Volume 22, issue 4 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24, 1 issue

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Lower bounds for Lyapunov exponents of flat bundles on curves

Alex Eskin, Maxim Kontsevich, Martin Möller and Anton Zorich

Geometry & Topology 22 (2018) 2299–2338
Bibliography
1 F Beukers, G Heckman, Monodromy for the hypergeometric function nFn1, Invent. Math. 95 (1989) 325 MR974906
2 C Bonatti, A Eskin, A Wilkinson, Projective cocycles over SL2()–actions : measures invariant under the upper triangular group, preprint (2017) arXiv:1709.02521
3 I I Bouw, M Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. 172 (2010) 139 MR2680418
4 C Brav, H Thomas, Thin monodromy in Sp(4), Compos. Math. 150 (2014) 333 MR3187621
5 J Carlson, S Müller-Stach, C Peters, Period mappings and period domains, 85, Cambridge Univ. Press (2003) MR2012297
6 J Daniel, B Deroin, Lyapunov exponents of the Brownian motion on a Kähler manifold, preprint (2017) arXiv:1702.02551
7 P Deligne, Équations différentielles à points singuliers réguliers, 163, Springer (1970) MR0417174
8 B Deroin, R Dujardin, Complex projective structures : Lyapunov exponent, degree, and harmonic measure, Duke Math. J. 166 (2017) 2643 MR3707286
9 C F Doran, J W Morgan, Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi–Yau threefolds, from: "Mirror symmetry, V" (editors N Yui, S T Yau, J D Lewis), AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc. (2006) 517 MR2282973
10 A Eskin, M Kontsevich, A Zorich, Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn. 5 (2011) 319 MR2820564
11 A Eskin, M Kontsevich, A Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 207 MR3270590
12 R Fedorov, Variations of Hodge structures for hypergeometric differential operators and parabolic Higgs bundles, Int. Math. Res. Not. (2017)
13 S Filip, Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle, Duke Math. J. 166 (2017) 657 MR3619303
14 G Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. 155 (2002) 1 MR1888794
15 C Fougeron, Parabolic degrees and Lyapunov exponents for hypergeometric local systems, preprint (2017) arXiv:1701.08387
16 P Griffiths, W Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969) 253 MR0259958
17 A Kappes, M Möller, Lyapunov spectrum of ball quotients with applications to commensurability questions, Duke Math. J. 165 (2016) 1 MR3450741
18 Y Kawamata, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982) 57 MR652646
19 M Kontsevich, Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, 1" (editor S D Chatterji), Birkhäuser (1995) 120 MR1403918
20 M Kontsevich, Lyapunov exponents and Hodge theory, from: "The mathematical beauty of physics" (editors J M Drouffe, J B Zuber), Adv. Ser. Math. Phys. 24, World Scientific (1997) 318 MR1490861
21 M Kontsevich, A Zorich, Lyapunov exponents and Hodge theory, preprint (1997) arXiv:hep-th/9701164
22 M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631 MR2000471
23 R Krikorian, Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich–Zorich, from: "Séminaire Bourbaki, 2003/2004", Astérisque 299, Soc. Math. France (2005) 59 MR2167202
24 V B Mehta, C S Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980) 205 MR575939
25 M Möller, Teichmüller curves, mainly from the viewpoint of algebraic geometry, from: "Moduli spaces of Riemann surfaces" (editors B Farb, R Hain, E Looijenga), IAS/Park City Math. Ser. 20, Amer. Math. Soc. (2013) 267 MR3114688
26 V I Oseledets, A multiplicative ergodic theorem : Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obshch. 19 (1968) 179 MR0240280
27 C A M Peters, A criterion for flatness of Hodge bundles over curves and geometric applications, Math. Ann. 268 (1984) 1 MR744325
28 H L Royden, The Ahlfors–Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980) 547 MR604712
29 D Ruelle, Chaotic evolution and strange attractors, Cambridge Univ. Press (1989) MR1017644
30 W Schmid, Variation of Hodge structure : the singularities of the period mapping, Invent. Math. 22 (1973) 211 MR0382272
31 C S Seshadri, Moduli of vector bundles on curves with parabolic structures, Bull. Amer. Math. Soc. 83 (1977) 124 MR0570987
32 C T Simpson, Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867 MR944577
33 C T Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990) 713 MR1040197
34 S Singh, T N Venkataramana, Arithmeticity of certain symplectic hypergeometric groups, Duke Math. J. 163 (2014) 591 MR3165424
35 M Yoshida, Fuchsian differential equations, E11, Vieweg (1987) MR986252
36 M Yoshida, Hypergeometric functions, my love, E32, Vieweg (1997) MR1453580
37 F Yu, Eigenvalues of curvature, Lyapunov exponents and Harder–Narasimhan filtrations, Geom. Topol. 22 (2018) 2253
38 F Yu, K Zuo, Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn. 7 (2013) 209 MR3106711
39 A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437 MR2261104