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Mirror theorem for elliptic quasimap invariants

BUMSIG KIM

HYENHO LHO

We propose and prove a mirror theorem for the elliptic quasimap invariants of smooth
Calabi–Yau complete intersections in projective spaces. This theorem, combined with
the wall-crossing formula of Ciocan-Fontanine and Kim, implies mirror theorems of
Zinger and Popa for the elliptic Gromov–Witten invariants of those varieties. This
paper and the wall-crossing formula provide a unified framework for the mirror theory
of rational and elliptic Gromov–Witten invariants.

14N35; 14D23

1 Introduction

Let W be a codimension-r affine subvariety in Cn defined by homogeneous degree
l1; : : : ; lr polynomials such that the origin is the only singular point of W . Assume

rX
aD1

la D n;

and let G WDC� act on Cn by the standard diagonal action so that its associated GIT
quotient

X WDW � G

is a codimension-r , nonsingular Calabi–Yau complete intersection in Pn�1 .

With this setup, for each positive rational number ", there is a so-called "–stable,
genus-g , k–pointed, degree-d quasimap moduli space

Q"
g;k.X; d/

with the canonical virtual fundamental class ŒQ"
g;k
.X; d/�vir ; see Ciocan-Fontanine,

Kim and Maulik [6]. We are mainly interested in the space Q"
g;k
.X; d/ with small

enough " with respect to degree d , which will be denoted by Q0C
g;k
.X; d/ and also

simply by Qg;k.X; d/. When " > 2, the space Q"
g;k
.X; d/ coincides with the moduli

space SMg;k.X; d/ of stable maps, which will be denoted also by Q1
g;k
.X; d/.
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1460 Bumsig Kim and Hyenho Lho

When g D 1, the virtual dimension of Q"
g;0
.X; d/ is always zero. The main goal

of this paper is to discover an explicit description of degŒQ1;0.X; d/�
vir in terms of

Givental’s I–function for X. Let

h i
"
1;0 WD

1X
dD1

qd degŒQ"
1;0.X; d/�

vir;

where q is a formal Novikov variable. We express the generating function h i"
1;0

in
terms of Givental’s T–equivariant I–function for X, where T WD .C�/n is the complex
torus group acting on Pn�1 ; see Givental [7].

The equivariant I–function is the H�
T
.Pn�1/˝Q.�/–valued formal function in formal

variables q; z; tH :

IT .t; q/ WD etH H=z
1X

dD0

qdetH d

Qr
aD1

Qlad
kD1

.laH C kz/Qd
kD1

Qn
jD1.H ��j C kz/

;(1-1)

where �1; : : : ; �n are the T–equivariant parameters, Q.�/ denotes the quotient field
of the polynomial ring in �1; : : : ; �n , H is the T–equivariant hyperplane class, and
t WD tH H .

Let �0 be another formal parameter. Consider the restriction IT .0; q/jpi
of IT .0; q/

to the i th T–fixed point

pi WD Œ0; : : : ; 1„ ƒ‚ …
i

; : : : ; 0� 2 Pn�1:(1-2)

Define the q–series �.q/;R0.q/ 2QŒŒq�� by the asymptotic expansion

I.0; q/jpi
� e�.q/�i=z.R0.q/CO.z//;

where � means the equality after the specialization

�i D �0 exp .2� i
p
�1=n/; i D 1; : : : ; n:(1-3)

For the existence of the asymptotic expansion, see (2-7). Denote by

IT

the specialization of IT with (1-3).

For kD 0; 1; : : : ; n�1, define the initial constants Ck.q/2QŒŒq�� of the form 1CO.q/

inductively by the requirements

Ck.q/H
k
D Bk CO.1=z/

in the following Birkhoff factorization procedure:

B0 WD IT .0; q/; Bk WD

�
H C zq

d

dq

� Bk�1

Ck�1.q/
for 1� k � n� 1:
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There is an interpretation of Ck as a T–equivariant quasimap invariant; see Remark 3.3.

Theorem 1.1 The following holds:

h i
0C
1;0
D�

3.n�1�r/2Cn�r�3

48
log
�
1�q

rY
aD1

l la
a

�
�

1

2

n�2�rX
kD0

� n�r�k

2

�
log Ck.q/:

In all genera, there is a wall-crossing formula, which relates ŒQ1
g;k
.X; d/�vir with

ŒQ0C
g;k
.X; d/�vir , conjectured by Ciocan-Fontanine and Kim in [5] and proven in [4]. Its

consequence for gD 1 is as follows. Define I0 WDC0 and I1 by the 1=z–expansion of

IT j�DtD0 D I0C I1=zCO.1=z2/:

Theorem 1.2 [4] Let �top.X / be the topological Euler characteristic of X and
cdim X�1.TX / the .dim X � 1/st Chern class of the tangent bundle TX. Then

(1-4) h i
1
1;0jqd 7!qd exp.

R
d Œline� I1=I0/

� h i
0C
1;0

D
1

24
�top.X / log I0C

1

24

Z
X

I1

I0

cdim X�1.TX /:

Without any usage of the reduced Gromov–Witten invariants, Theorem 1.1 combined
with the wall-crossing formula (1-4) reproves the following mirror theorem of Popa
and Zinger for Calabi–Yau complete intersections in projective spaces.

Theorem 1.3 [11; 12] The following holds:

h i
1
1;0jqd 7!qd exp.

R
d Œline� I1=I0/

D
1

24
�top.X / log I0C

1

24

Z
X

I1

I0

cdim X�1.TX /

�
3.n�1�r/2Cn�r�3

48
log
�
1� q

rY
aD1

l la
a

�
�

1

2

n�2�rX
kD0

�n�r�k

2

�
log Ck.q/:

The above three theorems are logically independently proven, and any pair of them
implies the remaining theorem. Theorem 1.1 combined with Theorem 1.2 answers the
question raised by Marian, Oprea, and Pandharipande in Section 10.2 of [10].

The strategy to prove Theorem 1.1 consists of two steps. The first step is quite
general and conceptual. We obtain Theorem 2.6, one of two main results of this
paper. The theorem is a quasimap version of Givental’s expression [8] of the elliptic
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1462 Bumsig Kim and Hyenho Lho

Gromov–Witten generating function for a smooth projective toric variety twisted by
a vector bundle. The latter expression is given in terms of the equivariant Frobenius
structure of the equivariant quantum cohomology. One may regard Theorem 2.6 as a
mirror theorem for elliptic quasimap invariants for Calabi–Yau complete intersections in
toric varieties (as well as in partial flag varieties; see Remark 2.7), in the following sense.

Whenever one computes the right-hand side in Conjecture 2.5 in closed form, one
obtains a mirror theorem in closed form. Inspired by [11; 12], we accomplish the
computation for Calabi–Yau complete intersections in projective spaces. This second
step is completely algebraic. We will, however, see that the geometric natures of various
generating functions of quasimap invariants make the step crucially simple.

Acknowledgments We thank Ionut, Ciocan-Fontanine and Jeongseok Oh for useful
discussions. The research of Kim and Lho was partially supported by the NRF grant
2007-0093859.

2 Localized elliptic expression

Let G be a complex reductive group and let V be a finite-dimensional representation
space of G . Let � be a character of G such that the semistable locus V ss.�/ with
respect to � has no nontrivial isotropy subgroup of G . Following the twisted theory as
in [2, Section 7], we assume that a complex torus T acts on a vector space V , and this
action commutes with the G –action on V . Assume furthermore that the induced action
on Y WD V �� G allows only finitely many 0–dimensional and 1–dimensional T–orbits.

Let E be a G�T–representation space. Let s be a G –equivariant map from V to E

whose zero-locus W has only locally complete intersection singularities. Assume that
the semistable locus W ss.�/ is nonsingular.

Let X DW �� G . For ˇ 2 HomZ.PicG V;Z/, let

Qg;k.X; ˇ/ (resp. Qg;k.Y; ˇ//

be the moduli space of k–pointed genus-g stable quasimaps to X (resp. Y ) of degree
class ˇ . Denote by f the universal map from the universal curve C to the stack
quotient ŒV =G �:

C
f

//

�
��

ŒV =G �

Qg;k.Y; ˇ/

Geometry & Topology, Volume 22 (2018)
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Let
zE WD Œ.E �V /=G �;

which is a vector bundle on ŒV =G �. Note that s induces a section of a coherent sheaf
��f

� zE . Assume that for g D 0 and also for g D 1, k D 0 and ˇ ¤ 0, we have

R1��f
� zE D 0:

For example, this is the case when E is a sum
L

a Ea of 1–dimensional G�T–
representations Ea with G –weight ma� for some positive integers ma .

Let � denote the closed immersion of Qg;k.X; ˇ/ into Qg;k.Y; ˇ/. By the functoriality
in [9], we have

(2-1) ��ŒQg;k.X; ˇ/�
vir
D e.��f � zE/\ ŒQg;k.Y; ˇ/�

vir

for gD 0, k D 2; 3; : : : and also for gD 1, k D 0 and ˇ¤ 0. In this paper, we study
ŒQ1;0.X; ˇ/�

vir using (the obvious T–equivariant version of) the right-hand side of (2-1).

2.1 Genus-0 theory

We introduce the definitions of various generating functions of rational quasimap
invariants with the ordinary markings. We prove the relation in Corollary 2.3, which
will be needed later.

First we set the notation for the cohomology basis and its dual basis. Let fpigi be the
set of T–fixed points of Y , and let �i be the “delta” basis of H�

T
.Y /˝Q.�/; that is,

�i jpj D

�
1 if i D j ;

0 if i ¤ j:

Let �i be the dual basis with respect to the E–twisted T–equivariant Poincaré pairing; ieZ
Y

�i�
j eT. zEjY /D

�
1 if i D j ;

0 if i ¤ j ;

where eT. zEjY / is the T–equivariant Euler class of zEjY .

We assume, for every i , that eT. zEjpi
/ is invertible in Q.�/, so the twisted Poincaré

pairing is a perfect pairing on H�
T
.Y /˝Q.�/. Note that

�i
D ei�i ; where ei WD

1R
Y �i�ieT. zEjY /

D
eT.Tpi

Y /

eT. zEjpi
/
:
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1464 Bumsig Kim and Hyenho Lho

Integrating along the twisted virtual fundamental class

eT.��f
� zE/\ ŒQ0;k.Y; ˇ/�

vir;

we define correlators h� � �i0C
0;k;ˇ

as follows. For i 2H�
T
.Y /˝Q.�/,

h1 
a1 ; : : : ; k 

ak i
0C
0;k;ˇ

WD

Z
eT.��f � zE/\ŒQ0;k.Y;ˇ/�vir

Y
i

ev�i .i/ 
ai

i ;

where  i is the psi-class associated to the i th marking and evi is the i th evaluation
map. Let

Q0;k.Y; ˇ/
T ;pi

be the T–fixed part of Q0;k.Y; ˇ/ whose elements have domain components only
over pi . Integrating along the localized cycle class

LCC WD
eT.��f

� zE/\ ŒQ0;k.Y; ˇ/
T ;pi �vir

eT.N vir
Q0;k.Y;ˇ/

T ;pi =Q0;k.Y;ˇ/
/

;

we define h� � �i0C;pi

0;k;ˇ
and hh� � �ii0C;pi

0;k
as follows:

h1 
a1 ; : : : ; k 

ak i
0C;pi

0;k;ˇ
WD

Z
LCC

Y
i

ev�i .i/ 
ai

i ;

hh1 
a1 ; : : : ; k 

ak ii
0C;pi

0;k
WD

X
m;ˇ

qˇ

m!
h1 

a1 ; : : : ; k 
ak ; t; : : : ; ti

0C;pi

0;kCm;ˇ

for t 2H�
T
.Y /˝Q.�/, and where q is a formal Novikov variable.

In what follows, let z be a formal variable. We will need the following T–localized
generating functions:

Di WD eihh1; 1; 1ii
0C;pi

0;3
D 1CO.q/;

ui WD eihh1; 1ii
0C;pi

0;2
D t jpi

CO.q/;

S
0C;pi

t . / WD ei

DD
1

z� 
; 
EE0C;pi

0;2
D et jpi

CO.q/;

J 0C;pi WD ei

DD
1

z.z� /

EE0C;pi

0;1
D et
jpi
CO.q/
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for  2H�
T
.Y /˝Q.�/ŒŒq��, and where the unstable terms of J 0C;pi are defined by

the quasimap graph spaces QG0C
0;0;ˇ

.Y / as in [1; 2] so that

J 0C;pi jtD0 D J 0C
jtD0;pi

I

see Section 5 of [2] for the definition of J 0C . Here the front terms ei are inserted
as the class E–Poincaré dual to �i jpi

D 1. The parameter z naturally appears as
the C�–equivariant parameter in the graph construction; see Section 4 of [2]. It is
originated from the C�–action on P1.

Denote by QG0C
0;k;ˇ

.Y / the quasimap graph spaces (see [2]), and by

QG0C
0;k;ˇ

.Y /T ;pi

the T–fixed part of QG0;k;ˇ.Y / whose elements have domain components only over pi .
Furthermore, we define invariants and generating functions on the graph spaces: for
i 2H�

T
.Y /˝H�C�.P

1/˝Q.�/ and letting

LCCG WD
eT.��f

� zE/\ ŒQG0;k;ˇ.Y /
T ;pi �vir

eT.N vir
QG0;k;ˇ.Y /

T ;pi =QG0;k;ˇ.Y /
/
;

we define

h1 
a1 ; : : : ; k 

ak i
QG0C;pi

k;ˇ
WD

Z
LCCG

Y
i

ev�i .i/ 
ai

i ;

hh1 
a1 ; : : : ; k 

ak ii
QG0C;pi

k
WD

X
m;ˇ

qˇ

m!
h1 

a1 ; : : : ; k 
ak ; t; : : : ; ti

QG0C;pi

kCm;ˇ
;

for t 2 H�
T
.Y /˝Q.�/. Here we denote by evi the i th evaluation map to Y � P1

from the quasimap graph spaces and regard t also as the element t ˝ 1 in H�
T
.Y /˝

H�C�.P
1/˝Q.�/.

In what follows, let p1 be the equivariant cohomology class H�C�.P
1/ defined by the

requirements

p1j0 D 0; p1j1 D�z:

Proposition 2.1 The following holds:

(2-2) J 0C;pi D S
0C;pi

t .P0C;pi /; where P0C;pi WD eihh1˝p1ii
QG0C;pi

1
:
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1466 Bumsig Kim and Hyenho Lho

Proof The proof is completely parallel to the proof of Theorem 5.4.1 of [2]. Fix the
number of markings and the degree class ˇ and then apply the C�–localization to the
definition of P0C;pi .

By the uniqueness lemma in Section 7.7 of [2],

(2-3) S
0C;pi

t . /D eui=z jpi
:

Hence Proposition 2.1 gives the expression

J 0C;pi D eui=z.ri;0CO.z//;

where ri;0 2Q.�/ŒŒt; q�� is the constant term of P0C;pi in z .

Corollary 2.2 The equality

(2-4) log J 0C;pi D ui=zC log ri;0CO.z/ 2 Q.�/..z//ŒŒt; q��

holds as Laurent series in z over the coefficient ring Q.�/ in each power expansion of
t and q , after regarding t as a formal element.

Proof It is clear that both sides belong to Q.�/..z//ŒŒt; q��.

Corollary 2.3 Di jtD0 D
1

ri;0jtD0
.

Proof By (2-2) at t D 0, (2-3) with  D 1, and the definition of J 0C;pi , we see that

(2-5) J 0C;pi D eui jtD0=zP0C;pi jtD0C
t

z
S

0C;pi

tD0
.1/CO.t2/:

Also by (2-3) with  D 1 and the definition of S
0C;pi

t , we see that

(2-6) S
0C;pi

t D eui jtD0=z
�
1C

t

z
.Di jtD0/

�
CO.t2/:

The multiplication of e�ui jtD0=z and (2-2) after the replacements of (2-5) and (2-6) gives

P0C;pi jtD0C
t

z
CO.t2/D P0C;pi jtD0

�
1CDi jtD0

t

z

�
CO.t2/:

Now the comparison of the .t=z/–coefficient yields the result.

Geometry & Topology, Volume 22 (2018)
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2.2 Insertions of 0C weighted markings

To break the symmetry of the localization computation for the virtual fundamental
classes of the elliptic quasimap moduli spaces, we will need to introduce a marking.
However, to keep the relation (2-1) even with markings for g D 1, we will use the
infinitesimally (ie 0C) weighted markings.

Denote by

Q
0C;0C
g;kjm

.Y; ˇ/ (resp. QG0C;0C
0;kjm;ˇ

.Y //

the moduli space (resp. graph moduli space) of genus-g (resp. genus-0), degree class ˇ
stable quasimaps to Y with ordinary k–pointed markings and infinitesimally weighted
m–pointed markings; see Sections 2 and 5 of [3]. They are isomorphic to the universal
curve C of Q0C

g;kjm�1
.Y; ˇ/ (resp. QG0C

0;kjm�1;ˇ
.Y /). Denote by

Q
0C;0C
g;kjm

.Y; ˇ/T ;pi (resp. QG0C;0C
0;kjm;ˇ

.Y /T ;pi /

the T–fixed part of Q
0C;0C
g;kjm

.Y; ˇ/ (resp. QG0C;0C
0;kjm;ˇ

.Y /) whose domain components
are only over pi .

For i 2H�
T
.Y /˝Q.�/, zt ; ıj 2H�

T
.ŒV =G �;Q/, let

h1 
a1 ; : : : ; k 

ak I ı1; : : : ; ımi
0C;0C
0;kjm;ˇ

WD

Z
eT.��f � zE/\ŒQ

0C;0C

0;kjm
.Y;ˇ/�vir

Y
i

ev�i .i/ 
ai

i

Y
j

�ev�j .ıj /;

hh1 
a1 ; : : : ; k 

ak I ı1; : : : ; ımii
0C;0C
0;k

WD

X
m0;ˇ

qˇ

m0!
h1 

a1 ; : : : ; k 
ak I ı1; : : : ; ım; zt ; : : : ; zti

0C;0C
0;kjmCm0;ˇ

;

h1 
a1 ; : : : ; k 

ak I ı1; : : : ; ımi
0C;0C;pi

0;kjm;ˇ
WD

Z
LCCI

Y
i

ev�i .i/ 
ai

i

Y
j

�ev�j .ıj /;

hh1 
a1 ; : : : ; k 

ak I ı1; : : : ; ımii
0C;0C;pi

0;kjm

WD

X
m0;ˇ

qˇ

m0!
h1 

a1 ; : : : ; k 
ak I ı1; : : : ; ım; zt ; : : : ; zti

0C;0C;pi

0;kjmCm0;ˇ
;
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where �evj is the evaluation map to ŒV=G � at the j th infinitesimally weighted marking, and

LCCI WD
eT.��f

� zE/\ ŒQ
0C;0C
0;kjm

.Y; ˇ/T ;pi �vir

eT.N vir
Q

0C;0C

0;kjm
.Y;ˇ/T ;pi =Q

0C;0C

0;kjm
.Y;ˇ/

/
:

Here and below, double brackets with superscript 0C; 0C will indicate the sum over
all degree classes ˇ and all possible zt insertions only at the infinitesimally weighted
markings. Similarly, we define

h: : : I : : :i
QG0C;0C

kjm;ˇ
and hh: : : I : : :ii

QG0C;0C;pi

kjm
:

Consider

S. / WD
X

i

�i
DD �i

z� 
; 
EE0C;0C

0;2
;

Vii.x;y/ WD
DD �i

x� 
;
�i

y � 

EE0C;0C
0;2

D
1

ei.xCy/
CO.q/;

Ui WD eihh1; 1ii
0C;0C;pi

0;2
D zt jpi

CO.q/;

S0C;pi

i . / WD ei

DD
1

z� 
; 
EE0C;0C;pi

0;2
D e
zt=z jpi

CO.q/;

J0C;pi WD ei

DD
1

z.z� /

EE0C;0C;pi

0;1
D e
zt
jpi
CO.q/D J 0C;pi jtD0CO.zt/:

(Here e2
i Vii at zt D 0 coincides with V 0C

tD0
jpi

of [5].) As before,

S0C;pi

i . /D eUi=z jpi
;

J0C;pi D eUi=z

� mX
kD0

Ri;kzk
CO.zmC1/

�
(2-7)

for some unique Ri;k 2Q.�/ŒŒzt ; q�� (after regarding zt as a formal element).

2.3 Birkhoff factorization

In this subsection, we do not need to assume that the T –action on Y has isolated
fixed points. Therefore, in this subsection, f�igi will denote any chosen basis of
H�

T
.Y /˝Q.�/ with its E–Poincaré dual basis f�igi .

Denote by I the infinitesimal I–function J0C;0C defined in [3]. The S introduced
in the previous section is, by the very definition, the infinitesimal S–operator S0C;0C

Geometry & Topology, Volume 22 (2018)
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defined in [3]. Hence

I WD J0C;0C and S WD S0C;0C:

For  2H�
T
.Y /, we denote by z 2H�

T
.ŒV =G �/ a lift of  ; ie z jY D  .

Let p0 be the equivariant cohomology class H�C�.P
1/ defined by

p0j0 D z; p0j1 D 0:

Consider

Pz WD
X

i

�i
hh�i ˝p1I z ˝p0ii

QG0C;0C

0;1j1
2H�T .Y /˝Q.�/Œz�ŒŒzt ; q��

and its virtual C� localization factorization. As in Proposition 4.3 of [3], there is a
Birkhoff factorization

z@ I WD z
d

ds

ˇ̌̌
sD0

I.zt C sz /D S.Pz /:(2-8)

Since Pz D  CO.q/, the factorization (2-8) implies that for each zt , there is a unique
expression of S. / as a linear combination of @�i

I with coefficients in Q.�/Œz�ŒŒq��.
Hence we conclude the following proposition.

Proposition 2.4 For each zt , there are unique coefficients ai.z;q/2Q.�/Œz�ŒŒq�� makingX
i

ai.z; q/z@�i
I D  CO.1=z/:

Furthermore the left-hand side coincides with S. /.

2.4 Genus-1 theory

From now on, we assume that the Calabi–Yau condition holds; ie

c1.Y /� c1. zEjY /D 0 in H 2.Y;Q/:

We apply Givental’s localization method [8] to express a genus-1 generating function
in terms of the genus-0 generating functions.

Consider the genus-1 generating function with one insertion at an infinitesimally
(ie 0C) weighted marking:

h � I z i
0C;0C
1;0j1

WD

1X
dD1

qd
h � I z i

0C;0C
1;0j1;d

;

where z 2 H 2
T
.ŒV =G �;Q/. We will study the generating function using the virtual

T–localization.
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In the following conjecture, ci.�/ denotes the element in Q.�/ uniquely determined by

1C ci.�/e.E/D
eT.E_˝Tpi

Y /eT. zEjpi
/

eT.Tpi
Y /eT.E_˝ zEjpi

/
;(2-9)

where E is the Hodge bundle on the moduli stack SM1;1 of stable 1–pointed genus-1
curves.

Conjecture 2.5 For z 2H 2
T
.ŒV =G �;Q/,

(2-10) h � I z i0C;0C
1;0j1

D

X
i

qz
@

@qz

�
�

log Ri;0jztD0

24
C ci.�/

Ui jztD0

24

�
C

1

2

X
i

.@zUi jztD0/ lim
.x;y/!.0;0/

��
e�Ui

�
1
x
C 1

y

�
eiVii.x;y/�

1

xCy

�ˇ̌̌
ztD0

�
;

where qz .@=@qz / acts on qˇ by qz .@=@qz /q
ˇ D qˇ

R
ˇ z .

We prove Conjecture 2.5 in the following toric setting. Let Y be a projective smooth
toric variety defined by a fan †. Let †.1/ be the collection of all 1–dimensional
cones � in † and let V DC†.1/ . Then Y is also given by a GIT quotient C†.1/�� G

for the complex torus G D .C�/j†.1/j�dim Y and some character � of G . Denote
by T the big torus .C�/†.1/ . Let E and W be as in the beginning of Section 2.

Theorem 2.6 Conjecture 2.5 holds true for the toric setting.

2.5 The proof of Theorem 2.6

There is a natural one-to-one correspondence between the T–fixed points of Y and
the maximal cones of †. For a maximal cone � , denote by p� the corresponding
T–fixed point. The T–fixed loci of Q

0C;0C
1;0j1

.Y; ˇ/ are divided into two types according
to their images. We will call a quasimap in Q

0C;0C
1;0j1

.Y; ˇ/T a vertex type over p� if
all domain components of the quasimap are all over p� . Otherwise, the quasimap will
be called a loop type. The loop type quasimap is called a loop type over p� if the
marking of the quasimap is over p� .

Let QT
vert;� and QT

loop;� be the substacks of Q
0C;0C
1;0j1

.Y; ˇ/T consisting of the vertex
and loop types over p� , respectively.
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By the virtual localization theorem, h � I z i0C;0C
1;0j1

is the sum of the localization contri-
bution Vertz� from all the vertex types over p� 2 Y T and the localization contribution
Loopz� from all the loop types over p� 2 Y T . That is,

h � I  i
0C;0C
1;0j1

WD

X
�

Vertz� C
X
�

Loopz� ;

where

Vertz� WD
X
ˇ¤0

qˇ
Z
ŒQT

vert;� �
vir

eT.��f
� zE/jQT

vert;�
�ev�1.z /

eT.N vir
QT

vert;�=Q
0C;0C

1;0j1
.Y;ˇ/

/
;

Loopz� WD
X
ˇ¤0

qˇ
Z
ŒQT

loop;� �
vir

eT.��f
� zE/jQT

loop;�
�ev�1.z /

eT.N vir
QT

loop;�=Q
0C;0C

1;0j1
.Y;ˇ/

/
:

The above loop term can be identified with the last term in (2-10) by an argument
completely parallel to the corresponding procedure in the proof of Theorem 2.1 of [8].

The analysis of vertex terms needs a nontrivial modification to the corresponding
procedure of [8] due to the appearance of diagonal classes �J of SMg;mjd , where
J � Œd � WD f1; 2; : : : ; dg. Here �J is the codimension-.jJ j�1/ cycle class represented
by the locus where 0C weighted markings of J coincide to each other.

Let Vert� be the p�–vertex part of h i0C
1;0

. Then by the divisor axiom for the infinites-
imally weighted marking, Vertz� D qz .@=@qz /Vert� . Therefore, it is enough to show

Vert� D� 1
24

log R�;0jztD0C
1

24
c� .�/U� jztD0:(2-11)

For � 2†.1/, let �� be the character of the G –action on the corresponding coordinate
of C†.1/ . Recall that ��0 ; �0 6� � form a basis of the character group of G . Hence
we may let �� D

P
�0 6��a�;�0��0 for some unique integers a�;�0 . For a curve class

ˇ 2 HomZ.PicG V;Z/, denote by ˇ.�/ the integer value of ˇ at the line bundle
associated to �� .

Let ˇ� be the set of all pairs .�; j / with � 6� � and j 2 Œˇ.�/� WD f1; 2; : : : ; ˇ.�/g.
Then the T–fixed p�–vertex part of Q1;0.Y; ˇ/ is the quotient of SM1;0jˇ� by a finite
group of order

Q
� 6�� ˇ.�/!.

For C 2 SM1;0jˇ� , denote the marked point by x.�0;j/ attached to the index .�0; j / 2 ˇ� .
Let yx�0 for �0 6� � denote the effective divisor

P
j2Œˇ.�0/� x.�0;j/ , and let yx� for

� 2†.1/ denote the divisor
P
�0 a�;�0 yx�0 of C . Here for � 6� � with ˇ.�0/D 0, we
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set yx�0 D 0. Then the corresponding quasimap in Q1;0.Y; ˇ/ is a pair�
C; fOC .yx�/;u�g�2†.1/

�
;

where u� is the canonical section of OC .yx�/ if � 6� � ; otherwise, u� is zero.

Let r be the dimension of E . Decompose E D
Lr

iD1 Ei by 1–dimensional T �G –
representations Ei . Denote by �i the character of G associated to the G –action on Ei .
Then �i D

P
�0 6�� bi;�0��0 for some unique integers bi;�0 . Let yxi D

P
�0 6�� bi;�0 yx�0 .

In the following, for a divisor D D
P

i aipi of C with pi 2 C and ai 2 Z, we
define DC WD

P
ai>0 aipi and D� WD

P
ai<0 aipi . By the localization formula (see

Section 5.4 of [5]), note that

Vert� D
X
d¤0

qˇQ
� 6�� ˇ.�/!

Z
SM1;0jˇ�

.1C c� .�/e.E//F
.1;0/

�;ˇ
;

where

F
.1;0/

�;ˇ
D

Y
���

eT .��.Oyx�� .yx
C
� //˝C�;�/

eT .��.OyxC� .yx
C
� //˝C�;�/

rY
iD1

eT .��.OyxC
i

.yxCi //˝
zEjp� /

eT .��.Oyx�
i
.yxCi //˝

zEjp� /
I

here C�;� denotes the 1–dimensional T–subspace of Tp�Y corresponding to the facet
of � complementary to � , and � denotes the projection from the universal curve
to SM1;0jˇ� .

By the decomposition sequence 0 ! OA.�B/ ! OACB ! OB ! 0 of effective
Cartier divisors A;B , the computation of eT.��.OACB.D/// is reduced to that of
eT.��.Oxi

.xj ///, which is � y i if i D j or �fi;jg if i ¤ j . Here y i is the psi-class
associated to the 0C weighted k th marking. Hence the above expression for F

.1;0/

�;ˇ

can be considered as a formal element in Q.�/ŒŒ y k ; �fi;jg�� by expanding denominator
as geometric series. For dimensional reasons, F

.1;0/

�;ˇ
is expressed as a polynomial in

psi-classes and diagonal classes �fi;jg .

For nonnegative integers g;m, the above expression for F
.1;0/

�;ˇ
also defines F

.g;m/

�;ˇ

as an element in H�. SMg;mjˇ� ;Q.�// by replacing �� with the �� for the universal
curve of SMg;mjˇ� . We will consider only cases where .g;m/D .1; 0/, .0; 2/ or .0; 3/.

We may simplify the expression of F
.g;m/

�;ˇ
by universal calculus not depending on

g;m, as follows. Let d be a positive integer. For J � Œd �, let y J denote y j j�J
for

any j 2 J . Note that for J1\J2 ¤∅,

�J1
�J2
D .�y J1[J2

/jJ1\J2j�1�J1[J2

Geometry & Topology, Volume 22 (2018)



Mirror theorem for elliptic quasimap invariants 1473

in H�. SMg;mjd ;Q/; see Section 4.4 of [10]. For j 2 Œd �, define �j to be the fundamen-
tal class. For a partition J DfJ1; : : : ;Jkg of Œd � (ie ∅¤ Ji � Œd � and

Fk
iD1Ji D Œd �),

define

�J WD�J1
� � ��Jk

:

Then F
.g;m/

�;ˇ
can be written

(2-12) F
.g;m/

�;ˇ
D

X
JDfJ1;:::;Jkg

a partition of ˇ�

aJ�J

as a linear sum of �J over the coefficient ring Q.�/Œ y �j� 2ˇ� � such that the right-hand
side does not depend on g , m as long as g , m are bounded.

We claim that e.E/ y �D 0 in H�. SM1;0jk/ for all k � 1. The claim is trivial for k D 1

by dimension. Consider the morphism � which forgets the last marking:

� W SM1;0jkC1!
SM1;0jk :

Since ��.e.E//D e.E/ and ��. y 1/D y 1 , we have e.E/ y 1 D 0 by induction on k .
Similarly, y � D 0 in H�. SM0;2jˇ� /.

Since e.E/ y � D 0 in H�. SM1;0jˇ� / and y � D 0 in H�. SM0;2jˇ� /, we see thatZ
SM1;0jˇ�

e.E/F .1;0/
�;ˇ
D

1

24
.coeff. of the const. term in afˇ� g/D

1

24

Z
SM0;2jˇ�

F
.0;2/

�;ˇ
:

The second equality follows by the expression (2-12) independent of g;m. This
explains the last term of (2-11).

The verification of the first term in the right-hand side of (2-11) requires a further
analysis of F

.g;m/

�;ˇ
. First, observe again that the j th cotangent line on SMg;mjd for

j 2 Œd � is naturally isomorphic to the j th cotangent line on SMg;mjd�1 under the
pullback of the forgetting map of the last 0C weighted point. Therefore, y 2

�
D 0 in

H�. SMg;mjˇ� /. By y 2
�
D 0 and dimensional reasons, it is easy to check that for any

partition J D fJ1; : : : ;Jkg of ˇ� , the following equations hold:Z
SM1;0jˇ�

�J
y 

a1

J1
� � � y 

ak

Jk
D

� 1
24

if k D 1 and a1 D 1;

0 otherwise,
(2-13)

Z
SM0;3jˇ�

�J
y 

a1

J1
� � � y 

ak

Jk
D

�
1 if a1 D � � � D ak D 1;

0 otherwise.
(2-14)
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Here we use the well-known fact that
R
SM1;1

 D 1
24

and inductive equalitiesZ
SM0;3jd

y 1 � � �
y d D

Z
SM0;2jd�1

y 1 � � �
y d�1

:::

D

Z
SM0;3j1Š

SM0;4

y 1

D 1

by the dilaton equation. Let

A
ˇ
J1;:::;Jk

WD coeff. of
kY

iD1

y Ji
in afJ1;:::;Jkg

:

When k D 1, we denote A
ˇ
J1;:::;Jk

simply by Aˇ . Denote by ˇJi
the set of all pairs

.�; j / such that j 2 ŒjJi.�/j�, where Ji.�/ WD f.�; j / 2 Jig. Then note that

(2-15) A
ˇ
J1;:::;Jk

D

kY
iD1

AˇJi ;

which follows from two properties:

(1) F�;ˇ is a product of the T–equivariant Euler classes of vector bundles with fibers
H 0.C;OD.B//, where D is an effective divisor and B is a divisor of C . Here,
supports of D and B are contained in ˇ� .

(2) Let D DD1CD2 , where D1 , D2 are effective, and let B D B1CB2 . Then in
the K–group element,

OD1CD2
.B1CB2/DOD1

.B1/˝OD1
.B2/COD2

.B2/˝OD2
.�D1CB1/:

Suppose that ˇ� is a disjoint union of S1 , S2 such that supports of Di , Bi are in Si

for each i D 1; 2. Then

eT
�
H 0.C;OD1CD2

.B1CB2//
�
jS1;S2

D eT
�
H 0.C;OD1

.B1//
�

eT
�
H 0.C;OD2

.B2//
�
;

where the restriction to S1 , S2 is defined to be letting �J D 0 whenever there is Ji

in the partition J such that Ji intersects with S1 and S2 simultaneously.
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By (2-13), (2-14) and (2-15), we note thatZ
SM0;3jˇ�

F
.0;3/

�;ˇ
D

1X
kD1

X
fJ1;:::;Jkg

a partition of ˇ�

kY
iD1

AˇJi

D

1X
kD1

1

k!

X
ordered partition
.J1;:::;Jk/ of ˇ�

kY
iD1

AˇJi

D

1X
kD1

1

k!

X
ordered

.ˇJ1
;:::;ˇJk

/

Y
� 6��

�
ˇ.�/

jJ1.�/j; : : : ; jJk.�/j

� kY
iD1

AˇJi

D

Y
� 6��

ˇ.�/!

1X
kD1

1

k!

X
ordered

.ˇJ1
;:::;ˇJk

/

kY
iD1

�
24Q

� 6�� jJi.�/j!

Z
SM1;0jˇJi

F
.1;0/

�;ˇJi

�
:

Hence X
ˇ¤0

qˇQ
� 6�� ˇ.�/!

Z
SM1;0jˇ�

F
.1;0/

�;ˇ
D

1

24
log D� jtD0:

This combined with Corollary 2.3 verifies the first term in the right-hand side of (2-11).

Remark 2.7 By Section 5.9.2 of [5], it is clear that the above proof works also for
Calabi–Yau zero loci of homogeneous vector bundles on partial flag varieties Y , local
toric varieties, local Grassmannians, and the total spaces of the cotangent bundles of
partial flag varieties.

3 Explicit computations

In this section, we prove Theorem 1.1. From now on unless stated otherwise, let
G DC� and T D .C�/n, and let Cla

be the 1–dimensional representation space of G

with positive weight la . Let E D
Lr

aD1 Cla
with

Pr
aD1 laD n. We take the standard

T–action on V and the T–trivial action on E . This gives rise to a T–equivariant vector
bundle zE on ŒV =G �. Choose a character � such that Y WD V �� G becomes Pn�1.
Under the natural isomorphism HomZ.PicG V;Z/ŠZ, we use a nonnegative integer d

instead of ˇ . Let pi be the i th T–fixed point of Y as in (1-2).
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3.1 Birkhoff factorization revisited

By [7] (see also (5.3.1) of [3]),

IztD0 D IT jtD0;

where the left- and right-hand sides are defined in Section 2.3 and (1-1), respectively.

We define the degrees of �, H and q as

deg�j D 1D deg H; deg q D 0:

Then it is easy to check that, for k D 0; 1; : : : ; n� 1, the 1=zk–coefficient Ik of

IT jtD0

is a homogeneous degree-k element in QŒ�1; : : : ; �n�1;H �ŒŒq�� satisfying

(3-1) Ik 2QŒŒq��H k modulo (1-3):

On the other hand,

SztD0.H
k/DH k

CO.1=z/ for 0� k � n� 1:

Throughout Section 3, we impose the condition (1-3). After [12], we define an operation
as follows. For

F 2

�
QŒH �

.H n��n
0
/

�
ŒŒ1=z��ŒŒq�� with

��
zq

d

dq
CH

�
F
�ˇ̌̌

HD1;zD1;qD0
¤ 0;

let

B.F / WD

�
zq d

dq
CH

�
F.z;H; q/��

zq d
dq
CH

�
F.z;H; q/

�ˇ̌
HD1;zD1

:

Consider Bk.IT jtD0=I0/, and note that it is of the form H k CO.1=z/ and homoge-
nous of degree k if we put deg z D 1.

Corollary 3.1 Recall that � denotes the equality modulo relations (1-3). Then

SztD0.H
k/�Bk

�
IT jtD0

I0

�
; k D 0; 1; : : : ; n� 1:(3-2)

Proof Let zH 2H�
T
.ŒCn=C��/ be the natural lift of H , and let

zt D

n�1X
iD0

ti zH
i
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with formal variables ti . Then there is (the T–equivariant version of) the derivative
form formula

I.zt /D

�
exp

� n�1X
iD0

ti

z

�
zq

d

dq
CH

�i��
IT

ˇ̌̌̌
tD0

of the big I–function as in Section 5.3 of [3], which shows that

(3-3) .z@H i I/jztD0 D

�
zq

d

dq
CH

�i
.IjztD0/:

By (3-3) and Proposition 2.4, in order to verify (3-2), it is enough to recall that both
sides of (3-2) are of the form H k CO.1=z/.

Now consider an equivariant cohomology basis

f1;H; : : : ;H n�1
g; where H WD cT

1 .O.1//

of the T–equivariant cohomology ring

H�T .P
n�1/ŠQŒ�1; : : : ; �n; h�

ı� nY
iD1

.h��i/

�
; H 7! h:

Its E–twisted Poincaré metric modulo relations (1-3) becomes

gij WD

�Q
a la if i C j D n� 1� r;

�n
0

Q
a la if i C j D 2n� 1� r;

for 0� i; j � n� 1. Here we use the relation H n D�
Qn

jD1.��j /D �
n
0

.

There is an expression of V –correlators in terms of S–correlators by [5, Theorem 3.2.1]:

eiVii.x;y/jztD0 D
1

ei

P
j SzDx;ztD0.�j /jpi

SzDy;ztD0.�
j /jpi

xCy
:

Hence

(3-4) eiVii jztD0 �
1�Q

la
�
ei.xCy/

�

�n�1�rX
kD0

SzDx;ztD0.H
k/jpi

SzDy;ztD0.H
n�1�r�k/jpi

C
1

�n
0

r�1X
bD0

SzDx;ztD0.H
n�rCb/jpi

SzDy;ztD0.H
n�1�b/jpi

�
:
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3.2 Vertex terms

Applying (2-7) to

IjztD0;pi
D IT jtD0;pi

�

1X
dD0

qd

Qr
aD1

Qlad
kD1

.laC kz=�i/Qd
kD1..1C kz=�i/n� 1/

� IT jtD0;pn;z 7!z=�i
;

we obtain

IjztD0;pi
� e�.q/�i=z

� 1X
kD0

Rk.q/.z=�i/
k

�
for some �.q/ 2 qQŒŒq�� and Rk.q/ 2QŒŒq��. Hence

IjztDtH zH ;pi
� e�i tH =z.IT jtD0;q 7!qetH /

� e�i tH =ze�.qetH /�i=z

� 1X
kD0

Rk.qetH /.z=�i/
k

�
:

Thus

Ui jztDtH zH
� �i.tH C�.qetH // and Ri;k �Rk.qetH /=.�i/

k :(3-5)

Since

ri;0jtD0 DRi;0jztD0; ui jtD0 DUi jztD0 and ci.�/D

�X
j¤i

1

�j��i

�
C

X
a

1

la�i
;

we conclude that X
i

1

24
log Di jtD0 �

1

24
.�n log R0.q//;(3-6)

X
i

1

24
ci.�/ui jtD0 �

1

24

�X
a

n

la
�

�n

2

��
�.q/:(3-7)

3.3 Loop terms

If we let

Wp;p0 WD

�
.B/p

IT jtD0

I0

�ˇ̌̌̌
HD1;zDx

�
.B/p

0 IT jtD0

I0

�ˇ̌̌̌
HD1;zDy

;

V.x;y; q/ WD
X

pCp0Dn�1�r

Wp;p0 C

X
pCp0D2n�1�r

n�r�p�n�1

Wp;p0 ;

then by (3-2) and (3-4),

eiVii.x;y/jztD0 �
�n�1�r

i�Q
la
�
ei.xCy/

V
�

x

�i
;

y

�i
; q
�
:
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Here we use also the degree property that deg.S.�j /S.�j //D n� 1� r . Therefore,

e�Ui jztD0.1=xC1=y/eiVii.x;y/jztD0�
�n�1

i

eT.Tpi
Y /.xCy/

e��.q/.�i=xC�i=y/V
�

x

�i
;

y

�i
;q
�
:

Now the limit as x;y! 0 of (2-10) (or equivalently the residue at x D 0, y D 0 of
(2-10)=.xy/) as computed in [11, Lemma 5.4] becomes

lim
.x;y/!.0;0/

�
e�Ui .1=xC1=y/eiVii.x;y/�

1

xCy

�ˇ̌̌
ztD0
�

�n�2
i

eT.Tpi
Y /L.q/

q
d

dq
Loop.q/;

where

L.q/ WD .1� q
Y

a

l la
a /
�1=n;

Loop.q/ WD n

24

�
n� 1� 2

rX
aD1

1

la

�
�.q/�

3.n�1�r/2C.n�2/

24
log
�
1� q

Y
l la
a

�
�

n�2�rX
kD0

�n�r�k

2

�
log Ck.q/:

Since
@Ui

@t
jztD0 DL.q/�i

by (3-5) and Proposition 3.2 below, we conclude thatX
i

Loopi D
1

2
q

d

dq
Loop.q/:(3-8)

3.4 Proof of Theorem 1.1

Now the sum
(3-6)C (3-7)C 1

2
Loop.q/

can be explicitly obtained by Proposition 3.2, and hence we complete the proof of
Theorem 1.1.

3.5 Explicit computations of �;R0;R1 and loop terms

Recall we assume (1-3). Let �0 D 1. Note that IT satisfies the differential equation

PF IT jtDtH �H D 0; where PF WD
�
z

d

dt

�n
� 1� q

Y
a

laY
mD1

�
laz

d

dt
Cmz

�
I
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see [7, Corollary 11.7]. Applying the differential operator PF to the asymptotic form of

IT jtDtH H ;pn
;

one obtains �;R0;R1 and the loop limit; see Sections 4.2 and 4.3 of [11] for details.

For the reader’s convenience, we state the following proposition due to Popa [11].

Proposition 3.2 [11, Propositions 4.3 & 4.4] Consider Cb for b D 0; 1; : : : ; n� 1.

(1)
n�rY
iD0

Ci D

�
1� q

Y
a

l la
a

��1

.

(2) Cb D Cn�r�b for b D 0; 1; : : : ; n� r .

(3) Cb D 1 for b D n� r C 1; : : : ; n� 1.

(4) �.q/ D

Z q

0

.1�x
Q

a l
la
a /
�1=n� 1

x
dx and R0 DL.rC1/=2 .

Remark 3.3 Let f.H b/_gb be the E–twisted Poincaré dual basis of fH bgb . Note that

S.H b�1/�H b�1
C

1

z

�
H b

˝
.H b/_;H b�1

IH
˛0C;0C
0;2j1

zt
�
CO

�
zt 2;

1

z2

�
:

By (3-2) and the definition of Cb , we have

Cb �
˝
.H b/_;H b�1

IH
˛0C;0C
0;2j1

for b D 1; : : : ; n� 1;

and hence Proposition 3.2(2) naturally follows except for the claim that C0 D Cn�r .
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