01;Q

0
2/C dist.Q02;Q

00
2/C dist.Q002;Q3/

< 2H C 2�C0 distHK .E1;E2/C 2�C0:

The desired inequality follows for 2�C0 <
1

10
and H > 1.

The next proposition provides an accurate characterization of the behavior of a mini-
mizing arc.
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Proposition 3.20 Assume that M satisfies condition (C). There are constants �� > 0

and H� <1 such that if �� �� and H �H� , the following holds:

Consider a combinatorially minimizing arc  W Œ0; 1�! zM . Then:

(a) For every chamber K 2 K and every column E 2 EK , the preimage �1.E/ is
a connected interval, ie  does not exit and reenter E .

(b)  intersects every wall W 2W at most twice. Assume that K;K0 2 K are two
chambers that are adjacent to a wall W 2W from either side. Then:

(b1) If  intersects W exactly once, then there is a unique column E 2 EK that is
both adjacent to W and intersects  . Moreover, for every column E� 2 EK

that also intersects  , the minimal chain between E and E� intersects W

in at most two columns.

(b2) If  intersects W twice and its endpoints lie on the same side of W as K ,
then within both intersections it stays inside a column E0 2 EK 0 adjacent
to W . Moreover, there are exactly two columns E1;E2 2 EK that intersect
 in this order and that are adjacent to W and we have distHK .E1;E2/ >H .
The arc  leaves K through W right after E1 and reenters K through W

right before E2 .

(b3) If  does not intersect W , but intersects two columns E1;E2 2 EK that are
both adjacent to W , then distHK .E1;E2/ < 3H .

(c) Consider a chamber K 2 K and let E1; : : : ;En 2 EK be the columns of K that
 intersects in that order. Then there are columns E�

1
; : : : ;E�n 2 EK such that:

(c1) E�
1
DE1 and E�n DEn .

(c2) distHK .E
�
i ;Ei/� 1 for all i D 1; : : : ; n.

(c3) E�
1
; : : : ;E�n are pairwise distinct and lie on the minimal chain between E1

and En in that order.

(c4) If E�i ¤ Ei , then there are two walls W; W 0 � @K that both intersect 
twice such that  exits K through W 0 right after Ei�1 , enters K through
W 0 right before Ei , exits K through W right after Ei and enters K through
W right before EiC1 . In particular Ei does not lie on the minimal chain
between E1;En and Ei is not adjacent to Ei�1 or EiC1 .

(c5) If Ei and EiC1 are adjacent, then  stays within Ei [EiC1 between Ei

and EiC1 .
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(c6) If Ei and EiC1 are not adjacent, then there is a wall W � @K such that
 exits K through W right after Ei and enters K through W right be-
fore EiC1 . The columns Ei , E�i , E�

iC1
, EiC1 lie in that order (some of

these columns might be the same) on a minimal chain that runs along W .

(c7) If i1 < i2 and Ei1
;Ei2

are adjacent to a common wall W � @K , then either
.Ei1

; : : : ;Ei2
/ form a minimal chain or i2 D i1C 1 and  intersects W

right after Ei1
and right before Ei2

.

Proof The proof uses induction on the combinatorial length j j of  . The case
j j D 0 is obvious, so assume that j j > 0 and that all assertions of the proposition
hold for all combinatorially shorter minimizing arcs.

Let W 2W be a wall and K;K0 2K the chambers that are adjacent to W from either
side. We first check the first statement of assertion (b). Assume that  intersects W

three times or more. Then by assertion (b2) of the induction hypothesis applied to every
subsegment of  that intersects W exactly twice, we obtain that  stays within K[K0

between its first and last intersection with W . This however contradicts Lemma 3.19.

Assertion (b2) follows similarly. Assume that  intersects W twice and that both
endpoints lie on the same side of W as K . Let E 2 EK be the first column that 
intersects in K and E� 2 EK the last. By assertion (b1) of the induction hypothesis
applied to the subsegment of  from  .0/ to E� , we find that E DE� . By assertion
(a) of the induction hypothesis,  remains within E between both intersections with W .
So we obtain again that  stays within K[K0 between its first and second intersection
with W . The rest follows with Lemma 3.19(b).

For assertion (b1), observe that the complete assertion (c) holds for  in the case in
which  crosses a wall exactly once, because in this case assertion (c) is only concerned
with proper subsegments of  . So consider the columns E1; : : : ;En;E

�
1
; : : : ;E�n 2EK .

Without loss of generality, we may assume that  .1/ lies on the same side of W as K .
This implies that E1 is adjacent to W . If Ei for some 2� i � n was adjacent to W as
well, then by assertions (c7) and (b2) the arc  must be contained in K in between E1

and Ei . This is however impossible by Lemma 3.19(a) applied to the subsegment of
 between the last column in K0 and Ei . So the first part of (b1) holds. Consider now
the minimal chain between E1 and some Ei and assume that three of its columns are
adjacent to W . Those columns need to be the first three columns in this chain. We can
assume that Ei DEn , because otherwise we could pass to a subsegment of  . Since,
by what we have already shown,  cannot intersect any column that is adjacent to W
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other than E1 , it cannot happen that E2 is adjacent to E1 (compare with assertions
(c4)–(c5)). So, by assertion (c6), there is a wall W 0 � @K with W 0 ¤ W that is
intersected twice by  in between E1 and E2 . So, if H is sufficiently large, assertion
(c6) implies that the first three columns on the minimal chain between E1 and E�

2
,

ie the first three columns on the minimal chain between E1 and En are adjacent to
both W 0 and W . This however contradicts Lemma 3.12 and finishes the proof of
assertion (b1).

We now show assertions (c1)–(c7), (a) and (b3). Observe that by the induction hypoth-
esis, it suffices to restrict our attention to the case in which  .0/;  .1/ 2K . Consider
now the columns E1; : : : ;En as defined in the proposition. If n� 2, we are done with
the choice E�

1
DE1 and E�

2
DE2 by assertion (b2) and assuming H > 2. So assume

that n� 3. Assertion (c5) and the first part of (c6) follows immediately by passing to
the subsegment between Ei and EiC1 and using the induction hypothesis. We will
now distinguish the cases of when En�1 lies on the minimal chain between E1 and
En or not and establish assertions (c1)–(c4) and the second part of assertion (c6) in
each case. Based on these assertions we will next conclude assertion (c7) in both cases.

Consider first the case in which En�1 lies on the minimal chain between E1 and En .
Then we can apply the induction hypothesis to the subsegment of  between E1

and En�1 and obtain the columns E�
1
; : : : ;E�

n�1
on the minimal chain between E1

and En�1 . Moreover, we set E�n DEn . Assertions (c1)–(c6) follow immediately.

Next consider the case in which En�1 does not lie on the minimal chain between
E1 and En . Define E�

1
; : : : ;E�

n�2
using the induction hypothesis applied to the

subsegment of  between E1 and En�1 .

Assume first that En and En�1 are adjacent. Then En must lie on the minimal chain
between E1 and En�1 (by our assumption and the tree property; see Lemma 3.12).
So En�2 cannot be adjacent to En�1 , because that would imply by assertion (c4) of
the induction hypothesis that En�2 DEn and it is elementary that  cannot reenter a
column without exiting K . This means (by assertion (c6) of the induction hypothesis)
that there is a wall W � @K that intersects  twice and that is adjacent to En�2 , E�

n�2

and En�1 and hence also En . This however contradicts assertion (b2).

So En and En�1 are not adjacent and by assertion (b2) both columns are adjacent
to a wall W � @K such that  intersects W right after En�1 and right before En .
By the tree property of EK there is a column E� 2 EK that lies on the three minimal
chains between En�1 , En and E1 , En�1 and E1 , En . So E� is adjacent to W
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and horizontally lies between En�1 , En . By our earlier assumption, E� ¤ En�1 .
Assertion (b1) applied to a subsegment of  implies that distHK .E

�;En�1/� 1; so E�

is adjacent to En�1 . If En�2 was adjacent to En�1 , then En�2 DE� contradicting
assertion (b2). So, by assertion (c6) of the induction hypothesis, En�2 , E�

n�2
and

En�1 are adjacent to a wall W 0 � @K such that  intersects W 0 twice between En�2

and En�1 . This implies W ¤ W 0 . Set E�
n�1
D E� and E�n D En . Assertions

(c1)–(c3) follow immediately. Assertion (c4) and the second part of (c6) hold with the
walls W and W 0 that we have just defined.

We now establish assertion (c7) in the general case (ie independently of whether En�1

lies on the minimal chain between E1 and En or not). Assume that .Ei1
; : : : ;Ei2

/

does not form a minimal chain. Then  has to leave K in between Ei1
and Ei2

,
ie by assertion (c5) there is a j 2 fi1; : : : ; i2 � 1g such that Ej and EjC1 are not
adjacent and hence, by assertion (c6),  has to intersect a wall W 0 � @K in between
Ej and EjC1 . The columns on the minimal chain between E�j ;E

�
jC1

are adjacent to
both W and W 0 and for H > 10 there are at least 3 such columns. So, by Lemma 3.12,
W DW 0 and, by assertion (b2), we must have Ei1

DE�j and Ei2
DE�

jC1
.

Finally, assertion (a) is a direct consequence of assertion (c7) and assertion (b3) follows
from assertion (c7) and Lemma 3.19(c).

Next, we analyze the relative behavior of two combinatorially minimizing arcs.

Lemma 3.21 There are constants �� > 0 and H� < 1 such that if � � �� and
H �H� , then the following holds:

Let 1; 2W Œ0; 1�! zM be two combinatorially minimizing arcs and consider a wall
W 2W that is adjacent to two chambers K;K0 2 K on either side. Assume that 1

and 2 intersect W exactly once and that 1.0/ and 2.0/ lie in a common chamber
on the same side of W as K . If that chamber is K , we additionally require that the
cells that contain these points are vertically aligned. Similarly, assume that 1.1/ and
2.1/ lie in a common chamber on the same side of W as K0 . If that chamber is K0 ,
we also require that the cells that contain these points are vertically aligned.

Let Q1;Q2 � K be the cells that 1 and 2 intersect right before crossing W and
let Q0

1
;Q0

2
� K0 be the cells that 1 and 2 intersect right after crossing W . Then

every pair of the cells Q1 , Q2 , Q0
1

and Q0
2

has combinatorial distance bounded by 4

or 4CH depending on whether they lie on the same side of W or not.
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Proof Let E1;E2 2 EK be the columns that contain Q1 and Q2 . We first show that
distHK .E1;E2/� 3 (in fact, we can show that distHK .E1;E2/� 1, but we don’t need
this result here).

Define E�
1
;E�

2
2 EK to be the first columns in K that are intersected by 1 and 2 .

In the case 1.0/; 2.0/ 2 K we have E�
1
D E�

2
. So, in either case, we can find

a wall W � � @K with W � ¤ W that is adjacent to both E�
1

and E�
2

. Consider
the minimal chain between E1 and E�

1
and let E��

1
be the last column on that

chain that is adjacent to W . Define E��
2

accordingly. By Proposition 3.20(b1),
distHK .E1;E

��
1
/; distHK .E2;E

��
2
/� 1. We need to show that distHK .E

��
1
;E��

2
/� 1.

If W and W � are adjacent to a common column, then both E��
1

and E��
2

have to be
adjacent to W � since in that case a minimal chain between E1 and E�

1
first runs along

W and then along W � . Hence, in that case, distHK .E
��
1
;E��

2
/� 1 by Lemma 3.12. If

W;W � are not adjacent to a common column, we follow the minimal chain between
E��

1
and E�

1
, then the minimal chain between E�

1
;E�

2
(along W � ) and finally the

minimal chain between E�
2

and E��
2

, to obtain a chain that connects E��
1

with E��
2

and that intersects W only in its first and last column. By the tree property of EK this
chain covers the minimal chain between E��1 and E��2 , and hence it has to include all
columns along W between E��

1
and E��

2
. So distHK .E

��
1
;E��

2
/� 1.

It follows that distHK .Q1;Q2/DdistHK .E1;E2/�3. Analogously, distHK .Q
0
1
;Q0

2
/�3.

It now follows from Lemma 3.13(d) that distVK .Q1;Q2/; distVK .Q
0
1
;Q0

2
/ < C0 . This

establishes the claim for � < C�1
0

.

Lemma 3.22 There are constants �� > 0 and H�;C1 <1 such that if � � �� and
H �H� , the following holds:

Let K 2 K be a chamber and Q1;Q1;Q2;Q2 � K be cells such that Q1 , Q1

and Q2 , Q2 are vertically aligned pairs in K . Assume that the vertical order of
the pair Q1 , Q1 is opposite to the one of Q2 , Q2 (ie Q1 is “above” Q1 and Q2

is “below” Q2 or the other way round). Let ; x W Œ0; 1�! zM be minimizing arcs
from Q1 to Q2 and from Q1 to Q2 . Then we can find cells Q0;Q0 �K such that
Q0 intersects  , Q0 intersects x and such that distHK .Q

0;Q0/ < 3H , distVK .Q
0;Q0/ <

C1H and dist.Q0;Q0/ < 4H .

Proof Note that the last inequality follows from the first two inequalities if �� <C�1
1

.

Let E0;E! 2 EK be the columns that contain Q1 , Q1 and Q2 , Q2 . We first invoke
Proposition 3.20(c) on  to obtain columns E1; : : : ;En , E�

1
; : : : ;E�n 2 EK with

E1 D E�
1
D E0 and En D E�n D E! . Then E�

1
; : : : ;E�n lie on the minimal chain
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L between E0 and E! . Let S � L[E1 [ � � � [En be the union of all cells in K

that intersect  and all cells in L [E1 [ � � � [En that are adjacent to those cells
outside K which intersect  . Then Q1;Q2 � S and by the results of Proposition 3.20
these two cells lie in the same connected component of S . Based on the set S we
construct another set S 0 � L as follows: S 0 is the union of S \L with all cells in
each E�i that are horizontally aligned with a cell in S \Ei . Then again Q1;Q2 � S 0

and both cells lie in the same connected component of S 0 . Similarly, we can invoke
Proposition 3.20(c) on x , obtaining columns E1; : : : ;Exn 2 EK and E�

1
; : : : ;E�

xn on
L and we can define S and S 0 in the same way. So Q1;Q2 � S 0 and both cells
lie in the same connected component of S 0 . Since the cells on L are arranged on a
rectangular lattice and the cells Q1 , Q1 and Q2 , Q2 lie on opposite sides of L and
have opposite vertical order, we conclude that the sets S and S 0 have to intersect. Let
Qı � S 0\S 0 be a cell in the intersection and Eı �L the column containing Qı . So
we can find cells Q;Q 2 Q that intersect  and x in such a way that the following
holds: Either Q�L and Qı DQ, or Q� .E1[ � � �[En/n Int L and Q is adjacent
and horizontally aligned with Qı , or Q 6� K and Q is either adjacent to Qı or
Qı �E�i for some i 2 f1; : : : ; ng for which E�i ¤Ei and Q is adjacent to a cell in
Ei that is adjacent to Qı and horizontally aligned with it. In the first two cases we set
Q0 WDQ. In the third case, we will define Q0 later. So, if Q�K , then Q0 intersects 
and distHK .Q

0;Qı/� 1 and distVK .Q
0;Qı/D 0. The analogous characterization holds

for Q and we define Q0 in the same way if Q�K .

We now consider the case in which distHK .E
ı;E�i /� 1 for some i 2 f1; : : : ; ng, and

we establish the existence of a cell Q0�K that intersects  and that is within bounded
distance from Qı . If Q�K , then we are done by the previous paragraph. So assume
that Q 6�K . Let K0 2 K be the chamber that contains Q and let W DK\K0 2W
be the wall between K and K0 . So  intersects W twice and Eı is adjacent to W .
Choose i 0 2 f1; : : : ; n� 1g such that  intersects W between Ei0 and Ei0C1 . If Eı

lies between E�i0 and E�
i0C1

, then distHK .E
ı;E�i0/ � 1 or distHK .E

ı;E�
i0C1

/ � 1, by
our initial assumption. If Eı lies on L not between E�i0 and E�

i0C1
, then we can

conclude, by applying Proposition 3.20(b1) to subsegments of  which intersect W

exactly once, that we still have distHK .E
ı;E�i0/ � 1 or distHK .E

ı;E�
i0C1

/ � 1 (note
that there is an i 00 ¤ i 0; i 0 C 1 such that the minimal chain from Ei0 or Ei0C1 to
Ei00 contains the columns E�i0 or E�

i0C1
and Eı in that order). So, in either case,

distHK .E
ı;E�i0/ � 1 or distHK .E

ı;E�
i0C1

/ � 1 and, after possibly rechoosing i , we
may assume that i D i 0 or i D i 0C 1.
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Now let Q0 �Ei be the cell that is intersected by  right before or right after W , de-
pending on whether iD i 0 or iD i 0C1. Then distHK .Q

ı;Q0/�2 and by Lemma 3.13(b)
we get distVK .Q

ı;Q0/ < 3C0C 1.

Combining the previous conclusion with the analogous conclusion for x and the triangle
inequality yields the desired result in the case in which there are indices i 2 f1; : : : ; ng

and N{ 2 f1; : : : ; xng such that distHK .E
ı;E�i / � 1 and distHK .E

ı;E�
N{ / � 1. So, after

possibly interchanging the roles of  and x , it remains to consider the case in which
there is an index i 2 f1; : : : ; n�1g such that Eı lies strictly in between E�i and E�

iC1

and such that Eı is not adjacent to either of these columns. We will henceforth always
assume that. Let W � @K be the wall that  intersects between Ei and EiC1 and
let K0 2 K be the chamber on the other side. Then Ei , E�i , Eı , E�

iC1
, EiC1 are

arranged along W in that order and, by Lemma 3.12, we must have Q�K0 . (Note
that W is the only wall that both intersects  twice and is adjacent to Eı , because any
such wall must be adjacent to at least 3 columns of the chain between E�i and E�

iC1
.)

Let E 2 EK 0 be the column that contains Q. Finally, let Q0 �Ei be the cell that 
intersects right before W .

Consider the columns on L (not strictly) between E�
N{ and E�

N{C1
for each N{D1; : : : ;xn�1.

If, for some N{ , there are at least 3 such columns that are also (not strictly) between
E�i and E�

iC1
, we must have distHK .E

�
N{ ;E

�
N{C1

/ > 1 and all columns between E�
N{ and

E�
N{C1

have to be adjacent to W by Lemma 3.12. However, this situation can only
occur for at most one index N{ . So there are two different cases: In the first case there is
no such N{ and hence all columns that are strictly between E�i and E�

iC1
are contained

in E�
1
[ � � � [E�

xn . In this case all columns of this union that are strictly between E�i
and E�

iC1
have to be adjacent to one another, and hence by Proposition 3.20(c4) x has

to intersect all these columns. In the second case there is exactly one such N{ and each
column that is strictly between E�i and E�iC1 either lies (not strictly) between E�

N{ and
E�
N{C1

or in one of the unions E�
0
[� � �[E�

N{�1
and E�

N{C1
[� � �[E�

N{C1
. Those two subsets

can only cover the remaining columns, which are strictly between E�i and E�
iC1

, if
the columns of E�

0
; : : : ;E�

xn that lie strictly between E�i and E�iC1 are adjacent to one
another, which implies that either E�

N{ is adjacent to E�
N{�1

and/or E�
N{C1

is adjacent
to E�

N{C1
, depending on the side on which the remaining columns lie. So we conclude

using Proposition 3.20(c4) that if not all columns that are strictly between E�i and
E�

iC1
are also (not strictly) between E�

N{ and E�
N{C1

, then E�
N{ and/or E�

N{C1
lies strictly

between E�i and E�
iC1

and we have E�
N{ D EN{ and/or E�

N{C1
D EN{C1 , respectively.

Now by Proposition 3.20(b1) applied to the minimal chain between E0 and EN{ and/or
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the minimal chain between En and EN{C1 , we conclude that EN{ has to be adjacent to
E�i and/or EN{C1 has to be adjacent to E�

N{C1
, depending on which of these columns lie

strictly between E�i and E�
iC1

. So, to summarize our findings: Either all columns that
are strictly between E�i and E�

iC1
intersect x or they lie (not strictly) between E�

N{

and E�
N{C1

. In the second case, we can apply the same argument reversing the roles of
 and x to conclude that there is no other index i 0 2 f1; : : : ; n� 1g with i 0 ¤ i such
that there are more than 2 columns that are between E�i0 , E�

i0C1
and E�

N{ , E�
N{C1

. This
implies that distHK .E

�
i ;E

�
N{ /; distHK .E

�
iC1

;E�
N{C1

/� 1 in the second case.

In the first case, we use Proposition 3.20(b3) and (c7) to find that x intersects fewer than
3H columns that are adjacent to W . Since x intersects Eı we have Q0 WDQDQı .
Hence distHK .Q

0;Q0/ < 3H and Lemma 3.13(b) yields distVK .Q
0;Q0/ < 3C0H CC0

and we are done.

In the second case, Eı lies strictly between E�
N{ and E�

N{C1
. So Q 6�K and x intersects

W between EN{ and EN{C1 (by Lemma 3.12). Let K0 2K be the chamber that contains
Q and W D K \K0 2 W the wall between K and K0 . We will now show that
K0 DK0 and W DW . If not, then there must be an index N{0 2 f1; : : : ; n� 1g with
N{0 ¤ N{ such that W is adjacent to E�

N{0 , E�
N{0C1

and Eı . If N{0 < N{ , then W is also
adjacent to E�i (which is then between E�

N{0 and Eı ), contradicting Lemma 3.12. If
N{0 > N{ , then W is also adjacent to E�

iC1
, contradicting Lemma 3.12 as well. So indeed

Q; Q�K0 DK0 ; let E 2 EK 0 be the column that contains Q. Now let Q0 �EN{ be
the cell that x intersects right before W .

Recall that Q0 � Ei and Q0 � EN{ , that Q0 is adjacent to E , that Q0 is adjacent to
E and that E and E are both adjacent to Qı . Moreover, by our previous conclu-
sions, distHK .Q

0;Q0/ � 3. Let Q00 � Ei be a cell that is adjacent to E . Then, by
Lemma 3.13(b), distVK .Q

0;Q00/ < 4C0 and, by Lemma 3.13(c), distVK .Q
00;Q0/ < C0 .

Hence distVK .Q
0;Q0/ < 5C0 . This finishes the proof of the lemma.

The next lemma is a preparation for the combinatorial convexity estimate stated in
Proposition 3.24.

Lemma 3.23 There are constants �� > 0 and H� < 1 such that if � � �� and
H �H� , then the following holds:

Let K2K be a chamber and Q0;Q1;Q2�K cells such that Q1 and Q2 are vertically
aligned. Assume that dist.Q0;Q1/; dist.Q0;Q2/�R for some R� 0. Then, for any
cell Q� �K between Q1 and Q2 , we have dist.Q0;Q

�/ <RC 8H .
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Proof We prove this lemma by induction on R (observe that we are only interested
in a discrete set of values of R) and then on distVK .Q1;Q2/. Consider the action
'W Z Õ zM by deck transformations of the universal covering zM !M that acts as a
vertical shift on K , leaving zV and hence the cell structure and combinatorial distance
function invariant and choose z 2 Z such that Q� D 'z.Q1/. We may assume z ¤ 0.

Without loss of generality, we can assume that Q� lies between Q1 and Q�� D

'�z.Q2/. Otherwise, we can interchange the roles of Q1 and Q2 . Let 1 and 2 be
minimizing arcs between Q0 and Q1 , and Q0 and Q2 , respectively. We can now
apply Lemma 3.22 to 'z ı 1 and 2 to obtain cells Q0

1
;Q0

2
�K on 'z ı 1 and 2

with dist.Q0
1
;Q0

2
/ < 4H . Then '�z.Q

0
1
/ lies on 1 and hence

(3-2) dist.Q0; '�z.Q
0
1//C dist.'�z.Q

0
1/;Q1/D dist.Q0;Q1/�R:

We also have

(3-3) dist.Q0;Q
0
2/C dist.Q02;Q2/D dist.Q0;Q2/�R:

If dist.Q0;Q
0
2
/C dist.'�z.Q

0
1
/;Q1/�RC 4H , then

dist.Q0;Q
�/� dist.Q0;Q

0
2/C dist.Q02;Q

0
1/C dist.Q01; 'z.Q1// <RC 8H;

which proves the desired estimate. On the other hand, assume that

dist.Q0;Q
0
2/C dist.'�z.Q

0
1/;Q1/ >RC 4H:

Then (3-2) and (3-3) give us

dist.Q0; '�z.Q
0
1//C dist.Q02;Q2/ <R� 4H:

It follows that

dist.'�z.Q
0
1/;Q

��/D dist.Q01;Q2/� dist.Q01;Q
0
2/Cdist.Q02;Q2/

< 4HCR�4H�dist.Q0; '�z.Q
0
1//DR�dist.Q0; '�z.Q

0
1//:

Also by (3-2),
dist.'�z.Q

0
1/;Q1/�R� dist.Q0; '�z.Q

0
1//:

So by the induction hypothesis, we find that

dist.'�z.Q
0
1/;Q

�/ <R� dist.Q0; '�z.Q
0
1//C 8H:

This implies

dist.Q0;Q
�/� dist.Q0; '�z.Q

0
1//C dist.'�z.Q

0
1/;Q

�/ <RC 8H:
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Proposition 3.24 Assume that M satisfies condition (C). There are constants �� > 0

and H� <1 such that whenever �� �� and H �H� , the following holds:

Consider a cell Q0 2 Q, a chamber K 2 K (not necessarily containing Q0 ) and
cells Q1;Q2 � K that are vertically aligned within K . Assume that dist.Q0;Q1/,
dist.Q0;Q2/�R for some R� 0. Then, for any cell Q��K that is vertically aligned
with Q1 and Q2 and vertically between Q1 and Q2 , we have dist.Q0;Q

�/<RC10H .

Proof If Q0�K , we are done by the previous lemma. So assume that Q0 lies outside
of K and let 1 and 2 be minimizing arcs from Q0 to Q1 and Q2 , respectively.

Then there is a unique wall W � @K through which both 1 and 2 enter K . Let
Q0

1
;Q0

2
�K be the first cells in K that are intersected by 1 and 2 . So both cells

are adjacent to W . By Lemma 3.21 we know that dist.Q0
1
;Q0

2
/� 4.

So
dist.Q01;Q1/�R� dist.Q0;Q

0
1/

and

dist.Q01;Q2/� dist.Q01;Q
0
2/C dist.Q02;Q2/� 4CR� dist.Q0;Q

0
2/

� 4CR� dist.Q0;Q
0
1/C dist.Q01;Q

0
2/�RC 8� dist.Q0;Q

0
1/:

We can now apply Proposition 3.24 to obtain

dist.Q01;Q
�/ <RC 8� dist.Q0;Q

0
1/C 8H:

So dist.Q0;Q
�/ <RC 10H for H > 4.

3.5 A combinatorial convexity estimate if M satisfies condition (B)

Assume now that M satisfies condition (B) in Proposition 3.4, ie that M is the total
space of an S1 –bundle over a closed, orientable surface of genus � 2. In this setting
we will establish the same combinatorial convexity estimate as in Proposition 3.24. It
will be stated in Proposition 3.28. Its proof will resemble the proof in the previous
subsection, except that most lemmas will be simpler.

We first let E D
S

K2K EK be the set of all columns of zM . We say that two columns
E1;E2 2 E are adjacent their intersection contains a point of zV n zV .1/ . In other words,
E1 and E2 are adjacent if and only if we can find cells Q1 �E1 , Q2 �E2 such that
Q1 and Q2 are adjacent. Observe that in the setting of condition (B) every column
E1 2 E is adjacent to only finitely many columns E2 2 E and every wall W 2 W
intersects its adjacent columns E 2 E from either side in parallel strips E \W (see
Lemma 3.13).
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The first lemma is an analog of Lemma 3.19.

Lemma 3.25 There are constants �� > 0 and H� < 1 such that if � � �� and
H �H� , the following holds:

Consider two chambers K;K0 2 K that are adjacent to one another across a wall
W D K \K0 2W . Assume that  W Œ0; 1�! zM is combinatorially minimizing and
that its image is contained in K[K0 . Then the following holds:

(a) The arc  intersects W at most twice and  does not reenter any column, ie
�1.E/ is an interval for all E 2 E .

(b) In the case in which  intersects W exactly once, the following is true: the
columns on  that are adjacent to W form two minimal chains in K and K0 ,
moving in the same direction, which are adjacent to one another in a unique pair
of columns E 2 EK and E0 2 EK 0 .

(c) In the case in which  intersects W exactly twice, the following is true: As-
sume that  .0/;  .1/ 2K . Let E1;E2 2 EK be the columns that  intersects
right before and after W . Then  does not intersect any column of K that is
adjacent to W and that horizontally lies strictly between E1 and E2 . Moreover,
distHK .E1;E2/ >H .

Proof First note that every subsegment of  that does not intersect W and whose
endpoints lie in columns that are adjacent to W , stays within columns that are adjacent
to W and does not reenter any column. So we can restrict our attention to the case in
which  intersects only columns that are adjacent to W .

Assume first that we are in the setting of assertion (b), meaning that  intersects W

exactly once and assume without loss of generality that  .0/2K . Let E1; : : : ;En2EK

and E0
1
; : : : ;E0n0 2 EK 0 be the columns that  intersects in that order. Then both

sequences of columns form minimal chains, which move along W , and En and E0
1

are adjacent across W . We now show that Ei can only be adjacent to E0i0 if i D n and
i 0 D 1. This will also imply that the directions of both minimal chains agree. Assume
that this was not the case and assume without loss of generality that Ei is adjacent
to E0i0 for some i < n and i 0 � 1 (otherwise we reverse the orientation of  ). Let
Q1 � E1 be the cell that contains  .0/, Q2 � En and Q3 � E0

1
the cells that 

intersects right before and after W , and Q4 � Ei0 a cell that intersects  . Choose,
moreover, a cell Q� �Ei which is adjacent to Q4 . By Lemma 3.13(e),

distVK .Q2;Q
�/ < distVK 0.Q3;Q4/CC0 distHK .Q2;Q

�/CC0:
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So

distVK .Q1;Q
�/� distVK .Q1;Q2/C distVK .Q2;Q

�/

< distVK .Q1;Q2/C distVK 0.Q3;Q4/CC0 distHK .Q2;Q
�/CC0:

Hence,

dist.Q1;Q4/� dist.Q1;Q
�/CH

< distHK .Q1;Q
�/C � distVK .Q1;Q2/C � distVK 0.Q3;Q4/

C �C0 distHK .Q2;Q
�/C �C0CH:

On the other hand, the minimizing property of  yields

dist.Q1;Q4/D dist.Q1;Q2/CH C dist.Q3;Q4/

� distHK .Q1;Q2/C � distVK .Q1;Q2/C � distVK 0.Q3;Q4/CH:

Combining both inequalities yields

distHK .Q1;Q2/ < distHK .Q1;Q
�/C �C0 distHK .Q2;Q

�/C �C0:

Since distHK .Q1;Q2/Dn�1, distHK .Q1;Q
�/D i�1 and distHK .Q2;Q

�/Dn�i � 1,
we obtain

n� 1< i � 1C �C0.n� i/C �C0:

This yields a contradiction if � < .2C0/
�1 . So assertion (b) holds.

Assume next that we are in the setting of assertion (c), meaning that  intersects W

exactly twice and that  .0/;  .1/ 2K . Define E1;E2 2 EK as in the statement of the
Lemma. We now establish the bound distHK .E1;E2/ > H (for sufficiently small �
and large H ). By assertion (b) applied to subsegments of  , we find that  cannot
intersect any column of K that is adjacent to W and lies strictly between E1 and E2 .
Now let Q1�E1 and Q2�E2 be the cells that  intersects right before and after W

and let Q0
1
;Q0

2
�K0 be the cells that  intersects right after Q1 and right before Q2 .

Then
dist.Q1;Q2/D 2H C dist.Q01;Q

0
2/� 2H C � distVK 0.Q

0
1;Q

0
2/:

By Lemma 3.13(e),

distVK .Q1;Q2/ < distVK 0.Q
0
1;Q

0
2/CC0 distHK .Q1;Q2/CC0:

So

dist.Q1;Q2/ < distHK .Q1;Q2/C � distVK 0.Q
0
1;Q

0
2/C �C0 distHK .Q1;Q2/C �C0:
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Hence,

2H < .1C �C0/ distHK .Q1;Q2/C �C0:

Assertion (c) follows for H > 10 and � < .2C0/
�1 .

It remains to show assertion (a). To do this, we first show that  cannot intersect
W more than twice. Assume it does. By passing to a subsegment and possibly
interchanging the roles of K and K0 , we can assume that  intersects W exactly three
times and that  .0/ 2 K . Let Q1;Q2;Q3 � K be the cells in K that  intersects
before the first, after the second and before the third intersection with W and let
Q0

1
;Q0

2
;Q0

3
�K0 be the cells of K0 that  intersects after the first, before the second

and after the third intersection with W . Then

(3-4) dist.Q1;Q
0
3/D 3H C distHK 0.Q

0
1;Q

0
2/C � distVK 0.Q

0
1;Q

0
2/

C distHK .Q2;Q3/C � distVK .Q2;Q3/:

Let Q� �K be the cell that is adjacent to W and that is located relatively to Q1 , Q2

and Q3 such that Q1 , Q2 , Q3 , Q� forms a “parallelogram”, ie

distHK .Q1;Q
�/D distHK .Q2;Q3/; distVK .Q1;Q

�/D distVK .Q2;Q3/;

distHK .Q
�;Q3/D distHK .Q1;Q2/; distVK .Q

�;Q3/D distVK .Q1;Q2/

in an oriented sense. Let, moreover, Q�0 �K0 be a cell that is adjacent to Q� . Then,
by Lemma 3.13(g),

distHK 0.Q
�0;Q03/ < distHK 0.Q

0
1;Q

0
2/CC0; distVK 0.Q

�0;Q03/ < distVK 0.Q
0
1;Q

0
2/CC0:

So

dist.Q1;Q
0
3/� dist.Q1;Q

�/C dist.Q�;Q�0/C dist.Q�0;Q03/

� distHK .Q1;Q
�/C � distVK .Q1;Q

�/CH C distHK 0.Q
�0;Q03/

C � distVK 0.Q
�0;Q03/

<H C distHK .Q2;Q3/C � distVK .Q2;Q3/C distHK 0.Q
0
1;Q

0
2/CC0

C � distVK 0.Q
0
1;Q

0
2/C �C0:

Together with (3-4) this yields

2H < C0C �C0

and hence a contradiction for H > C0 and � < 1.
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Next, we show that  does not reenter any column. If  does not intersect W , then this
fact is a consequence of Lemma 3.18. The same is true if  intersects W exactly once,
by passing to a subsegment. So it remains to consider the case in which  intersects W

exactly twice. Assume that the assertion was wrong. By passing to a subsequent, we can
assume that there is a column E 2 EK such that  .0/;  .1/ 2E and that  intersects
W exactly twice. Let E1;E2 2 EK be the columns that  intersects right before and
after W , as in the last part of the lemma. Let, moreover, E0

1
DE; : : : ;E0n0 DE1 2 EK

and E00
1
DE2; : : : ;E

00
n00 DE 2 EK be the columns of K that  intersects in that order.

By Lemma 3.18 we know that L1 D .E
0
1
; : : : ;E0n0/ and L2 D .E

00
n00 ; : : : ;E

00
1
/ form

minimal chains between E;E1 and E;E2 , respectively. Let L be the minimal chain
between E1 and E2 . By assertion (c) of this lemma, the pairs L1 , L and L2 , L

only intersect in E1 and E2 , respectively. So L1[L is a minimal chain between E

and E2 . By the tree property of EK , we must have L1[LDL2 , which is impossible,
since L2 intersects L only in E2 . This finishes the proof.

The following proposition and its proof are similar to Proposition 3.20.

Proposition 3.26 Assume that M satisfies condition (B). There are constants �� > 0

and H� <1 such that if �� �� and H �H� , the following holds:

Consider a combinatorially minimizing arc  W Œ0; 1�! zM . Then:

(a) For every column E 2 E , the preimage �1.E/ is an interval.

(b)  intersects every wall W 2W at most twice. Assume that K;K0 2 K are two
chambers that are adjacent to a wall W 2W from either side. Then:

(b1) If  intersects W exactly once then the following holds: Assume that  .0/
lies on the same side of W as K . Let E 2 EK be the first column that is
intersected by  and that is adjacent to W . Then for every column E� 2 EK

that  intersects before E , the minimal chain between E� and E intersects
W in at most two columns.

(b2) If  intersects W exactly twice and its endpoints lie on the same side
of W as K , then  stays within K0 between both intersections and the
columns E1;E2 2 EK that  intersects right before and after W satisfy
distHK .E1;E2/ >H . Moreover,  does not intersect any column of K that
is adjacent to W and that horizontally lies strictly between E1 and E2 .

(b3) If  intersects two columns E1;E2 2 E that are both adjacent to W , then
 stays within K[K0 in between E1 and E2 and only intersects columns
that are adjacent to W .
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(c) Consider a chamber K 2 K and let E1; : : : ;En 2 EK be the columns of K that
 intersects in that order. Then there are columns E�

1
; : : : ;E�n 2 EK such that

assertions (c1)–(c6) of Proposition 3.20 hold.

Proof We use again induction on the combinatorial length j j of  . Assume that
j j > 0, since for j j D 0 there is nothing to prove. The first part of assertion (b)
follows as in the proof of Proposition 3.20.

We now establish assertion (b1). So assume that  intersects W exactly once and that
 .0/ lies on the same side of W as K and consider the columns E;E� 2EK . Note that
it suffices to show that the second or third last element of the minimal chain between E�

and E is not adjacent to W . Apply assertions (b) and (c) of the induction hypothesis
to the subsegment of  between E� and E . We obtain sequences E1; : : : ;En and
E�

1
; : : : ;E�n with E1 DE�

1
DE� and En DE�n DE . If En�1 and En are adjacent,

then En�1 DE�
n�1

lies on the minimal chain between E� and E and by assumption
En�1 cannot be adjacent to W ; so we are done. If En�1;En are not adjacent, then 
intersects a wall W 0 � @K , W 0 ¤W twice between En�1;En . All columns on the
minimal chain between E�

n�1
and En are adjacent to W 0 . By Lemma 3.12 at most 2

of those columns can also be adjacent to W .

Assertion (b2) follows from assertion (b1) of the induction hypothesis and Lemma 3.25
by passing to subsegments of  that intersect W exactly once and whose endpoints
are contained in columns adjacent to W .

Next, we establish assertions (c) and (a). It suffices to consider the case in which
 .0/;  .1/ 2K . Let E1; : : : ;En 2 EK be as defined in the proposition. If n� 2, then
we are done using assertion (b2); so assume n� 3. If En�1 lies on the minimal chain
between E1 and En , then we are done as in the proof of Proposition 3.20. So assume
that En�1 does not lie on the minimal chain between E1 and En .

We show that En�1 and En cannot be adjacent. Otherwise, as in the proof of
Proposition 3.20,  intersects a wall W � @K twice between En�2 and En�1 and
the columns En�2 , E�

n�2
, En and En�1 lie along W in that order. This contradicts

assertion (b2).

So there is a wall W � @K that is adjacent to both En�1 and En , and  crosses W

twice between those two columns. We now proceed as in the proof of Proposition 3.20,
but we have to be careful whenever we make use of assertion (b). As in that proof,
we can find a column E� 2 EK that lies on the three minimizing chains between
En�1 , En and E1 , En�1 and E1 , En with E� ¤En�1 . We also know that En�2
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cannot be adjacent to En�1 , since otherwise it would lie on the minimal chain between
En�1 and E� along W , in contradiction to assertion (b2). So, by assertion (c6) of
the induction hypothesis, En�2 , E�

n�2
and En�1 are adjacent to a wall W 0 � @K

such that  intersects W 0 twice between En�2 and En�1 . This implies W 0 ¤ W

by assertion (b). Now both W and W 0 are adjacent to all columns on the minimal
chain between En�1 and E� or between En�1 and E�

n�2
, whichever is shorter. So,

by Lemma 3.12, we must have distHK .E
�;En�1/D 1. Assertion (c1)–(c6) now follow

as in the proof of Proposition 3.20.

Now, for assertion (a), we may assume that  .0/;  .1/ 2 E 2 EK in view of the
induction hypothesis. Then assertion (c) implies that  is fully contained in E .

Finally, we establish assertion (b3). In view of the induction hypothesis it suffices to
consider the case in which E1;E2 2 EK and in which  does not intersect W . Apply
assertion (c) to obtain sequences E0

1
; : : : ;E0n and E0�

1
; : : : ;E0�n with E0�

1
DE0

1
DE1

and E0�n DE0n DE2 . It follows that all columns E�
1
; : : : ;E�n are adjacent to W . If

 crossed a wall W 0 � @K twice in between some E0i and E0
iC1

, then all columns
between E0�i and E0�

iC1
would be adjacent to W 0 and W . This is impossible by

Lemma 3.12.

The next lemma is an analog of Lemma 3.22. Note that in the setting of condition (B),
we don’t need to work inside a single chamber. This fact will later compensate us for
the lack of an analog for Lemma 3.21.

Lemma 3.27 There are constants �� > 0 and H� < 1 such that if � � �� and
H �H� , the following holds:

Let Eı
1
;Eı

2
2E be two columns and Q1;Q1�Eı

1
and Q2;Q2�Eı

2
cells such that the

vertical orders of Q1; Q1 and Q2; Q2 are opposite to each other. Let ; x W Œ0; 1�! zM

be minimizing arcs from Q1 to Q2 and from Q1 to Q2 . Then we can find cells
Q0;Q0 2Q that intersect ; x and such that dist.Q0;Q0/ < 3H .

Proof Consider first a wall W 2W that intersects  (and hence also x ) exactly once.
Let K;K0 2 K be the chambers that are adjacent to W from either side in such a way
that  .0/ and x .0/ lie on the same side of W as K . Let E 2 EK be the first column
on  that is adjacent to W and choose E 2 EK analogously. We argue similarly to in
the proof of Lemma 3.21 that distHK .E;E/� 3. Let E� 2 EK be the first column on
 inside K and define E� analogously. Then either E� DE� DEı

1
or Eı

1
62 EK . In

both cases there is a wall W �� @K with W �¤W that is adjacent to both E� and E� .
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Let E�� 2 EK be the last column on the minimal chain between E and E� that is
adjacent to W and define E�� 2 EK analogously. By Proposition 3.26(b1) we have
distHK .E;E

��/; distHK .E;E
��/� 1. It now follows, as in the proof of Lemma 3.21,

that distHK .E
��;E��/ � 1 and hence distHK .E;E/ � 3 (observe that this part of the

proof only makes use of the tree property of EK from Lemma 3.12).

Now let W1; : : : ;Wh be all the walls that  intersects exactly once in this order. Then
also x intersects each of these walls exactly once in this order. For each i D 1; : : : ; h,
let E0i 2 E be the first and E00i the last column on  that is adjacent to Wi . Define E0i
and E00i accordingly. By the last paragraph, we obtain that E0i , E0i and E00i , E00i have
horizontal distance � 3 in the chamber in which they are contained (the bound on the
horizontal distance between E00i and E00i can be obtained by reversing the orientation
of  and x ). Choose cells Q0i �E0i , Q00i �E00i or Q0i �E0i , Q00i �E00i that intersect
 or x , respectively.

We first consider the case in which there is some i 2 f1; : : : ; hg such that the vertical or-
ders of the pairs Q0i , Q0i and Q00i , Q00i are different. Observe that by Proposition 3.26(b3)
the arc  only intersects cells adjacent to Wi between Q0i and Q00i ; the same is true
for x . Let S � zM be the union of all cells that  intersects between Q0i and
Q00i and define S accordingly. Using Lemma 3.25 we find that either S \Wi and
S \ Wi intersect or there is a cell Q0 2 Q on  with dist.Q0;Q0i/ � 3 C H or
dist.Q0;Q00i / � 3CH or there is a cell Q0 2 Q on x with dist.Q0;Q0i/ � 3CH or
dist.Q0;Q00i /� 3CH . In all these cases we are done.

So assume from now on that the vertical orders of the pairs Q0i , Q0i and Q00i , Q00i are
the same for all i D 1; : : : ; h. Choose i 2 f1; : : : ; hg minimal such that the vertical
order of Q0i , Q0i differs from that of Q1 , Q1 . If there is no such i , then the vertical
orders of Q0

h
, Q0

h
and Q2 , Q2 are opposite and we can get rid of this case by reversing

the orientations of  and x . Let K 2 K be the chamber that contains Q0i and Q0i . If
i > 1, the choice of i implies that the vertical order Q00

i�1
;Q00

i�1
is different from that

of Q0i ;Q
0
i �K . If i D 1, then the vertical order of Q1 , Q1 �K is different from that

of Q0
1

, Q0
1

. Apply Proposition 3.26(c) to the subsegment of  between Q0
i�1

or Q1

and Q00i to obtain columns E1; : : : ;En and E�
1
; : : : ;E�n 2 EK . Similarly we obtain

the columns E1; : : : ;Exn and E�
1
; : : : ;E�

xn 2 EK for the corresponding subsegment
of x . Note that distHK .E1;E1/; distHK .En;Exn/� 3.

If distHK .E1;En/; distHK .E1;Exn/ � 6, then by Proposition 3.26(c), all columns Ei

and Ei have distance � 17 from one another and hence we can just pick cells Q0 and
Q0 that are horizontally aligned to show the lemma. So assume from now on that this
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is not the case and let L and xL be the minimal chains between the pairs E1 , En and
E1 , Exn . By the tree property, as explained in Lemma 3.12, L and xL intersect in a
minimal chain Lı such that every column on .L[ xL/ nLı has horizontal distance
� 3 from Lı .

As in the proof of Lemma 3.22 define the sets S � L[E1 [ � � � [En , S 0 � L and
S � xL[E1 [ � � � [Exn , S 0 � xL. Observe that S 0 and S 0 lie in different sets and
might not intersect, as before. However, we can still find cells Qı � S 0 and Qı � S 0

such that
distHK .Q

ı;Qı/� 6 and distVK .Q
ı;Qı/D 0:

We will work with these cells now instead of Qı alone. By the definition of S 0 there
is a cell Qıı � S that is either equal to Qı or adjacent to Qı and horizontally aligned
with it, ie distHK .Q

ıı;Qı/ � 1 and distVK .Q
ıı;Qı/ D 0. Again, by the definition

of S , there is a cell Q0 2Q on  that is either equal to Qıı or adjacent to it across a
wall, ie dist.Q0;Qıı/�H . Altogether this implies that dist.Q0;Qı/� 1CH . By an
analogous argument, we can find a cell Q0 on x with dist.Q0;Qı/� 1CH . Hence,
dist.Q0;Q0/� 5C 2H < 3H for large enough H .

Proposition 3.28 Proposition 3.24 also holds if M satisfies condition (B).

Proof We follow the proof of Lemma 3.23. Observe that since M satisfies condi-
tion (B), the action 'W Z Õ zM acts as a vertical shift on each column of zM . So we
do not need to restrict to the case in which the cells Q0 , Q1 and Q2 lie in the same
chamber. Instead of applying Lemma 3.22, we now make use of Lemma 3.27 to obtain
cells Q0

1
;Q0

2
�K on 'z ı 1 and 2 with dist.Q0

1
;Q0

2
/ < 3H < 4H . The rest of the

proof is exactly the same as that of Lemma 3.23.

3.6 Proof of Proposition 3.4 if M satisfies condition (B) or (C)

We will now apply the combinatorial convexity estimates from Propositions 3.24 and
3.28 to construct large polyhedral balls in zM which consist of cells. In the following
we will always assume that M satisfies condition (B) or (C) and that � and H have
been chosen smaller/larger than all constants �� and H� , respectively, which appeared
in the lemmas and propositions of Sections 3.4 and 3.5.

Lemma 3.29 Let K 2 K be a chamber of zM and consider a finite union of cells
S �K whose interior is connected. Assume that S has the property that for any two
cells Q1;Q2 �S that are vertically aligned, S also contains all cells that are vertically
between Q1 and Q2 . Then S is homeomorphic to a closed 3–disk and the intersection
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of S with every wall W � @K has connected interior in W . More precisely, there
is a continuous, injective map bW D3 ! zM with b.D3/ D S that is an embedding
on B3[ .S2 n b�1. zV .1/// and for all walls W � @K the preimage b�1.W / is either
empty or a (connected) topological disk that is the union of rectangles.

Proof The lemma is obviously true if S only consists of cells that are vertically
aligned. Observe next that the columns of K are bounded by subsets of @K and
components of ��1.CK /. Those components correspond to arcs of zC �

K
� z†K , are

diffeomorphic to I �R and every two adjacent columns intersect in exactly one such
component. Moreover, each such component separates K into two components.

Consider now such a component X � ��1.CK / with the property that not all cells
of S lie on one side of X . This is always possible if not all cells of S are vertically
aligned. Let S1;S2 � K be the closures of the two components of S n X . Then
S1\S2 is a connected rectangle and so the interiors of S1 and S2 must be connected
and hence S1 and S2 are homeomorphic to 3–disks. Since the interior of S1\S2 in
X is a (connected) disk, we find that S D S1 [ S2 is a topological 3–disk as well.
The fact that S is a topological disk follows from this argument by induction.

Next, let W � @K be a wall and assume that two cells Q;Q0 � S are adjacent to W .
Let E;E0 2 EK be the columns that contain Q and Q0 . Since S is connected, we can
find a chain .E0; : : : ;En/ between E and E0 such that Ei contains a cell of S for
all i D 0; : : : ; n. We may assume that we have picked the chain so that n is minimal.
Thus this chain cannot contain any column twice. Hence it is minimal and so all its
columns are adjacent to W . Note that Ei\S\W is a rectangle for each i D 0; : : : ; n.
By the previous paragraph, the rectangles Ei�1\S \W and Ei \S \W intersect
in more than one point. It follows that S \W is a topological disk.

It follows easily that we can connect Q with Q0 through cells in K which are adjacent
to W , and hence S \W is connected. By the property of S , this intersection can only
be a topological 2–disk.

The existence of the map b follows along the same lines as this proof.

Let Q0 2Q be an arbitrary cell and R> 0 a positive number. Then we define

BR.Q0/D
[
fQ 2Q W dist.Q;Q0/ <Rg:

Next, consider the distance function distKW K�K! Œ0;1/, which assigns to every pair
of chambers K1 and K2 the length of the minimal chain between K1 and K2 . This
length is equal to the minimal number of intersections of an arc between K1 and K2
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with the walls of zM . For two cells Q1 �K1 and Q2 �K2 we set distK.Q1;Q2/D

distK.K1;K2/. Observe that

dist.Q1;Q2/�H distK.K1;K2/:

Let J > 0 be a large constant whose value we will determine later. We define a new
distance function dist0. � ; � / on Q as follows

dist0.Q1;Q2/ WD dist.Q1;Q2/CJ distK.Q1;Q2/:

Obviously, .Q; dist0/ is a metric space. Set, moreover,

B0R.Q0/D
[
fQ 2Q W dist0.Q;Q0/ <Rg:

Finally, we define

PR.Q0/D
[8<:Q 2Q

ˇ̌̌̌
ˇ

Q�K 2 K and there are cells Q1;Q2 � B0
R
.Q0/

in K such that Q1;Q;Q2 are vertically aligned
and Q lies vertically between Q1 and Q2

9=; :
Proposition 3.30 Assume that M satisfies condition (B) or (C). Then there are choices
for �, H and J and a constant C2 <1 such that the following holds:

For all Q0 2Q and all R> 0 we have

B0R.Q0/� PR.Q0/� Int B0RCC2
.Q0/[ @ zM :

Moreover, there is a continuous map bR;Q0
W D3! zM such that bR;Q0

.D3/DPR.Q0/

and bR;Q0
.S2/D @PR.Q0/ and bR;Q0

is an embedding on B3[ .S2 nb�1
R;Q0

. zV .1///.

Finally, let K0 2 K be the chamber that contains Q0 . Then for all cells Q �

B0
R
.Q0/\K0 we have distHK0

.Q;Q0/; distVK0
.Q;Q0/ < C2R.

Proof We will see that the proposition holds for J D 11H .

We first show that

(3-5) B0R.Q0/� PR.Q0/� B0RC10H .Q0/:

The first inclusion property is trivial. For the second inclusion property, consider a cell
Q�PR.Q0/. Let K 2K be the chamber that contains Q and choose cells Q1;Q2 �

B0
R
.Q0/\K such that Q1 , Q and Q2 are vertically aligned and Q lies vertically

in between Q1 and Q2 . Then dist.Q1;Q0/ D dist0.Q1;Q0/ � J distK.K;K0/ <

R� J distK.K0;K/ and, similarly, dist.Q2;Q0/ < R� J distK.K;K0/. It follows
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from Proposition 3.24 in case (C) and Proposition 3.28 in case (B) that dist.Q;Q0/ <

RC 10H �J distK.K;K0/. So dist0.Q;Q0/ <RC 10H and (3-5) follows. In order
to establish the inclusion property of this proposition, it hence suffices to choose C2

larger than 10H CJ plus the maximal number of cells that can intersect in one point.

Next, choose a sequence K1;K2; : : : 2 K such that KD fK0;K1;K2; : : : g and such
that distK.Kn;K0/ is nondecreasing in n. We will first show that the interior of
B0

R
.Q0/\ .K0 [ � � � [Kn/ is connected for each n � 0: Fix n, choose a cell Q �

B0
R
.Q0/ \ .K0 [ � � � [ Kn/ with Q ¤ Q0 , let Ki be the chamber that contains

Q and consider a combinatorially minimizing arc  W Œ0; 1� ! zM from Q0 to Q.
We show by induction on the number of cells that intersect  that Int Q lies in
the same connected component of Int.B0

R
.Q0/\ .K0 [ � � � [Kn// as Int Q0 . Let

Q0 2 Q be the cell that  intersects prior to Q. If Q0 � Ki , then we are done by
the induction hypothesis, since then dist0.Q0;Q0/ < dist0.Q;Q0/ and hence Q0 �

B0
R
.Q0/\ .K0 [ � � � [Kn/. Assume next that Q0 � Kj 2 K for j ¤ i and hence

 crosses a wall W D Ki \Kj 2W in between Q0 and Q. Then dist.Q0;Q0/ D

dist.Q;Q0/ �H and distK.Kj ;K0/ D distK.Ki ;K0/˙ 1. It suffices to consider
the case in which distK.Kj ;K0/D distK.Ki ;K0/C 1, since otherwise we are again
done by the induction hypothesis. In this case,  must cross W twice and there is
a cell Q00 � Ki that  intersects right before intersecting W for the first time. By
Proposition 3.20(b2) in case (C) or Proposition 3.26(b3) in case (B), the arc  only
intersects cells that lie in Kj and that are adjacent to W between Q00 and Q0 . Consider
now all cells Q� �Ki that are adjacent to a cell Q�� �Kj which intersects  . For
each such Q� we have

dist.Q�;Q0/�H C dist.Q��;Q0/�H C dist.Q0;Q0/D dist.Q;Q0/

and thus dist0.Q�;Q0/ � dist0.Q;Q0/ and Q� � B0
R
.Q0/\Ki . It follows that Q0

and Q00 lie in the same connected component of B0
R
.Q0/ \Ki . This finishes the

induction argument.

So also the interior of PR.Q0/\ .K0 [ � � � [Kn/ is connected for all n � 0. We
will now show by induction on n that there is a continuous map bnW D

3! zM whose
image is equal to the closure of this interior and which is an embedding when restricted
to B3 [ .S2 n b�1

n . zV .1///. For n D 0 this statement follows immediately from
Lemma 3.29 and the fact that the interior of PR.Q0/\K0 is connected. Assume now
that n � 1. There is a unique i 2 f1; : : : ; n� 1g such that Ki is adjacent to Kn . So
distK.Ki ;K0/D distK.Kn;K0/�1. Let W DKi \Kn 2W be the wall between Ki
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and Kn . Observe that for every cell Q � PR.Q0/\Kn that is adjacent to W and
every cell Q0 �Ki that is adjacent to Q we have dist.Q0;Q0/ � dist.Q;Q0/CH .
So, by (3-5),

dist0.Q0;Q0/� dist0.Q;Q0/CH �J <RC 11H �J DR:

Hence, Q0 � B0
R
.Q0/� PR.Q0/. This implies

PR.Q0/\ Int Kn\W � PR.Q0/\W D PR.Q0/\ Int Ki \W D bn�1.D
3/\W:

By Lemma 3.29, PR.Q0/\ Int Kn is the union of the images of maps b0W D3! zM

with the appropriate regularity properties and any two such images intersect in at most
an edge of zV . Moreover, the preimage of W under every such map b0 is a (connected)
topological disk that is contained in bn�1.D

3/\W . So we can combine bn�1 with
the maps b0 to obtain a map whose image is equal to the closure of the interior of
PR.Q0/\ .K0[ � � �[Kn/. Smoothing this map in the interior of D3 yields bn . This
finishes the induction and proves the second assertion of the proposition for large n.

Finally, we show the last statement. Let Q� B0
R
.Q0/\K0 . Then dist.Q;Q0/ <R.

Consider a minimizing arc  W Œ0; 1�! zM between Q0 and Q. By Proposition 3.20
or Proposition 3.26 the arc  stays within the union of K0 with the chambers that are
adjacent to K0 . Let Q0;Q1; : : : ;QnDQ0�K0 be the cells of K0 that  intersects in
that order. Then for all iD0; : : : ; n�1 either distHK0

.Qi ;QiC1/CdistVK0
.Qi ;QiC1/D

1 � ��1 dist.Qi ;QiC1/ or  intersects a wall W � @K right after Qi and right
before QiC1 . In this case let K0 2 K be the chamber on the other side of W and let
Q0i ; Q0

iC1
�K0 be the cells that  intersects right after Qi and right before QiC1 .

By Lemma 3.13(f) we have

distHK0
.Qi ;QiC1/; distVK0

.Qi ;QiC1/ < C0�
�1 dist.Q0i ;Q

0
iC1/CC0:

If H > 1, then the right-hand side is bounded by C0�
�1 dist.Qi ;QiC1/. The rest

follows from the triangle inequality for distHK0
and distVK0

with C2 > C0�
�1 .

We can finally establish Proposition 3.4 and hence Proposition 3.2(a) (see Section 3.2).

Proof of Proposition 3.4 By Proposition 3.5, we may assume that M satisfies condi-
tion (B) or (C).

Observe first that the universal covering � W zM !M can be viewed as the restriction
of the universal covering � W zM0!M0 to a component of ��1.M /. Consider the
simplicial complex V � M as defined in Section 3.3 and let f0W V ! M be the
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inclusion map. Recall that f0 lifts to the inclusion map Qf0W
zV ! zM in the universal

covering � W zM ! M . Consider the Riemannian metric g on M0 and the map
f W V !M from the assumptions of the Proposition. Let H W V � Œ0; 1�!M0 be the
homotopy between f0 and f and let L be a strict upper bound on the length of the
arcs t 7!H.x; t/ (note that V is compact). Since this homotopy leaves @V invariant
and embedded in @M , we can extend H to a homotopy H�W .V [@M /� Œ0; 1�!M0

between the inclusion map f �
0
W V [@M !M and the extension f �W V [@M !M0

of f such that H�. � ; t/ restricted to @M is the identity for all t 2 Œ0; 1�. Here we
view V [@M as a connected simplicial complex. The homotopy H� can be lifted to a
homotopy zH�W . zV [@ zM /� Œ0; 1�! zM0 between the inclusion map Qf0W

zV [ zM ! zM

and a lift Qf �W zV [ @ zM ! zM0 of f � , that is, f � ı �j zV[@ zM D � ı
Qf � . Note that

�. zH�.x; t//DH�.�.x/; t/ for all .x; t/ 2 . zV [@ zM /� Œ0; 1�. Still, the lengths of the
arcs t 7! zH�.x; t/ are bounded by L.

Consider the solid torus S � Int M and pick a component zS � ��1.S/� Int zM . Fix
a diffeomorphism ˆW S1 �D2! S and an orientation on the S1 –factor and denote
by � D ˆ.S1 � f0g/ � S the core of S . By our assumptions, zS � R �D2 and
�j zS W

zS ! S is a universal covering of S . So we can find a lifted diffeomorphism
ẑ W R�D2! zS such that � ı ẑ Dˆı�S1�D2 , where �S1�D2 W R�D2!S1�D2 ,
.u;x/ 7! .e2� iu;x/ is the standard universal covering map. Let FD ẑ .Œ0; 1��D2/� zS .
Then �.F /DS and � restricted to the interior of F is injective. So F is a fundamental
domain for the universal covering �j zS W

zS! S . The central loop � � S1�f0g � S �

S1 �D2 induces a deck transformation 'W zM0!
zM0 , which is an isometry and zS

is covered by fundamental domains of the form '.n/.F / where n 2 Z. Observe also
that z� D ẑ .R� f0g/ D ��1.�/\ zS is a properly embedded, infinite line, which is
invariant under ' .

Choose a chamber K0 2 K for which the displacement distK.K0; '.K0// is mini-
mal. Next, if '.K0/ D K0 choose a column E0 2 EK0

for which the displacement
distHK0

.E0; '.E0// is minimal. If '.K0/¤K0 , the column E0 2 EK0
can be chosen

arbitrarily. Finally, choose an arbitrary cell Q0 �E0 . We will now show that there is
a universal constant c > 0, which only depends on the structure of V (and not on S !)
such that, for all n 2 Z,

(3-6) dist0.Q0; '
.n/.Q0//� cjnj:

If '.K0/¤K0 , then we argue as follows. Consider the minimal chain between K0

and '.K0/ in the adjacency graph of K . The images of this minimal chain under the
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deck transformations '.0/; : : : ; '.n�1/ are each minimal and can be concatenated along
'.1/.K0/; : : : ; '

.n�1/.K0/ to a chain between K0 and '.n/.K0/. We now claim that
this chain is minimal. Otherwise, there are elements in this chain that occur at least
twice. Since the adjacency graph of K is a tree (see Lemma 3.8), there must then be
even two consecutive elements in this chain that are equal. These two elements can
only come from two distinct images of the minimal chain between K0 and '.K0/.
So if K0

0
;K00

0
2 K are the second and second-to-last elements on this minimal chain

then we must have '.iC1/.K0
0
/ D '.i/.K00

0
/ for some i 2 f0; : : : ; n � 1g. But this

would imply that '.K0
0
/ D K00

0
and hence distK.K0

0
; '.K0

0
// D distK.K0

0
;K00

0
/ D

distK.K0; '.K0//� 2, contradicting the minimal choice of K0 . So we conclude that
the chain in question is minimal and hence distK.K0; '

.n/.K0// � jnj for all n 2 Z,
which establishes (3-6) assuming c <H CJ .

If '.K0/ D K0 but '.E0/ ¤ E0 , then we can draw the same conclusions for EK0

instead of K and obtain distHK0
.Q0; '

.n/.Q0// � jnj for all n 2 Z. If '.E0/ D E0 ,
then distVK0

.Q0; '
.n/.Q0//� jnj for all n2Z. So, in the latter two cases, (3-6) follows

by the last assertion of Proposition 3.30.

Let N � 1 be some large natural number whose value we will determine at the end of
the proof. It will depend on g , f and L. The sets zSCDF['.F /[� � �'.N�1/.F / and
zS� D '

.�1/.F /[ � � �'.�N /.F / are each diffeomorphic to a solid cylinder � I �D2

and are bounded by annuli inside @ zS as well as disks D0 , DC and D0 , D� , where
DC D '

.N /.D0/ and D� D '
.�N /.D0/. Let z�C and z�� be the subsegments of z�

that connect D0 with DC and D0 with D� , ie z�C D z� \ zSC and z�� D z� \ zS� .

Choose R0> 0 large enough that B0
R0
.Q0/ contains all points of zM that have distance

at most L from F . Then, for all n 2 Z, the set B0
R0
.'.n/.Q0// contains all points

of zM that have distance at most L from '.n/.F /. Consider for the moment some
number R such that

R0 �R� cN �C2�R0:

(C2 is the constant from Proposition 3.30.) Then we have

B0R0
.Q0/� B0R.Q0/� PR.Q0/;

so every point of zM that has distance at most L from D0�F is contained in PR.Q0/.
We now claim that for all n 2Z with jnj �N the set B0

R0
.'.n/.Q0// is disjoint from

the interior of B0
RCC2

.Q0/. Assume not and let Q0 �B0
R0
.'.n/.Q0//\B0

RCC2
.Q0/

be a cell in the intersection. Then we obtain the following contraction using (3-6):

cjnj�dist0.Q0; '
.n/.Q0//�dist0.Q0;Q

0/Cdist0.Q0; '.n/.Q0//<R0CRCC2�cN:
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So B0
R0
.'.n/.Q0// is disjoint from Int B0

RCC2
.Q0/ and hence also from PR.Q0/�

Int B0
RCC2

.Q0/[@ zM . So PR.Q0/ does not contain any point of zM that has distance
at most L from zS n . zSC [ zS�/ and thus also from DC or D� . This implies in
particular that the arcs z�C and z�� have intersection number 1 with the restriction
bR;Q0

jS2 W S2! zM , whose image is @PR.Q0/ (see Proposition 3.30).

Our conclusions imply that the homotopy zH� restricted to @PR.Q0/ does not intersect
D0 [DC [D� or, more generally, that it stays away from zS n . zS� [ zSC/. If we
view bR;Q0

jS2 as a map from S2 to zV [ @ zM , then .x; t/ 7! zH�.bR;Q0
jS2.x/; t/ is

a homotopy between

bR;Q0
jS2 D Qf �0 ı bR;Q0

jS2 W S2
! zM and sR;Q0

D Qf � ı bR;Q0
jS2 W S2

! zM0

whose image is disjoint from D0 [DC [D� and zS n . zS� [ zSC/. So sR;Q0
has

intersection number 1 with z�C and z�� . Choose a small perturbation s0
R;Q0
W S2! zM0

of sR;Q0
that intersects @ zS transversally, that still stays away from D0 , DC , D� and

zS n. zS�[ zSC/ and that satisfies

(3-7) area s0R;Q0

ˇ̌
s0�1

R;Q0
. zSC[zS�/

< 2 area sR;Q0

ˇ̌
s�1

R;Q0
. zSC[zS�/

:

(This can always be achieved by perturbing the composition of sR;Q0
with a diffeo-

morphism of zM0 which slightly expands zS .) Set

X D s0
�1
R;Q0

. zS/; XC D s0
�1
R;Q0

. zSC/; X� D s0
�1
R;Q0

. zS�/:

Then X , XC and X� are compact smooth domains of S2 and we have X DXC �[X� ,
s0.@X / � @ zS and that s0

R;Q0
restricted to XC and X� has nonzero intersection

number with z� . Let X 0C � XC be the union of all components of XC on which
s0
R;Q0

has nonzero intersection number with z� , define X 0� �X� analogously and set
X 0DX 0C[X 0� . Then X 0C;X

0
�¤∅ and X 0C;X

0
�¤S2 and every component Y �X 0 is

bounded by at least one circle Z � @Y such that s0
R;Q0
jZ W Z! @ zS is noncontractible

in @ zS . Each such circle Z bounds two disks E1;E2 � S2 on either side (one of these
disks contains Y and the other one doesn’t). Consider now the set of all such disks
E � S2 coming from all components Y of X 0 and all boundary circles Z � @Y for
which s0

R;Q0
jZ W Z ! @ zS is noncontractible in @ zS . Any two such disks are either

disjoint or one is contained in the other. We can hence choose a component Y �X 0 ,
a boundary circle Z � @X 0 with the aforementioned property and a disk E � S2

bounded by Z such that E is minimal with respect to inclusion. We argue that s0
R;Q0

restricted to every other boundary circle Z0 � @Y is contractible in zS : If this was not
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the case, then Y must be disjoint from the interior of E , since otherwise Z0 � Y �E

bounds a disk E0 ¨ E . By the same argument, E cannot contain any other component
Y 0 of X 0 , because otherwise we would find a boundary circle Z00 � @Y 0 � Int E such
that s0

R;Q0
jZ 00 is noncontractible in @ zS . So Int E must be disjoint from X 0 and hence

s0
R;Q0
jE describes a nullhomotopy of a noncontractible loop in @ zS , which does not

intersect z� . Since �2. zM0/ D �2.M0/ D 0, this nullhomotopy can be homotoped
relative boundary to a nullhomotopy that has nonzero intersection number with z� . This
is however impossible and we obtain a contradiction. So s0

R;Q0
restricted to all other

boundary components of Y is noncontractible in zS and hence we have shown that
†D Y and hD � ı s0

R;Q0
jY satisfy all the claims of the proposition except for the

area bound.

In view of (3-7) it remains to choose R and N such that area sR;Q0
js�1

R;Q0
. zSC[zS�/ can

be bounded by a uniform multiple of areaf . To do this choose radii Ri DR0CC2i

where i D 0; : : : ; e with e D bC�1
2
.cN �C2� 2R0/c. Then

R0 <R1 < � � �<Re � cN �C2�R0:

By Proposition 3.30 we know that @PR0
.Q0/ n @ zM ; : : : ; @PRe

.Q0/ n @ zM � zV � zM

are pairwise disjoint. So, since bRi ;Q0
.S2/D @PRi

.Q0/ and sRi ;Q0
D Qf �ıbRi ;Q0

jS2

and Qf �.@ zM /D @ zM , we have

areasR0;Q0

ˇ̌
s�1

R0;Q0
. zSC[zS�/

C�� �CareasRe;Q0

ˇ̌
s�1

Re ;Q0
. zSC[zS�/

�area Qf �j Qf ��1
0

. zSC[zS�/
:

Since zSC[ zS�D'.�N /.F 0/ �[� � � �['.N�1/.F 0/[D� for the half-open set F 0DFnD0 ,
we further have

area Qf �j Qf ��1. zSC[zS�/
D area Qf �j Qf ��1.'.�N /.F 0//

C � � �C area Qf �j Qf ��1.'.N�1/.F 0//
:

Observe now that if Qf �.x/ D Qf �.y/ and �.x/ D �.y/ for x;y 2 zV , then x D y ,
since the arcs t 7! zH�.x; t/; zH�.y; t/ have the same endpoint and project to the
same arc t 7! H�.�.x/; t/ under � . So, for all n 2 Z, the projection � restricted
to Qf ��1.'.n/.F 0// is injective. Since �. Qf ��1.'.n/.F 0///� f ��1.S/, we conclude
area Qf �j Qf ��1.'.n/.F 0//

� areaf �jf ��1.S/ < areaf . Putting all this together yields

area sR0;Q0

ˇ̌
s�1

R0;Q0
. zSC[zS�/

C � � �C area sRe;Q0

ˇ̌
s�1

Re ;Q0
. zSC[zS�/

< 2N areaf:

So we can find an index i 2 f0; : : : ; eg such that

area sRi ;Q0

ˇ̌
s�1

Ri ;Q0
. zSC[zS�/

<
2N

eC1
areaf �

2C2N

cN �C2� 2R0

areaf:

Choosing N > 2c�1.C2C 2R0/ yields
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area sRi ;Q0

ˇ̌
s�1

Ri ;Q0
. zSC[zS�/

< 4c�1C2 areaf:

This finishes the proof of Proposition 3.4.

3.7 The case in which M is covered by a T 2–bundle over a circle

We finally present the proof of Proposition 3.2(b).

Lemma 3.31 Let A 2 SL.2;Z/ be a 2� 2–matrix with integral entries and determi-
nant 1. Then for every k � 1 there is a number 1� d � 6k such that

I CACA2
C � � �CAd�1

� 0 mod 3k :

(Here I is the identity matrix.)

Proof We first show the claim for k D 1. Since det A D 1, the Cayley–Hamilton
theorem yields that I � .tr A/A C A2 D 0. So we are done for tr A � 2 mod 3.
If tr A � 0 mod 3, then I C AC A2 C A3 D .I C A2/.I C A/ � 0 mod 3 and if
tr A� 1 mod 3, then I C � � �CA5 D .I �ACA2/.I C 2AC 2A2CA3/� 0 mod 3.

We now apply induction. Assume that the statement is true for all numbers up to k � 1.
We will show that it then also holds for kC 1. Choose 1� d1 � 6 such that I CAC

� � �CAd1�1 � 0 mod 3. By the induction hypothesis applied to Ad1 2 SL.2;Z/, there
is a number 1� d2 � 6k such that ICAd1CA2d1C� � �CA.d2�1/d1 � 0 mod 3k . So

I CAC � � �CAd1d2�1
D .I CAC � � �CAd1�1/.I CAd1 C � � �CA.d2�1/d1/

� 0 mod 3kC1;

and 1� d1d2 � 6kC1 .

Lemma 3.32 Assume that M is the total space of a T 2 –bundle over a circle. Then
for every n� 1 there is a finite covering map �nW M !M with the same domain and
range such that for every embedded loop � �M the preimage ��1

n .�/ consists of at
least n loops.

Proof The manifold M is diffeomorphic to a mapping torus of an orientation-
preserving diffeomorphism �W T 2!T 2 . The diffeomorphism � acts on �1.T

2/ŠZ2

by an element in A 2 SL.2;Z/. The fundamental group �1.M / is isomorphic to a
semidirect product of Z with Z2 coming from the action of A on Z2 . So �1.M / can
be identified with Z2 �Z with the multiplication
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��
x1

y1

�
; z1

�
�

��
x2

y2

�
; z2

�
D

��
x1

y1

�
CAz1

�
x2

y2

�
; z1C z2

�
:

Since for any m� 1 the lattice mZ2 � Z2 is preserved by the action of A, the subset

Um D

n��mx

my

�
; z
� ˇ̌

x;y; z 2 Z
o
� �1.M /

is a subgroup of �1.M / of index m2 . Note that Um is isomorphic to �1.M /, so
if we consider the corresponding m2 –fold covering � 0mW

�Mm ! M , then �Mm is
diffeomorphic to M .

It remains to compute the number of components of � 0�1
m .�/ and to show that this

number can be made arbitrarily large for the right choice of m. Set mD 3k for some
k � 1, which we will determine later. Let y� � �

0�1
m .�/ be an arbitrary loop in the

preimage of � . Then we can find an element gD ..x;y/; z/2�1.M / in the conjugacy
class of Œ� � such that � represents g in M and such that y� represents a multiple of
g that is contained in Um D �1. �Mm/ in �Mm . Then the restriction � 0mjy� W y� ! � is
a covering of a circle and its degree is equal to the first exponent d0 � 1 for which
gd0 2 Um . We will show that d0 � 6k . To do this observe that, for all i � 1,

gi
D

�� x

y

�
CAz

� x

y

�
C � � �CA.i�1/z

� x

y

�
; iz
�
:

By Lemma 3.31, there is a number 1 � d � 6k such that the first two entries of gd

are divisible by mD 3k and hence gd 2 Um . This implies the desired bound.

Since the choice of y� was arbitrary, we conclude that every loop in � 0�1
m .�/ covers �

at most 6k times and hence the number of such loops is at least
m2

6k
D

32k

6k
D

�
3

2

�k
:

So choosing k such that
�

3
2

�k
> n yields the desired result.

Proof of Proposition 3.2(b) We only have to consider the case in which M is a
T 2 –bundle over a circle, since for any finite cover y� W �M !M we can compose the
maps Of1; Of2; : : : W V ! �M obtained for �M with y� to obtain the maps f1 D y� ı Of1 ,
f2 D y� ı Of2; : : : .

We first establish the assertion for the case n D 1. Fix a T 2 –bundle projection
pW M!S1 and let T Dp�1.fptg/�M be a torus fiber. Then M nT is diffeomorphic
to T 2 � .0; 1/ and we can find a smooth local diffeomorphism ˆW T 2 � Œ0; 1� D

S1�S1� Œ0; 1�!M such that ˆjT 2�.0;1/ is a diffeomorphism onto M nT and such
that ˆ restricted to T 2 � f0g and T 2 � f1g is a diffeomorphism onto T . Moreover,
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we may assume that ˆ is chosen in such a way that the map

.ˆjT 2�f1g/
�1
ıˆjT 2�f0gW T

2
� f0g ! T 2

� f0g

is affine with respect to the standard affine structure on T 2DS1�S1 . Now let z 2S1

be an arbitrary point and set

V D T [ˆ.S1
� fzg � Œ0; 1�/[ˆ.fzg �S1

� Œ0; 1�/:

Then M n V is diffeomorphic to a 3–ball and V can be given the structure of a
simplicial complex. Fix such a structure for the rest of the proof and let f1W V !M

be the inclusion map of V .

Consider the universal covering � W zM !M and choose a lift F � zM of M nV . Then
F is a connected fundamental domain. Furthermore, denote by zV D z��1.V /� zM the
preimage of V and by Qf1W

zV ! zM its inclusion map. The complement of zV in zM
consists of open sets whose closures Q� zM are finite polyhedra and which we call
cells. Denote the set of cells again by Q. Observe that every cell is the image of F under
a deck transformation of � W zM !M . We say that two cells Q1;Q2 2Q are adjacent
if their intersection contains a point of zV n zV .1/ . Choose a cell Q0 2Q and consider
for each k � 0 the union Bk.Q0/ of all cells that have distance � k in the adjacency
graph of Q. Then Sk D @Bk.Q0/� zV is the image of a continuous map sk W †k!

zV

where †k is an orientable surface such that sk is an embedding on †k n s�1
k
. zV .1//.

Choose a component z� � ��1.�/ that intersects Q0 . Then z� � zM is a noncompact,
properly embedded line and there is a noncompact ray z�C � z� that starts in Q0 . This
implies that z�C has nonzero intersection number with the map Qf1 ı sk W †k !

zM for
each k � 1.

Consider now the continuous map f 0
1
W V !M that is homotopic to f1W V !M via

a homotopy H W V � Œ0; 1�!M and use this homotopy to construct a lift Qf 0
1
W zV ! zM .

Let N be a bound on the number of cells that each arc of the form t 7!H. � ; t/ intersects.
Then H induces a homotopy from Qf1ısN W †N !

zM to Qf 0
1
ısN W †N !

zM , which is
disjoint from Q0 . So both maps have the same, nonzero, intersection number with z�C .
We conclude that Qf 0

1
.sN .†N //� Qf

0
1
. zV / intersects z� . Hence, f 0

1
.V / intersects � .

We finally show the assertion for all remaining n � 2. Fix n, consider the covering
map �nW M !M from Lemma 3.32 and set

fn D �n ıf1W V !M:

Moreover, the preimage �n D �
�1
n .�/ is the union of at least n loops which all have

the property that all its nontrivial multiples are noncontractible in M .
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Consider a map f 0nW V !M and a homotopy between fn and f 0n . This homotopy
can be lifted via �nW M !M to a homotopy between f1 and a map f 0

1
W V !M

such that f 0n D �n ıf
0

1
. We now have

f 0
�1
n .�/D f 0

�1
1 .��1

n .�//D f 0
�1
1 .�n/D

[
� 0��n

f 0
�1
n .� 0/;

where the last union is to be understood as the union over all loops � 0 of �n . By
our previous conclusion, f 0�1

1 .� 0/¤∅ for all such � 0 and all such sets are pairwise
disjoint. This proves the desired result.
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