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Pixton’s double ramification cycle relations

EMILY CLADER

FELIX JANDA

We prove a conjecture of Pixton, namely that his proposed formula for the double
ramification cycle on Mg;n vanishes in codimension beyond g . This yields a collec-
tion of tautological relations in the Chow ring of Mg;n . We describe, furthermore,
how these relations can be obtained from Pixton’s 3–spin relations via localization
on the moduli space of stable maps to an orbifold projective line.

14H10; 14N35

1 Introduction

The double ramification cycle is a class Rg;A 2 Ag.Mg;n/ associated to any genus
g� 0 and any collection of integers AD .a1; : : : ; an/ whose sum is zero. Its restriction
to the moduli space Mg;n � Mg;n of smooth curves is the class of the locus of
pointed curves .C I x1; : : : ; xn/ admitting a ramified cover f W C ! P1 , for which the
positive ai describe the ramification profile over 0 and the negative ai describe the
ramification profile over 1. This definition can be extended to all of Mg;n via relative
Gromov–Witten theory.

The question known as “Eliashberg’s problem” is, vaguely, whether one can give a
more explicit description of the double ramification cycle. Toward this end, Faber
and Pandharipande [11] proved that Rg;A lies in the tautological ring, so Eliashberg’s
problem can be refined by asking for a formula in terms of kappa and psi classes and
their pushforwards from boundary strata.

Hain [17] provided such a formula for the restriction of Rg;A to the compact-type
locus Mct

g;n �Mg;n , which parametrizes curves whose dual graph is a tree. His proof
relies on an alternative description of the double ramification cycle in terms of the
universal Jacobian. Namely, on a smooth curve C , the existence of a ramified cover as
prescribed by the definition of Rg;A is equivalent to the requirement that

OC .a1Œx1�C � � �C anŒxn�/ŠOC :
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Thus, if
�AWMg;n! Xg

is the map to the universal abelian variety defined by

.C I x1; : : : ; xn/ 7!OC .a1Œx1�C � � �C anŒxn�/ 2 Jac0C

and Zg � Xg is the zero section, then

(1) Rg;AjMg;n
D ��AŒZg �:

The map �A extends without indeterminacy to Mct
g;n , and Marcus and Wise [23],

generalizing a previous result of Cavalieri, Marcus and Wise [2] for rational-tails
curves, proved that the analogue of (1) still holds on the compact-type locus. On Xg ,
there is a theta divisor ‚ satisfying

‚g D gŠŒZg �:
Thus, we have

Rg;AjMct
g;n
D

1

gŠ
.��A‚/

g ;

and Hain’s formula results from an explicit calculation of ��A‚ in terms of tautological
classes.

On the other hand, Grushevsky and Zakharov [16] leveraged this same computation
of ��A‚ in a different way. Namely, they used the observation that

‚gC1 D 0

to derive tautological relations in Ad .Mct
g;n/ for any d > g .

In recent work [31] (see also Cavalieri [1]), Pixton defined an extension of Hain’s class
to the entire moduli space Mg;n . More precisely, he extended the mixed-degree class
e�
�
A‚ to a more general formula in terms of tautological classes, denoted by �g;A .

To construct it, he first defined a family of classes �rg;A depending on a positive
integer parameter r , which can in some sense be viewed as “mod r ” versions of Hain’s
expression for Rg;AjMct

g;n
. He then proved that �rg;A is polynomial in r for r � 0,

and he defined �g;A as the constant term in this polynomial.

Simultaneously generalizing both Hain’s and Grushevsky and Zakharov’s arguments,
Pixton conjectured the following:

Conjecture 1.1 (Pixton) Let Œ � �d denote the codimension-d part of a class in
A�.Mg;n/. Then �g;A satisfies:
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(1) Œ�g;A�g DRg;A .

(2) Œ�g;A�d D 0 for all d > g .

Part (1) has recently been proven by Janda, Pandharipande, Pixton and Zvonkine [20],
using localization on a moduli space of relative stable maps to an orbifold projective
line. In particular, since �g;A has an explicit expression in terms of the additive
generators of the tautological ring, this yields a solution to Eliashberg’s problem.

The main result of the present paper is a proof of part (2):

Theorem 1.2 Let �g;A 2A�.Mg;n/ be the mixed-degree class defined by (9), whose
codimension-g component is equal to the double ramification cycle. Then the compo-
nent of �g;A in codimension d vanishes for all d > g .

To prove the theorem, we make use of a geometric reformulation of �g;A due to
Zvonkine. Namely, we consider a moduli space M0=r

g;A of pointed stable curves
.C I x1; : : : ; xn/ equipped with a line bundle L satisfying

L˝r ŠO
�
�

nX
iD1

ai Œxi �

�
:

There is a map
�WM0=r

g;A!Mg;n

forgetting the line bundle L, and if � W C!M0=r
g;A denotes the universal curve and LA

the universal line bundle, set

(2) ��rg;A WD 1

r2g�1
��.e

r2c1.�R��LA//:

Like Pixton’s class, ��rg;A is also polynomial in r for r� 0, and the constant term in
this polynomial is also equal to �g;A .

From here, the idea of the proof of Theorem 1.2 is to replace A by a tuple A0 in such a
way that �R��LA0 becomes a vector bundle but the constant term in r of (2) remains
unchanged. Then, we replace the class er

2c1.�R��LA0 / with the weighted total Chern
class

(3) c.r2/.�R��LA0/D 1C r
2c1.�R��LA0/C r4c2.�R��LA0/C � � � :

Once again, this replacement only affects higher-order terms in r ; the proof uses the fact
that both ��rg;A and the modification via (3) form cohomological field theories (CohFTs),
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and the R–matrices can be explicitly calculated by Chiodo’s Grothendieck–Riemann–
Roch formula [4]. The rank of �R��LA0 is easy to compute, and for certain choices
of A, the modification A0 can be chosen so that this rank equals precisely g . For
such A, the fact that (3) manifestly vanishes in cohomological degrees greater than
the rank proves the theorem. Then, using the fact that �g;A is polynomial in A (as
observed in forthcoming work of Pixton and Zagier), we deduce the theorem in general.

Remark 1.3 The tautological relations coming from vanishing of the high-degree
terms of (3) were previously observed in Clader [7]. As was explained in that paper,
they can alternatively be derived from the existence of the nonequivariant limit in
the equivariant virtual cycle of Mg;n.ŒC=Zr �; 0/, a perspective that is useful in what
follows.

Pixton also conjectured that the same vanishing result holds for a more general class,
which we denote by �g;A;k . This class can also be described by a Hain-type formula,
as we explain in Section 2.4, or, in the geometric reformulation, it can be defined by
considering the class

(4)
1

r2g�1
��.e

r2c1.�R��LA;k//;

where LA;k is the universal line bundle over the moduli space Mk=r
g;A of pointed stable

curves with a line bundle L satisfying

(5) L˝r Š !˝klog

�
�

nX
iD1

ai Œxi �

�
:

Once again, (4) is polynomial in r for r � 0, and �g;A;k is defined as the constant
term in this polynomial. The k D 1 case, in particular, is related to r –spin theory. We
prove in Theorem 5.4 that Pixton’s conjecture for �g;A;k is also true, by essentially
the same proof as Theorem 1.2.

Remark 1.4 This more general vanishing is connected to relations studied by Ebert
and Randal-Williams [32; 10], building on ideas of Morita [26; 27]. Specifically,
Randal-Williams works on the nth fiber product Cng of the universal curve over Mg ,
and his relations are the image of the restriction of the relations in Theorem 5.4 under
the birational morphism Mrt

g;n! Cng , where Mrt
g;n is the moduli space of rational-tails

curves.
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It has been conjectured that the 3–spin relations constructed by Pandharipande, Pixton
and Zvonkine [28] generate all tautological relations on the moduli space of curves,
so one should expect the double ramification cycle relations of Theorem 1.2 to follow
from these. This is indeed the case:

Theorem 1.5 The double ramification cycle relations are a consequence of Pixton’s
3–spin relations.

To prove Theorem 1.5, we study the equivariant Gromov–Witten theory of a projective
line P Œr; 1� with a single orbifold point of isotropy Zr . The associated CohFT is
generically semisimple, so, as explained in Janda [18], tautological relations can be
obtained by applying Givental–Teleman reconstruction to express the CohFT as a graph
sum and then using the existence of the limit as one moves toward a nonsemisimple
point. The relations thus obtained are equivalent to the 3–spin relations, via rather
general machinery of the second author.

On the other hand, the same CohFT can be expressed as a graph sum in a different way,
via localization and Chiodo’s formula. A careful matching reveals that the two graph
sums agree, and the existence of the nonsemisimple limit in the Givental–Teleman
sum implies the existence of the nonequivariant limit in the localization sum. Thus,
upon restriction to the substack of degree-zero maps to P Œr; 1�, one recovers the double
ramification cycle relations in the form presented in Clader [7].

1.1 Outline of the paper

We begin, in Section 2, by reviewing the definition of the double ramification cycle
and Pixton’s conjectural formula in more detail. In Section 3, we recall Chiodo’s
Grothendieck–Riemann–Roch formula for the Chern characters of the direct image of
the universal line bundle on moduli spaces of r th roots and use it to make the formula
for ��rg;A more explicit. Section 4 reduces the proof of Theorem 1.2 to a comparison
of ��rg;A with the weighted total Chern class described in (3), and this comparison
is accomplished in Section 5 by describing both classes in terms of the action of an
explicit R–matrix on a topological field theory, thus completing the proof of the main
theorem and its generalization. Finally, in Section 6, we recast the double ramification
cycle relations in terms of maps to an orbifold projective line, and use this perspective
to show how they can be deduced from the 3–spin relations. Details of the localization
on P Œr; 1�, including a matching of the localization and reconstruction graph sums, are
relegated to the appendix.
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2 Preliminaries on the double ramification cycle and Pixton’s
conjectures

The exposition that follows is based on notes of Cavalieri [1] and Pixton [31].

2.1 The double ramification cycle

Fix a genus g � 0 and a collection of integers AD .a1; : : : ; an/ whose sum is zero.
Define a cycle on Mg;n as the class of the locus of pointed curves .C I x1; : : : ; xn/ for
which there exists a ramified cover f W C ! P1 satisfying

� f �1.0/D fxi j ai > 0g,

� the ramification profile over 0 is the partition fai j ai > 0g,

� f �1.1/D fxi j ai < 0g,

� the ramification profile over 1 is the partition fjai j j ai < 0g.

We denote by � the partition consisting of the positive ai and by � the partition
consisting of the absolute values of the negative ai ; these are partitions of the same
size since the sum of all the ai is zero. Further, write n0 D #fai D 0g; note that no
restriction is placed on the xi for which ai D 0.

To extend the class described above to the entire moduli space Mg;n , we compactify
the space of such ramified covers by allowing degenerations of the target P1 . More
specifically, there is a map

� WMg;n0
.P1I�; �/�!Mg;n
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Pixton’s double ramification cycle relations 1075

from the moduli space of rubber relative stable maps to P1 , and we set

Rg;A WD ��ŒMg;n0
.P1I�; �/��vir

2 Ag.Mg;n/:

See [11] for a further discussion of rubber relative stable maps to the projective line.

This class has an alternative description when restricted to the locus Mct
g;n �Mg;n

consisting of curves of compact type — that is, curves whose dual graph is a tree. As
explained in the introduction, the Jacobian Jac0C of a compact-type curve is a (compact)
abelian variety, and the map

�AWMg;n! Xg

to the universal abelian variety defined by

.C I x1; : : : ; xn/ 7!OC .a1Œx1�C � � �C anŒxn�/ 2 Jac0C

can be extended to Mct
g;n . It is straightforward to see that, if Zg �Xg denotes the zero

section, then the class ��AŒZg � coincides with the double ramification cycle when one
restricts to Mg;n . By the results of [2; 23], this is also true for the extension to Mct

g;n .

On the other hand, there is a theta divisor ‚ 2A1.Xg/, which restricts in each fiber of
the universal family to the prescribed polarization on the corresponding abelian variety,
and which is trivial when restricted to the zero section. Using results of Deninger and
Murre [9] (see [36; 15] for further exposition), one can show that this divisor satisfies

‚g D gŠŒZg �
and ‚gC1 D 0.

Hain [17] computed ��A‚ in terms of tautological classes on Mct
g;n , which, via the

above observations, implies a formula for the restriction of the double ramification
cycle. The result of his computation is

(6) Rct
g;A D

1

2ggŠ

�
�
1

2

X
0�l�g

I�f1;:::;ng

a2I�l;I

�g
;

where
aI D

X
i2I

ai

and �l;I is defined as the class of the closure of the locus of curves with an irreducible
component of genus l containing the marked points in S and an irreducible component
of genus g� l containing the remaining marked points. (In the unstable cases where
such curves do not exist, it is defined by convention: �0;fig D�g;Œn�nfig D� i , and
�0;∅ D 0.)

Geometry & Topology, Volume 22 (2018)



1076 Emily Clader and Felix Janda

2.2 Pixton’s conjectural formula

The starting point for Pixton’s generalization of Hain’s formula (6) to all of Mg;n is
the observation that, by packaging the expressions for each power of ��A‚ into the
mixed-degree class e�

�
A‚ , one obtains a “compact-type cohomological field theory”.

That is, if V is an infinite-dimensional vector space with generators ea indexed by
integers a , then the association

V ˝n!H�.Mct
g;n/; ea1

˝ � � �˝ ean
7!Rct

g;A;

satisfies all of the axioms of a CohFT except for the gluing axiom along nonseparating
nodes, which do not occur in the compact-type moduli space. We refer the reader to
[22] or [28] for a careful discussion of CohFTs and their axioms.

According to the results of Givental and Teleman [13; 34], a semisimple CohFT can
be obtained via the action of an R–matrix on a topological field theory; the result is
an expression for the CohFT as a summation over graphs. A similar procedure works
for Rct

g;A , and it can be used to write Hain’s formula as a graph sum. Namely, by
expanding the exponential and using intersection theory on Mg;n , one finds that

(7) e�
�
A‚ D

X
�2Gct

g;n

���

jAut.�/j

� nY
iD1

e
1
2
a2

i
 i

Y
eD.h;h0/2E.�/

1� e�
1
2
w.h/w.h0/. hC h0 /

 hC h0

�
:

Here, Gct
g;n denotes the set of decorated dual graphs of curves in Mct

g;n . The set of
edges of a graph � is denoted by E.�/, and each edge is written e D .h; h0/ for half-
edges h and h0 . The classes  h and  h0 are the first Chern classes of the cotangent
line bundles at the two branches of the node corresponding to e , and �� is the gluing
map

(8) �� W
Y

vertices v

Mg.v/;val.v/!Mg;n;

in which g.v/ is the genus of v and val.v/ the valence (that is, the total number of
half-edges and legs incident to v ).

Associated to each such graph � is a unique weight function

wW H.�/! Z

on the set H.�/ of half-edges and legs, determined by:
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(W1) w.hi /D ai for each leg hi associated to a marked point xi .

(W2) If e D .h; h0/, then w.h/Cw.h0/D 0.

(W3) For each vertex v , the sum of the weights of half-edges and legs incident to v
equals zero.

These conditions uniquely determine w because � is a tree.

Now, if one attempts to naïvely generalize the above formula to the full moduli space
by allowing � to be any dual graph for a curve in Mg;n , then there will no longer be
a unique choice of weight function w satisfying (W1)–(W3). Indeed, any loop in the
dual graph permits infinitely many choices of weights, so the sum of the expressions in
(7) over all possible weight functions will not converge.

To avoid such infinite sums, Pixton introduces an additional parameter r and restricts
to weight functions

wW H.�/! f0; 1; : : : ; r � 1g

satisfying the following three conditions:

(R1) w.hi /� ai mod r for each half-edge hi associated to a marked point xi .

(R2) If e D .h; h0/, then w.h/Cw.h0/� 0 mod r .

(R3) For each vertex v , the sum of the weights of half-edges incident to v is zero
modulo r .

There are clearly only finitely many such weight functions associated to any dual
graph � . Set �rg;A to be the class

X
�;w

1

jAut.�/j
1

rh1.�/
���

� nY
iD1

e
1
2
a2

i
 i

Y
eD.h;h0/

1� e�
1
2
w.h/w.h0/. hC h0 /

 hC h0

�
;

where � ranges over all dual graphs of curves in Mg;n , and w ranges over weight
functions satisfying (R1)–(R3).

As observed by Pixton, the class �rg;A satisfies a number of polynomiality properties:

Lemma 2.1 (Pixton and Zagier, forthcoming work; see [20, Appendix]) For fixed g
and A, the class �rg;A is polynomial in r for r� 0. Moreover, the constant term in
this polynomial is itself polynomial in the arguments A.
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More generally, let � be a dual graph with half-edges h1; : : : ; hN and let W be a
polynomial in N variables. Then the sumX

w

W.w.h1/; : : : ; w.hN //;

where w ranges over weight functions satisfying (R1)–(R3), is a polynomial in r for
r � 0. This polynomial is divisible by rh1.�/ and its lowest-degree term depends on
a1; : : : ; an polynomially.

Given Lemma 2.1, Pixton’s conjectural formula for the double ramification cycle can
now be defined:

(9) �g;A WD�
r�0
g;A

ˇ̌
rD0

;

where �r�0g;A is defined as the class �rg;A for any r large enough that this class is
polynomial in r .

2.3 Geometric reformulation

A different perspective on �g;A , first suggested by Zvonkine, will be more useful for
our proof of Theorem 1.2. Let M0=r

g;A be the moduli space1 parametrizing pointed
stable curves .C I x1; : : : ; xn/ equipped with a line bundle L satisfying

(10) L˝r ŠO
�
�

nX
iD1

ai Œxi �

�
:

There is a map
�WM0=r

g;A!Mg;n

forgetting the line bundle L and the orbifold structure; this map has degree r2g�1 , as
explained, for example, in [3]. If � W CA!M0=r

g;A denotes the universal curve and LA
denotes the universal line bundle on CA , then the class

(11) ��rg;A WD 1

r2g�1
��.e

�r2c1.R��LA//

is also polynomial in r for r � 0, and

�g;A D ��r�0g;A

ˇ̌
rD0

:

1Here, a compactification of the moduli space of such objects on smooth curves must be chosen. There
are several ways to compactify, as summarized in Section 1.1.2 of [33]; for our purposes, we will allow
orbifold structure at the nodes of C and require only that L be an orbifold line bundle.
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The fact that this definition of �g;A agrees with the previous one (and that ��rg;A ,
like �rg;A , is eventually polynomial in r ) can be proved by noting that ��rg;A forms
a semisimple CohFT on a vector space V D Cfe0; e1; : : : ; er�1g, expressing it as a
dual graph sum using the Givental–Teleman reconstruction of semisimple CohFTs, and
comparing the resulting dual graph sums using Lemma 2.1. We return to this argument
in Lemma 5.3 below.

2.4 Generalization to powers of the log canonical

Both of these definitions of �g;A are readily generalized to allow for powers of the
log canonical. To do so, fix an integer k and assume that AD .a1; : : : ; an/ satisfies

nX
iD1

ai D k.2g� 2Cn/:

Let Mk=r
g;A be the moduli space parametrizing pointed stable curves .C I x1; : : : ; xn/

equipped with a line bundle L satisfying

(12) L˝r Š !˝klog

�
�

nX
iD1

ai Œxi �

�
:

As above, there is a degree-r2g�1 map

�WMk=r
g;A!Mg;n

forgetting L and the orbifold structure on the curve. Set

��rg;A;k WD 1

r2g�1
��.e

�r2c1.R��LA;k//;

where � W CA;k!Mk=r
g;A is the universal curve and LA;k the universal line bundle.

A generalization of Pixton’s class can be defined by

�g;A;k D ��r�0g;A;k

ˇ̌
rD0

;

in the language of Section 2.3. Alternatively, in Pixton’s original formulation, the
generalized class is defined by replacing condition (R3) above by

(R3 0 ) for each vertex v , the sum of the weights of half-edges incident to v is

k.2g.v/� 2C val.v// mod r
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and setting �r
g;A;k

to be the class

X
�;w

1

jAut.�/j
1

rh1.�/
����

�Y
v

e�
1
2
k2�1

nY
iD1

e
1
2
a2

i
 i

Y
eD.h;h0/

1� e�
1
2
w.h/w.h0/. hC h0 /

 hC h0

�
;

where � ranges over all dual graphs of curves in Mg;n , v ranges over vertices of � ,
and w ranges over weight functions satisfying (R1)–(R2) and (R3 0 ). Pixton and Zagier
have also proven an analogue of Lemma 2.1 for �r

g;A;k
:

Lemma 2.2 (Pixton and Zagier, forthcoming work; see [20, Appendix]) For fixed g
and A, the class �r

g;A;k
is polynomial in r for r � 0. Moreover, the constant term in

this polynomial is itself polynomial in k and the arguments A.

More generally, let � be a dual graph with half-edges h1; : : : ; hN and let W be a
polynomial in N variables. Then the sumX

w

W.w.h1/; : : : ; w.hN //;

where w ranges over weight functions satisfying (R1)–(R2) and (R3 0 ), is a polynomial
in r for r � 0 and is divisible by rh1.�/ .

We can therefore define �g;A;k as the constant term of the polynomial in r corre-
sponding to �r

g;A;k
. When k D 0, we recover the previous definitions of �g;A . Until

otherwise stated, we will always assume that k D 0 in what follows.

3 Chiodo’s Grothendieck–Riemann–Roch formula

In this section, we recall Chiodo’s formula for the Chern characters of the direct image
R��LA , which, in particular, can be used to write (11) explicitly in terms of tautological
classes when r is sufficiently large.

Fix a tuple of integers AD .a1; : : : ; an/. In fact, one need not assume that the sum of
the ai is zero, as was the case above, but only that

nX
iD1

ai � 0 mod r I

this more general version will be important later. Let � and LA be as above. Then
Chiodo’s formula states
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chd .R��LA/D

BdC1.0/

.d C 1/Š
�d �

nX
iD1

BdC1.ai=r/

.d C 1/Š
 di

C
r

2

X
0�l�g
I�Œn�

BdC1.ql;I=r/

.d C 1/Š
i.l;I /�.d�1/C

r

2

r�1X
qD0

BdC1.q=r/

.d C 1/Š
j.irr;q/�.d�1/;

using the presentation given in Corollary 3.1.8 of [4].

Let us summarize the notation appearing in this formula. First, the BdC1.x/ are the
Bernoulli polynomials, defined by the generating function

text

et � 1
D

1X
nD0

Bn.x/
tn

nŠ
:

The � and  classes are defined as usual, using the cotangent line to the coarse
underlying curve.

Let Z.l;I / be the substack of CA consisting of nodes separating the curve C into a
component of genus l containing the marked points in I and a component of genus
g� l containing the other marked points, subject to the requirement that stable curves
of this type exist. Let Z0

.l;I /
be the two-fold cover of Z.l;I / given by a choice of

branch at each such node. Then

i.l;I /W Z
0
.l;I /!M0=r

g;A

is the composition of this two-fold cover with the inclusion into CA and projection.
The index ql;I 2 f0; 1; : : : ; r � 1g is the multiplicity of L at the chosen branch, which
is defined by

ql;I C
X
i2I

ai � 0 mod r:

If  is the first Chern class of the line bundle over Z0
.l;I /

whose fiber is the cotangent
line to the coarse curve at the chosen branch of the node, and y is the first Chern
class of the bundle whose fiber is the cotangent line to the coarse curve at the opposite
branch, then d is defined by

(13) d D
 dC1C .�1/d y dC1

 C y 
D

X
iCjDd

.� /i y j :
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Finally, let Z0
.irr;q/ be given by nonseparating nodes in CA together with a choice of

branch such that the multiplicity of the line bundle L at the chosen branch is equal
to q . We have morphisms

j.irr;q/W Z
0
.irr;q/!M0=r

g;A

given, as before, by the two-fold cover, inclusion into the universal curve, and projection.
The class d is again defined by (13).

4 Comparison with the total Chern class

Fix a collection of integers AD .a1; : : : ; an/ whose sum is zero. Suppose that n > 0
and exactly one ai is negative; without loss of generality, we may assume that a1 < 0
and ai � 0 for all i � 2. Choose any r >maxfjai jg, and set

(14) A0 D .a01; : : : ; a
0
n/D .a1C r; a2; : : : ; an/;

which is now a collection whose sum is r and for which every element is nonnegative.

The definitions of the moduli space M0=r
g;A and the class ��rg;A extend verbatim to

tuples of integers whose sum is not necessarily zero but merely zero modulo r . In
particular, ��rg;A0 is defined, and in fact, its constant term in r is the same as that
of ��rg;A :

Lemma 4.1 If A and A0 are as above, then��r�0g;A

ˇ̌
rD0
D ��r�0g;A0

ˇ̌
rD0

:

Proof Via Chiodo’s formula, ��rg;A can be written as

1

r2g�1
��

�
exp

�
�r2

B2.0/

2
�1C r

2
nX
iD1

B2.ai=r/

2
 i � r

3
X
�

B2.q�=r/

2
Œ��

��
;

where the sum is over one-noded graphs � decorated with a multiplicity q� at the node,
and Œ�� is the corresponding boundary divisor. (Note that since B2.x/D B2.1� x/,
we need not distinguish between the two choices of branch.)

Because B2 is a degree-two polynomial, the replacement A 7! A0 only affects the
higher-order terms in r in the argument of �� . Some care is required to ensure that the
same is true after applying �� , since the degree of � on a codimension-d boundary
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stratum is in general equal to r2g�1�d due to the presence of “ghost” automorphisms.
This is indeed the case, though, because the replacement of A by A0 does not change
the boundary term.

We have thus reexpressed Pixton’s conjectural formula (for A satisfying the above
conditions) as

�g;A D ��r�0g;A0

ˇ̌
rD0

:

The advantage of having replaced A by A0 is the following:

Lemma 4.2 If A and A0 are as above, then

R0��LA0 D 0;

and hence �R��LA0 is a vector bundle.

Proof Let .C I x1; : : : ; xnIL/ be an element of M0=r
g;A0 , so

L˝r ŠO
�
�

nX
iD1

a0i Œxi �

�
:

Let s be a section of L, and suppose that there exists an irreducible component C 0 of
C on which s 6� 0.

Since
deg.LjC 0/D�

1

r

X
i2C 0

a0i � 0

as an orbifold line bundle, we must have a0i D 0 for all i 2 C 0 . Moreover, L cannot
have nontrivial orbifold structure at any of the nodes of C 0 , since s would necessarily
vanish at such a node and hence would be identically zero on C 0 . It follows that LjC 0
is pulled back from a degree-zero bundle on the coarse underlying curve jC 0j. Indeed,
this bundle must be OjC 0j , for otherwise LjC 0 would have no nonzero section.

We conclude that s is nowhere zero on C 0 , and in particular that it does not vanish
at any of the nodes at which C 0 meets the rest of C . Thus, none of the components
meeting C 0 can contain a marked point xi for which a0i ¤ 0. Continuing inductively,
we find that a0i D 0 for all i , a contradiction.

By Lemma 4.2, the weighted total Chern class

c.r2/.�R��LA0/ WD 1C r
2c1.�R��LA0/C r4c2.�R��LA0/C � � �
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is well-defined. It can be expressed in terms of Chern characters as

c.r2/.�R��LA0/D exp
�X
d�1

.�r2/d .d � 1/Š chd .R��LA0/
�
;

and, hence, it also admits an explicit description via Chiodo’s formula. Let

C rg;A0 WD
1

r2g�1
��.c.r2/.�R��LA0//:

Lemma 4.3 One has ��r�0g;A0

ˇ̌
rD0
D C r�0g;A0

ˇ̌
rD0

:

A proof of this lemma will imply Theorem 1.2 for the tuples A under consideration,
since C rg;A0 clearly vanishes past the rank of the bundle �R��LA0 and a straightforward
Riemann–Roch computation shows that

rank.�R��LA0/D g� 1C
1

r

nX
iD1

a0i D g:

The proof of Lemma 4.3 follows the same lines as that of Lemma 4.1. However, to
make the argument carefully, one must be vigilant about the boundary terms appearing
in both classes. The most streamlined way to handle these is to realize that both ��rg;A0
and C rg;A0 can be encoded as semisimple CohFTs, and hence can be expressed as the
result of an R–matrix action on a topological field theory (TFT). The two classes are
then compared by explicitly computing both the R–matrix and the TFT in each case.
This is the content of the following section.

5 The CohFTs and their R–matrices

The results of this section are well-known to experts — in particular, closely related
computations appear in [6; 33; 5] — but we recall them here for clarity.

5.1 The CohFTs

Recall that a CohFT, as originally defined by Kontsevich and Manin [22], consists of
a finite-dimensional C–vector space V equipped with a nondegenerate pairing �, a
distinguished element 1 2 V , and a system of homomorphisms

�g;nW V
˝n
!H�.Mg;n/
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satisfying a number of compatibility axioms. Any CohFT yields a quantum product �
on V , defined by

�.v1 � v2; v3/D�0;3.v1˝ v2˝ v3/;

and we say that the CohFT is semisimple if � makes V into a semisimple C–algebra —
that is, if there exists a basis �1; : : : ; �r for V for which

�i � �j D ıij �i :

The work of Givental and Teleman [12; 34] implies that a semisimple CohFT can be
expressed as

�DR �!;

where
RDR.z/ 2 End.V /ŒŒz��

is an R–matrix and ! is the topological field theory obtained by projecting � to
H 0.Mg;n/.

For the reader’s convenience, we briefly recall the definition of the action of an R–
matrix on a CohFT; more detailed information can be found in [28]. We have

R �! WD
X

�2Gg;n

1

jAut.�/j
Cont� ;

where Gg;n is the set of decorated dual graphs of curves in Mg;n , and Cont� 2
H�.Mg;n/˝ .V

�/˝n is defined via contraction of tensors as follows:

� At each vertex of � , place the tensor

.T!/g.v/;val.v/ 2H
�.Mg.v/;val.v//˝ .V

�/˝val.v/

described below.

� At each leg l of � attached to a vertex v , place

R�1. l/ 2H
�.Mg.v/;val.v//˝End.V /:

� At each edge e D .h; h0/ of � joining vertices v and v0 , place

��1�R�1. h/�
�1R�1. 0

h
/t

 hC h0
2H�.Mg.v/;val.v//˝H

�.Mg.v0/;val.v0//˝V
˝2:

In the vertex contribution, the translation operator T is defined by

T .z/ WD z1� zR�1.z/1 2 z2V ŒŒz��;
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and .T!/g;n.v1˝ � � �˝ vn/ isX
m�0

1

mŠ
pm�.v1˝ � � �˝ vn˝T . nC1/˝ � � �˝T . nCm//;

where pmWMg;nCm!Mg;n is the forgetful map.

In our case, the underlying vector space is

V DCf�0; �1; : : : ; �r�1g

with the pairing

�.�i ; �j /D

�
1 if i C j � 0 mod r;
0 otherwise:

We define two CohFTs on this vector space.

The first CohFT is

��rg;n.�a1
˝ � � �˝ �an

/D rg ���rg;A D 1

rg�1
��.e

r2c1.�R��LA//;

where AD .a1; : : : ; an/. The second is

C rg;n.�a1
˝ � � �˝ �an

/D rg �C rg;A D
1

rg�1
��.c.r2/.�R��LA//:

In both cases, the class is set to zero when the moduli space M0=r
g;A does not exist —

that is, whenever the condition
nX
iD1

ai � 0 mod r

is not satisfied.

Remark 5.1 The CohFT C rg;n has another interpretation, as discussed in [7]. Namely,
we consider the orbifold ŒC=Zr �, on which C� acts by multiplication. Then, if �
denotes the equivariant parameter, one has

��
��
Mg;a.ŒC=Zr �; 0/

�vir
C�
�
D

1X
iD0

�
�

r

�g�1C.1=r/Pai

��.ci .�R��LA//;

where Mg;a.ŒC=Zr �; 0/ denotes the substack of the moduli space of stable maps to
ŒC=Zr � on which the monodromy at the i th marked point is ai . This follows, for
example, from the localization computations in Section A.2 for P Œr; 1�, in the case
where the degree d is zero.
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It follows that

(15) C rg;n.�a1
˝ � � �˝ �an

/D rg�1C.2=r/
P
ai��

��
Mg;a.ŒC=Zr �; 0/

�vir
C�
�ˇ̌
�D1=r

:

Note that one must be careful in the situation where a1 D � � � D an D 0, since in this
case Mg;a.ŒC=Zr �; 0/ is noncompact, and the virtual cycle should be understood as
defined via the localization formula.

Lemma 5.2 Both ��rg;n and C rg;n form semisimple cohomological field theories with
unit �0 .

Proof For C rg;n , the CohFT property follows from the interpretation (15). Indeed, the
equivariant Gromov–Witten theory of ŒC=Zr � forms a CohFT under the pairing

�ŒC=Zr �.�i ; �j /D

8<:
1=� if i D j D 0;
1=r if 0¤ i C j � 0 mod r;
0 otherwise;

and the prefactor rg�1C.2=r/
P
ai can easily be shown to respect the decomposition

properties. In general, the proof that both of ��rg;n and C rg;n form CohFTs follows
from the fact that both are twisted theories (over BZr ), which are studied in [35]. The
CohFT axioms are consequences of the pullback and splitting properties satisfied by
the K–theory class R��LA (compare to [35, Lemma B.0.9]).

The quantum product in either case can be computed explicitly, since the only contri-
bution to the genus-zero three-point invariants comes in cohomological degree zero.
Thus,��r0;3.�a1

˝ �a2
˝ �a3

/D C r0;3.�a1
˝ �a2

˝ �a3
/D

�
1 if

P
ai � 0 mod r;

0 otherwise:

It follows that the quantum products are both

�i � �j D �iCj mod r :

This shows that the unit is �0 , and moreover that the ring structure on V is

CŒ�1�

.�r1 D 1/
:

It is easy to see that this ring is semisimple, with idempotents given by

�i WD
1

r

r�1X
jD0

� ij �
j
1

for i 2 f0; : : : ; r � 1g, where � is a primitive r th root of unity.
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It follows from Lemma 5.2 that both ��rg;n and C rg;n can be computed in terms of
an R–matrix action on a TFT. The TFTs are easy to calculate, since they arise from
projecting the CohFT to cohomological degree zero; the result, in either case, is

!g;n.�a1
˝ � � �˝ �an

/D

�
rg if

Pn
iD1 ai � 0 mod r;

0 otherwise:

5.2 Computation of R–matrices

Fix the basis f�0; : : : ; �r�1g for V . We claim that, in this basis, the R–matrix associated
to the CohFT ��rg;n is equal to

(16) zRr.z/D exp

0@�12r2B2.0/z : : :

�
1
2
r2B2..r � 1/=r/z

1A ;
and that the R–matrix associated to the CohFT C rg;n is

(17) RrC .z/D exp

0BBBB@
1P
dD1

BdC1.0/

d.dC1/
.�r2z/d

: : :
1P
dD1

BdC1..r�1/=r/

d.dC1/
.�r2z/d

1CCCCA ;
where in both cases the matrix inside the exponential is diagonal.2

The argument is essentially the same in either case, so we focus on the slightly more
complicated situation for C rg;n . By Lemma 2.2 of [24], it suffices to verify that
.RrC �!/g;n agrees with C rg;n when restricted to the open locus Mg;n �Mg;n . The
only graph contributing to the R–matrix action on the open locus is a single vertex
with n legs, for which the contribution is

(18) .T!/g;n..R
r
C /
�1. 1/�a1

˝ � � �˝ .RrC /
�1. n/�an

/

D

X
m�0

1

mŠ
pm�

�
!g;n

�
.RrC /

�1. 1/�a1
˝ � � �˝ .RrC /

�1. n/�an

˝T . nC1/˝ � � �˝T . nCm/
��
:

Here,

T .z/D z1� z.RrC /
�1.z/1D z

�
1� exp

�
�

1X
dD1

BdC1.0/

d.d C 1/
.�r2z/d

��
�0:

2The fact that these matrices satisfy the symplectic condition R.z/ �R�.�z/D 1 , where � denotes
the adjoint with respect to the pairing, is a straightforward consequence of the identity Bn.1� x/ D
.�1/nBn.x/ .
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Using the definition of !g;n and applying Lemma 2.3 of [30] to the power series

X.t/D 1� exp
�
�

1X
dD1

BdC1.0/

d.d C 1/
.�r2t /d

�
;

we can rewrite (18) as

rg exp
� 1X
dD1

.�1/d
�
r2dBdC1.0/

d.d C 1/
�d �

nX
jD1

r2dBdC1.aj =r/

d.d C 1/
 dj

��
:

The classes �d and  j are pulled back under the degree-r2g�1 map �WM0=r
g;A!Mg;n .

Thus, the above is equal to

1

rg�1
�� exp

� 1X
dD1

.�1/d
�
r2dBdC1.0/

d.d C 1/
�d �

nX
jD1

r2dBdC1.aj =r/

d.d C 1/
 dj

��
;

where we use the same notation for the � and  classes on Mg;n as for their pullbacks
to M0=r

g;A . Now, by Chiodo’s formula, the above coincides precisely with the restriction
of C rg;n.�a1

˝ � � �˝ �an
/ to Mg;n .

5.3 Proof of Theorem 1.2

We can now conclude the proof of the main theorem.

Proof of Lemma 4.3 and Theorem 1.2 When A has exactly one negative entry, we
have reduced the claim to proving Lemma 4.3, or in other words that

1

rg
. zRr �!/g;n.�a01

˝ � � �˝ �a0n/

ˇ̌̌̌
rD0

D
1

rg
.RrC �!/g;n.�a01

˝ � � �˝ �a0n/

ˇ̌̌̌
rD0

:

This follows from Lemma 2.1, using the fact that the lowest-order terms in r of the
two R–matrices agree.

Thus, the theorem is proved in the case where exactly one ai is negative. Since �g;A
is polynomial in A by Lemma 2.1, this implies the result in general as long as n > 0.

If n D 0, the initial step of replacing A by A0 is no longer valid, but the above
nevertheless implies that

�g;∅ D
1

r2g�1
��.c.r2/.�R��L∅//

ˇ̌̌̌
rD0

:

In this case, R0��L∅ is a trivial line bundle, while R1��L∅ is the pullback under
� of the Hodge bundle E on Mg . Thus, the vanishing of �g;∅ in degrees past g
follows from the fact that E is a rank-g vector bundle.
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The computation of R–matrices also reveals why the geometric reformulation of �g;A
as the constant term of ��rg;A matches Pixton’s original presentation as the constant
term of �rg;A .

Lemma 5.3 The two definitions of �g;A described in Sections 2.2 and 2.3 agree:

�rg;A
ˇ̌
rD0
D ��rg;Aˇ̌rD0:

Proof First, we note that both sides are unaffected if A is replaced by its reduction
A00 modulo r ; we have already seen this for ��rg;A , while for �rg;A , it follows easily
from the definition.

After this replacement, r�g��rg;A00 is a semisimple CohFT, and the formula for it
via the R–matrix action exactly agrees with the formula for �rg;A00 , except that the
modifications

e�
1
2
r2B2.0/�1 1;

e
1
2
r2B2.a

00
i
=r/ i  e

1
2
.a00

i
/2 i ;

1� e�
1
2
r2.B2.w.h/=r/ hCB2.w.h

0/=r/ h0/

 hC h0
 

1� e�
1
2
w.h/w.h0/. hC h0 /

 hC h0
;

need to be done for the vertex, leg and edge factors, respectively. Now note that

B2.x/D x
2
� xC 1

6
:

Hence, the first two modifications amount to a multiplication by

e
1
6
r2�1

nY
iD1

e
1
2
.ra00

i
� 1

6
r2/ i ;

which leaves constant terms in r invariant. The third modification also does not affect
constant-in-r terms, since

r2B2

�
w.h/

r

�
D r2B2

�
w.h0/

r

�
D .w.h//2C rw.h/C 1

6
r2

� .w.h//2 ��w.h/w.h0/ mod r:

5.4 Relations with powers of the log canonical

Fix an integer k and a tuple of integers AD .a1; : : : ; an/ for which
nX
iD1

ai � k.2g� 2Cn/ mod r:

Geometry & Topology, Volume 22 (2018)



Pixton’s double ramification cycle relations 1091

As above, let Mk=r
g;A denote the moduli space of pointed stable curves with a line bundle

L satisfying (12).

Chiodo’s formula extends to these more general moduli spaces with only a small
modification. It reads

(19) chd .R��LA;k/D

BdC1.k=r/

.d C 1/Š
�d�

nX
iD1

BdC1.ai=r/

.d C 1/Š
 di C

r

2

X
0�l�g
I�Œn�

BdC1.ql;I=r/

.d C 1/Š
p�i.l;I /�.d�1/

C
r

2

r�1X
qD0

BdC1.q=r/

.d C 1/Š
j.irr;q/�.d�1/;

and the multiplicities ql;I are now determined by the condition

ql;I C
X
i2I

ai � k.2g� 2Cn/ mod r:

Using this, the proof of Theorem 1.2 is readily generalized.

Theorem 5.4 For any k and any tuple A of integers satisfying
P
ai D k.2g�2Cn/,

the component of �g;A;k in degree d vanishes for all d > g .

Proof Recall from Lemma 2.2 that the class �g;A;k is polynomial in k . Therefore, it
suffices to prove the theorem only for k < 0. In this case, the argument in the proof of
Theorem 1.2 extends straightforwardly.

Specifically, Lemma 5.3 again shows that the two definitions of �g;A;k agree, so it
suffices to prove the vanishing for the geometrically formulated class. When exactly one
ai is negative, one can also replace A by A0D .a1Cr; a2; : : : ; an/, which again makes
�R��.LA0;k/ a vector bundle of rank g (using that k <0 to ensure that Lemma 4.2 still
holds) but does not affect the lowest-order term in r of ��.er

2c1.�R��LA;k//. From
here, one proves again that the constant-in-r term of

(20)
1

r2g�1
��.e

r2c1.�R��LA0;k//

agrees with that of

(21)
1

r2g�1
��.c.r2/.�R��LA0;k//;

assuming r is first chosen sufficiently large. The proof is the same as previously;
indeed, after multiplying by rg , both (20) and (21) form CohFTs on the same vector
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space V with the same pairing � as considered previously. The TFT, on the other hand,
is now nonzero only when

Pn
iD1 ai � k.2g � 2C n/ mod r , and the unit is not �0

but �k . This shifted unit, which appears in the definition of the translation operator T ,
precisely accounts for the modification to Chiodo’s formula. A comparison of the
R–matrices again completes the proof.

6 Connection to the 3–spin relations

Theorem 1.2 can be viewed as a collection of tautological relations in A�.Mg;n/,
which we refer to as the double ramification cycle relations. Given that Pixton’s 3–spin
relations, described in [29] and proved in [28], are conjectured to generate all relations
in the tautological ring, one would expect the double ramification cycle relations to
follow from these. This is indeed the case, as we explain in this section.

More precisely, what we prove is that the double ramification cycle relations Œ�g;A�d
in which exactly one of the arguments ai is negative lie in the ideal of the strata
algebra generated by the 3–spin relations. These are the A for which the arguments
of Sections 4 and 5 apply, and thus for which the double ramification cycle relations
can be understood in terms of the equivariant Gromov–Witten theory of ŒC=Zr �; see
Remark 5.1. By polynomiality of �g;A in A (Lemma 2.1), the relations for these
choices of A are sufficient to derive all of the double ramification cycle relations.

It should be noted that the arguments of this section do not apply to the relations of
Theorem 5.4. To address this more general situation, one would need to construct a
new variant of moduli spaces of stable maps and study its intersection theory.

6.1 Strata-valued field theories

We first recall the definition of the strata algebra, following [14; 30]. Let � be a stable
graph of genus g with n legs, let

M� WD

Y
vertices v

Mg.v/;val.v/;

and let �� WM� !Mg;n be the gluing morphism as in (8). A basic class on M� is
defined as an expression of the form

 WD
Y

vertices v

�v;

where �v is a monomial in the � and  classes on the vertex moduli space Mg.v/;val.v/ .
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The strata algebra Sg;n is generated as a C–vector space by pairs Œ�; �, where �
is a stable graph and  is a basic class on M� . A multiplication rule and a grading
Sg;n D

L3g�3Cn

dD0
Sdg;n can be defined so that the association

QW Sg;n! A�.Mg;n/; Œ�; � 7! ���./;

is a degree-preserving homomorphism of rings. It was proved by Graber and Pand-
haripande [14] that the classes Q.Œ�; �/ are additive generators of the tautological
ring. Thus, tautological relations can be understood explicitly as elements of the kernel
of Q .

Generalizing the notion of a CohFT, we define a strata-valued field theory as a finite-
dimensional vector space V equipped with a nondegenerate pairing � 2 V , a distin-
guished element 1 2 V and a system of homomorphisms

�g;nW V
˝n
! Sg;n

for each g and n, satisfying the same compatibility axioms as required for CohFTs;
since the Sn–action and the pullbacks under the gluing and forgetful maps can all be
defined at the level of the strata algebra, these axioms all still make sense.

Via the analogue in cohomology of the homomorphism Q , any strata-valued field
theory induces a CohFT. Moreover, for semisimple CohFTs, the graph sum in the
Givental–Teleman reconstruction yields a natural lift to a strata-valued field theory. In
particular, the two CohFTs ��rg;n and C rg;n considered in Section 5.1 can both be lifted
to strata-valued field theories.

As in Section 4, fix a collection of integers AD .a1; : : : ; an/ whose sum is zero, with
a1 < 0 and ai � 0 for all i � 2. Let A0 be as in (14). Lifting C rg;n to a strata-valued
field theory as explained above, we define

�g;A WD
1

rg
C rg;n.�a01

˝ � � �˝ �a0n/

ˇ̌̌̌
rD0

2 Sg;n:

(We have abused notation somewhat by using the same symbol to denote both �g;A
and its lift to the strata algebra.) Throughout this section, then, the double ramification
cycle relations are viewed as the statement that

Œ�g;A�d 2 ker.Q/

for all A as above and all d > g .
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The coefficients of Œ�g;A�d , as explained below, are the coefficients of negative powers
of the equivariant parameter in the equivariant Gromov–Witten theory of ŒC=Zr �. On
the other hand, the general machinery of [19], which also captures the 3–spin relations,
is related to the existence of nonsemisimple shifts. While it is possible to shift the
Gromov–Witten theory of ŒC=Zr � to nonsemisimple points, the shifted theory no
longer admits a nonequivariant limit, and thus it is not clear how to relate the resulting
relations to the double ramification cycle relations. As a substitute for ŒC=Zr �, we
study the related orbifold projective line, which has the crucial property that it is always
well-defined nonequivariantly.

6.2 Equivariant orbifold projective line

Let XDP Œr; 1� denote an orbifold projective line, with one orbifold point of isotropy Zr
located at 0. More explicitly, X can be expressed as a weighted projective space

X D
C2 n f0g

C�

in which C� acts by � � .x; y/D .�rx; �y/. Let C� act on X by t � Œx; y�D Œx; ty�,
and let � denote the equivariant parameter.

One can encode the equivariant orbifold Gromov–Witten theory of X in a CohFT
on the vector space H�CR.X/ depending on �, a Novikov variable q , and a formal
coordinate t 2H�CR.X/ as follows. For any v1; : : : ; vn 2H�CR.X/ and any g and n
such that 2g� 2Cn > 0, define

(22) �t
g;n.v1˝ � � �˝ vn/ WDX

d;m�0

qd

mŠ
.pd;m/�

� nY
iD1

ev�i .vi /\
nCmY
iDnC1

ev�i .t/\ ŒMg;nCm.X; d/�
vir
C�

�
;

where pd;mWMg;nCm.X; d/!Mg;n is the forgetful map. Note that �t
g;n is obtained

from �0
g;n by the shift t .

There are two natural lifts of �t
g;n to a strata-valued field theory. The first of these,

which we denote by �rec;t
g;n , is given by Givental–Teleman reconstruction. In order

to apply reconstruction, we first must verify generic semisimplicity, and in order to
make sense of generic semisimplicity, we need to ensure that the infinite sums in (22)
converge:
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Lemma 6.1 The CohFT �t
g;n is regular in all of its parameters �, q and t . For any

fixed .�; q/¤ .0; 0/, �t
g;n is semisimple for generic t .

Proof The regularity of �t is a consequence of the grading by cohomological degree:
a natural homogeneous basis for the equivariant Chen–Ruan cohomology is given by
the unit 1, the equivariant hyperplane class hD Œ0� and the generators �0; : : : ; �r�10 of
the twisted sectors. We can write

t D t01C t1=r�0C � � �C t.r�1/=r�
r�1
0 C t1h:

With the grading deg.�/D 1, deg.qet1/D 1C 1
r

, and deg.ti /D 1� i for i ¤ 1, the
divisor equation implies that for fixed g and homogeneous arguments v1; : : : ; vn , the
class �t

g;n.v1 ˝ � � � ˝ vn/ is homogeneous. Since the degree of each parameter is
positive, the class is polynomial in its parameters, and regularity follows.

Semisimplicity is an open condition on t , so it suffices to find a single value of t for
which �t

g;n is semisimple. Set all coordinates of t except for t1 equal to zero. On
this line on the Frobenius manifold, the CohFT is semisimple away from the vanishing
locus of the discriminant

d�;q.t1/D .�1/
.rC1

2 /
�
.r C 1/rC1

rr
.qet1/r �

1

r
�rC1

�
of its defining polynomial (see Section A.1). As long as .�; q/¤ .0; 0/, there exists
a choice of t1 for which d�;q.t1/ ¤ 0, and hence this choice makes �.0;:::;0;t1/

semisimple.

For any t for which �t
g;n is semisimple, �t

g;n can be expressed as a graph sum via the
action of an R–matrix on a TFT. As shown in [19], the coefficients of the R–matrix
are regular, except that they may acquire poles at the zero locus of the discriminant

d�;q.t/ 2CŒ�; t1=r ; : : : ; t.r�1/=r ; qe
t1 �:

Thus, �t
g;n defines a strata-valued field theory, which we denote by

�rec;t
g;n .v1˝ � � �˝ vn/ 2 Sg;n˝U;

where
U WDCŒ�˙1; t1=r ; : : : ; t.r�1/=r ; qe

t1 ; .d�;q.t//
�1�:

The other lift of �t
g;n to a strata-valued field theory, which we denote by �loc;t

g;n , follows
from localization. More specifically, just as in the case of ordinary P1 , the localization
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formula expresses ŒMg;nCm.X; d/�
vir
C� as a sum over decorated graphs, in which ver-

tices indicate components contracted to 0 or 1 in X and edges indicate noncontracted
components. The contributions of each such graph have been explicitly calculated by
Johnson [21] and are recalled in the appendix. In particular, the moduli at each vertex
v is of the form M0=r

g.v/;A.v/
for some g.v/� 0 and some tuple of integers A.v/, and

the contribution of v to the localization expression for .pd;m/�.ŒMg;nCm.X; d/�
vir
C�/

is of the form

(23)
1X
iD0

�
�j.v/

rj.v/

�g.v/�1C�.�.v//�i
��.ci .�R��LA.v///;

where the notation is as defined in Section A.2. By applying Chiodo’s formula (which,
for vertices contracted to 1, reduces to Mumford’s formula for the Chern characters
of the Hodge bundle), one obtains a natural lift of (23) to the strata algebra. Doing this
at each vertex of each graph in the localization expression for (22) yields the definition
of

�loc;t
g;n .v1˝ � � �˝ vn/ 2 Sg;n.�/ŒŒq; t��:

6.3 Nonequivariant limit and the double ramification cycle relations

We focus first on the strata-valued field theory �loc;t
g;n . Consider the basepoint t D 0,

and set q D 0, so that the only graph contributing to the localization formula consists
of a single vertex. We then have the following:

Lemma 6.2 For each A with exactly one negative entry and each d > g , the double
ramification cycle relation Œ�g;A�d 2 Sdg;n lies in the ideal of Sg;n generated by the
coefficients of negative powers of � in �loc;0

g;n .�a01
˝ � � �˝ �a0n/jqD0 .

Proof Since at least one of the integers a0i is nonzero, the single vertex in the local-
ization graph must map to 0 2X. The fixed locus associated to this graph is Mg;A0 ,
and, by the localization contribution recalled in (23), we have

(24) �loc;0
g;n .�a01

˝ : : :˝ �a0n/jqD0 D

1X
iD0

�
�

r

�g�i
��.ci .�R��LA0//;

where the right-hand side is lifted to the strata algebra via Chiodo’s formula. In other
words, up to a factor of a power of r , Œ�rg;A0 �d agrees with the coefficient of �g�d in
�

loc;0
g;n .�a01

˝� � �˝�a0n/jqD0 as elements of the strata algebra. After taking r sufficiently
large and taking the coefficient of the appropriate power of r , the lemma follows.
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6.4 Nonsemisimple limit and the 3–spin relations

Lemma 6.2 shows that the double ramification cycle relations are equivalent to the
existence of the nonequivariant limit of

Q
�
�loc;0
g;n .�a01

˝ : : :˝ �a0n/
ˇ̌
qD0

�
2 A�.Mg;n/.�/:

The 3–spin relations, on the other hand, arise via the existence of a different limit: the
nonsemisimple limit of the reconstruction graph sum.

More specifically, as discussed above, for fixed .�; q/¤ 0, the strata-valued field theory
�

rec;t
g;n acquires singularities at values of t for which the discriminant d�;q.t/ vanishes,

reflecting the failure of reconstruction at these basepoints. Yet the original CohFT
�t
g;n is regular (even polynomial) in t . Thus, the regularity of Q.�rec;t

g;n /D�
t
g;n is

equivalent to the condition that the coefficients of Q.�rec;t
g;n / with poles in d�;q.t/ lie

in the kernel of Q .

This yields a family of tautological relations, and similar reasoning produces relations
associated to any CohFT for which generic shifts are semisimple. Following Definition
3.3.1 of [19], we define the relations Iƒg;n�Sg;n associated to a generically semisimple
CohFT ƒ to be the smallest system of ideals that is stable under pushforwards via
the gluing and forgetful morphisms, and containing the relations from poles in the
discriminant described above. In particular, taking ƒ to be the 3–spin CohFT described
in [28], this process yields the ideal of the 3–spin relations.

Surprisingly, these relations are independent of the particular CohFT ƒ used to generate
them:

Theorem 6.3 [19, Theorem 3.3.6] Let ƒ be a generically semisimple, but not every-
where semisimple, CohFT. Then Iƒg;n D Pg;n , where Pg;n is the ideal of the 3–spin
relations.

Applying Theorem 6.3 to the CohFT �t
g;n associated to the equivariant orbifold

projective line for any fixed .�; q/¤ 0, we obtain the following:

Lemma 6.4 The image of �rec;t
g;n in .Sg;n=Pg;n/˝U is regular in the variables �, q

and t .

Proof Let �rec;t
g;n be the image of �rec;t

g;n in .Sg;n=Pg;n/˝ U . For t in the open
locus of semisimple basepoints, �rec;t

g;n is regular in all of its variables, while in the
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nonsemisimple locus, �rec;t
g;n is regular in t for fixed .�; q/¤ .0; 0/. Therefore, �rec;t

g;n

is regular in all variables outside of the locus f.�; q/D .0; 0/g. Since this locus has
codimension 2, it follows that �rec;t

g;n is regular everywhere.

6.5 Comparison of the strata-valued field theories

In order to prove that the 3–spin relations imply the double ramification cycle relations,
what remains is to compare the two strata-valued field theories. If one identifies negative
powers in d�;q.t/ with their Taylor expansions, then:

Lemma 6.5 One has �loc;t
g;n D�

rec;t
g;n .

The proof of Lemma 6.5 is technical, and is relegated to the appendix. Assuming it,
Theorem 1.5 is now immediate:

Proof of Theorem 1.5 By Lemma 6.2, it suffices to prove that

�loc;0
g;n

ˇ̌
qD0
2

Sg;n
Pg;n

.�/

is regular in �, and this follows from Lemmas 6.4 and 6.5.

Appendix: Localization on an orbifold projective line

Let X D P Œr0; r1� be a projective line with an orbifold point of order r0 at 0 and an
orbifold point of order r1 at 1, on which C� acts by t � Œx; y�D Œx; ty�. The case
needed above is r0 D r and r1 D 1, but we consider the more general setting here as
it may be of independent interest.

The goal of this appendix is to prove Lemma 6.5 — that is, that the localization compu-
tation of the CohFT associated to the equivariant Gromov–Witten theory of X produces
the same result as the computation via Givental–Teleman reconstruction, not only on
the level of cohomology but in the strata algebra. In addition to finishing the proof of
Theorem 1.5, this also immediately implies that the Givental–Teleman classification,
which in general is only known to hold in cohomology, also holds in the Chow ring in
this case.

Our strategy is closely modeled on [8].
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A.1 Classical and quantum cohomology

The torus action on X has two fixed points, 0 and 1. We let � denote the equivariant
parameter. The equivariant Chen–Ruan cohomology ring of X is isomorphic to
H0˚H1 , where

H0 DCŒ�0�=.�
r0

0 ��=r0/; H1 DCŒ�1�=.�
r1
1 ��=r1/:

Here, �i ; : : : ; �
ri�1
i for i 2 f0;1g are the generators of the twisted sectors, and the

untwisted sector is generated by the classes �0 WD Œ0�=� and �1 WD �Œ1�=�, where
Œi � are the equivariant classes of the fixed points. We denote by 1 D �0 C �1 the
identity and by hD Œ0� the equivariant hyperplane class.

Denote by

t D

r0�1X
iD1

ti=r0
�i0C

r1�1X
iD1

ti=r1�
i
1C t01C t1h

a formal point of H�CR;C�.X/. The equivariant quantum cohomology ring of X,
viewed as a deformation of the usual Chen–Ruan cohomology ring parametrized by
t and a Novikov variable q , is semisimple. In the case where ti D 0 for i ¤ 1 (the
small quantum cohomology), it has been given an explicit description by Milanov and
Tseng [25]. Specifically, let f .x/ be the Landau–Ginzburg mirror polynomial

f .x/D er0xC qr1er1.t1�x/C�.t1� x/:

Then the small equivariant quantum cohomology ring of X is isomorphic to the ring
generated by e˙x modulo the derivative of f , under the identification

�i0 7! eix; �i1 7! qiei.t1�x/;

1 7! 1; h 7! r1q
r1er1.t1�x/C�:

A.2 Localization

As in Section 6.2, the equivariant Gromov–Witten theory of X can be encoded in a
strata-valued field theory via localization. To make this precise, first recall that the fixed
loci of the torus action on Mg;n.X; d/ are indexed by certain decorated graphs G .
The fixed locus associated to G parametrizes stable maps f W C !X for which:

� Edges of G correspond to components Ce of C not contracted by f . Such
components must be genus-zero Galois covers of X ramified only over 0 and1,
and we denote by d.e/ the degree of the restriction of f to Ce .
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� Vertices of G correspond (except in certain unstable cases) to subcurves Cv of
C contracted by f , and we denote by g.v/ the genus of Cv . Such a component
must map to one of the fixed points of X, which we specify by j.v/ 2 f0;1g.

� Legs of G correspond to marked points, and we denote by �.l/ the twisted
sector in X to which f maps the marked point.

Let h.v/ denote the number of half-edges incident to a vertex v , and let n.v/ denote
the number of legs. There are three exceptional cases,

.g.v/; h.v/; n.v// 2 f.0; 1; 0/; .0; 1; 1/; .0; 2; 0/g;

in which a vertex corresponds not to a contracted subcurve but to a single point of C .
In these situations, v is referred to as unstable; otherwise, v is stable.

Given a stable vertex v , the decorations on G determine the monodromy of the map at
all special points of Cv (see [21, Lemma II.12]), and we encode these in a tuple

�.v/ 2 f0; 1; : : : ; rj.v/� 1g
h.v/Cn.v/:

Note that, since orbifold maps C ! BZrj.v/
can be reinterpreted as rj.v/–torsion

orbifold line bundles, the moduli space Mg.v/;�.v/.BZrj.v/
; 0/ parametrizing the

contribution of Cv is precisely the moduli space M0=r

g.v/;A
considered above, with

AD �.v/.

Let V.G/ and E.G/ denote the vertex and edge sets of G , and let

FG WD
Y

v2V.�/ stable

Mg.v/;�.v/.BZrj.v/
; 0/:

Then there is a canonical family of C�–fixed stable maps to X over FG , yielding a
finite morphism

jG W FG!Mg;n.X; d/

onto the fixed locus associated to G . Thus, applying the virtual localization formula,
ŒMg;n.X; d/�

vir
C� can be expressed as a sum over decorated graphs G of contributions

pushed forward from the moduli spaces FG . Specifically, the calculations of Johnson
in [21] show

(25) ŒMg;n.X; d/�
vir
C� DX

G

.jG/�

jAut.G/j

� Y
e2E.G/

C.e/
Y

v2V.G/
stable

C.v/
Y

v2V.G/
.g;h;n/D.0;1;0/

.� v/
Y

nodes

��1e;v

� � 0

�
:
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Here, setting �0 WD � and �1 WD ��, we let

C.e/ WD �
�bd.e/=r0c

0 ��bd.e/=r1c1 �
d.e/bd.e/=r0cCbd.e/=r1c�1

bd.e/=r0cŠbd.e/=r1cŠ

and

C.v/ WD

1X
iD0

�
�j.v/

rj.v/

�g.v/�1C�.�.v//�i
ci .�R��L/;

where � W C!Mg.v/;�.v/.BZrj.v/
/ is the universal curve, L is the universal rj.v/–

torsion line bundle and
�.�.v// WD

X
a2�.v/

a

rj.v/
:

In the third product,  v denotes the equivariant cotangent line class of the coarse
underlying curve — ie � v D �j.v/=d.e/, where e is the unique adjacent edge. The
last product is over nodes forced on the source curve by G , and  and  0 are the
equivariant cotangent line classes of the coarse underlying curves joined by the node,
while

��1e;v WD

�
�j.v/ if d.e/� 0 mod rj.v/;
rj.v/ if d.e/ 6� 0 mod rj.v/:

A.3 The localization strata-valued field theory

Equipped with the results of Section A.2, we are ready to more carefully define the
strata-valued field theory �loc;t

g;n .

First, for j 2 f0;1g and �1; : : : ; �n 2 f0; 1; : : : ; rj � 1g, we define

(26) �Ch;j
g;n .�

�1

j ˝ : : :˝ �
�n

j /D

1X
iD0

�
�j

rj

�g�1C.1=rj /Pn
kD1 �k

��.ci .�R��L//;

where �WMg;.�1;:::;�n/.BZrj ; 0/!Mg;n forgets the line bundle and the orbifold
structure. Using Chiodo’s formula, one can view (26) as an element of the strata
algebra, so extending multilinearly, it defines a strata-valued field theory on Hj . Define
�Ch D�Ch;0˚�Ch;1 , a strata-valued field theory on H�CR;C�.X/.

A CohFT �t
g;n encoding the equivariant Gromov–Witten theory of X can be defined

by the same formula as in (22). Via (25), one can express �t
g;n in terms of �Ch

g;n , and
this defines the lift �loc;t

g;n of �t
g;n to a strata-valued field theory.

Toward proving the equality of the localization and reconstruction strata-valued field
theories, we first observe that, for each localization graph G , there exists a dual graph
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s.G/ recording the topological type of the stabilization of a generic source curve in
the fixed locus associated to G . Thus, we can write

�loc;t
g;n .v1˝ � � �˝ vn/D

X
�2Gg;n

1

jAut.�/j

X
Gjs.G/D�

ContG ;

where ContG is the contribution of G coming from (25).

For a fixed dual graph � , the localization graphs G with s.G/ D � are obtained
by attaching an arbitrary number of additional trees of rational curves at each vertex,
replacing each leg by a (possibly empty) tree containing the corresponding marked
point, and replacing each edge with a (possibly empty) tree of rational curves. After
forming generating series for the contributions of each type of tree, we can rewrite the
contribution of a dual graph � to �loc;t

g;n .v1˝� � �˝vn/ (up to the factor of jAut.�/j�1 )
as a contraction of strata-valued tensors as follows:

� At each vertex of � , place the tensor .�pre�Ch/g.v/;val.v/ , where �pre.z/ is the
generating series of contributions of additional trees of rational curves to the
localization formula, acting by translation on �Ch .

� At each leg l of � , place T pre. l/vl , where T pre.z/v is the generating series of
contributions of a tree of rational curves containing a marking with a v–insertion.

� At each edge e D .h; h0/ of � , place Epre. h;  h0/, where Epre.z; w/ is the
generating series of contributions of a tree of rational curves connecting two
stable vertices.

The strata-valued tensor �Ch
g.v/;val.v/ appearing at each vertex v , defined via Chiodo’s

formula, can be viewed as the result of the action of an R–matrix RCh on a topological
field theory !Ch . Plugging this expression into the above, one gets a sum

(27) �loc;t
g;n .v1˝ � � �˝ vn/D

X
�2Gg;n

X
v2V.�/

�v2Gg.v/;val.v/

1

jAut.� 0/j
Cont� 0 ;

where �v is a choice of dual graph at the vertex v and � 0 is obtained from � by
replacing each v by �v . Specifically, Cont� 0 is a contraction of strata-valued tensors
as follows:

� At each vertex of � , place the tensor .�!Ch/g.v/;val.v/ , where

�.z/ WDR�1Ch .z/�
pre.z/C z1� zR�1Ch .z/1:
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� At each leg l of � , place T . l/vl , where

T .z/ WDR�1Ch .z/T
pre.z/:

� At each edge e D .h; h0/ of � , place E. h;  h0/ where

E.z;w/ WD .R�1Ch .z/˝R
�1
Ch .w//E

pre.z; w/C
��1� .R�1Ch .z/˝R

�1
Ch .w//�

�1

zCw
:

One important difference, at this point, between (27) and the expression for �rec;t
g;n is

that �.z/ is not a multiple of z2 , unlike the series z1� zR�1.z/1 appearing in the
R–matrix action. To correct for this difference, it is necessary to modify � via the
series

u WD

1X
nD1

Z
M0;2Cn

1

nŠ
!Ch
0;2Cn.�

�1
˝ 1˝ �. /˝n/ 2H;

in which we use the shorthand H WD H�CR.X/.�/ŒŒq; t��. We observe that, by an
application of the string equation and the genus-zero topological recursion relations,

Œeu=z.�.z/�u/�C 2 zHŒŒz��;

where Œ � �C denotes the truncation to nonnegative powers of z .

More precisely, for each graph � 0 as in (27) and each vertex v of � 0 , the contribution
of v to �loc;t

g;n .v1˝ � � �˝ vn/ is

1X
mD0

1

mŠ
�m�!

Ch
g.v/;val.v/Cm.f1. 1/˝ � � �˝fval.v/. val.v//˝ �. /

˝m/;

by the definition of the translation action; here, the series fi .z/ stands either for a
series T .z/ or “half” of a series E.z;w/. We split the shift by �.z/ into a shift by
�.z/�u and a shift by u:

1X
m;lD0

�m��l�

mŠlŠ
!Ch
g.v/;val.v/CmCl.f1. 1/˝� � �˝fval.v/. val.v//˝.�. /�u/

˝m
˝u˝l/:

Reexpressing the first val.v/Cm cotangent line classes in terms of those pulled back
via �l� , we can rewrite the local contribution of v to �loc;t

g;n .v1˝ � � �˝ vn/ as
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1X
m;lD0

�m��l�

mŠlŠ
!Ch
g.v/;val.v/CmCl

� nO
iD1

Œeu=
z ifi . z i /�C˝ Œe

u= z .�. z /�u/�˝m
C
˝u˝l

�

D

1X
mD0

�m�

mŠ
!Ch
g.v/;val.v/Cm

� nO
iD1

Œeu= ifi . i /�C˝ Œe
u= .�. /�u/�˝m

C

�
;

in which z i are the pulled-back  –classes.

Define a new topological field theory z! by

z!g;n.v1˝ � � �˝ vn/ WD

1X
mD0

�m�

mŠ
!Ch
g;nCm.T0v1˝ � � �˝T0vn˝ .�1 /

˝m/;

where T0 is the z0–coefficient of eu=zT .z/ and �1 is the z1–coefficient of eu=z�.z/.
Then, up to the factor of jAut.� 0/j�1 , the contribution of � 0 to �t;loc

g;n is equal to the
following contraction of tensors:

� At each vertex of � , place the tensor .z� z!/g.v/;val.v/ , where

z�.z/ WD T �10 .Œeu=z.�.z/�u/�C� �1z/ 2 z
2HŒŒz��:

� At each leg l of � , place zT . l/vl , where

zT .z/ WD T �10 Œeu=zT .z/�C:

� At each edge e D .h; h0/ of � , place Epre. h;  h0/, where

zE.z;w/ WD .T �10 ˝T
�1
0 /Œ.eu=z˝ eu=w/E.z; w/�C:

This now has exactly the shape of the definition of �rec;t , and all that remains is to
match the ingredients z! , z� , zT and zE with those appearing in the R–matrix action.

A.4 Proof of Lemma 6.5

The fact that z! is the same as the topological field theory underlying �rec;t is im-
mediate, since both are given by the degree-zero part of the same cohomology class
�t
g;n.v1 ˝ � � � ˝ vn/. To see that the series z� , zT and zE are correct, we also use

that �loc;t agrees with �rec;t after passing to cohomology. This implies, by [24,
Lemma 2.2], that zT DR�1 , where R is the R–matrix for �t .

To show that z�.z/D z.1�R�1.z/1/, consider the class

�t
g;1.v/jMg;1

;
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where v is an idempotent for the quantum product on H�CR.X/. By Harer stability
and [30], the tautological ring of Mg;1 in degree less than 1

3
g has an additive basis

given by elements of the form

 a1�m�. 
p1C1
2 � � � 

pmC1
mC1 /;

where m� 0 and p1; : : : ; pm� 1. For any d � 0 and any idempotent vector v , we can
choose g>3d . Then the zd –coefficient in both �.z�.z/; v/ and �.z.1�R�1.z/1/; v/ is
equal, up to a common nonzero constant of z!g;2.v; v/, to the coefficient of �1�. dC12 /

in the expression for �t
g;1.v/jMg;1

in the above basis. Thus, we indeed must have
z�.z/D z.1�R�1.z/1/.

Finally, we show that

(28) zE.z;w/D
��1� .R�1.z/˝R�1.w//��1

zCw
:

Denote the left-hand and right-hand sides of (28) by E1.z; w/ and E2.z; w/, respec-
tively, and for i 2 f1; 2g, write

Ei .z; w/DW

1X
j;kD0

E
jk
i zjwk :

We show by induction on max.j; k/ that �.Ejk1 ; v1˝ v2/D �.E
jk
2 ; v1˝ v2/ for any

j and k and any idempotent vectors v1 and v2 . Let us consider, for any g > 3j , the
coefficient of  j2 in

(29) .�.kC1/��
t
g;kC3.v1˝ v

˝kC2
2 //

ˇ̌
Mg;2

:

If one expresses �t
g;kC3

.v1˝ v
˝kC2
2 / as a dual graph sum (with either E1 or E2 as

the edge tensor), then the only graphs contributing to (29) are those of rational tails
type. By the induction hypothesis, the coefficient of  j2 in the contribution of such a
graph is independent of whether the edge tensor E1 or E2 is used, except possibly in
the case of the graph with a genus-g vertex connected by a single edge to a genus-zero
vertex containing all except the first marking. The coefficient of  j2 in the contribution
of this graph is

�.E
jk
i ; v1˝ v2/z!g;2.v

˝2
1 /z!0;kC3.v

˝kC3
2 /;

so we must also have �.Ejk1 ; v1˝v2/D�.E
jk
2 ; v1˝v2/. This completes the induction

step and hence the proof of Lemma 6.5.

Geometry & Topology, Volume 22 (2018)
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