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Affine representability results in A1–homotopy theory
II: Principal bundles and homogeneous spaces

ARAVIND ASOK

MARC HOYOIS

MATTHIAS WENDT

We establish a relative version of the abstract “affine representability” theorem in
A1–homotopy theory from part I of this paper. We then prove some A1–invariance
statements for generically trivial torsors under isotropic reductive groups over infinite
fields analogous to the Bass–Quillen conjecture for vector bundles. Putting these
ingredients together, we deduce representability theorems for generically trivial
torsors under isotropic reductive groups and for associated homogeneous spaces in
A1–homotopy theory.

14F42, 14L10, 20G15, 55R15

1 Introduction

Suppose k is a fixed commutative unital base ring, and write H .k/ for the Morel–
Voevodsky A1–homotopy category over k [45]. The category H .k/ is constructed as
a certain localization of the category of simplicial presheaves on Smk , the category
of smooth k–schemes. Write Smaff

k
for the subcategory of Smk consisting of affine

schemes. If X is a simplicial presheaf on Smk , by an “affine representability” result
for X , we will mean, roughly, a description of the presheaf on Smaff

k
defined by

U 7! ŒU;X �A1 WD HomH .k/.U;X/.

Here is a flavor of the description we provide: if X is a simplicial presheaf on
Smk , then for any U 2 Smaff

k
one can consider the simplicial set SingA1

X .U / [45,
page 87]. The 0–simplices of this simplicial set are morphisms U !X and the 1–
simplices are “naive” or “elementary” A1–homotopies U �A1!X . The assignment
U 7! �0.SingA1

X .U // defines a presheaf �0.SingA1

X / of “naive” A1–homotopy
classes of maps U ! X . In [9], we gave conditions that allowed us to identify
�0.SingA1

X /.U /Š ŒU;X �A1 , ie under which “naive” A1–homotopy classes coincide
with “true” A1–homotopy classes.
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In [9, Theorem 1], building on results of M Schlichting [57, Theorems 6.15 and 6.22],
we simplified and generalized F Morel’s affine representability result for vector bundles;
we encourage the reader to consult the introduction of [9] for a more detailed discussion
of these points. Our goal in this paper is to further extend the scope of these affine
representability results in A1–homotopy theory. For example, the following result
provides a generalization of the representability result from vector bundles to torsors
under suitable reductive group schemes (the description in terms of naive homotopy
classes is hidden here).

Theorem 1 (see Theorem 4.1.3) Suppose k is an infinite field, and G is an isotropic
reductive k–group (see Definition 3.3.5). For every smooth affine k–scheme X, there
is a bijection

H 1
Nis.X;G/Š ŒX; BG�A1

that is functorial in X.

Remark 2 Theorem 1 is essentially the strongest possible representability statement
for which one could hope. First, one cannot expect the functor “isomorphism classes of
Nisnevich locally trivial G–torsors” to be representable on H .k/ in general. Indeed,
if we do not restrict attention to the category Smaff

k
, then this functor need not even be

A1–invariant (see eg Ramanathan [56] for a study of failure of homotopy invariance
in case X D P1 or the introduction to [9] for other ways in which A1–invariance can
fail). Second, at least if k is infinite and perfect, the hypothesis that G is isotropic
cannot be weakened. Indeed, if G is not an isotropic reductive k–group in the sense
mentioned above, then even affine representability for G–torsors fails in general; see
Remark 3.3.8 and Balwe and Sawant [14, Theorem 1] for more details. We do not
know if Theorem 1 holds if k is finite.

Remark 3 It has been known for some time that an analog of Morel’s theorem should
hold for torsors under groups like SLn and Sp2n (for SLn this is mentioned eg in
Asok and Fasel [5, Theorem 4.2]). Schlichting observed [57, Remark 6.23] that his
techniques also apply to torsors under groups like SLn or Sp2n . Combined with the
results of [9], one therefore expects affine representability results to hold for torsors
under such groups in the same generality as for vector bundles. For completeness, we
include such results here as Theorems 4.1.1 and 4.1.2.

We also establish affine representability results for various homogeneous spaces under
reductive groups.
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Theorem 4 (see Theorem 4.2.10) Suppose k is an infinite field, and G is an isotropic
reductive k–group. If P �G is a parabolic k–subgroup possessing an isotropic Levi
k–subgroup, then, for any smooth affine k–scheme X, there is a bijection

�0.SingA1

G=P /.X/ ��! ŒX;G=P �A1

that is functorial in X.

Remark 5 As suggested prior to the statement, we actually establish representability
results with targets that are more general homogeneous spaces. In this direction, observe
that it is often possible to “explicitly” identify sets of naive homotopy classes and
thus, via Theorem 4, true A1–homotopy classes. Barge and Lannes [15, Chapter 4]
provide such identifications in the case where the target is related to symmetric bilinear
forms. Cazanave [20] provides such identifications in the case where the target is Pn.
In addition, Fasel [27, Theorem 2.1] gives such an identification in the case where the
target is a Stiefel variety (various homogeneous spaces of GLn ).

Building on the ideas of Schlichting and Morel, the proofs of the results above are
established using the framework developed in [9]: affine representability follows from
affine Nisnevich excision and affine homotopy invariance. The restrictions on k that
appear in our results are imposed to guarantee that affine homotopy invariance holds
for Nisnevich locally trivial torsors under G .

While affine homotopy invariance for vector bundles is precisely the Bass–Quillen
conjecture (about which much is known), precise statements regarding affine homotopy
invariance for torsors under other groups are harder to find in the literature (in part
because such results are typically false for étale locally trivial torsors), but see Wendt
[65, Section 3]. The entirety of Section 3 is devoted to studying affine homotopy
invariance for torsors under reductive group schemes over a rather general base.

Theorem 1 is a straightforward consequence of our general representability result
(see Theorem 2.3.5) combined with affine homotopy invariance (see Theorem 3.3.7
for a precise statement of what we mean by this term). Theorem 4 follows from
Theorem 2.4.2 and affine homotopy invariance for isotropic reductive k–groups by
a reduction from P to a Levi factor of P (which by assumption is also an isotropic
reductive k–group). Again, for certain groups, significantly more general statements
can be made; see Theorem 4.2.12.

Our techniques also allow us to establish significant generalizations (with simpler proofs)
of some results of Morel regarding when classifying spaces for split groups are A1–local
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[43, Theorems 1.3, 1.5 and A.2]. While Morel deduces these results from strong A1–
invariance of nonstable K1–functors, which he establishes by appeal to classical results
regarding elementary matrices, we are, in sharp contrast, able to deduce such strong
A1–invariance statements as a direct consequence of our general representability result
(see Theorem 4.3.3 for more details). As another sample application of these results,
we adapt some classical ideas of G W Whitehead [66] to establish nilpotence results for
nonstable K1–functors (see Theorem 4.4.3), along the lines of the results of Bak [11]
and Bak, Hazrat and Vavilov [12]. In particular, we are able to resolve Problem 6
of [12] in a number of new situations (see Remark 4.4.4 for more details).

The representability results for homogeneous spaces are relevant when applying the
methods of obstruction theory to analyze algebraic classification problems. For example,
if the base k is a perfect field, the A1–fibration sequence

An n f0g ! BGLn�1! BGLn

was used by Morel [44, Chapter 8] to develop an obstruction-theoretic approach to
answering the question of when a vector bundle over a smooth affine variety splits off
a trivial rank 1 summand; this approach was further developed by the first author and
Fasel in [6; 7], to which we refer the interested reader for a more detailed discussion.
The results of this paper (specifically Theorem 2.2.5) open the possibility of studying
such questions over more general base rings, eg Z.

Our representability results also broaden the scope of geometric and algebraic applica-
tions of A1–homotopy theory. We mention a few such directions here (though we do not
develop the applications). First, Theorem 1 allows one to give explicit classifications of
principal G–bundles on certain quadric hypersurfaces; see Asok and Fasel [5] and Asok,
Doran and Fasel [4]. Theorems 4.2.1 and 4.2.2 establish affine representability results
for “split” quadric hypersurfaces. The former result has relevance to questions regarding
unimodular rows (see [5]). Building on the ideas of Fasel [28], affine representability
results for even dimensional quadrics are a key tool in Asok and Fasel [8] to interpret
Euler class groups à la Bhatwadekar and Sridharan in terms of A1–homotopy theory.
In another direction, since the homogeneous space G2=SL3 is a 6–dimensional “split”
smooth affine quadric, we use our results in [10] to study questions regarding reductions
of structure group for “generically trivial” octonion algebras. In algebraic terms, this
can be rephrased as follows: when is an octonion algebra a Zorn (“vector-matrix”)
algebra (see eg Springer and Veldkamp [58, page 19])?
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Dependency of sections/prerequisites Section 2 is devoted to extending our results
from [9]; the proofs rely on ideas from loc. cit., which we will use rather freely together
with some basic properties of torsors and homogeneous spaces collected in Sections 2.3
and 2.4. Section 3 is devoted to establishing affine homotopy invariance results for
torsors under reductive groups. The results of this section rely on the basic properties of
torsors and homogeneous spaces recalled in Section 2 as well as the theory of (reductive)
group schemes over a base; regarding the latter: we review some of the main definitions
and basic properties, but we mainly provide pointers to the literature. At the very end
of Section 3.3 we also rely on the representability results from Section 2. Section 4
contains applications of our main results and thus relies on all of the preceding sections.
We refer the reader to the beginning of each section for a more detailed description of
its contents.
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Preliminaries/notation All rings considered in this paper will be assumed unital.
We use the symbol S for a quasicompact, quasiseparated base scheme, SmS for the
category of finitely presented smooth S –schemes, and Smaff

S � SmS for the full sub-
category of affine schemes (in the absolute sense). We also reuse some terminology and
notation introduced in [9], eg the notion of affine Nisnevich excision [9, Example 2.1.2
and Definition 3.2.1], the t –localization functor Rt [9, Section 3.1], the singular
construction SingI [9, Section 4.1], etc.
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2 Some general representability results

The goal of this section is to extend the affine representability results of [9]. In particular,
Theorem 2.2.4 provides a relative version of [9, Theorem 5.1.3]. We then specialize
this result to two cases of particular interest in Theorems 2.3.5 and 2.4.2.

2.1 Naive A1–homotopy classes

Let F be a simplicial presheaf on SmS . Given X 2 SmS , there is a canonical map

(2-1) �0.SingA1

F /.X/! ŒX;F �A1 ;

where the right-hand side is the set of maps in the A1–homotopy category H .S/. The
left-hand side is the set of naive A1–homotopy classes of maps from X to F : it is
the quotient of the set of maps X !F by the equivalence relation generated by A1–
homotopies. For presheaves F of “geometric origin”, such as representable presheaves,
it is rare that (2-1) is a bijection for all X 2 SmS (this happens for example when F

is represented by an A1–rigid smooth scheme in the sense of Morel and Voevodsky
[45, Section 3 Example 2.4], eg a smooth curve of genus g > 0 or an abelian variety).
However, one of the main themes of this paper is that there are many examples of
presheaves F such that (2-1) is a bijection for every affine X. We formalize this idea
in the following definition:

Definition 2.1.1 Let F be a simplicial presheaf on SmS and let �F be a Nisnevich-
local A1–invariant fibrant replacement of F. Then there is a canonical map SingA1

F!�F that is well-defined up to simplicial homotopy. We will say that F is A1–naive if
the map SingA1

F .X/! �F .X/ is a weak equivalence for every X 2 Smaff
S .

Remark 2.1.2 If F is A1–naive, then in particular (2-1) is a bijection for every
X 2 Smaff

S . More generally, if F is A1–naive and pointed, then

�n.SingA1

F /.X/Š ŒSn ^XC;F �A1;�

for every X 2 Smaff
S and n� 0.

Proposition 2.1.3 If F is a simplicial presheaf on SmS , then F is A1–naive if and
only if SingA1

F satisfies affine Nisnevich excision (see [9, Section 2.1]). In that case,
RZar SingA1

F is Nisnevich-local and A1–invariant.
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Proof Let �F be a Nisnevich-local A1–invariant replacement of F . Suppose that F is
A1–naive. Then the restriction of SingA1

F to Smaff
S is (objectwise) weakly equivalent

to �F , and hence it is Nisnevich-local. But this implies that SingA1

F satisfies affine
Nisnevich excision, by [9, Theorem 3.2.5].

Conversely, suppose that SingA1

F satisfies affine Nisnevich excision. By [9, Theorem
3.3.4], the canonical map

SingA1

F .X/!RZar SingA1

F .X/

is a weak equivalence for every X 2 Smaff
S , and RZar SingA1

F is Nisnevich-local. By
[9, Lemma 5.1.2], RZar SingA1

F is also A1–invariant. Hence, RZar SingA1

F ' �F and
F is A1–naive.

2.2 The singular construction and homotopy fiber sequences

The notion of representable interval object was formulated in [9, Definition 4.1.1]. By
a homotopy fiber sequence of pointed simplicial presheaves, we mean a homotopy
Cartesian square in which either the top-right or bottom-left corner is a point.

Proposition 2.2.1 Let C be a small category and I a representable interval object
in C. Let

F ! G !H

be a homotopy fiber sequence of pointed simplicial presheaves on C. If �0.H / is
I–invariant, then

SingI F ! SingI G ! SingI H

is a homotopy fiber sequence.

Proof For X 2 C, consider the square of bisimplicial sets

F .X � I�/ //

��

G .X � I�/

��

� // H .X � I�/

which is degreewise homotopy Cartesian. Since �0.H / is I–invariant, the simplicial
set �0H .X � I�/ is constant. By [9, Lemma 4.2.1], the diagonal of this square is
homotopy Cartesian, ie

SingI F .X/! SingI G .X/! SingI H .X/

is a homotopy fiber sequence.
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Corollary 2.2.2 Let C be a small category and I a representable interval object in C.
If F is a pointed simplicial presheaf on C such that �0.F / is I–invariant, then the
canonical map

SingI R�F !R�SingI F

is a weak equivalence.

Proof This follows from Proposition 2.2.1 applied to the homotopy fiber sequence
R�.F /!�!F .

Lemma 2.2.3 Suppose C is a small category with an initial object and let P be a cd
structure on C. If J is a small diagram and F W J ! sPre.C / is a functor such that
F.j / satisfies P –excision for every j 2 J, then holimJF satisfies P –excision as
well.

Proof This is a straightforward consequence of commutation of homotopy limits.

Theorem 2.2.4 Suppose
F ! G !H

is a homotopy fiber sequence of pointed simplicial presheaves on SmS . If

(i) G and H satisfy affine Nisnevich excision, and

(ii) �0.G / and �0.H / are A1–invariant on affine schemes,

then F is A1–naive.

Proof By Proposition 2.2.1, for every U 2 Smaff
S , the sequence

(2-2) SingA1

F .U /! SingA1

G .U /! SingA1

H .U /

is a homotopy fiber sequence. By [9, Corollary 4.2.4], both SingA1

G and SingA1

H

satisfy affine Nisnevich excision. Hence, by Lemma 2.2.3, SingA1

F also satisfies
affine Nisnevich excision. In other words, by Proposition 2.1.3, F is A1–naive.

The following result is not used in the sequel, but it fits the theme of this section. It is a
variant of a result of Morel [44, Theorem 6.53] that holds over arbitrary base schemes.

Theorem 2.2.5 Let F! G !H be a homotopy fiber sequence of pointed simplicial
presheaves on SmS . Assume that:
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(i) H satisfies affine Nisnevich excision.

(ii) �0.H / is A1–invariant on affine schemes.

Then F ! G !H is an A1–fiber sequence, ie it remains a homotopy fiber sequence
after taking Nisnevich-local A1–invariant replacements.

Proof As in Theorem 2.2.4, the sequence (2-2) is a homotopy fiber sequence for
every U 2 Smaff

S . Let i� be the restriction functor from SmS to Smaff
S and Ri� its

derived right adjoint. By [9, Lemma 3.3.2], there is a natural equivalence of functors
RZar ' Ri�RZari

� . Since Ri� and RZar preserve homotopy fiber sequences, we
deduce that

RZar SingA1

F !RZar SingA1

G !RZar SingA1

H

is a homotopy fiber sequence. By [9, Theorem 5.1.3], RZar SingA1

H is Nisnevich-local
and A1–invariant. But it follows from the right properness of the Morel–Voevodsky
model structure [45, Section 2, Theorem 2.7] that every homotopy fiber sequence whose
base is Nisnevich-local and A1–invariant is an A1–fiber sequence.

2.3 Application to torsors

In this subsection we specialize the general representability result of [9, Section 5.1] to
simplicial presheaves classifying G–torsors for some group G . We start by recalling
some general facts about torsors.

Definition 2.3.1 Let C be a small category equipped with a Grothendieck topology t ,
let G be a t –sheaf of groups on C, and let X 2 C. A G–torsor over X is a triple
.P; �; a/, where P is a t –sheaf on C, aW P �G!P is a right action of G on P

and � W P ! X is a morphism that is G–equivariant for the trivial G–action on X
such that:

(i) The morphism P�G!P�X P of components �1 and a is an isomorphism.

(ii) � is t –locally split, ie the collection of morphisms U ! X in C such that
P �X U ! U has a section is a t –covering sieve of X.

The collection of G–torsors over various X 2 C can be assembled into a category
Torst .G/ fibered in groupoids over C. We write BTorst .G/ for the simplicial presheaf
whose value on U 2C is the nerve of the groupoid of sections of Torst .G/ over C =U

(this groupoid is canonically equivalent to the groupoid of G–torsors over U, but is
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strictly functorial in U ; see Hollander [34, Section 3.3]). It is well known that Torst .G/
is a stack for the topology t . As shown in [34, Theorem 3.9], this is equivalent to the
statement that BTorst .G/ satisfies t –descent.

We denote by BG the pointed simplicial presheaf with n–simplices Gn and with the
usual face and degeneracy maps, and we let

BtG WDRtBG

be its t –local replacement (see [9, Section 3]). There is a morphism BG!BTorst .G/
sending the unique vertex of BG.U / to the trivial G–torsor over U. Since BTorst .G/
is t –local, we obtain a morphism of simplicial presheaves

(2-3) BtG! BTorst .G/:

Lemma 2.3.2 Let C be a small category, t a Grothendieck topology on C, and G a
t –sheaf of groups on C. Then:

(i) The map (2-3) is a weak equivalence of simplicial presheaves.

(ii) There is a natural isomorphism

�0.BtG/.�/ŠH
1
t .�; G/:

(iii) There is a canonical weak equivalence R�BtG 'G .

Proof It is clear that the map (2-3) induces an isomorphism on t –sheaves of homotopy
groups, so that it is a weak equivalence in the Jardine model structure. To deduce
that it is a weak equivalence, it therefore suffices to show that the source and target
are fibrant in the Jardine model structure. By Dugger, Hollander and Isaksen [26,
Corollary A.8], it suffices to show that, for every U 2 C, the simplicial sets BtG.U /
and BTorst .G/.U / have no homotopy in dimensions � 2. This statement is clear for
the latter as it is the nerve of a groupoid. To treat the former case, we recall a fact
from simplicial homotopy theory: if X is a simplicial set, then X has no homotopy in
dimensions � k if and only if the homotopy fibers of the diagonal map X !X �hX

have no homotopy in dimensions � k�1; this can be checked by assuming X is a Kan
complex and studying homotopy groups. Thus, a simplicial set X has no homotopy in
dimensions � 2 if and only if its 3–fold diagonal

X !X �h
X�h

X�hX
X
X
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is a weak equivalence. Since Rt preserves homotopy pullbacks, it also preserves the
property of having no homotopy in dimensions � 2. This proves (i). Assertions (ii)
and (iii) are true essentially by definition if we replace BtG by BTorst .G/, so they
both follow from (i).

Torsors under S –group schemes Our main interest is to representability results for
torsors under group schemes, so we now discuss that situation in greater detail. Let G
be an S –group scheme and let X be an S –scheme. By a G–torsor over X we will
mean a G–torsor in the sense of Definition 2.3.1, for C the category of S –schemes
and t the fppf topology. In the sequel, G will always be affine over S , and in that
case a G–torsor over X is automatically representable by an S –scheme, by Milne [41,
Theorem III.4.3(a)] (note the implicit Noetherian hypothesis in Milne’s argument is
unnecessary).

If moreover X and G belong to SmS , then taking C to be the category SmS with t
the étale topology one obtains an equivalent notion of torsor. Indeed, if � W P!X is
a G–torsor over X, then � is finitely presented and smooth by the following lemma.
Since smooth morphisms admit sections étale locally, � itself is a cover of X in the
étale topology which trivializes the torsor.

Lemma 2.3.3 Suppose G is an affine S –group scheme, X is an S –scheme and
� W P!X is a G–torsor over X. If G! S is finitely presented, flat or smooth, then
so is � W P!X.

Proof By definition, there exists an fppf cover fUi!Xgi2I such that P�XUi!Ui

is isomorphic to G�SUi!Ui , which is finitely presented, flat or smooth. We conclude
using the fact that each of these properties of a morphism is fppf-local on the target, by
[17, Tags 02L0, 02L2 and 02VL].

Example 2.3.4 Let t be a topology on SmS in between the Zariski topology and the
étale topology and let n�1. The groupoid of GLn–torsors over a scheme is canonically
equivalent to the groupoid of rank n vector bundles. Since GLn is a smooth special
group, any GLn–torsor is t –locally trivial. In particular, by Lemma 2.3.2(ii), we have

�0.BtGLn/.X/Š Vn.X/

for any X 2 SmS , where Vn.X/ denotes the set of isomorphism classes of rank n
vector bundles on X. Similarly, we have

�0.BtSLn/.X/Š V o
n .X/ and �0.BtSp2n/ŠH V 2n.X/;
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where V o
n .X/ (resp. H V 2n.X/) is the set of isomorphism classes of rank n oriented

(resp. rank 2n symplectic) vector bundles (see the beginning of Section 3.3 for reminders
about oriented and symplectic vector bundles).

Affine representability for Nisnevich locally trivial G –torsors

Theorem 2.3.5 Suppose G is a finitely presented, smooth S –group scheme. If
H 1

Nis.�; G/ is A1–invariant on Smaff
S , then:

(i) The simplicial presheaf RZar SingA1

BNisG is Nisnevich-local and A1–invariant.

(ii) For every affine X 2 Smaff
S , the canonical map

H 1
Nis.X;G/! ŒX; BG�A1

is a bijection that is functorial with respect to X.

Proof Since BNisG is Nisnevich-local by definition, it satisfies Nisnevich excision by
[9, Theorem 3.2.5]. Taking into account the identification �0.BNisG/ŠH

1
Nis.�; G/

from Lemma 2.3.2(ii), we can apply [9, Theorem 5.1.3] to BNisG , which implies (i)
and (ii) (note also that ŒX; BNisG�A1 Š ŒX; BG�A1 since BG!BNisG is a Nisnevich-
local equivalence).

2.4 Application to homogeneous spaces

Let C be a small category equipped with a Grothendieck topology t . Let G and H
be t –sheaves of groups on C with H �G . We then have a homotopy fiber sequence
of simplicial presheaves

G=H ! BH ! BG;

where G=H denotes the presheaf U 7! G.U /=H.U /. Applying the t –localization
functor Rt , we obtain a homotopy fiber sequence of t –local simplicial presheaves

(2-4) at .G=H/! BtH ! BtG:

We now restrict attention to C D SmS with the goal of applying Theorem 2.2.4. For
geometric applications, we need to better understand the sheaf at .G=H/.

Homogeneous spaces: topologies and quotient sheaves Write rX for the presheaf
on the category of S –schemes represented by an S –scheme X and r 0X for the
restriction of the presheaf rX to SmS . Suppose that G and H are finitely presented,
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smooth S –group schemes, and that H is a closed subgroup of G . The right translation
action of H on G is scheme-theoretically free and it follows from a result of Artin [2,
Corollary 6.3] that the sheaf afppf.rG=rH/ is representable by an S –algebraic space.
Two questions naturally present themselves: first, when does the fppf sheaf quotient
coincide with the Zariski or Nisnevich sheaf quotient, and second, is the fppf sheaf
afppf.rG=rH/ representable by a smooth scheme? We address the first question here;
we answer the second question in various cases in Section 3.1.

Lemma 2.4.1 Suppose G is a finitely presented S –group scheme and H � G is a
finitely presented, closed S –subgroup scheme. Assume that H is flat over S and that
the quotient G=H exists as an S –scheme. Then G!G=H is an H –torsor, and the
following statements hold:

(i) If t is a subcanonical topology on S –schemes such that the map G!G=H is
t –locally split, then r.G=H/Š at .rG=rH/.

(ii) If G is smooth over S , then G=H is smooth over S . Moreover, if t is a
subcanonical topology on SmS such that the map G!G=H is t –locally split,
then r 0.G=H/Š at .r 0G=r 0H/.

Proof By a theorem of Anantharaman [1, Appendice I, Théorème 6], we have
r.G=H/ Š afppf.rG=rH/. In particular, G ! G=H is an H –torsor, and hence it
is flat by Lemma 2.3.3. If G is smooth, it follows from [33, Proposition 17.7.7] that
G=H is also smooth. If G ! G=H is t –locally split, then rG ! r.G=H/ is an
epimorphism of t –sheaves. By [3, Proposition 4.3(2)], this implies that r.G=H/ is
the coequalizer of the equivalence relation rG �r.G=H/ rG Š rG � rH � rG in the
category of t –sheaves, which exactly means that r.G=H/Š at .rG=rH/. The second
statement is proved in the same way.

Affine representability for homogeneous spaces

Theorem 2.4.2 Suppose G is a finitely presented, smooth S –group scheme and
H � G is a finitely presented, smooth, closed S –subgroup scheme such that the
quotient G=H exists as an S –scheme. Suppose that G!G=H is Nisnevich locally
split and that H 1

Nis.�; G/ and H 1
Nis.�;H/ are A1–invariant on Smaff

S . Then G=H is
A1–naive. In particular, for every X 2 Smaff

S , there is a bijection

�0.SingA1

G=H/.X/Š ŒX;G=H�A1 :
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Proof The assumption on G!G=H combined with Lemma 2.4.1 allow us to con-
clude that r 0.G=H/Š aNis.r

0G=r 0H/ and thus the homotopy fiber sequence (2-4) has
the form r 0.G=H/! BNisH ! BNisG . The simplicial presheaves BNisG and BNisH

are Nisnevich-local and hence satisfy Nisnevich excision by [9, Theorem 3.2.5]. The
result is now a direct application of Theorem 2.2.4, taking into account Lemma 2.3.2(ii).

3 Homotopy invariance for torsors under group schemes

The main goal of this section is to study A1–invariance of the functors H 1
Nis.�; G/

for G a linear group. Section 3.1 reviews basic definitions about group schemes,
torsors and homogeneous spaces; it also collects a number of results that will be used
later in the text. Section 3.2 establishes an analog of the local-to-global principle
(also called “Quillen patching”) for torsors under linear group schemes under rather
general hypotheses; the main result is Theorem 3.2.5. Finally, Section 3.3 proves
general homotopy invariance results; the main results are Theorems 3.3.3 and 3.3.7. For
simplicity, we assume throughout this section that the base scheme S is the spectrum of
a commutative ring R . In general there is a tradeoff between generality of the group G
under consideration and the base ring R .

3.1 Reductive group schemes and homogeneous spaces: recollections

The goal of this section is to recall some basic definitions and properties of group
schemes, torsors and homogeneous spaces over rather general bases. Rather than
attempting to be exhaustive, we only aim to point the reader to places in the literature
where they can find the required results. The grouping of these results is slightly
eclectic: only a very small portion of the definitions and results established here will be
used in the remainder of Section 3. Many of the results we state here are significantly
easier to establish (or even unnecessary) if the base ring R is a field.

Linear and reductive group schemes We write GLn;R for the general linear group
scheme over R and Gm;R for GL1;R . If R is clear from context, we will drop it from
the notation.

Definition 3.1.1 By a linear R–group scheme, we mean a group scheme G over R
admitting a finitely presented closed immersion group homomorphism G! GLn;R .
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Later, the homotopy invariance results we establish will require much more stringent
hypotheses on G . We use the definition of reductive (resp. semisimple) R–group
scheme of Demazure and Grothendieck [25, Exposé XIX, Définition 2.7]: a reductive
(resp. semisimple) R–group scheme is a smooth, affine R–group scheme with geometric
fibers that are connected reductive (resp. semisimple) groups in the usual sense [25,
Exposé XIX, 1.6], ie have trivial unipotent radical (resp. radical). Recall that a reductive
R–group scheme G is called split if it contains a split maximal torus [25, Exposé XXII,
Définition 1.13]. Any split reductive group scheme is pulled back from a unique
“Chevalley” group scheme over Spec Z.

If R is a field, it is a well-known consequence of the classification of reductive groups
that reductive R–group schemes are linear R–group schemes. If R is no longer a field,
the connection between “reductive” and “linear” becomes more complicated, as the
following example demonstrates.

Example 3.1.2 Groups of multiplicative type need not be linear in general [24, Exposé
IX, Définition 1.1]. Indeed, [24, Exposé XI, Remarque 4.6] explains that if R is a
Noetherian and connected ring, then a group G of multiplicative type admits an
embedding in GLn if and only if it is isotrivial.

Nevertheless, the following result shows that, assuming suitable hypotheses on the
base, reductive R–group schemes are always linear.

Proposition 3.1.3 (Thomason) Suppose G is a reductive R–group scheme. Assume,
in addition, either

(i) R is regular and Noetherian, or

(ii) G is split.

Then G is a linear R–group scheme.

Proof If G is split, we can assume that R D Z and in particular that R is regular
Noetherian. In that case, the result follows from Thomason [61, Corollary 3.2(3)].

Remark 3.1.4 Thomason actually gives a sufficient condition for a group scheme to
admit a closed immersion group homomorphism into the automorphism group scheme
of a vector bundle over an arbitrary base S [61, Theorem 3.1]. Since we have in mind
applications to homotopy invariance, we have restricted attention to spectra of regular
rings.
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Homogeneous spaces for reductive groups Suppose G is a reductive R–group
scheme and �W Gm ! G is a homomorphism of R–group schemes. Via �, we
may consider the Gm–action �W Gm � G ! G defined pointwise by the formula
�.t; g/ WD �.t/g�.t/�1 . We can define a subfunctor PG.�/�G consisting of those
points g 2G such that limt!0 �.t; g/ exists and a subfunctor UG.�/�G consisting
of those points g2G such that limt!0 �.t; g/D 1 (see Conrad [22, Theorem 4.1.7] for
precise definitions). By [22, Theorem 4.1.7], both of these functors are representable by
R–subgroup schemes of G ; since we assumed G reductive, it follows also that PG.�/
and UG.�/ are smooth and connected. By [22, Example 5.2.2], PG.�/ is parabolic,
and UG.�/ is a closed normal R–subgroup scheme whose geometric fibers correspond
to unipotent radicals of the geometric fibers of PG.�/ [22, Corollary 5.2.5]; we will
abuse terminology and refer to UG.�/ as the unipotent radical of PG.�/.

If ZG.�/ is the centralizer of �, then, by [22, Definition 5.4.2] and the subse-
quent discussion, ZG.�/ is a Levi factor of PG.�/, ie ZG.�/ is a smooth reduc-
tive R–group scheme, and there is a semidirect product decomposition of the form
ZG.�/ËUG.�/Š PG.�/. This description of parabolics, their unipotent radicals and
Levi factors is called a “dynamic” description in [23; 22] (since it arises from a study
of “flows” under an action of Gm ). We use these ideas to establish the following result:

Lemma 3.1.5 Suppose R is a connected ring, G is a reductive R–group scheme,
P �G is a parabolic R–subgroup scheme and L is a Levi factor of P. Then:

(i) The quotients G=L and G=P exist as smooth R–schemes.

(ii) The morphism G!G=L is a generically trivial L–torsor.

(iii) The morphism G=L!G=P is a composition of torsors under vector bundles.

Proof For later use, we observe that since R is assumed connected and L is presumed
to exist, by P Gille [31, Théorème 9.3.1] there is a cocharacter �W Gm!G such that
P D PG.�/ and L D ZG.�/. If S is the spectrum of a field, which is the case we
will use later, the fact that all pairs .P;L/ consisting of a parabolic together with a
Levi factor are of the form .PG.�/;ZG.�// for a suitable cocharacter � is contained
in [23, Proposition 2.2.9].

For (i), begin by observing that, since P is a parabolic subgroup of G , it is a self-
normalizing subgroup [22, Corollary 5.2.8]. The quotients G=L and G=P exist as
smooth R–schemes by [22, Theorems 2.3.1 and 2.3.6] (and, by Lemma 2.4.1, the
morphisms G!G=L and G!G=P are an L–torsor and a P –torsor, respectively).
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For (ii), set U�DUG.��/, ie the “unipotent radical” of an opposite parabolic. We know
that there is a dense open subscheme of G isomorphic to U��P [22, Theorem 4.1.7]
(here and below, we will refer to this as the “big cell”). The image of this open
subscheme in G=L, which is isomorphic to U��P=L, is again open and dense since
G!G=L is smooth and surjective. The Levi decomposition yields an isomorphism of
schemes P ŠL�U, and thus an identification P=LŠ U. Under these identifications,
the unit map U ! P provides a morphism U� �U ! U� �L�U, which yields the
required generic trivialization.

For (iii), let U be the unique smooth closed normal R–subgroup scheme of P whose
geometric fibers coincide with the unipotent radicals of the geometric fibers of P,
which is guaranteed to exist by [22, Corollary 5.2.5]. By the uniqueness assertion,
U Š UG.�/ for the character whose existence we observed in the first paragraph. By
[22, Theorem 5.4.3], U admits a finite descending filtration by AutP=R–stable, closed,
normal, smooth R–subgroup schemes Ui with successive subquotients Ui=UiC1
isomorphic to P –equivariant vector bundles over R . Moreover, the isomorphism
P=LŠ U described in (ii) is actually P –equivariant.

Now, the morphism G=L!G=P is G–equivariant by definition. The scheme-theoretic
fiber over the identity coset in G=P is isomorphic to the quotient P=L and there is an
induced G–equivariant isomorphism G �PP=L ��!G=L under which the morphism
G=L!G=P is sent to the projection onto the first factor. In particular, since P=LŠU
is smooth, G �P=L!G is smooth and since smoothness is fppf local on the base
[17, Tag 02VL], we conclude that G=L!G=P is also smooth. By the discussion of
the previous paragraph, the morphism G=L!G=P thus factors successively through
morphisms of the form

(3-1) G �P U=UiC1!G �P U=Ui :

To finish the proof, it suffices to inductively establish that each morphism in (3-1) is a
torsor under a vector bundle.

Each morphism U=UiC1!U=Ui is, by construction, a torsor under the vector bundle
Ui=UiC1 and, as we observed above, provided with a P –equivariant structure. If
E is a quasicoherent sheaf on a scheme X, then H 1

fppf.X; E / D H
1
Zar.X; E / by [17,

Tag 03DR, Proposition 34.8.10]. Since H 1
fppf.X; E / parametrizes fppf torsors under the

quasicoherent sheaf E , the P –equivariant structure on Ui=UiC1 allows us to conclude,
by fppf descent, that G�PUi=UiC1 is a torsor under a vector bundle on G=P. In other
words, each morphism in (3-1) is again a torsor under the vector bundle Ui=UiC1 .
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Remarks 3.1.6 (1) Since R a connected ring, it is not necessary to assume in the
statement above that L exists; this follows from Conrad [22, Corollary 5.4.8]. If we
were to work over a nonaffine base scheme, parabolics need not have Levi factors
(see [22, Example 5.4.9] for more details). By reorganizing the proof, the argument
presented in (iii) actually shows that the quotient G=L exists assuming we know G=P

to exist and the relevant results on the structure of U.

(2) By Lemma 2.3.3, since L is a smooth R–group scheme by assumption, G!G=L

is étale locally trivial. If R is Noetherian and regular, then the morphism G!G=L

being generically trivial is tantamount to G! G=L being Nisnevich locally trivial.
To prove this, it suffices to show that generically trivial L–torsors over Henselian local
rings are trivial. If G is split reductive, then L is as well, and the asserted triviality
follows from Białynicki-Birula [18, Proposition 2]. If G is not necessarily split, then L
can be an arbitrary reductive group and one can appeal to Nisnevich [48, Théorème 4.5]
to deduce the required triviality result (Nisnevich makes a statement for semisimple
group schemes, but it is true more generally; see Fedorov and Panin [29, Section 1.1]).

(3) If G is split, it is possible to use translation of the big cell by elements of the
Weyl group to produce an explicit Zariski local trivialization of G! G=L. In fact,
even if G is not split, to establish Zariski local triviality of G!G=L (or, equivalently,
G!G=P ), it suffices to know that the G.R/–translates of the big cell form an open
cover of G=L (or G=P ). If R is an infinite field, this kind of result follows from the
fact that the image of G.R/ in G=P.R/ is Zariski dense (via the unirationality of G ).

(4) In contrast, if R is a finite field (and G is nonsplit), it is a priori not obvious
that G.R/ translates of the big cell cover G=L (or G=P ). Nevertheless, assuming the
Grothendieck–Serre conjecture, one knows that G!G=L is Zariski locally trivial. If
R is the spectrum of a finite field, the Grothendieck–Serre conjecture was established
by Gabber for reductive groups coming from the ground field (unpublished), but another
proof of a more general case was recently given by Panin [49] (see also [29]).

Write SOn for the split special orthogonal group over R . We restrict attention to the
case where 2 is a unit in R , so we can view SOn as the R–subgroup scheme of GLn
consisting of automorphisms of the standard hyperbolic form qn with trivial determinant
(see eg Conrad [22, Definition C.1.2]); for more details on special orthogonal groups,
see [22, Appendix C].

Lemma 3.1.7 If R is a ring in which 2 is invertible, then:
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(i) If n� 3, the quotient SOn=SOn�1 exists and is isomorphic to a quadric hyper-
surface in AnR defined by the equation qn D 1.

(ii) If n � 3, the projection morphism SOn ! SOn=SOn�1 makes SOn into a
Zariski locally trivial SOn�1–torsor over the quotient.

Proof Without loss of generality, we can take R D Z
�
1
2

�
, which is Noetherian of

dimension � 1. Since SOn�1 is a closed R–subgroup scheme of SOn , the quotient
SOn=SOn�1 exists as a scheme [1, Théorème 4.C].

To identify this quotient with the quadric in the statement, we proceed as follows:
Since SOn�1 D SOn \ SLn�1 inside of SLn , the inclusion SOn � SLn induces
a monomorphism SOn=SOn�1 ,! SLn=SLn�1 . Note that if A is an R–algebra,
the map sending X 2 SLn.A/ to its first row and the first column of its inverse
determines an isomorphism SLn=SLn�1 Š SpecRŒx1; : : : ; x2n�=.q2n � 1/. If we
restrict X 2SOn.A/ and if J is the symmetric matrix corresponding to the bilinear form
associated with qn , then the orthogonality condition imposes the relation X�1D JXT .
Using this observation, it is straightforward to check that the image is isomorphic, in
suitable coordinates, to a subquadric given by the equation qn D 1.

For the second statement, observe that morphisms X! SOn=SOn�1 classify SOn�1–
torsors which are trivial after stabilization to SOn–torsors. The Witt cancellation
theorem (see Milnor and Husemoller [42, Lemma 6.3]) implies that, over a local ring
in which 2 is invertible, such an SOn�1–torsor is already trivial.

3.2 The local-to-global principle for torsors under linear group schemes

In this section we establish a local-to-global principle or “Quillen patching” for torsors
under linear R–group schemes in the sense of Definition 3.1.1. The main result of this
section is Theorem 3.2.5, which is a multivariable analog of a result of Quillen [54,
Theorem 1] along the lines of Lam [39, Theorem V.1.6]. As will be clear from the
presentation, the argument follows quite closely that for projective modules given in
[39, Chapter V.1].

That the local-to-global principle holds for torsors under linear group schemes is cer-
tainly “well known to experts”, under suitable hypotheses. For example, Raghunathan
[55] states (without proof) that Quillen’s local-to-global principle holds for linear
algebraic groups over a field, and Bass, Connell and Wright developed an axiomatic
method to establish such results [16, Proposition 3.1]; in particular, the latter approach
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applies for various classical groups [16, Remark 4.15.4] over a general base ring.
Nevertheless, since we could not find a suitable published reference for precisely what
we needed, in the interest of completeness, we decided to collect the necessary results
here.

Modifying automorphisms We begin by generalizing [54, Lemma 1] (also Corollary
V.1.2 of [39]) and [39, Corollary V.1.3] to linear R–group schemes over an arbitrary
commutative ring R . The following pair of results are due to Moser [47, Lemmas
3.5.3–3.5.5] (though our hypotheses differ slightly); we include them here for the
convenience of the reader.

Lemma 3.2.1 Let R be a commutative ring, let G be a linear R–group scheme, let
f 2R and let �.t/2G.Rf Œt �/ be such that �.0/D 12G.Rf /. There exists an integer
s � 0 such that, for any a; b 2 R with a� b 2 f sR , there exists  2 G.RŒt �/ with
 .0/D 1 and such that  f .t/D �.at/�.bt/�1 2G.Rf Œt �/.

Proof Since G is a linear R–group scheme, by definition there is a finitely presented
closed immersion G! GLn . For s 2N , set  s.t; x; y/ WD �..xCf sy/t/�.xt/�1 2
G.Rf Œt; x; y�/. It suffices to show that there exists s such that  s can be lifted to
an element  s 2 G.RŒt; x; y�/. Indeed, in that case, by specializing with x D b ,
a D bC f s˛ , we see that �.at/�.bt/�1 D  s.t; b; ˛/ lifts as well. By the proof of
[54, Lemma 1], we know that there exists s such that  s.t; x; y/ lifts to an element of
GLn.RŒt; x; y�/ and such that  s.0; x; y/D 1 (see also [39, Theorem V.1.1]). Observe
that, by definition,  s.t; x; 0/D 1 and thus  s.t; x; 0/ 2G.RŒx; t �/.

It remains to show that there exists i � 0 such that  s.t; x; f iy/ 2G.RŒt; x; y�/. We
first recast this in ring-theoretic terms. Set A WDRŒt; x�, let B be the coordinate ring
of GLn , and let I � B be the finitely generated ideal defining G . The lift of  s is
given by a homomorphism 'W B! AŒy�, and we want to show that, for some i � 0,
'.�/.f iy/ vanishes on I. We claim that, for every r 2 I, there exists an integer ir such
that '.r/.f iy/D 0 for i � ir . If J � I is a finite generating set and i Dmaxr2J ir ,
then i will have the desired property.

Note that ' has the following properties: if ev0W AŒy�!A is the evaluation homomor-
phism, then the composites ev0 ı'W B!A and B!AŒy�!Af Œy� both vanish on I.
If r 2 I and P WD'.r/2AŒy�, these properties imply that P DyQ for some Q2AŒy�
and that f irP D 0 for some ir � 0. Combining these two observations, we have
0Df irP Df iryQ . Therefore, f irQD0 as well. Thus, P.f iy/Df iyQ.f iy/D0
for all i � ir , which is what we wanted to show.
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Lemma 3.2.2 Let R be a commutative ring and G a linear R–group scheme. Given
f0; f1 2 R such that f0RC f1R D R , and � 2 G.Rf0f1

Œt �/ with �.0/D 1, we can
find �i 2G.Rfi

Œt �/ with �i .0/D 1 such that � D �0��11 .

Proof Let �.t/ 2 G.Rf0f1
Œt �/. We can apply Lemma 3.2.1 to the localizations

Rf0
!Rf0f1

and Rf1
!Rf1f0

; pick an integer s that suffices for both localizations.
For any b 2R , we can write

�.t/D Œ�.t/�.bt/�1��.bt/:

If f0R C f1R D R , then the same thing is true for f s0 and f s1 . Thus, we can
pick b 2 f s1 R such that 1� b 2 f s0 R . In that case, �.t/�.bt/�1 2 G.Rf1

Œt �/f0
and

�.bt/ 2G.Rf0
Œt �/f1

lift to elements �1 and �0 with the stated properties.

Remark 3.2.3 Lemma 3.2.1 implies “Axiom Q” (in the sense of Bass, Connell and
Wright [16, Section 1.1]) holds for the functor on R–algebras determined by G .
Lemma 3.2.2 essentially corresponds to [16, Theorem 2.4].

The local-to-global principle Let R be a commutative ring and suppose G is a linear
R–group scheme. If A is a commutative R–algebra, by a G–torsor over A we will
mean a G–torsor over SpecA; by assumption our G–torsors are locally trivial in
the fppf topology (see Definition 2.3.1 and the discussion just prior to Lemma 2.3.3
for more details). A G–torsor over AŒt1; : : : ; tn� that is pulled back from a G–torsor
over A will be called extended from A. For the remainder of this section, we will
essentially confine our attention to a fixed G–torsor P, which will be important for
subsequent applications.

Proposition 3.2.4 Let R be a commutative ring. If P is a G–torsor over RŒt�, then
the set Q.P/ consisting of g 2 R such that PjSpecRgŒt� is extended from Rg is an
ideal in R .

Proof It is immediate that Q.P/ is closed under multiplication by elements in R .
Thus, we have to show that if f0; f1 2 Q.P/, then f D f0C f1 lies in Q.P/ as
well. After replacing R by Rf , we can assume that f0RCf1RDR .

Write 0W SpecR!A1R , and prW A1R! SpecR for the zero section and the structure
morphism. Thus, suppose P is a G–torsor over RŒt� and assume that the restrictions
Pi WDPjSpecRfi

Œt� are extended. We want to show that P Š pr�0�P .
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By assumption, there are isomorphisms ui W Pi Š pr�0�Pi over Rfi
Œt �. By modifying

ui if necessary, we may assume that 0�ui D 1. Let P01 be the restriction of P to
Rf0f1

Œt �. Then u0 and u1 restrict to give two isomorphisms .u0/f1
; .u1/f0

W P01 Š

pr�0�P01 . If we set � D .u1/f0
.u0/

�1
f1
2 G.Rf0f1

Œt �/, then there is a commutative
diagram of the form

P0

u0

��

P01
oo //

.u0/f1

yy

.u1/f0

%%

P1

u1

��

pr�0�P0 pr�0�P01
oo

�
// pr�0�P01

// pr�0�P1

If � is the identity, then, by fppf descent for G–torsors, the isomorphisms u0 and u1
glue to give an isomorphism P Š pr�0�P, as desired. If not, since 0�ui D 1, we see
that � restricts along t D 0 to the identity. Then Lemma 3.2.2 guarantees that we can
find �i 2G.Rfi

Œt �/ such that �i .0/D1 and �D �0��11 . Thus, .�0u0/f1
D .�1u1/f0

and,
replacing u0 by �0u0 and u1 by �1u1 , we can glue these isomorphisms to conclude
that P is extended.

Theorem 3.2.5 (local-to-global principle) Let R be a commutative ring and suppose
G is a linear R–group scheme. If P is a G–torsor over RŒt1; : : : ; tn�, then:

.An/ The set Q.P/ consisting of g 2R such that PjSpecRgŒt1;:::;tn� is extended from
Rg is an ideal in R .

.Bn/ If PjSpecRmŒt1;:::;tn� is extended for every maximal ideal m � R , then P is
extended.

Proof We know that .A1/ holds by Proposition 3.2.4.

.An/ D) .Bn/ It suffices to check that, for P satisfying the conditions in .Bn/, the
ideal Q.P/ is the unit ideal in R . To this end, let Pj0 be the pullback of P along the
zero section SpecR! SpecRŒt1; : : : ; tn� and let P 0 be the pullback of Pj0 along
the structure map SpecRŒt1; : : : ; tn�! SpecR .

For any maximal ideal m�R , since PjSpecRmŒt1;:::;tn� is by assumption extended, we
know there is an isomorphism 'W PjSpecRmŒt1;:::;tn�

��!P 0jSpecRmŒt1;:::;tn� . Since G–
torsors over affine bases are of finite presentation under our hypotheses by Lemma 2.3.3,
there exists g 2 R nm such that ' is the localization of an isomorphism of torsors
over SpecRg Œt1; : : : ; tn�. It follows that g 2Q.P/ nm and therefore that Q.P/ is
not contained in m, ie Q.P/DR .
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.A1/ D) .An/ We proceed by induction on n. Assume therefore that .An�1/ holds.
By the conclusion of the previous step, this means .Bn�1/ holds as well. Form the set
Q.P/ as in .An/. It is straightforward to check that R �Q.P/�Q.P/ and therefore
it suffices to show that if f0; f1 2Q.P/, then f0Cf1 2Q.P/ as well.

Write f D f0C f1 . Consider the quotient map RŒt1; : : : ; tn�!RŒt1; : : : ; tn�1� and
set PjtnD0 to be the restriction of P under the corresponding morphism of schemes.
Likewise, write Pj0 for the restriction of P along the zero section as in the previous
step. Applying .A1/ to the map RŒt1; : : : ; tn�1�! RŒt1; : : : ; tn�1�Œtn�, we conclude
that Pf is extended from .PjtnD0/f .

We claim that .PjtnD0/f is itself extended from Rf . If that is the case, then Pf is
extended and so f 2Q.P/. Since .Bn�1/ holds, it suffices to show that .PjtnD0/f
is extended upon restriction to every maximal ideal m 2 Rf . Write mD pf , where
p is the preimage of m under the localization map R!Rf . Since f … p, it follows
that either f0 or f1 is not in p; without loss of generality, we can assume that f0 … p.
By assumption, however, Pf0

is extended from .P0/f0
, so we conclude that the

restriction of .PjtnD0/f to the maximal ideal m is extended from .P0/p , which is
what we wanted to show.

Corollary 3.2.6 Let G be a reductive R–group scheme. If R is regular Noetherian
or G is split, then the local-to-global principle holds for G–torsors, ie a G–torsor over
RŒt1; : : : ; tn� is extended from R if and only if, for every maximal ideal m � R , the
G–torsor on RmŒt1; : : : ; tn� obtained by restriction is extended from Rm .

Proof Combine Proposition 3.1.3 and Theorem 3.2.5.

3.3 Affine homotopy invariance for G –torsors

Let G be a smooth linear R–group scheme. In this section, we analyze when the
pullback map

H 1
Nis.X;G/!H 1

Nis.X �A1; G/

is a bijection for X a smooth affine R–scheme.

Special linear groups We begin by recalling some facts about oriented vector bundles
over schemes. If X is a scheme, then recall that an oriented vector bundle on X is
a pair .E ; '/ consisting of a vector bundle E on X equipped with an isomorphism

Geometry & Topology, Volume 22 (2018)



1204 Aravind Asok, Marc Hoyois and Matthias Wendt

'W det E ��!OX. There is a standard equivalence between the groupoid of oriented
vector bundles on X and that of SLn–torsors over X. Write V o

n .X/ for the set of
isomorphism classes of rank n oriented vector bundles on X.

Theorem 3.3.1 (special linear homotopy invariance) Fix an integer n� 1 and sup-
pose R is a ring such that, for every maximal ideal m�R , Rm is ind-smooth over a
Dedekind ring with perfect residue fields (for example, Rm is Noetherian and regular
over such a Dedekind ring). For every integer m� 0, the map

V o
n .SpecR/! V o

n .SpecRŒt1; : : : ; tm�/

is a bijection.

Proof By [9, Theorem 5.2.1], every vector bundle on SpecRŒt1; : : : ; tm� is pulled
back from a vector bundle on SpecR . In particular, every oriented vector bundle
on SpecRŒt1; : : : ; tm� is pulled back from a vector bundle on SpecR with trivial
determinant. It remains to show that every automorphism of the trivial line bundle on
SpecRŒt1; : : : ; tm� is extended from SpecR . In other words, we must show that the
inclusion map R!RŒt1; : : : ; tm� induces an isomorphism on unit groups.

Observe that our assumptions guarantee that Rm is reduced for every maximal ideal
m � R , and therefore R must itself be reduced. Since R is reduced, the fact that
R! RŒt1; : : : ; tm� induces an isomorphism on unit groups follows from a straight-
forward induction argument, using the elementary observation that if A is a reduced
commutative ring, then the map A! AŒt� induces an isomorphism A�! AŒt�� .

Remark 3.3.2 In [44, Definition 4.3], Morel defines an orientation on a vector bundle
E to be an isomorphism between det E and the square of a line bundle. Oriented vector
bundles in this sense correspond to torsors under the metalinear group MLn defined
by the pullback square

MLn //

��

Gm

2
��

GLn det
// Gm

This more general notion of orientation is very natural in Morel’s theory of the Euler
class, since the latter only depends on an orientation in this sense. Theorem 3.3.1 is
also true for MLn–torsors instead of SLn–torsors, with a very similar proof.
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Symplectic groups We refer the reader to Knus [37, Section I.4] for more details
about symplectic spaces over rings; we briefly fix notations in the scheme-theoretic
context. If X is a scheme and B is a quasicoherent sheaf on X, an alternating bilinear
form on B is a morphism of quasicoherent sheaves 'W B ˝OX

B ! OX such that
' ı� D 0, where �W B! B˝OX

B is the (nonlinear) diagonal map. If .B; '/ is a
quasicoherent sheaf equipped with an alternating bilinear form, then we will say that
' is nondegenerate if ' induces an isomorphism B! B_ WD HomOX

.B;OX /. By a
symplectic bundle (of rank 2n) we will mean a pair .B; '/ consisting of a (rank 2n)
vector bundle B on X equipped with a nondegenerate alternating bilinear form ' .
Write H V 2n.X/ for the set of isomorphism classes of rank 2n symplectic bundles
on X.

We briefly recall the standard equivalence between the groupoid of symplectic vector
bundles and that of Sp2n–torsors on X. In one direction, send a symplectic vector
bundle .B; '/ to its bundle of “symplectic frames”; by [37, Proposition I.4.1.4], this
construction yields an fppf torsor under Sp2n . In the other direction, given an Sp2n–
torsor P on X, consider the vector bundle associated with the standard 2n–dimensional
representation of Sp2n , which comes equipped with a reduction of structure group
to Sp2n , ie an alternating form on the bundle. By [37, Corollary 4.1.2], any symplectic
bundle on a scheme X is Zariski locally on X isometric to the hyperbolic space of
a trivial vector bundle [37, I.3.5]. Combining these observations, we see that Sp2n–
torsors are Zariski locally trivial and that there is an equivalence between the groupoid
of symplectic vector bundles over X and that of Nisnevich locally trivial Sp2n–torsors
(as mentioned in Example 2.3.4).

Theorem 3.3.3 (symplectic homotopy invariance) Fix an integer n� 1 and suppose
R is a ring such that, for every maximal ideal m � R , Rm is ind-smooth over a
Dedekind ring with perfect residue fields (for example, Rm is Noetherian and regular
over such a Dedekind ring). For every integer m� 0, the map

H V 2n.SpecR/!H V 2n.SpecRŒt1; : : : ; tm�/

is a bijection.

Proof For any integer n�1, the group Sp2n is a split reductive R–group scheme (and,
by definition, linear). Therefore, applying Theorem 3.2.5, it suffices to demonstrate the
result with R replaced by Rm . Since Rm is local, every finitely generated projective
module over Rm is free. By the assumption on R and [9, Theorem 5.2.1], we know
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that, for any integer m, every finitely generated projective RmŒt1; : : : ; tm�–module is
free. Applying [37, Corollary I.4.1.2], we conclude that every symplectic space over
RmŒt1; : : : ; tm� is isometric to the hyperbolic space of a free module. In particular,
every symplectic space over RmŒt1; : : : ; tm� is extended from Rm .

A formalism for homotopy invariance We recall a formalism introduced by Colliot-
Thélène and Ojanguren; the following result is a slight extension of [21, Théorème 1.1].

Proposition 3.3.4 Fix an infinite base field k . Suppose F is a functor from the
category of k–algebras to the category of pointed sets with the following properties:

(P1) The functor F commutes with filtered inductive limits of rings with flat transition
morphisms.

(P2) For every extension field L=k and every integer n� 0, the restriction map

F .LŒt1; : : : ; tn�/! F .L.t1; : : : ; tn//

has trivial kernel.

(P3) The functor F has weak affine Nisnevich excision, ie for any smooth k–
algebra A, any étale A–algebra B and any element f 2 A such that A=fAŠ
B=fB , the map

ker.F .A/! F .Af //! ker.F .B/! F .Bf //

is a surjection.

If B is the localization of a smooth k–algebra at a maximal ideal, then, setting KB D
Frac.B/, for any integer n� 0 the restriction map

F .BŒt1; : : : ; tn�/! F .KB.t1; : : : ; tn//

has trivial kernel.

Proof Set d WD dimB and write m for the maximal ideal of B . Suppose that

�0 2 ker
�
F .BŒt1; : : : ; tn�/! F .KB.t1; : : : ; tn//

�
:

Let � be the image of �0 in F .KB Œt1; : : : ; tn�/. Then, by assumption, � lies in the
kernel of F .KB Œt1; : : : ; tn�/! F .KB.t1; : : : ; tn//. By (P2), we conclude that � is
trivial.

Using (P1), we conclude that there is an element g 2 m n 0 such that �0 restricts
trivially to F .Bg Œt1; : : : ; tn�/. Then, by Knus [37, Corollary VIII.3.2.5], there ex-
ist a polynomial ring LŒx1; : : : ; xd �, a maximal ideal n � LŒx1; : : : ; xd �, a local
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essentially étale morphism 'W A ! B (where A D LŒx1; : : : ; xd �n ) and an ele-
ment f 2 m such that '.f / D ug for u a unit in Bm and ' induces an iso-
morphism A=fA ��! B=gB . By (P3), we conclude that there exists an element
� 00 2 ker

�
F .AŒt1; : : : ; tn�/! F .Af Œt1; : : : ; tn�/

�
mapping to �0 . However, � 00 is also

evidently in ker
�
F .AŒt1; : : : ; tn�/!F .KA.t1; : : : ; tn//

�
. Thus, it suffices to establish

the result in the case where B is the localization of a polynomial ring at a maximal
ideal, which is precisely [21, Proposition 1.5].

Isotropic reductive groups If k is a field, a reductive k–group scheme will be called
anisotropic if it contains no k–subgroup isomorphic to Gm . We take the following
definition for isotropic reductive k–group, but we caution the reader that our definition
differs from that of Borel [19, Definition V.20.1]; we choose this definition because it
better suits our eventual applications.

Definition 3.3.5 If k is a field, a reductive k–group scheme G will be called isotropic
if each of the almost k–simple components of the derived group of G contains a
k–subgroup scheme isomorphic to Gm .

Remark 3.3.6 See Borel [19, Section V.20] or Gille [31, Section 9.1] for further
discussion of isotropic reductive groups. In general, the existence of a noncentral split
multiplicative k–subgroup is equivalent to the existence of a parabolic k–subgroup by
the dynamic construction described just before Lemma 3.1.5. In particular, isotropic
reductive k–groups admit proper parabolic subgroups.

Theorem 3.3.7 If k is an infinite field, and G is an isotropic reductive k–group (see
Definition 3.3.5), then, for any smooth k–algebra A and any integer n� 0, the map

H 1
Nis.SpecA;G/!H 1

Nis.SpecAŒt1; : : : ; tn�; G/

is a bijection.

Proof We have to show that every Nisnevich locally trivial G–torsor P over the
ring AŒt1; : : : ; tn� is extended from A. After Corollary 3.2.6, it suffices to show that,
for every maximal ideal m of A, the G–torsor Pm over AmŒt1; : : : ; tn� is extended
from Am ; we will show that in fact Pm is trivial.

We claim that the functor A 7! H 1
Nis.SpecA;G/ from k–algebras to pointed sets

satisfies the axioms (P1)–(P3) of Proposition 3.3.4. Axiom (P1) is a consequence
of our finite presentation hypotheses by way of Lemma 2.3.3. Axiom (P2) uses the
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hypothesis that G is isotropic and follows from [21, Proposition 2.4 and Theorem 2.5]
(note that our definition of isotropic reductive k–group coincides with that used in
[21, Section 2, page 103]). Axiom (P3) is a formal consequence of the fact that
H 1

Nis.�; G/Š �0.BTorsNis.G// where BTorsNis.G/ satisfies affine Nisnevich exci-
sion (see Section 2.3). By the conclusion of Proposition 3.3.4, it suffices to show Pm

becomes trivial over Frac.Am/.t1; : : : ; tn/, but this follows immediately from the fact
that a field has no nontrivial Nisnevich covering sieves.

Remark 3.3.8 At least if k is an infinite perfect field, Theorem 3.3.7 admits a converse:
if G is a reductive k–group such that H 1

Nis.�; G/ is A1–invariant on Smaff
k

, then G
is isotropic; see Balwe and Sawant [14, Theorem 1]. In fact, for G reductive, the
following three conditions are equivalent:

(i) G is isotropic (in the sense of Definition 3.3.5).

(ii) H 1
Nis.�; G/ is A1–invariant on smooth affine k–schemes.

(iii) RNis SingA1

G is A1–invariant.

The implication (i)D) (ii) is Theorem 3.3.7, (ii)D) (iii) is a special case of Theorem
2.4.2, and (iii)D) (i) is [14, Theorem 4.7].

4 Applications

In this section, we collect a number of applications of the results established so far.
Section 4.1 discusses representability results for Nisnevich locally trivial torsors. As
mentioned in Remark 3, that representability results should hold for torsors under SLn
and Sp2n was observed by Schlichting [57, Remark 6.23]; we simply observe in these
cases that the expected classical geometric objects yield models for the representing
spaces. In Section 4.2 we establish that for various classes of homogeneous spaces
for reductive groups applying the singular construction produces an A1–local space.
Section 4.3 establishes strong A1–invariance of homotopy sheaves of the singular con-
struction of a reductive group under suitable additional hypotheses. Finally, Section 4.4
studies a purely algebraic problem using our techniques, namely nilpotence of nonstable
K1–functors.

4.1 Affine representability results for torsors

Let Grn;nCN be the usual Grassmannian parametrizing n–dimensional subspaces
of an .nCN/–dimensional vector space. Let �Grn;nCN be the complement of the
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zero section in the total space of the determinant of the tautological vector bundle
on Grn;nCN . The space �Grn;nCN parametrizes rank n subspaces of the .nCN/–
dimensional vector space equipped with a specified trivialization of their determinant.
We set �Grn WD colimN �Grn;nCN , where the transition maps are the same as those in
the definition Grn . With these definitions, we can establish a geometric representability
result for oriented vector bundles.

Theorem 4.1.1 Suppose k is ind-smooth over a Dedekind ring with perfect residue
fields. Then, for any X 2 Smaff

k
, and any integer n� 1, there is a bijection

V o
n .X/Š ŒX;

�Grn�A1

that is functorial in X.

Proof Recall from Example 2.3.4 and the discussion preceding Theorem 3.3.1 that, for
any integer n� 1, there is a functorial bijection of the form V o

n .X/ŠH
1
Nis.X;SLn/.

Combining Theorems 2.3.5 and 3.3.1, we conclude that, under the stated hypotheses
on k , H 1

Nis.X;SLn/Š ŒX;BSLn�A1 for any smooth affine k–scheme X.

Using the notation of Morel and Voevodsky [45, Section 4.2], the space Bgm.SLn; i/
(attached to the defining inclusion i W SLn ,! GLn ) is precisely �Grn . Therefore,
combining the results of [45, Section 4.2], and using the fact that all SLn–torsors are
Zariski (and thus Nisnevich) locally trivial, we conclude that the map �Grn! BSLn
classifying the universal SLn–torsor over �Grn is an A1–weak equivalence.

If we let H be the standard 2–dimensional hyperbolic space, then we can consider
the symplectic vector space H˚N. Panin and Walter construct a scheme HGrn;nCN
that parametrizes rank 2n symplectic subspaces of H˚.nCN/ and we set HGrn WD
colimN HGrn;nCN [51]. Alternatively, HGr can be described as the colimit

colimN Sp2.nCN/=.Sp2n �Sp2N /:

Using these definitions, we are now able to establish a geometric representability
theorem for symplectic vector bundles.

Theorem 4.1.2 Suppose k is ind-smooth over a Dedekind ring with perfect residue
fields. Then, for any X 2 Smaff

k
, there is a bijection

H V 2n.X/Š ŒX;HGrn�A1

that is functorial in X.
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Proof Proceeding as in the proof of Theorem 4.1.1, we combine Example 2.3.4 and
the discussion preceding Theorem 3.3.3 to conclude that there is a functorial bijection
of the form H V 2n.X/ŠH

1
Nis.X;Sp2n/. Combining Theorems 2.3.5 and 3.3.3, we

conclude that, under the stated hypotheses on k , for any smooth affine k–scheme X,
H 1

Nis.X;Sp2n/Š ŒX; BSp2n�A1 . Finally, by the proof of [50, Theorem 8.2], we can
conclude that HGrn is A1–weakly equivalent to BSp2n , and thus, for any smooth
k–scheme X, ŒX;HGrn�A1 Š ŒX; BSp2n�A1 .

We now establish Theorem 1.

Theorem 4.1.3 Suppose k is an infinite field, and G is an isotropic reductive k–group
(see Definition 3.3.5). For any smooth affine k–scheme X, there is a functorial bijection

H 1
Nis.X;G/Š ŒX; BG�A1 :

Proof Combine Theorems 2.3.5 and 3.3.7.

Remark 4.1.4 In Theorem 4.1.3, the isotropy condition on G cannot be weakened;
see Remark 3.3.8.

4.2 Affine representability results for some homogeneous spaces

Let Q2n�1 be the smooth affine quadric over Z defined by
P
i xiyi D 1. There is a

standard identification SLn=SLn�1 ��!Q2n�1 . Let Q2n be the smooth affine quadric
over Z defined by

P
i xiyi D z.z C 1/ (in Asok, Doran and Fasel [4], it is shown

that Q2n is A1–weakly equivalent to P1
^n over Spec Z). In particular, there are

isomorphisms Q2 Š SL2=Gm and Q4 Š Sp4=.Sp2 � Sp2/ over Spec Z. If R is a
ring in which 2 is invertible, then Q2n is isomorphic over R to the quadric defined by
the standard hyperbolic form

P
i xiyi C z

2 D 1. It then follows from Lemma 3.1.7
that Q2n is isomorphic over R to the homogeneous space SO2nC1=SO2n .

Theorem 4.2.1 If R is a ring that is ind-smooth over a Dedekind ring with perfect
residue fields, then Q2n�1 is A1–naive. In particular, for any smooth affine R–
scheme X, there is a functorial bijection

�0.SingA1

Q2n�1/.X/
��! ŒX;Q2n�1�A1 :
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Proof The scheme Q2n�1 is isomorphic over Spec Z to the homogeneous space
GLn=GLn�1 . Since all torsors for GLn�1 are Zariski locally trivial, it follows that
GLn!Q2n�1 is Zariski locally trivial (in fact, one can just write down an explicit
trivialization). Using [9, Theorem 5.2.1] we may apply Theorem 2.4.2 to conclude.

Theorem 4.2.2 If either (a) n� 2, and R is a ring that is ind-smooth over a Dedekind
ring with perfect residue fields, or (b) n� 3 and R is an infinite field having character-
istic unequal to 2, then Q2n is A1–naive. In particular, under either set of hypotheses,
for any smooth affine R–scheme X, there is a functorial bijection

�0.SingA1

Q2n/.X/
��! ŒX;Q2n�A1 :

Proof For n D 1 consider the identification Q2 Š SL2=Gm . Affine homotopy
invariance holds for Gm–torsors over an arbitrary regular base, and for torsors under
SL2 Š Sp2 by assumption. The result follows immediately from Theorem 2.4.2.
Similarly, for n D 2 consider the identification Q4 Š Sp4=.Sp2 � Sp2/. Again, by
assumption we may combine Theorems 3.3.3 and 2.4.2 to conclude.

For n� 3 we proceed slightly differently. The SO2n–torsor SO2nC1!Q2n is still
Zariski locally trivial by Lemma 3.1.7. Since SOm is split for m� 3, we may apply
Theorem 3.3.7 to conclude that H 1

Nis.�;SOm/ is A1–invariant on Smaff
R for any integer

m� 3. Then we apply Theorem 2.4.2 to conclude.

Remark 4.2.3 If X D SpecA, then a map f W X !Q2n yields an ideal I � A and
a surjection !W .A=I /˚n! I=I 2 ; the ideal I is the ideal generated by the images
of x1; : : : ; xn; z in the coordinate presentation of the quadric. The class of f in
�0.SingA1

Q2n/.X/ depends only on the pair .I; !/ and is called the “Segre class”
of .I; !/; see Fasel [28, Theorem 2.0.2]. When X is smooth over an infinite field,
the Segre class provides an obstruction to lifting ! to a surjection A˚n ! I [28,
Theorem 3.2.8].

Zariski fiber bundles with affine space fibers If F is a fixed S –scheme, we will
say that an S –morphism � W E!B is a Zariski fiber bundle of S –schemes with fibers
isomorphic to F if there exist an S –scheme U, a Zariski covering morphism U ! B

and an isomorphism 'W U �B E
��!U �S F over U. The following result, which

generalizes a result of Morel [44, Theorem 8.9(2)], applies to affine vector bundle
torsors (also called Jouanolou–Thomason devices; see Weibel [63, Definition 4.2 and
Proposition 4.4]).
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Lemma 4.2.4 Suppose B 2 SmS , and � W E ! B is a Zariski fiber bundle of S –
schemes with fibers isomorphic to AnS . For any X D SpecR 2 Smaff

S , the induced
map

SingA1

E.X/! SingA1

B.X/

is an acyclic Kan fibration. Moreover, E is A1–naive if and only if B is A1–naive.

Proof By Goerss and Jardine [32, Theorem I.11.2], it suffices to show that, for any
integer n� 0, given a diagram of the form

@�nR
//

��

E

�

��

�nR
// B

there is a morphism �nR!E making both resulting triangles commute.

Given a diagram as above, there is an induced map @�nR ! �nR �B E . By the
assumption on � , the pullback � 0W �nR �B E!�nR makes the ring of functions on
�nR �B E into a locally polynomial algebra over RŒt1; : : : ; tn� in the sense of Bass,
Connell and Wright [16, Theorem 4.4]. Therefore, by [16, Theorem 4.4], we conclude
that � 0 is a geometric vector bundle over �nR , ie the spectrum of a symmetric algebra
over �nR . Now, if E ! �nR is a geometric vector bundle, then the inclusion map
@�nR!�nR induces a surjective map Hom.�nR; E /! Hom.@�nR; E /. Therefore, the
lift we hoped to construct is guaranteed to exist.

For the second statement, let zE and zB be Nisnevich-local A1–invariant replacements
of E and B , respectively, and consider the commutative square of simplicial presheaves

SingA1

E //

��

zE

��

SingA1

B // zB:

Since the left vertical map is a weak equivalence on affines, the right vertical map is a
weak equivalence. It follows that the upper horizontal map is a weak equivalence on
affines if and only if the lower horizontal map is.

Example 4.2.5 If X 2 Smaff
S is an affine scheme, then any finitely presented Zariski

fiber bundle of S –schemes � W E!X with fibers isomorphic to affine spaces is actually
a vector bundle by the result of Bass, Connell and Wright mentioned above [16]; this
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result was obtained independently by Suslin [60]. On the other hand, if X is not affine,
then even if � admits a section, it may not be isomorphic to a vector bundle; see
Iarrobino [35, Theorem 1] for an example with X D P1.

Homogeneous spaces with nonreductive stabilizers The following result extends
and simplifies the proof of a theorem of Morel [44, Theorem 8.9]; in particular, we
allow the case nD 2.

Corollary 4.2.6 If R is a ring that is ind-smooth over a Dedekind ring with perfect
residue fields, then Ann0 is A1–naive. In particular, for any smooth affine R–scheme X,
there is a canonical bijection

�0 SingA1

.An n 0/.X/ ��! ŒX;An n 0�A1 :

Proof The map SLn! An n 0 given by “projection onto the first column” factors
through a map SLn=SLn�1! An n 0; this map is a Zariski fiber bundle with fibers
isomorphic to affine spaces. By Lemma 4.2.4, it suffices to show that SLn=SLn�1 is A1–
naive. This follows from Theorem 4.2.1 via the standard isomorphism SLn=SLn�1 Š
Q2n�1 (send a matrix in SLn to the first row and first column of its inverse).

Lemma 4.2.7 Let X be a simplicial set and k � 0. If X has the right lifting property
with respect to the inclusion @�m ��m for every m� kC1, then X is k–connected.

Proof A simplicial set X is k–connected if and only if the Kan complex

coskkC1Ex1X

is contractible, or equivalently has the right lifting property with respect to @�m ��m

for all m. By adjunction, this is the case if and only if Ex1X has the right lifting
property with respect to @�m��m for m� kC1. By definition of Ex1 , it suffices to
show that X itself has the right lifting property with respect to sdr.@�m/� sdr.�m/
for all r and all m� kC1. In fact, X has the right lifting property with respect to any
monomorphism between .kC1/–skeletal simplicial sets, since such a monomorphism
is a transfinite composition of pushouts of @�m ��m for m� kC 1.

Proposition 4.2.8 Let n; k � 0 and let R be a commutative ring such that the Bass
stable range of RŒt0; : : : ; tk� is at most n. Then the simplicial set SingA1

.An n0/.R/ is
k–connected. In particular, if R is Noetherian of Krull dimension d , SingA1

.Ann0/.R/

is .n�d�2/–connected.
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Proof By Lemma 4.2.7, it suffices to show that the map

Umn.�mR/! Umn.@�mR/

is surjective for all m � k C 1, where Umn.X/ D Hom.X;An n 0/ is the set of
unimodular rows of length n in O.X/. By assumption, the Bass stable range of �kC1R

is at most n. It follows that the Bass stable range of �mR is at most n, for all m� kC1.
Now the result is a special case of the following more general statement, which follows
easily from the definition of Bass stable range: if X is an affine scheme of Bass
stable range � n and Y �X is a finitely presented closed subscheme, then the map
Umn.X/! Umn.Y / is surjective.

Remark 4.2.9 Under the assumption of Corollary 4.2.6, the set �0 SingA1

.Ann0/.X/

for n � 3 has a concrete description due to Fasel [27, Theorem 2.1]. Indeed, it is
the quotient of the set Umn.X/ of unimodular rows of length n by the action of the
subgroup En.X/� SLn.X/ generated by elementary shearing matrices. In loc. cit.,
it is assumed that R is a field, but the proof works more generally using a result of
Lindel and Popescu [53, Proposition 2.1]. Taking X DQ2n�1 , we obtain a bijection

ŒAn n 0;An n 0�A1 Š Umn.Q2n�1/=En.Q2n�1/:

By Corollary 4.2.6, we have ŒS1;An n0�A1;�Š �1 SingA1

.An n0/.R/, and Proposition
4.2.8 shows that this group is trivial if n is at least the Bass stable range of RŒt0; t1�.
In that case, we may therefore identify ŒAn n 0;An n 0�A1 with the set of maps in the
pointed A1–homotopy category. Note that colimnŒAn n 0;An n 0�A1;� is the set of
endomorphisms of the motivic sphere spectrum over the ring R .

The following result is Theorem 4.

Theorem 4.2.10 If k is an infinite field, G is an isotropic reductive k–group (see
Definition 3.3.5) and P �G is a parabolic k–subgroup possessing an isotropic Levi
factor (eg if G is split), then G=P is A1–naive. In particular, for any smooth affine
k–scheme X, there is a functorial bijection

�0.SingA1

G=P /.X/ ��! ŒX;G=P �A1 :

Remark 4.2.11 Given a reductive k–group and a nontrivial parabolic subgroup
P � G , it is not obvious that P has a Levi factor. Nevertheless, as mentioned
in Remarks 3.1.6, our hypotheses guarantee that P has a Levi factor. If L is a Levi
factor for P, then L may itself be anisotropic.
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Proof Lemma 3.1.5(ii) implies that G ! G=L is generically trivial. Since k is
assumed infinite and L is reductive, we claim G! G=L is actually Zariski locally
trivial. An elementary argument for Zariski local triviality of G ! G=L sketched
in Remark 3.1.6(2), but alternatively we can use [21, Théorème 2.1], to which, in a
moment, implicit appeal will be made.

By Theorem 2.4.2, whose hypotheses hold by Theorem 3.3.7, we conclude that G=L
is A1–naive. By Lemma 3.1.5(iii), G=L! G=P is a composition of Zariski fiber
bundles with affine space fibers. Hence, G=P is also A1–naive, by Lemma 4.2.4.

The above result can be significantly strengthened at the expense of further restrictions
on the groups under consideration.

Theorem 4.2.12 Suppose R is ind-smooth over a Dedekind ring with perfect residue
fields (for example, R is Noetherian and regular over such a Dedekind ring). If
G Š GLn or Sp2n , and if P � G is a standard parabolic subgroup, then G=P is
A1–naive. In particular, for any smooth affine R–scheme X, there is a functorial
bijection

�0.SingA1

G=P /.X/ ��! ŒX;G=P �A1 :

Proof Assume first that RDZ. If P �G is a standard parabolic with Levi factor L,
then L is itself a special group in the sense of Grothendieck–Serre, ie all étale locally
trivial torsors are Zariski locally trivial. Thus, the map G!G=L in Lemma 3.1.5(ii)
is automatically Zariski locally trivial. One sees that the map G=L ! G=P is a
Zariski fiber bundle with affine space fibers by combining Lemma 3.1.5(iii) with the
fact that all finitely generated projective Z–modules are free. By extending scalars
to R , it follows that corresponding statements hold for the resulting group scheme
over R .

With these modifications, the proof is essentially identical to that of Theorem 4.2.10;
however, instead of appealing to Theorem 3.3.7, we use Theorem 3.3.3 or [9, Theorem
5.2.1] to establish the necessary homotopy invariance statement.

Example 4.2.13 Theorem 4.2.12 applies if P �GLn is a maximal parabolic subgroup,
in which case G=P Š Grm;n for some integer m� n.
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4.3 Affine representability for nonstable K –theory and strong
A1–invariance results

Suppose G is a smooth linear R–group scheme. For any integer i � 1, one can define
Karoubi–Villamayor-style nonstable K–theory functors attached to G by means of the
formula

KVGiC1.U / WD �i .SingA1

G/.U /

In this form, the definition goes back to Jardine [36, Theorem 3.8], but had precursors in
the work of Krusemeyer [38, Section 3]; see Wendt [64] for a more detailed analysis of
such functors in the context of A1–homotopy theory. As a straightforward application
of our results, we obtain A1–representability results for nonstable KV–functors.

Theorem 4.3.1 If k is an infinite field, and G is an isotropic reductive k–group (in
the sense of Definition 3.3.5), then G is A1–naive. In particular, for any smooth affine
k–scheme U, there are canonical isomorphisms

KVGiC1.U /Š ŒS
i
^UC; G�A1;�:

Proof Apply Theorem 2.4.2 with H D e (Theorem 3.3.7 ensures the hypotheses are
satisfied).

Remark 4.3.2 Results such as the above were studied initially by Morel [44, Theorem
8.1] and Moser [46] (see also [65, Theorem 5.3]) for G a general split group, and
by the third author and K Völkel in the isotropic reductive case [62]. These results
depend crucially on first establishing homotopy invariance for nonstable K1–functors
via “elementary matrix” techniques. As a consequence these proofs do not easily extend
to the important case where G has semisimple rank 1, which was treated separately
by Moser. Our proof above makes no such assumption on the homotopy invariance of
nonstable K1–functors. As a consequence, Theorem 4.3.1 can also be used to slightly
uniformize the proof of [13, Theorem 3.4].

We can also establish the strong A1–invariance of the sheafifications of the nonstable
K1–presheaves attached to arbitrary isotropic reductive k–groups with k infinite.

Theorem 4.3.3 Suppose k is an infinite field, and G is an isotropic reductive k–group
(in the sense of Definition 3.3.5). For any integer n� 0, the following statements hold:

(i) The Zariski sheaf aZar�n.SingA1

G/ is a Nisnevich sheaf.

(ii) The sheaf aZar�n.SingA1

G/ is strongly A1–invariant.
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Proof We begin by recalling some key results of Morel [44, Chapter 6]. If X is
a Nisnevich-local and A1–invariant pointed simplicial presheaf on Smk , the sheaf
aNis�1.X / is strongly A1–invariant by [44, Theorem 6.1]. Moreover, the map
aZar�1.X /! aNis�1.X / is an isomorphism by [44, Corollary 6.9(2)] (the standing
assumption that aNis�0.X / is trivial is not used in the proof).

By Theorems 2.3.5(i) and 3.3.7, under the stated hypotheses on k , the simplicial
presheaf RZar SingA1

BNisG is Nisnevich-local and A1–invariant. Applying the results
of the previous paragraph to the simplicial presheaf

X DR�nRZar SingA1

BNisG;

we conclude that
aZar�nC1.SingA1

BNisG/

is a strongly A1–invariant Nisnevich sheaf of groups for any n� 0. By Corollary 2.2.2,
the map

�n.SingA1

R�BNisG/! �nC1.SingA1

BNisG/

is an isomorphism on affines, and hence it becomes an isomorphism after Zariski
sheafification. Finally, we conclude the proof by observing that G ' R�BNisG by
Lemma 2.3.2(iii).

Remark 4.3.4 The results from [44, Chapter 6] used in the proof of Theorem 4.3.3
do not require k to be perfect. If the base field k is in addition perfect, then, provided
aZar�n.SingA1

G/ is abelian, we can use [44, Theorem 5.46] to conclude that it is
strictly A1–invariant. The assumption that k is infinite in the above statement only
appears because of our appeal to Theorem 3.3.7. To remove this restriction, we would
need homotopy invariance for torsors under isotropic reductive groups over finite fields.

If G is a reductive k–group, we can define G.k/C to be the normal subgroup of G.k/
generated by the k–points of subgroups of G isomorphic to Ga . The Whitehead group
of G is defined by the formula

W.k;G/ WDG.k/=G.k/CI

we refer the reader to Gille’s survey [30] for more details about Whitehead groups. In
particular, Tits showed that W.k;G/ detects whether G.k/ is projectively simple. Re-
sults of Margaux allow us to connect nonstable K1–functors (as above) with Whitehead
groups. More precisely, one has the following result:
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Proposition 4.3.5 Suppose k is an infinite field, and G is an isotropic reductive
k–group (in the sense of Definition 3.3.5). For any finitely generated separable exten-
sion L=k , there are canonical isomorphisms

�0.SingA1

G/.L/ŠW.L;G/:

functorial with respect to field extensions. Moreover, the assignment L 7!W.L;G/

extends to a strongly A1–invariant sheaf on Smk .

Proof The first statement follows from Margaux [40, Theorem 3.10] (see also Gille
[30, Section 4.3]) and only requires G to be isotropic in the sense of Borel [19,
Definition V.20.1]. The second statement follows from the strong A1–invariance of
aZar�0.SingA1

G/ established in Theorem 4.3.3(2).

Whitehead groups are also related to arithmetic questions, eg regarding R–equivalence
in G.k/ (see Gille [30, Section 7] for a discussion of R–equivalence in the context
under consideration).

Corollary 4.3.6 Let k be an infinite field and G a semisimple, simply connected,
absolutely almost simple, isotropic k–group, and set G WD aZar�0.SingA1

G/. Then

(i) for any finitely generated separable extension L=k , there is an isomorphism of
the form G .L/ŠG.L/=R ,

(ii) the contracted sheaf G�1 is trivial, and

(iii) if k is furthermore perfect and G has classical type, then G is strictly A1–
invariant.

Proof The first statement follows from Proposition 4.3.5 and [30, Théorème 7.2].

For the second statement, recall that G�1.U /D ker..id; 1/�W G .U �Gm/!G .U //.
As G is strongly A1–invariant by Theorem 4.3.3, G�1 is also strongly A1–invariant
by Morel [44, Lemma 2.32]. In particular, it is an unramified sheaf, which implies that
the map G .X/!G .k.X// is injective for any irreducible smooth scheme X. By [30,
Theorem 5.8], we conclude that G .k.U //!G .k.U �Gm// is a bijection and thus
that G�1.U / is trivial for any U 2 Smk .

For the final statement, if k is furthermore perfect, it suffices by [44, Theorem 5.46] to
show that G is an abelian group valued functor. Because G is unramified, it suffices to
check abelianness on sections over extensions of the base field. By (i), if G has classical
type, this follows from a result of Chernousov and Merkurjev [30, Théorème 7.7].
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Remark 4.3.7 The statement G�1 D 0 of Corollary 4.3.6(ii) is equivalent to the
assertion that G is a birational sheaf. If G is not simply connected, then the sheaf
G is not, in general, birational. For example suppose G is a split semisimple group
having nontrivial algebraic fundamental group … (in the sense of Chevalley groups). If
we let H 1

Ket .…/ be the Nisnevich sheaf associated with the presheaf U 7!H 1
Ket.U;…/,

then G ŠH 1
Ket .…/, which is not birational.

4.4 Nilpotence for nonstable K1 functors

In this section, we include one more sample application of our results: we give a uniform
proof of some nilpotence results for nonstable K1–functors discussed in the previous
section; such nilpotence results have been studied for instance by Bak [11] and Bak,
Hazrat and Vavilov [12]. The main result of this section is Theorem 4.4.3, which solves
[12, Problem 6] in a number of cases of interest (see Remark 4.4.4 for more details).
The approach we pursue has the benefit that it is conceptually simple (modeled on
classical topological results) and applies to rather general isotropic reductive k–groups.
The tradeoff to this generality is that, unlike [12], we are forced to restrict attention to
smooth k–algebras with k an infinite field.

We use the following notation/terminology. If .X ; x/ is a pointed simplicial presheaf
on Smk , we will say that X is Nisnevich-connected if aNis�0.X / is trivial and, given
an integer n � 1, we will say that X is Nisnevich n–connected if aNis�i .X ; x/ is
trivial for i � n.

Now, suppose G is a simplicial presheaf of group-like h–spaces on Smk (h–group for
short) pointed by the identity. In that case, there is an induced morphism G ! aNis�0G ;
this morphism is a morphism of h–groups. Write G 0 for the homotopy fiber of G , so
that there is a homotopy fiber sequence of the form

G 0! G ! aNis�0G :

By construction, G 0 is a Nisnevich-connected h–group. Using this notation, we can
adapt arguments of Whitehead [66, Corollary 2.12] to establish an abstract nilpotence
result.

Proposition 4.4.1 Assume k is a Noetherian ring of finite Krull dimension, and
suppose G is a Nisnevich-local simplicial presheaf of h–groups on Smk (pointed by
the identity).
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(i) For any X 2 Smk , there is an exact sequence of groups of the form

1! ŒX;G 0�! ŒX;G �! aNis�0.G /.X/:

(ii) If X 2 Smk has Krull dimension � d , then ŒX;G 0� is nilpotent of class � d .

Proof Point (i) is immediate from the long exact sequence of maps into a homotopy
fiber sequence and the fact that aNis�0.G / is 0–truncated.

For (ii), it suffices to assume G D G 0 is Nisnevich-connected. In that case, G^n is
Nisnevich n–connected. Indeed, this follows from the corresponding connectivity
estimate for smash products of simplicial sets by checking on stalks. Now, a straightfor-
ward obstruction theory argument (see Morel [44, Lemma B.5]) using the connectivity
estimate we just mentioned shows that ŒX;G^n�D � if dimX � n. To conclude, we
simply observe that every n–fold commutator in ŒX;G � factors as X ! G^n ! G

(here, we use the assumption that G is an h–group and thus has a strict identity).

Remark 4.4.2 The result above is rather general. Indeed, as is evident from the proof,
it holds for simplicial h–group objects in the local homotopy theory of simplicial
presheaves on a site for which Postnikov towers converge.

Now suppose G is an isotropic reductive k–group in the sense of Definition 3.3.5.
Following Petrov and Stavrova [52], for any commutative k–algebra R and any
parabolic k–subgroup P � G , we define the elementary subgroup EP .R/ as the
subgroup of G.R/ generated by the R–points of the unipotent radical of P and the
R–points of the unipotent radical of its opposite. A priori, EP .R/ depends on P
and EP .R/ need not be a normal subgroup of G . However, Theorem 1 of [52]
guarantees that if each semisimple normal subgroup of G has rank � 2, then EP .R/
is both independent of P and normal in G.R/; under these hypotheses we define
E.R/ WDEP .R/ for any choice of proper parabolic and define KG1 .R/ WDG.R/=E.R/.

We can also consider G0.R/ � G.R/, the subset of G.R/ consisting of matrices g
for which there exists g.t/ 2G.RŒt �/ with g.0/D 1 and g.1/D g ; this subgroup is
evidently normal. By construction, EP .R/�G0.R/ and KVG1 .R/DG.R/=G

0.R/.
Therefore there is a short exact sequence of groups

1!G0.R/=E.R/!KG1 .R/! KVG1 .R/! 1:

Theorem 4.4.3 Suppose k is an infinite field, G is an isotropic reductive k–group (in
the sense of Definition 3.3.5) and R is a smooth k–algebra of dimension d .
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(i) If for every finitely generated separable extension L=k the Whitehead group
W.L;G/ is trivial (abelian), then KVG1 .R/ is (an extension of an abelian group
by) a nilpotent group of class � d .

(ii) If furthermore k is perfect, for every finitely generated separable extension L=k
the Whitehead group W.L;G/ is trivial (abelian) and every semisimple normal
subgroup of G has rank � 2, then KG1 .R/ is (an extension of an abelian group
by) a nilpotent group of class � d .

Proof Let G D RZar SingA1

G . According to Theorem 4.3.3, the Nisnevich sheaf
aNis�0.G / is strongly A1–invariant. By Proposition 4.3.5, the group of sections
aNis�0.G /.L/ over finitely generated extensions L=k coincides with W.L;G/. In
particular, the assumption that W.L;G/ is trivial (abelian) for every finitely generated
separable extension L=k implies that the sheaf aNis�0.G / is trivial (abelian).

By Theorem 4.3.1 and Proposition 2.1.3, G is Nisnevich-local and KVG1 .R/ D
ŒSpecR;G �. Then (i) follows immediately from Proposition 4.4.1.

Consider the exact sequence appearing before the statement gives a surjective map
KG1 .R/! KVG1 .R/. Under the additional hypotheses in (ii), it follows immediately
from a result of Stavrova [59, Theorem 1.3] that this surjection is an isomorphism and
(ii) follows from (i).

Remark 4.4.4 Combined with known structural results about W.�; G/ (viewed as a
functor on the category of finitely generated extensions of the base field), the above
result solves a problem posed by Bak, Hazrat and Vavilov [12, Problem 6] in a number of
new cases. For example, in [30, Théorème 6.1], Gille summarizes results of Chernousov
and Platonov that detail situations where W.�; G/ is trivial for all finitely generated
separable extensions L=k . See Corollary 4.3.6(iii) for hypotheses that guarantee
W.�; G/ is an abelian group valued functor on the category of (eg if G has classical
type). Furthermore, it has been conjectured that W.�; G/ always takes values in
abelian groups.
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