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Symmetric products and subgroup lattices

MARKUS HAUSMANN

Let G be a finite group. We show that the rational equivariant homotopy groups of
symmetric products of the G –equivariant sphere spectrum are naturally isomorphic
to the rational homology groups of certain subcomplexes of the subgroup lattice of G .

55P42, 55P62, 55P91

1 Introduction

Let Spn.X /DX�n=†n denote the nth symmetric product of a space X, and Spn
D

fSpn.Sk/g the spectrum consisting of the nth symmetric products of spheres. Inserting
a basepoint in the last component defines maps Spn

! SpnC1, giving rise to the
symmetric product filtration

SD Sp1
! Sp2

! � � � ! Sp1 'HZ;

which interpolates between the sphere spectrum and the Eilenberg–Mac Lane spectrum
for the integers. This filtration has interesting properties; for example, it induces the
filtration by length of admissible sequences on the Steenrod algebra (Nakaoka [12]),
it is related to partition complexes and the Goodwillie tower of the identity (Arone
and Dwyer [3]) and it is the object of study in the Whitehead conjecture (solved by
Kuhn [8]). However, all these properties are purely about torsion: after tensoring
with Q, the symmetric product filtration becomes constant.

Now let G be a finite group. The symmetric products Spn.SV / of G –representation
spheres give rise to a genuine G–spectrum, which we denote by Spn

G . Again one
obtains a filtration

SG D Sp1
G! Sp2

G! � � � ! Sp1G 'HZ;

this time converging to an Eilenberg–Mac Lane spectrum for the constant Mackey
functor Z (dos Santos [13]). In contrast to the nonequivariant situation, the Hurewicz
map SG! Sp1G is no longer a rational equivalence, as one can see on the level of �G

0
:

the group �G
0
.SG/˝Q is the rationalized Burnside ring, a vector space with basis the
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1548 Markus Hausmann

isomorphism classes of transitive G –sets, while �G
0
.Sp1G /˝Q is isomorphic to Q. It

is still the case, however, that all higher rational homotopy groups both of SG and Sp1G
vanish.

The content of this paper is to show that the intermediate rational homotopy groups
�G

k
.Spn

G/˝Q are closely related to the topology of the subgroup lattice of G , and
in general not at all concentrated in degree 0. In fact, the only G for which all
�G

k
.Spn

G/˝Q with k > 0 vanish are the cyclic p–groups. If one lets G and n vary,
the vector spaces �G

k
.Spn

G/˝Q can be nontrivial for arbitrarily large k , and for
every k these can be of arbitrarily large finite dimension.

The precise statement is as follows: We recall that the (nerve of the) subgroup lattice
L.G/ is the simplicial set with k –simplices the chains of inclusions H0 � � � � �Hk

of subgroups of G . We define a filtration

∅DL.G/0 �L.G/1 �L.G/2 � � � � �L.G/1 DL.G/

on this subgroup lattice by declaring a simplex H0 � � � � �Hk to lie in L.G/n if and
only if the index ŒHk WH0� is at most n. The lattice L.G/ carries an action by G via
conjugation, which preserves the subcomplexes L.G/n . Hence, the rational homology
H�.L.G/n;Q/ becomes a graded G–module and we can consider its coinvariants�
H�.L.G/n;Q/

�
G

. Then the main result of this paper is the following:

Theorem 1.1 For all finite groups G and n 2N [f1g, there are isomorphisms

�G
� .Spn

G/˝QŠ
�
H�.L.G/n;Q/

�
G
:

In other words, the process of adding the nth coordinate in the symmetric products of G –
spheres can be modeled rationally by adding all chains of total index n in the subgroup
lattice of G . In particular, the rational homotopy type of Spn

G only changes when n

is a divisor of the order of G . We observe that Theorem 1.1 matches the previously
known values �G

� .SG/˝Q and �G
� .Sp1G /˝Q, since L.G/1 is the discrete set of

subgroups of G and L.G/1DL.G/ is contractible since the lattice has a minimal and
a maximal element. As mentioned above, the subcomplexes L.G/n can have arbitrarily
high nontrivial rational homology, though of course for every fixed G the homology
is bounded since L.G/ is a finite complex. For groups of small order, Theorem 1.1
makes it an easy exercise to determine each �G

� .Spn
G/˝Q concretely, and we work

this out in several examples. For general G , however, the rational homology of the
L.G/n is difficult to compute and Theorem 1.1 can be seen as a demonstration that
the rationalized Spn

G are quite complex, in contrast to their nonequivariant version.
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Remark 1.2 Schwede [14] has given a computation of the 0th homotopy groups
�G

0
.Spn

G/, even integrally. His description does not make use of the filtration of
subgroup lattices that we introduce in this paper. Instead, he showed that each �G

0
.Spn

G/

is a quotient of �G
0
.S/, the Burnside ring of G , and that the kernel is generated by a

single element when viewed as a global functor (see the discussion below). It is not
hard to see that — after tensoring with Q — his description agrees with ours. One can
think of Theorem 1.1 as a higher homotopical generalization of the rational version of
Schwede’s result.

To describe the full functoriality in G , we work in the global equivariant context, as
introduced by Schwede [15]. This means that we think of the collection of all Spn

G for
varying G and fixed n as one global object. One consequence is that the homotopy
groups form a global functor: they carry restriction maps along arbitrary group homo-
morphisms and transfer maps for subgroup inclusions. The strongest form of our main
result (Theorem 2.10) also describes the global functor structure on the side of subgroup
lattices, and in addition explains how to reconstruct the full global homotopy type of
the rationalization Spn

Q in terms of subgroup lattice data, not only its homotopy groups.
This makes a difference, because — unlike for fixed G — a rational global spectrum
is not determined by its homotopy groups. In fact, this stronger version allows us to
deduce that the Spn

Q do not decompose as products of Eilenberg–Mac Lane spectra
globally (Proposition 5.2), though they decompose over every fixed G . To obtain these
results we make use of an explicit construction of an equivalence between the homotopy
category of rational global spectra and the derived category of rational global functors,
due to Wimmer [20].

Remark 1.3 One ingredient in the proof of Theorem 1.1 is an equivariant version of
the theorem by Arone and Dwyer [3, Theorem 1.11], which relates Spn=Spn�1 to the
partition complex …n of the set f1; : : : ; ng. This is Proposition 3.10 and might be of
independent interest.

The organization of the paper is as follows: In Section 2 we recall basics of (rational)
global homotopy theory, explain how Theorem 1.1 can be stated in terms of geometric
instead of categorical fixed points, and formulate the stronger version via chain com-
plexes of global functors. In Sections 3.1–3.3 we construct compatible maps from the
suspension spectrum of the L.G/n into the geometric fixed points of Spn. The basic
geometric idea is not complicated, but it takes some effort to obtain an honest map
with all the properties and compatibilities we need. We then show (Section 3.5) that the
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1550 Markus Hausmann

induced map on subquotients is rationally (split) injective on homology. In Section 3.6
we use other methods to compute the rational homotopy type of the geometric fixed
points of Spn=Spn�1 and show that it agrees with the rational homotopy type of the
lattice quotient, finishing the proof of the main results. In Section 4 we give some
examples for small G . Finally, Section 5 contains a proof that the Spn

Q do not split as
products of global Eilenberg–Mac Lane spectra, and that the �G

� .Spn/˝Q are only
concentrated in degree 0 when G is a cyclic p–group.

Acknowledgements I would like to thank my adviser Stefan Schwede for various
helpful discussions and Christian Wimmer for answering my questions on rational
global homotopy theory.

This research was supported by the GRK 1150 Homotopy and cohomology and the
DFG Priority Program SPP 1786 Homotopy theory and algebraic geometry. Final
revisions were made in Copenhagen under the support of the Danish National Research
Foundation through the DNRF92 Centre for symmetry and deformation.

2 Rational global homotopy

In this section we recall some definitions and structural results of (rational) stable
global homotopy theory based on orthogonal spectra, as developed by Schwede in his
book project [15] and the paper [14]. Here and throughout the paper, we work with the
version formed with respect to the global family of finite groups, not the full one for all
compact Lie groups. In particular, we explain how one can reduce our main result to a
statement about geometric fixed points. For the reader only interested in the version
for fixed G , we recall in Remarks 2.8 and 2.11 how this reduction works in the more
familiar category of G –spectra.

2.1 Orthogonal spectra

An orthogonal spectrum is a collection of based spaces X.V / for every finite-dimen-
sional real inner product space V , together with associative structure maps of the form
X.V / ^ SW �'.V / ! X.W /, varying continuously in linear isometric embeddings
'W V ,!W (see Mandell, May, Schwede and Shipley [11, Example I.4.4], Schwede
[14, Section 2] or Hill, Hopkins and Ravenel [5, Section A.2.4] on how to make this
precise). In particular, each X.V / carries a based O.V /–action. If an inner product
space V comes with an action of a finite group G , the evaluation X.V / also becomes

Geometry & Topology, Volume 22 (2018)



Symmetric products and subgroup lattices 1551

a based G–space through functoriality. If 'W V ,!W is an equivariant embedding
of such representations, the structure map X.V /^SW �'.V /!X.W / becomes G–
equivariant. This way we think of an orthogonal spectrum as a collection of G –spaces
for all finite groups G which are related by structure maps, ie a global spectrum. In
particular, every orthogonal spectrum X gives rise to a genuine G –orthogonal spectrum
(in the sense of Mandell and May [10]) XG by only remembering the evaluations at
G –representations.

Example 2.1 (symmetric products) In this paper we study the orthogonal spectra Spn.
Their evaluation on V is given by Spn.SV / D .SV /�n=†n . For a linear isometric
embedding 'W V ,!W , the associated structure map

.SV /�n=†n ^SW �'.V /
! .SW /�n=†n

sends a class Œ.v1; : : : ; vn/� ^ x to Œ.'.v1/ ^ x; : : : ; '.vn/ ^ x/�. The insertion of a
basepoint gives inclusions in

n�1
W Spn�1

! Spn with colimit spectrum Sp1. More
generally, for m � n we write in

mW Spm
! Spn for the map obtained by inserting

n�m basepoints.

For every orthogonal spectrum X there are two notions of equivariant homotopy groups,
the categorical fixed-point homotopy groups �G

� .X / (which Theorem 1.1 is about) and
the geometric fixed-point homotopy groups ˆG

� .X /. Rationally, the two determine
each other. In the following sections we quickly recall their definition and how to pass
from one to the other.

2.2 Categorical homotopy groups

Let �G denote the regular representation of a finite group G .

Definition 2.2 The categorical homotopy groups of an orthogonal spectrum X are
defined as

�G
k .X /D colim

n2N
ŒSkCn��G ;X.n � �G/�

G

for all finite groups G and all k 2Z, where Œ�;��G denotes the set of based homotopy
classes of based G–maps. The colimit is formed with respect to the structure maps
X.n � �G/^S�G !X..nC 1/ � �G/.

These groups have the following functoriality in G (see Schwede [15, Constructions
3.2.22 and 3.1.15]):
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1552 Markus Hausmann

� For every subgroup inclusion H �G there is a transfer map

trG
H W �

H
� .X /! �G

� .X /:

� For every group homomorphism  W G!K there is a restriction map

 �W �K
� .X /! �G

� .X /:

If K DG and  is an inner automorphism, then  � is the identity of �G
� .X /.

Transfer maps are covariantly functorial in the group G , and restriction maps are
contravariantly functorial. Restrictions along surjective group homomorphisms com-
mute with transfers — in the appropriate sense — while restrictions along injective
group homomorphisms are related to transfers by a double coset formula. The precise
formulations can be found in [15, Theorem 4.2.6 and the paragraph following it].
Altogether, the collection ��.X /D f�G

� .X /gG finite forms a so-called graded global
functor. In [15], Schwede defines a morphism of orthogonal spectra to be a global
equivalence if it induces an isomorphism of graded global functors on homotopy groups.
The global homotopy category is the localization of the category of orthogonal spectra
at the class of global equivalences.

Likewise, a rational global equivalence is a morphism that induces an isomorphism
on ��.�/˝Q. The localization of orthogonal spectra at rational global equivalences
forms the rational global homotopy category. As in the nonequivariant case, the passage
from the global homotopy category to the rational global homotopy category is a left
Bousfield localization. It has a fully faithful right adjoint with essential image those
orthogonal spectra whose categorical homotopy groups form Q–vector spaces. Given
an orthogonal spectrum X, its rationalization XQ can be constructed as the homotopy
colimit of the sequence X �2

�!X �3
�!X �4

�! � � � , or as the smash product with the
rational global sphere SQ . Furthermore, the counit X !XQ induces an isomorphism
��.X /˝QŠ ��.XQ/.

Now we let L.G/n denote the subcomplex of the subgroup lattice L.G/ consisting of
all chains of total index at most n, as explained in the introduction. Since we aim to
show that .H�.L.G/n;Q//G is isomorphic to �G

� .Spn/˝Q for every finite group G ,
the assignment

G 7!
�
H�.L.G/n;Q/

�
G

Geometry & Topology, Volume 22 (2018)
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must have the functoriality of a global functor. In fact, this structure already exists on
rational chains, ie the assignment

G 7!
�
C�.L.G/n/

�
G

extends to a chain complex of rational global functors, where C� denotes the normalized
rational complex of a simplicial set. The transfer and restriction maps work out as
follows:

Transfers The transfer along a subgroup inclusion H �G sends a chain of subgroups
of H to ŒG WH � times the same chain thought of as subgroups of G .

Restriction maps The restriction along a group homomorphism  W G ! K takes
the class of a chain H0 � � � � �Hm to

(2-1)
X

Œk�2G nK=H0

�
ŒG W  �1.kH0k�1/�

ŒK WH0�
�Œ �1.kH0k�1/�� � �� �1.kHmk�1/�

�
:

The sum is taken over a set of coset representatives of the .G�H
op
0
/–action on K given

by .g; h/ � k D  .g/kh. We note that if  is surjective, there is only one summand
and the formula simplifies to

 �.ŒH0 � � � � �Hm�/D Œ 
�1.H0/� � � � �  

�1.Hm/�:

Remark 2.3 To explain the factor ŒG W H � in the definition of the transfer and the
fractions ŒG W  �1.kH0k�1/�=ŒK WH0� in that of the restrictions, we consider the
case nD 1, where L.G/1 is the discrete set of subgroups of G and �G

0
.Sp1/˝Q is

the rationalized Burnside ring of G , a vector space with basis the isomorphism classes
of transitive G–sets G=H . It is clear that

�
H0.L.G/1;Q/

�
G

and �G
0
.Sp1/ ˝ Q

are abstractly isomorphic, and one isomorphism would be given by simply mapping
H 2L.G/1 to ŒG=H � 2 �G

0
.Sp1/˝Q. However, this isomorphism cannot be compat-

ible with any choice of isomorphism�
H0.L.G/1;Q/

�
G
Š �G

0 .Sp1/˝Q;

which are both isomorphic to Q. Any two subgroups of G represent the same element
in H0.L.G/1;Q/, since the lattice is connected. On the other hand, the augmentation
�G

0
.Sp1/! �G

0
.Sp1/ sends a finite G–set to its number of elements, so the orbits

ŒG=H � generally have different images. This can be corrected by sending H 2L.G/1

to .1=ŒG WH �/ � ŒG=H � — which has augmentation 1 — instead. So, in the case nD 1,
the formulas above express transfers and restrictions in the rationalized Burnside ring
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1554 Markus Hausmann

global functor written in terms of the basis f.1=ŒG WH �/ � ŒG=H �g instead of the usual
basis fŒG=H �g, which leads to the appearance of the factors and fractions.

We claim that these transfers and restrictions turn .QŒL.�/n�/� into a simplicial global
functor. The proof that each simplicial degree is a global functor is very similar to the
Burnside ring global functor (the case nD 1; see Remark 2.3 above), since the main
role in the restrictions (2-1) is played by the smallest subgroup H0 and the higher Hi

are carried along. The proof that the global structure maps commute with the simplicial
operators is straightforward, except possibly for the face d0 and a restriction  . There
we have to show that the two sums

(2-2)
X

Œk�2G nK=H0

�
ŒG W  �1.kH0k�1/�

ŒK WH0�
�Œ �1.kH1k�1/� � � �� �1.kHmk�1/�

�
and

(2-3)
X

Œzk�2G nK=H1

�
ŒG W  �1.zkH1

zk�1/�

ŒK WH1�
�Œ �1.zkH1

zk�1/�� � �� �1.zkHm
zk�1/�

�

are the same. The class Œ �1.kH1k�1/� � � � �  �1.kHmk�1/� only depends on the
.G�H

op
1
/–orbit of k , and so we can rewrite (2-2) asX

Œzk�2
G nK=H1

�� X
Œk�2G nK=H0

k2G zkH1

ŒG W  �1.kH0k�1/�

ŒK WH0�

�
� Œ �1.zkH1

zk�1/� � � � �  �1.zkHm
zk�1/�

�
:

Hence, it suffices to show thatX
Œk�2G nK=H0

k2G zkH1

ŒG W  �1.kH0k�1/�

ŒK WH0�
D
ŒG W  �1.zkH1

zk�1/�

ŒK WH1�

for every zk 2K . This equality can be deduced from counting the number of elements
in the .G�H

op
1
/–orbit of zk 2K in two different ways: The .G�H

op
1
/–isotropy of zk

is given by the graph subgroup˚
.g; zk�1 .g/�1 zk/ j g 2  �1.zkH1

zk�1/
	
;

so the order of this orbit is
jGj � jH1j

j �1.zkH1
zk�1/j

:
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On the other hand, decomposing the orbit G zkH1 into .G�H
op
0
/–orbits yields the

sum X
Œk�2G nK=H0

k2G zkH1

jGj � jH0j

j �1.kH1k�1/j
;

and so dividing by jKj gives the desired result.

Hence, the normalized chains associated to .QŒL.�/n�/� become a complex of global
functors, which we denote by CLn . Then a more functorial version of Theorem 1.1 is
the following:

Theorem 2.4 There is an isomorphism of graded global functors

��.Spn/˝QŠH�.CLn/:

2.3 Geometric homotopy groups

Next we explain how to reduce Theorem 2.4 to a statement about geometric fixed-point
homotopy groups, which in the case of symmetric products of spheres are more directly
accessible.

Definition 2.5 (geometric fixed points) The geometric fixed-point homotopy groups
of an orthogonal spectrum X are defined as

ˆG
k .X /D colim

n2N
ŒSkCn;X.n � �G/

G �

for every finite group G and k 2 Z.

The collection of geometric fixed-point homotopy groups does not form a global functor,
but it carries restrictions along surjective group homomorphisms (Construction 3.3.4
of [15]). Again, inner conjugations act trivially. In other words, if we denote the
category of finite groups and conjugacy classes of surjective group homomorphisms
by Out, the collection ˆ�.X / forms a functor Outop

! Ab, an Outop –module [15,
Proposition 4.1.23]. Moreover, a morphism of orthogonal spectra is a global equivalence
if and only if it induces an isomorphism on all geometric fixed-point homotopy groups.

There is a natural comparison map 
X W �G
k
.X /!ˆG

k
.X / given by taking a G –map

SkCn��G ! X.n � �G/ to the induced map on fixed points SkCn Š .SkCn��G /G !

X.n � �G/
G. The map 
X has the following properties:
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(i) It commutes with restrictions along surjective group homomorphisms.

(ii) It takes all elements of the form trG
H
.x/ for H a proper subgroup of G to 0.

Given a global functor F and a finite group G , we let �.F /.G/ denote the quotient
of F.G/ by all transfers from proper subgroups. Then the assignment G 7! �.F /.G/

no longer forms a global functor, but it inherits restrictions along surjective group
homomorphisms, since these commute with transfers. In these terms, the two properties
above mean that 
X factors through a map of Outop –modules z
X W �.��.X //!ˆ�.X /.
It turns out that for rational global functors the construction � can be reversed and that
in this case z
X is an isomorphism:

Proposition 2.6 (Schwede [15, Theorem 4.5.35 and Corollary 4.5.37]) The functor

� W Q–global functors!QŒOutop�–modules

is an equivalence of categories. Moreover, for every orthogonal spectrum X the map

z
X W �.��.X /˝Q/!ˆ�.X /˝Q

is an isomorphism.

Example 2.7 In the case of the global sphere spectrum S , the geometric fixed points
ˆG.S/ for any finite group G are given by the nonequivariant sphere spectrum. The
map 
SW �

G
0
.S/˝Q!ˆG

0
.S/˝QŠQ sends the class of a finite G –set X (as an

element in the Burnside ring) to the cardinality of its fixed points X G, or in other words
the number of trivial orbits in a decomposition X Š

F
G=Hi . This map is a surjection,

with kernel generated by all transitive G–sets G=H for proper subgroups H . These
also span the subspace generated by transfers, since each G=H is the transfer of the
trivial H –set H=H . Using that all higher rational homotopy groups of S vanish, we
see that z
S is indeed an isomorphism.

Remark 2.8 When working over fixed finite G , the analogous statement is the equiv-
alence of categories between rational G –Mackey functors and products of QŒWG.H /�–
modules, where H ranges over a set of conjugacy class representatives and WG.H /D

NG.H /=H denotes the Weyl group of H ; see [4, Appendix A] or [15, Theorem 3.4.22].

This implies that instead of showing that ��.Spn/˝Q is isomorphic to H�.CLn/ as
a global functor (Theorem 2.4), we can equivalently show:
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Theorem 2.9 There is an isomorphism of graded Outop –modules

ˆ�.Spn/˝QŠ �.H�.CLn//:

The graded Outop –module �.H�.CLn// can be described as follows: Since � is an
equivalence, it is in particular exact. So there is an isomorphism

�.H�.CLn//ŠH�.�.CLn//:

By the description given in Section 2.2, the transfers of CLn.G/ are generated by all
chains of subgroup inclusions that end in a proper subgroup of G . This process can be
carried out on the space level: Let zL.G/ denote the quotient of L.G/ by the subspace
of chains that do not end in G , and similarly define zL.G/n . Then we find that there
are isomorphisms

�.CLn/.G/Š .C�. zL.G/n//G Š C�. zL.G/n=G/

for every finite group G . Under this isomorphism, the restriction along a surjection
 W G�K sends a chain ŒH0 � � � � �Hm� to Œ �1.H0/� � � � � 

�1.Hm/�. In other
words, the Outop –complex �.CLn/ arises by applying rational chains to the simplicial
set-valued Outop –functor G 7! zL.G/n=G . For this reason we from now on write C zLn

instead of �.CLn/.

2.4 Global chain complexes

In fact we show something stronger than Theorem 2.9, for which we recall some more
rational global homotopy theory. As an application of Morita theory for stable model
categories (see [16]), the model category of orthogonal spectra with rational global
equivalences is Quillen equivalent to the derived category of rational global functors
[15, Theorem 4.5.29]. The latter in turn — using Proposition 2.6 above — is equivalent
to the derived category of rational Outop –modules. In his PhD thesis [20], Wimmer
constructs an explicit equivalence T between the rational global homotopy category
and this derived category. We now recall his construction.

Let Epi denote the category of finite groups and surjective group homomorphisms.
Then the equivalence is constructed as a composite

orthogonal spectra ˆ
�! .orthogonal spectra/Epiop cEpiop

��!ChEpiop

Q
q!
�!ChOutop

Q ;

where ChQ is the category of rational chain complexes and .orthogonal spectra/Epiop
,

ChEpiop

Q and ChOutop

Q denote the respective functor categories.
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We go through each of these functors individually: The first, ˆ, sends an orthogonal
spectrum X to the collection of geometric fixed-point spectra ˆG.X / defined via

ˆG.X /.V /DX.V ˝ �G/
G :

Given a surjection  W G � K , the induced morphism  �W ˆK .X /! ˆG.X / is
defined in level V by

X.V ˝ �K /
K
DX.V ˝ �.�K //

G X .V˝i /
G

������!X.V ˝ �G/
G :

Here,  �.�K / denotes the restriction of �K to a G–representation along  , and
i W  

�.�K / ,!�G is the G –equivariant linear isometry which sends a basis element ek

to r
jKj

jGj

X
g2 �1.k/

eg:

To avoid confusion, one should no longer think of ˆG.X / as a global spectrum. Only
the nonequivariant homotopy type is important. Almost by definition, there is a natural
isomorphism between ˆG

� .X / and the nonequivariant homotopy groups ��.ˆG.X //.
Moreover, the restriction maps on ˆ.X / induce the restriction maps of ˆ�.X / under
this isomorphism.

The second functor cEpiop
is given by postcomposition with a functor

cW orthogonal spectra! ChQ;

of which we need the following two properties:

� There is a natural isomorphism between ��.X /˝Q and H�.c.X //. Hence,
c takes rational equivalences to quasi-isomorphisms.

� For all based spaces A there is a natural quasi-isomorphism C�.A/' c.†1A/.
In other words, for suspension spectra of spaces the associated rational chain
complex c.†1A/ is equivalent to the usual rational singular chains.

We quickly give the construction of such a functor. Wimmer uses a more refined version
that also preserves multiplicative structures, but the one we describe now is enough for
our purposes. Let X be an orthogonal spectrum. Define c.X / as the sequential colimit

colim
n2N

C�.X.Rn//Œ�n�;
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where again C�.�/ stands for the rational chains on a based space and Œ�n� denotes
the .�n/–fold shift of a chain complex, ie .C Œ�n�/k D CkCn and dC Œ�n�

k
D dC

kCn
.

The connecting maps are given by the composite

C�.X.Rn//Œ�n�
r.�˝�/
����!C�.X.Rn/^S1/Œ�.nC1/�

.�R
Rn /�
����!C�.X.RnC1//Œ�.nC1/�:

The first map is the Eilenberg–Zilber shuffle product with a fixed integral 1–cycle �
of S1 that represents a generator in H1.S

1;Z/, and the second map is induced by
the structure map of X. That the homology of c.X / computes the rational homology
(and hence the rational homotopy) of X follows from the fact that X is equivalent
to the homotopy colimit over the spectra †�n.†1X.Rn// (which is standard for
sequential spectra and also holds for orthogonal spectra, since the forgetful functor to
sequential spectra preserves stable equivalences). If X is a suspension spectrum †1A,
all structure maps �R

Rn are homeomorphisms. Since the Eilenberg–Zilber shuffle
product with � is a quasi-isomorphism, it follows that all connecting maps in the
colimit system are quasi-isomorphisms and so the canonical natural map C�.A/ D
C�..†1A/.0//! c.†1A/ is also one, which proves the second desired property.

Finally, qW Epi!Out is the projection and we write q!W ChEpiop

Q ! ChOutop

Q for the left
Kan extension along q . Concretely, q! quotients out by all inner conjugations. This
process does not change the homology of complexes of the form c.ˆ.X //, since inner
conjugations already act trivially on their homology.

Hence, the composite T has the property that it turns rational geometric fixed-point
homotopy groups of an orthogonal spectrum into homology groups of the associated
Outop –chain complex. In particular, it takes rational global equivalences to quasi-
isomorphisms of Outop –chain complexes. Wimmer [20] shows that the induced functor
on homotopy categories

T W orthogonal spectraŒQ–global equivalences�1�! D.QŒOutop�–modules/

is an exact equivalence of triangulated categories. We note that our results do not rely
on this not-yet published theorem, but only on the construction of T and the properties
above. Proposition 5.2 also uses that T preserves direct sums on the level of homotopy
categories, which is a consequence of the fact that C�.�/ takes wedges of cofibrant
based spaces to direct sums of chain complexes, up to quasi-isomorphism.

Recall that by C zLn we denote the rational chains on the Outop –functor G 7! zL.G/n=G .
Then the strongest version of the main result of this paper is the following:
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Theorem 2.10 There are quasi-isomorphisms of chain complexes of QŒOutop�–mod-
ules

T .Spn/' C zLn

for all n2N that are compatible with the inclusions Spn
!SpnC1 and C zLn! C zLnC1 .

Via taking homology and applying Proposition 2.6, this implies Theorems 2.4 and 2.9.

Remark 2.11 For fixed finite G , the category of rational G–spectra is Quillen-
equivalent to the derived category of rational G–Mackey functors (which in turn
is isomorphic to the product of the derived categories of rational WG.H /–modules;
see Remark 2.8). The category of rational G –Mackey functors is semisimple. Hence,
a chain complex of such is determined up to quasi-isomorphism by its homology.
Consequently, a rational G –spectrum is determined by its G –Mackey functor homotopy
groups. It follows that over fixed G the analogs of the statements of Theorems 2.9
and 2.10 are equivalent. However, since rational Outop –modules are not semisimple,
these theorems are not equivalent globally. In Section 5 we use Theorem 2.10 to show
that Spn

Q is not a product of global Eilenberg–Mac Lane spectra unless n is 1 or 1.

3 Proof of the equivalence

Now we come to the proof of Theorem 2.10. Let j � j denote the geometric realization
of a simplicial set. We show that there exists a transformation of spectrum-valued
Epiop –functors

z̨W †1j zL.�/nj !ˆ.Spn/

which induces isomorphisms�
H�.†

1
j zL.G/nj;Q/

�
G
ŠH�.ˆ

G.Spn/;Q/

for all finite groups G . Since rational homology is naturally isomorphic to rational
stable homotopy, we see that this implies quasi-isomorphisms

C zLn D q!

�
C�. zLn.�//

�
' q!

�
c.†1C j

zL.�/nj/
�
' q!

�
c.ˆ.Spn//

�
D T .Spn/

of Outop –complexes and hence yields Theorem 2.10. Here, we made use of the
properties of the functor c that we described in the previous section.

More precisely, z̨ is a zigzag, as we have to modify both zL.G/n and ˆ.Spn/ to be
able to construct an honest map. We now develop this zigzag step by step; the whole
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construction is summarized in diagram (3-3) at the end of Section 3.4. First we note
that, by adjunction, spectrum maps †1j zL.G/nj ! ˆ.Spn/ stand in bijection with
maps of based spaces j zL.G/nj ! .Spn.S0//G. The target is just a discrete set of
points, so there are no interesting maps on the point-set level. This can be resolved
by stabilizing once, which we do via the following construction: The shift sh X of an
orthogonal spectrum X is defined via .sh X /.V /DX.R˚V /, with structure maps
the shifted ones of X. It allows a natural map �X W S

1 ^X ! sh X given in level V

by the composite

S1
^X.V /ŠX.V /^S1 �1

V
�!X.V ˚R/

X .�R;V /
����!X.R˚V /;

where �R;V is the isometry V ˚R! R˚ V that swaps the two summands. The
adjoint is a morphism z�X W X ! � sh X. Both �X and z�X induce isomorphisms
on homotopy groups (see [15, Proposition 3.1.25] for G the trivial group). Hence,
instead of ˆ.Spn/ we can equivalently consider the Epiop –diagram � shˆ.Spn/.
Morphisms †1j zL.G/nj !� shˆG.Spn/ now correspond to maps of based spaces
j zL.G/nj ! �Spn.S�G /G. This one copy of the regular representation turns out to
be enough to define z̨ (though it only becomes a rational equivalence after further
stabilization).

3.1 Geometric idea

We start with the special case nD jGj (and hence L.G/n DL.G/) and first describe
a map x̨1W jL.G/j ! �.SpjGj.S�G //G from the nonreduced subgroup lattice. The
regular representation �G decomposes as R˚ x�G , where x�G is the reduced regular
representation of tuples that add up to 0 and R denotes the trivial diagonal copy.
To be explicit, we work with the splitting that sends an element x D

P
xg � eg to

its trivial component t.x/ D
�P

xg

�
�
�
.1=jGj/ �

P
eg

�
and its reduced component

r.x/ D x � t.x/. This decomposition also induces a map z�G W .SpjGj.S x�G //G !

�.SpjGj.S�G //G, ie the induced map on fixed points of the adjoint structure map z�1
x�G

of the orthogonal spectrum SpjGj. The map x̨1 that we construct is the composition of
a map ˛1W jL.G/j ! .SpjGj.S x�G //G with z�G.

Given a subset M �G , we denote by eM 2�G the element .1=
p
jM j/

P
g2M eg 2�G .

Then ˛1 is defined by sending a chain of subgroups H0 � � � � � Hk of G and
.t0; : : : ; tk/ 2�

k to the class��
r

� kX
iD1

ti � egHi

��
g2G

�
2 .SpjGj.S x�G //G :
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C3

feg

3

1

1

1

1

1
1

Figure 1: The map ˛1 for G D C3

We shall explain this formula briefly: For each g 2G , the map

.˛1/gW .H0 � � � � �Hk I t0; : : : ; tk/ 7! r

� kX
iD1

ti � egHi

�
defines an embedding of the subgroup lattice into x�G . These different embeddings
are permuted via the G –action, as an element g0 sends .˛1/g to .˛1/g0g . So ˛1 , the
product of all .˛1/g , is G –fixed in SpjGj.S x�G /.

Example 3.1 Elements in a symmetric product Spn.X / of a space X can be visualized
as configurations in X with labels in the natural numbers. The label on a point indicates
how often it occurs in the tuple. We use this visualization to describe ˛1 in the case
where G is a cyclic group of order 3 or 4.

For G D C3 the reduced regular representation is isomorphic to R2 with rotation by
120 degrees. The image of the vertex feg in the subgroup lattice is the configuration
of the three corners of an equilateral triangle with center 0, each equipped with the
label 1. As one moves along the edge feg � C3 , these points move straight towards

C4

feg

C2
1

1

1

1

2

4
2

1

1

1

1

1

1

1

1

2

2

Figure 2: The map ˛1 for G D C4
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the center at the same speed. Finally, the vertex C3 is mapped to the zero vector with
label 3. This map is described in Figure 1.

The reduced regular representation of C4 is 3–dimensional and permutes the corners
of a regular tetrahedron. The image of the vertex feg under ˛1 is the configuration
of these corners with label 1, and the images of the other simplices are as depicted in
Figure 2. Denoting a generator of C4 by t , the rightmost corner corresponds to r.e1/,
the left one to r.et /, the upper one to r.et2/ and the lower one to r.et3/.

This is the basic geometric idea, but some adjustments are necessary in order to make
it have all the properties and compatibilities that we need. One problem is that ˛1 does
not yet factor through the reduced lattice zL.G/, ie it does not send chains of subgroup
inclusions which end in a proper subgroup of G to the basepoint. This can be resolved
as follows: Note that the full group G is the only vertex that is sent to the 0–vector.
So if we choose a ball around 0 of small enough radius and push everything that lies
outside of it to 1, the resulting map will send all proper subgroups H of G and the
simplices connecting them to the basepoint.

To describe this in formulas, we let pW S x�G ! S x�G be a map of the form p.v/ D

�.jvj/�v , where � is a fixed continuous selfmap of Œ0;1� that restricts to an orientation-
preserving homeomorphism

�
0; 1p

2

�
Š Œ0;1� and sends

�
1p
2
;1

�
to 1. In other

words, p collapses the hemisphere of vectors of length at least 1p
2

to a point and identi-
fies the resulting quotient with S x�G again. Furthermore, we let qW .�G�f0g/!S.�G/

denote the projection to the unit sphere and xr W .�G � f0g/ ! x�G the composite
of q and the retraction r defined above. For every g 2 G we obtain a new map
.˛2/gW jL.G/j ! S x�G via the formula

.H0 � � � � �Hk I t0; : : : ; tk/ 7! p

�
xr

� kX
iD0

ti � egHi

��
and again let

˛2W jL.G/j ! .SpjGj.S x�G //G

be the tuple of all .˛2/g for g 2G . In words, we have made two changes: We project
each of the lattices inside �G to the unit sphere before passing to the reduced x�G , and
in the end we quotient out all vectors of length at least 1p

2
. This has the desired effect:

Lemma 3.2 The map ˛2W jL.G/j ! .SpjGj.S x�G //G factors through the reduced
lattice j zL.G/j.
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Proof It suffices to see that the square of the norm of

q

� kX
iD0

.ti � egHi
/

�
C t � eG

is at least 1
2

for any chain H0 � � � � � Hk , .t0; : : : ; tk/ 2 �k and t 2 R provided
that Hk is a proper subgroup of G . Dividing �G into the span of the basis elements
of the form eghk

with hk 2Hk and the span of the other basis elements, we see that
this square is given byˇ̌̌̌

q

� kX
iD0

.ti � egHi
/

�
C t �

r
jHk j

jGj
� egHk

ˇ̌̌̌2
C

ˇ̌̌̌
t �

r
jGj�jHk j

jGj
� e.G�gHk/

ˇ̌̌̌2
:

Using that jegHk
j D 1D je.G�gHk/j and applying the triangle inequality yields that

this square is at least as large as�ˇ̌̌̌
q

� kX
iD0

.ti � egHi
/

�ˇ̌̌̌
� jt j �

r
jHk j

jGj

�2

C

�
jt j �

r
jGj�jHk j

jGj

�2

:

Since q.�/ by definition always has norm 1 and jGj�jHk j is at least jHk j, we obtain
the lower bound �

1� jt j �

r
jHk j

jGj

�2

C

�
jt j �

r
jHk j

jGj

�2

:

The minimum of this quadratic function equals 1
2

, which proves the claim.

Example 3.3 The effect of ˛2 is depicted in Figure 3 for G D C3 . The first image
illustrates the area of x�C3

that is quotiented out and the second the resulting map
to Sp3.S x�C3 /.

3

1

1

1

1

1
1

3

31

1

1

Figure 3: The map ˛2 for G D C3
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However, there is a problem that is more complicated to resolve: we need the restriction
to the subcomplex zL.G/n � zL.G/ to take image in .Spn.S x�G //G. This is simply not
the case for ˛2 , as one already sees in Figure 3: the image of the 0–chain with value C3

(which lies in zL.G/1 ) is the tuple Œ.0; 0; 0/�. It has three nonbasepoint components
and hence does not lie in any smaller symmetric product. The idea to rectify this is
to use that Œ.0; 0; 0/� is stably the same as “three times the element Œ.0;�;�/�”, which
does lie in the image of Sp1.

We now make this precise and more generally let H0 � � � � �Hk be a chain of total
index n and ending in Hk DG . We write

.˛2/g.fHig;�/W �
k
! S x�G

for the restriction of .˛2/g to the k –simplex corresponding to this chain of subgroup
inclusions, and

˛2.fHig;�/W �
k
! .SpjGj.S x�G //G

for the analogous restriction of ˛2 . These have the following properties:

� Each .˛2/g.fHig;�/ only depends on the coset gH0 , since multiplication with
h0 2H0 leaves all eHi

fixed. Hence there are only n different components in
˛2.fHig;�/, each repeated jH0j times.

� Let g1; : : : ;gn be a system of coset representatives of G=H0 . Then the tuple

.˛2/G=H0
.fHig;�/ ��D

��
.˛2/gj .fHig;�/

�
jD1;:::;n

�
defines a map �k ! .Spn.S x�G //G. This map does not depend on the choice of
the gi .

In other words, ˛2.fHig;�/ factors through the diagonal

.Spn.S x�G //G
�
�! .SpjGj.S x�G //G

that repeats each entry jH0j times, while we want it to factor through the standard
inclusion i

jGj
n . In .SpjGj.S x�G //G there is no direct way to pass between � and i

jGj
n ,

but there is after stabilizing once, ie after postcomposing with

z�G
W .SpjGj.S x�G //G!�.SpjGj.S�G //G :

To see this, we consider the following modified construction of the diagonal: We
assume given jH0j closed subintervals Œai ; bi � of Œ�1;1� and for each of these let
c.ai ; bi/ denote the selfmap of S1 which collapses everything outside .ai ; bi/ to the
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basepoint and identifies Œai ; bi � with Œ�1;1� in some fixed orientation-preserving
way. To each such data one can associate a map

�fŒai ;bi �gW �.Spn.S�G //G!�.SpjGj.S�G //G

by sending ' 2�.Spn.S�G //G to

Œ.' ı c.ai ; bi//1�i�jH0j
�:

So, instead of repeating it jH0j times, ' is precomposed with every c.ai ; bi/. If all
of the Œai ; bi � are equal to Œ�1;1� and one takes the identity of Œ�1;1� for the
identification, this construction gives back the usual diagonal �.�/. If on the other
hand the interiors of the Œai ; bi � are pairwise disjoint, the map �fŒai ;bi �g factors through
the standard inclusion �.i jGj

jG=H j
/. Indeed, in this case there is at most one i such that

c.ai ; bi/.t/ is not the basepoint, for any fixed t 2R. So each loop �fŒai ;bi �g.'/ has at
most n nontrivial components at every t . This means that it has at most n nontrivial
components globally and hence lies in the image of �.i jGjn /, since we can always
move the nontrivial components to the first n entries. The selfmap of �Spn.S�G /

obtained this way can also be described differently: it is given by precomposition with
the selfmap of S1 that collapses everything outside the open intervals .ai ; bi/ to the
basepoint and identifies each Œai ; bi �=.ai � bi/ with S1. In particular, the homotopy
class of �fŒai ;bi �g.'/ is the jH0j–fold sum of ' with itself.

Any choice of homotopies from the c.ai ; bi/ to the identity of S1 induces a homotopy
between �.�/ and �fŒai ;bi �g . So we see that, up to reparametrization of loops and in
particular up to homotopy, z�G ı˛2 does map the simplex associated to H0 � � � � �Hk

to the image of �Spn.S�G / under �.i jGjn /. To turn this into honest maps from zL.G/n
to �.Spn.S�G //G, we need to make choices of reparametrizations that are coherent
for all chains H0 � � � � �Hk , all n 2N and all finite groups G . We deal with this by
defining a modification of the subgroup lattice that contains a contractible choice of
intervals as part of the data.

3.2 Fattening of the lattice

For this it turns out to be more convenient to work with subintervals of Œ0; 1� instead
of Œ�1;1�. Whenever we need to switch between the two, we use the homeomorphism
that maps t 2 Œ0; 1� to .2t � 1/=t.1� t/ 2 Œ�1;1�.

Let J denote the space of closed subintervals Œa; b� of Œ0; 1� (with a< b ), topologized
as a subspace of Œ0; 1�� Œ0; 1�. We let Lf .G/ denote the following topological category:
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The object space is given by G
H�G

SpjH j.J /;

ie subgroups H of G together with an unordered jH j–tuple of subintervals of Œ0; 1�.
The morphism space from a component SpjH j.J / to SpjK j.J / is empty if H is not
contained in K and is otherwise given by SpjH j.J / again. In this case the target map

SpjH j.J /! SpjK j.J /

is the diagonal which repeats each subinterval ŒK WH � times, and the source map is
the identity. Hence, a k –simplex in the topological nerve of Lf .G/ — which we also
denote by Lf .G/n — is given by a chain of subgroups H0 � � � � �Hk together with
jH0j many subintervals Œai ; bi � of Œ0; 1�. We filter this nerve by saying that such a
k –simplex lies in Lf .G/n if

(i) the total index ŒHk WH0� is at most n, and

(ii) the intervals .Œai ; bi �/ have at most n=ŒHk WH0�–fold intersections, ie every
t 2 .0; 1/ lies in the interior of at most n=ŒHk WH0� many Œai ; bi �.

There is an obvious forgetful functor �W Lf .G/!L.G/ to the usual subgroup lattice
of G , whose nerve maps Lf .G/n into L.G/n .

Lemma 3.4 The maps �W Lf .G/n!L.G/n induce homotopy equivalences on geo-
metric realizations.

Proof Given l;m 2N , let J l
m denote the subspace of Spl.J / of tuples of intervals

with at most m–fold intersections. Then the space of k –simplices of Lf .G/n is given
by the disjoint union

(3-1)
G

H0�����Hk

ŒHk WH0��n

J
jH0j

bn=ŒHk WH0�c
;

where bn=ŒHk WH0�c denotes the largest integer smaller than or equal to n=ŒHk WH0�.
We first claim that each J l

m is contractible and hence Lf .G/n ! L.G/n forms a
degreewise homotopy equivalence. Since we have quotiented out by the symmetric
group action, every element of J l

m has a unique representative .Œa1; b1�; : : : ; Œal ; bl �/

for which the .ai ; bi/ are lexicographically ordered, ie ai � aiC1 and if ai D aiC1

then bi � biC1 . In fact, J l
m is homeomorphic to the space of such ordered tuples with
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at most m–fold intersections. But this space is star-shaped, it can be linearly contracted
onto the tuple

��
0; 1

l

�
;
�

1
l
; 2

l

�
; : : : ;

�
l�1

l
; 1
��

. This proves the claim.

Hence it suffices to see that both Lf .G/n and L.G/n are Reedy cofibrant simplicial
spaces (see Hischhorn [6, Chapter 15]) with respect to the Strøm model structure on
topological spaces [18]. For L.G/n this is clear, since it is a discrete simplicial space.
For Lf .G/n , the k th latching map is the inclusion of those components in the disjoint
union (3-1) above which are associated to chains H0 � � � � �Hk for which at least one
containment is not proper. Every topological space is Strøm cofibrant, so this inclusion
is a Strøm cofibration, which finishes the proof.

Hence, the Lf .G/n indeed form a fattening of the L.G/n , but we still need to explain
their functoriality in surjective group homomorphisms. For this we let  W G�K be
a surjection and denote by k the order of the kernel. Then we define

 �W Lf .K/!Lf .G/

to send a subgroup L of K to  �1.L/, and the associated collection of intervals
.Œai ; bi �/ to �

rk
j .Œai ; bi �/

�
iD1;:::;l; jD0;:::;k�1

;

where rk
j W Œ0; 1� ,! Œ0; 1� is the unique oriented affine embedding with image

� j
k
; jC1

k

�
.

In other words,  � splits Œ0; 1� into k parts of equal size and copies each Œai ; bi � into
every one of them, yielding jLj �k D j'�1.L/j subintervals, as needed. This definition
turns Lf .�/ into a functor from Epiop to topological categories. After applying the
nerve, it restricts to functors Lf .�/n from Epiop to simplicial spaces and hence the
forgetful functor jLf .�/nj ! jL.�/nj is natural for this Epiop –functoriality and a
homotopy equivalence for all finite groups G .

Finally, we again define a reduced version j zLf .G/nj by quotienting out all simplices
associated to chains that do not end in the full group G . The j zLf .G/nj again assemble
to a functor Epiop

! T and the forgetful map j zLf .�/nj ! j zL.�/nj defines a natural
levelwise based homotopy equivalence.

3.3 Definition

Given an interval Œa; b� of Œ0; 1�, we from now on let c.a; b/ denote the selfmap of
Œ0; 1�=f0; 1g (or S1 D R[ f1g, using the fixed homeomorphism between the two)
obtained by collapsing everything outside .a; b/ to a point and using the identification
Œa; b�Š Œ0; 1� that sends x to .x� a/=.b� a/.
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We are now ready to define the map

˛W jLf .G/j !�.SpjGj.S�G //G

by sending a simplex associated to a chain H0 � � � � � Hk together with intervals
Œa1; b1�; : : : ; ŒajH0j

; bjH0j
� to the composite

(3-2) �k .˛2/G=H0
.fHi g;�/

����������! .SpjG=H0j.S x�G //G
z�G

�!�.SpjG=H0j.S�G //G

�fŒai ;bi �g�����!�.SpjGj.S�G //G :

The maps .˛2/G=H0
.fHig;�/ and �fŒai ;bi �g are explained in the last part of Section 3.1

(for which we use the specific c.ai ; bi/ defined above to construct the diagonal). If the
Œaj ; bj � are all equal to Œ0; 1�, we get back z�G ı˛2.fHig;�/.

In order for the maps (3-2) to glue to a map from the geometric realization, we need
to check that they are still compatible with the simplicial structure maps. This is a
consequence of the fact that the .˛2/g.fHig;�/ have this compatibility, except for the
boundary d0 , since it changes the smallest subgroup H0 . We recall that d�

0
of a tuple

.H0 � � � � � Hk ; fŒai ; bi �g/ is the chain H1 � � � � � Hk together with the intervals
�.fŒai ; bi �g/, ie each interval repeated jH1=H0j times. So the compatibility for d0

follows from the commutativity of the diagram:

�k
.˛2/G=H0

// .SpjG=H0j.S x�G //G
z�G
// �.SpjG=H0j.S�G //G

�fŒai ;bi �g
// �.SpjGj.S�G //G

�k�1

d0

OO

.˛2/G=H1
// .SpjG=H1j.S x�G //G

z�G
//

�

OO

�.SpjG=H1j.S�G //G
��.fŒai ;bi �g/

//

�.�/

OO

�.SpjGj.S�G //G

D

OO

Since .˛2/G=H0
.fHig;�/ sends all chains that do not end in the full group G to the

basepoint (Lemma 3.2), it follows that ˛ again factors through the reduced fat lattice,
yielding a map z̨W j zLf .G/j !�.SpjGj.S�G //G. In addition, we now have:

Proposition 3.5 The restriction of z̨ to j zLf .G/nj factors through

�.i jGjn /W �.Spn.S�G //G ,!�.SpjGj.S�G //G :

Proof Let H0 � � � � �Hk be a chain with Hk DG and ŒG WH0�� n, together with
jH0j intervals Œai ; bi � with at most n=ŒG WH0�–fold intersections. Then at any point
t 2 .0; 1/, at most n=ŒG WH0� many values c.ai ; bi/.t/ are not equal to the basepoint.

Geometry & Topology, Volume 22 (2018)



1570 Markus Hausmann

Each one of them appears exactly ŒG WH0� times in the definition of �fŒai ;bi �g , so it
follows that the diagonal

�.SpjG=H0j.S�G //G
�fŒai ;bi �g

�����!�.SpjGj.S�G //G

factors through �.i jGjn /, which proves the claim.

3.4 Naturality

By adjunction, we obtain maps z̨W †1j zLf .G/nj !� shˆG.Spn/, compatible with
the respective inclusions from n to nC 1. We now check their naturality with respect
to surjective group homomorphisms  W G�K .

Let M be a subset of K . Then the linear isometry i W  
�.�K / ,! �G (defined in

Section 2.4 to describe the Epiop –functoriality of geometric fixed points) sends the
element eM to e �1.M / . This implies that for every chain of subgroups H0� � � ��Hk

of K , the composite

�k .˛2/K=H0
.fHi g;�/

����������! .SpjK=H0j.S x�K //K
.i /�
��! .SpjG= 

�1.H0/j.S x�G //G

equals the map .˛2/G= �1.H0/
.f �1.Hi/g;�/. To compute the effect of .� shˆ /ız̨

on the tuple
�
H0 � � � � � Hk ; fŒai ; bi �g

�
, we then have to postcompose with the

diagonal �fŒai ;bi �g . On the other hand, in order to compute the effect of z̨ on
the tuple  �

�
H0 � � � � � Hk ; fŒai ; bi �g

�
we have to postcompose with the diago-

nal �
fŒr l

k
.ai /;r

l
k
.bi /�g

, where k denotes the order of the kernel of  . The diagonal
�
fŒr l

k
.ai /;r

l
k
.bi /�g

can be written as the composite

�fŒ.l�1=k/;l=k�g ı�fŒai ;bi �g:

A priori, this composite takes image in �.SpjGj.S�G //G, but since the intervals�
l�1

k
; l

k

�
are pairwise disjoint, the diagonal �fŒ.l�1/=k;l=k�g factors as

�.SpjK j.S�G //G
�fŒ.l�1/=k;l=k�g

//

lk

��

�.SpjGj.S�G //G

�.SpjK j.S�G //G
�.i
jGj

jK j
/

44

where lk is the selfmap of Œ0; 1�=f0; 1g which takes x to kx�bkxc.
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So, in summary, z̨ is natural for a different Epiop –functoriality on � shˆ.Spn/ which
sends a surjection  W G�K to

� shˆK .Spn/
� sh 
��!� shˆG.Spn/

l�
k
�!� shˆG.Spn/;

where l�
k

is the selfmap of � shˆG.Spn/ which precomposes each loop with lk . This
difference in the functoriality can be corrected: The selfmaps

l�
jGjW � shˆG.Spn/!� shˆG.Spn/

assemble to a transformation from the usual Epiop –functor � shˆ to this twisted one.
Since ljGj induces multiplication by jGj on homotopy, the transformation is a rational
equivalence.

Remark 3.6 This “defect” of z̨ can be explained: Recall from Remark 2.3 that
on �0 we should be sending a vertex H of the subgroup lattice to the element
.1=ŒGWH �/ � ŒG=H � in the rationalized Burnside ring. But this is impossible, since ˛ is
geometrically defined to land in the not-yet rationalized spectrum � shˆ.Spn/. Instead
it sends H to jH j � ŒG=H �, which needs to be corrected by dividing by jGj afterwards.

So we finally obtain a zigzag of natural transformations of Epiop –functors

(3-3) †1j zL.�/nj
'
 �†1j zLf .�/nj

z̨
�! .� shˆ.Spn//twisted 'Q

 �� shˆ.Spn/

'
 �ˆ.Spn/:

In order to prove Theorem 2.10 it now remains to show that for all n and G the map
z̨ induces an isomorphism

.H�.j zLf .G/nj;Q//G
Š
�!H�.� shˆG.Spn/;Q/:

Via an induction on n and the five lemma, this in turn can be reduced to showing that z̨
induces isomorphisms

(3-4)
�
H�
�
j zLf .G/n= zLf .G/n�1j;Q

��
G
Š
�!H�.� shˆG.Spn=Spn�1/;Q/;

and this is what we will do.

3.5 Rational splitting on subquotients

Our first aim is to show:

Proposition 3.7 The map (3-4) above is split injective for all n 2 N and finite
groups G .
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We produce this splitting geometrically. Let Œ.x1; : : : ;xn/�2 Spn.Sk��G / be a G –fixed
point. Then the subset fx1; : : : ;xng � Sk��G is closed under the G –action. Let C n be
the subspectrum of ˆG.Spn/ consisting of those G –fixed points for which this G –set
is not transitive or contains less than n elements. In particular, C n contains ˆ.Spn�1/

and so we can consider the composite

†1j zLf .G/n= zLf .G/n�1j
z̨
�!� shˆG.Spn=Spn�1/!� sh.ˆG.Spn/=C n/:

Our aim is to show that this composite induces an isomorphism�
H�
�
j zLf .G/n= zLf .G/n�1j;Q

��
G
Š
�!H�

�
� sh.ˆG.Spn/=C n/;Q

�
;

which proves Proposition 3.7.

Every nonbasepoint element of .ˆG.Spn/=C n/k is determined by any of its compo-
nents xi 2 Sk��G, and the isotropy of such a point is necessarily an index n subgroup
of G . Given an index n subgroup H , we let S.k;H / denote the space

.Sk��G /H =
�

colim
H ŒK�G

.Sk��G /K
�
;

ie the H –fixed points of the G –space Sk��G modulo all fixed points of larger subgroups.
The spaces S.k;H / assemble to an orthogonal spectrum S.H /, with structure map
sending .x^ t/ 2 .Sk��G /H ^S1 to the class of the element .xC t � eG/ 2 S .kC1/��G.
There are morphisms

S.H /!ˆG.Spn/=C n

sending x to Œ.x;g1 �x; : : : ;gn�1 �x/Œgi �2G=H �. As we just argued, every element xD

Œ.x1; : : : ;xn/� 2 Sk��G lies in the image of one of these, by choosing a component xi .
Moreover, the choice of a different component amounts to multiplying with some
element g 2G , since the G –set fx1; : : : ;xng is assumed to be transitive. So we find
that there is an isomorphism of orthogonal spectra

(3-5) ˆG.Spn/=C n
Š
�W

H�G; ŒGWH �Dn S.H /
�
=G;

where the modded-out G–action is given by translation: it sends x 2 .Sk��G /H to
g �x 2 .Sk��G /gHg�1

.

Remark 3.8 This translation action should not be confused with the conjugation action
on ˆG.Spn/=C n that comes from the Epiop –functoriality of geometric fixed points
(as described in Section 2.4). The conjugation action sends an element x 2 .Sk��G /H

to g �x �g�1 2 .Sk��G /gHg�1

, using that �G is both a left and a right module over G .
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Together the conjugation action and the translation action assemble to an action of
the semidirect product G Ë G on

W
S.H /. Under the isomorphism (3-5) above,

the conjugation action on ˆG.Spn/=C n is the induced one on translation orbits. To
make clear which action we are talking about, we write �=tG for the quotient by the
translation action and �=cG for the one by the conjugation action.

We again use the decomposition �G Š R˚ x�G to rewrite each space .Sk��G /H as
Sk^.Sk�x�G /H . This induces a decomposition S.k;H /ŠSk^S.k;H / with S.k;H /

defined similarly to S.k;H /, replacing each �G by x�G . Through this identification, the
structure map of S.H / becomes the smash product of the associativity isomorphism
Sk ^ S1 Š SkC1 and the closed inclusion S.k;H / ,! S.k C 1;H /. Hence, the
inclusions S.k;H / ,! S.1;H / assemble to a morphism of spectra

(3-6) S.H /!†1S.1;H /:

By cofinality, this morphism induces an isomorphism on homotopy groups and is hence
a stable equivalence.

We now turn to zLf .G/n= zLf .G/n�1 , or rather its nonfat version zL.G/n= zL.G/n�1 .
Nonbasepoint simplices in this quotient are given by chains of subgroup inclusions
which go from an index n subgroup H to G . So we find that there is an isomorphism

(3-7) zL.G/n= zL.G/n�1 Š
W

H�G; ŒGWH �Dn.L.G/
ŒH ;G�=fnonmax chainsg/;

where we write L.G/ŒH ;G� for the poset of subgroups of G which contain H and
fnonmax chainsg denotes the subcomplex of chains of subgroups that do not start in H

or do not end in G . The homotopy equivalence Lf .G/
ŒH ;G�
n

'
�!L.G/ŒH ;G� is split

by the functor which sends a subgroup K between H and G to itself together with
the intervals Œ0; 1=jH j�, Œ1=jH j; 2=jH j�; : : : ; Œ.jH j�1/=jH j; 1�, each repeated ŒK WH �

times. Taking the wedge over these, we obtain a homotopy equivalence

j zL.G/n= zL.G/n�1j Š
W

H�G; ŒGWH �Dn

�
jL.G/ŒH ;G�j=fnonmax chainsg

�
'
�!jzLf .G/n= zLf .G/n�1j:

Composing this equivalence with the morphism

†1j zLf .G/n= zLf .G/n�1j !� sh.ˆ.Spn/=C n/

and using (3-5), (3-6) and (3-7), we obtain a morphism

(3-8)
W

H�G; ŒGWH �Dn†
1.L.G/ŒH ;G�=fnonmax chainsg/

!� sh
��W

H�G; ŒGWH �Dn†
1S.1;H /

�
=tG

�
:
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It suffices to show that this morphism induces an isomorphism on rational homology,
modulo conjugation in the domain. In formulas, (3-8) sends a chain H0 � � � � �Hk

(lying between H and G ) together with coordinates .t0; : : : ; tk/ 2�k to the loop

(3-9)
�
z�G
�
.˛2/e.fHig; ftig/

�
ı ljH j

�
2�.S1

^S.1;H //:

Here, we have again used that the diagonal (in the sense of the last part of Section 3.1)
formed with respect to the intervals Œ.l�1/=jH j; l=jH j� corresponds to precomposition
with ljH j ; see Section 3.3. Multiplication by ljH j is a rational equivalence, and

z�G
W .†1S.1;H //=tG!�

�
.†1S1

^S.1;H //=tG
�

is a stable equivalence (as it agrees with the map z�.†1S.1;H //=t G ; see the beginning
of Section 3). So we can leave both out of the formula. What remains is given by
applying the suspension spectrum functor †1 to a wedge of space level maps

ˇH W L.G/
ŒH ;G�=fnonmax chainsg ! S.1;H /;

.Hi ; ti/ 7! Œ.˛2/e.Hi ; ti/�D

�
p

�
xr

� kX
iD0

ti � eHi

���
;

followed by the projection to the translation G –orbitsW
S.1;H /!

�W
S.1;H /

�
=tG:

We first show:

Lemma 3.9 Each

ˇH W L.G/
ŒH ;G�=fnonmax chainsg ! S.1;H /

is a weak equivalence of spaces.

Proof If H is equal to G and hence n D 1, both sides consist of two points and
ˇH is a bijection. So from now on we assume that H is a proper subgroup of G and
consider the map

(3-10) x̌
H W L.G/

ŒH ;G�
! .S1x�G /H ; .Hi ; ti/ 7! xr

� kX
iD0

ti � eHi

�
:

The map ˇH in the statement of the lemma is obtained from x̌
H by quotienting

out by all nonmaximal chains in the domain and the subspace A of the target given
by all vectors which are either fixed by a larger subgroup than H or have norm at
least 1p

2
. Since both L.G/ŒH ;G� and .S1x�G /H are contractible and the inclusions of
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the respective subspaces are cofibrations, it suffices to show that x̌H induces a weak
equivalence between the complex of nonmaximal chains and A. We note that the
former is given by the pushout

L.G/.H ;G�[L.G/.H;G/ L.G/ŒH ;G/

of half-closed or, respectively, open subintervals of the subgroup lattice. The space
A can be expressed in a similar way: Let A1 � A be the subspace of vectors that
have norm at most 1 and are fixed by a subgroup properly containing H , and A2 �A

the subspace of all vectors of length at least 1p
2

. Together, the two cover A. Then
x̌
H maps L.G/.H ;G� into A1 and, by the same proof as for Lemma 3.2, L.G/ŒH ;G/

into A2 . Since all of the spaces L.G/.H ;G�, L.G/ŒH ;G/, A1 and A2 are contractible
(the latter two can be contracted onto 0 and 1, respectively), we are left to show that
x̌
H induces a weak equivalence from L.G/.H ;G/ to the intersection of A1 and A2 .

This intersection is the space of vectors of .S1x�G /H that have norm in the interval�
1p
2
; 1
�

and are fixed by a larger subgroup. It deformation retracts onto

S.G/.H ;G/ ��D colim
H ŒKŒG

.S.1� x�G/
K /:

We now consider the following commutative square:

L.G/.H ;G/ D colimH ŒKŒG.L.G/
ŒK ;G// // colimH ŒKŒG.S.1� x�G/

K /D S.G/.H ;G/

hocolimH ŒKŒG.L.G/
ŒK ;G// //

OO

hocolimH ŒKŒG.S.1� x�G/
K /

OO

Both vertical maps are the respective canonical map from the homotopy colimit to
the colimit, and the lower horizontal map is induced from the restriction of x̌H to
the intervals ŒK;G/. Since each S.1x�G/

K is contractible and so is L.G/ŒK ;G/, it
follows by homotopy-invariance of homotopy colimits that the lower horizontal map is
a weak equivalence. We claim that both vertical maps are also weak equivalences. For
the left one, this can be seen by noting that it is split by the map

L.G/.H ;G/ D hocolim
H ŒKŒG

�! hocolim
H ŒKŒG

.L.G/ŒK ;G//

induced from the inclusions � 7!K 2 .L.G/ŒK ;G//0 . Again by homotopy-invariance
of homotopy colimits, this splitting is a weak equivalence and hence so is the left
vertical map. Finally, to derive that the right vertical map is a weak equivalence one can
use a G –CW structure on S.1� x�G/ to apply a general statement: for every G–cell
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complex X , the colimit over the X K with K 2 .H;G/ is also a homotopy colimit.
This can be seen by checking it for the orbits G=L and using that cell attachments are
both colimits and homotopy colimits.

Finally, we consider the following commutative diagram:

H�
�W

L.G/ŒH ;G�=fnonmax chainsg;Q
� Š

//

��

H�
�W

S.1;H /;Q
�

��

.H�
�W

L.G/ŒH ;G�=fnonmax chainsg;Q
�
/cG

Š
//

.�/ ++

�
H�
�W

S.1;H /;Q
��

cG

��

H�
��W

S.1;H /
�
=tG;Q

�
We want to show that the map .�/ is an isomorphism. The middle horizontal map is
an isomorphism, since the wedge of the ˇH is equivariant for the conjugation actions.
Furthermore,

W
S.1;H / is a cofibrant G –space under the translation action, so there

is a natural isomorphism

H�
��W

S.1;H /
�
=tG;Q

�
ŠH�

�W
S.1;H /;Q

�
t G
:

Hence it suffices to see that conjugation and translation induce the same action on
rational homology. This comes out of the proof of Lemma 3.9 above: Up to equivalence
we can replace

W
S.1;H / by the suspension of the unreduced suspension ofW

H

�
hocolim
H ŒKŒG

.S.1� x�G/
K /
�
:

Collapsing all S.1� x�G/
K to a point yields a weak equivalence toW
H

�
hocolim
H ŒKŒG

�
�
D
W

H L.G/.H ;G/:

This equivalence turns both the translation and the conjugation action on the S.1�x�G/
K

into the conjugation action on the wedge of subgroup intervals. So the two actions
agree on homology, which finishes the proof of Proposition 3.7.

3.6 Equivalence of the subquotients

We now show by other means that the subquotients in our two filtrations have the same
rational homotopy type, ie that there is a rational equivalence

(3-11) ˆG.Spn=Spn�1/'Q †1
�
j zL.G/n= zL.G/n�1j

�
=G:
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Since the latter is a finite complex, it has finite-dimensional rational homology. So our
map

z̨�W
�
H�
�
j zLf .G/n= zLf .G/n�1j;Q

��
G
!H�.� shˆG.Spn=Spn�1/;Q/

from the previous section must also be surjective, hence an isomorphism, proving
Theorem 2.10.

To deduce the equivalence (3-11) we combine work of Arone [1], Arone and Dwyer [3],
Arone and Brantner [2] and Schwede [14]. In [14, Proposition 1.11], Schwede showed
that there is a G –stable equivalence

Spn
G=Spn�1

G 'G †
1.BGFn/

˘:

Here, BGFn is EGFn=†n , where EGFn is a universal G–space for the family Fn

of subgroups of †n that do not act transitively on n D f1; : : : ; ng. This means that
EGFn is a cofibrant .†n�G/–space with the following two properties:

(i) The †n –isotropy of every point in EGFn lies in Fn .

(ii) The fixed points .EGFn/
H are contractible for every subgroup H � †n �G

for which the intersection H \ .†n � f1g/ lies in Fn .

Furthermore, the superscript .�/˘ denotes the unreduced suspension of a space. The
nonequivariant version of this statement was previously shown by Lesh [9]. In [3,
Section 7], also for the case G D feg, Arone and Dwyer gave another description of
this suspension spectrum, which we now mimic in the equivariant context. For this we
denote by …n the †n –poset of nontrivial proper partitions of the set n, and by EG†n

a universal G–space for †n , ie a cofibrant .†n�G/–space satisfying conditions (i)
and (ii) above with Fn replaced by the family consisting only of the trivial subgroup
of †n . Our aim is to show:

Proposition 3.10 The based G –spaces .BGFn/
˘ and .EG†n/C ^†n

.j…nj
˘ ^Sn/

are G –weakly equivalent after one suspension. Hence, there is a G –stable equivalence

Spn
G=Spn�1

G 'G †
1..EG†n/C ^†n

.j…nj
˘
^Sn//:

Here, †n acts on Sn by permuting the coordinates. The G –action on

.EG†n/C ^†n
.j…nj

˘
^Sn/

is only through EG†n .
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Remark 3.11 There also exists a global version of this result. Let Egl†n denote a
global universal space for †n . For example, in the framework of orthogonal spaces of
[15, Section 1.1] or [14, Section 1], a model for Egl†n is given by L.Rn;�/ with †n

permuting the coordinates of Rn. Then there is a global equivalence

Spn=Spn�1
'gl †

1
�
.Egl†n/C ^†n

.j…nj
˘
^Sn/

�
:

The underlying G –space of Egl†n is EG†n , so this gives back Proposition 3.10 for
all finite G . The proof we give below would also work in the global setting and prove
this stronger statement, but we refrain from doing so to ease the exposition.

The following two pages are devoted to proving Proposition 3.10. The arguments are
equivariant adaptions of the arguments in [3, Section 7]. Let Sing.EGFn/ denote the
subspace of EGFn consisting of the points with nontrivial †n –isotropy. We note that
Sing.EGFn/ is a universal G –space for Fın, the collection of nontransitive subgroups
minus the trivial subgroup. Then there is a .†n�G/–cofiber sequence

EG†nC ^ .Sing.EGFn//
˘
! .Sing.EGFn//

˘
! .EG†n �Sing.EGFn//

˘

'†n�G .EGFn/
˘;

where � denotes the join. Smashing with the †n –equivariant diagonal inclusion
i W S1! Sn yields a commutative diagram of .†n�G/–spaces

EG†nC ^Sing.EGFn/
˘ ^S1 //

��

Sing.EGFn/
˘ ^S1 //

��

.EGFn/
˘ ^S1

��

EG†nC ^Sing.EGFn/
˘ ^Sn // Sing.EGFn/

˘ ^Sn // .EGFn/
˘ ^Sn

We have:

Lemma 3.12 The map

.EGFn/
˘
^ i W .EGFn/

˘
^S1

! .EGFn/
˘
^Sn

is a based .†n�G/–homotopy equivalence.

Lemma 3.13 The quotient .Sing.EGFn/
˘^Sn/=†n is based G –weakly contractible.

The proofs of these lemmas are given below. Hence, quotienting out †n in the lower
cofiber sequence yields a cofiber sequence of based G –spaces, which by Lemma 3.13 ex-
hibits ..EGFn/

˘^Sn/=†n as the suspension of ..EG†n/C^†n
.Sing.EGFn/

˘^Sn//.
By Lemma 3.12, the former is G –weakly equivalent to .BGFn/

˘ ^S1, so we obtain:
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Corollary 3.14 There are G –weak equivalences

.BGFn/
˘
^S1

'
�
.EG†n/C ^†n

.Sing.EGFn/
˘
^Sn/

�
^S1

'
�
.EG†n/C ^†n

..EGFın/
˘
^Sn/

�
^S1:

Proof of Lemma 3.12 Since both sides are cofibrant based .†n�G/–spaces, it suffices
to show that the map induces a weak equivalence on all fixed-point spaces. Let H be a
subgroup of †n�G . If the intersection H \ .†n�f1g/ acts nontransitively on n, the
H –fixed points of .EGFn/

˘ are contractible and hence the map is necessarily a weak
equivalence. If H \ .†n � f1g/ does act transitively, the inclusion iH W S1! .Sn/H

is even a homeomorphism (in fact for this it would suffice that the projection of H

to †n act transitively). So .EGFn/
˘ ^ i induces a weak equivalence on fixed points

for all subgroups of †n �G , which finishes the proof.

Proof of Lemma 3.13 For this we make use of the specific model for EGFn that
comes out of Schwede’s proof [14, Proposition 1.11]. It is given by S.Rn ˝ UG/,
the unit sphere in the tensor product of the reduced natural †n –representation with
a complete G–universe. What we need from this model is the property that all the
†n –isotropy lies in complete subgroups, ie subgroups of †n that are conjugate to one
of the form †n1

�� � ��†nk
with all ni > 0,

P
ni D n and k > 1. Hence, the isotropy

of Sing.S.Rn˝UG// lies in nontrivial complete subgroups.

We now prove that more generally, the quotient .X^Sn/=†n is G –contractible for any
based cofibrant .†n�G/–space X with all †n –isotropy nontrivial and complete, or
possibly the whole group †n (which we have to include because of the cone points of
Sing.EG…n/

˘ ). Without loss of generality we can assume that X is a .†n�G/–cell
complex. Via induction over the cells and passing to the sequential colimit, we can
reduce to showing that ..†n �G/=HC ^A^Sn/=†n is G–weakly contractible for
any space A with trivial .†n�G/–action and H � †n �G a subgroup for which
H \ .†n�f1g/ is nontrivial and complete or equal to †n . We denote this intersection
by H 0 and the projection of H to G by K . For every k 2K we choose an element
 .k/ 2†n such that . .k/; k/ lies in H . This property uniquely characterizes  .k/
up to multiplication with an element in H 0, and every  .k/ automatically lies in the
normalizer of H 0. Altogether, k 7! Œ .k/� defines a homomorphism x W K!W†n

H 0

into the Weyl group. Then there is a G –homeomorphism

..†n �G/=HC ^A^Sn/=†n ŠG ËK .A^ .Sn=H 0//;
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with K acting on Sn=H 0 via restriction along x . So it suffices to see that Sn=H 0 is
.W†n

H 0/–equivariantly contractible. Up to conjugacy, H 0 is of the form

†�i1
n1
� � � � �†�ik

nk

with all nj pairwise different and
P
.ij � nj / D n. The Weyl group is given by

†i1
� � � � �†ik

. Then, Sn=H 0 is homeomorphic to

.Sn1=†i1
/^i1 ^ � � � ^ .Snk=†nk

/^ik ;

with the Weyl group permuting the smash factors in each .Snj =†nj /
^ij . By [3,

Lemma 7.10], .Snj =†nj / is contractible whenever nj is greater than 1. Since H 0 is
nontrivial, this has to be the case for some nj , which finishes the proof.

Remark 3.15 A more conceptual way to phrase the first part of the proof of Lemma
3.13 would be to say that the universal G –space for the collection of complete subgroups
is .†n�G/–weakly equivalent to the universal G –space for the family of nontransitive
subgroups EGFn . This follows directly from the fact that S.Rn˝UG/ is a universal
G –space for both, but could also be proved along the lines of [3, Lemma 4.3].

One can further simplify EGFın . For this we think of Fın as a †n –poset, ordered by
inclusion.

Lemma 3.16 There is a .†n�G/–map EGFın! jFın j that induces a .†n�G/–weak
equivalence

EG†n �EGFın
'
�!EG†n � jFın j:

Proof This is a general fact about universal G –spaces for collections. Another model
for EGFın (see [3, Section 2], for example) is given by the nerve of the following
category EGFın : an object .M;x/ is a transitive .†n�G/–set M with †n –isotropy
in Fın together with a chosen element x 2M, and morphisms are given by .†n�G/–
equivariant maps that preserve the chosen elements. The .†n�G/–action fixes the
.†m�G/–sets and permutes the element x . This category carries a .†n�G/–functor
F to Fın by sending .M;x/ to the †n –isotropy of x .

We claim that this functor does the job. For this we have to check that the fixed-point
functor

F�.˛/W .EGFın/
�.˛/
! .Fın/

�.˛/
D .Fın/

im.˛/
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induces a weak equivalence on nerves for every graph of a group homomorphism ˛

from a subgroup H of G to †n . But this follows from the fact that each such
F�.˛/ has a left adjoint, given by sending an im.˛/–fixed subgroup K of †n to�
†n�G=hK; �.˛/i; Œ1�

�
, where hK; �.˛/i denotes the subgroup generated by K�f1g

and �.˛/.

Finally we relate Fın to the partition poset …n . There is a †n –map of posets
j W …n! Fın sending a partition nDM1 t � � � tMk to the associated nontransitive
subgroup †M1

� � � � �†Mk
.

Lemma 3.17 The map j W …n! Fın induces a †n –weak equivalence after applying
the nerve.

Proof An equivariant left adjoint is given by the map of posets that associates to every
nontransitive and nontrivial subgroup H �†n the partition of n into H –orbits.

This finishes the proof of Proposition 3.10.

Since there are natural isomorphisms ˆG.†1X /Š†1X G for based G –spaces X,
Proposition 3.10 reduces the computation of ˆG.Spn=Spn�1/ to the computation of
the G –fixed points of the G –space .EG†n/C^†n

.j…nj
˘^Sn/. To determine these,

we make use of the following lemma:

Lemma 3.18 Let K and G be finite groups, and X a cofibrant based .K�G/–space
such that the K–action is free away from the basepoint. Then there is a homeomorphism

.X=K/G Š
W
.˛WG!K /X�.˛/=C.˛/;

where the wedge is taken over conjugacy classes of group homomorphisms ˛W G!K ,
C.˛/�K is the centralizer of the image of ˛ and �.˛/�K �G is the graph of ˛ .

Proof A proof for the version where X is unbased (and not necessarily cofibrant)
can be found in [15, Proposition B.17]. The same arguments show that in the based
case the canonical continuous map from the wedge of the X�.˛/=C.˛/ to .X=K/G is
bijective. The cofibrancy assumption ensures that it is a homeomorphism.

Since G acts trivially on j…nj
˘^Sn, application of this lemma gives a homeomorphism�

.EG†n/C^†n
.j…nj

˘
^Sn/

�G
Š
W
.˛WG!†n/EC.˛/C^C.˛/

�
.j…nj

˘
^Sn/im.˛/

�
:
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Each ˛W G!†n defines a G –set structure on n. The centralizer C.˛/ is given by the
automorphisms of that G –set, and the fixed points .Sn/im.˛/ are a sphere of dimension
the number of its G–orbits. So, written in a more coordinate-free way, we obtain a
homeomorphism�
.EG†n/C ^†n

.j…nj
˘
^Sn/

�G
Š
W
.M G–set; jM jDn/.EAutG.M //C ^AutG.M /

�
.j…M j

G/˘ ^ .SM=G/
�
;

where the wedge is taken over isomorphism classes of G –sets of order n. The fixed-
point sets j…M j

G of partition posets that appear here have been studied by Arone [1]
and Arone and Brantner [2]. We can make use of their results to see that a lot of
the wedge summands are (rationally) contractible, simplifying the expression for�
.EG†n/C ^†n

.j…nj
˘ ^ Sn/

�G. A finite G–set is called isotypical if the isotropy
groups of all of its points are conjugate.

Proposition 3.19 (fixed points of partition posets) We have:

(i) If M is not isotypical, the fixed points j…M j
G are contractible and hence so is

.EAutG.M //C ^AutG.M /

�
.j…M j

G/˘ ^ .SM=G/
�
.

(ii) If M is isotypical but not transitive, the space

.EAutG.M //C ^AutG.M /

�
.j…M j

G/˘ ^ .SM=G/
�

is rationally contractible.

(iii) If M DG=H for a subgroup H of G , then …G
M

is isomorphic to L.G/.H ;G/.

Proof (i) This is [1, Lemma 7.1].

(ii) Let M D
F

m G=H with m� 2. Then the automorphism group of M is given by
the wreath product †m oWG.H /. By Arone [1, Proposition 9.1], there is a WG.H /m –
equivariant map

(3-12) WG.H /m ËWG.H / .j…mj � j…
G
G=H j

˘/ '�!j…M j
G

that is a nonequivariant equivalence, where WG.H / sits inside WG.H /m diagonally.
Direct inspection of its definition shows that the adjoint .j…mj � j…

G
G=H
j˘/! j…M j

G

(basically given by the cartesian product of partitions) is not only equivariant over
the Weyl group, but also over the symmetric group †m if one lets it act on …M by
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permuting the m copies of G=H . In other words, we can also think of (3-12) as a
.†m oWG.H //–equivariant map

.†m oWG.H //Ë†m�WG.H / .j…mj � j…
G
G=H j

˘/ '�!j…M j
G

that is a nonequivariant equivalence. Hence, we find that

E Aut.M /C ^Aut.M / ..j…M j
G/˘ ^SM=G/

is weakly equivalent to�
.E†m/C ^†m

.j…mj
˘
^Sm/

�
^
�
EWG.H /C ^WG.H / .j…G=H j

G/˘
�
^S1:

Here, we used that j…mj�j…
G
G=H
j˘'j…mj

˘^j…G
G=H
j˘, as described in [1, Lemma 2.5].

So it suffices to note that .E†m/C ^†m
.j…mj

˘ ^Sm/ is rationally contractible for
m�2. This can for example be seen by replacing j…mj by the weakly equivalent E…m

(the universal space for the collection of complete subgroups of †n ) and using that the
strict quotient .E…˘m^Sm/=†m is contractible. The latter was shown in the proof of
Lemma 3.13.

Part (iii) follows from the fact that a G–fixed partition of G=H is determined by its
summand containing H=H and that this summand has to be of the form K=H for a
subgroup H ŒK ŒG (see [1, Lemma 7.2]).

The automorphism group of G=H is given by the Weyl group WG.H /, and so we see
that there is a rational equivalence�
.EG†n/C ^†n

.j…nj
˘
^Sn/

�G
'Q

W
.H�G/; ŒGWH �Dn.EWG.H //C ^WG.H /

�
jL.G/.H ;G/j˘ ^S1

�
:

We claim that the right-hand side is rationally equivalent to j zLn.G/= zLn�1.G/j=G . In
fact, we already saw in the proof of Lemma 3.9 that j zLn.G/= zLn�1.G/j is isomorphic
to the wedge over all index n subgroups H of the spaces

jL.G/ŒH ;G�j=
�
jL.G/ŒH ;G/j [jL.G/.H;G/j jL.G/

.H ;G�
j
�
' jL.G/.H ;G/j˘ ^S1:

After taking G–orbits, we can equivalently form the wedge over representatives of
conjugacy classes of such subgroups H , and quotient each summand by the Weyl-group
action. Since orbits and homotopy orbits are rationally equivalent for finite groups, the
claim follows.
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So, together with Proposition 3.10 and the fact that geometric fixed points commute
with suspension spectra, this shows that there is a rational equivalence

ˆG.Spn=Spn�1/'Q †1
�
j zL.G/n= zL.G/n�1j=G

�
;

which finishes the proof of our main result, Theorem 2.10.

4 Examples

In this section we go through some small examples, where we describe the respective
filtrations on subgroup lattices and read off the resulting rational equivariant homotopy
groups of the symmetric products. In all cases we discuss, the quotient L.G/=G is
isomorphic to the nerve of the poset of conjugacy classes of subgroups of G . In general
there is a natural surjection from the former to the latter, which is not always injective,
as one can see — for example — with the symmetric group †5 : The transpositions .12/

and .34/ are conjugate in †5 , but not in the subgroup †2 �†3 . Since †2 �†3 is its
own normalizer, this implies that the chains h.12/i �†2 �†3 and h.34/i �†2 �†3

represent different 1–simplices in L.†5/=†5 , while they represent the same 1–simplex
in the nerve of the poset of conjugacy classes.

Example 4.1 (symmetric group †3 ) We start in Table 1 with the symmetric group
on 3 letters. On the left we depict the subgroup lattice modulo conjugation, on the
right the filtration by the L.†3/n=†3 and the resulting dimensions for the rational †3 –
homotopy groups of the symmetric products. All rational homotopy groups �†3

k
.Spn/˝

Q with k > 1 are trivial.

†3

A3

2

†2

3

feg2

3

n 1 2 Œ3; 5� Œ6;1�

L.†3/n=†3

dim.�†3

1
.Spn/˝Q/ 0 0 1 0

dim.�†3

0
.Spn/˝Q/ 4 2 1 1

Table 1

Example 4.2 (dihedral group D8 ) For the dihedral group with 16 elements the
filtration stabilizes, up to homotopy, at nD 4. All minimal subgroup inclusions are of
index 2. See Table 2.
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D8

D
.1/
4

C8 D
.2/
4

D
.1/
2

C4 D
.2/
2

D
.1/
1

C2 D
.2/
1

feg

n 1 2; 3 Œ4;1�

L.D8/n=D8

dim.�D8

1
.Spn/˝Q/ 0 6 0

dim.�D8

0
.Spn/˝Q/ 11 1 1

Table 2

Example 4.3 (special linear group SL2.F3/) The figure in Table 3 depicts the fil-
tration for the special linear group SL2.F3/, the semidirect product of the quaternion
group Q8 with the cyclic group C3 . As in the previous examples, the bottom two rows
in the table give the dimensions of the rationalized �SL2.F3/

0
.Spn/ and �SL2.F3/

1
.Spn/.

SL2.F3/

C6

4

Q8

3

C3

2

C4

2

C2

3

2

feg

3

2

1 2 3 4; 5 Œ6; 11� Œ12;1�

0 0 1 2 1 0

7 3 1 1 1 1

Table 3

Example 4.4 (cyclic groups) For cyclic groups Cm , the subgroups correspond to
divisors of m ordered by divisibility. If m is the product of k different primes, the
resulting lattice is a k –dimensional cube. In particular, the subcomplex L.Cm/m�1 is
the boundary of the cube and hence isomorphic to Sk�1. This shows that for every
k 2N there exists an n 2N and a finite group G such that �G

k
.Spn/˝Q is nontrivial.

In Table 4 is the 3–dimensional cube for the example mD 30D 2 � 3 � 5, where the
elements at the top are those divisible by 2, the ones on the right those divisible by 3

and the ones at the back those divisible by 5. The bottom three rows in the table list
the resulting dimensions of the rationalized �C30

0
.Spn/, �C30

1
.Spn/ and �C30

2
.Spn/.

We close this section with a few general remarks on the complexes of the form
L.G/jGj�1 , the last nontrivial stage in the filtration. They can be identified with

Geometry & Topology, Volume 22 (2018)



1586 Markus Hausmann

1 2 3; 4 5 Œ6; 9� Œ10; 14� Œ15; 29� Œ30;1�

0 0 0 0 0 0 1 0

0 0 2 5 3 1 0 0

8 4 2 1 1 1 1 1

Table 4

the unreduced suspension of the lattice L.G/.1;G/ of proper nontrivial subgroups of G ,
about which there are various results in the literature. For example, it was shown by
Kratzer and Thévenaz [7] that if G is solvable, then L.G/.1;G/ is homotopy-equivalent
to a wedge of spheres of dimension two less than the chief length c.G/ of G . By
Thévenaz [19], the top homology Hc.G/�2.L.G/

.1;G/;Z/ is a permutation represen-
tation under the conjugation G –action. The coinvariants

�
Hc.G/�2.L.G/

.1;G/;Z/
�
G

are still acted on by the outer automorphism group Out.G/ of G . As we saw
(Theorem 2.4), after tensoring with Q this corresponds to the action of Out.G/ on
�G

c.G/�1
.SpjGj�1/˝Q which is part of the structure of a global functor. These actions

can be interesting representation-theoretically:

Example 4.5 (.Z=p/n and the Steinberg module) When G D .Z=p/n, the com-
plex L.G/.1;G/ is the Tits building for Out.G/ D GLn.Fp/. So, by a theorem of
Solomon [17], its homology Hn�2.L.G/

.1;G/;Q/ (and hence also �G
n�1

.Sppn�1/˝Q)
is isomorphic to the rational Steinberg module, a distinguished irreducible GLn.Fp/–
representation of dimension pn.n�1/=2 . For example, when p D nD 2, the Steinberg
module is the reduced natural representation of †3 Š GL2.F2/.

A different relation between symmetric products of spheres and the Steinberg module —
over Fp instead of Q — played a major role in Arone and Dwyer [3].

5 Global properties of Spn
Q

In this final section we describe homological properties of the Outop –complex models
C zLn for the rational symmetric products. We first show that they are degreewise
projective and then use this to prove that for 1 < n < 1 they are not formal, ie
not quasi-isomorphic to their homology with trivial differential. As a consequence,
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the rationalization Spn
Q is not a product of Eilenberg–Mac Lane spectra for any n

except 1 and 1. This is a truly global phenomenon, since over a fixed finite group G

every rational G –spectrum is determined by its homotopy groups. Finally, we give a
proof that the cyclic p–groups are the only groups for which �G

� .Spn/˝Q is always
concentrated in degree 0.

Proposition 5.1 Each C zLn is degreewise projective as a QŒOutop�–module.

Proof We need the following notion: A chain of subgroup inclusions H0 � � � � �Hk

is called simple if H0 does not contain a nontrivial normal subgroup of Hk , ie if this
chain cannot be obtained via pull-back along a surjective group homomorphism that is
not an isomorphism.

Recall that the k th level of C zLn.G/ is given by the Q–linearization of the set of
conjugacy classes of chains of proper subgroup inclusions which end in G , are of
length k and have total index at most n. The map� G

H0Œ���ŒHk simple
ŒHk WH0��n

Epi.G;Hk/

�.
iso! fk–chains of index � n in Gg;

.H0;Œ � � �ŒHk ;  W G�Hk/ 7! . �1.H0/Œ � � �Œ  �1.Hk/DG/;

defines a natural bijection. On the left-hand side, two pairs

.H0 Œ � � �ŒHk ;  W G�Hk/

and

.H 00 Œ � � �ŒH 0k ;  
0
W G�H 0k/

are considered isomorphic if there exists an isomorphism 'W Hk
Š
�!H 0

k
that takes

the first chain to the second and which satisfies ' ı D  0. For the inverse map one
associates to a k –chain H0 Œ � � �ŒHk DG the simple k –chain

H0=H Œ � � �ŒHk=H DG=H

together with the projection G � G=H , where H is the intersection of all G–
conjugates of H0 , or in other words the largest subgroup of H0 that is normal
in G . Hence, modding out by conjugations on both sides and restricting the sum
to representatives of isomorphism classes, we find that there is an isomorphism of
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Outop –modules

(5-1) .C zLn/k Š
M

ŒH0Œ���ŒHk simple; ŒHk WH0��n�

QŒOut.�;Hk/�=Out.H0 Œ � � �ŒHk/:

Here, Out.H0 Œ � � �ŒHk/ denotes the group of conjugacy classes of automorphisms
of Hk which map the chain H0 Œ � � � Œ Hk to a conjugate of itself. The modules
QŒOut.�;Hk/� are by definition representable, hence projective. Furthermore, the
orbits of a projective module under any action of a finite group K are again projective,
since the projection is split by the map Œx� 7! .1=jKj/

P
k2K .k �x/. This finishes the

proof.

The proof also applies to nD1 and hence C zL itself, showing that it gives a projective
resolution of the Outop –module that sends the trivial group to Q and all other finite
groups to 0. Using once more that the functor � of Section 2.3 is an equivalence, this
shows that CL is a projective resolution of the constant global functor Q.

We can use our algebraic model to see:

Proposition 5.2 For 1 < n <1 the rationalization Spn
Q is not a product of global

Eilenberg–Mac Lane spectra.

Proof Using Theorem 2.10, the statement follows if we show that the Outop –complex
C zLn is not quasi-isomorphic to its homology with trivial differential.

Each C zLn is concentrated in finitely many degrees 0;:::;blog2.n/cDa.n/. We show that
the highest possible k –invariant is nontrivial, ie that the map †anHa.n/.C zLn/! C zLn

does not have a section in the derived category. Since C zL.n/ is degreewise projective,
this is equivalent to the inclusion Ha.n/.C zLn/ ,! .C zLn/a.n/ of Outop –modules not
having a section. In fact we claim that any Outop –map .C zLn/a.n/!Ha.n/.C zLn/ is
necessarily zero on all abelian groups. To see this we use the decomposition (5-1) of
.C zLn/a.n/ above. When restricted to abelian groups, the only summands that play a
role are those associated to chains H0 Œ � � �ŒHa.n/ with Ha.n/ abelian, since there
is no surjective map from an abelian group to a nonabelian one. In the abelian case,
the simpleness implies that H0 is the trivial group, and so the order of Ha.n/ is at
most n. So, over abelian groups, C zL.n/ is a quotient of a direct sum of representables
for groups G of order at most n. It now suffices to see that any map from these
representables to Ha.n/.C zLn/ is trivial. By the Yoneda lemma, such maps correspond
to homology classes Ha.n/.C zLn/.G/. Since zL.G/n is contractible for groups G of
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order � n (unless G is the trivial group, which can only appear if a.n/ D 0 and
hence nD 1), this homology is trivial. This proves the claim.

Hence, it suffices to show that there exists an abelian group G for which Ha.n/.C zLn/.G/

is nontrivial. By Example 4.5, such a G is given by .Z=2/a.n/C1.

Using similar arguments for other classes of groups, one can show the nonvanishing of
many more k –invariants of C zLn .

Remark 5.3 In contrast, the rationalized subquotients .Spn=Spn�1/Q are always
products of global Eilenberg–Mac Lane spectra. One can see this as follows: As noted
in Remark 3.11, the global homotopy type of Spn=Spn�1 is given by

†1
�
.Egl†n/C ^†n

.j…nj
˘
^Sn/

�
;

or, written differently,

.Egl†n/C ^†n

�
†1.j…nj

˘
^Sn/

�
:

The construction .Egl†n/C^†n
.�/ is a functor from †n –spectra to global spectra that

is left adjoint to the functor that takes a global spectrum to its underlying †n –spectrum
(see [15, Theorem 4.5.24]). By considering its effect on geometric fixed points, it is not
hard to see that this functor preserves rational Eilenberg–Mac Lane spectra. Furthermore,
it commutes with rationalization. Hence, since any †n –spectrum X decomposes into
Eilenberg–Mac Lane spectra rationally (see Remark 2.11), it follows that so does any
global spectrum of the form .Egl†n/C ^†n

X, and in particular Spn=Spn�1.

Finally, we have:

Proposition 5.4 For a finite group G the following are equivalent:

(i) For all n2N , the graded vector space �G
� .Spn/˝Q is concentrated in degree 0.

(ii) For all n 2N , the vector space �G
1
.Spn/˝Q is trivial.

(iii) G Š Cpn for some prime p and n 2N .

Proof If G Š Cpn , the subgroup lattice of G is linear, and it is not hard to see
that all subcomplexes L.G/n are either discrete (for n < p ) or contractible. So, by
Theorem 2.4, �G

� .Spn/˝Q is concentrated in degree 0.

Item (i) clearly implies (ii), so it remains to show that (ii) implies (iii). For this we fix a
finite group G that is not cyclic of prime power order and show that some �G

1
.Spn/˝Q
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is nontrivial. To see this, we choose two nonconjugate maximal subgroups H and
H 0 of G , which is possible since G is not cyclic of prime power order. For example,
the existence of H and H 0 follows from the fact that the union of all conjugates of a
proper subgroup can never be all of G . Let n denote the index of H in G , which we
can without loss of generality assume to be at least as large as that of H 0. Then the
formal difference

ŒH �G�� ŒH 0 �G� 2 C zLn.G/1

is a nontrivial 1–cycle. Since any proper subgroup of H has index larger than n

in G and G is the only subgroup containing H , there are no nondegenerate 2–
simplices of zL.G/n=G that have H � G or any of its conjugates as a face. Hence,
ŒH �G�� ŒH 0 �G� cannot be a boundary and thus defines a nontrivial element in

H1.C zLn.G//Šˆ
G
1 .Spn/˝Q:

Since ˆG
1
.Spn/˝Q is a quotient of �G

1
.Spn/˝Q, the latter is also nontrivial, which

finishes the proof.
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