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Deforming convex projective manifolds
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We study a properly convex real projective manifold with (possibly empty) compact,
strictly convex boundary, and which consists of a compact part plus finitely many
convex ends. We extend a theorem of Koszul, which asserts that for a compact
manifold without boundary the holonomies of properly convex structures form
an open subset of the representation variety. We also give a relative version for
noncompact .G;X/ manifolds of the openness of their holonomies.

57N16; 57M50

Given a subset � � RPn, the frontier is Fr.�/ D cl.�/ n int.�/ and the boundary
is @� D � \ Fr.�/. A properly convex projective manifold is M D �=� , where
��RPn is a convex set with nonempty interior, and cl.�/ does not contain any RP1,
and � � PGL.nC1;R/ acts freely and properly discontinuously on �. If, in addition,
Fr.�/ contains no line segment then M and � are strictly convex. The boundary of
M is strictly convex if @� contains no line segment.

If M is a compact .G;X/ manifold then a sufficiently small deformation of the
holonomy gives another .G;X/–structure on M. Koszul [24; 25] proved a similar
result holds for closed, properly convex, projective manifolds. In particular, nearby
holonomies continue to be discrete and faithful representations of the fundamental
group.

Koszul’s theorem cannot be generalized to the case of noncompact manifolds without
some qualification — for example, a sequence of hyperbolic surfaces whose completions
have cone singularities can converge to a hyperbolic surface with a cusp. The holonomy
of a cone surface in general is neither discrete nor faithful. Therefore we must impose
conditions on the holonomy of each end.

If M is a geometrically finite hyperbolic manifold with a convex core that has compact
boundary, then every end of M is topologically a product, and is foliated by strictly
convex hypersurfaces. These hypersurfaces are either convex towards M, so that cutting
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along one gives a submanifold of M with convex boundary, and the holonomy of the
end contains only hyperbolics; or else convex away from M, in which case the end is
a cusp and the holonomy of the end contains only parabolics.

This paper studies properly convex manifolds whose ends are either convex towards
or away from M. An end that is convex towards M may be compactified by adding
a convex boundary. Generalized cusps are those that are convex away from M with
virtually nilpotent fundamental group. The holonomy of a generalized cusp may contain
both hyperbolic and parabolic elements.

Definition 0.1 A generalized cusp is a properly convex manifold C homeomorphic to
@C � Œ0;1/ with compact, strictly convex boundary and with �1C virtually nilpotent.

For instance, all ends of a finite-volume hyperbolic manifold are generalized cusps.
For an n–manifold M, possibly with boundary, define

Rep.�1M/D Hom.�1M;GL.nC 1;R//

and Repce.M/ to be the subset of Rep.�1M/ consisting of holonomies of properly
convex structures on M with @M strictly convex and such that each end is a generalized
cusp. A group � � GL.nC 1;R/ is a virtual flag group if it contains a subgroup of
finite index that is conjugate into the upper-triangular group. The set of virtual flag
groups is written VFG.

Theorem 0.2 Suppose N is a compact, connected n–manifold and V D
S
i Vi � @N

is the union of some of the boundary components of N. Let M DN nV . Assume �1Vi
is virtually nilpotent for each i . Let Bi Š Vi � Œ0; 1/ be the end of M corresponding
to Vi . Then Repce.M/ is an open subset of

VFG.M/ WD f� 2 Rep.�1M/ W �.�1Bi / 2 VFG for all ig:

A similar statement holds for orbifolds since a properly convex orbifold has a finite
cover which is a manifold, and the property of being properly convex is unchanged by
coverings. This theorem is a consequence of our main theorem, Theorem 6.29, that
a certain map is open. By Corollary 6.11, �.�1Bi / 2 VFG if and only if there is a
finite-index subgroup � < �.�1Bi / such that every eigenvalue of every element of �
is real.

There is a Margulis lemma for properly convex manifolds that says the local fundamental
group is virtually nilpotent; see Cooper, Long and Tillmann [13, 0.1], also Crampon
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and Marquis [14]. There is a thick-thin decomposition for strictly convex manifolds —
see [13, 0.2], also Crampon and Marquis [15] — but not for properly convex manifolds.
Each component of the thin part of a strictly convex manifold is a Margulis tube or
a cusp and has virtually nilpotent fundamental group consisting of parabolics. This
motivates the definition of generalized cusp above. There is a discussion of cusps in
properly convex manifolds in Section 5 of [13].

Here is some intuition for the proof of Theorem 0.2. Many of the ideas are already
present for surfaces. Suppose M is a projective compact surface without boundary.
There is a developing map devW �M ! RP2. If M is properly convex then this map
is injective and the image is a domain � � R2 bounded by a convex closed curve
C �R2. There is a compact polygonal fundamental domain D �� and the images
of D under the holonomy �W �1M ! � � PGL.3;R/ tessellate �. Small images
of D accumulate on C . Suppose �0 is a nearby homomorphism. Our aim is to show
there is a convex closed curve C 0 close to C that bounds a domain �0 that is preserved
by � 0 D �0.�1M/.

The convexity of C is a phenomenon that takes place at infinity with regard to �. A
priori, there is no reason to expect this phenomenon to be stable with respect to small
deformations. A finite generating set for �1M determines a word metric on �1M.
If g 2 �1M is not too far from the identity in the word metric then �0.g/ and �.g/
are close and send D to almost the same set. However, for large elements g , one
loses control, and there is no obvious reason why images of D should accumulate on
some convex curve C 0. Thus convexity of C D @� is a limiting feature of large group
elements in �1M, and this might be destroyed by arbitrarily small deformations �0. In
fact this is what happens with the example of surfaces with cone singularities discussed
above. Convexity is stable for closed surfaces for reasons that we now outline.

Let U �R3 be the half space x3 � 0 and P D @U the plane x3D 0. Suppose D�U
is a disc, bounded by the simple closed curve C D D \ P, and S D int.D/. If S
is convex down then C is convex and bounds a convex domain � � P, and S is a
graph over �. The condition that S is convex down is a condition over (finite) points
in � rather than a condition at infinity. One might imagine that S is the surface of a
mountain. If this surface is convex then the boundary of the base of the mountain is
also convex.

The tautological line bundle �M over M is an affine manifold. For a properly convex
projective structure on M, there is a section �.M/ of this bundle that is a surface
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in �M which is strictly convex in the sense that the Hessian is strictly positive. The
image of the universal cover of �.M/ under the developing map is a surface S �R3

that limits on the sphere at infinity. By viewing R3 � RP3, and choosing a suitable
new affine patch where the sphere at infinity becomes P, we can instead view S as a
surface in U as above, and then M D�=�.�1M/. If M is compact then �.M/ is
compact. A small deformation M 0 of M gives a nearby strictly convex surface �.M 0/
in �M 0, which develops to another convex surface S 0 in R3 and gives a convex domain
�0 � P. This is the intuition for Koszul’s theorem when M is closed.

Now suppose that M is a union of a compact manifold N and a (generalized) cusp C .
One first shows, for the deformed cusp C 0, that �C 0 contains a nearby strictly convex
surface �.C 0/. Since N is compact, �N 0 contains a nearby convex surface �.N 0/.
One now deforms and joins �.N 0/ and �.C 0/, maintaining convexity, to obtain a
strictly convex hypersurface in �M 0. This implies M 0 is properly convex.

Section 1 describes the .G;X/–extension theorem, Theorem 1.7. This generalizes a
well-known result for compact manifolds (the holonomies of .G;X/–structures form
an open subset of the representation variety) by providing a relative version. Section 2
recalls the definition and properties of the tautological bundle. Section 3 reviews
Hessian metrics and gives a characterization of properly convex manifolds in terms
of the existence of a certain kind of Hessian metric on the tautological line bundle.
Section 4 shows that various functions on properly convex projective manifolds are
uniformly bounded, including a proof of the folklore result that they admit Riemannian
metrics with all sectional curvatures bounded in terms of dimension.

The convex extension theorem, Theorem 5.8, is a version of Theorem 1.7 for properly
convex manifolds with strictly convex boundary. A consequence is Theorem 0.3 below.
Roughly this says that if you can convexly deform the ends of a properly convex
manifold then you can convexly deform the manifold. There is no assumption that the
fundamental group of an end is virtually nilpotent for this result.

Theorem 0.3 Suppose M D A [ B is a properly convex manifold with (possibly
empty) compact, strictly convex boundary, and A is a compact, connected submanifold
of M with @A D @M t @B and B Š @B � Œ0;1/ D B1 t � � � tBk , and each Bi is
connected and �1–injective in M.

Suppose �W .�1; 1/!Rep.�1M/ is continuous and �t WD�.t/ and �0 is the holonomy
of M. Let C denote the space of closed subsets of RPn with the Hausdorff topology.
Suppose for all 1� i � k and all t 2 .�1; 1/ that

Geometry & Topology, Volume 22 (2018)



Deforming convex projective manifolds 1353

(1) there is a properly convex set �i .t/�RPn that is preserved by �t .�1Bi /,

(2) Pi .t/D�i .t/=�t .�1Bi / is a properly convex manifold and @Pi .t/ is strictly
convex,

(3) there is a projective diffeomorphism from Pi .0/ to Bi ,

(4) Pi .t/ is diffeomorphic to Bi ,

(5) the two maps t 7! cl.�i .t// and t 7! cl.@�i .t// into C are continuous.

Then there is � > 0 such that for all t 2 .��; �/ there is a properly convex projec-
tive structure on M with holonomy �.t/ such that @M is strictly convex and Bi is
projectively diffeomorphic to Pi .t/.

If ��RPn, we write PGL.�/ for the subgroup of PGL.nC 1;R/ that preserves �.
Section 6 proves that generalized cusps contain homogeneous cusps; see Theorem 6.3:

Theorem 0.4 Suppose C D�=� is a generalized cusp. Then C contains a general-
ized cusp C 0 D�0=� such that PGL.�0/ acts transitively on @�0.

An algebraic argument (Theorem 6.18) uses that � is virtually nilpotent to show that if
C D�=� is a generalized cusp then � has a finite-index subgroup that is a lattice in
a connected Lie group T D T .�/ that is conjugate into the upper-triangular group.

Next, Proposition 6.24 shows that the T –orbit of some point p 2� is a strictly convex
hypersurface S D T �p . The convex hull of S is a domain �T that is preserved by all
of � , and we may shrink C to be �T =� , giving Theorem 0.4.

From Theorem 0.4 it follows that generalized cusps are stable (see Theorem 6.28):
if � is deformed to a nearby virtual flag group � 0, then T 0 D T .� 0/ is a nearby Lie
group, so S 0 D T .� 0/ �p is a nearby strictly convex hypersurface which gives a nearby
domain �T 0 and a nearby generalized cusp C 0 D�T 0=� 0.

The convex extension theorem and the stability of generalized cusps imply the main
theorem, Theorem 0.2. Ballas, Cooper and Leitner [3] classify generalized cusps, and
their properties are studied. This classification for 3–manifolds is given without proof
in Section 7.

A function is Hessian-convex if it is smooth and has positive definite Hessian. This
property is preserved by composition with diffeomorphisms that are close to affine.
Section 8 reviews various types of convexity and contains a theorem about approximat-
ing strictly convex functions on affine manifolds by Hessian-convex ones. As a result,
for our purposes strictly and Hessian convex are more or less equivalent. Section 9 is a
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short proof of Benzécri’s theorem. We have put these results at the end of the paper
with the intention of not breaking the narrative.

There is an entirely PL approach to Theorem 0.2 which, however, we do not develop
in this paper. It is based on using the convex hull of the orbit of one point instead of a
characteristic surface.

Theorem 0.2 does not always remain true if @M is convex but not strictly convex.
However, in some cases, the theorem can still be applied. For instance, a hyperbolic
manifold M with compact, totally geodesic boundary is a submanifold of a finite-
volume hyperbolic manifold with strictly convex smooth boundary obtained by fattening.
In particular, any small deformation in PGL.4;R/ of the holonomy in PO.3; 1/ of a
compact Fuchsian manifold is the holonomy of a strictly convex projective structure
on (surface) � Œ0; 1�.

The reader only interested in the proof of Theorem 0.2 when M is compact need
only read Section 1 up to Proposition 1.2, and then Sections 2–4, stopping before
Definition 4.2. Those interested only in the proof of Theorem 0.3 can omit Section 6.

Most of Sections 1-4 is not new, and there is considerable overlap in the first five
sections with the results and methods of Choi [8]. Marquis [29; 28] determined the
holonomies of properly convex surfaces with cusps. In [12], Cooper and Long give
a method of constructing fundamental domains for some strictly convex manifolds
with cusps. Using the main result of this paper, Ballas [2] found new properly convex
structures on the figure eight knot obtained by deforming the complete hyperbolic
structure. The type of geometry in a generalized cusp can change during a deformation.
For example a generalized cusp with diagonal holonomy can transition to one with
parabolic holonomy. This is related to the study of geometric transition; see Cooper,
Danciger and Wienhard [11].

In Section 5 of [13] there is a discussion of properly convex n–manifolds with parabolic
holonomy. Such a manifold is diffeomorphic to a product C �R and � D�1C is virtu-
ally nilpotent. The manifold C is compact if and only if the Hirsch rank of � is maximal,
namely n� 1. In [13], these cusps are called maximal, and it is shown in this case that
� is conjugate into PO.n; 1/. In general, parabolics are not conjugate into PO.n; 1/.
In this paper, frequent use is made of the fact that the compactness of @C is equivalent
to Hn�1.C IZ2/ Š Z2 . For consistency with [13] one might call such generalized
cusps maximal. However, to keep this paper from becoming even longer, these are the
only type of generalized cusp we consider, therefore we do not use the term maximal.
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1 .G; X/ structures and extending deformations

The goal of this section is a relative version of the well-known fact (Proposition 1.2)
that for compact manifolds the set of holonomies of .G;X/–structures is an open
subset of the representation variety. The extension theorem, Theorem 1.7, implies that
if B is a codimension-0 submanifold of a connected manifold M with M nB compact
and connected, then given a .G;X/–structure on M with holonomy � , together with
a nearby representation � , and given a nearby .G;X/–structure on each component
of B with holonomy the restriction of � , there is a nearby .G;X/–structure on M
with holonomy � that extends the structure on B .

A geometry is a pair .G;X/ where G is a Lie group which acts transitively and real-
analytically on a manifold X. A .G;X/–structure on a manifold M (possibly with
boundary) is a maximal atlas of charts which takes values in X such that transitions
maps are locally the restriction of elements of G . A map between .G;X/ manifolds
is a .G;X/ map if locally it is conjugate via .G;X/–charts to an element of G .

Let � W �M !M be (a fixed choice for) the universal cover of M. We regard �1M
as being defined as the group of covering transformations of this covering. A local
diffeomorphism f W �M !X determines a .G;X/–structure on �M. If all the covering
transformations are .G;X/–maps then there is a unique .G;X/–structure on M such
that the covering space projection is a .G;X/–map. In this case f is called a developing
map for this structure and determines a homomorphism hol D Hol.f /W �1M ! G

called holonomy.

For smooth manifolds Mm and N n, the set of smooth maps C1w .M;N / has the
weak topology; see Hirsch [21, page 35]. The space of diffeomorphisms Diff.M/ is a
subspace of C1w .M;M/. If N DR then C1w .M/ WD C1w .M;R/.

The set of all developing maps is denoted by Dev.M; .G;X// or just Dev.M/. The
.G;X/–structure on M given by dev2Dev.M/ is written .M; dev/. There is a natural
map of Dev.M/ into C1w .int �M;X/ given by restricting the developing map to int �M.
This map is injective because int �M is dense in �M.

Definition 1.1 The geometric topology on Dev.M/ is the subspace topology from
C1w .int �M;X/.

Thus two developing maps for M are close if they are close on a large compact set in �M
that is disjoint from @ �M. The following is due to Thurston [37]; see also Goldman [17]
and Choi [7]. The topology on Hom.�1M;G/ is the compact–open topology.
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Proposition 1.2 (holonomy is open) Suppose M is a compact, connected smooth
manifold possibly with boundary. Then HolW Dev.M; .G;X//! Hom.�1M;G/ is
continuous and open.

Given devM 2Dev.M/ and devN 2Dev.N /, a smooth map f W M !N is close to a
.G;X/ map if it is covered by F W �M ! zN and there is g 2G such that g ıdevN ıF
is close to devM in C1w . �M;X/. This means there is a large compact set K � int �M
and some g 2 G such that for each x 2 K there is an open neighborhood U � �M
with V D devM .U \K/ and the map g ı devN ıF ı .devM jU\K/�1 is close to the
inclusion map V ,!X in C1w .V;X/. This notion of close depends on devM but not
on the choice of developing map devN for a given .G;X/–structure on N.

There is a nice description of what it means for two developing maps in Dev.M/

to be close when one of them is injective. Suppose dev 2 Dev.M/ is injective and
� D dev. �M/ and � D Hol.dev/ and � D �.�1M/. Then N D �=� is a .G;X/
manifold that is .G;X/–diffeomorphic to M. We choose the universal cover zN D�;
then �1N D � by our definition as the group of covering transformations. There is a
homeomorphism between spaces of developing maps Dev.M/! Dev.N /.

Definition 1.3 Replacing Dev.M/ by Dev.N / is called choosing dev as the basepoint
for the space of developing maps.

The developing map dev� 2 Dev.N / for N is the inclusion map i W zN ,! X and
Hol.dev�/W � ,!G is also the inclusion map. If N has no boundary then Dev.N / is
a subspace of C1w . zN;X/ so dev0 2 Dev.N / is close to dev� if dev0 is close to i in
C1w .

zN;X/.

The idea for the extension theorem is the following. Suppose .M D A1[A2; dev/ is
a .G;X/ manifold with holonomy � , and C D A1\A2 Š @Ai � Œ0; 1� is a connected
collar neighborhood of @Ai and the inclusion map C ,!M is �1–injective. Suppose
�0W �1M!G is a nearby homomorphism and .Ai ; dev0i / is a nearby .G;X/–structure
to .Ai ; devjAi / with holonomy �0j�1Ai . If C is compact we show there is a nearby
.G;X/–structure on M obtained by gluing .A1; dev01/ to .A2; dev02/ by a .G;X/–
diffeomorphism. This is done in Lemma 1.4, which uses analytic continuation to map
the submanifold C � .A1; dev01/ into .A2; dev02/ by a .G;X/–diffeomorphism.

Lemma 1.4 (lifting developing maps) In this statement all manifolds and maps
are .G;X/. Suppose N and P are connected manifolds and � W �1N ! �1P is a
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homomorphism such that holN D holP ı � . Suppose �P W zP ! P and �N W zN !N

are universal covers and i W Q ,! zN is the inclusion map of a path-connected set Q
with �N .Q/ D N. Suppose devN ı i W Q! X lifts to a map j W Q! zP such that
devP ıj D devN ı i . Then there is kW N !P covered by zkW zN ! zP that extends j :

zP

devP

��

Q

j

88

i
// zN

9zk

@@

devN
// X

Proof Because the covering translates of Q cover zN and the manifolds N and P
have (via � ) the same holonomy, j can be extended by analytic continuation to an
equivariant .G;X/–map zkW zN ! zP. Equivariance implies zk covers a .G;X/–map
kW N ! P.

For a closed manifold M, two nearby developing maps with the same holonomy differ
by composition with a diffeomorphism of M close to the identity. If M has boundary
then the boundary can move, so this result only holds outside a small neighborhood
of the boundary; see the discussion in I.1.5 and I.1.6 leading to the proof of I.1.7.1 in
Canary, Epstein and Green [6].

If P is a smooth manifold then Diff0. zP ;P / � Diff. zP / is defined to be the identity
component of the subgroup of diffeomorphisms that cover an element of Diff.P /. The
next result says that if two developing maps are close, and have the same holonomy
then, after changing one by a small isotopy, the developing maps are equal on a compact
submanifold in the interior.

Corollary 1.5 Suppose P is a smooth manifold. Let � 2 Hom.�1P;G/ be the
holonomy of dev 2 Dev.P; .G;X// and Dev�.P / � Dev.P / be the subspace of
developing maps with holonomy � . Then the map Diff0. zP ;P /! Dev�.P / given by
f 7! dev ıf is an open map.

It follows that, if N is a compact codimension-0 manifold in the interior of P,
and dev0 2 Dev�.P / is close enough to dev, then there is k 2 Diff.P / covered
by zk 2 Diff0. zP ;P / such that devD dev0 ı zk on N, and k is isotopic to the identity
by a small isotopy supported in a small neighborhood of N.

Proof Let �P W zP ! P and �N W zN ! N be universal covers. Let Q � zN be a
compact, connected manifold such that �N .Q/D N. Since devjQW Q! X factors
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through the inclusion j W Q ,! zP and .�p ı j /.Q/� int.P /, it follows that if dev0 is
close enough to dev then dev0jQW Q!X has a nearby lift j 0W Q! zP. By Lemma 1.4,
there is a .G;X/–map kW .N; dev0jN /! .P; devjN / that lifts to a map that extends j 0.
If dev0 is sufficiently close to dev, then k is close to the inclusion, and the result now
follows from the fact that a diffeomorphism (namely k ) close to an inclusion is ambient
isotopic to the inclusion by a small ambient isotopy; see Lima [27].

Given a connected �1–injective submanifold B �M, we fix a choice of some compo-
nent zB � �M of the preimage B in the universal cover of M and identify �1B with
those covering transformations of �M that preserve zB . If devM is a developing map
for a .G;X/–structure on M, the restriction to B is devM jB WD devM j zB .

Suppose M is a smooth manifold with (possibly empty) boundary and B � M is
a codimension-0 submanifold that is a closed subset such that A D cl.M n B/ is a
compact manifold. Suppose BDB1t � � �tBk has k <1 connected components and
each component is �1–injective. Define the relative holonomy space

RelHol.M;B; .G;X//� Hom.�1M;G/�
kY
iD1

Dev.Bi ; .G;X//

to be the subset of all .�; dev1; : : : ; devk/ such that Hol.devi /D �j�1Bi . This space
has the subspace topology of the product topology.

Definition 1.6 A developing map for M restricts to give developing maps on each
component of B and this defines the relative holonomy map E W Dev.M; .G;X//!
RelHol.M;B; .G;X//,

E.devM /D .Hol.devM /; devM jB1 ; : : : ; devM jBk /:

This map depends on a fixed choice of one component zBi � �M for each i . In the
special case that B is empty, E DHol . We will apply this when B consists of the ends
of M, which is why the symbol E is used. However, the result is of interest even when
everything is compact.

Theorem 1.7 (extension theorem) Suppose M is a smooth manifold with (possibly
empty) boundary and B �M is a �1–injective codimension-0 submanifold that is
a closed subset such that A D cl.M n B/ is a compact, connected manifold. Then
E W Dev.M; .G;X//!RelHol.M;B; .G;X// is continuous and open.
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Proof Continuity is easy. We prove openness. For simplicity we will assume that
B D B is connected; the multiend case merely requires more notation. Suppose
E.dev�;M /D .�; dev�;M jB/ and .�; dev�;B/ are nearby in RelHol.M;B; .G;X//.
Let E � B be a compact collar of @B and C D A[E . By Proposition 1.2, there
is dev�;C W zC ! X close to dev�;M jC with holonomy (the restriction of) � . Using
Corollary 1.5 to change dev�;E by a small isotopy, we may assume dev�;C and dev�;B
are equal on a smaller collar E� �E . This gives a developing map dev�;M W �M !X

close to dev�;M that is given by dev�;C on zA and dev�;B on zB .

2 Tautological bundles

There is a bundle �M !M over a real projective manifold M called the tautological
line bundle. In the next section we show that M is properly convex if and only if �M
admits a certain kind of metric.

Radiant affine geometry is L D .GL.n C 1;R/;RnC1 n 0/. A manifold with this
structure is called a radiant affine manifold. It ought to be called a linear manifold,
since transition functions are linear maps.

Projective geometry over a real vector space V is P D .PGL.V /;P .V //, where
P .V /D .V n0/=R�. Positive projective space is PC.V /D .V n0/=RC and the action
of GL.V / on V induces an effective action of PCGL.V /D GL.V /=RC on PC.V /

which gives positive projective geometry PC D .PCGL.V /;PC.V //. If X � V , we
write P .X/ for its image in P .V / and similarly PC.X/� PC.V /.

We identify PC.RnC1/ with the unit sphere Sn � RnC1, and the radial projection
�� W R

nC1 n 0! Sn is ��.x/ D x=kxk. An action of A 2 SL˙.nC 1;R/ on Sn is
given by A.��x/D ��.Ax/. Clearly PC Š S WD .SL˙.nC 1;R/;Sn/.

For each of the geometries G above there is a space of developing maps Dev.M;G/
with the geometric topology. By lifting developing maps one obtains:

Proposition 2.1 The natural map Dev.M;S/! Dev.M;P / is two-to-one.

Thus every projective structure on M lifts to a positive projective structure. If M is
a real projective n–manifold, then the holonomy �W �1M ! PGL.nC 1;R/ lifts to
z�W �1M ! SL˙.nC 1;R/ and devW �M !RPn lifts to edevW �M ! Sn.

We will pass back and forth between projective geometry and positive projective
geometry without mention. The tautological bundle over Sn is �� W RnC1 n 0! Sn.
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The total space is a radiant affine manifold. There is an action of .R;C/ on the total
space called the radial flow given by ˆt .x/D exp.�t /x . This bundle is a principal
.R;C/–bundle. All this structure is preserved by the action of GL.n C 1;R/ on
RnC1 n 0 covering the action of SL˙.nC 1;R/ on Sn.

Suppose M is a projective n–manifold defined by a developing map devM W �M ! Sn

with holonomy �W �1M ! SL˙.nC 1;R/ and with universal cover �M W �M !M.
Then pullback gives a line bundle �� W � �M ! �M, where

� �M D f. zm; x/ 2 �M � .RnC1 n 0/ W dev. zm/D ��.x/g; ��. zm; x/D zm:

Recall that we defined �1M as the group of covering transformations of �M. There is
an action of � 2 �1M on � �M given by � � . zm; x/D .�. zm/; .�.�//.x//. The quotient
of � �M by �1M is called the tautological bundle �M. There is a natural bundle map
�M W �M !M given by �M Œ zm; x� D �M . zm/. There is also a natural radiant affine
manifold structure on �M with developing map dev� W � �M ! RnC1 n 0 given by
dev�. zm; x/D x , and with holonomy � ı .�M /� .

There is a radial flow on �M given by ˆt Œm; x� D Œm; exp.�t / � x�, so �M is a
principal .R;C/ bundle over M. Orbits are called flow-lines. The tautological circle
bundle is �1M D �M=ˆ1 . It is sometimes called an affine suspension. Observe that
the developing maps of �M and �1M are the same.

Definition 2.2 We make use of the following covering space trick. If M is a compact
projective manifold (possibly with boundary) then �1M is a compact affine manifold.
Since �1.�1M/D �1M ˚Z, small deformations of the holonomy of M give small
deformations of the holonomy of �1M. The latter is compact, so Proposition 1.2 implies
there is a nearby affine structure on �1M with the deformed holonomy, and hence also
a nearby affine structure on the noncompact manifold �M.

Definition 2.3 A flow function is a function cW �M ! R that is flow equivariant,
which means that c.ˆt .p//D t C c.p/ for all p and t .

A flow function determines a section � W M ! �M of the bundle �M W �M ! M

defined by c.�.x// D 0. Conversely, a section � determines a flow function c via
c.x/D�t if ˆt .x/D �.�x/. So the negative of the flow function is the amount of
time it takes a point to flow onto this section.

We will mostly be concerned with the situation where ��RPn is properly convex
and devM W �M ! � is injective. In this case dev� is a diffeomorphism onto the
cone C� � RnC1 n 0 defined in Section 4. This identifies �M with C�=� , where
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� D hol.�1M/. Moreover, devM identifies �M with a subset of Sn. Using these
identifications, �M W �M !M is covered by �� .

3 Hessian metrics and convexity

The ideas in this section go back to Koszul [24; 25], and we have followed the exposition
in Shima and Yagi [34]. However our notation and terminology are somewhat different.

Suppose M is a simply connected affine manifold and devW M !Rn is some develop-
ing map. Given a; b 2M, a segment in M from a to b is a map 
 W Œu; v�!M such
that 
.u/D a and 
.v/D b and dev ı 
 is affine. We often denote such a segment
by Œa; b�. It is a unit segment if Œu; v� is the unit interval I WD Œ0; 1�. A ray in M is
a nonconstant affine map 
 W Œ0; s/!M with s 2 .0;1� which does not extend to a
segment. A unit triangle in M is a map � W �!M such that dev ı � is affine, where
��R2 is the triangle with vertices 0, e1 , e2 . The sides of a triangle are segments.

A C 2 function cW M !R is Hessian convex if, for every (nondegenerate) segment

 W Œ�1; 1�!M, the function F D cı
 satisfies F 00>0. Then c defines a Riemannian
metric on M via k
 0.0/k2 D F 00.0/ called a Hessian metric. See Shima [33] for a
discussion.

An affine manifold M has convex boundary if, for each p 2 @M, there is an affine
coordinate chart .U; �/ with p 2 U and a closed half-space H � Rn such that
�.U /�H and �.p/ 2 @H.

Theorem 3.1 Suppose M is a simply connected affine n–manifold with convex
boundary and M has a Hessian metric that makes M into a complete metric space.
Then devW M !Rn is an affine isomorphism onto a convex subset of Rn.

Proof It suffices to show that for every pair of segments Œp; a� and Œp; b� in M there
is a segment Œa; b� in M. This is because every pair of points in M can be connected
by a polygonal path composed of finitely many segments. One may replace a pair of
adjacent segments in this path by one segment. It follows that a and b are contained in
a single segment. Since devW M!Rn sends segments to segments, if dev.a/D dev.b/
then the segment in M from a to b maps to a segment in Rn with both endpoints the
same. Hence this segment is a single point, so aD b , and dev is injective. Since every
pair of points in M are contained in a segment, the same is true of dev.M/, therefore
dev.M/ is convex. Thus dev is an affine isomorphism onto a convex set.
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Given unit segments ˛W I ! Œp; a� and ˇW I ! Œp; b�, let I � I be the set of t 2 I
such there is a unit triangle � W �!M with vertices p D �.0/ and ˛.t/D �.e1/ and
ˇ.t/D �.e2/. Then I is connected and contains 0. It suffices to show I D I, since
then 
.t/D �.te1C .1� t /e2/ is a segment containing a and b .

Since @M is convex, it easily follows from the standard argument about sets with
convex boundary that I is open. To show I is closed we may assume I D Œ0; 1/ by
reparametrizing. After this reparametrization, � is defined on the interior of � and
also on the two sides given by ˛ and ˇ since a; b 2M. However, � might not be
defined on part of the side connecting e1 to e2 .

The Hessian metric is given by some function cW M !R. Given any segment 
 in M,
define `.
/ to be its length. If 
 is a unit segment and F D c ı 
 , then

`.
/D

Z 1

0

p
F 00.t/ dt:

By the Cauchy–Schwarz inequality for L2,

`.
/�

�Z 1

0

F 00.t/ dt

�1=2�Z 1

0

dt

�1=2
�
p
jF 0.1/jC jF 0.0/j:

For s 2 Œ0; 1/ there is a unit segment 
s given by 
s.t/D �
�
s.te1C .1� t /e2/

�
with

endpoints ˛.s/ and ˇ.s/. By the triangle inequality,

d.p; 
s.t//� d.p; 
s.0//C d.
s.0/; 
s.t//� `.˛/C `.
s/:

The function G.s; t/ D �
�
s.te1C .1� t /e2/

�
is defined and smooth for all .s; t/ in

the domain Œ0; 1/� Œ0; 1�[ f1g � f0; 1g. By compactness, there is K > 0 such that
j@G=@t j � K for all s 2 Œ0; 1� and t 2 f0; 1g. It follows that for all s 2 Œ0; 1/ and
t 2 Œ0; 1� we have

d.p; 
s.t//� `.˛/C
p
2K DWR:

Since the metric on M is complete, the ball P �M with center p and radius R is
compact and contains all the segments 
s with s 2 Œ0; 1/. It follows that 
s converges
to a segment 
1 � P as s! 1, so 1 2 I.

Definition 3.2 If M is a projective n–manifold a convexity function for M is a
Hessian-convex flow function cW �M !R. It is complete if the Hessian metric given
by c is complete.
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The flow-equivariance of c implies the radial flow acts by isometries of the Hessian
metric on �M given by c . The 1–form dc is preserved by the flow and therefore is
the pullback of a 1–form ˛ on �1M. Koszul works with ˛ but we work with c .

The Hilbert metric on a properly convex subset ��RPn is a Finsler metric given by the
Hilbert–Finsler norm on Tx�; see Papadopoulos and Troyanov [31] and Marquis [30].
For the definition of Hessian-convex hypersurface see the start of Section 8. The next
result is that the flow function c is Hessian-convex if and only if the level set c�1.0/
is a Hessian-convex hypersurface that is convex in the backward direction of the flow,
ie c�1.�1; 0� is convex.

Lemma 3.3 Suppose M is properly convex and N D �M and k � k is the Hilbert–
Finsler norm on TxN. Suppose cW N !R is a flow function and S D c�1.0/. Then at
x 2S there is a splitting TxN DV ˚E which is orthogonal with respect to Q WDD2xc ,
where V D ker dxc � TxN is the tangent hyperplane to the hypersurface S and
E D hei, where e Dˆ00.x/ is a tangent vector to the flow.

Moreover, Q.e; e/ D kek2 D 1. Thus, if � 2 Œ0; 1� then Q � �k � k2 if and only if
QjV � �

�
k � k

ˇ̌
V

�2.
In particular, c is Hessian-convex if and only if S is a Hessian-convex hypersurface
that is convex in the backward direction of the radial flow.

Proof This is a local question so it suffices to assume �M is a properly convex cone
in RnC1n0, and S is a hypersurface, and the radial flow is ˆt .x/D exp.�t / �x . Since
c is a flow function, c.ˆt .x//D c.x/C t . This implies c.s �x/D c.x/� log s . From
this it follows that D2xc.e; v/D 0 for all v 2 V , which proves the Q–orthogonality of
the direct sum.

The Hilbert–Finsler norm on .0;1/ is ds=s . The radial flow on .0;1/ is ˆt .s/D
exp.�t /s , so e Dˆ00.s/D s � @=@s and kek D 1. Moreover,

Q.e; e/D s2Q
�
@

@s
;
@

@s

�
D s2

d2.� log s/
ds2

D 1:

Observe that QjV is positive definite if and only if S is Hessian-convex in the backward
direction of the flow.

Theorem 3.4 Suppose M is a projective manifold with (possibly empty) convex
boundary and cW �M ! R is a complete convexity function. Then M is properly
convex.
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Proof By Theorem 3.1, devW � �M !RnC1 n 0 is injective and the image is a convex
cone C�RnC1 . It suffices to show that � WD��.C/ is properly convex. Let � W � �M!
�M be the universal cover and zc D c ı� . The function f D zc ı dev�1W C! R is a
complete convexity function: it is strictly convex, and the hypersurfaces St D f �1.t/
are connected, and strictly convex, and foliate C . The radial flow on � �M is conjugate
to the radial flow ˆt .x/D exp.�t / �x on RnC1 , so ˆs.St /D StCs . Define S WD S0 .

H
K

q
P

1

ǫ

Q
S

τ−1(Q)

0

Figure 1: Flowing S backward

Let q be a point in the interior of S. We can choose coordinates in RnC1 so that S is
tangent at q D .1; 0; : : : ; 0/D e1 to the hyperplane P given by x1 D 1 and S lies on
the opposite side of P to 0.

The sublevel set W D f �1.�1; 0� D
S
t�0ˆt .S/ � C is obtained by flowing S

backward. Let H be the hyperplane x1 D 1C � . Refer to Figure 1. We do not know
that S is properly embedded in RnC1 . However, if � > 0 is small enough, we can
work in a chart for a small neighborhood of dev�1.q/ in � �M and see that KDH \W
is a compact convex set and @K DH \S.

Let Q be the convex cone consisting of the set of rays starting at q and intersecting K .
Since q2@W DS and W is convex it follows that Q contains the subset of W above H.
Unit vertical translation upwards � W RnC1!RnC1 is given by �.x/D xC e1 . Note
that �.Q/�Q . Since we can assume � < 1 it follows that �.S/ is above H, therefore
Q contains �.S/. Hence ��1.Q/ contains S. Since ��1.Q/ is the cone from 0

of ��1.K/, it is preserved by ˆ, so it contains the entire orbit ˆ �S D C . It follows that
�D ��.C/�RPn is contained in ��.��1.K//. Since ��1.K/ is a compact convex
set in xn D � , it follows that � is properly convex.

4 The characteristic convexity function

In this section, V DRnC1 and �� S.V /D Sn is an open properly convex set. The
open convex cone C� � V consists of all t � v with v 2 � and t > 0. The dual
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cone C�� � V � is the set of all � 2 V � with �.x/ > 0 for all x 2 C�. The dual
domain is �� D P .C��/� P .V �/. The characteristic function �D ��W C�!RC

of Koecher [23] and Vinberg [38] is defined by

�.x/D

Z
C��

e� .x/ d ;

where d is a fixed choice of Euclidean volume form on V �. This function is real
analytic and nonnegative, and �.tx/D t�.nC1/�.x/ for t > 0. More generally, if A is
in the subgroup GL.C�/� GL.V / that preserves C�, then �.Ax/D .detA/�1�.x/.
The level sets of �, called characteristic hypersurfaces, are smooth, convex, and meet
each ray in C� once transversely. The characteristic section is the map ��W �! C�
given by

��.x/D x � .�.x//
1=.nC1/:

It has image the characteristic hypersurface S� D ��1.1/. The radial flow ˆt .x/D

e�t � x on V preserves C� and there is a flow function on C� given by

c D c� D .nC 1/
�1 log�:

The Hessian D2c is a positive definite quadratic form at each point of C� and gives a
complete metric on C�. Thus c�W C�!R is a complete convexity function called
the characteristic convexity function. A reference for the above is Goldman [18].

If � � SL˙.C�/ is the holonomy of a properly convex manifold M D �=� with
developing map dev, then �M is identified with C�=� . Since c� is preserved by � ,
it covers a map cdev D cM W �M !R. This is a convexity function for M called the
characteristic convexity function for M.

Definition 4.1 The subspace Devc.M/� Devc.M;PC/ � Dev.M;PC/ consists of
the developing maps of properly convex structures for which @M is strictly convex.

Proof of Theorem 0.2 when M is closed Suppose M is properly convex with
holonomy � and cM W �M ! R is a characteristic convexity function. If �0 is close
to � then, by Proposition 1.2, there is a radiant affine manifold N1 with holonomy �0

and a diffeomorphism f W �1M ! N1 that is close to an affine map. Taking infinite
cyclic covers gives a map F W �M ! N that is close to affine. The hypersurface
S D c�1.0/� �M maps to a hypersurface in N. Since S is compact, Hessian-convex
and transverse to the radial flow, if F is close enough in C 2.�M;N / to affine, then
F.S/�N is Hessian-convex, and transverse to the radial flow ˆN on N. This section
of the radial flow defines a convexity function on N by Lemma 3.3. This convexity
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function is complete because N1 is compact and every Riemannian metric on a compact
manifold is complete. It follows from Theorem 3.4 that N=ˆN is properly convex.

From here until Definition 4.2 we allow � to have boundary @� that is an open subset
of Fr.�/. Let C be the set of closed subsets of Sn equipped with the Hausdorff
topology. Let P be the set of properly convex n–manifolds � � Sn with (possibly
empty) strictly convex boundary. There is an injective map �W P ! C � C defined
by f .�/D .cl.�/; cl.@�//. The Hausdorff boundary topology on P is the subspace
topology given by this embedding. Thus a neighborhood of � consists of all �0 2 P
close to � such that @�0 is also close to @�. This topology is given by a metric.

Definition 4.2 The strong geometric topology on Devc.M/ is the smallest refinement
of the geometric topology such that the map Devc.M/! P given by dev 7! Im.dev/
is continuous.

If M is closed, the strong geometric topology equals the geometric topology because
fixed points of elements of the holonomy are dense in @ Im.dev/. In general, two
developing maps are close in this topology if they are close in the C1 topology on a
large compact set in the universal cover of the interior and, in addition, their images
are close in the above sense. This can be expressed more simply using basepoints in
the space of developing maps as in Definition 1.3:

Suppose dev� 2Devc.M/ and �DHol.dev�/ and �D�.�1M/�SL˙.nC1;R/ and
�� D Im.dev�/� Sn. Choosing dev� as a basepoint means to replace M by ��=� .
Thus dev� D i W �M ,! Sn is now the inclusion. Then dev� 2 Devc.M/ is close to
dev� in the strong geometric topology if the restrictions of dev� and i are close in
C1w .int. �M/;Sn/ and �� D Im.dev� / is close to �� in P .

There is a similar notion for the radiant affine manifolds. The radiant affine manifold
N D C��=� is L–equivalent to �M� . The developing map for N is the inclu-
sion i D dev��W C�� ,! RnC1 and dev�� 2 Dev.N;L/. A nearby developing map
dev�� 2 Dev.N;L/ in the strong geometric topology is one such that the restrictions of
dev�� and i are close in C1w .int.C��/;RnC1/ and in addition C�� is close to C��
in P .

Let P 0 �P be the subspace of open properly convex sets. For K � V define P 0.K/D
f� 2 P 0 WK � C�g. The map P 0! P 0 given by � 7!�� is continuous.

Lemma 4.3 If K � RnC1n0 is compact, then the function x�W P 0.K/ ! C1.K/

defined by x�.�/D ��jK is continuous.
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Proof Since both topologies are metrizable, it suffices to show that the image of
a convergent sequence converges. Suppose the sequence �k 2 P 0.K/ converges to
�1 2P 0.K/, and denote the respective characteristic functions by �k and �1 . Define
the smooth function hW V �V �!R by h.x; �/D exp.��x/. Then for x 2K , if @˛

is an nth order mixed partial derivative on V , then @˛h.x; �/D p.�/h.x; �/, where
p.�/ is a monomial of degree n in the coordinates of � . Let U D��14�

�
k

be the
symmetric difference; then

j@˛�1.x/� @
˛�k.x/j �

Z
CU
jp.�/h.x; �/j d�:

Since K� C.�k\�1/, it follows that �.x/>0 for all x 2K and � 2 CU. Now p.�/

is polynomial in � and h.x; �/ is exponential in � , so p.�/h.x; �/! 0 exponentially
fast as �!1 in CU. It follows that if U is small enough, then j@˛�1� @˛�kj< �
on K . See Faraut and Korányi [16, I.3.1] for more details.

It follows that nearby properly convex manifolds (without boundary) have nearby
characteristic convexity functions:

Lemma 4.4 Suppose @M D∅. The map Devc.M/!C1w .�M/ given by dev 7! cdev

is continuous. (Here, the strong geometric topology is used on Devc.M/.)

Proof If dev; dev0 2 Devc.M/ are close in the strong geometric topology then �0 D
Im.dev0/ is close to �D Im.dev/ in P . By Lemma 4.3, the restrictions to K of ��
and ��0 are close. Composing with log shows that c� and c�0 are close on K . Thus
the characteristic convexity functions cdev and cdev0 are close.

We wish to give universal bounds on the derivatives of certain real-valued functions
defined on radiant affine manifolds of the form N D C�=� . If M is a smooth
manifold and f 2 C1.M/ is a smooth function, then the kth derivative Dkfx at
x 2M is a symmetric k–linear map on the vector space V D TxM (an element of
Hom.Symk.V /;R/). Given a norm on V we get an operator norm kDkfxk defined
as the infimum of K for which jDkfx.v1; : : : ; vk/j � Kkv1k � � � kvkk. In our case,
M D C� is properly convex, and hence a Finsler manifold using the Hilbert metric
on C�. This gives a norm k � kC� called the Hilbert–Finsler norm on the tangent
space to C�. There is a corresponding operator norm. The group GL.C�/ acts by
isometries of this norm, which therefore pushes down to a norm on the tangent space
of N D C�=� .
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Given a point x 2 C�, there is a Benzécri chart � for C� (see Theorem 9.1) centered
on x . This chart determines a Euclidean metric dE on C�, and there is also the Hilbert
metric dH D dC� . There is a constant K > 0 depending only on dimension such that
in the ball of dH –radius 1 around x we have K�1 � dE � dH �K � dE .

It follows that universal bounds on operator norms using the Hilbert metric give bounds
in the Euclidean metric for Benzécri coordinates, and vice-versa. Thus we may regard
these universal bounds as bounds on ordinary partial derivatives of functions defined
in a small neighborhood of the origin in Rn by means of Benzécri coordinates. We
now use Benzécri’s compactness theorem (Corollary 9.2) with Lemma 4.3 to provide
uniform bounds on various properties of characteristic functions.

The restriction of the Hessian metric D2c to the characteristic hypersurface S D S�
is a Riemannian metric that is preserved by SL˙.C�/. If M D �=� is a properly
convex manifold, then radial projection gives a natural identification �M � S and this
puts a Riemannian metric on M called the induced metric. The following seems to be
folklore:

Corollary 4.5 (bounded curvature) For each dimension n > 0 there is kn > 0 such
that if M is a properly convex projective manifold of dimension n, then all sectional
curvatures � of the induced metric on M satisfy j�j < kn . Moreover, the induced
metric is kn–bilipschitz equivalent to the Hilbert metric, and is therefore complete.

Proof If the first assertion is false, there is a sequence MkD�k=�k , a point xk 2Mk

and a sectional curvature � > k at xk . By Benzécri compactness (Corollary 9.2), we
may assume these domains are in Benzécri position (Theorem 9.1) with xk D 0 and
�k!�1 . The sectional curvature is given by a function that is a formula involving
various partial derivatives of the flow function c . By Lemma 4.3, these functions
converge to some (finite) sectional curvature for M1 , a contradiction. This also proves
the bilipschitz result.

Lemma 4.6 (uniform Hessian-convexity) For each dimension n there is �D�.n/>0
with the following property: Suppose � � RPn is open and properly convex and
cW C�!R is the characteristic convexity function. Then D2c � �k � k2C� everywhere.

Proof Since c is preserved by each element of GL.C�/ up to adding a constant, it
suffices to show there is � such that the result holds at the center of every Benzécri
domain �D Sn\ C�. The set of all such domains is compact (Corollary 9.2) and, by
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Lemma 4.3, the characteristic function varies smoothly with the Benzécri domain, so
the result follows.

If f W .��; �/! C� is an arc parametrized by arc length then .c ı f /00 is a second
directional derivative. The conclusion can be rephrased as .c ı f /00 � � for every
second directional derivative. We will abuse notation and write this as c00 � � .

Suppose B is a properly convex submanifold of a properly convex manifold M,
both without boundary; then �B � �M. The next result says that far inside B the
characteristic convexity functions for B and M are almost equal.

Lemma 4.7 (convexity functions on submanifolds) Given � > 0 and a dimension n,
there is RDR.�; n/ > 0 with the following property: Suppose B �M are properly
convex n–manifolds with characteristic convexity functions cB and cM . Let U � B
be the subset of all x with dM .x;M nB/ > R and define g D cM � cB W �U ! R.
Then kDkgk< � for 0� k � 2.

Proof Let �U ��B ��M � Sn be images of the developing maps of U �B �M,
respectively. Since g is constant along rays from the origin in C�U , it suffices to
show the bounds hold for x 2�U WD Sn\ C�U . Choose a Benzécri chart for C�M
centered on x . In this chart the Euclidean distance between @.C�M / and @.C�B/
is bounded above by a function f .R/ independent of �M and �B and f .R/! 0

as R!1. The result now follows using Corollary 9.2 and Lemma 4.3.

5 Deforming properly convex manifolds rel ends

In this section we prove a version of Theorem 1.7 for convex manifolds. We show that
the only obstruction to deforming a properly convex manifold is whether the ends have
such a deformation. Suppose M� is a properly convex manifold with holonomy � . The
main result of this section, Theorem 5.8, is that for representations � sufficiently close
to � , if the ends of M� can be deformed to properly convex manifolds with holonomy
the restriction of � , then these deformations can be extended to all of M� to give a
properly convex structure M� .

Definition 5.1 A Finsler manifold M D�=� has controlled ends if there is a smooth
proper function f W M ! Œ0;1/, called an exhaustion function, and K > 0 such that
kDf k; kD2f k<K in the Finsler norm.
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For example, every finite-volume complete hyperbolic manifold has controlled ends.
If C Š @C � Œ0;1/ is a horocusp in a hyperbolic manifold M then the horofunction
f .x/ D dM .x; @C / is an exhaustion function. A similar construction works on a
generalized cusp (Lemma 6.30). There are complete Riemannian manifolds with no
exhaustion function. However:

Proposition 5.2 Every properly convex manifold has controlled ends.

Proof By Corollary 4.5, every properly convex manifold admits a complete Riemann-
ian metric that is bilipschitz equivalent to the Hilbert metric and which has bounded
sectional curvature. It is a result of Schoen and Yau [32] (see also Tam [36] and
Proposition 26.49 in Chow et al [10]) that a complete Riemannian manifold of bounded
sectional curvature has a proper function with bounded gradient and Hessian.

Definition 5.3 A localization function on a Finsler manifold M is a smooth function
�W M ! Œ0; 1� with compact support and kD�k; kD2�k � 1.

Corollary 5.4 If M is a properly convex manifold and X �M is compact, then there
is a localization function � on M with �.X/D 1.

Proof By Proposition 5.2, there is an exhaustion function f W M ! Œ0;1/. By
multiplying f by a small positive scalar, we may assume kDf k; kD2f k< 1 and that
f .X/ � Œ0; 1�. Let ˇW Œ0;1/! Œ0; 1� be a smooth function with compact support
and ˇ.t/D 1 for all t � 1, and kˇ0.t/k; kˇ00.t/k � 1

10
for all t . Then �D ˇ ıf has

compact support and �.X/D 1. By the chain rule, kD�k; kD2�k � 1.

Suppose M DA[B is a connected n–manifold and A is a compact submanifold with
@AD@Mt@B and B has k components Bi with 1� i �k such that Bi D@Bi�Œ0;1/.
By Definition 1.6, there is a relative holonomy map

EP W Dev.M;P /!RelHol.M;B;P /:

The subspace Devc.M;P /� Dev.M;P / consists of the developing maps of properly
convex structures for which @M is strictly convex. The subspace RelHole.M;B;P /�
RelHol.M;B;P / consists of the data for which each Bi is properly convex and @Bi
is strictly convex. Then Deve.M;P /D E�1P RelHole.M;B;P / consists of developing
maps for which these ends are properly convex with strictly convex boundary. Finally,
Devce.M;P / D Devc.M;P /\Deve.M;P / is the subspace of developing maps for
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properly convex structures on M, with @M strictly convex and for which each Bi is
properly convex and @Bi is strictly convex. The following is well known for manifolds
of negative sectional curvature; see Proposition 2.3 in Baker and Cooper [1].

Lemma 5.5 Suppose M is a properly convex real projective manifold, possibly with
boundary, and B � M is a properly convex submanifold. Then B is �1–injective
in M.

Proof The holonomy for B is injective because B is properly convex. The holonomy
for B factors through the holonomy for M, therefore the map induced by inclusion
�1B! �1M is injective.

Theorem 5.6 EP W Devce.M;P /! RelHole.M;B;P / is open using the geometric
topology on the domain and the strong geometric topology on the codomain.

Proof Initially assume M has no boundary. Given a developing map in Devce.M;P /,
the first step is to show a nearby relative holonomy is given by a nearby (possibly not
convex) projective structure that has the given end data. Then this structure is shown to
be properly convex.

By Lemma 5.5, each component of B is �1–injective in M. It follows from Theorem 1.7
that EP W Dev.M;P /! RelHol.M;B;P / is open using the geometric topologies in
domain and codomain. Hence the restriction EP W Deve.M;P /!RelHole.M;B;P /
is also open with these topologies. Thus it is open using the strong geometric topology
(which is finer than the geometric topology) on the codomain and the geometric
topology on the domain. The end geometric topology on Deve.M;P / is defined to be
the smallest refinement of the geometric topology such that EP is continuous. Then
EP is open and continuous with the end geometric topology on the domain and the
strong geometric topology on the codomain. This completes the first step.

As usual we will assume that BDB is connected. It suffices to show that Devce.M;P /

is open in Deve.M;P / with respect to the end geometric topology. A neighborhood
U � Deve.M;P / of dev� in this topology consists of all developing maps dev� that
are nearby in C1w . �M;RPn/ and in addition have the property that dev� . zB/ is close
to dev�. zB/ in P .

Suppose dev� 2 Devce.M;P / has holonomy � and dev� 2 U has holonomy � . The
corresponding projective structures on M are denoted by M� and M� . We must show
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dev� 2 Devc.M;P /. To do this we construct a complete convexity function on the
tautological bundle �M� . It then follows that M� is properly convex by Theorem 3.4.

In this sketch various manifolds should be replaced by the corresponding tautological
line bundles, but for ease of exposition we do not do this. There are convexity functions
for M� and B� . If � is close to � then there is a diffeomorphism M�!M� that is
close to the identity over a large compact set K whose complement is far out in the
cusp B . The convexity function on M� is obtained by using the one for M� over most
of K , and the one for B� outside K . We slowly transition from one function to the
other over @K � Œ0; 1� using a localization function to give a convex combination that
changes in the Œ0; 1� direction. This ends the sketch.

We will use M� as a basepoint for Devc.M/ as in Definition 1.3; see also Definition 4.2.
Thus we replace M by M� and will usually omit the subscript � . Then �M D�� �Sn

and dev�W �� ,! Sn is the inclusion map. Similarly, we use �M WD C��=� as a
basepoint for Dev.�M�;L/ and write this as Dev.�M;L/. Then � �M�D C���RnC1 .

We use the Hilbert–Finsler norm k � k on �M to calculate operator norms. Recall
�1M D �M=ˆ1 is the tautological circle bundle and has an infinite-cyclic cover �M.
Let � D �.dim.M// > 0 be the lower bound on the Hessian of characteristic functions
given by Lemma 4.6 and � D 1

10
� . Let RDR.�; dim.�M// be the constant given by

Lemma 4.7 and K �M a compact, connected submanifold such that �1K contains the
R–neighborhood of �1A in �1M. Hence the characteristic functions c�;B and c�;M
are �–close in C 2.�.M nK//.

By Corollary 5.4, there is a localization function �W �1M ! Œ0; 1� with �.�1K/D 1
that has support inside a compact, connected submanifold �1L. Define J D cl.LnK/.
Then every point in �1J has distance at least R from @.�1B/. All these submanifolds
depend on the choice of � . Let z�W �M ! Œ0; 1� be the function that covers �. We
abuse notation by writing z� as �. Observe that ��1.0; 1/� �J.

Claim 1 There is a convexity function cW �M ! R which equals c�;M on �K and
equals c�;B on �.M nL/ and D2c �

�
1
2
�
�
k � k2.

Proof of Claim 1 First blend c�;M and c�;B inside �J using � to get f W �M !R

given by
f D � � c�;M C .1��/ � c�;B D c�;M C .1��/ �g;

where g D c�;B � c�;M . The map f is well defined even though c�;B is only defined
on �B because 1��D 0 outside �B .
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Subclaim D2f �
�
1
2
�
�
k � k2.

Outside �J this follows from Lemma 4.6 since f D c�;M on �K and f D c�;B on
�.M nL/. On �J we show this using directional derivatives. By the product rule,

f 00 D c00�;M Cg
00
� .�00gC 2�0g0C�g00/:

Since M� is properly convex, c00�;M � � by Lemma 4.6. Also j�j; j�0j; j�00j � 1 because
� is a localization function and jgj; jg0j; jg00j < � D 1

10
� on �J by definition of R

and K , so
jg00� .�00gC 2�0g0C�g00/j � 5� D 1

2
�:

Thus f 00 � 1
2
� , which proves the subclaim.

The level set S D f �1.0/ is Hessian-convex in the backward direction of the flow and
is the 0–set of a unique flow function c which coincides with c�;B outside �L. It
follows from Lemma 3.3 that c00 � 1

2
� also. This proves Claim 1.

To avoid a proliferation of notation, and because what we are about to do is similar
to what we just did, we reuse notation as follows. We define the new K to be the
old L, and the new � is a localization function on �1M with �.�1K/D 1, and the
new L �M is a compact, connected manifold such that �1L contains the support
of �. Then redefine J D cl.L nK/. Let E WD cl.M nK/ � B . Again we write the
lift as �W �M !R. There are characteristic convexity functions c�;B W �B�!R and
c�;B W �B� !R.

Since �1L� is compact, if U is small then there is a diffeomorphism H W �1M�! �1M�

such that H j�1L� is close in C1 to the identity in the following sense. The map
H is covered by zH W � �M�! � �M� and the restriction of zH is close to the inclusion
� zL� ,!RnC1 in C1w .� zL�;R

nC1/. The map zH also covers a map hW �M�! �M� .

Set g D .c�;B/ ı h � c�;B W �E� ! R. If U is small enough then, by Lemma 4.4,
c�;B and c�;B are close on �J� . Since zH is close to the identity map and covers h, it
follows that kDkgk< � for k 2 f0; 1; 2g everywhere on �1J� . Define f W �M�!R

by
f D � � cC .1��/ � .c�;B/ ı h:

As before, this is well defined.

Claim 2 f 00 � 1
2
� on �L� .
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Proof of Claim 2 If �D 1 then f 00 D c00 � 1
2
� by Claim 1. The set where � < 1 is

contained in �J� . On �J� we have c D c�;B , so

f D � � c�;B C .1��/ � .c�;B/ ı hD c�;B C .1��/ �g

and
f 00 D c00�;B Cg

00
� .�00 �gC 2�0g0Cg00/:

Then c00�;B �
1
2
� by Lemma 4.6. As before, j�j; j�0j; j�00j � 1 and, by the above,

jgj; jg0j; jg00j< � . Since � < 1
10
� , this proves Claim 2.

Since zH is close to the inclusion in C1w .� zL�;R
nC1/ it follows that f ıh�1 is Hessian-

convex on �L� . Outside this set, f ı h�1 D c�;B , which is Hessian-convex. This
proves f W �M� !R is Hessian-convex everywhere.

Again, it follows from Lemma 3.3 that there is a Hessian-convex flow function
c� W �M� ! R defined by f ı h�1 . The corresponding Hessian metric on �1M�

is complete because �1L� is compact, so the metric is complete on �1L� , and outside
�1L� it is the complete metric given by the properly convex end �1B� . It follows that
the Hessian metric on �M� is also complete. This completes the proof when M has
no boundary.

Now suppose M has (compact) boundary and set P D int.M/. Then P is properly
convex with a characteristic convexity function cW �P�!R. The idea is to shrink M
a bit to obtain a submanifold N � P with Hessian-convex boundary. The restriction
to N of the convexity function for P can be used in the above arguments. It is a
complete metric with @N at a finite distance.

By Proposition 8.3, there is a submanifold N �M with Hessian-convex, compact
boundary such that cl.M nN/ is a collar of @M. The restriction of c to �N is a complete
convexity function. There is a diffeomorphism F W �M!�N close to the identity in C 2

that is the identity outside a small collar of @.�M/. Then c�;M WD .cj�N /ıF W �M!R

is a complete convexity function. The pullback of the restriction to �N of the Hilbert
metric on �P is a complete metric on �M. The proof now proceeds as above to
construct a complete convexity function on �M� .

To apply Theorem 5.6 involves finding deformations of the cusps that are nearby in the
strong geometric topology. This involves finding a diffeomorphism from the original
cusp to the deformed cusp that is close to projective. To make this task easier we show
such a map exists for a small deformation of the holonomy if the deformed domain is
close to the original domain.
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The projective Kleinian group space for a smooth manifold M is

K.M/D f.�; �/ 2 P �Rep.M/ WM diffeomorphic to �=�.�1M/g

with topology given by the subspace topology of the product topology on P�Rep.M/.
This topology is given by a metric. If .�; �/ 2 K.M/ then �=�.�1M/ is a properly
convex manifold with strictly convex boundary. If M is closed then � determines �.
There is a natural map

KW Devc.M;P /! K.M/

given by K.dev/D .dev. �M/; hol.dev//.

Proposition 5.7 Suppose M Š @M � Œ0;1/ is a connected smooth manifold and @M
is compact. Then K is a continuous open map for the strong geometric topology on
Devc.M;P /.

Proof Continuity is obvious. Suppose dev� 2 Devc.M;P / and K.dev�/D .��; �/
and that .�� ; �/ 2 K.M/ is close. Then Q D ��=�.�1M/ is a properly convex
manifold. We identify M ���=�.�1M/. It suffices to show there is a diffeomorphism
M !Q which is almost a projective map between large compact sets in the interiors.

By Proposition 8.3, there is a diffeomorphism M Š @M � Œ0;1/ such that @M � t is
dev�;M –Hessian-convex for all 0 < t � 1. For k > 1 define N D @M � Œ1=k; k� and
W D @M � Œ0; kC 1� and E D @M � 1=k . These are all compact. By Proposition 1.2,
there is a dev�;W 2 Dev.W;P / with holonomy � that is close to dev�;M jW over a
compact set in �W that covers N.

By Corollary 1.5, we may change dev�;W by a small isotopy so that there is a projective
embedding f W N ! Q . If � is close enough to � then, since the hypersurface E
is Hessian-convex for dev�;M , it follows that E is also Hessian-convex for dev�;W .
Hence f .E/ is Hessian-convex in Q .

Let P be the closure of the component of Q n f .N / that contains @Q . Since @M is
compact, for homology reasons f .E/ separates @Q from the end of Q , thus P is
compact and @P D @Qtf .E/.

Claim P is diffeomorphic to E � I.

Since E is dev�;N –Hessian-convex, there is a nearest-point retraction (using the Hilbert
metric on Q) r W P !E with fibers that are lines, and this gives a homeomorphism
P ! E � I. By [39], smooth manifolds are PL. The M � I theorem (Hirsch and
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Mazur [22]) says that if M is a PL manifold, then every smoothing of M � I is
diffeomorphic to a product. Thus P is diffeomorphic to E�I, which proves the claim.

It follows that P is a collar of @Q , so R D P [ f .N / Š E � Œ0; k� is also a collar
of @Q . Thus Q0 D cl.Q nR/ is diffeomorphic to E � Œk;1/. Clearly P lies in a
small neighborhood of @Q . We can now extend f to a diffeomorphism f W M !Q

by sending @M � Œ0; 1=k� to P and @M � Œk;1/ to Q0. This is close to a projective
map on N. Define dev�;M W �M ! RPn by dev�;M D dev�;Q ı Qf . Since f is close
to projective over N, it follows that dev�;M is close to dev�;M .

Suppose M DA[B is a smooth manifold with (possibly empty) boundary and A is a
compact submanifold of M with @AD @M t @B . Suppose B D B1 t � � � tBk has k
connected components, and Bi Š @Bi � Œ0;1/. Define the Kleinian relative holonomy
space

(1) RelHol.M;B;K/� Rep.�1M/�

kY
iD1

K.Bi /

to be the subset of all .�; .�1; �1/; : : : ; .�k; �k// such that �i D �j�1Bi . This space
has the subspace topology of the product topology.

For each Bi �M we fix a choice of some component zBi � �M of the preimage Bi
in the universal cover of M. Then �i D dev. zBi / and �i D hol.�1Bi / gives a point
in K.Bi /. This defines the Kleinian relative holonomy map

EKW Devce.M;P /!RelHol.M;B;K/:

Theorem 5.8 (convex extension theorem) EKW Devce.M;P /!RelHol.M;B;K/ is
open using the geometric topology on the domain.

Proof This follows immediately from Theorem 5.6 and Proposition 5.7.

Proof of Theorem 0.3 The map 
 W .�1; 1/!RelHol.M;B;K/ defined by


.t/D .�t ; .�1.t/; �t j�1B1/; : : : ; .�k.t/; �t j�1Bk //

is continuous by hypothesis (5) of Theorem 0.3. By Theorem 5.8, EK is open, and

.0/ 2 Im.EK/, thus 
.��; �/ � Im.EK/ for some � > 0. So for jt j < � there is
devt 2 Devce.M;P / with EK.devt /D 
.t/. Define Mt to be the projective structure
on M defined by devt . Then Mt is properly convex, with holonomy �t , and @Mt is
strictly convex. Moreover, the projective structure on Mt restricted to Bi is diffeomor-
phic to Pi .t/ by definition of EK .
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6 Generalized cusps

A generalized cusp is a certain kind of properly convex projective manifold. The main
result of this section is that holonomies of generalized cusps with fixed topology form
an open subset in a certain semialgebraic set (Theorem 6.28). This follows from the
fact that a generalized cusp contains a homogeneous cusp (Theorem 6.3). We then
prove the main theorem, Theorem 6.29.

A cusp in a hyperbolic manifold viewed as a projective manifold is characterized by
being projectively equivalent to an affine manifold that has a foliation by strictly convex
hypersurfaces that are images of horospheres, together with a transverse foliation by
parallel lines. This characterization does not work in general. Consider the affine
manifold M D U=� Š T 2 � Œ0;1/, where

U D f.x1; x2; x3/ W x3 � x
2
1 C x

2
2 > 0g

and � is the cyclic group generated by .x1; x2; x3/ 7! .2x1; 2x2; 4x3/. It has a foliation
by tori that are the images of the strictly convex hypersurfaces z D K.x2 C y2/

for K � 1, and it has a transverse foliation by vertical lines. However M is not convex.

Definition 6.1 A generalized cusp is a properly convex manifold C D�=� homeo-
morphic to @C � Œ0;1/ with @C a closed manifold and �1C virtually nilpotent such
that @� contains no line segment, ie @C is strictly convex. The group � is called a
generalized cusp group.

A quasicusp is a properly convex manifold with interior homeomorphic to Q �R,
where Q is a closed manifold and �1Q is virtually nilpotent.

If � contains no hyperbolics, then C is called a cusp and � is conjugate to a subgroup
of PO.n; 1/ by Theorem 0.5 in [13]. An example of a quasicusp is �=� for any
discrete subgroup � ŠZn�1 of the diagonal group in SL.nC1;R/, where ��RPn

is the interior of an n–simplex that is preserved by � .

Definition 6.2 A generalized cusp �=� is homogeneous if PGL.�/ acts transitively
on @�. The group PGL.�/ is called a (generalized) cusp Lie group.

For example a cusp in a hyperbolic manifold is homogeneous if and only if it is the
quotient of a horoball ��Hn. In this case PGL.�/ is conjugate to the subgroup of
PO.n; 1/Š Isom.Hn/ that fixes one point at infinity. Cusp Lie groups for 3–manifolds
are listed in Section 7.
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Theorem 6.3 Every generalized cusp contains a homogeneous generalized cusp.

There is an equivalence relation on generalized cusps generated by the property that
one cusp can be projectively embedded in another. Equivalent cusps have conjugate
holonomy. One can shrink a cusp by removing a collar from the boundary. However,
sometimes one can remove a submanifold at the other end. For example, there might
be a totally geodesic, codimension-1 compact submanifold in the interior of the cusp,
which one could cut along. It simplifies matters to do this ahead of time.

Definition 6.4 A generalized cusp C is minimal if, for every cusp C 0 � C with
@C 0 D @C , it follows that C D C 0.

If M is a convex manifold and X �M then the convex hull, CH.X/, of X is the inter-
section of all convex submanifolds of M that contain X. Suppose f W S1�.�1; 1�!C

is a diffeomorphism, and C has a hyperbolic metric such that 
 D f .S1 � 0/ is a
geodesic and the distance satisfies d.f .ei� ; t /; 
/ D jt j. Thus C is a hyperbolic
annulus with one convex boundary component and the other boundary component
deleted. Moreover, C is a generalized cusp, and C 0 D CH.@C /D f .S1 � .0; 1�/ is a
minimal cusp.

Lemma 6.5 Every generalized cusp contains a unique minimal cusp. A finite cover of
a minimal cusp is minimal.

Proof Suppose C D�=� is a generalized cusp. Let �0 be the convex hull of @�.
Then �0 � � is properly convex and � –invariant and @�0 D @�. The cusp C 0 D
�0=� is the unique minimal cusp contained in C . If M is a finite cover of C 0 then
M D CH.@M/, so M is also minimal.

The following will be used frequently:

Lemma 6.6 Suppose M is a quasicusp of dimension n, and P � M is a convex
submanifold, and �1P ! �1M is an isomorphism; then:

(1) The universal cover �M is contractible.

(2) M is an Eilenberg–Mac Lane space: a K.�1.M/; 1/.

(3) Hn�1.�1M IZ2/ŠHn�1.M IZ2/Š Z2 .

(4) If dimP < n then dim.P /D n� 1 and P is a closed manifold.

(5) If P � int.M/ and dim.P / < dim.M/ then P separates.
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Proof (1)–(3) follow immediately from the definition. Since P and M are convex,
they are aspherical. Hence the inclusion P ,!M is a homotopy equivalence. By (3),
Hn�1.P IZ2/Š Z2 , from which (4) follows.

For (5), it follows from (4) that dimP Dn�1. By definition of quasicusp, the interior of
M is homeomorphic to Q�R for some closed manifold Q . Since P and Q are both
closed, for sufficiently large t 2R it follows that P separates Q� t from Q�.�t /.

By Proposition 2.1, the holonomy of a projective structure lifts to GL.nC 1;R/, and
we will use this lift in what follows.

If V is a finite-dimensional vector space of dimension n then a (complete) flag for
V is a sequence of subspaces 0D V0 < V1 < � � � < Vn D V with dim.Vi /D i . The
subgroup UT.n/ < GL.n;R/ consists of all upper-triangular matrices with positive
diagonal entries. A group � � GL.n;R/ is conjugate into UT.n/ if and only if �
preserves a flag and every weight of � is positive.

A connected nilpotent subgroup � of GL.n;C/ preserves a flag for Cn. However,
if � is not connected, this need not be true. For example, the quaternionic group of
order 8 in GL.2;C/ does not preserve a flag. First we show (Corollary 6.11) that there
is a finite-index subgroup of � that preserves a flag. The index of a subgroup H <G

is written jG WH j. A subgroup H �G is characteristic if every automorphism of G
preserves H. It is routine to show:

Lemma 6.7 There exists h.n; k/ > 0 such that if the group G is generated by k
elements, then there is a characteristic subgroup C �G with jG WC j � h.n; k/ such
that if H �G is any subgroup with index jG WH j � n then C �H.

Suppose V is a vector space over C . A weight of a subgroup � � GL.V / is a homo-
morphism (character) �W �!C� such that the weight space E.�/ and generalized
weight space V.�/ are both nontrivial. Here,

E.�/D
\

2�

ker.
 ��.
// and V.�/D
[
n>0

\

2�

ker.
 ��.
//n:

A (generalized) weight space is � –invariant. A one-dimensional weight space is the
same thing as a one-dimensional �–invariant subspace. The vector space V has a
generalized weight decomposition if V D

L
V.�/, where the sum is over all weights.

The group � is polycyclic of (Hirsch) length (at most) k if there is a subnormal series
� D �k B �k�1 B � � �B �1 B �0 D 1 with �iC1=�i cyclic for every i . A subgroup
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of a polycyclic group of length k is polycyclic of length at most k . Every finitely
generated nilpotent group is polycyclic.

Lemma 6.8 There exists cD c.n; k/ such that if � <GL.Cn/ is polycyclic of length
at most k , then there is a characteristic subgroup C � � with j� W C j � c and C
preserves a one-dimensional subspace of Cn.

Proof We use induction on k . For k D 1 the result follows from Jordan normal form
with c D 1. Assume the result true for k . Suppose � is polycyclic of length kC 1.
Then � contains a normal polycyclic group �k of length k with �=�k cyclic. There
is a characteristic subgroup Ck � �k of index at most c.n; k/ that preserves a one-
dimensional subspace W .

There is some weight �W Ck!C� with W contained in the weight space E DE.�/.
There are at most n weights for Ck . If � is an automorphism of Ck then �ı� is a weight
for Ck . Since Ck is a characteristic subgroup of �k and �k is normal in � , it follows
that Ck is preserved by all inner automorphisms of � . Thus an inner automorphism
of � permutes these weights, so an element 
 2� induces a permutation of the weights
with order m � nŠ. Choose 
 2 � which generates �=�k . Then 
m induces the
identity permutation. Hence the subgroup � 0 D hCk; 
mi preserves E . Applying
Jordan normal form to 
mjE gives a one-dimensional subspace of E that is preserved
by 
m. This subspace is also preserved by Ck . Then j� W� 0j �mj�k WCkj � nŠ �c.n; k/
since m � nŠ. By Lemma 6.7, there is a characteristic subgroup C � � 0 � � with
j� WC j � c.n; kC 1/D h.nŠ � c.n; k/; kC 1/.

Proposition 6.9 There exists d.n; k/ such that for all polycyclic groups G of length
at most k there is a characteristic subgroup C �G with jG WC j � d.n; k/ such that if
�W G! GL.n;C/, then �.C / preserves a flag in Cn.

Proof Below we show by induction on n that, for a fixed � , there is a subgroup of
index at most e.n; k/D

Qn
iD1 c.i; k/ that preserves a flag. The result follows from

Lemma 6.7 with d.n; k/D h.e.n; k/; k/.

For nD 1, the result is clear. By Lemma 6.8, there is a subgroup � 0 < � D �.G/ of
index at most c.n; k/ that preserves a one-dimensional subspace E � V DCn. Then
� 0 acts on V=E ŠCn�1 . By induction there is � 00 < � 0 with j� 0 W� 00j � e.n� 1; k/
that preserves a flag F in V=E . The preimage of F in V , together with E , forms
a flag for V which is preserved by � 00. Moreover, j� W � 00j D j� W � 0j � j� 0 W � 00j �
c.n; k/e.n� 1; k/D e.n; k/.
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Definition 6.10 Suppose G is a finitely generated, virtually nilpotent group. Let k
be the smallest integer such that G is polycyclic of length k . Given n > 0, the n–core
of G is the subgroup core.G; n/ of G that is the intersection of all subgroups of G of
index at most 2n � d.n; k/.

Clearly, core.n;G/ is a characteristic subgroup of finite index in G that is contained
in every subgroup of index at most 2n in the subgroup C �G from Proposition 6.9.

Corollary 6.11 Suppose G is a finitely generated, virtually nilpotent group and H D
core.G; n/. Then, for every homomorphism �W G! GL.n;F/:

(1) If F DC , then �.H/ preserve a flag in Cn.

(2) If F DR and every weight of �.H/ is real, then �.H/ is conjugate into UT.n/.

(3) If F DR, then �.G/ 2 VFG if and only if every weight of �.H/ is real.

(4) VFG.G; n/D f� 2 Hom.G;GL.n;R// W �.G/ 2 VFGg is semialgebraic.

Proof Let C be the characteristic subgroup of G given by Proposition 6.9. Then
H �C , so (1) follows. For (2) set U DRn and V DU˝C , so G�GL.U /�GL.V /.
By (1), V D

L
V.�/, where V.�/D

T
c2C ker.�.c/��.c//n . Observe that V.�/�Cn

is given by linear equations that are defined over R because �.C /�R and �.C /�
GL.n;R/. Thus V.�/ is the complexification of U.�/D

T
c2C ker.�.c/��.c//n�Rn,

so U D
L
U.�/. Hence �.C / preserves a flag in Rn. By replacing C by a certain

subgroup, C0 , of index at most 2n, we may ensure that all real weights are positive.
Since H �C0 it follows that �.H/ is conjugate into UT.n/, which proves (2). Clearly
(2) implies (3). (4) follows from (2) and the observation that the condition that every
weight is real is defined by the semialgebraic equations that say every eigenvalue of
every element of �.H/ is real.

Suppose U is a real vector space and � < GL.U / preserves a flag in V D U ˝C .
Then combining each weight � for V with the complex-conjugate weight x� gives a
real invariant subspace U.�; x�/D .V .�/CV.x�//\U � U and U D

L
U.�; x�/. We

call U.�; x�/ a conjugate generalized weights space. For each 
 2 � , the eigenvalues
of 
 j

U.�;x�/
are �.
/ and x�.
/.

Proposition 6.12 If P D�=� is a quasicusp of dimension n, then core.�; nC 1/ is
conjugate into UT.nC 1/. In particular, � 2 VFG.

Proof Write V D RnC1, so � � PGL.V /. By Proposition 2.1, we may lift to get
� � GL.V /. By Corollary 6.11(1), we can conjugate so that H D core.�; nC 1/ is
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contained in the upper-triangular subgroup in GL.nC1;C/. We replace � by H. Then
V DA˚B , where A is the sum of the generalized weight spaces for real weights and
BD

L
Bi is the sum of the remaining conjugate generalized weights spaces. It suffices

to show B D 0, since then, by Corollary 6.11(2), � is conjugate into UT.nC 1/.

Each vector x 2 V is uniquely expressed as a linear combination aC b1C � � � C bk
with a 2 A and bi 2 Bi . Define n.x/ to be the number of distinct i with bi ¤ 0.
Choose x ¤ 0 with Œx� 2�, so that n.x/ is minimal.

Claim n.x/D 0.

Proof of the claim If n.x/ ¤ 0, then some bj ¤ 0. There is 
 2 � which has
eigenvalues �j .
/; x�j .
/ that are not real. Let h
i be the cyclic group generated by 
 .
Let C � Bj be the convex hull of the orbit h
i � bj .

Suppose 0 … C . Then K D cl.PC.C // is a closed convex cell in PC.Bj / that is
preserved by 
 . By the Brouwer fixed point theorem, 
 fixes a point Œv� 2 K , so
v 2Bj is an eigenvector of 
 jBj with a positive eigenvalue. However every eigenvector
for 
 in Bj has eigenvalue �j .
/ or x�j .
/, which are both not real. This contradiction
shows that 0 2 C .

The convex cone C� � V is preserved by � . Since 0 2 C , there is a finite convex
combination

P
ti


ibj D 0 with ti � 0 and
P
ti D 1. Since x 2 C� and this cone is

� –invariant, it follows that 
 ix 2 C�. Since C� is convex, the convex combination
x0 D

P
ti


ix is also in C�. In particular, x0 ¤ 0 and Œx0� 2 �. The component
of x0 in Bj is

P
ti


ibj D 0. Since the conjugate weights spaces are � –invariant,
the property that a point has a zero component in some Bi is preserved by � , so
n.x0/ < n.x/, contradicting minimality. Hence no such bj exists, and this proves the
claim.

Since x ¤ 0, it follows that A¤ 0 and Œx� 2W WD�\P .A/ is a nonempty properly
convex set that is preserved by � . The submanifold M DW=� of P is convex and
�1M !�1P is an isomorphism, so dim.M/� n�1 by Lemma 6.6. Now Bi has real
dimension at least 2, so dimA� dimV �dimBi � n�1. But dimM D dim P .A/D

dimA� 1� n� 2, which is a contradiction.

Suppose H is a Lie group. A virtual syndetic hull of a discrete subgroup � < H
is a connected Lie subgroup G < H such that j� WG \�j <1 and .G \�/nG is
compact. In other words � is virtually a (cocompact) lattice in H. When syndetic
hulls exist, they are not always unique because the exponential map on gl.n/ is not
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injective for n� 2. It is useful to have a unique version of a syndetic hull. For more
about syndetic hulls, see Witte [40]. Some of the arguments that follow are inspired by
Section 9 of [13], which derives the classification of cusps in strictly convex projective
manifolds. In particular, this applies to the role of the syndetic hull.

Let r � gl be the subset of all matrices M such that all the eigenvalues of M are
real. The set RD exp.r/ consists of all matrices A such that every eigenvalue of A is
positive. Then expW r!R is a diffeomorphism with inverse log. An element of R is
called an e–matrix and a group G �R is called an e–group. For example, UT.n/ is
an e–group. The property of being an e–group is preserved by conjugation. If G is a
connected e–group, then expW g!G is a diffeomorphism. If S �R define hlogSi to
be the vector subspace of gl spanned by logS.

Definition 6.13 Given a discrete subgroup � � GL.n;R/, a virtual e–hull for � is a
connected Lie group G that is an e–group such that j� WG \�j<1 and .G \�/nG
is compact. There might not be such G .

Proposition 6.14 [13, 9.3] Suppose that � is a finitely generated, discrete nilpotent
subgroup of GL.n;R/. Then � contains a subgroup �0 of finite index which has a
syndetic hull G � GL.n;R/ that is nilpotent, simply connected, and a subgroup of the
Zariski closure of �0 .

Lemma 6.15 If � � UT.n/ is a finitely generated discrete nilpotent subgroup, then it
has an e–hull G � UT.n/.

Proof By Proposition 6.14, there is a finite-index subgroup �0 � � which has a
syndetic hull G . The Zariski closure of UT.n/ is the Borel subgroup B of all upper-
triangular matrices in GL.n;R/. It follows that the Zariski closure of � is in B , so
G �B . Moreover, G is connected, so G �UT.n/. Since j� W�0j<1 and �0�G , it
follows that hlog�i D hlog�0i � g, thus � �G . Since G � UT.n/, it is an e–group.
Moreover, �nG is a quotient of �0nG and so is compact. Hence G is a syndetic hull
of � .

Lemma 6.16 If G0 and G1 are virtual e–hulls of a discrete subgroup � �GL.n;R/,
then G0 DG1 .

Proof The group H DG0\G1 is connected because if h2H, then the one-parameter
group exphlog hi is contained in both G0 and G1 . With R as defined above, set
� 0D�\R . If 
 2� 0 then 
m 2Gi for some m>0. Thus log 
mDm log 
 2 logGi ,
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so 
 2 Gi . Thus � 0 D � \Gi � Gi , so � 0 �H. Since � 0 is a lattice in Gi and H
is a closed subgroup of Gi , it follows that � 0 is also a lattice in H. Since H and
Gi are diffeomorphic to their Lie algebras, if H ¤Gi then dimH < dimGi , which
contradicts that � 0 is a lattice in Gi .

Definition 6.17 If � � GL.n;R/ is finitely generated and � 2 VFG, then the trans-
lation group of � is T .�/D exphlog.core.�; n//i.

Theorem 6.18 If �=� is a quasicusp then T .�/ is the unique virtual e–hull of � .

Proof Set nD 1Cdim�. Recall that the definition of quasicusp implies � is virtually
nilpotent. By Proposition 6.12, core.�; n/ is conjugate into UT.n/ and is therefore an
e–group. By Lemma 6.15, core.�; n/ has an e–hull, T , that is conjugate into UT.n/.
Thus T is a virtual e–hull of � . Uniqueness of T follows from Lemma 6.16. It is now
clear that T D T .�/.

The next thing to do is show that, if �=� is a generalized cusp of dimension n, the
orbit under T .�/ of a point x 2 @� is a strictly convex hypersurface. The key to doing
this is to show that, if the cusp is minimal, then � is a closed convex subset of Rn

bounded by @�; see Lemma 6.22.

A projective flow ˆ on RPn is a continuous monomorphism ˆW R! PGL.nC1;R/.
There is an infinitesimal generator A2 glnC1 with ˆt WDˆ.t/D exp.tA/. If p 2RPn

and ˆt .p/ D p for all t , then p is a stationary point of ˆ. A radial flow is a
projective flow that is stationary on a hyperplane H ŠRPn�1 and that is parametrized
so that ˆt .p/! r 2 H as t ! �1 whenever p is not stationary. It follows that
ˆt D exp.tA/, where A 2 glnC1 is a rank-one matrix and H is the projectivization
of kerA. The projectivization of the image of A is a point p 2RPn, called the center
of the flow, that is also fixed by ˆ. Every orbit is contained in a line containing the
center. This property characterizes radial flows.

A radial flow is parabolic if p 2 H and hyperbolic otherwise. Every radial flow
is conjugate to one generated by an elementary matrix Ei;j . A parabolic flow is
conjugate to .I C t �E1;nC1/ and a hyperbolic flow is conjugate to the diagonal group
.exp.t/; 1; : : : ; 1/. The backward orbit of X �RPn is ˆ.�1;0�.X/. A set X �RPn

is backward-invariant if X contains its backward orbit, and it is backward-vanishing ifT
t<0ˆt .X/D∅.
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A displacing hyperplane for a radial flow ˆ is a hyperplane P such that P and ˆt .P /
are disjoint in RPn nH for all t ¤ 0. A hyperplane P is displacing if and only if
P ¤H and P does not contain the center of ˆ.

Proposition 6.19 Suppose �=� is a quasicusp and � � UT.nC 1/. If �W �!R�

is a weight with generalized weight space V D V.�/ then there is a radial flow ˆDˆ�

that is centralized by � , and ˆ acts trivially on each generalized weight space other
than V .

If dimV � 2, then ˆ is parabolic, and if dimV D 1, then ˆ is hyperbolic. The center
of ˆ is contained in P .E.�//. The group G.�/ WD T .�/�ˆ.R/ generated by T .�/
and ˆ.R/ is their internal direct product. If the orbit of x 2 RPn under T .�/ is a
strictly convex hypersurface then G.�/ � x �RPn is open.

Proof We may assume � is upper-triangular and block diagonal, with one block for
each generalized weight space. We may assume V is the first block and set mD dimV .
As above, let Ei;j 2 gl.nC1/ be the elementary matrix with 1 in row i and column j .
Define ˆ.t/ D exp.tE1;m/. Then RnC1 D V ˚ W , where W is the sum of the
other generalized weight spaces and the action of ˆ on W is trivial. If mD 1 then
ˆ.t/D diag.exp.t/; 1; : : : ; 1/ is a hyperbolic flow. If m� 2 then ˆ.t/ is a parabolic
flow given by the unipotent subgroup with t in the top right corner of the block for V .
The center is P .e1/ and the stationary hyperplane is H D P .he1; : : : ; em�1i˚W /. It
is easy to check that � centralizes ˆ.

Since T .�/ D exp.t/ and ˆ.R/ D exp.f/ are e–groups, if they have a nontrivial
intersection, then ˆ.R/ � T .�/. The orbits of ˆ are lines. If S D T .�/ � x is
a strictly convex hypersurface, then it does not contain a line, so ˆ.R/ \ T .�/ is
trivial, and ˆ.R/ �S �RPn is open. Since ˆ.R/ and T .�/ commute, they generate
G D T .�/�ˆ.R/.

Definition 6.20 A radial flow ˆt is compatible with a properly convex manifold
M D�=� if ˆ.R/ commutes with � , and � is disjoint from the stationary hyperplane
of ˆ, and � is backward-invariant and backward-vanishing.

A radial flow end is a properly convex manifold M D �=� with compact, strictly
convex boundary and for which there is a compatible radial flow. A radial flow cusp is
a radial flow end that is also a generalized cusp.

The hypersurfaces zSt WD ˆ�t .@�/ are strictly convex and �–invariant. Those with
t � 0 foliate �. They are all disjoint from H. Their images under the projection
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� W �!M give a product foliation of M by compact, strictly convex hypersurfaces
St D �. zSt /. There is a transverse foliation of � by flow-lines that limit on the center
of ˆ. These project to a transverse foliation of M by rays.

The flow time function is zT W �! Œ0;1/ defined by zT .x/D t if ˆt .x/ 2 @�. Thus
zT .x/ is the amount of time for x to flow into @� and zT . zSt /D t . Let � W �!M be
the projection. Then there is a map T W M ! Œ0;1/ defined by T .�x/D zT .x/. The
level sets of T are the hypersurfaces St .

Lemma 6.21 Suppose ˆ is a radial flow with center p and stationary hyperplane H.
Suppose � � RPn nH is properly convex. If ˆ is hyperbolic and p … cl.�/, then
� is backward-vanishing. If ˆ is parabolic, then � is backward-vanishing for either
ˆ.t/ or ˆ0.t/ WDˆ.�t /.

Proof If ˆ is hyperbolic and p … cl.�/, then by the Hahn–Banach separation theorem
there is a hyperplane P that separates � from p . If ˆ is parabolic, then choose any
hyperplane P disjoint from � that does not contain p . In either case, P is a displacing
hyperplane. After possibly reversing ˆ in the parabolic case, the component of Rn nP

that contains � is a half-space that is backward-vanishing, and hence so is �.

The reason for introducing radial flow ends is:

Lemma 6.22 Suppose � � RPn and M D �=� is a radial flow end with radial
flow ˆ. Let H � RPn be the stationary hyperplane for ˆ, and � D cl.�/ � RPn.
Then @�D @�t.H\�/. In particular, � is a closed convex subset of RnDRPnnH

bounded by the properly embedded, strictly convex hypersurface @�.

Proof Let Rn D RPn nH, so that �� Rn. It suffices to show that @� is properly
embedded in Rn and therefore � is a closed convex set in Rn bounded by @�.

Let p be the center of ˆ. Choose a displacing hyperplane P �RPn that is disjoint
from � such that if ˆ is hyperbolic then P separates p from � in Rn.

Let U be the closure of the component of Rn nP that is the half-space containing �.
Then U is backward-invariant. Thus U is the backward orbit of P. Define the function
� W U ! Œ0;1/ by �.x/ D t if ˆt .x/ 2 P. This is the amount of time it takes x to
flow into P. Observe that if x; y 2�, then zT .x/� zT .y/D �.x/� �.y/.

Because zSt WD ˆ�t .@�/ is strictly convex, the only critical points of the restriction
of zT to a segment are maxima, and therefore there is at most one critical point on a
segment. Thus T W M ! Œ0;1/ has the same critical point behavior along segments.
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Choose a metrically complete Riemannian metric on M and use the lifted metric on �.
Suppose @� is not properly embedded in Rn. Then there is a sequence zpk 2 @� which
converges in Rn to a point zp1 … @�.

Let ˛k be the length of Œ zp0; zpk���. Then ˛k!1 because zp1 …� and the metric
on � is complete. Let z̀k W Œ0; 1�! Œ zp0; zpk� be the unit segment. Then z̀k converges
to z̀1W Œ0; 1�! Œ zp0; zp1�. The restriction of z̀1 to Œ0; 1/ is a ray, z̀W Œ0; 1/!�, of
infinite length in �. Since zpk ! zp1 , there is ˇ > 0 such that zT ı z̀k � ˇ for all
k 2 Œ0;1�.

The projection `k D� ı z̀k W Œ0; 1�!M is an immersed affine segment and T ı`k � ˇ .
Thus `k is contained in the compact set Mˇ WD

S
0�t�ˇ St . These segments converge

to the ray `D � ı z̀ of infinite length that is also contained Mˇ . Now T ı `W Œ0; 1/!

Œ0; ˇ� is eventually monotonic. Thus there is a segment, `�W Œ0; 1�!Mˇ , of length 1,
that is a limit of subsegments of ` of length 1, and T ı`� is some constant ˛ . Thus `�

is contained in S˛ . But this contradicts the fact that S˛ is strictly convex. It follows
that @� is properly embedded in Rn. Hence � is a closed convex set in Rn.

To apply this we need:

Proposition 6.23 Every minimal generalized cusp C D�=� with � �UT.nC1/ is
a radial flow cusp.

Proof It suffices to show there is a radial flow that is compatible with C .

Claim 1 � is disjoint from every � –invariant hyperplane H.

Proof of Claim 1 If H \�¤∅, then H \ @�¤∅ since C is minimal. Observe
that H \� is properly convex and preserved by � . Thus R D .H \�/=� is a
convex codimension-1 submanifold of C with nonempty boundary, which contradicts
Lemma 6.6.

There are now two cases:

Parabolic case There is a generalized weight space W for � with dimW � 2. Let ˆ
be the parabolic radial flow that centralizes � given by Proposition 6.19. Let H be the
stationary hyperplane and p 2H the center of ˆ. Let P be a displacing hyperplane
that is tangent to � at q 2 @�.

Geometry & Topology, Volume 22 (2018)



1388 Daryl Cooper, Darren Long and Stephan Tillmann

Hyperbolic case Every generalized weight space has dimension 1, so � is diago-
nalizable. The weight spaces projectivize to give points p0; : : : ; pn 2 RPn that are
in general position. The hyperplane Pi contains all these points except pi . These
hyperplanes divide RPn into 2n open n–simplices. These hyperplanes are � –invariant,
so � is contained in one of these simplices, say �, by minimality of the cusp. There
is a vertex p of � with p … � because @� is a strictly convex hypersurface in �.
After relabelling p D p0 , let H D P0 and let ˆ be the radial flow with center p and
stationary hyperplane H. Then ˆ centralizes � and p is disjoint from cl.�/. By the
proof of Lemma 6.21, there is a displacing hyperplane P that separates p from �.

In each case, � is disjoint from H by Claim 1. Set RnDRPnnH, so ��Rn. Let U
be the closure of the component of Rn nP that contains �. Choose linear coordinates
on Rn such that qD e1D .1; 0; : : : ; 0/ and U is the half-space x1 � 1, and, moreover,
pD 0 in the hyperbolic case and p is the limit of the positive x1–axis in the parabolic
case. Then P D @U is the horizontal hyperplane x1 D 1.

We may assume U is backward-invariant after possibly reversing the flow in the
parabolic case. We reparametrize ˆ so that, in these coordinates, ˆt .x/D x� t � e1 in
the parabolic case and ˆt .x/D exp.�t / � x in the hyperbolic case.

Let p1W U!P be the projection along flow-lines, ie p1.x1; : : : ; xn/D .1; x2; : : : ; xn/
in the parabolic case and p1.x1; : : : ; xn/D .1; x2=x1; : : : ; xn=x1/ in the hyperbolic
case. Let �1 be the backward orbit of int�.

Claim 2 �1 is open in Rn, properly convex, backward-invariant and contains int.�/.

Proof of Claim 2 Clearly �1 is open, backward-invariant and contains int.�/. Sup-
pose a; b 2�1 . Then aDˆ˛.a0/ and bDˆˇ .b0/ for some ˛; ˇ�0 and a0; b0 2 int�.
Let ` D Œa0; b0� be the line segment with endpoints a0 and b0. Since � is convex,
`��. Then

S
t�0ˆt .`/ is a planar convex set in �1 that contains a and b . Hence

�1 is convex.

Let C be the cone of � from 0. Since � is properly convex and 0 …�, it follows that
C is properly convex. Moreover, C contains �1 , so �1 is properly convex, proving
Claim 2.

We want to add a boundary to �1 and show this gives �. Define �M to be the flow
closure of �1 , ie the set of all points x such that ˆt .x/ 2�1 for all t < 0. Clearly
�M � cl.�1/�Rn. There is a homeomorphism zF W @�M � Œ0;1/!�M given by
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F.x; t/Dˆ�t .x/. Since �1 is open, �M is a manifold with boundary @�M . It is
clear that �M is disjoint from H, backward-invariant and backward-vanishing.

Claim 3 � acts freely and properly discontinuously on �M .

Proof of Claim 3 Since � commutes with ˆ, it follows that �1 is preserved by � .
Also � acts freely on �, it contains no elliptics, and therefore acts freely on �1 . By
1.3 of [13], � is discrete and therefore acts properly discontinuously on �1 . The map
ˆ�1 embeds �M into �1 and, since ˆ�1 commutes with � , it follows that � acts
freely and properly discontinuously on �M .

Thus M D �M=� is a properly convex manifold and there is a homeomorphism
F W @M � Œ0;1/!M covered by zF .

Claim 4 M D C .

First we show C � M. Since int.�/ � �1 , it follows that int.C / � int.M/. By
Proposition 8.3, there is a collar neighborhood P � C of @C with @P D @C tQ
and Q strictly convex. Let RD cl.C nP /, so @RDQ and R is a generalized cusp
contained in M. Thus X D cl.M nR/Š @X � I is compact, and P n @C � X, so it
follows that @C�X �M, thus C �M.

The intersection of an orbit under the flow ˆ with �M , and also its image in M, is
called a flow-line. Every flow-line � in M ends on @M and is properly embedded.
Moreover, C \� is convex. Since @C separates @M from the end of M, it follows
that �\C is all of � except, possibly, a bounded interval at the end of �. It follows
that for all t < 0 that ˆt .C / � C , so C is backward-invariant. It now follows that
�1 D� and M D C , and this implies ˆ is compatible with C .

Now we know that � is a closed subset of Rn we are ready to show the orbits of the
translation group are properly embedded convex hypersurfaces in Rn.

Proposition 6.24 Suppose C D �=� is a minimal generalized cusp and � �

UT.nC 1/. Let T D T .�/ be the translation group. Then C contains a minimal
homogeneous cusp CT D�T =� and T acts transitively on @�T .

Proof By Proposition 6.23, C is a radial flow cusp for some flow ˆ. Let H be
the stationary hyperplane of ˆ and set Rn D RPn nH. Since T centralizes ˆ, it
preserves H and acts affinely on Rn.
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Claim There is x 2� such that T � x ��.

Proof of the claim Let � W � ! C be the covering space projection. There is a
continuous map F W T �@�!Rn=� given by F.t; x/D�.t �x/. Since @C D @�=�
is compact, there is a compact subset D� @� such that � �DD @�. So T �@�=T �D
because � � T . There is compact X � T such that �X D T . So T �D D .�X/ �D .
Hence Im.F /D �.X �D/ because �.� � x/D �.x/. Thus K D Im.F / � Rn=� is
compact, because it equals F.X �D/, and X �D is compact. Choose x 2 int.�/
such that �.x/ …K . Then T � x is connected, and disjoint from @�. By Lemma 6.22,
int.�/�Rn is bounded by @�. It follows that T � x ��. This proves the claim.

The set �T D cl.CH.T � x//�� is properly convex and T –invariant.

Claim @�T is strictly convex.

Since �T is a closed properly convex set in Rn, there is an extreme point y 2 @�T
at which @�T is strictly convex. Thus @�T is strictly convex at every point in the
orbit S D T �y � @�T . Then �S WD CH.S/��T is properly convex. Since � � T
it follows that �S is � –invariant. Thus CS D �S=� is a generalized cusp and a
submanifold of C . It follows from Lemma 6.6 that dim�S D dim�. Moreover,
S � @�T , so S � @�S . Since �S D CH.S/, it follows that S D @�S D @�T and
�S D�T , which proves the claim, and thus Proposition 6.24.

If �=� is a generalized cusp, by Proposition 6.24 there is a homogeneous domain
�T �� that is preserved by the finite-index subgroup of � \T .�/. Next we show
that �T is preserved by all of � .

Lemma 6.25 Suppose C D �=� is a minimal generalized cusp and T D T .�/ �

UT.nC 1/ and �0 D T \� . Suppose �=�0 contains a homogeneous cusp �T =�0
and �T is preserved by T . Then � preserves �T , so C contains the homogeneous
generalized cusp �T =� .

Proof By Proposition 6.23, C � D�T =�0 is a radial flow cusp and, by Lemma 6.22,
�T � Rn is bounded by the strictly convex properly embedded hypersurface @�T .
By Theorem 6.18, T D T .�/ is the unique translation group that contains � .

Since � normalizes itself, it follows that � normalizes T and therefore � permutes
the decomposition of RPn into T –orbits. The domain �T is foliated by T –orbits
and �T =T Š Œ0; 1/. Since � \T preserves �T and j� W� \T j<1, it follows the
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� –orbit of �T is a finite number of pairwise disjoint convex sets all contained in �.
Thus �\T permutes these domains. There is a finite-index subgroup �1 � �\T that
preserves each domain. We may assume �1 is normal in � . Thus M D�=�1 is a
regular cover of C that contains one copy of P D�T =�1 for each domain. However,
M and each copy of P is a generalized cusp. Each copy of @P separates @M from
the end of M. Since the copies of P are disjoint, there is only one copy of P and �
preserves �T .

Proof of Theorem 6.3 Suppose C D�=� is a generalized cusp of dimension n. We
may assume C is minimal by Lemma 6.5. Since � is virtually nilpotent, it follows
from Proposition 6.12 that there is a finite-index subgroup � 0 < � that is conjugate
into UT.nC 1/. We will assume this conjugacy has been done. Then zC D �=� 0

is a generalized cusp that is a finite cover of C and is minimal by Lemma 6.5. It
follows from Theorem 6.18 that � 0 is a lattice in a connected upper-triangular Lie
group T D T .�/. By Proposition 6.23, it follows that zC is a radial flow cusp for a
radial flow ˆ with stationary hyperplane H. Let Rn D RPn nH. By Lemma 6.22,
��Rn is a closed strictly convex set bounded by the strictly convex hypersurface @�.
By Proposition 6.24, there is a properly convex �T � � that is T –invariant and
thus � 0–invariant. By Lemma 6.25, �T is preserved by all of � , hence �T =� is a
homogeneous cusp in C and � < PGL.�T /.

Lemma 6.26 Suppose G is a connected group with dimG D n�1. For x 2RPn the
subset of Hom.G;GL.nC 1;R// consisting of all � with �.G/ � x a Hessian convex
hypersurface is open.

Proof Suppose the map f W G!RPn given by f .g/D .�.g// �x has image a strictly
convex hypersurface S. Because G acts transitively on S by projective maps, it follows
that S is strictly convex everywhere if and only if it is strictly convex at the single
point x . Let � be the normal to S at x and e 2G the identity. Hessian convexity of S
at x is equivalent to the quadratic form QD � �D2ef being positive or negative definite.
This form QDQ.�/ is a smooth function of � and the set of definite quadratic forms
is open in the set of all quadratic forms.

Definition 6.27 If C is a generalized cusp of dimension n, then GC.C / is the subspace
of Hom.�1C;GL.nC1;R// consisting of holonomies of all generalized cusp structures
on C and VFG.C / is the subspace of all � with �.�1C/ 2 VFG.
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Theorem 6.28 (stability of generalized cusps) Suppose C is a generalized cusp of
dimension n. Then:

(1) VFG.C / is semialgebraic.

(2) GC.C /� VFG.C /.

(3) � W K.C /! VFG.C / given by �.�; �/D � is a continuous open map.

(4) GC.C /D Im.�/.

Proof By Corollary 6.11, VFG.C / is semialgebraic. By definition .�; �/ 2 K.C / if
and only if �= Im.�/ is a generalized cusp diffeomorphic to C , thus GC.C /D Im.�/.
Every generalized cusp is homogeneous by Theorem 6.3, and Proposition 6.12 implies
the holonomy contains a finite-index subgroup that is conjugate into an upper-triangular
group, so GC.C / � VFG.C /. It is obvious that � is continuous; it only remains to
show it is open.

Set H D core.�1C; nC 1/. By Definition 6.17, given .�; �/ 2 K.C /, the translation
group is

T .�/ WD T .�.�1C//D exphlog.�H/i:

This is clearly a continuous function of � .

Choose x 2 @�. By Lemma 6.26 for � 2VFG.C / close enough to � , the hypersurface
S D T .�/ � x is Hessian-convex and close to @�. By Proposition 6.19, there is a
radial flow ˆ that is centralized by T .�/ and the group G D T .�/˚ˆ.R/ has an
open orbit W in RPn . Moreover, W is foliated by the strictly convex hypersurfaces
St Dˆt .S/.

After replacing t by �t we may assume for t < 0 and close to 0 that St is on the
convex side of S D S0 . Let �C D

S
t�0 St . Then @�C D S0 . This set is preserved

by T .�/ and therefore by �.H/. It is contained in a properly convex cone by the
argument of Theorem 3.4 using Figure 1. Hence �.�/ WD CH.�C/ is properly convex
and T .�/–invariant. The argument of Claim 3 in Proposition 6.23 shows that �.H/
acts freely and properly discontinuously on �.�/. Since �.�/ is T .�/–invariant,
@�.�/ is Hessian-convex. Thus �.�/=�.H/ is a homogeneous generalized cusp.

It only remains to show that �.�/ is preserved by all of �.�1C/. The argument is
very similar to the proof of Lemma 6.25. The �.�1C/–orbit of �.�/ is finite because
j�1CM WH j <1. By Lemma 6.16, T .�/ is the unique virtual e–hull of �.�1C/.
Thus �.�1C/ preserves the decomposition of RPn into T .�/–orbits. Moreover,

Geometry & Topology, Volume 22 (2018)



Deforming convex projective manifolds 1393

�.�/ is a union of such orbits. Thus if g 2 �1C then .�g/.�.�// is either �.�/ or
disjoint from �.�/. We need only look at finitely many such g . Observe that �.�/
is close to �.�/ and �.g/ is close to �.g/ and �.�1C/ preserves �.�/. Thus �.g/
preserves �.�/, so .�g/.�.�// intersects �.�/. It follows that .�g/.�.�//D�.�/.

We remark that when C Š T 2 � Œ0;1/, the subset of diagonal representations in
GL.3;R/ given by holonomies of generalized cusps is not closed. The boundary
consists of properly convex structures on C with @C flat, thus not strictly convex.

Theorem 6.29 (main theorem) Suppose N is a compact, connected n–manifold and
V D

Sk
iD1 Vi � @N is the union of some of the boundary components of N. Assume

�1Vi is virtually nilpotent for each i . Let M D N n V . Then the holonomy map
HolW Devce.M/!VFG.M/ is continuous and open, and VFG.M/ is a semialgebraic
subset of Hom.�1M;GL.nC 1;R//.

Proof Continuity is obvious. That VFG.M/ is semialgebraic follows from Corollary
6.11. Let Bi be the end of M corresponding to Vi and BD

S
Bi . Given a developing

map dev2Devce.M/, the holonomy �DHol.dev/ is in VFG.M/ by Proposition 6.12.
The restriction devjBi determines a generalized cusp Bi Š �i=�i with holonomy
�i D �.�1Bi /. If �0 2 VFG.M/ is sufficiently close to � , then, by Theorem 6.28,
there are nearby generalized cusps Bi Š�0i=�

0
i with holonomy � 0i D �

0.�1Bi /. Thus
x D .�; .�1; �1/; : : : ; .�k; �k// and x0 D .�0; .�01; �

0
1/; : : : ; .�

0
k
; � 0
k
// are close in

RelHol.M;B;K/. By Theorem 5.8, the map

EKW Devce.M;P /!RelHol.M;B;K/

is open, so there is dev0 close to dev with EK.dev0/D x0 and Hol.x0/D �0. Hence
Hol is open.

Proof of Theorem 0.2 By definition, Repce.M/ D Im.Hol/, so the result follows
from Theorem 6.29.

We may avoid appealing to the theorem of Schoen and Yau used in the proof of
Proposition 5.2 for the manifolds appearing in the main theorem using:

Lemma 6.30 Every homogeneous cusp has an exhaustion function.
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Proof Suppose C D�=� is a homogeneous cusp and T D T .�/ is the translation
subgroup. Then � has a codimension-1 foliation by T –orbits that covers a smooth
foliation of C . Pick y in the interior of � and define F W �!R by F.x/Dd�.x; T �y/
if T � y separates @� from x , and define F.x/ D 0 otherwise. Then F covers a
map f W C ! R and Y D f �1.0/ is a compact collar neighborhood of @C and
f .x/D d.y; Y / and f �1.t/ is a leaf of the foliation of C for t > 0.

It is clear that kdf k � 1 when f > 0. Thus it suffices to show that kD2f k is
bounded. Suppose there is a sequence .Ck; fk; xk/ such that kD2fkkxk > k . Then
Ck D�k=�k and �k is a lattice in Gk D PGL.�k/. We may assume all the �k are
in Benzécri position and 0 covers xk . We may also assume �k!� in the Hausdorff
topology. Then Gk!G � PGL.�/. The T –orbits form a smooth foliation of � and
we define a smooth function F W �!R using y D 0 as above. Then Fk converges
to F in C1 on compact sets. But kD2fkkDkD2Fkk!1 contradicts kD2F k<1
because F is smooth.

7 Three-dimensional generalized cusps

An orientable three-dimensional generalized cusp is diffeomorphic to T 2� Œ0;1/, and
Leitner [26] shows that the holonomy is conjugate into a unique group Cn of the form
below with ˇ � ˛ > 0 fixed, where n is the number of nontrivial weights:

C0 D

0BB@
1 s t 1

2
.s2C t2/

0 1 0 s

0 0 1 t

0 0 0 1

1CCA ; C1 D

0BB@
es 0 0 0

0 1 t 1
2
t2� s

0 0 1 t

0 0 0 1

1CCA ;

C2.˛/D

0BB@
es 0 0 0

0 et 0 0

0 0 1 �t �˛s

0 0 0 1

1CCA ; C3.˛; ˇ/D

0BB@
es 0 0 0

0 et 0 0

0 0 e�˛s�ˇt 0

0 0 0 1

1CCA :
A related statement, due to Benoist, is in 2.7 of [4]. There is a compact, properly
convex domain �nD�n.˛; ˇ/ preserved by CnDCn.˛; ˇ/ and @�nDAtB where
A D Cn � x is an orbit and B is a simplex contained in a projective hyperplane. If
�n � Cn is a lattice then M D�n=�n is a compactification of the generalized cusp
M D .�n nB/=�n obtained by adding @1M D B=� , which is a point for C0 , a
circle for C1 and a torus for C2 or C3 . The group Cn is a translation group and is
contained in the cusp Lie group PGL.�n/.
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Figure 2: Generalized cusps in dimension 3

The group C0 is conjugate into PO.3; 1/ and contains the holonomy of a cusp of a
hyperbolic 3–manifold. Ballas [2] found a lattice in C1 that is the holonomy of a gen-
eralized cusp for a properly convex structure on the figure eight knot complement. The
groups C3.˛; ˇ/ are diagonal affine groups that satisfy the uniform middle eigenvalue
condition of Choi [9]. Gye-Seon Lee found lattices in some of these groups that are
holonomies of generalized cusps for a properly convex structure on the figure eight
knot complement. At the time of writing it is not known if there is a 3–manifold that
admits a finite-volume hyperbolic structure and also a properly convex structure that is
a lattice in some C2.˛/. The classification of generalized cusps in all dimensions is
given in Ballas, Cooper and Leitner [3].

8 Convex smoothing

We are concerned with various kinds of convexity. A function f W .a; b/!R is convex
if

8.c; d/� .a; b/ 8t 2 .0; 1/ f .tcC .1� t /d/� tf .c/C .1� t /f .d/

and strictly convex if the above inequality is always strict. It is Hessian-convex if f is
smooth and f 00>0 everywhere. A convex function is strictly convex at p 2 .a; b/ if the
graph of y D f .x/ intersects the tangent line at x D p at the single point .p; f .p//.

Each of these definitions extends to a function f W M !R on an affine manifold M by
requiring its restriction to each line segment in M to have the corresponding property.
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In the case of Hessian-convex we also require f is smooth. It follows that if a convex
function f W M !R is strictly convex at the point p 2M, then there is hyperplane H
and a neighborhood U � M of p such the graph of f jU intersects H only at p .
For affine manifolds, we show how to approximate a convex function which is strictly
convex somewhere by a smooth, Hessian-convex one.

The main application is that given a projective manifold which has a convex boundary
that is strictly convex at some point, we can shrink the manifold slightly to produce a
submanifold with Hessian-convex boundary, ie locally the graph of a Hessian-convex
function. One might imagine using sandpaper to smooth the boundary and produce a
submanifold with smooth, strictly convex boundary.

The idea is to improve a convex function which is already Hessian-convex on some open
subset, by changing it in a small convex set C , and leaving it unchanged outside C .
This is done so that it is Hessian-convex inside a slightly smaller convex set C� � C ,
and also Hessian-convex at any point where it was previously Hessian-convex. In this
way the problem is reduced to a local one in Euclidean space.

Greene and Wu [20, Theorem 2], and also [19], showed that on a Riemannian manifold,
any function f with the property that locally there is a function g with positive definite
Hessian such that f �g is convex along geodesics (they call f strictly convex) can be
uniformly approximated by smooth, Hessian-convex functions. Smith [35] gives an
example, for each k � 0, of a C k convex function on a noncompact Euclidean surface
which is not approximated by a C kC1 convex function.

A function f is convex down if �f is convex. This means secant lines lie below the
graph: tf .a/C.1� t /f .b/� f .taC.1� t /b/ for all a; b and 0� t � 1. Equivalently,
the set of points below the graph of f is convex.

If f and g are smooth convex-down functions, then min.f; g/ is convex down, but
need not be smooth at points where f D g . We construct a smooth approximation m�

on R2
C

which agrees with min outside a certain neighborhood of the diagonal and has
good convexity properties.

Lemma 8.1 (smoothing min) Given �2 .0; 1/, there is a smooth function m� W R2
C
!

RC which is convex down and nondecreasing in each variable (m�x � 0;m
�
y � 0) such

that if x � �y or y � �x , then m�.x; y/Dmin.x; y/. Moreover, m� is linear along
rays: m�.tx; ty/D t �m�.x; y/ for t � 0. It follows that if f; gW C !RC are convex
down, then so is h.x/Dm�.f .x/; g.x//.
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Proof On R2
C

,

min.x; y/D .xCy/ � k
�

x

xCy

�
; where k.t/Dmin.t; 1� t /:

Choose ı so that � D ı=.1� ı/. Then ı 2
�
0; 1
2

�
. Let KW Œ0; 1�! Œ0; 1� be a convex-

down smooth function that agrees with k outside .ı; 1� ı/. Define mW R2
C
!R by

m.x; y/D .xCy/ �K
�

x

xCy

�
:

Clearly m is linear along rays. If x=.xC y/ � ı , then m.x; y/ D x . This happens
when x � �y . Similarly, m.x; y/D y when y � �x , thus

m.x; y/Dmin.x; y/ if x � �y or y � �x:

The subset of R2
C

where neither x � �y nor y � �x is called the transition region.
Outside the transition region, mDmin.

The graph of m is a convex-down surface above R2
C

that is a union of rays starting
at the origin. One can picture the graph of m: it is the cone from the origin of the
convex-down arch that is the part of the graph lying above xC y D 1. This arch is
given by K.x/. Since K.x/ is convex down, the graph of m is convex down, though
in the radial direction it is, of course, linear.

This surface is comprised of three parts. The central part is curved down. The other
two parts are sectors of flat planes, one containing the x–axis and the other containing
the y–axis.

We claim m.x; y/ is a nondecreasing function of each variable. This is clear on the
two parts of the graph of m that are flat, since they are planes containing either the
x–axis or the y–axis. Now

mx.a; b/D
@m

@x
DK

�
a

aCb

�
C .aC b/ � b.aC b/�2K 0

�
a

aCb

�
:

Since mx.ta; tb/Dmx.a; b/, we may assume aC b D 1. Then

mx.a; b/DK.a/C .1� a/K
0.a/DW c:

The point .x; y/D .1; c/ lies on the tangent line to the graph of y DK.x/ at x D a .
Since this graph is convex down, and underneath the graph of y D k.x/, it follows
that c � 0. This is best seen by staring at a diagram. Similar calculations work for my .
This proves the claim.
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Next we deduce that h is convex down using these two properties of m, where

h.taC .1� t /b/Dm
�
f .taC .1� t /b/; g.taC .1� t /b/

�
:

Since mx � 0 and f is convex down,

m.f .taC .1� t /b/; g.taC .1� t /b//�m
�
tf .a/C .1� t /f .b/; g.taC .1� t /b/

�
:

Similarly, since my � 0 and g is convex down,

m
�
tf .a/C.1�t /f .b/; g.taC.1�t /b/

�
�m.tf .a/C.1�t /f .b/; tg.a/C.1�t /g.b//

Dm
�
t .f .a/; g.a//C.1�t /.f .b/; g.b//

�
:

Finally, since m is convex down,

m
�
t .f .a/; g.a//C.1�t /.f .b/; g.b//

�
� t �m.f .a/; g.a//C.1�t /m.f .b/; g.b//

D t �h.a/C.1�t /h.b/:

Corollary 8.2 (relative convex smoothing) Suppose C �Rn is a compact convex set
with nonempty interior and C� is a compact convex set in the interior of C . Suppose
f W C !R is a nonconstant, convex function, which is Hessian-convex on a (possibly
empty) subset S � C . Assume f j@C D 0. Then there is a convex function F W C !R

such that F is Hessian-convex on S [C� and f D F on some neighborhood of @C .

Proof Observe f < 0 on the interior of C . Let g be a Hessian-convex function
on Rn which is negative everywhere on C with g � 1

2
f everywhere on C�. Since f

is not identically zero, this can be done with, for example, g.x/D ˛kxk2Cˇ with
suitable constants.

For � 2
�
0; 1
2

�
, define F.x/D�m�.�f .x/;�g.x//; then F.x/Dmax.f .x/; g.x//

except when f .x/ is close enough to g.x/, depending on � . Since g < f D 0 on @C ,
it follows that F D f on some neighborhood of @C . Moreover, F D g on C� and
therefore F is Hessian-convex on C�.

By Lemma 8.1, F is convex. Since mDm� and g are smooth and the composition
of smooth functions is smooth, it follows F is smooth on S. It only remains to show
D2F is positive definite on S. It suffices to show, for every a 2 S and every unit
vector u 2Rn, the function p.t/D�F.aC t �u/ satisfies p00.0/ < 0. Computing,

p0 D�mxfu�mygu;
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where
mx D

@m

@x
; my D

@m

@y

and fu and gu are the derivatives in direction u at a 2 C ,

fu D df .u/; gu D dg.u/:

Then

p00 D Œmxx.fu/
2
C 2mxyfuguCmyy.gu/

2�� ŒmxfuuCmyguu�:

Since m is smooth and convex down, it follows that D2m is negative semidefinite, so
the first term is � 0. By Lemma 8.1, we have mx � 0 and my � 0. Also guu > 0
everywhere and fuu > 0 on S. Since m is linear along rays and m.x; y/ > 0 on the
positive quadrant (x > 0 and y > 0), it follows that mx Cmy > 0 on the positive
quadrant, so the mxfuuCmyguu > 0 everywhere on S. Hence p00 < 0 everywhere
on S, as required.

A component N of the boundary of a projective manifold M is Hessian-convex if N
is locally the graph over the tangent hyperplane of a smooth function with positive
definite Hessian in some chart.

Proposition 8.3 (smoothing convex boundary) Suppose M is a projective manifold
and @M is everywhere locally convex, and also strictly convex at one point on each
component of @M. Then there is a submanifold N � M such that M n int.N / Š
Œ0; 1�� @N and @N is Hessian-convex.

Proof Suppose @M is strictly convex at x 2 @M. Choose a (subset of a) hyperplane
H � M close to x so that the component, C , of M nH containing x is a small
convex set V . Using local affine coordinates, S D C \ @M is the graph over H of a
convex function f which is 0 on H \ @M. Apply Corollary 8.2 to produce a smooth
function g with positive definite Hessian and satisfying 0� g � f . The graph of g is
a smooth hypersurface between H and S. Replace S by this graph. This smoothes
out part of @M. Repeating this procedure smoothes the entire boundary.

In a similar way one can prove:

Corollary 8.4 (smoothing convex functions) Suppose M is a connected affine mani-
fold and f W M !R is a convex function which is strictly convex at some point. Given
� > 0, there is gW M !R which is smooth, Hessian-convex and satisfies jf �gj< � .
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9 Benzécri’s theorem

Theorem 9.1 (Benzécri [5]) For each n > 1 there is a Benzécri constant R D
RB.n/ � 5n�1 with the following property: Suppose � is a properly convex open
subset of RPn and p2�. Then there is a projective transformation � 2PGL.nC1;R/
such that �.p/D 0 and B.1/� �.�/�B.R/, where B.t/ is the closed ball of radius t
in Rn centered at 0.

The projective transformation � is called a Benzécri chart for � centered at p and
the image �.�; p/ is called Benzécri position. The following proof is shorter and
more elementary than the traditional proof using John ellipsoids, and also provides an
algorithm to find a Benzécri chart. The set of Benzécri charts for .�; p/ is a compact
subset of PGL.nC 1;R/.

Proof The proof is by induction on n. If nD 1, then � is an open interval in RP1

with closure a closed interval. There is a projective transformation taking � to .�1; 1/
and p to 0, so RB.1/D 1.

For the inductive step, choose a projective hyperplane Hn�1 � RPn containing p .
Then �0D�\H is an open convex set in H ŠRPn�1 and p2�0. Since � is properly
convex, � is disjoint from some projective hyperplane Kn�1 . Thus �0 D�\H is
disjoint from H \K , which is a hyperplane in H. It follows that �0 is properly convex
in H. By induction, and after choosing appropriate coordinates on an affine patch in H
(or using a fixed coordinate system and applying a Benzécri transformation to �0 ),
we may assume that �0 �Rn�1� 0�H with p D 0 and Bn�1.1/��0 � Bn�1.r/,
where r DRB.n� 1/.

There are affine coordinates on RPn nK D Rn such that the affine part of H is
Rn�1 � 0. In what follows we will apply projective transformations in PGL.nC 1;R/
which are the identity on H. This moves � while keeping �0 fixed. The first step is
to arrange that

��Rn�1 � Œ�1; 1�

and @� contains a point z 2Rn�1 � 1. Then we may shear so that z D .0; : : : ; 0; 1/.

Next consider the one-parameter group A.t/ 2 PGL.nC 1;R/ fixing z and H. As t
varies, the points that are not fixed move between z and H. This group preserves the
family of affine planes fxn D constg in Rn. Since it fixes z , the affine plane Rn�1�1

Geometry & Topology, Volume 22 (2018)



Deforming convex projective manifolds 1401

Ω′

xn

−1S

0

1
zRn−1 × 1

Rn−1 × 0 ⊂ H

Rn−1 × (−1)

A = Ω ∩ [Rn−1 × (−1)] ⊂ S

Figure 3: Shadows

is preserved (though not fixed) by this group. Thus we may move � by an element of
this group so that it is still contained in Rn�1 � Œ�1; 1�, still contains z , and

AD�\ .Rn�1 � .�1//

is not empty. Let C � Rn�1 � Œ�1; 1� be the set of points on all lines ` passing
through z and some point in �0. Then S D C \ ŒRn�1 � .�1/� is the shadow from
the point z of �0 on Rn�1 � .�1/. Since � is convex, it follows that A� S. Since
�0 � Br.0/, it follows that S is contained in the shadow of Br.0/, which is the ball
D�Rn�1�.�1/ of radius 2r and center .0; : : : ; 0;�1/. Finally, let X be the union of
all line segments in Rn�1 � Œ�1; 1� containing a point of S and Br . This is contained
in the union of the shadows on Rn�1 � 1 of Br.0/�H from points in D . This is a
ball in Rn�1�1 of radius 4r and center z . It lies within distance 1C r � 5r of 0.

Let S be the set of all � � RPn which are disjoint from some hyperplane and
compact, convex and with nonempty interior, equipped with the Hausdorff topology.
Let S� � S �RPn be the set of all pairs .�; p/ with p in the interior of � with the
subspace topology of the product topology. There is an action of � 2 PGL.nC 1;R/
on S� given by �.�; p/D .��; �p/. The quotient of S� by this action is given the
quotient topology and denoted by B .

Corollary 9.2 (Benzécri’s compactness theorem [5]) B is compact.

It follows that there is a compact set of preferred charts centered on a point in a properly
convex manifold M. Different preferred charts give Euclidean coordinates around p
which vary in a compact family independent of M, depending only on dimension.

Geometry & Topology, Volume 22 (2018)
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