Volume 22, issue 4 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Quantitative bi-Lipschitz embeddings of bounded-curvature manifolds and orbifolds

Sylvester Eriksson-Bique

Geometry & Topology 22 (2018) 1961–2026
Bibliography
1 S Alexander, V Kapovitch, A Petrunin, Alexandrov geometry, in preparation
2 A Andoni, A Naor, O Neiman, Snowflake universality of Wasserstein spaces, preprint (2015) arXiv:1509.08677
3 P Assouad, Plongements lipschitziens dans Rn, Bull. Soc. Math. France 111 (1983) 429 MR763553
4 L Auslander, Bieberbach’s theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. 71 (1960) 579 MR0121423
5 M Bonk, U Lang, Bi-Lipschitz parameterization of surfaces, Math. Ann. 327 (2003) 135 MR2006006
6 J Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math. 52 (1985) 46 MR815600
7 D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) MR1835418
8 Y Burago, M Gromov, G Perel’man, A D Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3 MR1185284
9 P Buser, H Karcher, The Bieberbach case in Gromov’s almost flat manifold theorem, from: "Global differential geometry and global analysis" (editors D Ferus, W Kühnel, U Simon, B Wegner), Lecture Notes in Math. 838, Springer (1981) 82 MR636268
10 P Buser, H Karcher, Gromov’s almost flat manifolds, 81, Soc. Math. France (1981) 148 MR619537
11 J Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428 MR1708448
12 J Cheeger, K Fukaya, M Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992) 327 MR1126118
13 M J Collins, On Jordan’s theorem for complex linear groups, J. Group Theory 10 (2007) 411 MR2334748
14 L J Corwin, F P Greenleaf, Representations of nilpotent Lie groups and their applications, I : Basic theory and examples, 18, Cambridge Univ. Press (1990) MR1070979
15 Y Ding, A restriction for singularities on collapsing orbifolds, ISRN Geom. (2011)
16 Y Ding, A restriction for singularities on collapsing orbifolds, preprint (2011) arXiv:1101.4444
17 K Fukaya, A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters, J. Differential Geom. 28 (1988) 1 MR950552
18 K Fukaya, Collapsing Riemannian manifolds to ones with lower dimension, II, J. Math. Soc. Japan 41 (1989) 333 MR984756
19 K Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, from: "Recent topics in differential and analytic geometry" (editor T Ochiai), Adv. Stud. Pure Math. 18, Academic Press (1990) 143 MR1145256
20 K Fukaya, Collapsing Riemannian manifolds and its applications, from: "Proceedings of the International Congress of Mathematicians, I" (editor I Satake), Math. Soc. Japan (1991) 491 MR1159236
21 P Ghanaat, M Min-Oo, E A Ruh, Local structure of Riemannian manifolds, Indiana Univ. Math. J. 39 (1990) 1305 MR1087193
22 R E Greene, H Wu, Lipschitz convergence of Riemannian manifolds, Pacific J. Math. 131 (1988) 119 MR917868
23 M Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978) 231 MR540942
24 M Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999) MR1699320
25 K Grove, H Karcher, How to conjugate C1 –close group actions, Math. Z. 132 (1973) 11 MR0356104
26 I Haviv, O Regev, The Euclidean distortion of flat tori, J. Topol. Anal. 5 (2013) 205 MR3062945
27 J Heinonen, Lectures on analysis on metric spaces, Springer (2001) MR1800917
28 J Heinonen, Lectures on Lipschitz analysis, 100, Univ. of Jyväskylä (2005) MR2177410
29 J Heinonen, S Keith, Flat forms, bi-Lipschitz parameterizations, and smoothability of manifolds, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 1 MR2805596
30 P Indyk, J Matoušek, Low-distortion embeddings of finite metric spaces, from: "Handbook of discrete and computational geometry" (editors J E Goodman, J O’Rourke), Chapman & Hall/CRC (2004) 177
31 V Kapovitch, Perelman’s stability theorem, from: "Surveys in differential geometry, XI" (editors J Cheeger, K Grove), International Press (2007) 103 MR2408265
32 H Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977) 509 MR0442975
33 S Khot, A Naor, Nonembeddability theorems via Fourier analysis, Math. Ann. 334 (2006) 821 MR2209259
34 B Kleiner, J Lott, Locally collapsed 3–manifolds, Astérisque 365, Soc. Math. France (2014) 7 MR3244329
35 T J Laakso, Ahlfors Q–regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000) 111 MR1748917
36 U Lang, C Plaut, Bilipschitz embeddings of metric spaces into space forms, Geom. Dedicata 87 (2001) 285 MR1866853
37 U Lang, V Schroeder, Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal. 7 (1997) 535 MR1466337
38 K Luosto, Ultrametric spaces bi-Lipschitz embeddable in Rn, Fund. Math. 150 (1996) 25 MR1387955
39 J Luukkainen, H Movahedi-Lankarani, Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994) 181 MR1273695
40 A I Mal’cev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949) 9 MR0028842
41 J Matoušek, Bi-Lipschitz embeddings into low-dimensional Euclidean spaces, Comment. Math. Univ. Carolin. 31 (1990) 589 MR1078491
42 J Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976) 293 MR0425012
43 A Nagel, E M Stein, S Wainger, Balls and metrics defined by vector fields, I : Basic properties, Acta Math. 155 (1985) 103 MR793239
44 A Naor, An introduction to the Ribe program, Jpn. J. Math. 7 (2012) 167 MR2995229
45 A Naor, O Neiman, Assouad’s theorem with dimension independent of the snowflaking, Rev. Mat. Iberoam. 28 (2012) 1123 MR2990137
46 A Naor, Y Peres, O Schramm, S Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006) 165 MR2239346
47 I G Nikolaev, Bounded curvature closure of the set of compact Riemannian manifolds, Bull. Amer. Math. Soc. 24 (1991) 171 MR1056559
48 P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 MR979599
49 J G Ratcliffe, Foundations of hyperbolic manifolds, 149, Springer (2006) MR2249478
50 M Romney, Conformal Grushin spaces, Conform. Geom. Dyn. 20 (2016) 97 MR3492624
51 X Rong, On the fundamental groups of manifolds of positive sectional curvature, Ann. of Math. 143 (1996) 397 MR1381991
52 E A Ruh, Almost flat manifolds, J. Differential Geom. 17 (1982) 1 MR658470
53 S Semmes, Bi-Lipschitz mappings and strong A weights, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993) 211 MR1234732
54 S Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A–weights, Rev. Mat. Iberoamericana 12 (1996) 337 MR1402671
55 J Seo, A characterization of bi-Lipschitz embeddable metric spaces in terms of local bi-Lipschitz embeddability, Math. Res. Lett. 18 (2011) 1179 MR2915474
56 C Sormani, How Riemannian manifolds converge, from: "Metric and differential geometry" (editors X Dai, X Rong), Progr. Math. 297, Springer (2012) 91 MR3220440
57 T Tao, Hilbert’s fifth problem and related topics, 153, Amer. Math. Soc. (2014) MR3237440
58 W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)
59 W P Thurston, Three-dimensional geometry and topology, I, 35, Princeton Univ. Press (1997) MR1435975
60 T Toro, Surfaces with generalized second fundamental form in L2 are Lipschitz manifolds, J. Differential Geom. 39 (1994) 65 MR1258915
61 T Toro, Geometric conditions and existence of bi-Lipschitz parameterizations, Duke Math. J. 77 (1995) 193 MR1317632
62 N T Varopoulos, L Saloff-Coste, T Coulhon, Analysis and geometry on groups, 100, Cambridge Univ. Press (1992) MR1218884