Volume 22, issue 4 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Lower bounds for Lyapunov exponents of flat bundles on curves

Alex Eskin, Maxim Kontsevich, Martin Möller and Anton Zorich

Geometry & Topology 22 (2018) 2299–2338
Bibliography
1 F Beukers, G Heckman, Monodromy for the hypergeometric function nFn1, Invent. Math. 95 (1989) 325 MR974906
2 C Bonatti, A Eskin, A Wilkinson, Projective cocycles over SL2()–actions : measures invariant under the upper triangular group, preprint (2017) arXiv:1709.02521
3 I I Bouw, M Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. 172 (2010) 139 MR2680418
4 C Brav, H Thomas, Thin monodromy in Sp(4), Compos. Math. 150 (2014) 333 MR3187621
5 J Carlson, S Müller-Stach, C Peters, Period mappings and period domains, 85, Cambridge Univ. Press (2003) MR2012297
6 J Daniel, B Deroin, Lyapunov exponents of the Brownian motion on a Kähler manifold, preprint (2017) arXiv:1702.02551
7 P Deligne, Équations différentielles à points singuliers réguliers, 163, Springer (1970) MR0417174
8 B Deroin, R Dujardin, Complex projective structures : Lyapunov exponent, degree, and harmonic measure, Duke Math. J. 166 (2017) 2643 MR3707286
9 C F Doran, J W Morgan, Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi–Yau threefolds, from: "Mirror symmetry, V" (editors N Yui, S T Yau, J D Lewis), AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc. (2006) 517 MR2282973
10 A Eskin, M Kontsevich, A Zorich, Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn. 5 (2011) 319 MR2820564
11 A Eskin, M Kontsevich, A Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 207 MR3270590
12 R Fedorov, Variations of Hodge structures for hypergeometric differential operators and parabolic Higgs bundles, Int. Math. Res. Not. (2017)
13 S Filip, Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle, Duke Math. J. 166 (2017) 657 MR3619303
14 G Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. 155 (2002) 1 MR1888794
15 C Fougeron, Parabolic degrees and Lyapunov exponents for hypergeometric local systems, preprint (2017) arXiv:1701.08387
16 P Griffiths, W Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969) 253 MR0259958
17 A Kappes, M Möller, Lyapunov spectrum of ball quotients with applications to commensurability questions, Duke Math. J. 165 (2016) 1 MR3450741
18 Y Kawamata, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982) 57 MR652646
19 M Kontsevich, Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, 1" (editor S D Chatterji), Birkhäuser (1995) 120 MR1403918
20 M Kontsevich, Lyapunov exponents and Hodge theory, from: "The mathematical beauty of physics" (editors J M Drouffe, J B Zuber), Adv. Ser. Math. Phys. 24, World Scientific (1997) 318 MR1490861
21 M Kontsevich, A Zorich, Lyapunov exponents and Hodge theory, preprint (1997) arXiv:hep-th/9701164
22 M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631 MR2000471
23 R Krikorian, Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich–Zorich, from: "Séminaire Bourbaki, 2003/2004", Astérisque 299, Soc. Math. France (2005) 59 MR2167202
24 V B Mehta, C S Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980) 205 MR575939
25 M Möller, Teichmüller curves, mainly from the viewpoint of algebraic geometry, from: "Moduli spaces of Riemann surfaces" (editors B Farb, R Hain, E Looijenga), IAS/Park City Math. Ser. 20, Amer. Math. Soc. (2013) 267 MR3114688
26 V I Oseledets, A multiplicative ergodic theorem : Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obshch. 19 (1968) 179 MR0240280
27 C A M Peters, A criterion for flatness of Hodge bundles over curves and geometric applications, Math. Ann. 268 (1984) 1 MR744325
28 H L Royden, The Ahlfors–Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980) 547 MR604712
29 D Ruelle, Chaotic evolution and strange attractors, Cambridge Univ. Press (1989) MR1017644
30 W Schmid, Variation of Hodge structure : the singularities of the period mapping, Invent. Math. 22 (1973) 211 MR0382272
31 C S Seshadri, Moduli of vector bundles on curves with parabolic structures, Bull. Amer. Math. Soc. 83 (1977) 124 MR0570987
32 C T Simpson, Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867 MR944577
33 C T Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990) 713 MR1040197
34 S Singh, T N Venkataramana, Arithmeticity of certain symplectic hypergeometric groups, Duke Math. J. 163 (2014) 591 MR3165424
35 M Yoshida, Fuchsian differential equations, E11, Vieweg (1987) MR986252
36 M Yoshida, Hypergeometric functions, my love, E32, Vieweg (1997) MR1453580
37 F Yu, Eigenvalues of curvature, Lyapunov exponents and Harder–Narasimhan filtrations, Geom. Topol. 22 (2018) 2253
38 F Yu, K Zuo, Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn. 7 (2013) 209 MR3106711
39 A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437 MR2261104