Volume 22, issue 3 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Hyperbolic Dehn filling in dimension four

Bruno Martelli and Stefano Riolo

Geometry & Topology 22 (2018) 1647–1716

We introduce and study some deformations of complete finite-volume hyperbolic four-manifolds that may be interpreted as four-dimensional analogues of Thurston’s hyperbolic Dehn filling.

We construct in particular an analytic path of complete, finite-volume cone four-manifolds Mt that interpolates between two hyperbolic four-manifolds M0 and M1 with the same volume 8 3π2. The deformation looks like the familiar hyperbolic Dehn filling paths that occur in dimension three, where the cone angle of a core simple closed geodesic varies monotonically from 0 to 2π. Here, the singularity of Mt is an immersed geodesic surface whose cone angles also vary monotonically from 0 to 2π. When a cone angle tends to 0 a small core surface (a torus or Klein bottle) is drilled, producing a new cusp.

We show that various instances of hyperbolic Dehn fillings may arise, including one case where a degeneration occurs when the cone angles tend to 2π, like in the famous figure-eight knot complement example.

The construction makes an essential use of a family of four-dimensional deforming hyperbolic polytopes recently discovered by Kerckhoff and Storm.

hyperbolic $4$–manifolds, cone manifolds, Dehn filling
Mathematical Subject Classification 2010
Primary: 57M50
Received: 29 September 2016
Accepted: 26 July 2017
Published: 16 March 2018
Proposed: Benson Farb
Seconded: Anna Wienhard, András I Stipsicz
Bruno Martelli
Dipartimento di Matematica
Università di Pisa
Stefano Riolo
Dipartimento di Matematica
Università di Pisa