Volume 22, issue 3 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 2, 549–862
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Goldman algebra, opers and the swapping algebra

François Labourie

Geometry & Topology 22 (2018) 1267–1348
Bibliography
1 M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523 MR702806
2 M Bourdon, Sur le birapport au bord des CAT(1)–espaces, Inst. Hautes Études Sci. Publ. Math. 83 (1996) 95 MR1423021
3 M J Bridgeman, The Poisson bracket of length functions in the Hitchin component, preprint (2015) arXiv:1502.05975v1
4 M Bridgeman, R Canary, F Labourie, A Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 MR3385630
5 L A Dickey, Lectures on classical W–algebras, Acta Appl. Math. 47 (1997) 243 MR1459226
6 V G Drinfel’d, V V Sokolov, Equations of Korteweg–de Vries type, and simple Lie algebras, Dokl. Akad. Nauk SSSR 258 (1981) 11 MR615463
7 V Fock, A Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 MR2233852
8 W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200 MR762512
9 W M Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986) 263 MR846929
10 S Govindarajan, Higher-dimensional uniformisation and W–geometry, Nuclear Phys. B 457 (1995) 357 MR1366395
11 S Govindarajan, T Jayaraman, A proposal for the geometry of Wn–gravity, Phys. Lett. B 345 (1995) 211 MR1314786
12 P Guha, Euler–Poincaré flows on sln opers and integrability, Acta Appl. Math. 95 (2007) 1 MR2303210
13 O Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom. 80 (2008) 391 MR2472478
14 O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 MR2981818
15 N J Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449 MR1174252
16 F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 MR2221137
17 F Labourie, Cross ratios, surface groups, PSL(n, ) and diffeomorphisms of the circle, Publ. Math. Inst. Hautes Études Sci. 106 (2007) 139 MR2373231
18 F Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér. 41 (2008) 437 MR2482204
19 F Labourie, An algebra of observables for cross ratios, C. R. Math. Acad. Sci. Paris 348 (2010) 503 MR2645161
20 F Labourie, Lectures on representations of surface groups, Eur. Math. Soc. (2013) MR3155540
21 F Ledrappier, Structure au bord des variétés à courbure négative, Sémin. Théor. Spectr. Géom. 13 (1995) 97 MR1715960
22 F Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978) 1156 MR488516
23 P van Moerbeke, Algèbres 𝒲 et équations non-linéaires, from: "Séminaire Bourbaki, 1997/1998", Astérisque 252 (1998) 105 MR1685581
24 G A Niblo, Separability properties of free groups and surface groups, J. Pure Appl. Algebra 78 (1992) 77 MR1154898
25 J P Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. 131 (1990) 151 MR1038361
26 J P Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoamericana 8 (1992) 441 MR1202417
27 A Sambarino, Hyperconvex representations and exponential growth, Ergodic Theory Dynam. Systems 34 (2014) 986 MR3199802
28 A Sambarino, Quantitative properties of convex representations, Comment. Math. Helv. 89 (2014) 443 MR3229035
29 G Segal, The geometry of the KdV equation, Internat. J. Modern Phys. A 6 (1991) 2859 MR1117753
30 E Witten, Surprises with topological field theories, from: "Strings ’90 : proceedings of the 4th International Superstring Workshop" (editors R L Arnowitt, R Bryan, M J Duff, D V Nanopoulos, C N Pope, E Sezgin), World Scientific (1991) 50
31 S Wolpert, The Fenchel–Nielsen deformation, Ann. of Math. 115 (1982) 501 MR657237
32 S Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. 117 (1983) 207 MR690844