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Orderability and Dehn filling
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Motivated by conjectures relating group orderability, Floer homology and taut foli-
ations, we discuss a systematic and broadly applicable technique for constructing
left-orders on the fundamental groups of rational homology 3–spheres. Specifically,
for a compact 3–manifold M with torus boundary, we give several criteria which
imply that whole intervals of Dehn fillings of M have left-orderable fundamental
groups. Our technique uses certain representations from �1.M / into APSL2R , which
we organize into an infinite graph in H 1.@M IR/ called the translation extension
locus. We include many plots of such loci which inform the proofs of our main results
and suggest interesting avenues for future research.

57M60; 57M25, 57M05, 20F60

1 Introduction

A group is called left-orderable when it admits a total ordering that is invariant under
left multiplication (see Clay and Rolfsen [21] for an introduction to the role of orderable
groups in topology). We will say that a closed 3–manifold Y is orderable when �1.Y /

is left-orderable. (Technical aside: by convention, the trivial group is not left-orderable,
and so S3 is not orderable.) Our focus here is on the following question: given a
compact orientable 3–manifold M with torus boundary, which Dehn fillings of M are
orderable? We care about this question because of its relationship with the following
conjecture:

1.1 Conjecture For an irreducible Q–homology 3–sphere Y , the following are
equivalent:

(1) Y is orderable.

(2) Y is not an L–space.

(3) Y admits a coorientable taut foliation.
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Figure 1: Some results related to Conjecture 1.1, which asserts the equivalence of
the three circled conditions. Here Y is an irreducible Q–homology 3–sphere, all
foliations are coorientable, and all actions are nontrivial, faithful, and orientation-
preserving; the solid arrows are theorems and dotted ones conjectures. See Boyer,
Gordon and Watson [7] for a complete discussion.

Recall from Ozsváth and Szabó [53] that an L–space is a Q–homology 3–sphere with
minimal Heegaard Floer homology, specifically one where dim cHF.Y /D jH1.Y IZ/j.
The equivalence of (1) and (2) was boldly postulated by Boyer, Gordon and Watson [7],
which includes a detailed discussion of this conjecture. The equivalence of (2) and
(3) was formulated as a question by Ozsváth and Szabó after they proved that (3)
implies (2); see Ozsváth and Szabó [52], Kazez and Roberts [44] and Bowden [5].
On its face, Conjecture 1.1 is quite surprising given the disparate nature of these
three conditions, but there are actually a number of interconnections between them
summarized in Figure 1. Despite much initial skepticism, substantial evidence has
accumulated in favor of Conjecture 1.1. For example, it holds for all graph manifolds —
see Boyer and Clay [6] and Hanselman, Rasmussen, Rasmussen and Watson [38] —
many branched covers of knots in the 3–sphere — see Gordon and Lidman [35] — as
well as more than 100 000 small-volume hyperbolic 3–manifolds; see Dunfield [28].

Here, we provide further evidence for Conjecture 1.1 by giving tools that order whole
families of Q–homology 3–spheres arising by Dehn filling a fixed manifold with torus
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boundary. To formulate our first main result, we introduce a new concept: a knot
exterior is called lean when the longitudinal Dehn filling M.0/ is prime and every
closed essential surface in M.0/ is a fiber in a fibration over S1 . (See Section 2 for
precise definitions of standard terminology and conventions used in this introduction.)

1.2 Theorem Suppose M is the exterior of a knot in a Z–homology 3–sphere. If
M is lean and its Alexander polynomial �M has a simple root on the unit circle, then
there exists a > 0 such that for every rational r 2 .�a; a/ the Dehn filling M.r/ is
orderable.

In fact, with slightly more technical hypotheses, we extend this result to Q–homology
3–spheres in Theorem 7.1 below. The latter result also weakens the requirement that M

be lean, replacing it by a condition involving PSL2C–character varieties. Combining
Theorem 1.2 with Roberts’ construction [56] of foliations on Dehn fillings of fibered
manifolds immediately gives:

1.3 Corollary Suppose M is the exterior of a knot in a Z–homology 3–sphere.
Suppose that M is lean and fibers over the circle. If �M has a simple root on the unit
circle, then Conjecture 1.1 holds for all M.r/ with r 2 .�a; a/ for some a > 0. In
particular, these M.r/ are orderable and have a coorientable taut foliation.

Our second main result is the following, and applies to branched covers as well as Dehn
fillings; see Section 8 for the definition of the trace field of a hyperbolic 3–manifold.

1.4 Theorem Let K be a hyperbolic knot in a Z–homology 3–sphere Y . If the trace
field of the knot exterior M has a real embedding then:

(1) For all sufficiently large n, the n–fold cyclic cover of Y branched over K is
orderable.

(2) There is an interval I of the form .�1; a/ or .a;1/ such that the Dehn filling
M.r/ is orderable for all rational r 2 I.

(3) There exists b > 0 such that for every rational r 2 .�b; 0/[ .0; b/ the Dehn
filling M.r/ is orderable.

The reason the slope 0 is excluded from the conclusion in (3) is that M.0/ might have
a lens space connect-summand and hence not be orderable. Part (1) of Theorem 1.4
was also proven independently by Steven Boyer (personal communication); the lemma
behind part (3) was pointed out to us by Ian Agol and David Futer.
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Figure 2: Some translation extension loci that are discussed in detail in Section 5

1.5 Translation extension loci

We prove Theorems 1.2 and 1.4 by studying representations of 3–manifold groups into
the nonlinear Lie group zG DBPSL2R . Using such representations to order 3–manifold
groups goes back at least to Eisenbud, Hirsch and Neumann [30], and has been exploited
repeatedly of late to provide evidence for Conjecture 1.1. Closest to our results here,
representations to zG were used to obtain ordering results for Dehn surgeries on two-
bridge knots in Hakamata and Teragaito [37] and Tran [62], as well as branched covers
of two-bridge knots in Hu [42] and Tran [61]. Indeed, some of the results on branched
covers in Gordon [34], Hu [42] and Tran [61] can be viewed as special cases of both
the statement and the proof of Theorem 1.4(a).

Our main contribution here is to provide a framework for systematically studying
representations to zG in a way tailored for applications such as Theorems 1.2 and 1.4.
Specifically, given the exterior M of a knot in a Q–homology sphere, we organize the
representations of �.M /! zG that are elliptic on �1.@M / into a graph in H 1.@M IR/

called the translation extension locus and denoted by EL zG.M /. Very roughly, the
locus EL zG.M / is the image of the “character variety of zG representations” of �1.M /

in the corresponding object for �1.@M / under the map induced by @M ,!M ; as such,
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it parallels the A–polynomial story of Cooper, Culler, Gillet, Long and Shalen [22].
This locus was first studied by Khoi in his computations of Seifert volumes of certain
hyperbolic 3–manifolds; see Khoi [45]. While the graph EL zG.M / is infinite, it is
actually compact modulo a discrete group of symmetries, and so it is possible to draw
a picture of it: see Figure 2 for some examples, and Section 5 for many more.

To prove Theorems 1.2 and 1.4, we give a simple criterion (Lemma 4.4) which says
roughly that if the line in H 1.@M IR/ of slope �r meets EL zG.M / away from the
origin, then the Dehn surgery M.r/ is orderable. (Lemma 4.5 is our analogous result
for branched covers.) In Section 5, we use Lemma 4.4 to order large intervals of Dehn
fillings in some specific examples; indeed, the conclusions of Theorems 1.2 and 1.4
are much weaker than what we typically observe in practice.

Once we establish the basic properties of these loci in Theorem 4.3, our main results
are proved by using the given hypotheses to produce at least a small arc of EL zG.M / in
a certain location in H 1.@M IR/, and then applying Lemma 4.4 at many points along
the arc. For Theorem 1.2, we build the arc by using Heusener and Porti [40] to deform
reducible representations corresponding to a root of �M on the unit circle to more
interesting representations in PSL2R. In Theorem 1.4, we first use a combination of
hyperbolic geometry and algebraic geometry to produce an arc which contains (the
image of) the representation associated with the real embedding of the trace field. The
key issue of the arc’s location in H 1.@M IR/ hinges on the result of Calegari [13,
Corollary 2.4] that, for a lift of the holonomy representation of the hyperbolic structure
of M to SL2C , the trace of the longitude is �2 rather than 2.

1.6 Applicability

While there are many cases where neither Theorem 1.2 nor Theorem 1.4 applies, we
next argue that some of their hypotheses are quite generic and therefore our results
should be interpreted as providing a profusion of orderable 3–manifolds.

For example, the Alexander polynomial hypothesis of Theorem 1.2 holds for the
vast majority of the simpler 3–manifolds that one can tabulate: specifically, it occurs
for 81.2% of the 1:7 million prime knots with at most 16 crossings — see Hoste,
Thistlethwaite and Weeks [41] — and 96.2% of the 59 068 hyperbolic Q–homology
solid tori that can be triangulated with at most 9 ideal tetrahedra; see Burton [11].
We also looked at more complicated knots by taking braid closures of random 10–
strand braids with 100–1 000 crossings (conditioned on the closure being a knot rather
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than a link); of the 100 000 such knots we examined, some 99.87% had Alexander
polynomial with a simple root on the unit circle. Finally, of particular interest in light
of Conjecture 1.1 are the L–space knots in S3 , that is, those with a nontrivial Dehn
surgery producing an L–space. The Alexander polynomials of such knots have a
very special form — see Ozsváth and Szabó [53, Corollary 1.3] — and it follows from
Konvalina and Matache [46] that L–space knots have �M with a root on the unit
circle; experimentally, there is always a simple root, but we are unable to prove this.

Turning to Theorem 1.4, it is also very common for a hyperbolic 3–manifold to have
a trace field with a real embedding. For example, Goerner [33] has calculated the
trace fields of all 61 911 cusped manifolds that can be triangulated with at most 9

ideal tetrahedra; see Burton [11]. Among these, some 95.5% had trace fields with a
real embedding. Indeed, about 36.3% of the roots of the polynomials defining these
fields were real. We conjecture that, for any reasonable model of a random hyperbolic
3–manifold, the trace field has a real embedding with probability 1.

In contrast, the leanness condition of Theorem 1.2, whose use in the proof is more
technical, is hardly ubiquitous. While it can easily be arranged by, for example, taking
the exterior of a knot in S2 �S1 which generates H1.S

2 �S1IZ/, it seems that a
generic knot in S3 is not lean: work of Gabai [31] implies that a lean knot must be
fibered, and the latter condition is experimentally of probability 0 in the above models
of random knots (see also Dunfield and Thurston [29]). That said, the strengthened
version of Theorem 1.2, namely Theorem 7.1, requires the weaker hypothesis that M

is longitudinally rigid (see Section 7). This condition might well be generic — we know
of only a few cases where it fails — but unfortunately it is hard to study in bulk.

1.7 Outline of the rest of the paper

Sections 2 and 3 review some definitions and background results; Section 2 discusses
topology, character varieties, and real algebraic geometry, whereas Section 3 is focused
on the group zG . Section 4 defines the translation extension locus and states its basic
properties. Section 5 is the longest and arguably the heart of the paper; it gives twelve
examples of translation extension loci and discusses their properties as they relate to
our results here. Section 6 proves the basic structure result for these loci (Theorem 4.3),
as well as Lemmas 4.4 and 4.5. Sections 7 and 8 then prove Theorems 1.2 and 1.4,
respectively. Section 8 includes Remark 8.7, which answers Question 6 of Lidman and
Watson [48] by giving an example of a hyperbolic Q–homology solid torus that is not
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fibered and where every nonlongitudinal Dehn filling is an L–space. Finally, Section 9
lists ten related open problems.
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2 Background

2.1 Topological terminology and conventions

We first review some basic concepts that will be used throughout this paper, and in
the process set some standing conventions. First, all 3–manifolds will be assumed
connected and orientable unless noted otherwise. A knot K in a 3–manifold Y is a
smoothly embedded S1 inside of Y . The exterior of K is Y with an open tubular
neighborhood about K removed; this is a compact 3–manifold with boundary a
torus. A Q–homology 3–sphere is a closed 3–manifold whose rational homology
is the same as that of S3 ; a Z–homology 3–sphere is defined analogously. A Q–
homology solid torus is a compact 3–manifold M with boundary a torus where
H�.M IQ/ŠH�.D

2�S1IQ/; this is equivalent to M being the exterior of a knot in
some Q–homology 3–sphere. Analogously, a Z–homology solid torus is a compact
3–manifold M with boundary a torus where H�.M IZ/ŠH�.D

2 �S1IZ/; again,
this is equivalent to M being the exterior of a knot in a Z–homology 3–sphere.

We call a compact orientable surface F in a 3–manifold M essential when it is
properly embedded, incompressible, and not boundary parallel; here, incompressible
means that �1.F /! �1.M / is injective and that F is not a 2–sphere bounding a
3–ball.

2.2 Framings and slopes

For a Q–homology solid torus M, we denote the inclusion map of its boundary by
�W @M !M. We define a homologically natural framing to be a generating set .�; �/
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for H1.@M IZ/, where ��.�/ D 0 in the rational homology H1.M IQ/. While the
homological longitude � is defined up to sign, there are infinitely many choices for �.

An isotopy class of unoriented essential simple closed curves in @M is called a slope. A
slope can be recorded by a primitive element in H1.@M IZ/, which is well-defined up
to sign. Once we fix a framing .�; �/ for @M, we shall identify slopes with elements
of Q[f1g via p=q$˙.p�C q�/.

2.3 Representation and character varieties

Throughout this paper, we will use GC to denote the Lie group PSL2C Š PGL2C .
We now review some basic facts about representation and character varieties with target
group GC ; for details, see eg [39]. For a compact manifold M, the representation
space R.M /D Hom.�1.M /;GC/ is an affine algebraic set in some Cn . However,
we are usually only interested in representations up to conjugacy by elements of GC ,
so we consider the minimal Hausdorff quotient X.M / of R.M / generated by the
orbits of the conjugation action of GC . Equivalently, X.M / is the invariant theory
quotient R.M /==GC ; hence X.M / is again an affine algebraic set, which is referred
to as the GC –character variety of M. (These algebraic sets are not always irreducible,
but we still refer to them as “varieties” for historical reasons.) For each group element

 2�1.M /, there is a regular function tr2


 W X.M /!C given by tr2

 .Œ��/D tr.�.
 //2 ;

we must take the square here because the trace of a matrix in GC is only defined up to
sign. One can always choose a finite set of elements in �1.M / so that the corresponding
tr2 functions give a complete system of coordinates for the affine algebraic set X.M /

[39, Corollary 2.3].

We will frequently regard GC as the group of orientation-preserving isometries of
hyperbolic 3–space H3 . The group GC acts on P 1.C/ by Möbius transformations,
in a way that extends the action on H3 to the sphere at infinity @H3 D S2

1 ŠP 1.C/.
A representation � 2 R.M / is called reducible when �.�1.M // fixes a point in
P 1.C/ under the Möbius action of GC ; otherwise � is called irreducible. A character
� 2X.M / is called reducible if any (equivalently all) representations � mapping to �
are reducible, and analogously for irreducible. While nonconjugate representations can
have the same character, this can only happen in the reducible case [39, Lemma 3.15].

Now suppose M is a compact 3–manifold with torus boundary, and let �W @M !M

be the inclusion map. By restricting representations, we get an induced regular map
��W X.M /!X.@M /. We will need the following fact in the proof of Theorem 4.3:
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2.4 Lemma The image of ��W X.M /!X.@M / has complex dimension at most 1.

For SL2C–character varieties, rather than the GC ones we work with here, the cor-
responding result is [23, Corollary 10.1]. As not every representation �1.M /!GC

lifts to SL2C by [39, Theorem 1.4], we must prove Lemma 2.4 directly. However,
the argument is essentially identical to the SL2C case, and the proof may be safely
skipped at first reading.

Proof of Lemma 2.4 We identify �1.@M / with Z˚Z via a fixed framing .�; �/.
We will view the character variety X.@M / as the minimal Hausdorff quotient of
R.@M /DHom.Z˚Z;GC/ by the conjugation action. It is shown in [40, Lemma 7.4]
that R.@M / has exactly two irreducible components. The first consists exactly of the
conjugacy class of a representation onto a Klein 4–group whose nontrivial elements are
rotations about three mutually orthogonal lines in H3 . The other component consists of
representations that either send both � and � to nonparabolic elements with a common
axis, or to parabolic elements with a common fixed point. By [40, Lemma 7.4], this
component is 4–dimensional and smooth away from the trivial representation. We will
denote its image in X.@M / by D . The conjugacy class of a nonparabolic representation
is closed and isomorphic to the coset space GC=S , where S is the stabilizer of the axis
in GC , and so the conjugacy class has dimension 2. The conjugacy class of a parabolic
representation, on the other hand, is not closed and contains the trivial representation in
its closure. Thus the conjugacy class of any parabolic representation maps to the same
point in X.@M / as the trivial representation. These two facts imply that the complex
variety D is 2–dimensional.

Since D is the only irreducible component of X.@M / with dimension larger than 1,
to prove the lemma it suffices to show that if Z is an irreducible component of X.M /

such that ��.Z/�D then ��.Z/ has dimension at most 1. For this it is convenient to
pass to a 2–fold cover of X.M /.

Following [27], we define the augmented representation variety yR.M / to be the
subalgebraic set of R.M /�P 1 consisting of all pairs .�;x/ where x is a point of
P 1.C/ that is fixed by the image of �1.@M / under � ı �. On a typical irreducible
component of R.M /, there are generically two points fixed by the group �.�1.@M //,
and so the projection .�;x/ 7! � gives a regular map of degree 2 onto an irreducible
component of R.M /. There is a natural diagonal action of GC on yR.M / which acts
by conjugation on the representation � and by the induced Möbius transformation
on P 1 . The quotient yX .M /D yR.M /==GC is the augmented character variety of M.
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The augmented representation and character varieties of the boundary torus, yR.@M /

and yX .@M /, are defined analogously. These augmented varieties for @M are in fact
irreducible, since the pesky Klein 4–group representations have no fixed points on
P 1.C/ and hence are missing from yR.@M /. Our choice of framing .�; �/ determines
an identification of yX .@M / with C� �C� as follows. If � is given by

�.�/D˙

�
z 0

0 z�1

�
and �.�/D˙

�
w 0

0 w�1

�
;

and 1 denotes the point of P 1.C/ with homogeneous coordinates Œ1 W 0�, then the
GC –orbit of the pair .�;1/ is identified with the point .z2; w2/, that is, with the pair
consisting of the holonomies of �.�/ and �.�/.

Since the conjugacy class of any parabolic representation of �1.@M / has the same
image in X.@M / as the trivial representation, when yX .@M / is identified with C��C�

in this way, any pair .�;x/ 2 yR.@M / where � is parabolic will be mapped to .1; 1/ by
the quotient map yR.@M /! yX .@M /. Also, the deck transformation for the branched
covering yX .@M /!D is given by .z; w/ 7! .1=z; 1=w/.

The augmented and unaugmented character varieties fit into the commutative diagram

yX .M / yX .@M /

X.M / X.@M /

O��

��

in which the vertical maps are induced by the projection .�;x/ 7! � . Since the vertical
maps are finite, it suffices to show that for each irreducible component yZ of yX .M /,
its image O��. yZ/ is at most 1–dimensional.

To prove this we apply the same argument used in [23, Corollary 10.1] in the case
of SL2C . Namely, we consider the real 1–form

! D log jzj dargw� log jwj darg z

defined on C� �C� , viewed as a real manifold. The form ! is not closed since

d! D d log jzj ^ dargw� d log jwj ^ darg z:

However, since d! is the imaginary part of the complex 2–form d log z ^ d logw , it
does restrict to a closed form on any complex curve in C��C� . Moreover, it follows
from a result in Craig Hodgson’s thesis (see [22, Section 4.4]) that ! pulls back under
O�� to an exact 1–form on yZ . In fact, the pull-back of ! is equal to �2 dvol, where
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vol is the real analytic function on yX .M / that assigns to .Œ��; z/ the volume of the
representation � , as defined in [26, Section 2.1]. (In particular, there is a mysterious
cohomology class which obstructs a given complex curve in C� �C� from arising
as a component of the image of O�� .) To complete the argument, we just observe as in
[23] that, since ! is not exact on C� �C� but pulls back to an exact 1–form on yZ ,
we would obtain a contradiction if O��. yZ/ were dense in C� �C� . Thus O��. yZ/ must
be at most 1–dimensional, as required.

2.5 Real points

We will need a few basic facts from real algebraic geometry; for a general reference,
see [1]. If X is an affine algebraic set in Cn , we denote the real points X \Rn by XR .
When X can be cut out by polynomials with real coefficients, we say that X is defined
over R; in this case, the set X is invariant under coordinatewise complex conjugation
� W Cn!Cn , and XR is precisely the set of fixed points of � . If X is a quasiprojective
variety in P n.C/ that can be defined by real polynomials, then the real points XR are
again the fixed points of the involution � on P n.C/ which acts by complex conjugation
of the projective coordinates; in any affine chart whose hyperplane at infinity is defined
by a real linear form, the points of XR are precisely the points of X whose coordinates
are real.

In real algebraic geometry, the projective space P n.R/ is isomorphic to an affine
algebraic variety, and hence any quasiprojective variety is isomorphic to an affine one.
When working with real algebraic varieties, it is often natural to consider the larger
collection of semialgebraic sets, that is, those defined by polynomial inequalities, and to
consider properties such as irreducibility of a real algebraic set in that enlarged category.
The dimension of a real semialgebraic set is equal to its topological dimension. Here,
we will need only the following three results:

2.6 Proposition [1, Theorem 5.43] Suppose X is an affine real semialgebraic
set which is closed and bounded. If the dimension of X is at most 1, then X is
homeomorphic to a finite graph, where graphs are allowed to have isolated vertices.

2.7 Proposition [1, Theorem 5.48] A real semialgebraic set is locally path con-
nected.

2.8 Proposition Suppose X is a complex affine algebraic curve defined over R. If
x0 is a smooth point of X that lies in XR , then x0 has a classical neighborhood in XR

which is a smooth arc.
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Proof The curve X has finitely many singular points which are permuted by � . Let
X 0 be the complementary set of smooth points. Now X 0 is a smooth surface and the
restriction of � to X 0 is an orientation-reversing involution. Using a Riemannian metric
on X 0 which is invariant under � , it is easy to see that X 0R is a smooth 1–manifold,
proving the proposition.

2.9 Real representations

Throughout this paper, we will set G D PSL2R and K D PSU2 , where both groups
are viewed as subgroups of GC D PSL2C . We will also occasionally consider the
subgroup PGL2R in GC , which makes sense via the identification of PSL2C with
PGL2C ; geometrically, the subgroup PGL2R is the full stabilizer in GC of the copy
of H2 fixed by G (in particular, PGL2R includes orientation-reversing isometries
of H2 ). We will view RG.M /DHom.�1.M /;G/ as a subset of R.M /, and we will
denote by XG.M / the image of RG.M / under the quotient map t W R.M /!X.M /.
Thus XG.M /�XR.M /. By [39, Lemma 10.1], in fact the set XR.M / is the image
of RPGL2R.M /[RK .M / under t . Since XG.M / is the image of a real algebraic
set under a polynomial map, it is a real semialgebraic subset of XR.M /. Note that
XG.M / is not the quotient of RG.M / under the action of G by conjugation, even
neglecting the issue of nonclosed orbits; rather, it is essentially the quotient of RG.M /

under conjugation by the larger group PGL2R. Geometrically, the point is that PGL2R,
not G , is the full stabilizer in GC D IsomC.H3/ of the standard H2 in H3 . Since G

can be characterized as the subgroup of PGL2R which preserves the orientation of H2 ,
considering representations into G up to conjugacy in GC amounts to forgetting the
orientation on H2 . We also use XK .M / to denote the image of RK .M / in XR.M /;
in this case, the set XK .M / is the ordinary quotient RK .M /=K . Let S be the
subgroup PSO2 D G \K Š S1 , which is the stabilizer of a point in H2 under the
action of G . As usual, we use XS .M / to denote the image of RS .M / in XR.M /;
note here that any representation in RS .M / factors through H1.M IZ/ since S itself
is abelian. The next two lemmas will be used in the proof of Theorem 1.4.

2.10 Lemma The intersection XK .M /\XG.M / is exactly XS .M /. In particular,
if Œ�� is in XK .M /\XG.M / then Œ�� is reducible over GC .

Proof Consider Œ�� 2XK .M /\XG.M /. If Œ�� is irreducible over GC , then any two
representatives of Œ�� are conjugate in GC , so we can assume that � 2 RG.M / and
that every �.
 / is elliptic or trivial as � is also conjugate into RK .M /. However,
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every subgroup of G consisting solely of elliptic elements has a global fixed point
x0 in H2 (see eg [2, Theorem 4.3.7]). The representation � then fixes pointwise
the geodesic in H3 that is perpendicular to H2 and contains x0 ; in particular, it is
reducible over GC , contradicting our initial assumption. So we have reduced to the
case where Œ�� is reducible over GC , and there we can choose the representative � to be
diagonal. As Œ�� is in XK .M /, we have tr2


 .�/ in Œ0; 4� for all 
 2�1.M /. A diagonal
matrix A in GC with tr2.A/ in Œ0; 4� has nonzero entries on the unit circle, and so �
comes from a homomorphism �1.M /! S1=f˙1g. In particular, the representation �
is conjugate into RS .M /, as desired.

2.11 Lemma The map t W R.M /! X.M / has the weak path lifting property, that
is, given a path cW I ! X.M / there is a zcW I ! R.M / with c D t ı zc . The same is
true for its restrictions RK .M /!XK .M /, RG.M /! XG.M / and RPGL2R.M /!

XPGL2R.M /. Moreover, if c.0/ is an irreducible character, then we can require zc.0/
to be any specified representation in t�1.c.0//.

Proof With regards to the main claim, for the group K this is [10, Section II.6],
for the group GC this is [47, Corollary 3.3], and the other two cases follow from
[4, Lemma 2.1]. We may specify zc.0/ arbitrarily because in this case all of the
representations in t�1.c.0// are conjugate.

The next lemma is a comforting fact, but it is not needed for any of the main results
in this paper; indeed, we use it only in Lemma 6.8, which is just a remark to justify
a claim about the examples in Section 5; you should therefore skip the proof at first
reading.

2.12 Lemma The subsets XK .M / and XG.M / are closed in X.M / in the classical
topology.

Proof For ease of notation, we set G?D PGL2R and � D �1.M /, and also suppress
the manifold M from our representation and character varieties. The subset XK is
compact since it is the image of the compact set RK under a continuous map, and so
we turn immediately to XG . Given � 2X G , which must be in XR , we need to show
that � is in XG . We give separate arguments depending on whether � is reducible
over GC .

First, suppose � is reducible over GC . Let � be a diagonal representation into GC

with character �. The top-left entry of � gives a homomorphism  W �!C�=f˙1g.
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Since �2X G , we have that tr2

 .�/2 Œ0;1/ for all 
 2� . Consequently, all  .
 / are

in S1[R� . In fact, the image  .�/ must be contained entirely in one of S1 or R� ,
as otherwise we can easily find a  .
 / that is not in S1[R� . If  .�/ is in S1 , then
� is conjugate into S � G , and if instead  .�/ is in R� then � is already in RG .
Thus, when � is reducible we have shown that � 2XG , as desired.

Suppose instead that � is irreducible over GC . By [39, Lemma 10.1], we need to
consider two cases, depending on whether � is in the image of RK or RG? . To start,
suppose � can be realized by a � 2RK ; in particular, �.�/ fixes a point x0 2H3 . As
� is irreducible, there must be 
1 and 
2 in � where the �.
i/ are elliptic elements
with rotation axes Li and L1 \L2 D fx0g. By Proposition 2.7 and Lemma 2.11,
we can approximate � by an irreducible �0 in R whose character �0 is in XG and
where the �0.
i/ are still elliptic with axes L0i very close to the Li . As �0 is conjugate
into RG , there is a totally geodesic plane P 0 preserved by �0.�/, and the axes L0i
must meet P 0 in right angles; in particular, the angle between L0

1
and L0

2
, as measured

along their perpendicular bisector (which is contained in P 0 ), is 0. For �0 close enough
to � , this is impossible as L1\L2 D fx0g. So we cannot have � in XK .

Thus our final case is when � is irreducible and in XG? . As XG? is locally path
connected by Proposition 2.7 and � is a limit point of XG �XG? , we can find a path
�t from �0 in XG to �. Applying Lemma 2.11 to RG? !XG? , we lift �t to a path
�t starting at �0 2RG . As G is a connected component of G? and each �0.
 / 2G ,
it follows by continuity that �1.
 / is also in G . Thus �1 is in RG and so � is in XG ,
as desired, proving the lemma.

3 Basic facts about CPSL2R

For the group G D PSL2R, consider its universal covering Lie group zG D BPSL2R ,
which is also its universal central extension (see [32, Section 5] or [14, Section 2.3.3]):

0! Z! zG
p
�!G! 1

Concretely, we realize zG as follows. We identify S1 DP 1.R/ with R=Z and view
the quotient map as the universal covering map R!P 1.R/. The projective action of
G on P 1.R/ is faithful, so we identify G with its image subgroup in HomeoC.S1/.
Every homeomorphism of P 1.R/ in G lifts to countably many homeomorphisms of R.
We define zG to be the subgroup of HomeoC.R/ consisting of all lifts of elements
of G . The kernel of pW zG! G , which is also the center of zG , is the deck group of
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R!P 1.R/, namely the group of integer translations. We let s be the element of the
center which acts by x 7!xC1, and write elements of the center multiplicatively as sk .
An element of zG is called elliptic, parabolic, or hyperbolic when its image in G is of
that type. The disjoint partition of G into elliptic, parabolic, hyperbolic, and trivial
elements means that zG is similarly partitioned into elliptic, parabolic, hyperbolic, and
central elements.

3.1 Translation number

An important concept for us is the translation number of an element zg 2 zG , which is
defined as

(3.2) trans.zg/D lim
n!1

zgn.x/�x

n
for some x 2R:

This is well-defined since the value of the limit is independent of the choice of x .

Here are some key properties of the translation number; see [32, Section 5] or [14,
Section 2.3.3] for extensive background and details. First, the map transW zG ! R

is continuous and is constant on conjugacy classes in zG . Also, it is a homogenous
quasimorphism for zG in the sense discussed in Section 6.3 below. Considering the center
Z. zG/Dhsi as above, we have trans.sk/Dk , and moreover trans.zg �sk/D trans.zg/Ck

for any zg in zG .

Since they map to elements in G that have a fixed point in P 1.R/, all parabolic and
hyperbolic elements of zG have integral translation numbers. In contrast, any real
number arises as the translation number of an elliptic element. Moreover, if zg is an
elliptic element of zG , then 2� trans.zg/ is equal, modulo 2� , to the rotation angle of
p.zg/ at its unique fixed point in H2 .

3.3 The Euler class

Given a group � and a representation �W �!G , the Euler class Euler.�/2H 2.�IZ/

is a complete obstruction to lifting � to a representation z�W �! zG such that p ı z�D � .
Here is a review of its definition; see eg [32, Section 6.2] for details. Choose an
arbitrary section � W �! zG , that is, a function satisfying p ı z�D � . Define a function
�� W � ��! Z by

s�� .
1;
2/ D �.
1/�.
2/�.
1
2/
�1; where Z. zG/D hsi:
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Associativity of group multiplication implies that �� satisfies the 2–cocycle relation

�� .
2; 
3/��� .
1
2; 
3/C�� .
1; 
2
3/��� .
1; 
2/D 0:

We define Euler.�/ to be the class in H 2.�IZ/ represented by �� . To see that this is
well-defined, note that if � 0 is another section, then �� ��� 0 is the coboundary of the
1–cochain � W �!Z determined by s�.
 /D�.
 /� 0.
 /�1 . Now a section � is actually
a lift of the representation � when the 2–cocycle �� is identically zero; if �� is merely
a coboundary, say �� D ı.�/, then the section � 0 determined by � 0.
 /D �.
 /s��.
 /

has �� 0 D 0 on the nose. Thus a lift of � exists precisely when the cohomology class
Euler.�/ vanishes.

Now suppose that �t is a continuous path of representations �!G . We may choose
a continuous family �t of sections, for example by choosing generators for � and
defining �t .
 / in terms of a fixed representation of 
 as a word in the generators.
This gives a continuous 1–parameter family of cocycles. In the general setting, since
the coboundaries are a closed subspace of the cocycles, this implies that the map
� 7! Euler.�/ is continuous. In our setting, this means that, for any 3–manifold M,
the Euler class is constant on connected components of RG.M /.

3.4 Parametrizing lifts

When �W � ! G lifts to zG , there are many lifts. Specifically, when � lifts, the set
of all lifts is a 1–dimensional affine space over H 1.�IZ/. Concretely, given some
lift z�W � ! zG and a � 2 H 1.�IZ/, then, taking Z. zG/ D hsi, we can construct
another lift � � z� via 
 7! z�.
 /s�.
/ , where we are viewing � 2 H 1.�IZ/ as a
homomorphism �! Z. Conversely, if z�1 and z�2 are two lifts of � , then we claim
that they differ by some � 2H 1.�IZ/. Since p ı z�1.
 /D p ı z�2.
 / for all 
 2 � ,
we have z�1.
 /D z�2.
 /s

�.
/ for some well-defined function �W �! Z. To see that
� is a homomorphism, note that

z�1.
1
2/s
�.
1
2/ D z�2.
1
2/D z�1.
1/s

�.
1/z�1.
2/s
�.
2/

D z�1.
1/z�1.
2/s
�.
1/C�.
2/;

which implies that �.
1
2/D �.
1/C�.
2/.

3.5 Representations of Z2

For ƒDZ2 , consider the set of representations R zG.ƒ/DHom.ƒ; zG/. A representation
z� 2 R zG.ƒ/ is called elliptic, parabolic, or hyperbolic if the image group z�.ƒ/ contains
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an element of the corresponding type. Since ƒ is abelian, every nontrivial element
of z�.ƒ/ must be of the same type. Thus these categories are disjoint; the remaining
representations which are not in any of these categories are called central since z�.ƒ/
lies there. For a fixed z� 2 R zG.ƒ/, we get a map .trans ı z�/W ƒ ! R. The map
trans ı z� is actually a homomorphism; this is because a homogenous quasimorphism is
actually a homomorphism on any abelian subgroup (see [14, Proposition 2.65] or [32,
Theorem 6.16]).

Identifying Hom.ƒ;R/ with H 1.ƒIR/, we get a map

transW R zG.ƒ/!H 1.ƒIR/ defined by z� 7! trans ı z�:

This map is far from injective: any parabolic or hyperbolic element of zG has an integral
translation number, and it follows easily that the preimage of any class in H 1.ƒIZ/

contains many nonconjugate parabolic and hyperbolic representations. However, for
elliptic and central representations, the homomorphism trans.z�/ is a complete conjugacy
invariant. In particular, it is easy to see that:

3.6 Lemma Suppose z� 2 R zG.ƒ/ is elliptic or central. If trans.z�/.�/D 0 for some
� 2ƒ, then z�.�/D 1.

4 Translation extension loci

We will now define the translation extension locus, which is the central object in this
paper. Let M be an irreducible Q–homology solid torus, and let �W @M !M be
the inclusion map. Inside R zG.M /D Hom.�1.M /; zG/, let PE zG.M / be the subset of
representations whose restriction to �1.@M / is either elliptic, parabolic, or central in
the sense of Section 3.5. Consider the composition

R zG.M /
��

�! R zG.@M /
trans
��!H 1.@M IR/:

The closure in H 1.@M IR/ (with respect to the vector space topology) of the image
of PE zG.M / under trans ı �� is called the translation extension locus and denoted by
EL zG.M /. We distinguish two special kinds of points of EL zG.M /. First, those which
are not in the image of PE zG.M /, but only its closure, are called ideal points. Second,
those coming from elements of PE zG.M / which restrict to parabolic representations
in R zG.@M / are called parabolic; such points necessarily lie on the integer lattice
H 1.@M IZ/. The translation extension locus was first considered by Khoi [45] in his
work on computing Seifert volumes of hyperbolic 3–manifolds.
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Let T D ��.H 1.M IZ//�H 1.@M IR/. Consider the group of affine isomorphisms of
H 1.@M IR/ generated by the map x 7! �x together with all translations by elements
of T . As T is isomorphic to Z, this affine group is isomorphic to an infinite dihedral
group whose action on H 1.@M IR/ preserves the line containing T ; we will denote
this dihedral group by D1.M /.

4.1 Coordinates and lines

It will be helpful to have concrete coordinates for the translation extension locus. To
this end, fix a homologically natural framing .�; �/ for H1.@M IZ/ as discussed in
Section 2.2. We now identify H 1.@M IR/ with R2 by using the basis .��; ��/ that
is algebraically dual to the basis .�; �/ of H1.@M IR/, that is, ��.�/D ��.�/D 1

and ��.�/D ��.�/D 0. Note that while � is unique up to sign and � depends on
our choice of framing, it is �� that is unique (up to sign) and �� that depends on the
framing; geometrically, the point is that �� is the Poincaré dual of ˙�. Let k 2N be
the order of ��.�/ in H1.M IZ/; by Poincaré duality, the number k is also the index
of h��.�/i in H1.M IZ/free DH1.M IZ/=.torsion/ ŠZ. Hence, in our coordinates, the
subgroup T D ��.H 1.M IZ// is the points .kn; 0/ for n 2 Z. Moreover, the group
D1.M / consists of horizontal translations by shifts in kZ and � –rotations about
every point of the form

�
1
2
kn; 0

�
for n 2 Z.

To state our tool for constructing orders, we need the following concept. Given a slope
r on @M, which we can specify by a primitive element 
 2H1.@M IZ/, define the
line Lr DL
 to be the subspace of H 1.@M IR/ consisting of linear functionals that
vanish on the 1–dimensional subspace of H1.@M IR/ determined by 
 . Thus the line
L1 D L� is the span of �� , which is the vertical axis in our coordinates, and the
line L0 DL� is the span of �� , which is the horizontal axis. In general, Lr is a line
through the origin in R2 of slope �r .

4.2 Key results

Here is the basic structural result about EL zG.M /, which is roughly that it is a family
of immersed arcs invariant under D1.M / such that the quotient is a finite graph.

4.3 Theorem The extension locus EL zG.M / is a locally finite union of analytic arcs
and isolated points. It is invariant under D1.M / with quotient homeomorphic to a
finite graph. The quotient contains finitely many points which are ideal or parabolic in
the sense defined above. The locus EL zG.M / contains the horizontal axis L� , which
comes from representations to zG with abelian image.
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Moreover, here are our key tools for constructing orders.

4.4 Lemma Suppose M is a compact orientable irreducible 3–manifold with @M
a torus, and assume the Dehn filling M.r/ is irreducible. If Lr meets EL zG.M / at a
nonzero point which is not parabolic or ideal, then M.r/ is orderable.

4.5 Lemma Suppose K is a knot in a Z–homology 3–sphere Y whose exterior M

is irreducible. Let .�; �/ be a homologically natural framing with M.�/D Y . Assume
also that the n–fold cyclic cover zY of Y branched over K is irreducible. If the vertical
line �� D 1=n meets EL zG.M / at a point which is not ideal, then zY is orderable.

The proofs of Theorem 4.3, Lemma 4.4, and Lemma 4.5 occupy Section 6. Before
tackling them, we show pictures of various EL zG.M / to get a feel for these objects.

5 A menagerie of translation extension loci

We now give twelve examples of translation extension loci which will motivate the
various results in this paper. Indeed, for us these examples form the intellectual core of
this paper, directly inspiring all of the theorems here. The reader should peruse these
examples carefully before continuing, as they illustrate both the ideas and the potential
pitfalls in the proofs of the main theorems. The first pictures of this type appeared in
Figure 8 of [45].
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Figure 3: The translation extension locus for m016 . See Section 5 for how to read
this and subsequent plots.
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v0220: genus = 47
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Figure 4: This extension locus follows the same basic pattern as Figure 3, but there
are some 72 diagonal arcs each joining a parabolic point to an Alexander point. The
manifold here is M D v0220 , which is the exterior of the knot k76DT .7;�17; 2; 1/

in S3 found in [19]. The framing is such that M.�/ D S3 and M.�117/ is the
lens space L.117; 43/; in SnapPy’s default framing, �D .1; 0/ and �D .�116; 1/ .
The manifold M fibers over the circle with fiber of genus 47 . Here, we can use
Lemma 4.4 to order M.r/ for all r 2 .�75;1/; in contrast, the interval of non-L–
space slopes is .�93;1/ . It is remarkable how complicated EL zG.M / is given that
M has an ideal triangulation with only seven tetrahedra!

The twelve examples come from hyperbolic 3–manifolds that have ideal triangulations
with at most 9 tetrahedra, and the nomenclature follows [17; 11; 24]. We selected them
from a sample of about 600 translation extension loci of such manifolds to illustrate a
range of behaviors.

We start with M D m016, which is homeomorphic to the exterior of the .�2; 3; 7/

pretzel knot in S3 . Its translation extension locus is shown in Figure 3, and we discuss
it in detail to explain how to read the plots here. We use a homological framing .�; �/
where M.�/D S3 and M.�18/ and M.�19/ are lens spaces. (In SnapPy’s default
framing, �D .1; 0/ and �D .18; 1/.) The figure shows the intersection of EL zG.M /

with the strip 0 � x � 1 in our usual .��; ��/–coordinates on H 1.@M IR/. This
strip is a fundamental domain for the action of T �D1.M / which is generated by
translation by �� . The symmetry of EL zG.M / under the element of D1.M / which
is � –rotation about

�
1
2
; 0
�

is visually clear.
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Figure 5: Like those in Figures 3 and 4, this locus consists of arcs that run between
parabolic and Alexander points, but a key difference is that the parabolic points
lie on the horizontal axis. The manifold M D o934801 here is the exterior of
a genus 2 fibered knot in S3 , and as usual M.�/ D S3 . (In SnapPy’s default
framing, �D .1; 0/ and �D .�1; 1/ .) Using Lemma 4.4, we can order M.r/ for
r 2 Œ�0:36; 3:6/ , where the endpoints of the interval are approximate. In contrast,
the interval of non-L–space slopes is .�1;1/ since the Alexander polynomial
t4 � 2t3C t2 � 2t C 1 does not satisfy the condition of [53, Corollary 1.3]. This
example illustrates the difficulty of strengthening the proof of Theorem 1.2 to give a
lower bound on the size of the interval .�a; a/ in the conclusion.

There are 16 parabolic points of EL zG.M / in this picture, which are marked by the
dark and light half disks on the vertical sides of the strip. (As mentioned, parabolic
points are necessarily integer lattice points.) When the sides of the strip are glued
by T , these 16 half disks are paired up to form 8 full discs; down in the full quotient
BL zG.M /D EL zG.M /=D1.M /, there are only 4 parabolic points.

The color of the half disks indicates when the corresponding representation to G is
Galois conjugate to the holonomy representation of the complete hyperbolic structure
on M (see Section 8.1 for the definition), with the light green being “geometric” in
this limited sense and black indicating other “random” parabolic G –representations.

There are no ideal points in this EL zG.M / or in any of our example translation loci; all
of the manifolds involved are small, and Lemma 6.8 below rules out any ideal points
in this situation. (The smallness of these manifolds was checked using Regina [12].)
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Figure 6: This locus has arcs that run between two parabolic points, rather than from
parabolic to Alexander points. The manifold M D t11462 is the exterior of a genus 3

fibered knot in S3 , namely k8249 from [18]. (In SnapPy’s default framing, �D .1; 0/
and �D .3; 1/ , and as usual M.�/D S3 .) Using Lemma 4.4, we claim that we can
order M.r/ for r in .�2;�1/[ .�1; 2/[ Œa;1/ , where a� 4:84 . For example, the
arc labeled A in the figure gives orderings for r 2 .�2;�1/ , and the arc labeled B

shown gives orderings for r 2 Œa;1/ . The translates of A by positive shifts contribute
the intervals .�2=k;�1=k/ for k � 1 , as do all the translates of B by negative shifts;
the union of these intervals is .�2;�1/[ .�1; 0/ . The other translates of A and B

contribute half-open intervals that contain, but are slightly larger than, Œ1=k; 2=k/ for
k � 1; the union of these is .0; 2/ . The interval of non-L–space slopes is .�1;1/
since the Alexander polynomial t6�2t5C3t4�5t3C3t2�2tC1 does not satisfy the
condition of [53, Corollary 1.3]. This example illustrates the difficulty of strengthening
the proof of Theorem 1.4(2) to give an interval .a;1/ where a is bounded above.

The disks on the ��–axis L� correspond to the roots of the Alexander polynomial
that lie on the unit circle. Specifically, for each such root � , we plot

�
1

2�
arg.�/; 0

�
and call this an Alexander point. Simple roots, such as all the ones for this manifold,
are shown as light turquoise disks; in later examples, multiple roots will be shown in
dark blue. Notice that there is a nonhorizontal arc of EL zG.M / leaving each Alexander
point. Such arcs are used to prove Theorem 1.2 and come from deforming an abelian
representation to irreducible representations, which is only possible at Alexander points
(see Section 7 for a complete discussion).

Since the line Lr has slope �r in our picture, and M has no reducible Dehn fillings,
we see that Lemma 4.4 applies to show M.r/ is orderable for all r 2 .�6;1/. To

Geometry & Topology, Volume 22 (2018)



Orderability and Dehn filling 1427

0.0 0.2 0.4 0.6 0.8 1.0

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7 s841: genus = 7
s841

0:0 0:2 0:4 0:6 0:8 1:0

�7

�6

�5

�4

�3

�2

�1

0

1

2

3

4

5

6

7

��

��

Figure 7: This locus has a mix of the behaviors shown in the previous figures.
The manifold M D s841 is the exterior of a genus 7 fibered knot in S3 , namely
k638 from [18]. (In SnapPy’s default framing, � D .1; 0/ and � D .22; 1/ , and
as usual M.�/D S3 .) Using Lemma 4.4, we can order M.r/ for r in .�7;1/;
the interval of non-L–space slopes is .�1;1/ since the Alexander polynomial
does not satisfy the condition of [53, Corollary 1.3]. There are actually two distinct
Galois conjugates of the holonomy representation that give rise to each of the points
.0;˙7/ and .1;˙7/ . This is why there are two separate arcs of EL zG.M / emerging
from these parabolic points instead of the one you might expect from the proof of
Theorem 1.4.

compare with Conjecture 1.1, the interval of non-L–space fillings for M is precisely
.�9;1/ for the following reason. As M has two lens space fillings, it is Floer simple
in the sense of [55], and hence the interval of L–space fillings is Œ�1;�.2g � 1/�,
where g is the Seifert genus; the latter is 5 as that is the genus of the fiber in the
fibration of M over the circle. In fact, both Theorems 1.2 and 1.4 apply to M, though
we got much better results by applying Lemma 4.4 directly.

A summary of the overall structure of this EL zG.M / is that, besides the horizontal line
of abelian representations, it consists of diagonal arcs with a parabolic point at one end
and an Alexander point at the other. Moreover, none of the arcs overlap. This pattern
was quite common in our sample, and a much more complicated instance is shown
in Figure 4. Overall, there are many different behaviors that are relevant to us here;
please see Figures 5–12 and their captions for details.
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Figure 8: This locus has arcs between parabolics that are on opposite sides of the
strip. It is one of the few instances we found where Lemma 4.4 allows us to order
M.r/ for all r in .�1;1/ . (Another such example is v1971 in Figure 10.) The
manifold M D o904139 is the exterior of a genus 6 fibered knot in S3 . As usual
M.�/ D S3 ; in SnapPy’s default framing, � D .1; 0/ and � D .�1; 1/ . While
the Alexander polynomial does satisfy [53, Corollary 1.3], it turns out that the set
of non-L–space slopes is .�1;1/; using the criterion of [56] and the program
flipper [3], Mark Bell and the second author were able to show that every nontrivial
Dehn filling on M has a coorientable taut foliation. There are actually four distinct
Galois conjugates of the holonomy representation that give rise to each of the points
.0;˙1/ and .1;˙1/ , explaining the arcs that emerge from them.

5.1 Numerical methods and caveats

To compute points in XR.M / corresponding to representations which send � to
an elliptic isometry, we worked with the gluing variety G.T /, where T is an ideal
triangulation of M. Each G.T / is an affine algebraic set described in coordinates
which are the shape parameters for the tetrahedra in T . There is one equation for each
edge, specifying that the tetrahedra match around that edge, and the variety determined
by these has dimension 1 in our examples. The holonomy H� is the square of an
eigenvalue of the image of �, and can be expressed in these coordinates to give a
polynomial map H�W G.T /!C . We randomly chose a complex number z0 near the
unit circle and used homotopy continuation with a start system given by the mixed
volume method to find the 0–dimensional algebraic set H�1

� .z0/. This computation
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Figure 9: The manifold M D t03632 is our first example that is not the
exterior of a knot in S3 , with M.�/ being the small Seifert fibered space
S2..2; 1/; .3; 1/; .7;�6// which is a Z–homology 3–sphere. (In SnapPy’s default
framing, � D .1; 0/ and � D .�8; 1/ .) One new phenomenon is that EL zG.M /

meets the sides of the strip at a point which is not an integer lattice point, namely
the intersections at approximately

�
0;˙1

2

�
and

�
1;˙1

2

�
. Such nonintegral points

of EL zG.M / come from representations to zG which factor through M.�/ , which
is why they could not appear in the earlier examples, where M.�/D S3 . Another
new phenomenon is that some arcs of EL zG.M / cross the horizontal axis away from
the Alexander points; the crossing points correspond to representations to zG which
factor through M.�/ and have nonabelian image. Such crossings also happen for
certain exteriors of knots in S3 , for example with o921236 , though not in any of the
examples we show here.

was done with PHCpack [63; 64]. Once the fiber over z0 had been computed, we used
the Newton–Raphson method to do path-lifting to our branched cover of C by G.T /.
With some care to avoid singularities, this allowed us to compute the fiber over all
N th roots of unity, where N was typically 128 to start with, but sometimes needed
to be increased. Each point of one of these fibers determined a character in X.M /

corresponding to a representation sending � to an elliptic with rotation angle 2k�=N

for some k . These representations were computed to standard floating point accuracy
(53 bits) and it was numerically decided which of them gave points of XG.M /.

Once we had constructed a representation �W �1.M / ! G , we used the Newton–
Raphson method to polish it to very high precision (typically 1 000 bits). The Euler

Geometry & Topology, Volume 22 (2018)



1430 Marc Culler and Nathan M Dunfield

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2 v1971: genus = 4

v1971 : genus = 4

0:0 0:2 0:4 0:6 0:8 1:0

�2

�1

0

1

2

��

��

0.0 0.2 0.4 0.6 0.8 1.0

6

5

4

3

2

1

0

1

2

3

4

5

6 t12247: genus = 5

t12247 : genus = 5

0:0 0:2 0:4 0:6 0:8 1:0

�6
�5
�4
�3
�2
�1

0
1
2
3
4
5
6

��

��

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1 o930426: genus = 2
o930426 : genus 2

0:0 0:2 0:4 0:6 0:8 1:0

�1

0

1

��

��

Figure 10: These three loci show some possible behaviors when the Alexander polyno-
mial has a multiple root (for such a root, the corresponding Alexander point is dark blue
rather than light blue). The top left example is the knot exterior v1971Dk774 from [19].
There, the arcs leaving the Alexander points are tangent to the horizontal axis, which is a
common pattern for multiple roots. However, such tangencies are not required as the top
right example of the knot exterior t12247D k8279D 12n574 from [18] shows. The last
example of M D o930426 is perhaps the most interesting: there are no nonhorizontal
arcs of EL zG.M / leaving the two Alexander points at all! In fact, the corresponding
reducible representations to GC are deformable to irreducible representations, but only
into PSU2 , not G . Here, M.�/ is the Seifert fibered space S2..2; 1/; .3; 1/; .11;�9// ,
which is a Z–homology 3–sphere, and there are three separate Galois conjugates of the
holonomy representation at the points .0;˙1/ and .1;˙1/ in EL zG.M / . The bottom
example shows why we need the hypothesis that �M has a simple root in the proof of
Theorem 1.2, since the picture near the Alexander points does not match Figure 14.

cocycle of Section 3.3 was then computed and used to lift � to z�W �1.M /! zG . The
peripheral translations of z� were computed and then normalized under the action of
D1.M / to be plotted in the figure. (For the examples in Figures 11 and 12, frequently
there was no lift z� as Euler.�/ was nonzero in H 2.M IZ/.) For each figure, we
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Figure 11: The manifold M D v0170 is our first example of something that is not
a Z–homology solid torus. In particular, the homological longitude � has order
k D 3 in H1.M IZ/ , which is why the shown fundamental domain for the action of
T �D1.M / has width 3 . The filling M.�/ is the lens space L.9; 2/ with the core
of the added solid torus representing three times a generator of H1.L.9; 2/IZ/ Š
Z=9Z . (In SnapPy’s default framing, �D .1; 0/ and �D .�5; 1/ .) The manifold
M fibers over the circle with fiber a genus 4 surface with 3 boundary components.
For a root � of �M, the corresponding Alexander point is plotted as 3

2�
arg.�/ to

account for the fact that � maps to three times a generator in H1.M IZ/free . The
two Alexander points at .1; 0/ and .2; 0/ demonstrate the necessity of the hypothesis
that �k ¤ 1 for the proof of Theorem 1.2, since the local picture there does not match
Figure 14. The trace field of M has 6 real embeddings, but above there is only one
parabolic point modulo D1.M /; this is because most of the Galois conjugates into
G do not lift to zG .

sampled as many as 2 000 different holonomy values for � in order to get the smooth
curves you see.

While we believe our plots of these loci are accurate, they were not rigorously com-
puted. Moreover, there are reasons beyond numerical accuracy that sometimes cause
computations using gluing varieties to produce incomplete results, with some arcs
missing from the diagram. (On the other hand, using gluing varieties rather than
character varieties hugely simplifies the computation, making it feasible to handle
larger examples.) The key issue is that the natural map G.T /!X.M / is not always
onto; while each irreducible component of G.T / corresponds to some irreducible
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Figure 12: The manifold M D v1108 is another example that is not a Z–homology
solid torus. In particular, the homological longitude � has order k D 2 in H1.M IZ/
and the filling M.�/ is the lens space L.4; 1/ . (For once, the .�; �/ framing is
the same as SnapPy’s default.) The manifold M fibers over the circle with fiber a
genus 3 surface with 2 boundary components. The parabolic points .0; 0/ , .1; 0/ ,
and .2; 0/ are all double, that is, come from two distinct Galois conjugates of the
holonomy representation. In addition to being a parabolic point, the point .1; 0/ is
also a simple Alexander point. However, this Alexander point doesn’t contribute an
arc to EL zG.M / because it corresponds to the root � D�1 and �k D 1 .

component of X.M /, there can be components of X.M / that are not seen in G.T /
[27, Section 10.3]. As G.T / depends fundamentally on the triangulation T , such
“missing components” can sometimes be dealt with by changing the triangulation. In
other cases, especially when there are components corresponding to representations
that factor through a proper quotient of �1.M /, changing the triangulation did not
help. (In [57], Segerman constructs an “extended” version of G.T / and shows that
there always exists a triangulation such that all components of the character variety
can be parametrized in terms of the associated extended gluing variety. However, his
technique has not been implemented in software.)

In some cases we were able to detect missing components from inconsistencies in our
picture of EL zG.M /. In the case of M Dm389, we obtained a plot of EL zG.M / with a
simple Alexander point from which no arcs emerged, violating the proof of Theorem 1.2.
It turns out that for the Dehn filling Y Dm389.�C�/ there is a surjection from �1.Y /
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onto PSL2Z Š C2 � C3 , giving a component of X.M / that could not be seen by
our G.T /. Another fairly common situation that leads to missing components is when a
Dehn filling Y contains an essential torus: if X.Y / is nonempty, then dimC X.Y /� 1

because it is possible to “bend” representations using the structure of �1.Y / as a free
product with amalgamation along the Z2 –subgroup corresponding to the essential
torus. It seems to be common that components of X.M / obtained by bending do not
appear in the image of G.T /.

Another issue with gluing varieties is that points at infinity of G.T / can correspond
to nonideal points of the character variety X.M /. Geometrically, this means that the
shapes of some tetrahedra degenerate even though the associated characters converge.
We call these Tillmann points after [60]. These points cause numerical difficulties and
complicate determining which points of EL zG.M / are ideal. Such Tillmann points occur
reasonably frequently in our examples. Specifically, we used Goerner’s database [33]
of boundary parabolic representations to GC to identify which of the parabolic points
correspond to Galois conjugates of the holonomy representation of the hyperbolic struc-
ture, and as a check to our own computations. While Goerner used Ptolemy equations
rather than gluing equations, his method still depends on a choice of triangulation, and
parabolic representations can go missing for the same reason. In our examples, there
were five cases where our plot of EL zG.M / indicated a parabolic or ideal point on the
vertical sides of the diagram that were not present in [33]. For example, this occurred
with the point .0;�2/ in Figure 6. Using Lemma 6.8, we were able to conclude that
these are all Tillmann points missed by our preferred triangulation, rather than ideal
points.

6 Proof of the structure theorem

This section is devoted to the proofs of Theorem 4.3, Lemma 4.4, and Lemma 4.5.
An impatient and trusting reader can skip ahead as the rest of the paper only relies on
the statements of these three results. We begin attacking Theorem 4.3 by proving the
following two lemmas:

6.1 Lemma The extension locus EL zG.M / is invariant under D1.M /.

6.2 Lemma The quotient space BL zG.M / D EL zG.M /=D1.M / has finitely many
connected components.
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Proof of Lemma 6.1 Since invariance is preserved under taking closures, it suffices
to show that the image I of PE zG.M / under trans ı �� is invariant under D1.M /.
Consider any z� 2 PE zG.M / and let t D trans.z� ı �/ be the corresponding point in I. If
� 2H 1.M IZ/, then, as described in Section 3.4, one has � � z� in PE zG.M / which is
also a lift of p ı z� . The image of � � z� in I differs from t via translation by ��.�/ in
H 1.@M IZ/ since

trans.� � z�.
 //D trans.z�.
 /s�.
//D trans.z�.
 //C�.
 / for all 
 2 �1.M /:

In particular, this shows that I is invariant under translation by elements of T D

��.H 1.M IZ//�H 1.@M IR/.

To complete the proof, it remains to show I is invariant under x 7! �x . To this end,
we will exhibit an automorphism �W zG! zG where trans.�.zg//D �trans.zg/ for all
zg 2 zG . Given such a � , the image of � ı z� in I will be �t , proving invariance. To
start, consider the element r 2 Homeo.R/ which sends y 7! �y . Conjugation by
r preserves the subgroup zG because r descends to the map of P 1.R/ induced by
C D

�
1 0
0 �1

�
2 PGL2R, and conjugation by C normalizes G � PGL2R. Let � be

conjugation of zG by r . Taking x D 0 in the definition (3.2) of translation number we
get

trans.�.zg//D lim
n!1

.r ı zg ı r/n.0/

n
D lim

n!1

�zgn.�0/

n
D�trans.zg/

as required.

Proof of Lemma 6.2 Consider the map P W R zG.M /!RG.M / induced by pW zG!G .
Let PEG.M / be the subset of RG.M / consisting of representations whose restrictions
to �1.@M / consist only of elliptic, parabolic, and trivial elements. Note that PEG.M /

is a real semialgebraic set. Let PElift
G
.M / � PEG.M / be the image of PE zG.M /

under P . By continuity of the Euler class (see Section 3.3), the subset PElift
G
.M / is a

union of connected components of PEG.M /, and hence also a real semialgebraic set.
As described in Section 3.4, the cohomology H 1.M IZ/ acts freely on PE zG.M / with
quotient PElift

G
.M /; consequently, P W PE zG.M /! PElift

G
.M / is a (regular) covering

map. Because the action of H 1.M IZ/ on PE zG.M / induces the action of T �

D1.M / on EL zG.M /, the map trans ı �� below factors through  as shown:

PE zG.M / BL zG.M /

PElift
G
.M /

transı��

P
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The map  must be continuous as the vertical arrow P is a covering map. As the set
PElift

G
.M / has finitely many connected components, it follows that

 .PElift
G
.M //D BL zG.M /

has finitely many components, proving the lemma.

6.3 Milnor–Wood bounds

The remaining tool we need to prove Theorem 4.3 is:

6.4 Lemma The space BL zG.M / is compact.

The proof of Lemma 6.4 hinges on knowing that EL zG.M / is contained in a horizontal
strip of bounded height; to show this, we use the following result, which is closely
related to the Milnor–Wood inequality.

6.5 Proposition Suppose S is a compact orientable surface with one boundary
component. For all z�W �1.S/! zG one has

jtrans.z�.ı//j �max.��.S/; 0/; where ı is a generator of �1.@S/:

Before discussing Proposition 6.5, let us derive Lemma 6.4 from it.

Proof of Lemma 6.4 Recall that M is a Q–homology solid torus and let k be the
order of the homological longitude � 2 �1.@M / in H1.M IZ/. There is a proper map
of an oriented surface f W S !M where S has one boundary component and where
f�.ı/D�

k in �1.M / for ı a generator of �1.@S/. Because trans is a homomorphism
on cyclic subgroups of zG , we have

k � jtrans.z�.�//j D jtrans.z�.�k//j D jtrans..z� ıf�/.ı//j

Applying Proposition 6.5 to z� ıf� bounds the rightmost term in the previous equation,
giving

jtrans.z�.�//j �
max.��.S/; 0/

k

In particular, in our usual .��; ��/–coordinates on H 1.@M IR/, the locus EL zG.M /

lies in a horizontal strip whose height is bounded by something that only depends on
topological information about M. Thus, since D1.M / contains horizontal translations
of R2 by shifts in kZ, the quotient BL zG.M / is compact.
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We now discuss Proposition 6.5 in detail. Recall that a real-valued function � on a
group � is called a quasimorphism if there exists a number D such that

j�.xy/��.x/��.y/j �D for all x;y 2 �;

and that the infimum of all such D is called the defect of � . The standard references [32,
Section 5] and [14, Section 2.3.3] contain proofs that for any representation z�W �! zG ,
the function given by � D trans ı � is a quasimorphism. It is also well-known that
this quasimorphism has defect at most 1, although it is harder to extract this fact from
the literature. It is stated in [59, Proposition 3.7], with a sketch of a proof that uses a
construction of a connection on a circle bundle over a surface in terms of a harmonic
measure on a foliation transverse to the fibers. It is also a consequence of the “ab
theorem” of [16, Theorem 3.9], which was conjectured and almost proved by Jankins
and Neumann [43], the proof having been completed by Naimi [51]. The proof of
Calegari and Walker is simpler and effective (see also [50]). With these facts in hand,
we turn to the proof of the proposition.

Proof of Proposition 6.5 Let g be the genus of S . The case of g D 0 is immediate
as then z� must be trivial and so trans.z�.ı//D 0; thus we will assume g > 0. Choose
standard generators ˛1; ˇ1; : : : ; ˛g; ˇg for �1.S/, where

ı D Œ˛1; ˇ1� � � � Œ˛g; ˇg�:

Because transW zG!R is a quasimorphism of defect at most 1, we have

jtrans.xy/j � jtrans.x/jC jtrans.y/jC 1

for all x;y 2 zG . It follows by induction that

jtrans.x1 � � �xn/j � jtrans.x1/jC � � �C jtrans.xn/jC .n� 1/

for all x1; : : : ;xn 2
zG . As trans is constant on conjugacy classes and satisfies

trans.x�1/D�trans.x/, we have

jtrans.Œx;y�/j D jtrans.Œx;y�/� trans.xyx�1/� trans.y�1/j � 1

for all x;y 2 zG . Combining these properties, we have

jtrans.ı/j D jtrans.Œz�.˛1/; z�.ˇ1/� � � � Œz�.˛g/; z�.ˇg/�/j � gC .g� 1/D��.S/;

as required.

Geometry & Topology, Volume 22 (2018)



Orderability and Dehn filling 1437

Proof of Theorem 4.3 Define cWH 1.@M IR/!XG.@M / by sending �W�1.@M /!R

to the character of the elliptic representation � given by

�.�/D˙

�
e2�i�.�/ 0

0 e�2� i�.�/

�
and �.�/D˙

�
e2� i�.�/ 0

0 e�2� i�.�/

�
We may use the dual basis to .�; �/ and the trace-squared coordinates on XG.@M / to
express the map c in coordinates as

c.x;y/D 4
�
cos2.2�x/; cos2.2�y/; cos2.2�.xCy//

�
For integers m and n we have c.xCm;y C n/ D c.x;y/, and also c.˙x;˙y/ D

c.x;y/. Thus the map c is topologically an orbifold covering map from R2 onto a
pillowcase, ie a Euclidean orbifold with underlying manifold S2 and four cone points
of angle � . Moreover, the following commutes:

PE zG.M / H 1.@M IR/

XG.M / XG.@M /

transı��

c

��

Note that c maps BL zG.M / into ��.XG.M //. Now, by Lemma 2.4, the complex
algebraic set ��.X.M // � X.@M / has complex dimension at most 1; hence the
real semialgebraic set ��.XG.M // has real dimension at most 1. Moreover, the set
��.XG.M // is compact since the subset of X.@M / corresponding to representations
that are parabolic, elliptic, or trivial is compact. Hence by Proposition 2.6, the set
��.XG.M // is a finite graph. Thus, its preimage under c is a locally finite graph
with analytic edges that is invariant under D1.M / by Lemma 6.1. As BL zG.M /

is compact by Lemma 6.4, we can conclude that it lives in some finite graph in
H 1.@M IR/=D1.M / with analytic edges. Now, since BL zG.M / has finitely many
connected components by Lemma 6.2, it follows that it too must be a finite graph in
H 1.@M IR/=D1.M / with analytic edges. This proves the hardest part of the theorem.

To see that there are only finitely many parabolic points, note that these only occur
at images of lattice points in H 1.@M IZ/, and there can only be finitely many such
points in the compact set BL zG.M /. Also, the space BL zG.M / is the closure in a
finite graph of a set with finitely many components, and thus there are only finitely
many ideal points. Finally, consider the copy of R in zG sitting above PSO2 � G .
As H1.M IZ/free DH1.M IZ/=.torsion/ Š Z, we get a 1–parameter family of abelian
representations �1.M /! zG by sending the generator of H1.M IZ/free to any chosen
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element of R. Since � is zero in H1.M IZ/free whereas � is nonzero, we see that
these abelian representations give rise to the line L� inside of EL zG.M /, finishing the
proof of the structure theorem.

6.6 Constructing orderings

We now turn to the proofs of the lemmas that we use to construct orderings of
3–manifold groups.

Proof of Lemma 4.4 Let � be such a point in Lr\EL zG.M /. As it is neither parabolic
nor ideal, there is a z�2R zG.M / which maps to � where the restriction of z� to �1.@M /

is either elliptic or central. Let 
 be an element of �1.@M / realizing the slope r . By the
definition of Lr , we have �.
 /D .trans ı z�/.
 /D 0. It follows from Lemma 3.6 that

 is in the kernel of z� , and hence we get an induced representation x�W �1.M.r//! zG .
As � is not the origin in H 1.M IR/, the new representation x� is nontrivial since
some element of �1.@M / is mapped to an element of zG with nonzero translation
number. Thus we have found a nontrivial homomorphism �1.M.r//! zG . Regarding
zG as a subgroup of HomeoC.R/ and using that M.r/ is irreducible, Theorem 1.1 of
[8] applies to promote this nontrivial homomorphism �1.M.r//! HomeoC.R/ to a
faithful one; equivalently, the group �1.M.r// is left-orderable, as claimed.

Proof of Lemma 4.5 Let � W �M !M be the covering map corresponding to zY ! Y .
Restricting representations from �1.M / to �1. �M /, we get a natural subset of EL zG.

�M /

from EL zG.M /. Specifically, the locus EL zG.
�M / contains the image of EL zG.M /

under ��W H 1.@M IR/! H 1.@ �M IR/. We use .z�; z�/ as a basis for H1.@ �M IZ/,
where z� maps to n� in H1.@M IZ/ and z� maps to �. In the dual bases, we thus
have that ��W H 1.@M IR/!H 1.@ �M IR/ is given by � 7! nz� and � 7! z�. Hence
��.EL zG.M // is basically EL zG.M / stretched horizontally by a factor of n. If we act
on ��.EL zG.M // by D1. �M /, we get additional copies of ��.EL zG.M // as shown in
Figure 13. (These additional translates still come from representations �1.M /!G ,
but correspond to lifts �1. �M /! zG that do not extend to all of �1.M /; the point is
that we can adjust a lift by any element in H 1. �M IZ/ and the image of H 1.M IZ/

has index n.) The key observation is that as EL zG.M / meets the line �� D 1=n, the
locus EL zG.

�M / meets the line z�� D 1, and hence by the action of D1. �M / the locus
EL zG.

�M / meets L� at a point t D .0;y/. The desired conclusion now follows from
Lemma 4.4 provided we can show that t is neither ideal nor parabolic. The former is
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�� D 1
3

��

��

�� D 1�� D�1

H 1.@M IR/

z��

z��

z�� D�1 z�� D 1

H 1.@ �M IR/
Figure 13: This picture illustrates the proof of Lemma 4.5 in a case where the
covering map � W �M ! M has degree 3 . At left is EL zG.M / , where its inter-
sections with the vertical axis are parabolic points and there are no ideal points.
Note that EL zG.M / meets the vertical line �� D 1

3
in two points. Its image under

��W H 1.@M IR/!H 1.@ �M IR/ is shown at right as the darker curves; the image is
just a copy of EL zG.M / stretched horizontally by a factor of 3 . In addition, EL zG. �M /

contains the lighter curves shown, which are other translates of ��.EL zG.M // un-
der D1. �M / . It is the lighter curves that contribute nonparabolic intersections of
EL zG. �M / with the vertical axis Lz� , corresponding to the original intersections of
EL zG.M / with �� D 1

3
, and so allow us to order zY D �M .z�/ via Lemma 4.4.

ruled out by the hypothesis that the initial intersection of EL zG.M / with �� D 1=n

was not an ideal point. The latter is impossible since, when restricting a representation
Z2! zG to a finite-index subgroup, the only possible change of type (as defined in
Section 3.5) is from elliptic to trivial, and the initial intersection of EL zG.M / with
�� D 1=n is not parabolic as it is not in the lattice H 1.M IZ/. Thus we can apply
Lemma 4.4 to order zY , as required.

6.7 Ideal points

The following result was used in Section 5, but is not central to this paper and the proof
can be safely skipped.

6.8 Lemma Suppose M is a Q–homology solid torus which is small, that is, contains
no closed essential surfaces. Then EL zG.M / has no ideal points.

Proof Suppose t0 is an ideal point of EL zG.M /. Pick a sequence z�i 2 PE zG.M /

whose images in EL zG.M / converge to t . Consider the representations �i D p ı z�i in
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RG.M / and the corresponding characters Œ�i � in XG.M /. Passing to a subsequence,
we arrange that the Œ�i � lie in a single irreducible component X 0 of X.M /. As M is
small, the variety X 0 must be a complex affine curve by [22, Section 2.4]. As XG.M /

is closed in X.M / by Lemma 2.12, we have that X 0
G
DX 0\XG.M / is closed in X 0 .

Passing to a subsequence, either the Œ�i � limit to a character in XG.M / or the Œ�i �

march off to infinity in the noncompact curve X 0 . In the latter case, since we have
ftr2

 �ig 2 Œ0; 4� for all 
 2 �1.@M /, the argument of [22, Section 2.4] produces a

closed essential surface associated to a certain ideal point of X 0 , contradicting our
hypothesis that M is small.

Now consider the case when the Œ�i � limit to � in XG.M /. By Proposition 2.6, we
pass to a subsequence where there is an arc xc in XG.M / starting at Œ�0�, ending at �
and containing all the Œ�i �. Using Lemma 2.11, lift xc to a path c in RG.M / starting
at �0 and ending at some � whose character is �. In the notation of the proof of
Lemma 6.2, we have that the �i are in PEG.M /. Note that � is also in PEG.M /

as it is in RG.M / and tr2

 � must be in Œ0; 4� by continuity for all 
 2 �1.@M /. As

in the proof of Lemma 6.2, we have that c is in PElift
G
.M / and so we can lift c to a

path zc in PE zG.M / starting at z�0 . After possibly changing zc by a deck transformation
of PE zG.M / ! PElift

G
.M /, we can assume that the image of zc.1/ in EL zG.M / is

exactly t0 . Thus t0 is not actually an ideal point, proving the lemma.

7 Alexander polynomials and orderability

In this section we prove our first main result, Theorem 7.1, which implies Theorem 1.2
from the introduction. To state the more general result, we need a pair of definitions.
First, we say a compact 3–manifold Y has few characters if each positive-dimensional
component of X.Y / consists entirely of characters of reducible representations. An
irreducible Q–homology solid torus M is called longitudinally rigid when its Dehn fill-
ing along the homological longitude M.0/ has few characters. Here is the statement of
Theorem 7.1, where the manifold M has a fixed homologically natural framing .�; �/.

7.1 Theorem Suppose that M is a longitudinally rigid irreducible Q–homology solid
torus and that the Alexander polynomial of M has a simple root � on the unit circle.
When M is not a Z–homology solid torus, further suppose that �k ¤ 1, where k > 0

is the order of the homological longitude � in H1.M IZ/. Then there exists a > 0

such that for every rational r 2 .�a; 0/[ .0; a/ the Dehn filling M.r/ is orderable.
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Boyer told us in a private communication that there is an analog of Theorem 1.2 when
the simple root � is on the positive real axis. Here is the argument that this implies
Theorem 1.2.

Proof of Theorem 1.2 Comparing the statements, there are two things to do: show
that M being lean implies that M is longitudinally rigid, and establish that M.0/ is
orderable. The latter is immediate from Theorem 1.1 of [8] since H 1.M.0/IZ/Š Z

and M.0/ is either irreducible or S2�S1 . The former is an immediate consequence of:

7.2 Claim Suppose Y is an irreducible closed 3–manifold. If the only essential
surfaces in Y are fibers in fibrations over the circle, then Y has few characters.

Here is the proof of the claim. Suppose instead that X.Y / has a positive-dimensional
component Z containing an irreducible character �0 . Recall from Section 2.3 that
the functions tr2

˛ for a finite set of ˛ 2 �1.Y / give coordinates on the complex affine
algebraic set X.Y /. Pick an irreducible curve X0 � Z that contains �0 , which we
can do by eg Corollary 1.9 of [20]. As affine algebraic curves over C are noncompact,
there is at least one ideal point of X0 in the sense of [9, Section 4]. This gives an
action of �1.Y / on a simplicial tree, which in turn has an essential dual surface. Let
F be a connected component of this dual surface. By hypothesis, the surface F must
be a fiber in a fibration of Y over the circle. In fact, since every essential surface in Y

is a fiber, it follows from [58, pages 113–115] that b1.Y /D 1 and that F is the unique
connected essential surface in Y up to isotopy. Therefore, the surface associated to
any other ideal point of X0 must also consist of parallel copies of F . Hence, for every

 2 �1.F /, the function tr2


 takes a finite value at every ideal point of the curve X0 ,
which forces the function tr2


 to actually be constant on X0 . Thus every character in
X0 has the same restriction to �1.F /, which we denote by � 2X.F /. There are two
cases depending on whether or not � is reducible.

Suppose � is irreducible. As per Section 2.3, all representations �1.F /!GC with
character � are irreducible and conjugate, and let us fix one such representation � . If
f W F ! F is the monodromy of the fibration, we have the usual presentation

�1.M /D h�; �1.F / j �
 �
�1 D f�.
 / for all 
 2 �1.F /i

Thus, a representation y�W �1.M /! GC that restricts to � on �1.F / is determined
by the element T D y�.�/ 2 GC ; moreover, T must conjugate � to � ı f� . As � is
irreducible, its stabilizer under conjugation is finite [39, Proposition 3.16(i)], and hence
there are only finitely many possibilities for T . But then X0 is finite, a contradiction.
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Suppose instead that � is reducible. Let  W �1.M /!GC be an irreducible represen-
tation with character in X0 . Note that  j�1.F / is nontrivial as otherwise  factors
through �1.M /=�1.F /Š Z making  itself reducible. As  j�1.F / has character �,
it is reducible and has either exactly one or exactly two fixed points on P 1.C/. If
 j�1.F / had a unique fixed point p0 2P 1.C/, then, since �1.F / is normal, it follows
that  itself fixes p0 , making  reducible. So  j�1.F / has exactly two fixed points
on P 1.C/, and we conjugate  so that these are 0D Œ0 W 1� and 1D Œ1 W 0�. After
this conjugation, the image of  j�1.F / consists of diagonal matrices and its nontrivial
elements are hyperbolic or elliptic with axis the geodesic L in H3 that joins 0 to 1.
Now consider how  .�/ acts on the points 0 and 1. It must not fix them individually,
as then  would be reducible. Hence  .�/ is an elliptic element of order two whose
axis is orthogonal to L. We can conjugate  by a diagonal matrix, which does
not change  j�1.F / , so that  .�/ D ˙

�
0 1
�1 0

�
. In particular, up to conjugacy,  is

completely determined by  j�1.F / . As a diagonal representation such as  j�1.F / is
determined up to conjugacy by its character, we have shown that X0 contains a unique
irreducible character. But this contradicts the fact that the irreducible characters in X0

are Zariski open [39, Corollary 3.6]. This completes the proof of Claim 7.2 and shows
that Theorem 1.2 follows from Theorem 7.1.

We now sketch the proof of Theorem 7.1, which we also illustrate in Figure 14. Recall
that to order the Dehn filling M.r/ by applying Lemma 4.4, we need an intersection of
the translation locus EL zG.M / with the line Lr , which is the line through the origin of
slope �r . So to prove the theorem, we construct a cone C of lines through the origin
that contains the horizontal axis L0 and where every line in C meets EL zG.M /. To this
end, we use a result of Heusener and Porti [40] to build an arc A in EL zG.M / which
starts at a point in L0 but is otherwise disjoint from it. The symmetries of EL zG.M /

guarantee that if we have such an arc on one side L0 then we will have one on the other
side as well, giving us a big enough chunk of EL zG.M / to have the desired cone C ;
see Figure 14 for more. A key technical point is that we must take care to ensure
that the arc A is not completely contained in L0 , and this is where the hypothesis of
longitudinally rigid comes in.

A key component of the proof is the following result, derived from [40].

7.3 Lemma Suppose M is an irreducible Q–homology solid torus. If � is a simple
root of the Alexander polynomial that lies on the unit circle, then there exists an analytic
path �t W Œ0; 1�! RG.M /, where:
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C

��

��

�� D 1

B

A

Figure 14: Here is an outline of the proof of Theorem 7.1. From the simple root � of
�M, we use [40] to produce an arc A in EL zG.M / leaving the horizontal axis at a
corresponding Alexander point. Using the action of D1.M / , we can assume the arc
A lies in the strip 0� x � 1 as shown. The element of D1.M / which is � –rotation
about

�
1
2
; 0
�

means there will be a second arc B in this strip on the opposite side of
the horizontal axis from A . This allows us to find a cone C whose lines through the
origin meet EL zG.M / in a point which is neither parabolic or ideal. The theorem will
then follow from Lemma 4.4.

(1) The representation �0 acts by rotations about a unique fixed point in H2 , and
factors through H DH1.M IZ/free DH1.M IZ/=.torsion/ Š Z. A generator of
H acts via rotation by angle arg.�/.

(2) The representations �t are irreducible over GC for t > 0.

(3) The corresponding path Œ�t � of characters in XG.M / is also a nonconstant
analytic path.

(4) There exists 
 2 �1.@M /, where tr2

 .�t / is nonconstant in t .

Proof Except for part (4), the lemma follows straightforwardly from the statement
of Proposition 10.3 of [40] and Lemma 2.11 of our paper. However, it is even easier
to derive claims (1)–(3) directly from the discussion in Section 10 of [40] and we
take that approach. Throughout, we will follow the notation of [40] closely. Fix a
generator h of H , and let ˛W �1.M /! C� be the homomorphism which factors
through the homomorphism H ! C� that sends h to � . Consider the associated
diagonal representation �˛W �1.M /!GC given by

�˛.
 /D˙

�
˛1=2.
 / 0

0 .˛1=2.
 //�1

�
;

where ˛1=2.
 / is either square root of ˛.
 /. Now the image of �˛ is contained in the
following subgroup of GC :
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PSU.1; 1/D
��

a b
xb xa

� ˇ̌̌
a; b 2C with jaj2� jbj2 D 1

�
;

which is a conjugate of G in GC as it corresponds to the Möbius transformations that
stabilize the unit disc D in C �P 1.C/.

The proof of Proposition 10.3 in [40] shows that the cocycle defined there,

dCC d� 2H 1.�1.M /I su.1; 1/�˛ /;

can be integrated to an analytic path �t W Œ0; 1�!RPSU.1;1/.M / with �0 D �˛ and �t

irreducible over GC for t > 0, which gives (2). Note that �˛ stabilizes the center of D

and acts on the tangent space there via ˛ , which gives (1). Next, claim (3) that Œ�t � is
nonconstant follows from (2), since, over GC , a reducible representation cannot have
the same character as an irreducible representation.

Finally, we tackle claim (4), whose proof is more involved; please note that claim
(4) is not actually used in this paper and so you can safely skip it. By Theorem 1.3
of [40], the character �˛ D Œ�˛ � is contained in precisely two irreducible components
of X.M /, both of which are (complex) curves: one consisting solely of characters
of abelian representations and the other, which we will call X , whose characters
generically come from representations that are irreducible over GC . Of course, our
path Œ�t � lies in X . To study X near �˛ , we move away from �˛ to the representation
�C 2R.M / constructed in [40, Section 5]. The representation �C is also reducible
with character �˛ but has nonabelian image. Proposition 7.6 of [40] gives that �C is a
smooth point of R.M / of local dimension 4. Let sl2.C/�C denote the Lie algebra
of GC as a �1.M /–module via the action Ad ı �C . The proof of Proposition 7.6
of [40] shows that the Zariski tangent space of R.M / at �C can be identified with
the space of cocycles Z1.M I sl2.C/�C/. (Unlike [40], we are assuming that M is
irreducible and consequently aspherical, and so do not distinguish between cohomology
of M and of �1.M /.) As the tangent space to the orbit of �C is the space of
coboundaries B1.M I sl2.C/�C/, we can identify the Zariski tangent space of X at �˛
with H 1.M I sl2.C/�C/, which is C by Corollary 5.4 of [40]. As the restriction �C ı �
in R.@M / is nontrivial, the proof of Lemma 7.4 of [40] gives that �C ı � is a smooth
point of R.@M /, and so again we can identify the Zariski tangent space of X.@M / at
Œ�C ı �� with H 1.@M I sl2.C/�C/ŠC2 . The claim (4) boils down to showing that

(7.4) ��W H 1.M I sl2.C/�C/!H 1.@M I sl2.C/�C/

is injective, since coordinates on X.@M / are precisely the functions tr2

 for 
 2�1.M /.
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To understand the map in (7.4), start by calculating that the 0–cohomologies, or
equivalently the �1.M /–invariant subspaces of sl2.C/�C , are

H 0.@M I sl2.C/�C/ŠC and H 0.M I sl2.C/�C/Š 0:

As M has Euler characteristic 0, this forces H 2.M I sl2.C/�C/ŠC , and so by duality
we have H 1.M; @M I sl2.C/�C/ŠC as well. Suppressing the coefficients, the long
exact sequence of the pair includes

H 1.@M / H 1.M / H 1.M; @M / H 0.@M / H 0.M /

C2 C C C 0

�� ı

which forces �� at left to be injective, as claimed. This establishes (4) and hence the
lemma.

Proof of Theorem 7.1 We will use the coordinate system described in Section 4.1
to identify H 1.@M IR/ with R2 . We will show that there exists a cone C in R2

containing the positive part of the horizontal axis in its interior such that every line
contained in C meets the subset EL zG.M / in a point which is neither ideal nor parabolic.
The theorem then follows directly from Lemma 4.4 once we invoke [36, Theorem 1.2]
to know that all but at most three Dehn fillings on M are irreducible.

We claim it suffices to produce a path A in EL zG.M / which begins at a point on
the horizontal axis, and not at the origin, such that the image of A is not completely
contained in the horizontal axis. If the image of A contains points of either the upper
or lower open half-plane, then the symmetries imply that there also exists a path whose
image contains points of the other half-plane; compare Figure 14. Thus the images of
the two paths will meet every line in some cone C . By Theorem 4.3, after shrinking
these paths if necessary, we may assume that they contain no ideal points. Since
parabolic points occur only at integer lattice points, we may also assume that these
paths contain no parabolic points in their interior.

Let � be a simple root of �M that lies on the unit circle. Note that � is different
from 1 since, as M is a Q–homology solid torus, the value j�M .1/j is the order
of the torsion subgroup in H1.M IZ/ and hence positive. Let �t be the associated
path in RG.M / given by Lemma 7.3. Now �0 factors through the free abelianization
H of �1.M /, which is just Z, and so it is trivial to lift �0 to z�0W �1.M /! zG that
still factors through H . As � is 0 in H , we have trans.z�0.�// D 0. As � is not 1,
we have trans.z�0.�// ¤ 0. As noted in Section 4.1, the index of h��.�/i in H is
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the order k of ��.�/ in H1.M IZ/. Thus, using Section 3.4, we adjust z�0 so that
trans.z�0.�// is in .0; k�. In particular, z�0 gives a point .x; 0/ 2 EL zG.M / with x > 0

in our coordinates on H 1.@M IR/.

As discussed in Section 3.3, the Euler class is the complete obstruction to lifting a
representation to zG and is constant on connected components of RG.M /. Hence, as
�0 lifts to z�0 , we can extend this to a continuous path z�t W Œ0; 1�! R zG.M / lifting the
original �t . Because �k ¤ 1, we have tr2

�.z�0/D �
k C 2C ��k < 4, so there exists

� > 0 such that tr2
�.�t / < 4 for t 2 Œ0; ��. This means that the representation �t sends

� to an elliptic element and, since � commutes with �, it must also send � to an
elliptic or trivial element. By replacing �t by its restriction to a subinterval of positive
length, we have that �t is a path in PEG.M / and that z�t is a path in PE zG.M /.

We now build our path A by composing z�t with trans ı ��W PE zG.M /! EL zG.M /.
By Lemma 7.3(3), we know Œ�t � is a nonconstant path in X.M / and hence z�t is a
nonconstant path in PE zG.M /. However, we must still prove that A is not contained in
the horizontal axis, ie that trans.z�t .�// is not the zero function in t . If it were, then since
�t .�/ is always elliptic or trivial, we would have that �t .�/D 1 for all t ; in particular,
all the �t factor through �1.M.0// and so the path Œ�t � lies in X.M.0// � X.M /.
Thus the Œ�t � are in an irreducible component Z of X.M.0// of complex dimension at
least 1. By Lemma 7.3(2), the �t are irreducible for t > 0, and thus Z is a component
of X.M.0// of positive dimension which contains an irreducible character. This
contradicts our hypothesis that M is longitudinally rigid, and completes the proof of
the theorem.

7.5 Remark For general Q–homology solid tori, there can be reducible represen-
tations that deform to irreducible representations but do not come from roots of the
Alexander polynomial; rather, they correspond to roots of certain twisted Alexan-
der invariants as described in [40]. However, it would not help to consider such
representations in the context of Theorem 7.1: as we now explain, the additional
representations never lift to zG and hence are of no interest to us here. Specifically,
consider a representation �W �1.M /! S �G , where S D PSO2 Š S1 ; in the proof
of Theorem 7.1, we considered such � that factor through H1.M IZ/free and deform
to irreducible representations in RG.M /. More generally, we could consider any
deformable �W �1.M /! S � G . However, the preimage of S in zG is R, which
is abelian and torsion-free; thus if � lifts to z�W �1.M /! zG , the lift z� must factor
through H1.M IZ/free , and so we are back in the case considered in Theorem 7.1.
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8 Real embeddings of trace fields and orderability

This section gives the proof of Theorem 1.4, whose statement we recall below after
giving some needed background.

8.1 Trace fields and Galois conjugate representations

Let M be a compact orientable 3–manifold whose boundary is a torus. The trace
field of a representation �W �1.M /!GC is the subfield of C generated over Q by
the traces of all �.
 / for 
 2 �1.M /; this is well-defined even though the trace of
each �.
 / only makes sense up to sign. Of course, the trace field depends only on
the conjugacy class of � . If �hyp is a holonomy representation of a finite-volume
hyperbolic structure on the interior of M, by local rigidity its trace field F is a number
field, that is, a finite extension of Q [49, Theorem 3.1.2]. In particular, F is contained
in the subfield Q�C of all algebraic numbers.

As the hyperbolic structure has a cusp, we can conjugate �hyp so that its image lies
in PSL2F [49, Theorem 3.3.8]. Given an embedding � W F ! C , which must have
image contained in Q, we get a Galois conjugate representation �W �1.M /! GC

by composing �hyp with the induced map PSL2F ! PSL2.�.F //. As irreducible
representations into GC are determined by their characters, up to conjugacy in GC

this � depends only on � and not on how we conjugated �hyp to lie in PSL2F .

Here is the statement that this section is devoted to proving:

Theorem 1.4 Let K be a hyperbolic knot in a Z–homology 3–sphere Y . If the trace
field of the knot exterior M has a real embedding then:

(1) For all sufficiently large n, the n–fold cyclic cover of Y branched over K is
orderable.

(2) There is an interval I of the form .�1; a/ or .a;1/ such that the Dehn filling
M.r/ is orderable for all rational r 2 I.

(3) There exists b > 0 such that for every rational r 2 .�b; 0/[ .0; b/ the Dehn
filling M.r/ is orderable.

The proof relies on the following three lemmas, the third of which was suggested to us
by Agol and Futer.
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8.2 Lemma Suppose M is a hyperbolic Z–homology solid torus, with homolog-
ical longitude � 2 �1.@M /. Suppose the trace field F of M has a real embedding
� W F ! R and let �W �1.M / ! G be the corresponding Galois conjugate of the
holonomy representation. If z�W �1.M /! zG is any lift of � , then trans.z�.�// is an
odd integer.

8.3 Lemma Suppose M is an orientable 1–cusped hyperbolic 3–manifold whose
trace field has a real embedding. Then there exists an arc c in RG.M / and a represen-
tation � in its interior such that:

(1) The representation � is a Galois conjugate of a holonomy representation of the
hyperbolic structure on M.

(2) For any slope 
 2 �1.@M /, the arc c is parametrized near � by tr2

 .

8.4 Lemma (Agol and Futer) Suppose EL zG.M / contains an arc A that is not
horizontal, ie that has points with different vertical coordinates. Then there exists an
a> 0 so that the line Lr meets EL zG.M / for all r in .�a; a/.

Proof of Lemma 8.2 Let �hypW �1.M /! PSL2F be a holonomy representation for
the hyperbolic structure on M. Let �0hypW �1.M /! SL2F be any lifted representation,
which exists by [25, Proposition 3.1.1]. By Corollary 2.4 of [13], we know tr.�0hyp.�//D

�2 since � is the boundary of an orientable spanning surface. The Galois conjugate
�0D � ı�0hyp also has tr.�0.�//D�2, and note that �0 is a lift of � to SL2R. Consider
the successive quotients

zG SL2R G
q

p

The lemma will follow immediately from the fact that tr.�0.�//D�2 once we show:

8.5 Claim Suppose zg is a parabolic or central element of zG and xg is its image in
SL2R. Then the parity of trans.zg/ is odd precisely when tr.xg/D�2 rather than C2.

To see this, consider the subset P of all parabolic or central elements of zG . (Figure 1
of [45] has a detailed picture of P as well as the subsets of elliptic and hyperbolic
elements; this picture informs our approach here but is not directly used.) Note that
every path component of P contains a central element; this is because downstairs in
G any parabolic element can be connected to the trivial element by a path all of whose
interior points are parabolic, and paths lift to covering spaces. The functions trans and
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tr ı q are both continuous on zG and are integer-valued on P . Hence they are constant
on each path component of P , and it suffices to prove the claim for central elements.
There, note that the center fskg of zG maps to the center f˙Ig of SL2R via the unique
epimorphism Z!Z=2; hence the sk which map to �I are exactly those with k odd.
This proves the claim and hence the lemma.

Proof of Lemma 8.3 Let F be the trace field of M and �hypW �1.M /! PSL2F be
a holonomy representation. As F has a real embedding, choose � 2 Gal.Q=Q/ such
that �.F /�R, and define � 2 RG.M / as � ı �hyp .

Now both R.M / and X.M / are defined over Q, that is, they can be cut out by
polynomials with rational coefficients. Hence Gal.Q=Q/ acts coordinatewise on their
Q–points. Since Œ�hyp� comes from the complete hyperbolic structure on M, it is a
smooth point of X.M / where the local dimension is 1 — see [54, Corollaire 3.28] — in
particular, the Zariski tangent space to X.M / at Œ�hyp� is 1–dimensional. Let X be the
unique Q–irreducible component X of X.M / that contains Œ�hyp�. (You can construct
X by taking the C–irreducible component X0 of X.M / containing Œ�hyp�, which must
be defined over some number field, and then taking the union of the Gal.Q=Q/–orbit
of X0 .) Since X is invariant under the Gal.Q=Q/–action, it contains Œ�� as well
as Œ�hyp�. Finally, the dimension of X (thought of as an algebraic set over either Q

or C ) is 1.

Again by [54, Corollaire 3.28], for any slope 
 2 �1.@M /, the trace function tr2

 is a

local parameter for X on a small classical neighborhood of Œ�hyp� (the reference [54]
works with SL2C rather than GC character varieties, but this makes no difference since
near both 2 and �2 in C the map z 7! z2 is injective). Since � acts on the Q–points
of X taking Œ�hyp� to Œ��, it follow that Œ�� is also a smooth point of X , where again
any tr2


 is a local parameter for the nearby C points; this is because whether a regular
function is a local parameter at a smooth point on the curve X can be expressed purely
algebraically and hence is Gal.Q=Q/–invariant.

Let � denote the action of complex conjugation on X.M / as in Section 2.5. As Œ�� is a
smooth point of a 1–dimensional irreducible component of X.M /, by Proposition 2.8
there is a smooth arc xc of real points in XR.M / containing Œ�� in its interior. Since tr2




gives a local parameter for X near � , the arc xc must be locally defined simply by the
requirement that tr2


 is real. Thus xc is parametrized near Œ�� by the value of tr2

 in the

interval Œ4� �; 4C ��. Moreover, by restricting � we can assume every character in xc
comes from a GC –irreducible representation; by Lemma 2.10, this means C �XG.M /
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y D y1

y D y0

Lr

.x2;y1/

.x3;y0/

.x01;y1/

.x0
0
;y0/

A0

Figure 15: When the slope of Lr is small enough, it must meet a translate A0 of A .

since Œ�� 2 XG.M /. By Lemma 2.11, we can lift xc to an arc in c in RG.M /. As the
function tr2


 must also be a local parameter for c , we have proved the lemma.

Proof of Lemma 8.4 By shortening the arc if necessary, we first arrange that A

lies to one side of the horizontal axis. As D1.M / preserves EL zG.M / and contains
� –rotation about the origin, we may assume that A lies below this axis. We will show
that there exists an a1 > 0 such that Lr meets EL zG.M / for all r in .0; a1/. Applying
the symmetric argument to the � –rotation of A about the origin will give an a2 > 0

such that Lr meets EL zG.M / for all r in .�a2; 0/; taking aDmin.a1; a2/ will then
give the promised interval, since the horizontal axis itself is always part of EL zG.M /.

As usual, let k be the order of ��.�/ in H1.M IZ/, so that D1.M / contains the
subgroup of horizontal translations by multiples of k . By shortening A if necessary, we
can label its endpoints as .x0;y0/ and .x1;y1/, where y0 < y1 < 0 and jx1�x0j< k .

We claim that Lr meets EL zG.M / for all r where

(8.6) 0< r <
y1�y0

2k

To see this, let .x2;y1/ be the point where Lr meets the horizontal line y D y1 , and
let .x3;y0/ be the point where Lr meets yD y0 . Let n be the largest integer such that
x0Cnk�x3 , and let A0�EL zG.M / be A translated to the right by nk , so the endpoints
of A0 are .x0C nk;y0/ and .x1C nk;y1/. Set x0

0
D x0C nk and x0

1
D x1C nk .

We now argue that Lr meets A0 , using Figure 15 as a guide. Since the slope of Lr

is �r , and since .y1�y0/=r > 2k by (8.6), we have

x3�x2 D
y1�y0

r
> 2k:

Our choice of n guarantees that x0
0
< x3 and jx3�x0

0
j< k . We also have jx0

1
�x0

0
j D

jx1�x0j< k . Thus

jx3�x01j � jx3�x00jC jx
0
0�x01j< 2k:
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��

��

A
.0; k/

��

��

A.0; k/

Figure 16: The two possibilities for the arc A in the locus EL zG.M / originating
from the image .0; k/ of a Galois conjugate of the holonomy representation: k > 0

(left) and k < 0 (right).

Combining, we conclude that x2 < x0
1

. We also have x0
0
< x3 , so we have shown that

the endpoints of A0 lie on opposite sides of Lr , as in Figure 15. This implies that Lr

must meet A0 , completing the proof of the lemma.

Proof of Theorem 1.4 Let c be the arc in RG.M / given by Lemma 8.3, and � the
Galois conjugate of the holonomy representation which is in c . As H 2.M IZ/D 0,
the Euler class of any representation in c vanishes, and hence we can lift c to an arc zc
in R zG.M /. We fix a particular lift by requiring that � lifts to z� with trans.z�.�//D 0.
By Lemma 8.2, we have that trans.z�.�//D k is an odd integer, and so z� gives rise to
the point .0; k/ in EL zG.M /.

Since this is true downstairs for c , the function tr2
� is a local parameter for zc where the

parameter takes values in Œ4��; 4C��. For the subinterval Œ4��; 4�, the representations
on zc must lie in PE zG.M / since they each send � to a parabolic or elliptic element
of zG . In particular, the translation number of � is a local parameter for this portion
of zc .

Thus we get an arc A in EL zG.M / which starts from .0; k/, where k is the aforemen-
tioned odd integer, and is locally parametrized by the ��–coordinate on some small
interval Œ0; ı�. Moreover, by construction no point on A is an ideal point, and the only
parabolic point on A is .0; k/ itself. Depending on the sign of k , we get one of the
two pictures in Figure 16.

To prove conclusion (1), consider an n–fold cyclic cover zY of Y branched over K .
First, by the hyperbolic Dehn surgery theorem, the manifold zY is hyperbolic and hence
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irreducible for all large n. Moreover, from Figure 16 it is clear that for all large n the
arc A meets the line �� D 1=n, so we now get (1) directly from Lemma 4.5.

For (2), for concreteness let us focus on the possibility in Figure 16, right. Since there
are at most three Dehn fillings on M that are reducible [36, Theorem 1.2], we can
construct an interval I D .a;1/ where M.r/ is irreducible and Lr meets A for all
r 2 I. The claim now follows immediately from Lemma 4.4.

Finally, for part (3), by Lemma 8.3 the arc c in RG.M / is parametrized near � by tr2
�

;
thus the corresponding arc A in EL zG.M / is not horizontal. Hence, by Lemma 8.4,
the line Lr meets EL zG.M / for all r in some open interval .�b; b/. Shrinking b , we
can ensure that M.r/ is irreducible for all r in .�b; 0/[ .0; b/. Again, claim (3) now
follows immediately from Lemma 4.4, completing the proof of the theorem.

8.7 Remark The hypothesis that Y is a Z–homology 3–sphere is certainly necessary
for the proof of Theorem 1.4 to work, and it is likely that the conclusion of Theorem 1.4
does not hold in general if one drops this hypothesis. Specifically, consider the 1–
cusped hyperbolic 3–manifold M D v2503, which has H1.M IZ/D ZCZ=10 and
H 2.M IZ/D Z=10. The trace field here is Q.�/, where � is a root of

x10
� 4x8

C 9x6
� 15x4

C 12x2
� 2;

which has six real embeddings. However, none of the resulting representations
�1.M /!G lift to zG , completely stymying our technique for constructing orders.

This M is interesting from the point of view of Floer theory; specifically, Lidman
and Watson recently gave infinitely many Q–homology solid tori which were not
fibered and where every nonlongitudinal Dehn filling is an L–space [48]. As their
examples all have essential annuli, they asked [48, Question 6] whether there are
hyperbolic examples with these same properties; the manifold v2503 answers that
question affirmatively, as we now explain. We will use the homological framing .�; �/
which corresponds to .0; 1/ and .�1; 0/ in SnapPy’s default conventions. Then M.�/

is the lens space L.50; 19/ and M.�/ is S2 �S1 # RP3 . Using [55], it is possible to
show that every nonlongitudinal Dehn filling on M is an L–space, even though it is
not a fibered 3–manifold as �M D 2.t4C t3C t2C t C 1/.

Of course, if Conjecture 1.1 is true, then every Dehn filling on M is not orderable
(the filling M.�/ is not orderable as its fundamental group has torsion). We checked
the 16 examples where the Dehn filling coefficients are at most 3, and in each case we
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were able to show that the corresponding Dehn filling was not orderable. It would be
interesting to show that this is the case for all Dehn fillings.

9 Open questions

Our results in this paper and especially the examples in Section 5 suggest many
interesting questions and possible avenues for future research; here are some of them:

(1) Find topological hypotheses on a Z–homology solid torus which imply that all
Dehn surgeries in .�1; 1/ are orderable.

(2) Find topological hypotheses which give rise to the behavior, shown in Figure 8,
where one can use EL zG.M / to order all but one Dehn filling on M.

(3) Do all Berge knots have EL zG.M / of the simple form shown in Figures 3 and 4?
What about twisted torus knots? In the latter case, perhaps one can view EL zG.M / as
some kind of “perturbation” of the very simple EL zG.M / of the underlying torus knot.

(4) In Lemma 6.4 we show that EL zG.M / lives in a horizontal strip whose size is
bounded. When M is a Z–homology solid torus, our proof shows that the maximum
y –coordinate of a point in EL zG.M / is 2g� 1, where g is the Seifert genus of M. In
our examples, this bound is never sharp. Is this always the case, and regardless, is there
some way to understand this gap?

(5) Does every polynomial satisfying the conclusion of [53, Corollary 1.3] have a
simple root on the unit circle? Note that by [46] such a polynomial always has a root
on the unit circle. Experimental evidence says yes.

(6) Can the longitudinally rigid hypothesis in Theorem 7.1 be eliminated by placing
additional conditions on �M ? In the known examples where longitudinal rigidity
comes into play, the “bad” roots of �M are all roots of unity.

(7) Also motivated by Theorem 7.1, are there closed atoroidal 3–manifolds with
dim H1.M IQ/ � 1 which do not have few characters? What if one restricts to
0–surgery on a knot in S3 ?

(8) There is a Chern–Simons invariant/Seifert volume/Godbillon–Vey invariant associ-
ated to each representation in RG.M /, see [45]. In our usual coordinates on EL zG.M /,
the derivative is really simple, basically x dy�y dx . Can this invariant be used to prove
something interesting about EL zG.M /?

(9) How can one explore the space of actions of �1.M / on R so as to include some
which do not arise from zG representations? It is natural to try to use some analog of
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the character variety to do this. What is the appropriate setting for this? Is it possible
to draw pictures like those in Section 5 that are built from some larger class of maps to

EHomeoC.R/?

(10) Motivated by Remark 8.7, prove that every Dehn filling on v2503 is not orderable.
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