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Counting problem on wind-tree models

ANGEL PARDO

We study periodic wind-tree models, that is, billiards in the plane endowed with Z2 –
periodically located identical connected symmetric right-angled obstacles. We give
asymptotic formulas for the number of (isotopy classes of) closed billiard trajectories
(up to Z2 –translations) on the wind-tree billiard. We also explicitly compute the
associated Siegel–Veech constant for generic wind-tree billiards depending on the
number of corners on the obstacle.

37D50, 37C35; 30F30, 37A40, 37D40

1 Introduction

The classical wind-tree model corresponds to a billiard in the plane endowed with
Z2–periodic obstacles of rectangular shape; the sides of the rectangles are aligned
along the lattice, as shown in Figure 1.

Figure 1: The original wind-tree model

The wind-tree model (in a slightly different version) was introduced by P Ehrenfest
and T Ehrenfest [9] in 1912. J Hardy and J Weber [24] studied the periodic version.
All these studies had physical motivations.

Several advances on the dynamical properties of the billiard flow in the wind-tree model
were obtained recently using geometric and dynamical properties on moduli space of
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(compact) flat surfaces; billiard trajectories can be described by the linear flow on a
flat surface.

A Avila and P Hubert [2] showed that for all parameters of the obstacle and for
almost all directions, the trajectories are recurrent. There are examples of divergent
trajectories constructed by V Delecroix [6]. Nonergodicity was proved by K Frącek
and C Ulcigrai [20]. It was proved by Delecroix, Hubert and S Lelièvre [7] that the
diffusion rate is independent of the concrete parameter values of the obstacle, and it is
equal to 2

3
for almost any direction and almost any starting point. A generalization

of this last result was shown by Delecroix and A Zorich [8] for more complicated
obstacles. In this work we study this last variant, corresponding to a billiard in the plane
endowed with Z2–periodic obstacles of right-angled polygonal shape, the obstacles
being horizontally and vertically symmetric and the sides of the obstacles aligned along
the lattice; see Figure 2 for an example.

Figure 2: Delecroix–Zorich variant

This work concerns asymptotic formulas for the number of (isotopy classes of) closed
billiard trajectories on the wind-tree model. We do not count trajectories which go
around a single closed trajectory several times, and we are counting unoriented trajecto-
ries. This question has been widely studied in the context of (finite) rational billiards and
compact flat surfaces, and it is related to many other questions such as the calculation
of the volume of normalized strata (see A Eskin, H Masur and Zorich [14]) or the sum
of Lyapunov exponents of the geodesic Teichmüller flow (see Eskin, M Kontsevich
and Zorich [10]) on strata of flat surfaces (abelian or quadratic differentials).

Masur [26; 27] proved that for every flat surface X , there exist positive constants c.X /

and C.X / such that the number N.X;L/ of (maximal) cylinders of closed geodesics
of length at most L satisfies

c.X /L2
�N.X;L/� C.X /L2
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for large enough L. W Veech [31] proved that for Veech surfaces there are in fact exact
quadratic asymptotics; E Gutkin and C Judge [23] gave a different proof. Another proof
for the quadratic upper bound was given by Y Vorobets [34]. Eskin and Masur [12]
gave yet another one and proved that for each ergodic probability measure � on strata
of normalized (area-1) flat surfaces, there is a constant c.�/ such that for almost every
surface, N.X;L/� c.�/ ��L2 , that is,

lim
L!1

N.X;L/

�L2
D c.�/:

The constant c.�/ is called the Siegel–Veech constant of the counting problem; it is
the constant in the Siegel–Veech formula [12, Theorem 2.2], a Siegel-type formula
introduced by Veech [33, Theorem 6.5].

It is still an open problem whether all flat surfaces have exact quadratic asymptotics.
The particular constants for several Veech surfaces have been computed explicitly by
Veech [31; 32], Vorobets [34], Gutkin and Judge [23] and M Schmoll [29]. Constants for
some families of non-Veech surfaces were also given by Eskin, Masur and Schmoll [13]
and Eskin, J Marklof and D Witte Morris [11]. Eskin, Masur and Zorich [14] computed
the Siegel–Veech constants for connected components of all strata of abelian differen-
tials, and also described all possible configurations of cylinders of closed geodesics
which might be found on a generic flat surface. In general, the particular constants for
Veech surfaces do not coincide with the Siegel–Veech constants of the strata where
they live.

The case of quadratic differentials presents extra difficulties. However, J Athreya, Eskin
and Zorich [1] gave explicit values for the Siegel–Veech constants on strata of quadratic
differentials of genus-zero surfaces. E Goujard [21] generalized this approach to higher
genera and obtained some exact values of Siegel–Veech constants for strata of quadratic
differentials away from genus zero.

We prove asymptotic formulas for generic wind-tree models with respect to a natural
Lebesgue-type measure (see [1; 8]) on the parameters of the wind-tree billiards, that
is, the side lengths of the obstacles. Denote by WT .m/ the family of wind-tree
billiards such that the obstacle has 4m corners with the angle �

2
. All billiards from

the original wind-tree family as in Figure 1 live in WT .1/; the billiard in Figure 2
belongs to WT .17/. We denote by Area.…=Z2/ the area of a fundamental domain of
the Z2–periodic billiard table … 2WT .m/.

Geometry & Topology, Volume 22 (2018)
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Theorem 1.1 For almost every wind-tree billiard … 2WT .m/ the number N.…;L/

of (isotopy classes of) closed billiard trajectories of length at most L in … has quadratic
asymptotic growth rate

N.…;L/� c.m/ �
�L2

Area.…=Z2/
;

where

c.m/D

�
20m2

� 95m� 78C 78 � 4m .m!/2

.2m/!

�
1

6�2
:

The constant c.m/ is not the Siegel–Veech constant of one particular surface, but
corresponds to Siegel–Veech constants of some particular configurations of cylinders
on compact flat surfaces associated to generic wind-tree billiards.

On the other hand, Eskin, M Mirzakhani and A Mohammadi [16] showed that for all
(area-1) flat surfaces we have weak quadratic asymptotic formulas

lim
L!1

1

L

Z L

0

N.X; et /

�e2t
dt D c.X /;

which we write N.L;X / “�” c.X / � �L2 . The constant c.X / is the Siegel–Veech
constant associated to the affine invariant measure supported on the SL.2;R/–orbit
closure of the surface X given by the general invariant measure classification theorem
of Eskin and Mirzakhani [15, Theorem 1.4, Definition 1.1].

Using this technology, one can prove weak asymptotic formulas for individual wind-tree
billiards. In particular, the following holds.

Theorem 1.2 Let … 2WT .m/ be a wind tree billiard.

(1) Suppose that one of the following conditions holds:
(a) All the parameters of … are rational.
(b) m D 1 and there exists a square-free integer D > 0 such that the two

parameters of …, say a; b 2 .0; 1/, can be written as 1=.1�a/D xC z
p

D

and 1=.1� b/D yC z
p

D with x;y; z 2Q and xCy D 1.

Then
N.…;L/� c.…/ �

�L2

Area.…=Z2/
:

(2) In any other case, we have the weak asymptotic formula

N.…;L/ “�” c.…/ �
�L2

Area.…=Z2/
:

Geometry & Topology, Volume 22 (2018)



Counting problem on wind-tree models 1487

The case (1) corresponds to (particular cases of) Veech surfaces and formulas for the
Siegel–Veech constants can be obtained following an approach similar to the one of
Gutkin and Judge [23, Section 6]. In the case (a), when the parameters are rational, it
corresponds to square-tiled surfaces and it is possible to obtain formulas similar to the
obtained by Eskin, Kontsevich and Zorich [10, Theorem 4]. In the other cases we do
not know the Siegel–Veech constants for every wind-tree billiard. However, it depends
only on SL.2;R/–orbit closures (of a compact flat surface associated to the wind-tree
billiard) and, in particular, it coincides with c.m/ for generic billiards.

1.1 Strategy of the proof

We reformulate the counting problem on wind-tree billiards in terms of a counting
problem on a Z2–periodic flat surface. This is quite elementary and straightforward.
For details on the reduction of the study of the billiard flow to the study of a Z2–cocycle
over the linear flow of a finite flat surface, see [7, Section 3].

In general, we can consider an infinite flat surface X1 which is a ramified Zd–
cover over a compact flat surface X , d � 1 (d D 2 in our case). Let † be the
finite set of singular points of X . Since the intersection form h � ; � i is nondegenerate
between H 1.X n†;Z/ and H 1.X; †;Z/, every such Zd–cover is defined by a d–
tuple of independent elements f D .f1; : : : ; fd / in the relative cohomology group
H 1.S; †;Z/, but we restrict ourselves to the case when f 2H 1.X;Zd / — this is the
case of the infinite Z2–periodic flat surface associated to a wind-tree model.

We are interested in counting (maximal) cylinders of closed geodesics in X1 (up to
Zd–translations, of course). Cylinders of closed geodesics in the cover X1 clearly
descend to cylinders in X , but not the other way around. In fact, by definition of the
covering, cylinders in the cover X1 are exactly the lifts of those cylinders C in X

such that 
C , (the Poincaré dual of the homology class of) its core curve, satisfies
h
C ; fii D 0 for each i D 1; : : : ; d .

One of the main tools used in this kind of problem (and many others) is the SL.2;R/–
action on strata of flat surfaces (see eg [12; 14]) and the associated cocycle over the
Hodge bundle, the Kontsevich–Zorich cocycle. Let M be the SL.2;R/–orbit closure
of X , let F be a subbundle of the Hodge bundle over M, invariant with respect to the
Kontsevich–Zorich cocycle, and let f 2 FX .

Cylinders C in X such that h
C ; f iD 0 split naturally into two families: (a) the family
of cylinders such that h
C ; hi D 0 for all h 2 FX , which we call F–good cylinders,
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and (b) the family of cylinders that are not F–good, but for which h
C ; f i D 0. These
latter are called .F; f /–bad cylinders. This notion of F–good cylinders was first
introduced by Avila and Hubert [2] in order to give a geometric criterion for recurrence
of Zd–periodic flat surfaces.

Thus, counting cylinders in a Zd–periodic flat surface can be reduced to separately
counting cylinders which are

�L
j F .j/

�
–good cylinders and .F .ji /; fi/–bad cylinders

in the compact surface, for some appropriate subbundles .F .j//j .

In the case of the classical wind-tree model, that is, for mD 1, Delecroix, Hubert and
Lelièvre [7] gave a complete description of the cocycles defining the surfaces and the
corresponding decomposition of the Hodge bundle, which allows us to successfully
apply this approach. This is extended naturally to the Delecroix–Zorich variant (m> 1).
In fact, for every …2WT .m/, there are two cocycles h and v in a compact flat surface
XD X.…/ defining the Z2–periodic flat surface X1 D X1.…/ associated to … and
two 2–dimensional equivariant subbundles, which we denote by FC� and F�C , such
that h 2 FC� and v 2 F�C .

Using the main result of Eskin and Masur in [12], it is a straightforward remark that
we have asymptotic formulas for the number of F–good cylinders with an associated
Siegel–Veech constant, for generic surfaces, for any SL.2;R/–ergodic finite measure
on any normalized strata. In the case of .F; f /–bad cylinders, this is no longer true.
However, in the case of the wind-tree model, we prove the following.

Theorem 1.3 Let … 2 WT .m/ be a wind-tree billiard, X D X.…/ the associated
compact flat surface and F one of the associated subbundles FC� or F�C . Then for
any f 2 FX , the number NF .f;L/ of .F; f /–bad cylinders in X of length at most L

has subquadratic asymptotic growth rate, that is, NF .f;L/D o.L2/, or, equivalently,

lim
L!1

NF .f;L/

�L2
D 0:

We use technology for asymptotic formulas developed by Eskin and Masur [12] in order
to prove (a slightly more general version of) Theorem 1.3. For this, we need in addition
that the relevant subbundles FC� and F�C have nonzero Lyapunov exponents. This
is true for almost every wind-tree billiard thanks to one of the main results of Delecroix
and Zorich in [8] (namely, Theorem 2). For the statement to be true for every wind-tree
billiard, we use (a slightly more general version of) the so-called Forni criterion due to
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G Forni [17], a geometric criterion for the positivity of Lyapunov exponents, applied
to integer equivariant subbundles.

As a consequence of Theorem 1.3, the proof of Theorem 1.1 is reduced to computing
the Siegel–Veech constant associated to configurations of FC�˚F�C–good cylinders.
Furthermore, Theorem 1.2 becomes a compilation of several different results and we
omit its proof here; it is almost identical to the proof of Theorem 1.7 in [1], after the
reduction given by Theorem 1.3 to the problem of counting only FC�˚F�C–good
cylinders.

For the computation of the Siegel–Veech constant associated to configurations of
FC�˚F�C–good cylinders, use extra symmetries in the surface X.…/ to describe it
as a cover of lower-genus surfaces. In particular, configurations of FC�˚F�C–good
cylinders are related to configurations of cylinders on some strata of genus-zero surfaces
that lift to homologically trivial cylinders on some strata of genus-one surfaces.

C Boissy [3] described all possible configurations on generic surfaces in genus zero. Us-
ing this, we describe all possible configurations of cylinders satisfying the homological
conditions ensuring they correspond to FC�˚F�C–good cylinders. Then we relate
Siegel–Veech constants of configurations in the genus-zero surface with the constant for
the higher-genus surface and do the combinatorics. Finally, plugging into the resulting
expression the explicit values of the Siegel–Veech constants for configurations on
generic surfaces of genus zero obtained by Athreya, Eskin and Zorich [1] and proving
certain combinatorial identities for the resulting hypergeometric sums, we obtain the
desired explicit value of c.m/.

1.2 Side results

As a by-product of our methods, we obtain several results as detailed below.

Area Siegel–Veech constant Following the same strategy, we are able to compute the
area Siegel–Veech constant, associated to the counting of the area of maximal families
of isotopy classes of compact trajectories. More precisely, we have the analogue of
Theorem 1.1:

Theorem 1.4 For almost every … 2WT .m/, the weighted number Narea.…;L/ of
maximal families of isotopic closed billiard trajectories of length at most L in …,
where the weight is the area covered by the family, has quadratic asymptotic growth rate

Narea.…;L/� carea.m/ �
�L2

Area.…=Z2/
;
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where

carea.m/D

�
4m� 9C 9 � 4m .m!/2

.2mC 1/!

�
1

3�2
:

Polynomial diffusion Let d. � ; � / be the Euclidean distance on R2 and consider the
wind-tree billiard table … 2WT .m/ as a subset of R2 . Let .��t /t2R be the billiard
flow in direction � 2 Œ0; 2�/ on …, that is, ��t .x/ is the position of a particle after
time t starting from position x 2… in direction � .

Applying Forni’s criterion to the relevant subbundles FC� and F�C allows us to show
that they have nonzero Lyapunov exponents. Applying the result [8, Corollary 1] of
Delecroix and Zorich, which is a generalization of the analogous result for the classical
model due to Delecroix, Hubert and Lelièvre [7], we obtain the following.

Theorem 1.5 For every wind-tree billiard … 2WT .m/ there exists ı.…/ > 0 such
that for almost every direction � 2 Œ0; 2�/ and every starting point (with infinite forward
orbit), we have

lim sup
t!1

log d.x; ��t .x//

log t
D ı.…/:

Here, ı.…/ is the polynomial diffusion rate and coincides with the Lyapunov exponent
mentioned above. Note that this result is already known for mD 1 and the diffusion
rate ı is 2

3
independently of the billiard table (see [7, Theorem 1]). For m > 1, the

result is known for almost all … 2WT .m/, with ı.m/ D 4m.m!/2=.2mC1/!, also
independent of the billiard (see [8, Theorem 1]). Moreover, the value of ı.…/ depends
only on SL.2;R/–orbit closures (of the compact flat surface associated to the wind-tree
billiard). Anyway, this result is interesting because the diffusion rate ı.…/ is positive
for every … 2WT .m/.

Recurrence Avila and Hubert [2] gave a geometric criterion for the recurrence of a
Zd–periodic flat surface in terms of good cylinders and proved the recurrence for the
original wind-tree model. Using this criterion, our approach allows us to prove the
recurrence for the Delecroix–Zorich variant. More precisely, we have the following.

Theorem 1.6 For every wind-tree billiard … 2 WT .m/, the billiard flow in … is
recurrent for almost every direction � 2 Œ0; 2�/.

Geometry & Topology, Volume 22 (2018)
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This result is already known for mD 1 (see [2, Theorem 1]). Moreover, as explained
to us by Delecroix, a criterion for recurrence due to N Chevallier and J-P Conze [5,
Corollary 1.2] allows us to conclude that the billiard flow ��t is recurrent in … for
almost every direction � 2 Œ0; 2�/ if the polynomial diffusion rate (see above) satisfies
ı.…/ < 1

2
. However, we only know that the polynomial diffusion rate is less than 1

2

for almost every … 2WT .m/ and only for m> 2.

1.3 Structure of the paper

In Section 2 we briefly recall all the background necessary to formulate and prove
the results. In Section 3 we do the reduction of the counting problem on general Zd–
periodic flat surfaces to the counting of

�L
j F .j/

�
–good cylinders and .F .ji /; fi/–bad

cylinders in the compact surface, for some appropriate subbundles .F .j//j of the
Hodge bundle. In Section 4 we prove Theorem 4.1, a slightly more general version
of Theorem 1.3, but with the extra condition that some particular Lyapunov exponent
is positive. In Section 5 we show that the relevant Lyapunov exponent is positive by
applying Forni’s criterion to integer equivariant subbundles, which completes the proof
of Theorem 1.3 and allows us to reduce the problem to the counting of FC�˚F�C–
good cylinders. In Section 6 we study configurations of cylinders on generic genus-zero
surfaces in order to describe FC�˚F�C–good cylinders. In Section 6.1 we show
which configurations of cylinders on generic genus-zero surfaces lift to FC�˚F�C–
good cylinders in the higher-genus surface by means of topological considerations.
Then, in Section 6.2, we describe how these cylinders lift to the higher-genus surface,
that is, the number of cylinders we obtain and their length. With this, we are able to
relate in Section 6.3 the Siegel–Veech constants of the genus-zero and the higher-genus
surfaces.

Finally, in Section 7 we compute the Siegel–Veech constant of FC�˚F�C–good
cylinders: we count the possible configurations taking part in the computations and plug
in the explicit values of the Siegel–Veech constants obtained by Athreya, Eskin and
Zorich [1]. This allows us to conclude the computations by means of a combinatorial
identity for certain hypergeometric sums proved separately in an appendix.

Side results mentioned above are proved in Section 8.
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2 Background

2.1 Flat surfaces

For an introduction and general references to this subject, we refer the reader to the
surveys of Zorich [37], Forni and Matheus [18], and Wright [36].

Flat surfaces and strata Let S be a compact Riemann surface of genus g . Let
˛ D fn1; : : : ; nkg � N be a partition of 2g � 2 and H.˛/ be a stratum of abelian
differentials on S , that is, the space of pairs X D .S; !/ where ! is a holomorphic
1–form on S with zeros of degrees n1; : : : ; nk 2 N . Let † D †.!/ be the set of
singularities of X , the zeros of ! . The form ! defines a canonical flat metric on S

with conical singularities of angle 2�.nC 1/ at zeros of degree n of ! .

We also consider strata Q.d1; : : : ; dk/ of meromorphic quadratic differentials with at
most simple poles on S , the spaces of pairs .S; q/ where q is a meromorphic quadratic
differential on M with zeros of order d1; : : : ; dk , di 2 f�1g [N for i D 1; : : : ; k

(in a slight abuse of vocabulary, we are considering poles as zeros of order �1) andPk
iD1 di D 4g � 4. The quadratic differential q also defines a canonical flat metric

with conical singularities of angle �.d C 2/ at zeros of order d of q .

In this paper, a quadratic differential is not the square of an abelian differential and a
flat surface is the Riemann surface with the flat metric corresponding to an abelian or
quadratic differential.

The area of a flat surface is the one obtained from the flat metric. Let H1.˛/ denote
the codimension-1 subspace of (flat) area 1 on H.˛/.

SL.2 ; R/–action and the Teichmüller geodesic flow There is a natural action of
SL.2;R/ on strata of abelian differentials, which generalizes the action of SL.2;R/
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on the space GL.2;R/=SL.2;Z/ of flat tori. Let

gt D

�
et 0

0 e�t

�
and r� D

�
cos � sin �
� sin � cos �

�
:

The element r� 2 SL.2;R/ acts by .S; !/ 7! .S; ei�!/. This has the effect of rotating
the flat surface by the angle � 2 Œ0; 2�/. The action of .gt /t2R is called the Teichmüller
geodesic flow.

Affine invariant measures and manifolds Each stratum carries a natural Lebesgue
measure, invariant under the action of SL.2;R/, which is given by the pullback of the
Lebesgue measure on H 1.S; †;C/ŠC2gCk�1 .

An affine invariant manifold is an SL.2;R/–invariant closed subset of H1.˛/, which
looks like an affine subspace in period coordinates (see eg [37, Section 3]). Each
affine invariant manifold M is the support of an ergodic SL.2;R/–invariant probability
measure �M . Locally, in period coordinates, this measure is (up to normalization) the
restriction of Lebesgue measure to the subspace M (see [15] for the precise definitions).
Eskin, Mirzakhani and Mohammadi [16] proved that any SL.2;R/–orbit closure is an
affine invariant manifold. The most important case of an affine invariant manifold is a
connected component of a stratum H1.˛/. Masur [25] and Veech [30] independently
proved that in this case, the total mass of this measure is finite and ergodic with respect
to the Teichmüller geodesic flow. The associated affine measure is known as the
Masur–Veech measure.

Hodge bundle and the Kontsevich–Zorich cocycle The (real) Hodge bundle H 1 is
the real vector bundle of dimension 2g over an affine invariant manifold M whose fiber
over X D .S; !/ is the real cohomology H 1

X
DH 1.S;R/. Each fiber H 1

X
has a natural

lattice H 1
X
.Z/DH 1.S;Z/ which allows identification of nearby fibers and definition

of the Gauss–Manin (flat) connection. The monodromy of the Gauss–Manin connection
restricted to SL.2;R/–orbits provides a cocycle called the Kontsevich–Zorich cocycle,
which we denote by A.g;X /, for g2SL.2;R/ and X 2M. This cocycle is symplectic
because it preserves the intersection form hf1; f2i D

R
S f1^f2 on H 1.S;R/, which

is a symplectic form on the 2g–dimensional real vector space H 1.S;R/. Let k � k!
be the Hodge norm (for the precise definition see eg [18, Section 3.4]). The Hodge
norm depends continuously on .S; !/, but is not preserved by the Kontsevich–Zorich
cocycle in general.
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Lyapunov exponents For an affine invariant manifold M, we know from Oseledets’
theorem that there are real numbers �1.M/� � � � � �2g.M/, the Lyapunov exponents,
and a measurable gt–equivariant filtration H 1.S;R/D V1.X /� � � � � V2g.X /D f0g

of the Hodge bundle at �M–almost every X D .S; !/ 2M such that

lim
t!1

1

t
log kA.gt ;X /f kgt! D �i

for every f 2 Vi nViC1 .

Theorem 2.1 (Chaika and Eskin [4]) Let X be a flat surface and M the SL.2;R/–
orbit closure of X . Then for almost every � 2 Œ0; 2�/ we have the gt–equivariant
filtration H 1.S;R/DV1.r�X /� � � � �V2g.r�X /Df0g, and, for every f 2Vi nViC1 ,

lim
t!1

1

t
log kA.gt ; r�X /f kgt r�! D �i.M/:

The set ƒ.M/ of Lyapunov exponents is called the Lyapunov spectrum (of the
Kontsevich–Zorich cocycle over the Teichmüller flow on M). The fact that the
Kontsevich–Zorich cocycle is symplectic means that the Lyapunov spectrum is always
symmetric: ƒ.M/D�ƒ.M/.

Equivariant subbundles of the Hodge bundle Let M be an affine invariant subman-
ifold and F a subbundle of the Hodge bundle over M. We say that F is equivariant if
it is invariant under the Kontsevich–Zorich cocycle, and we say that F is irreducible
if it has no proper equivariant subbundles. Since M is SL.2;R/–invariant, by the
definition of the Kontsevich–Zorich cocycle, a flat (locally constant) subbundle is
always equivariant.

Previous discussion about Lyapunov exponents applies in this context as well and we
have that, as before, for every X D .S; !/ 2M such that M is the SL.2;R/–orbit
closure of X and for almost every � 2 Œ0; 2�/, there is a gt–equivariant filtration
Fr�X DU1.r�X /� � � � �Ur .r�X /Df0g, where r D rank F D dim FX and, for every
f 2 Ui nUiC1 ,

lim
t!1

1

t
log kA.gt ; r�X /f kgt r�! D �i.M;F /:

The Lyapunov spectrum restricted to F is ƒ.M;F /D f�i.M;F /gr
iD1
�ƒ.M/.

Remark 2.2 If F is irreducible and admits a nonzero Lyapunov exponent in its
Lyapunov spectrum, then F is symplectic with respect to the intersection form, that
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is, the symplectic intersection form is nondegenerate on F (this is a nontrivial fact
that can be deduced from [15, Theorem A.9], which in turn is deduced from [19]). In
particular, F is an even-dimensional subbundle and, as before, the associated Lyapunov
spectrum is symmetric: ƒ.M;F /D�ƒ.M;F /.

We denote by F| the symplectic complement of F and, when F is symplectic, define
F

pr
X
.Z/D prFX

H 1
X
.Z/, where prFX

W H 1
X
! FX is the symplectic projection, that is,

the first component of the decomposition H 1
X
D FX ˚F

|
X

.

We denote by FX .Z/D FX \H 1
X
.Z/ the set of integer cocycles in FX . We say that

F is defined over Z if it is generated by integer cocycles, that is, if FX D hFX .Z/iR .
When F is defined over Z, FX .Z/ is a lattice in FX . If, in addition, F is symplectic,
we have that F

pr
X
.Z/ is also a lattice and FX .Z/� F

pr
X
.Z/.

2.2 Counting problem

We are interested in the counting of closed geodesics of bounded length on flat surfaces.

Cylinders of closed geodesics and saddle connections Together with every closed
regular geodesic in a flat surface X D .S; !/ (or in .S; q/) we have a bunch of parallel
closed regular geodesics. A cylinder on a flat surface is a maximal open annulus filled
by isotopic simple closed regular geodesics. A cylinder C is isometric to the product
of an open interval and a circle, and its core curve 
C is the geodesic projecting to
the middle of the interval. A saddle connection is a geodesic joining two different
singularities or a singularity to itself, with no singularities in its interior. Cylinders are
always bounded by parallel saddle connections.

Holonomy Integrating ! (or a locally defined square-root of q ) along the core curve of
a cylinder, a saddle connection or, more generally, any homology class 
 2H1.S; †;Z/,
we get a complex number. Considered as a planar vector, this complex number repre-
sents the affine holonomy along 
 and we denote this holonomy vector by hol!.
 /. In
particular, in the case of a cylinder or saddle connection, its euclidean length corresponds
to the modulus of its holonomy vector.

Systole Let sys.X / be the systole of the flat surface X , that is, the length of its
shortest saddle connection, and let K� D fX W sys.X /� �g. The set of K� for � > 0

forms a compact exhaustion on any affine invariant manifold (which is never compact).

Counting problem and Siegel–Veech constants Consider the set of all cylinders on
a flat surface X and consider its image V .X / 2 R2 Š C under the holonomy map:
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V .X / D fhol 
C W C is a cylinder in X g. This is a discrete subset of R2 . We are
concerned with the asymptotic behavior of the number N.X;L/D #V .X /\B.L/ of
cylinders in X of length at most L, when L!1.

Theorem 2.3 (Eskin and Masur [12]) Let M be an affine invariant manifold. Then
there is a constant c.M/ such that for �M–almost all X 2M we have

(1) lim
L!1

N.X;L/

�L2
D c.M/;

where c.M/ is the Siegel–Veech constant given by the Siegel–Veech formula

(2) c.M/D
1

��2

Z
M

N.Y; �/ d�M.Y /:

We use some of the tools developed by Eskin and Masur when proving this theorem.
In particular, the following are of special utility to us.

Theorem 2.4 [12, Theorem 5.1(b)] For any X 2H.˛/ and all ı; � > 0,

N.X; �/�
c.�; ı/

sys.X /1Cı
:

Theorem 2.5 [12, Theorem 5.2] For any X 2H.˛/, any ˇ < 2 and all t > 0,Z 2�

0

d�
sys.gt r�X /ˇ

� c.X; ˇ/:

We remark that these two results are true for every flat surface, in contrast to Theorem 2.3,
which holds for almost every flat surface.

Configurations of cylinders A collection C DfC1; : : : ;Cng of cylinders determines
the data on combinatorial geometry of the decomposition of S nC . It determines
the number of components, their boundary structures, the singularity data for each
component and how the components are glued to each other. These data are referred
to as configurations of cylinders (see [14]). The multiplicity of a configuration is the
number of cylinders it defines. We reserve the notion of configuration for geometric
types of possible collections of cylinders, and not for the collections themselves.

In this work, we are only concerned with multiplicity-one configurations, that is, those
defining a single cylinder. We are also concerned with some homological conditions —
and not only the geometric combinatorics — when considering configurations (see
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Section 3). However, this information is also carried by configurations because of
topological considerations.

Remark 2.6 Let C be a configuration of cylinders and consider now NC.X;L/, the
number of cylinders in X of length at most L forming a configuration of type C .
Then the analogue of Theorem 2.3 is also true in this context (see [12; 14]), with
the Siegel–Veech constant associated to this counting problem depending also on the
configuration: cC.M/D c.C;M/.

2.3 Generic configuration of cylinders in genus zero and associated
Siegel–Veech constants

Boissy [3] described all generic configurations of cylinders for flat surfaces in genus
zero and Athreya, Eskin and Zorich [1] provided the values of the corresponding Siegel–
Veech constants. In this section we recall briefly these results (cf [8, Section 4.2]).

According to [3, Theorem 2.2] and [28, Main Theorem], for almost any flat surface in
any stratum of meromorphic quadratic differentials with at most simple poles on the
sphere, different from Q.�14/, every single regular closed geodesic corresponds to
one of the two configurations described below.

Pocket configurations These configurations are defined by single cylinders bounded
by a saddle connection joining a fixed pair of poles Pj1

;Pj2
and by a saddle connection

joining a fixed zero Pi of order di � 1 to itself (see Figure 3). By convention, the
holonomy associated to these configurations corresponds to closed geodesics and not
to the saddle connection joining the two poles, which is half the length of the closed
geodesic.

Pi

Pj1

Pj2

Figure 3: A pocket configuration, formed by cylinders bounded by a saddle
connection joining two fixed poles on one side and by a saddle connection
joining a fixed zero to itself on the other.

The Siegel–Veech constant c
pocket
j1;j2Ii

corresponding to these configurations has the form
[1, Theorem 4.5]

c
pocket
j1;j2Ii

D
di C 1

k � 4

1

2�2
:
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If we consider the union of several pocket configurations, fixing the poles Pj1
;Pj2

and
consider any zero Pi on the boundary of the cylinder, then the resulting Siegel–Veech
constant c

pocket
j1;j2

corresponding to this configuration has the form [1, Corollary 4.7]

(3) c
pocket
j1;j2

D
1

2�2
:

Dumbbell configurations These configurations are defined by single cylinders bound-
ed by saddle connections joining fixed zeros to themselves on each side (see Figure 4).
Say that these two fixed zeros Pi1

;Pi2
have orders di1

; di2
� 1, respectively. Such a

cylinder separates the original surface W into two flat spheres. Let Pi11
; : : : ;Pi1k1

be the singularities (zeros and poles) on one part and Pi21
; : : : ;Pi2k2

those on the
other part. In particular, we have i1 2 fi11; : : : ; i1k1

g and i2 2 fi21; : : : ; i2k2
g. All this

information is carried by the configuration.

Pi1

Pi2

Figure 4: A dumbbell configuration, consisting of two flat spheres joined by
a cylinder whose boundary components are saddle connections joining a zero
to itself.

Denoting by di the order of the singularity Pi , we can represent the sets (with multi-
plicities) of orders of all zeros and poles ˛ WD fd1; : : : ; dkg as a disjoint union of the
two subsets

˛ D fdi11
; : : : ; di1k1

g t fdi21
; : : : ; di2k2

g DW ˛1 t˛2:

The corresponding Siegel–Veech constant cdumbbell
i1;i2I˛1;˛2

is given by [1, Theorem 4.8]

(4) cdumbbell
i1;i2I˛1;˛2

D .di1
C 1/.di2

C 1/
.k1� 3/!.k2� 3/!

.k � 4/!

1

2�2
:

2.4 Wind-tree model

The wind-tree model corresponds to a billiard … in the plane endowed with Z2–
periodic horizontally and vertically symmetric right-angled obstacles, where the sides
of the obstacles are aligned along the lattice as in Figures 1 and 2.
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From billiards to flat surfaces Recall that in the classical case of a billiard in a
rectangle we can glue a flat torus out of four copies of the billiard table and unfold
billiard trajectories to flat geodesics of the same length on the resulting flat torus.

In the case of the wind-tree model we also start by gluing a flat surface out of four copies
of the infinite billiard table …. The resulting surface X1 D X1.…/ is Z2–periodic
with respect to translations by vectors of the original lattice. Passing to the Z2–quotient,
we get a compact flat surface XDX.…/. For the case of the original wind-tree billiard,
with rectangular obstacles, the resulting flat surface is represented in Figure 5. It has
genus 5 and belongs to the stratum H.24/ (see [7, Section 3] for details).

h01 h11

v00

v01

v10

v11

h00 h10

Figure 5: The flat surface X obtained as quotient over Z2 of an unfolded
wind-tree billiard table [8, Figure 5]

Similarly, when the obstacle has 4m corners with the angle �
2

— and 4.m�1/ corners
with angle 3�

2
— the same construction gives a flat surface of genus 4mC1 in H.24m/,

consisting of four flat tori with holes (four copies of a Z2 fundamental domain of …,
the holes corresponding to the obstacles) with corresponding identifications, as in
the classical setting (mD 1; see Figure 5). Let WT .m/ denote the set of wind-tree
billiards … whose obstacles have 4m corners with angle �

2
. The space WT .m/ has a

natural Lebesgue measure coming from the consideration of lengths and position of the
sides of the obstacle. The construction … 7!X.…/ defines a map WT .m/!H.24m/

and we define B.m/ to be the image of this map, that is, the set of all compact surfaces
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X.…/ such that …2WT .m/, and we consider in B.m/ the pushforward of the measure
on WT .m/.

Extra symmetries Note that any resulting flat surface X 2 B.m/ has (at least) the
group .Z2/

3 as a group of isometries. We have the isometry �h , interchanging the
pairs of flat tori with holes in the same rows by parallel translations, the isometry �v ,
interchanging columns, and �, the isometry acting on each of the four tori with holes
as the central symmetry with the center in the center of the hole (rotation by � ).

Consider the quotient Wh of the flat surface X by the subgroup .Z2/
2 of isometries

spanned by �h and � ı �v . The resulting surface Wh (see Figure 6, left) belongs to the
stratum Q.12m;�12m/. In particular, it has genus 1, say Wh D .T

2; qh/. Similarly,
Wv D X=h�v; � ı �hi D .T

2; qv/ 2 Q.12m;�12m/. The surface W obtained as the
quotient of the original flat surface X by the entire group .Z2/

3 (see Figure 6, right)
belongs to the stratum Q.1m;�1mC4/. In particular, it has genus zero, say W D
.CP1; q/. Clearly, Wh and Wv are ramified double covers over W with ramification
points at four (out of mC4) simple poles of the flat surface W (see [8, Sections 3.1–3.2]
for details). Moreover, Wh and Wv share three out of their four ramified simple poles.

Wh D .T
2; qh/ 2Q.12m;�12m/ WD .CP 1; q/ 2Q.1m;�1mC4/

Figure 6: The flat surface Wh is a double cover over the underlying surface W
branched at the four simple poles represented by bold dots [8, Figure 7].

Decomposition of the Hodge bundle The isometries �h and �v decompose the Hodge
bundle over M. In fact, we have that

H 1
X DECC˚EC�˚E�C˚E��;

where ECC is the vector space invariant under �h and �v , EC� the vector space
invariant under �h and anti-invariant under �v , etc. This decomposition is flat, defined
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over Z and symplectic; each subbundle is symplectic and the sum is orthogonal with
respect to the intersection form.

Description of the Z2 –cover Now consider the cohomology classes h; v2H 1.X;Z/
Poincaré-dual to the cycles h00�h01Ch10�h11 and v00�v10Cv01�v11 , respectively
(see Figure 5), as elements of the fiber over the point X of the (real) Hodge bundle H 1

over the SL.2;R/–orbit closure of X2B.m/. The pair .h; v/2H 1.X;Z2/ defines the
Z2–covering X1 of X and the coordinates of this Z2–cocycle defining X1 belong to
EC�˚E�C . More precisely, we have that h 2EC� and v 2E�C .

Relevant subbundles We further consider FC��EC� , the vector space invariant un-
der �h and �ı�v , which is naturally isomorphic to the Hodge bundle over WhD .T

2; qh/.
Thus, FC� is a 2–dimensional, defined over Z, flat — it is locally defined by two
cocycles in H 1.X;Z/ and the Gauss–Manin connection — and symplectic subbundle
of the Hodge bundle. In particular, it is continuous and equivariant (invariant with
respect to the Kontsevich–Zorich cocycle). Analogously, we consider F�C �E�C ,
the vector space invariant under �v and � ı �h , with the analogous properties. We have
that h 2 FC� and v 2 F�C (see [8, Lemma 3.1]).

Theorem 2.7 (Delecroix and Zorich [8]) For almost every billiard … 2WT .m/, the
GL.2;R/–orbit closure of W.…/ coincides with the whole stratum Q.1m;�1mC4/,
and the Lyapunov exponents on the SL.2;R/–orbit closure of X.…/ over the sub-
bundles FC� and F�C are ˙ı.m/, where

ı.m/D
.2m/!!

.2mC 1/!!
D 4m .m!/2

.2mC 1/!
> 0:

Here, the double factorial means the product of all even (correspondingly odd) natural
numbers from 2 to 2m (correspondingly from 1 to 2mC1). For the original wind-tree
model, that is, when mD 1, this was first shown by Delecroix, Hubert and Lelièvre [7].
In this case we have, in particular, that FC� DEC� , F�C DE�C and ı.1/D 2

3
.

Since the subbundles FC� and F�C have nonzero Lyapunov exponents and are
2–dimensional, they are irreducible, and hence symplectic (see Remark 2.2).

In this work, we are concerned with counting closed trajectories in the wind-tree billiard.
Obviously, any closed trajectory can be translated by an element in Z2 to obtain a
new closed trajectory. Then we shall count (isotopy classes of) closed trajectories of
bounded length in the wind-tree billiard up to Z2–translations. There is a one-to-one
correspondence between billiard trajectories in … and geodesics in X1 . But X1 is
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the Z2–covering of X given by h; v 2H 1.X;Z/, which means that closed curves 

in X lift to closed curves in X1 if and only if h
; hi D h
; vi D 0. This is a general
fact about Zd–periodic flat surfaces.

3 Counting problem in Zd –periodic flat surfaces

We consider an infinite Zd–periodic flat surface X1 which is a ramified cover over a
compact flat surface X D .S; !/, the covering group being Zd , with d � 1. Let † be
the finite set of singular points of X . Since the intersection form h � ; � i is nondegenerate
between H 1.S n†;Z/ and H 1.S; †;Z/, every such Zd–cover is defined by a d–
tuple of independent elements f D .f1; : : : ; fd / in the relative cohomology group
H 1.S; †;Z/.

We are interested in counting cylinders in X1 modulo Zd–translations. Cylinders in
the cover X1 clearly descend to cylinders in X , but not the other way around. In fact,
by definition of the covering, the monodromy of a closed curve 
 is translation by
.h
; fii/

d
iD1
2Zd . It follows that cylinders in the cover X1 are exactly the lifts of those

cylinders C in X whose core curves 
C satisfy h
C ; fii D 0 for each i D 1; : : : ; d .
In this case the monodromy is always trivial and cylinders in X1 are always isometric
to their projection on X . When a cylinder C does not satisfy this condition, it lifts
to X1 as a strip, isometric to the product of an open interval and a straight line.

We restrict ourselves to the case when f is an absolute covector, that is, it is a d–tuple
of independent elements in the absolute cohomology group H 1.S;Z/. Let M be the
SL.2;R/–orbit closure of X , let F be an equivariant subbundle of the Hodge bundle
over M and let f 2 FX .

Cylinders C in X such that h
C ; f iD 0 split naturally into two families: (a) the family
of cylinders such that h
C ; hi D 0 for all h 2 FX , which we call F–good cylinders,
and (b) the family of cylinders that are not F–good, but for which h
C ; f i D 0. These
latter are called .F; f /–bad cylinders. The notion of F–good cylinders was first
introduced by Avila and Hubert [2] in order to give a geometric criterion for recurrence
of Zd–periodic flat surfaces.

Thus, counting cylinders in the Zd–periodic flat surface can be reduced to counting
separately cylinders which are

�L
j F .j/

�
–good cylinders and .F .ji /; fi/–bad cylinders

in the compact surface, for some appropriate subbundles .F .j//j .

Remark 3.1 When F is symplectic (in particular, if ƒ.F /¤ f0g; see Remark 2.2),
F–good cylinders are exactly those for which prFX


C D 0. If, in addition, F is
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2–dimensional (in particular, irreducible if ƒ.F /¤ f0g), C is an .F; f /–bad cylinder
if and only if prFX


C ¤ 0 is collinear with f .

Since the Kontsevich–Zorich cocycle preserves the intersection form and F is equivari-
ant, it is clear that the set of F–good cylinders is SL.2;R/–equivariant. Then classical
results can be applied. In particular, the main result of [12] implies that if there is
at least one F–good cylinder in X , then we can deduce that F–good cylinders have
quadratic asymptotic growth rate (with positive Siegel–Veech constant) for �M–almost
every flat surface in M, the SL.2;R/–orbit closure of X . However, this is no longer
true in the case of .F; f /–bad cylinders.

For f 2FX , define the set VF .f / of holonomy vectors of .F; f /–bad cylinders in X .
We have that VF .A.g;X /f /D gVF .f /, since F is equivariant and the Kontsevich–
Zorich cocycle respects the intersection form. Finally, let

NF .f;L/D #VF .f /\B.L/

be the number of .F; f /–bad cylinders in X of length bounded by L.

4 Bad cylinders have subquadratic asymptotic growth rate

In this section, we prove the following general result about bad cylinders which applies
to some Zd–periodic flat surfaces and, in particular, to the family of wind-tree models
we are interested in.

Theorem 4.1 Let X be a flat surface and F a 2–dimensional equivariant continuous
subbundle of the Hodge bundle on M, the SL.2;R/–orbit closure of X . Suppose that
F is defined over Z and has nonzero Lyapunov exponents. Then for all f 2 FX the
number NF .f;L/ of .F; f /–bad cylinders in X of length at most L has subquadratic
asymptotic growth rate, that is, NF .f;L/D o.L2/ or, equivalently,

lim
L!1

NF .L; f /

�L2
D 0:

Remark 4.2 When F is 2–dimensional, symplectic (in particular, when it has nonzero
Lyapunov exponents) and defined over Z, if f 2 FX is not collinear with an integer
cocycle, then there are no .F; f /–bad cylinders, since prFX


C is always a rational
multiple of an integer cocycle. Since the notion of bad cylinder is clearly projective, the
proof of Theorem 4.1 is then reduced to proving the conclusion only for f 2 FX .Z/,
instead of for all f 2 FX .
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To prove Theorem 4.1 we use technology for asymptotic formulas for counting closed
geodesics developed by Eskin and Masur [12]. In particular, the next proposition, which
is a restatement of Proposition 3.5 and Lemma 8.1 in [12], is a key step in the proof.

Proposition 4.3 Let V �R2 n f0g, define N .V;T / WD #V \B.T / and suppose that
N .V;T / <1 for all T > 0. Then for all �; t > 0, we have

N .V; 2�et /�N .V; �et /� c.�/e2t

Z 2�

0

N .gt r�V; 4�/ d�:

Hence, the proof of Theorem 4.1 is reduced to showing the following:

Theorem 4.4 Under the hypothesis of Theorem 4.1, for every f 2 FX .Z/ and all
� > 0, we have

lim
t!1

Z 2�

0

NF .A.gt ; r�X /f; �/ d� D 0:

Proof of Theorem 4.1 It is clear that VF . � /�R2 n f0g is SL.2;R/–equivariant and
NF .f;L/ is finite, since it is bounded by N.X;L/, the number of all cylinders of
length bounded by L, and N.X;L/ � c.X /L2 [27]. Then, by Proposition 4.3, we
have that, for all f 2 FX .Z/, all � > 0 and all t > 0,

NF .f; 2�et /�NF .f; �et /� c.�/e2t

Z 2�

0

NF .A.gt ; r�X /f; 4�/ d�:

But then, by Theorem 4.4,

lim sup
t!1

NF .f; 2�et /�NF .f; �et /

�2e2t
�

c.�/

�2
lim

t!1

Z 2�

0

NF .A.gt ; r�X /f; 4�/ d� D 0:

That is,

lim sup
T!1

NF .f; 2T /�NF .f;T /

T 2
D 0:

It follows that

xcF .f / WD lim sup
L!1

NF .f;L/

�L2
D lim sup

T!1

1

4�

NF .f; 2T /

T 2

D
1

4�
lim sup
T!1

�
NF .f; 2T /�NF .f;T /

T 2
C

NF .f;T /

T 2

�
�

1

4�

�
lim sup
T!1

NF .f; 2T /�NF .f;T /

T 2
C lim sup

T!1

NF .f;T /

T 2

�
D

1
4�
.0CxcF .f //D

1
4�
xcF .f /;
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and hence xcF .f /D 0. We conclude that

lim
L!1

NF .f;L/

�L2
D 0:

4.1 Proof of Theorem 4.4

In order to show that

lim
t!1

Z 2�

0

NF .A.gt ; r�X /f; �/ d� D 0;

we split the integral according to whether gt r�X 2K� D fsys� �g or not, and show
that both parts tend to zero as t !1 and �! 0.

When gt r�X 2K� , the corresponding part of the integral tends to zero as a consequence
of the following proposition, whose proof is postponed to Section 4.2.

Proposition 4.5 Under the hypothesis of Theorem 4.4, for all f 2FX .Z/, all �; � > 0

and almost every � , we have

NF .A.gt ; r�X /f; �/ � 1K� .gt r�X /D 0

for sufficiently large t , t � t0.x; �; �; �/.

Remark 4.6 The intuition behind this apparently technical proposition is the following.
By hypothesis, the Lyapunov exponent of f 2 FX .Z/ is positive and then, for almost
every � , A.gt ; r�X /f becomes very long for large t . Without loss of generality, we
can suppose that f is primitive. Therefore, no short cycle (of length bounded by �)
can have projection on FX collinear with A.gt ; r�X /f , because this latter is primitive
and longer. We formalize this idea in Section 4.2.

Recall that NF .f;L/�N.X;L/. Furthermore, N. � ; �/ is bounded in K� . Indeed,
by Theorem 2.4, for ı D 1,

1K�N. � ; �/� 1K�

c.�; 1/

sys2
�

c.�; 1/

�2
D c.�; �/:

Then, for fixed �; � > 0,Z 2�

0

NF .A.gt ; r�X /f; �/ � 1K� .gt r�X / d�

� c.�; �/ �
ˇ̌˚
� 2 Œ0; 2�/ WNF .A.gt ; r�X /f; �/ � 1K� .gt r�X /¤ 0

	ˇ̌
;
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where j � j is the Lebesgue measure on Œ0; 2�/. Finally, by Proposition 4.5, the right
side of the inequality tends to zero as t tends to infinity. That is,

(5) lim
t!1

Z 2�

0

NF .A.gt ; r�X /f; �/ � 1K� .gt r�X / d� D 0:

For the rest of the integral we use the following.

Lemma 4.7 For any flat surface X , any ˇ < 2 and all � > 0, we have

jf� 2 Œ0; 2�/ W sys.gt r�X / < �gj< c.X; ˇ/�ˇ

for all t > 0.

Proof We have

jf� 2 Œ0; 2�/ W sys.gt r�X / < �gj D

Z 2�

0

1sys<�.gt r�X / d�

�

Z 2�

0

1sys<�.gt r�X / �
�ˇ

sys.gt r�X /ˇ
d�

� �ˇ
Z 2�

0

d�
sys.gt r�X /ˇ

:

Then, by Theorem 2.5, we conclude that

jf� 2 Œ0; 2�/ W sys.gt r�X / < �gj � c.X; ˇ/�ˇ:

Moreover, since NF .f; �/�N.X; �/ and, by Theorem 2.4, for any ı > 0 we have

N.X; �/�
c.ı; �/

sys.X /1Cı
;

it follows thatZ 2�

0

NF .A.gt ; r�X /f; �/ � 1sys<�.gt r�X / d�

�

1X
nD0

Z 2�

0

N.gt r�X; �/ � 1
sys2

�
�

2nC1
; �

2n

�.gt r�X / d�

� c.ı; �/

1X
nD0

Z 2�

0

1

sys.gt r�X /1Cı
� 1

sys2
h

�

2nC1
; �

2n

�.gt r�X / d�

� c.ı; �/

1X
nD0

Z 2�

0

1

.�=2nC1/1Cı
� 1

sys2
h

�

2nC1
; �

2n

�.gt r�X / d�
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� c.ı; �/

1X
nD0

2.nC1/.1Cı/

�1Cı

Z 2�

0

1sys< �
2n
.gt r�X / d�

� c.ı; �/

1X
nD0

2.nC1/.1Cı/

�1Cı
jf� 2 Œ0; 2�/ W sys.gt r�X / < �=2n

gj:

Then, by Lemma 4.7, for 1C ı < ˇ < 2,

(6) lim
t!1

Z 2�

0

NF .A.gt ; r�X /f; �/ � 1sys<�.gt r�X / d�

� c.ı; �/

1X
nD0

2.nC1/.1Cı/

�1Cı
c.X; ˇ/

�ˇ

2nˇ

� c.ı; �;X; ˇ/�ˇ�.1Cı/:

Joining both parts of the integral, (5) and (6), we obtain that, for every �; ı; � > 0,
f 2 FX .Z/ and 1C ı < ˇ < 2,

lim
t!1

Z 2�

0

NF .A.gt ; r�X /f; �/ d� � 0C c.ı; �;X; ˇ/�ˇ�.1Cı/:

Then, fixing � > 0, 0< ı < 1 and 1C ı < ˇ < 2, and letting �! 0, we conclude that

lim
t!1

Z 2�

0

NF .A.gt ; r�X /f; �/ d� D 0:

4.2 Proof of Proposition 4.5

The first step is to show that, for a cylinder, being bounded in length implies having
bounded projection in FX .

Lemma 4.8 Let � > 0 and let K �M be a compact subset. Then, for all X 0 2 K

and all cylinders C on X 0 such that jhol!0 
C j � � , we have that

kprFX 0
Œ
C �k!0 � c.�;K;F /:

Proof Let C .�;X 0/ be the finite set of cylinders on X 0 of length at most � . Then
c0.�;X

0;F /DmaxfkprFX 0
Œ
 �k!0 W C 2C .�;X 0/g is finite.

Define �.�;X 0/D f
C W C 2 C .�;X 0/g. Then, since F is continuous, prF. � /
. � / is

continuous and since the Hodge norm k � k. � / is continuous, there is a neighborhood
U.X 0/ of X 0 in M such that, for all xX D . xS ; x!/ 2 U.X 0/,
� �.�; xX /� �.2�;X 0/ (after local identification), and

� kprF xX
� kx! � 2kprFX 0

� k!0 .
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Therefore, if xC is a cylinder in xX 2 U.X 0/ with jholx! 
 xC j � � , then

kprF xX
Œ
 xC �kx! � 2kprFX 0

Œ
 xC �k!0 � 2c0.2�;X
0;F /DW c.�;X 0;F /:

Since U.X 0/ is open and K is compact, there is a finite set A � K such that K �S
X 02A U.X 0/. Taking c.�;K;F /DmaxX 02A c.�;X 0;F / completes the proof.

Since F is 2–dimensional and has nonzero Lyapunov exponents, it is symplectic and
its Lyapunov spectrum is symmetric (see Remark 2.2), say ƒ.M;F /D f˙�g, � > 0.
Moreover, since f 2 FX .Z/ is an integer covector, its associated Lyapunov exponent
has to be positive. Then, for almost every � , we have that

lim
t!1

log kA.gt ; r�X /f kgt r�!

t
D � > 0I

in particular, for almost every � and sufficiently large t , t � t0.r�X; f /, we have

(7) kA.gt ; r�X /f kgt r�! � e
�
2

t :

Recall that, since F is defined over Z, F
pr
X
.Z/DprFX

H 1
X
.Z/ is a lattice and FX .Z/�

F
pr
X
.Z/. Let mDm.f / be a positive integer such that 1

m
f is a primitive element in

the lattice F
pr
X
.Z/, and let c.�; �;F / be the constant given by Lemma 4.8 for KDK� .

Then, for large t , t � t0.�; �; f /, we have

(8) e
�
2

t >m.f /c.�; �;F /:

Therefore, putting (7) and (8) together, for almost every � and all t sufficiently large,
t � t0.�; �; �;X; f /, we have that

kA.gt ; r�X /f kgt r�! � e
�
2

t >m.f /c.�; �;F /:

Fix � and t as before, consider Xt D gt r�X , !t D gt r�! and ft D A.gt ; r�X /f ,
and suppose that Xt 2K� . Now, if 
 is the core curve of a cylinder in Xt such that
jhol!t


 j � � , then

kprFXt
Œ
 �k!t

� c.�; �;F / <
1

m
kftk!t

;

where the first inequality is given by Lemma 4.8, for X 0 DXt and K DK� .

Recall that under our hypothesis, an .F; ft /–bad cylinder C in Xt has to satisfy that
prFXt

Œ
C � ¤ 0 is collinear with ft (see Remark 3.1). But no element in F
pr
Xt
.Z/

collinear with ft can be shorter than 1
m
ft , since this last is primitive in the lattice

F
pr
Xt
.Z/, by definition of m and, evidently, prFXt

Œ
 � belongs to F
pr
Xt
.Z/.
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Then 
 , as before, cannot be the core curve of an .F; ft /–bad cylinder in Xt . And
thus, NF .A.gt ; r�X /f; �/ D NF .ft ; �/ D 0 for � and t as before. That is, for all
f 2 FX .Z/, all �; � > 0 and almost every � ,

NF .A.gt ; r�X /f; �/ � 1K� .Xt /D 0

for sufficiently large t , t � t0.x; �; �; �/.

5 Application to wind-tree models

In this section we apply previous discussion to wind-tree models. As we have seen,
there is an identification between cylinders (up to Z2–translations) in the infinite
billiard … 2WT .m/ and the union of .FC�˚F�C/–good cylinders, .FC�; h/–bad
cylinders and .F�C; v/–bad cylinders in XDX.…/2B.m/. Moreover, the subbundles
FC� and F�C are always 2–dimensional flat subbundles defined over Z and, by
Theorem 2.7, we know that ƒ.M;FC�/Dƒ.M;F�C/D f˙ı.m/g for almost every
X 2 B.m/, where M is the SL.2;R/–orbit closure of X and ı.m/ > 0. In particular,
for almost every X 2 B.m/, FC� and F�C satisfy the hypothesis of Theorem 4.1.

This suffices for the almost-everywhere statement of Theorem 1.1, but it does not for the
everywhere statement of Theorem 1.2. However, an adaptation of Forni’s criterion [17]
allows us to prove that the top Lyapunov exponents of FC� and F�C are in fact
positive.

Theorem 5.1 (Forni’s criterion for integer equivariant subbundles) Let M be an
affine invariant manifold and F be an equivariant subbundle of the Hodge bundle on M
defined over Z. Suppose that there exists a flat surface X 2M and a family of parallel
closed geodesics in X such that the space generated by the (Poincaré dual of the)
homology classes of these closed geodesics is a subspace of FX of dimension d � 1.
Then the top d Lyapunov exponents on F are strictly positive, that is,

�1.M;F /� � � � � �d .M;F / > 0:

Proof The proof follows as the original proof of [17, Theorem 1.6]. In fact, as
communicated to us by C Matheus, the main steps of the proof are:

(1) [17, Section 3] The unstable bundle of the Kontsevich–Zorich cocycle is �M–
almost everywhere transverse to all integral isotropic subspaces (see [17, Lemma 3.1]).
In our case, we can restrict the unstable bundle to the equivariant subbundle F and
this statement remains true since the subbundle F is defined over Z.
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(2) [17, Section 4] The conclusion of [17, Lemma 4.4] about the convergence of
a d � d–block of the second fundamental form to �Id along an isotropic subspace
transverse to the (Poincaré dual of the) d–dimensional subspace generated by the closed
geodesics remains true when restricting to the subbundle F ; the proof relies only on
classical formulas for the period matrix near the boundary of the Deligne–Mumford
compactification of the moduli space of abelian differentials (see [17, Lemma 4.1]).

(3) [17, Section 5] Finally, the proof of [17, Theorem 1.6] remains valid since the
argument combines the two previous points with a hypothesis of local product structure,
which is always true by Eskin and Mirzakhani [15, Theorem 1.4] (see remark following
[17, Definition 1.3]).

Corollary 5.2 For every X 2 B.m/, the subbundles FC� and F�C defined on the
SL.2;R/–orbit closure of X satisfy the hypothesis of Theorem 4.1.

Proof We already know that the subbundles FC� and F�C are 2–dimensional flat
subbundles defined over Z. Then it remains to prove that they have nonzero Lyapunov
exponents.

Let FX be the (Poincaré dual of the) symplectic subspace generated by the cycles
hij ; vij for i; j 2 f0; 1g (see Figure 5). This defines a flat (that is, a locally constant)
subbundle of the Hodge bundle, which is clearly defined over Z. Moreover, F has
rank 8 and is symplectic. In particular, its Lyapunov spectrum is symmetric. Taking the
closed geodesics given by h00; h10; h01; h11 , which are horizontal and homologically
independent, and applying Theorem 5.1, we conclude that F has four positive Lyapunov
exponents and therefore all eight Lyapunov exponents are nonzero. Finally, we note
that FC� and F�C are subbundles of F and, in particular, their Lyapunov spectra
are contained in that of F . Thus, they have nonzero Lyapunov exponents.

Thus, by Theorem 4.1, .FC�; h/–bad cylinders and .F�C; v/–bad cylinders in X have
subquadratic asymptotic growth rate, proving Theorem 1.3. Thus, asymptotic formulas
for the wind-tree model correspond to those of .FC� ˚ F�C/–good cylinders. In
particular, this justifies the conclusion of Theorem 1.2, so we have weak asymptotic
formulas for every wind-tree model.

For simplicity, henceforth, we will say simply “good cylinders” for the .FC�˚F�C/–
good cylinders, and “bad cylinders” for the .FC�; h/ and .F�C; v/–bad cylinders.

As a direct consequence of Theorem 1.3 and an adapted version of Theorem 2.3 (see
Remark 2.6), we have the following.
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XD .S; !/

Xh D X=h�hi D .Sh; !h/ Xv D X=h�vi D .Sv; !v/

YD X=h�h; �vi D .
zS ; z!/

Wh D X=h�h; � ı �vi D .T
2; qh/ Wv D X=h�v; � ı �hi D .T

2; qv/

WD X=h�h; �v; �i D .CP 1; q/

Ph

zph

ph

Pv

zpv

pv

P

pP

Figure 7: Notation for surfaces and covering maps

Corollary 5.3 For almost every wind-tree billiard …2WT .m/, the number N.…;L/

of closed billiard trajectories of length bounded by L in … has quadratic asymptotic
growth rate,

N.…;L/� 1
4
cgood.M/

�L2

Area.…=Z2/
;

where cgood.M/ is the Siegel–Veech constant associated to the counting problem of
good cylinders in M, the SL.2;R/–orbit closure of X.…/.

The factor 1
4

comes from the fact that Area.X.…//D 4 �Area.…=Z2/.

In addition, a cylinder in X is a good cylinder if (and only if) the homology class of its
core curve projects trivially to FC� and to F�C (see Remark 3.1). We have also the
following useful characterization of good cylinders (see Figure 7 for notation).

Lemma 5.4 Let C be a cylinder in X. Then C is a good cylinder in X if and only if
the core curve of C projects to homologically trivial curves in Wh and Wv .

Proof Let 
 be the core curve of C . Then C is an FC�–good cylinder in X if and only
if prFC� Œ
 �D 0. But FC� is naturally isomorphic to H 1.Wh/ via the pushforward
of the covering map ph . Then prFC� Œ
 � D 0 if and only if ph�Œ
 � D Œph
 � D 0.
Analogously, the same holds for F�C and Wv . And good cylinders are exactly those
which are FC� and F�C–good cylinders.

Then good cylinders in X are exactly those which project to homologically trivial
cylinders in the flat surfaces Wh and Wv . Cylinders in X also project to the flat
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surface W, of genus zero. The SL.2;R/–orbit closure M of X projects to the SL.2;R/–
orbit closure L of W, and for almost every X 2 B.m/, RL coincides with the whole
stratum Q.1m;�1mC4/ [8, Proposition 2]. Moreover, we have seen in Section 2.3
that generic flat surfaces in Q.1m;�1mC4/ have only two types of configurations of
cylinders, the so called pocket and dumbbell configurations. But generic flat surfaces
are not pertinent to our study. In fact, the set of flat surfaces W 2 Q.1m;�1mC4/

coming from wind-tree billiards is negligible. However, we have the following.

Proposition 5.5 For almost any wind-tree billiard …2WT .m/ the following property
holds. Consider a cylinder in W.…/ D X.…/=h�; �h; �vi and suppose it is neither
horizontal nor vertical. Then the cylinder is part of one of the configurations described
in Section 2.3, that is, a pocket or a dumbbell configuration.

Proof See [1, Proposition 2.2] (whose proof mimics that of [14, Theorem 7.4]).

Corollary 5.6 For almost every wind-tree billiard … 2WT .m/,

cgood.M/D c
pocket
good .M/C cdumbbell

good .M/;

where c
pocket
good .M/ (resp. cdumbbell

good .M/) is the Siegel–Veech constant associated to the
counting problem of configurations of good cylinders in M (the SL.2;R/–orbit closure
of X.…/) that project to pocket (resp. dumbbell) configurations in Q.1m;�1mC4/.

It follows that the study of configurations of cylinders on generic flat surfaces in
Q.1m;�1mC4/ suffices for our purposes.

6 Configurations of good cylinders

Here we show which conditions a cylinder in WD .CP1; q/2LDQ.1m;�1mC4/ has
to satisfy so that it lifts to a good cylinder in XD .S; !/ 2M, and then we interpret
this in terms of configurations of generic surfaces of genus zero, that is, pocket and
dumbbell configurations (see Section 2.3).

Recall that, by Lemma 5.4, a cylinder in X is good if it projects to a homologically
trivial cylinder in the surfaces Wh and Wv , of genus 1. Then our classification will
consist in finding the configurations on W which lift to homologically trivial closed
geodesics in Wh and Wv .
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Since there are clear analogies between objects with subindex h and subindex v (see
Figure 7), in this section we will use the label o for both labels h and v . Thus, any
result in terms of labels o will give the corresponding result for h and v .

6.1 Cylinders in W that lift to good cylinders in X

Let C be a cylinder in the genus-zero surface W. Then, since all curves are homologi-
cally trivial on W, the core curve of C , say 
 , cuts the surface in two components,
say W1 and W2 .

For our purposes here, the only relevant information about C we need, is the number ql

of cone singularities of angle 3� and the number rl of ramified poles in Wl for the
double cover poW Wo!W, l D 1; 2. The number pl of unramified poles for po in
Wl is also relevant, but since Wl is a genus-zero surface with only simple zeros and
poles and a single boundary component, then

4g.Wl/� 4D�4D ql �pl � rl � 2;

and pl can be written in terms of ql and rl as pl D ql � rl C 2, l D 1; 2. Also,
q2 Dm� q1 and r2 D 4� r1 , so we will only consider r D r1 and q D q1 .

Remark that the number r depends on the configuration as well as on the double
cover po (of which there are two, ph and pv ), while q does not depend on the double
cover. Let the former number be ro D r.C;po/. Furthermore, since W1 and W2 were
arbitrarily chosen, we can fix them such that ro D r1 � r2 . Note that jrh � rvj � 1,
since three out of four ramified poles are shared by both covering maps. In particular,
we can always choose W1 and W2 coherently such that ro D ro1 � ro2 , for both
coverings. Furthermore, there is only one way to do this unless rh D rv D 2. Note that
with this setting, rh; rv 2 f0; 1; 2g. Let W0 DW2 and W0o D p�1

o W0 , and recall that
po�W �1.Wo/! �1.W/ is the pushforward of the projection poW Wo !W, which
sends closed curves in Wo to closed curves in W. In particular, bo D #po

�1
� .
 / is the

number of curves (connected components) in p�1
o .
 /, and bo 2 f1; 2g, since po is a

double cover.

Remark 6.1 In particular, bo is the number of boundary components of the sur-
face W0o . This number also defines the monodromy of the core curve 
 of C for po .
In fact, bo D 2 means that 
 has two po�–preimages and, since po is a double cover,
this gives trivial monodromy. Nontrivial monodromy (equal to Z2 ) arises when boD 1.
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Lemma 6.2 Let C be a cylinder in W and 
 its core curve, and consider bo D

#po
�1
� .
 /. Then bo D 4� ro � 2g.W0o/. In particular, bo � ro mod 2.

Proof Clearly W0 has one boundary component, which is equal to 
 . Note that bo is
the number of boundary components of W0o : bo D #po

�1
� .
 / 2 f1; 2g.

In W0 there are 4� ro ramified and m� .q � roC 2/ unramified poles for po , and
m�q simple zeros. Thus, we have 2.m�qC2� rh/ poles and 2.m�q/ simple zeros
in W0o . But then

4g.W0o/� 4D 2.m� q/� 2.m� qC 2� ro/� 2bo:

That is, bo D 4� ro � 2g.W0o/ and, in particular, bo � ro mod 2.

Proposition 6.3 Let C be a cylinder in W. Then C lifts to good cylinders in X if
and only if rh; rv 2 f0; 1g.

Proof Let 
 be the core curve of C . Then we want to show that if 
o 2 po
�1
� .
 /,

then Œ
o� D 0 if and only if ro ¤ 2. Note that, since g.Wo/ D 1, a homologically
trivial curve always cuts the surface into a genus-zero surface and a genus-one surface.

As before, let W0 DW2 and W0o D po
�1W0 . By the previous lemma, we know that

#po
�1
� .
 /D bo D 4� ro � 2g.W0o/ and bo � ro mod 2. Then:

� If roD 0, then boD 2 and g.W0o/D 1. That is, 
 has two po�–preimages (boD 2)
bounding a genus-one surface (g.W0o/D 1) in Wo . But g.Wo/D 1, and therefore both
po�–preimages of 
 are homologically trivial (see eg Figure 8, left and Figure 9, left).

� When ro D 1, we have bo D 1 and g.W0o/D 1. It follows that 
 has one po�–
preimage which is homologically trivial (see eg Figure 8, middle and Figure 9, middle).

� Finally, if ro D 2, then bo D 2 and g.W0o/ D 0. Therefore, 
 has two po�–
preimages, and together they bound each of two genus-zero surfaces which form the
genus-one surface Wh (see eg Figure 8, right and Figure 9, right). Then both preimages
of 
 are homologically nontrivial.

Thus, we know which cylinders in W lift to good cylinders in X. It remains to see how
these cylinders lift, that is, the number of cylinders in X we obtain and their length.

Geometry & Topology, Volume 22 (2018)



Counting problem on wind-tree models 1515

P0
i

P0
j1

P0
j2

P1
i

P1
j1

P1
j2

P0
i

P1
i

P0
j1

P�j2

P1
j1

P�j1

P�j2

P0
i

P1
i

Figure 8: Possible liftings for po of a pocket configuration. Left: A torus
with two “pockets”. Middle: A torus with a “pocket” twice longer. Right: A
torus with a homologically nontrivial cylinder.

P0
i1

P0
i2

P1
i1

P1
i2 P0

i1

P1
i1
P0

i2

P1
i2 P0

i1

P1
i1

P0
i2

P1
i2

Figure 9: Possible liftings for po of a dumbbell configuration. Left (ro D 0):
a torus joined to two flat spheres by homologically trivial cylinders. Middle
(ro D 1): a torus joined to a flat spheres by a homologically trivial cylinder
twice longer. Right (ro D 2): two flat spheres joined by two homologically
nontrivial cylinders.

6.2 How cylinders in W lift to good cylinders in X

Here we examine the lifts to X of those cylinders in W that lift to good cylinders
in X. More precisely, we determine the number of cylinders in X we obtain and their
lengths. To do this, we will lift one by one the covering maps poW Wo !W, then
zpoW Xo!Wo and finally PoW X!Xo (see Figure 7). Recall we are using the label o

instead of h and v .

The following is a direct consequence of Remark 6.1 and Lemma 6.2.

Lemma 6.4 Let C be a cylinder in W. Then the core curve 
 of C has trivial
monodromy for po if ro ¤ 1, and monodromy equal to Z2 if ro D 1.

Proof From Remark 6.1, we know that the number bo defines the monodromy of 
 ,
being trivial for bo D 2 and equal to Z2 when bo D 1. But, by Lemma 6.2, we also
know that bo � ro mod 2, and ro 2 f0; 1; 2g.

The meaning of the previous lemma is made apparent in Figures 8 and 9.

Lemma 6.5 Let Co be a cylinder in Wo such that ro.po.Co// ¤ 2. Then the core
curve of Co has trivial monodromy for zpoW Xo!Wo .
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Proof Let 
o be the core curve of Co . Since ro.po.Co// ¤ 2, by Proposition 6.3
and Lemma 5.4, 
o is homologically trivial. Then it cuts the surface Wo into two
components. Let W8

o be one of these two components and consider X8
o D zp

�1
o W8

o .

Let q8 be the number of double zeros and b8 the number of boundary components
on X8

o . Then 4g.X8
o/� 4D 4q8� 2b8 , and b8 � 0 mod 2. That is, b8 D 2 and 
o has

two zpo�–preimages. Since zpo is a double cover, 
o has trivial monodromy.

Thus, the possible zpo–liftings in the surface Xo of a cylinder Co in the surface Wo

(with ro.po.Co//¤ 2) are as depicted in Figure 10 or Figure 11.

Figure 10: Possible zpo–liftings in Xo of cylinders in Wo coming from a
pocket configuration in W. Left: ro D 0 . Right: ro D 1 .

Figure 11: Possible zpo–liftings in Xo of cylinders in Wo coming from a
dumbbell configuration in W. Left: ro D 0 . Right: ro D 1 .

Finally, we can describe how cylinders in W lift to good cylinders in X. Recall that
PW X!W is a covering of degree 8.

Lemma 6.6 Let C be a cylinder in W and 
 be its core curve. Suppose that rh; rv 2

f0; 1g. Then:

(1) If rh D rv D 0, then 
 has trivial monodromy for P. In particular, 
 has eight
P�–preimages of the same length as 
 .

(2) In any other case, 
 has monodromy Z2 for P. In particular, 
 has four
P�–preimages twice as long as 
 .

Proof Recall first that PW X!W is a covering of degree 8, PD po ı zpo ıPo and
also PD p ıP , where P W X! Y and pW Y!W (see Figure 7 for the notation).

(1) Suppose rh D rv D 0. By Lemma 6.4, we know that 
 has trivial monodromy for
both ph and pv . Then, by Lemma 6.5, we deduce that 
 has trivial monodromy for
ph ı zph and for pv ı zpv . Then the monodromy of 
 for PD po ı zpo ıPo can be at
most Z2 , since PoW X! Xo is a double cover.
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Suppose it is Z2 . Then the monodromy for Po of the corresponding curves x
oi ,
iD1; : : : ; 4, in Xo is Z2 . This means, in particular, that �h and �v fix the corresponding
curves x
i , i D 1; : : : ; 4, in X. Consider DDP�.fx
ig

4
iD1

/ and note that DDp�1
� .
 /.

Then, since �h and �v fix each x
i , i D 1; : : : ; 4, we have that #D D 4, but p is a
double cover, so this is impossible. Thus, assuming that the monodromy for P of 

is Z2 , we get a contradiction. Therefore, the monodromy is trivial (see Figure 12, left
and Figure 13, left).

(2) For the other cases, we will prove that 
 has monodromy Z2 . Remember we are
assuming that rh; rv ¤ 2. We split into two further cases:

(a) Suppose rh D rv D 1. From Lemma 6.4 we know that 
 has monodromy Z2

for both ph and pv . Then, by Lemma 6.5, we deduce that 
 has monodromy Z2 for
ph ı zph and for pv ı zpv . Then the monodromy of 
 for PD po ı zpo ıPo can be Z2

or Z4 , since Po is a double cover.

Suppose it is Z4 . Then the monodromy for Po of the corresponding curves x
oi ,
i D 1; 2, in Xo is Z2 , and �h and �v fix each x
i , i D 1; 2, in X.

We remark first that �h and �v are orientation-preserving isometric involutions. Then
their restrictions to any fixed cylinder must be either the identity or a rotation by half the
length of the cylinder. In particular, L
i WDP.x
i/D x
i=h�h; �vi has at least half the length
of x
i , i D 1; 2, that is, at least twice the length of 
 . But L
i 2p�1

� .
 / for i D 1; 2, and
p is a double cover, so it is impossible to have two p�–preimages of at least twice the
length. Thus, assuming that the monodromy of 
 for P is Z4 , we get a contradiction.
Therefore, the monodromy is Z2 (see Figure 12, right and Figure 13, right).

(b) Suppose that rh D 0 and rv D 1. Then, as before, we find that 
 has trivial
monodromy for ph ı zph , and monodromy Z2 for pv ı zpv . Then, since Ph and Pv

are double covers, 
 has trivial or Z2 monodromy for ph ı zph ıPh and monodromy
Z2 or Z4 for pv ı zpv ıPv . But ph ı zph ıPh D pv ı zpv ıPv DP, and therefore the
only alternative is to have monodromy equal to Z2 (see Figure 12, left and Figure 13,
left). Analogously, we have monodromy Z2 for rh D 1 and rv D 0.

6.3 Relation between Siegel–Veech constants in Q.1m; �1mC4/

and their liftings to M

We conclude the study of which and how cylinders in W lift to good cylinders in X by
relating the Siegel–Veech constants of configurations in W and their liftings to X.
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Figure 12: Lifting of a pocket configuration in W to X. Left: rh D rv D 0 .
Right: other cases (rh; rv ¤ 2).

Figure 13: Lifting of a dumbbell configuration in W to X. Left: rhD rv D 0 .
Right: other cases (rh; rv ¤ 2).

Let L be an invariant affine submanifold in Q.1m;�1mC4/ and let � be the associated
affine invariant measure on L. Consider the locus M of all possible P–covers of
surfaces from L. By construction, this gives an SL.2;R/–equivariant one-to-one
correspondence between L and M. In particular, M is an affine invariant submanifold
on H.24m/. Let � be the affine invariant measure on M. Note that � is the direct
image of � with respect to the projection M! L.

Let cD cC.L/ be the Siegel–Veech constant associated to the counting of a multiplicity-
one configuration C of cylinders in L (see Section 2.2 for the definitions). Then the
configuration C induces a cylinder configuration xC on the covering space M, defined
by the covering maps P. Let xcD cxC.M/ be the associated Siegel–Veech constant. The
lemma below relates c and xc . It is the analogue of Lemma 1.1 in [10] and Lemma 4.1
in [8], adapted for our purposes.

We say that C is a pocket-like configuration if the singularities in one of the boundary
components of the cylinder are only poles. If this is the case, then there are exactly
two poles in that boundary component. Denote by rh.C/ and rv.C/ the values of rh

and rv in the cylinders defined by configuration C . These values are well defined,
since a configuration defines all that data. Call the pair .rh; rv/ the profile of the
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configuration C . We say that C is a good configuration if it is a multiplicity-one
configuration of cylinders in L such that rh.C/; rv.C/ 2 f0; 1g.

Lemma 6.7 Let C be a good configuration.

(1) If C is pocket-like, then:
(a) If C has profile .0; 0/, then xc D 32c .
(b) In any other case, xc D 4c .

(2) If C is not pocket-like, then:
(a) If C has profile .0; 0/, then xc D 64c .
(b) In any other case, xc D 8c .

Proof First of all, suppose we know the exact number and the relative lengths of
cylinders in X we obtain by lifting a cylinder from configuration C in W. Say, a
cylinder from C in W is lifted to n cylinders in X and their lengths are s times the
length of 
 . Then

NxC.X;L/D nNC.W; s�1L/

and therefore

xc D
n

s2

Area.X/
Area.W/

c D 8
n

s2
c;

where we used the fact that Area.X/D 8 Area.W/, since X is a metric 8–fold covering
of W. But we know, by Lemma 6.6, the exact number of P�–preimages of the core
curve 
 of C , and the relative length of these, depending on rh and rv .

If C is not a pocket-like configuration, then there is at least one singularity in each
boundary of the cylinder in W which is not a pole. Then, for each P�–preimage x
 of
its core curve 
 , there is a cylinder in X with core curve x
 (see Figure 13). Thus, the
values of n and s are given by Lemma 6.6. That is, nD 8 and s D 1 for profile .0; 0/,
and nD 4, s D 2, for all other profiles of good configurations.

In the case of pocket-like configurations, the poles defining the pocket-like configuration
become regular points in the interior of the corresponding cylinders in X (see Figure 12)
and, therefore, each cylinder in X has two P�–preimages of 
 in its interior, instead of
one, as in the case of non-pocket-like configurations. Hence, the number n of cylinders
in X obtained by lifting a cylinder in W is half the number of P�–preimages of 
 ,
which is given by Lemma 6.6. That is, in the case of pocket-like configurations, we
have that nD 4 and s D 1 for profile .0; 0/, and nD 2, s D 2 for all other profiles of
good configurations.
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Remark 6.8 If we were working with the area Siegel–Veech constant instead of the
classical Siegel–Veech constant, there would be no difference for pocket-like or non-
pocket-like configurations in the previous result, since the area Siegel–Veech constant
depends only on monodromy.

7 Siegel–Veech constants of good configurations for
generic surfaces

In this section we use the results of the previous section to compute the exact value of the
Siegel–Veech constant of good configurations for generic surfaces in Q.1m;�1mC4/

with respect to the Masur–Veech measure.

Recall that for almost every surface in LDQ.1m;�1mC4/, the only possible configura-
tions are pocket and dumbbell configurations. Both configurations are multiplicity-one
configurations, that is, they define a single cylinder.

By Proposition 6.3, a multiplicity-one configuration is a good configuration if and only
if rh; rv 2 f0; 1g, where rh and rv are the number of ramified poles for ph and pv ,
respectively, in a component of the surface W after cutting along the core curve of the
cylinder defined by the configuration. Lastly, recall that ph and pv have four ramified
poles each, three of which are shared. In particular, there are five “special” poles: the
three shared ramified poles and one more for each one of ph and pv .

Good pocket configurations Recall that in a pocket configuration, we have a single
cylinder bounded by a saddle connection joining a fixed pair of poles Pj1

;Pj2
on one

side and by a separatrix loop emitted from a fixed zero Pi of order di � 1 on the other
side (see Figure 3). Then rh and rv , as defined in the previous section, are the numbers
of ramified poles among the poles Pj1

and Pj2
of the configuration for the double

covers ph and pv , respectively. By Proposition 6.3, the configuration is good if and
only if rh; rv 2 f0; 1g. Recall that the profile of the configuration is the pair .rh; rv/.

Profile .0; 0/ means that none of the ramified poles for ph or pv coincide with the
poles Pj1

and Pj2
defining the pocket configuration. Then, since there are m� 1D

.mC 4/� 5 poles which are unramified poles for both ph and pv , there are exactly�
m�1

2

�
D .m� 1/.m� 2/=2 pocket configurations of profile .0; 0/.

In order to have profile .1; 1/, we should have one ramified and one unramified pole
for both ph and pv , or one which is ramified for ph but unramified for pv and vice
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versa. This latter case occurs once, because ph and pv share three out of four of their
ramified poles. The former case happens exactly

�
3
1

��
m�1

1

�
D 3m� 3 times. Therefore,

we have 3m� 2 pocket configurations of profile .1; 1/.

Profile .1; 0/ occurs when one of the poles is ramified for ph but unramified for pv

and the other is unramified for both ph and pv . Then there are
�
1
1

��
m�1

1

�
D m� 1

pocket configurations of profile .1; 0/. Similarly, we have m�1 pocket configurations
of profile .0; 1/.

Summarizing good profiles and applying Lemma 6.7, we get that good pocket configu-
rations contribute c

pocket
good .M/ to the Siegel–Veech constant of good cylinders in M;

this contribution is 16.m�1/.m�2/C4..3m�2/C2.m�1// times the Siegel–Veech
constant for pocket configurations in L. Thus, by formula (3),

c
pocket
good .M/D .4m2

� 7mC 4/
2

�2
:

Good dumbbell configurations Recall that in this configuration, we have a single
cylinder, bounded by a saddle connection joining a zero to itself on each side (see
Figure 4). Such a cylinder separates the original surface W into two parts. This yields
a partition of ˛ D f1m;�1mC4g (where superindices stand for the multiplicities) into
two subsets ˛ D ˛1 t ˛2 , which is also considered to be part of the configuration,
and we consider ˛1 to contain the rh ramified poles for ph and the rv ramified poles
for pv . We stress the fact that, even if there are several singularities with the same
degree, we differentiate them, so they are named and, by a slight abuse of notation, we
consider this information to be also carried by the partition.

For l D 1; 2, let kl D #˛l , counting multiplicities, and note that kD k1Ck2D 2mC4.
Let q be the number of simple zeros in ˛1 . Then there are k1 � q poles in ˛1 , but
also, by topological considerations, we have that this number is equal to qC 2, since
we are restricted to a genus-zero surface with one boundary component. Therefore,
we will always have that ˛1 D f1

q;�1qC2g and ˛2 D f1
m�q;�1m�qC2g (up to the

names of the singularities). In particular, k1 D 2qC 2 and k2 D 2m� 2qC 2. Thus,
in this context, formula (4) becomes

(9) cdumbbell
i1;i2I˛1;˛2

D
.2q� 1/!.2m� 2q� 1/!

.2m/!

2

�2
:

Since this value depends only on q , it is natural to try to group configurations sharing
this number q and study the corresponding combinatorics. But, by Lemma 6.7, different
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profiles give different weights when lifted to M. Hence, we have to consider different
profiles separately.

For dumbbell configurations, profile .0; 0/ means that there are only unramified poles
in ˛1 , that is, all the five ramified poles for ph and pv are in ˛2 . Then the combinatorics
are given by the remaining m� 1 poles and the m simple zeros.

Hence, to compute the number of these configurations, that is, dumbbell configurations
of profile .0; 0/ with q simple zeros in ˛1 , we have to choose q of the m (named)
simple zeros and qC 2 of the remaining m� 1 (named) poles, to have in total qC 2

poles in ˛1 , as required by the topology. Finally, we have to choose one of q zeros
to be located at the boundary of the cylinder on one side and one of m� q zeros to
be located at the boundary of the cylinder on the other side. For any given q , where
1� q �m� 1, the count gives�m

q

��m�1

qC2

�
q.m� q/

dumbbell configurations of profile .0; 0/.

In order to have profile .1; 1/, there are two possibilities. The first one is to have one
simple pole in ˛1 which is ramified for ph but unramified for pv and one which is
ramified for pv but unramified for ph . In this case, there is only one choice for these
two ramified poles, because ph and pv share three out of four of their ramified poles.
The three ramified poles shared by ph and pv are then in ˛2 . As before, we have to
choose q of the m simple zeros to be in ˛1 , one of them to be in a boundary component
of the cylinder and one of the remaining m�q simple zeros to be in the other boundary
component. For poles, since we have already taken two poles to be in ˛1 , we have to
choose q poles among the m� 1 unramified poles, to have qC 2 poles in total, as
required by the topology. Then this case of profile .1; 1/ occurs

�
m
q

��
m�1

q

�
q.m� q/

times.

The other case which gives profile .1; 1/ is when there is only one ramified pole for
both ph and pv in ˛1 and all the remaining ramified poles (for ph and pv ) are in ˛2 .
Thus, there are three possibilities in choosing the common ramified pole and therefore,
by an analogous computation, this case happens

�
m
q

��
3
1

��
m�1
qC1

�
q.m� q/ times. Then,

for fixed q , 1� q �m� 1, we have�m

q

�h
3
�m�1

qC1

�
C

�m�1

q

�i
q.m� q/

dumbbell configurations of profile .1; 1/.
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Profile .1; 0/ occurs when only one of the poles in ˛1 is ramified for ph but unramified
for pv and all others are unramified for both ph and pv . Then, by an analogous
computation, there are

�
m
q

��
1
1

��
m�1
qC1

�
q.m�q/ dumbbell configurations of profile .1; 0/.

Similarly, we have �m

q

��m�1

qC1

�
q.m� q/

dumbbell configurations of profile .0; 1/.

In summary, by Lemma 6.7, good dumbbell configurations contribute to the Siegel–
Veech constant of good cylinders in M by�m

q

��
64
�m�1

qC2

�
C 8

�
3
�m�1

qC1

�
C

�m�1

q

�
C 2

�m�1

qC1

���
q.m� q/

times the Siegel–Veech constant for a dumbbell configuration in L with q simple zeros
in ˛1 , that is,

cdumbbell
q;good .M/D 8

�m

q

�h
8
�m�1

qC2

�
C 5

�m�1

qC1

�
C

�m�1

q

�i
q.m� q/cdumbbell

q ;

where cdumbbell
q is given by formula (9). Finally, summing up all the contribution of

good dumbbell configurations and plugging in formula (9), we obtain that

(10) cdumbbell
good .M/

D 8

m�1X
qD1

�m

q

�h
8
�m�1

qC2

�
C 5

�m�1

qC1

�
C

�m�1

q

�i
� q.m� q/

.2q� 1/!.2m� 2q� 1/!

.2m/!

2

�2

D 8

m�1X
qD1

�m

q

�h
8
�m�1

qC2

�
C 5

�m�1

qC1

�
C

�m�1

q

�i1

4

.2q/!.2m� 2q/!

.2m/!

2

�2

D
4

�2

m�1X
qD1

�
m
q

��
2m
2q

�h8�m�1

qC2

�
C 5

�m�1

qC1

�
C

�m�1

q

�i
:

But, by Proposition A.1, formula (10) can be written as

cdumbbell
good .M/D

4

�2

m�1X
qD1

�
m
q

��
2m
2q

�h8�m�1

qC2

�
C 5

�m�1

qC1

�
C

�m�1

q

�i
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D
4

�2

�
8
�

1
6
m2
�

13
6

m� 3C 5
2
4m .m!/2

.2m/!

�
C 5

�
mC 2� 3

2
4m .m!/2

.2m/!

�
C

�
�1C 1

2
4m .m!/2

.2m/!

��
D

2

3�2

�
8
�
m2
� 13m� 18C 15 � 4m .m!/2

.2m/!

�
C 5

�
6mC 12� 9 � 4m .m!/2

.2m/!

�
C

�
�6C 3 � 4m .m!/2

.2m/!

��
D

2

3�2

�
8m2
� 74m� 90C 78 � 4m .m!/2

.2m/!

�
:

We conclude the computation of the Siegel–Veech constant for good cylinders in M,
for generic surfaces, summing up the contribution of pocket and dumbbell good config-
urations:

(11) cgood.M/D c
pocket
good .M/C cdumbbell

good .M/

D .4m2
� 7mC 4/

2

�2
C

�
8m2
� 74m� 90C 78 � 4m .m!/2

.2m/!

�
2

3�2

D

�
20m2

� 95m� 78C 78 � 4m .m!/2

.2m/!

�
2

3�2
:

8 Side results

8.1 Area Siegel–Veech constant

Following the same treatment, we can deduce that for almost every wind-tree billiard
… 2WT .m/, the number Narea.…;L/ has quadratic asymptotic growth rate and

Narea.…;L/� ca;good.M/
�L2

Area.…=Z2/
;

where ca;good.M/ is the area Siegel–Veech constant associated to the counting problem
of the area of good cylinders in M, the SL.2;R/–orbit closure of X.…/.

Note that, unlike the case of the classical (nonweighted) counting, in this case we do
not have the factor 1

4
(see Corollary 5.3). This is because, in the weighted counting,

the area is already taken into consideration.

Moreover, for almost every wind-tree billiard … 2WT .m/,

ca;good.M/D c
pocket
a;good.M/C cdumbbell

a;good .M/;
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where c
pocket
a;good.M/ (resp. cdumbbell

a;good .M/) corresponds to the area Siegel–Veech constant
associated to configurations of good cylinders in M which project to pocket (resp.
dumbbell) configurations in Q.1m;�1mC4/.

Furthermore, there is a relation between classical Siegel–Veech constants and area
Siegel–Veech constants for configurations C of cylinders in LDQ.1m;�1mC4/:

ca;C.L/D
1

2mC1
cC.L/:

This is a consequence of a generalization of Vorobets’ formula [35, Theorem 1.6(b)],
proved by Athreya, Eskin and Zorich [1, Proposition 4.9] for any configuration of
cylinders on any strata Q.d1; : : : ; dk/ of quadratic differentials on CP1 .

Then we can relate the Siegel–Veech constant on M with that of L, using the analogue
of Lemma 6.7 (keeping in mind Remark 6.8; in this case xca D 8ca for profile .0; 0/
and xca D 2ca for other profiles of good cylinders). Thus, analogously to the analysis
in Section 7, we obtain

ca;good.M/D
1

2mC1

�
8
.m�1/.m�2/

2
C 2..3m� 2/C 2.m� 1//

�
1

2�2

C
1

2mC1

�
8
�

1
6
m2
�

13
6

m� 3C 5
2
� 4m .m!/2

.2m/!

�
C 2

�
5
�
mC 2� 3

2
� 4m .m!/2

.2m/!

�
C

�
�1C 1

2
� 4m .m!/2

.2m/!

���
1

2�2

D

�
4m� 9C 9 � 4m .m!/2

.2mC1/!

�
1

3�2
:

8.2 Polynomial diffusion rate

The main result of Delecroix, Hubert and Lelièvre in [7] relates the polynomial diffusion
rate on the classical model to the Lyapunov exponents of the subbundles FC� and F�C .
In this case, the polynomial diffusion rate is 2

3
for every wind-tree billiard in WT .1/.

This result was generalized by Delecroix and Zorich [8] for m� 2. However, in the
general case, the value of the diffusion rate is also explicitly known but only for almost
every wind-tree billiard in WT .m/ and numerically for some explicit examples (see
[8, Remark 2]).

The explicit values of the polynomial diffusion rate for all wind-tree billiards in WT .m/,
m� 2, is still an open problem. However, an application of Forni’s criterion for integer
equivariant subbundles (Theorem 5.1) allows us to show that the relevant Lyapunov
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exponents are always positive, for every wind-tree billiard in WT .m/, for all m� 1

(Corollary 5.2). Thus, we can conclude that we have always positive polynomial
diffusion rate.

8.3 Recurrence

A geometric criterion for the recurrence of the directional linear flow on Zd–periodic
flat surfaces in terms of good cylinders by Avila and Hubert [2] says that if the positive
gt–orbit of the compact surface accumulates on a flat surface with a vertical good
cylinder, then the vertical linear flow on the Zd–periodic flat surface is recurrent ([2,
Proposition 2]).

A result of Chaika and Eskin [4] allows us to extend this criterion. In fact, we have the
following.

Theorem 8.1 Let X be a flat surface, M its SL.2;R/–orbit closure and F a continu-
ous equivariant subbundle. Let f be a d–tuple of elements in FX .Z/ and consider X1 ,
the Zd–periodic flat surface defined by X and f . Suppose that there exists Y 2M
with an F–good cylinder. Then, for almost every � 2 Œ0; 2�/, the linear flow in
direction � is recurrent on X1 .

Proof By [4, Theorem 1.1], for almost every � 2 Œ0; 2�/, r��X is Birkhoff generic
for the gt–flow with respect to �M . Since Y 2M has an F–good cylinder, then
Y 0 D r�Y has a vertical cylinder for some � 2 Œ0; 2�/. Obviously Y 0 2M and,
since r��X is Birkhoff generic, its positive gt–orbit accumulates on Y 0 . Then, by [2,
Proposition 2], the linear flow in direction � is recurrent in X1 .

Thus, to prove the recurrence of every wind-tree billiard … 2WT .m/, we shall show
that we can find good cylinders in the compact surface X.…/.

For mD 1 this was first proved by Avila and Hubert [2, Lemma 4]. Consider m� 2

and recall that the obstacles of a wind-tree billiard … 2WT .m/ are horizontally and
vertically symmetric right-angled polygons with 4m corners with the angle �

2
and

4.m� 1/ corners with the angle 3�
2

.

If the obstacle has two consecutive angles 3�
2

, then we have (horizontal or vertical)
good cylinders of profile .1; 0/, .0; 1/ or .0; 0/. In fact, if the two consecutive angles
are symmetric with respect to the vertical reflection, then we obtain horizontal good
cylinders of profile .1; 0/ as in Figure 14(a). Similarly, if the angles are symmetric
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(a) Horizontal good cylinder of profile .1; 0/ (b) Vertical good cylinder of profile .0; 1/

(c) Horizontal good cylinder of profile .0; 0/ (d) Vertical good cylinder of profile .0; 0/

Figure 14: Good cylinders for obstacles with two consecutive corners with
angle 3�

2

Figure 15: Core curves of good cylinders of profile .1; 1/ for obstacles with
no consecutive corners with angle 3�

2

with respect to the horizontal reflection, then we have vertical good cylinders of profile
.0; 1/ as in Figure 14(b). In other cases, we obtain horizontal or vertical good cylinders
of profile .0; 0/ as in Figure 14(c) and Figure 14(d).

If there are no consecutive corners of angles 3�
2

, then there are good cylinders of
profile .1; 1/ as in Figure 15.
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Thus, for every … 2WT .m/, we can exhibit good cylinders in X.…/ and then, by
Theorem 8.1, we conclude that the billiard flow in direction � is recurrent for almost
every � 2 Œ0; 2�/.

Appendix Combinatorial identities

In this appendix we prove the following identities.

Proposition A.1 For any m 2N the following identities hold:

m�1X
qD1

�
m
q

��
m�1
qC2

��
2m
2q

� D
1
6
m2
�

13
6

m� 3C5
2
4m .m!/2

.2m/!
;(12)

m�1X
qD1

�
m
q

��
m�1
qC1

��
2m
2q

� D mC 2�3
2
4m .m!/2

.2m/!
;(13)

m�1X
qD1

�
m
q

��
m�1

q

��
2m
2q

� D � 1C1
2
4m .m!/2

.2m/!
:(14)

Proof Define

B.m; s/ WD

m�1X
qD1

�
m
q

��
m�1
qCs

��
2m
2q

�
and note that�

m
q

��
m�1
qCs

��
2m
2q

� D
m!.m� 1/!

.2m/!

� 2q

q

�� 2m�2q

m�q

� q!

.qC s/!

.m� q/!

.m� 1� q� s/!
:

Consider

A.m; s/D

mX
qD0

� 2q

q

�� 2m�2q

m�q

� q!

.qC s/!

.m� q/!

.m� 1� q� s/!
:

Then

(15) B.m; s/D
m!.m� 1/!

.2m/!
A.m; s/�

�m�1

s

�
:

Now we can write

.m� q/!

.m� 1� q� s/!
D

sY
iD0

.m� q� i/DW P .m;s/.q/;
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where P .m;s/ is a computable polynomial of degree sC 1, and suppose

P .m;s/.q/D

sC1X
jD0

p
.m;s/
j qj :

Then we can write

A.m; s/D

sC1X
jD0

p
.m;s/
j

mX
qD0

� 2q

q

�� 2m�2q

m�q

� q!

.qC s/!
qj

and define

D.m; s; j /D

mX
qD0

� 2q

q

�� 2m�2q

m�q

� q!

.qC s/!
qj ;

so that

(16) A.m; s/D

sC1X
jD0

p
.m;s/
j D.m; s; j /:

Note that

D.m; s; j /D

mX
qD0

�2q

q

��2m�2q

m�q

� q!

.qC s/!
qj

D

mX
qD0

�2q

q

��2m�2q

m�q

� q!

.qC s/!
qj qC sC 1

qC sC 1

D

mX
qD0

�2q

q

��2m�2q

m�q

� q!

.qC sC 1/!
qj .qC sC 1/

DD.m; sC 1; j C 1/C .sC 1/D.m; sC 1; j /:

Then D satisfies the recurrence relation

(17) D.m; s; j /DD.m; s� 1; j � 1/� s D.m; s; j � 1/

and, in particular, we can deduce that D.m; s; j / can be written as a linear combination
of D.m; i; 0/, i D 1; : : : ; s , and D.m; 0; l/, 0� l � j � s . But, since j takes values
in f0; : : : ; sC 1g, for the D.m; 0; l/ terms, we are interested only in D.m; 0; 1/ and
D.m; 0; 0/. The value of D.m; 0; 0/ is given in [22, (3.90)]:

(18) D.m; 0; 0/D

mX
qD0

� 2q

q

�� 2m�2q

m�q

�
D 4m:
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On the other hand,

D.m; 0; 1/D

mX
qD0

�2q

q

��2m�2q

m�q

�
q

D

mX
rD0

�2m�2r

m�r

��2r

r

�
.m� r/

DmD.m; 0; 0/�D.m; 0; 1/:

Then 2D.m; 0; 1/DmD.m; 0; 0/ and, by the identity (18),

(19) D.m; 0; 1/D
m

2
4m:

Remark A.2 In fact, it is not difficult to show that D.m; 0; l/D .m=2/l 4m , l � 0.

For the other terms, of the form D.m; i; 0/, we use the identity [22, (3.95)]:

(20) X .m; i/ WD
mX

qD0

� 2q

q

�� 2m�2q

m�q

�
i

qCi
D

�
2mC2i�1

mCi

��
2i�1

i

� :

But a simple partial fraction decomposition gives

q!

.qC i/!
D

iY
jD1

1

qC j
D

iX
jD1

.�1/j�1

.j � 1/!.i � j /!

1

qC j
D

iX
jD1

.�1/j�1

j !.i � j /!

j

qC j
;

and thus

(21) D.m; i; 0/D

iX
jD1

.�1/j�1

.j /!.i � j /!
X .m; j /:

Proof of identity (14)

Following previous discussion, P .m;0/.q/Dm� q and then, by (16), we have that

A.m; 0/DmD.m; 0; 0/�D.m; 0; 1/D
m

2
4m;

where the last equality comes from (18) and (19). Finally, from (15), we have that

B.m; 0/D
m!.m� 1/!

.2m/!
A.m; 0/�

�m�1

0

�
D

1
2
4m .m!/2

.2m/!
� 1;

which is (14).
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Proof of identity (13)

Note that P .m;1/.q/Dm2�m� .2m� 1/qC q2 . Then, by (16), we have that

A.m; 1/D .m2
�m/D.m; 1; 0/� .2m� 1/D.m; 1; 1/CD.m; 1; 2/:

Using the recurrence rule (17), we have that

D.m; 1; 1/DD.m; 0; 0/�D.m; 1; 0/;

D.m; 1; 2/DD.m; 0; 1/�D.m; 1; 1/DD.m; 0; 1/�D.m; 0; 0/CD.m; 1; 0/:

It follows that

A.m; 1/D .m2
�mC.2m�1/C1/D.m; 1; 0/�.2m�1C1/D.m; 0; 0/CD.m; 0; 1/

D .m2
Cm/D.m; 1; 0/�2mD.m; 0; 0/CD.m; 0; 1/:

By identity (21) for i D 1, D.m; 1; 0/D X .1/, and from (20),

D.m; 1; 0/D X .1/D
� 2mC1

mC1

�
D

.2mC 1/!

m!.mC 1/!
:

Therefore

A.m; 1/D .m2
Cm/

.2mC 1/!

m!.mC 1/!
� 2m4m

C
m

2
4m

D
.2mC 1/!

m!.m� 1/!
�

3m

2
4m;

where we have also used (18) and (19). Thus, from (15),

B.m; 1/D
m!.m� 1/!

.2m/!
A.m; 1/�

�m�1

1

�
D

m!.m� 1/!

.2m/!

�
.2mC 1/!

m!.m� 1/!
�

3m

2
4m

�
� .m� 1/

D 2mC 1� 3
2
4m .m!/2

.2m/!
� .m� 1/

DmC 2� 3
2
4m .m!/2

.2m/!
;

which is (13).
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Proof of identity (12)

(For the sake of readability, we will omit m from the notation in this part.) From (16),
we have that

A.2/D p
.2/
0

D.2; 0/Cp
.2/
1

D.2; 1/Cp
.2/
2

D.2; 2/Cp
.2/
3

D.2; 3/;

where

P .2/.q/D

3X
jD0

p
.2/
j qj

D .m3
� 3m2

C 2m/� .3m2
� 6mC 2/qC .3m� 3/q2

� q3:

Using the recurrence rule (17), we have that

D.2; 1/DD.1; 0/� 2D.2; 0/;

D.2; 2/DD.1; 1/� 2D.2; 1/

DD.0; 0/�D.1; 0/� 2.D.1; 0/� 2D.2; 0//

DD.0; 0/� 3D.1; 0/C 4D.2; 0/;

D.2; 3/DD.1; 2/� 2D.2; 2/

DD.0; 1/�D.1; 1/� 2.D.0; 0/� 3D.1; 0/C 4D.2; 0//

DD.0; 1/�D.0; 0/CD.1; 0/� 2D.0; 0/C 6D.1; 0/� 8D.2; 0/

DD.0; 1/� 3D.0; 0/C 7D.1; 0/� 8D.2; 0/:

It follows that

A.2/D p
.2/
0

D.2; 0/Cp
.2/
1

D.2; 1/Cp
.2/
2

D.2; 2/Cp
.2/
3

D.2; 3/

D p
.2/
3

D.0; 1/C .p
.2/
2
� 3p

.2/
3
/D.0; 0/C .p

.2/
1
� 3p

.2/
2
C 7p

.2/
3
/D.1; 0/

C .p
.2/
0
� 2p

.2/
1
C 4p

.2/
2
� 8p

.2/
3
/D.2; 0/

D�D.0; 1/C 3mD.0; 0/C q
.2/
1

D.1; 0/C q
.2/
2

D.2; 0/

D
5m

2
4m
C q

.2/
1

D.1; 0/C q
.2/
2

D.2; 0/;

where we have used (18), (19) and the values p
.2/
3
D�1 and p

.2/
2
D 3m�3. We have

also defined q
.2/
1
D p

.2/
1
� 3p

.2/
2
C 7p

.2/
3

and q
.2/
2
D p

.2/
0
� 2p

.2/
1
C 4p

.2/
2
� 8p

.2/
3

.
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Thus, by identity (21),

A.2/D
5m

2
4m
Cq

.2/
1

X .1/Cq
.2/
2

�
X .1/� 1

2
X .2/

�
D

5m

2
4m
C.q

.2/
1
Cq

.2/
2
/X .1/� 1

2
q
.2/
2

X .2/

D
5m

2
4m
C.p

.2/
0
�p

.2/
1
Cp

.2/
2
�p

.2/
3
/X .1/� 1

2
.p
.2/
0
�2p

.2/
1
C4p

.2/
2
�8p

.2/
3
/X .2/

D
5m

2
4m
C.m3

�m/X .1/� 1
2
.m3
C3m2

C2m/X .2/:

Plugging in identity (20), we obtain

A.2/D
5m

2
4m
C.m3

�m/
�2mC1

mC1

�
�

1
2
.m3
C3m2

C2m/

�
2mC3
mC2

��
3
2

�
D

5m

2
4m
C.m�1/m.mC1/

.2mC1/!

m!.mC1/!
�

1
6
m.mC1/.mC2/

.2mC3/!

.mC1/!.mC2/!

D
5m

2
4m
C
�
.m�1/� 1

3
.2mC3/

� .2mC1/!

m!.m�1/!

D
5m

2
4m
C

1
3
.m�6/

.2mC1/!

m!.m�1/!
:

Finally, by (15),

B.2/D
m!.m� 1/!

.2m/!
A.2/�

�m�1

2

�
D

m!.m� 1/!

.2m/!

�
5m

2
4m
C

1
3
.m� 6/

.2mC 1/!

m!.m� 1/!

�
�

1
2
.m� 1/.m� 2/

D
5
2
4m .m!/2

.2m/!
C

1
3
.2m2

� 11m� 6/� 1
2
.m2
� 3mC 2/

D
5
2
4m .m!/2

.2m/!
C

1
6
.m2
� 13m� 18/;

which is (12).

Remark A.3 The proof of Proposition A.1 gives a procedure or algorithm to compute
A.m; s/ and B.m; s/ for all s � 0. An algorithm is not a formula, and evidently, the
complexity increases enormously when s becomes larger. However, with this method,
it is possible to show that B.m; s/ has the form

.2mC 1/Ps.m/C .�1/s
2sC1

2
4m .m!/2

.2m/!
�

�m�1

s

�
;
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where Ps is a polynomial of degree s� 1 (in particular, P0 D 0), which can also be
explicitly computed. Moreover, Ps can be determined from the fact that B.m; s/D 0

for mD 1; : : : ; sC 1. In particular,

Ps.m/D .�1/sC1 2sC1

2
4m .m!/2

.2mC 1/!

for mD 1; : : : ; s . In any case, we do not perform the computations here.
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[20] K Frączek, C Ulcigrai, Non-ergodic Z–periodic billiards and infinite translation
surfaces, Invent. Math. 197 (2014) 241–298 MR

[21] E Goujard, Siegel–Veech constants for strata of moduli spaces of quadratic differen-
tials, Geom. Funct. Anal. 25 (2015) 1440–1492 MR

[22] H W Gould, Combinatorial identities, revised edition, Henry W Gould, Morgantown,
WV (1972) MR

[23] E Gutkin, C Judge, Affine mappings of translation surfaces: geometry and arithmetic,
Duke Math. J. 103 (2000) 191–213 MR

[24] J Hardy, J Weber, Diffusion in a periodic wind-tree model, J. Math. Phys. 21 (1980)
1802–1808 MR

[25] H Masur, Interval exchange transformations and measured foliations, Ann. of Math.
115 (1982) 169–200 MR

[26] H Masur, Lower bounds for the number of saddle connections and closed trajectories
of a quadratic differential, from “Holomorphic functions and moduli, I” (D Drasin, C J
Earle, F W Gehring, I Kra, A Marden, editors), Math. Sci. Res. Inst. Publ. 10, Springer
(1988) 215–228 MR

[27] H Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory
Dynam. Systems 10 (1990) 151–176 MR

Geometry & Topology, Volume 22 (2018)

https://doi.org/10.1017/S0143385701001225
http://msp.org/idx/mr/1827113
http://dx.doi.org/10.1215/S0012-7094-03-11832-3
http://msp.org/idx/mr/1983037
http://dx.doi.org/10.1007/s10240-003-0015-1
http://dx.doi.org/10.1007/s10240-003-0015-1
http://msp.org/idx/mr/2010740
http://msp.org/idx/arx/1302.3320
https://doi.org/10.4007/annals.2015.182.2.7
https://doi.org/10.4007/annals.2015.182.2.7
http://msp.org/idx/mr/3418528
http://dx.doi.org/10.3934/jmd.2011.5.355
http://dx.doi.org/10.3934/jmd.2011.5.355
http://msp.org/idx/mr/2820565
https://doi.org/10.3934/jmd.2014.8.271
https://doi.org/10.3934/jmd.2014.8.271
http://msp.org/idx/mr/3345837
http://dx.doi.org/10.1017/etds.2012.148
http://dx.doi.org/10.1017/etds.2012.148
http://msp.org/idx/mr/3233697
http://dx.doi.org/10.1007/s00222-013-0482-z
http://dx.doi.org/10.1007/s00222-013-0482-z
http://msp.org/idx/mr/3232007
http://dx.doi.org/10.1007/s00039-015-0345-4
http://dx.doi.org/10.1007/s00039-015-0345-4
http://msp.org/idx/mr/3426059
http://msp.org/idx/mr/0354401
http://dx.doi.org/10.1215/S0012-7094-00-10321-3
http://msp.org/idx/mr/1760625
http://dx.doi.org/10.1063/1.524633
http://msp.org/idx/mr/575616
http://dx.doi.org/10.2307/1971341
http://msp.org/idx/mr/644018
https://doi.org/10.1007/978-1-4613-9602-4_20
https://doi.org/10.1007/978-1-4613-9602-4_20
http://msp.org/idx/mr/955824
https://doi.org/10.1017/S0143385700005459
http://msp.org/idx/mr/1053805


1536 Angel Pardo

[28] H Masur, A Zorich, Multiple saddle connections on flat surfaces and the principal
boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal. 18 (2008)
919–987 MR

[29] M Schmoll, On the asymptotic quadratic growth rate of saddle connections and peri-
odic orbits on marked flat tori, Geom. Funct. Anal. 12 (2002) 622–649 MR

[30] W A Veech, Gauss measures for transformations on the space of interval exchange
maps, Ann. of Math. 115 (1982) 201–242 MR

[31] W A Veech, Teichmüller curves in moduli space, Eisenstein series and an application
to triangular billiards, Invent. Math. 97 (1989) 553–583 MR

[32] W A Veech, The billiard in a regular polygon, Geom. Funct. Anal. 2 (1992) 341–379
MR

[33] W A Veech, Siegel measures, Ann. of Math. 148 (1998) 895–944 MR

[34] Y B Vorobets, Ergodicity of billiards in polygons, Mat. Sb. 188 (1997) 65–112 MR In
Russian; translated in Sb. Math. 188 (1997) 389–434

[35] Y Vorobets, Periodic geodesics on generic translation surfaces, from “Algebraic and
topological dynamics” (S Kolyada, Y Manin, T Ward, editors), Contemp. Math. 385,
Amer. Math. Soc., Providence, RI (2005) 205–258 MR

[36] A Wright, Translation surfaces and their orbit closures: an introduction for a broad
audience, EMS Surv. Math. Sci. 2 (2015) 63–108 MR

[37] A Zorich, Flat surfaces, from “Frontiers in number theory, physics, and geometry, I”
(P Cartier, B Julia, P Moussa, P Vanhove, editors), Springer (2006) 437–583 MR

Institut de Mathématiques de Marseille, Aix-Marseille Université
Marseille, France

angel.pardo.j@gmail.com

Proposed: Danny Calegari Received: 23 May 2016
Seconded: Anna Wienhard, Leonid Polterovich Revised: 23 January 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1007/s00039-008-0678-3
https://doi.org/10.1007/s00039-008-0678-3
http://msp.org/idx/mr/2439000
http://dx.doi.org/10.1007/s00039-002-8260-x
http://dx.doi.org/10.1007/s00039-002-8260-x
http://msp.org/idx/mr/1924375
http://dx.doi.org/10.2307/1971391
http://dx.doi.org/10.2307/1971391
http://msp.org/idx/mr/644019
http://dx.doi.org/10.1007/BF01388890
http://dx.doi.org/10.1007/BF01388890
http://msp.org/idx/mr/1005006
http://dx.doi.org/10.1007/BF01896876
http://msp.org/idx/mr/1177316
http://dx.doi.org/10.2307/121033
http://msp.org/idx/mr/1670061
http://mi.mathnet.ru/eng/msb/v188/i3/p65
http://msp.org/idx/mr/1462024
https://doi.org/10.1070/SM1997v188n03ABEH000211
https://doi.org/10.1090/conm/385/07199
http://msp.org/idx/mr/2180238
http://dx.doi.org/10.4171/EMSS/9
http://dx.doi.org/10.4171/EMSS/9
http://msp.org/idx/mr/3354955
https://doi.org/10.1007/978-3-540-31347-2_13
http://msp.org/idx/mr/2261104
mailto:angel.pardo.j@gmail.com
http://msp.org
http://msp.org

	1. Introduction
	1.1. Strategy of the proof
	1.2. Side results
	1.3. Structure of the paper

	2. Background
	2.1. Flat surfaces
	2.2. Counting problem
	2.3. Generic configuration of cylinders in genus zero and associated Siegel–Veech constants
	2.4. Wind-tree model

	3. Counting problem in periodic flat surfaces
	4. Bad cylinders have subquadratic asymptotic growth rate
	4.1. Proof of Theorem 4.4
	4.2. Proof of Proposition 4.5

	5. Application to wind-tree models
	6. Configurations of good cylinders
	6.1. Cylinders in W that lift to good cylinders in X
	6.2. How cylinders in W lift to good cylinders in X
	6.3. Relation between Siegel–Veech constants in Q and their liftings to M

	7. Siegel–Veech constants of good configurations
	8. Side results
	8.1. Area Siegel–Veech constant
	8.2. Polynomial diffusion rate
	8.3. Recurrence

	Appendix Combinatorial identities
	Proof of identity sum-q
	Proof of identity sum-q+on
	Proof of identity sum-q+tw

	References

