Volume 22, issue 2 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 2, 645–1266
Issue 1, 1–644

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Long-time behavior of $3$–dimensional Ricci flow, A: Generalizations of Perelman's long-time estimates

Richard H Bamler

Geometry & Topology 22 (2018) 775–844
Abstract

This is the first of a series of papers on the long-time behavior of 3–dimensional Ricci flows with surgery. We first fix a notion of Ricci flows with surgery, which will be used in this and the following three papers. Then we review Perelman’s long-time estimates and generalize them to the case in which the underlying manifold is allowed to have a boundary. Eventually, making use of Perelman’s techniques, we prove new long-time estimates, which hold whenever the metric is sufficiently collapsed.

Keywords
Ricci flow, Ricci flow with surgery, $3$–manifolds, collapsing theory, long-time estimates for Ricci flows
Mathematical Subject Classification 2010
Primary: 53C44
Secondary: 53C23, 57M50
References
Publication
Received: 16 December 2014
Revised: 21 June 2015
Accepted: 20 January 2017
Published: 16 January 2018
Proposed: Tobias H. Colding
Seconded: Bruce Kleiner, Gang Tian
Authors
Richard H Bamler
Department of Mathematics
University of California
Berkeley, CA
United States
https://math.berkeley.edu/~rbamler/