Volume 22, issue 4 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Classification and arithmeticity of toroidal compactifications with $3\bar{c}_2 = \bar{c}_1^{\mskip2mu 2} = 3$

Luca F Di Cerbo and Matthew Stover

Geometry & Topology 22 (2018) 2465–2510
Bibliography
1 A Ash, D Mumford, M Rapoport, Y S Tai, Smooth compactifications of locally symmetric varieties, Cambridge Univ. Press (2010) MR2590897
2 G Bagnera, M d Franchis, Sur les surfaces hyperelliptiques, C. R. Acad. Sci. Paris 145 (1908) 747
3 W P Barth, K Hulek, C A M Peters, A Van de Ven, Compact complex surfaces, 4, Springer (2004) MR2030225
4 I Bauer, F Catanese, R Pignatelli, Surfaces of general type with geometric genus zero: a survey, from: "Complex and differential geometry" (editors W Ebeling, K Hulek, K Smoczyk), Springer Proc. Math. 8, Springer (2011) 1 MR2964466
5 A Beauville, Complex algebraic surfaces, 34, Cambridge Univ. Press (1996) MR1406314
6 M Belolipetsky, Hyperbolic orbifolds of small volume, from: "Proceedings of the International Congress of Mathematicians, II : Invited lectures" (editors S Y Jang, Y R Kim, D W Lee, I Yie), Kyung Moon Sa (2014) 837
7 A Borel, L Ji, Compactifications of symmetric and locally symmetric spaces, 229, Birkhäuser (2006) MR2189882
8 W Bosma, J Cannon, C Playoust, The Magma algebra system, I : The user language, J. Symbolic Comput. 24 (1997) 235 MR1484478
9 D I Cartwright, T Steger, Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris 348 (2010) 11 MR2586735
10 O Debarre, Tores et variétés abéliennes complexes, 6, Soc. Math. France (1999) MR1767634
11 P Deligne, G D Mostow, Commensurabilities among lattices in PU(1,n), 132, Princeton Univ. Press (1993) MR1241644
12 G Di Cerbo, L F Di Cerbo, Effective results for complex hyperbolic manifolds, J. Lond. Math. Soc. 91 (2015) 89 MR3338610
13 L F Di Cerbo, Finite-volume complex-hyperbolic surfaces, their toroidal compactifications, and geometric applications, Pacific J. Math. 255 (2012) 305 MR2928554
14 L F Di Cerbo, On the classification of toroidal compactifications with 3c2 = c12 and c2 = 1, preprint (2014) arXiv:1309.5516v3
15 L F Di Cerbo, M Stover, Multiple realizations of varieties as ball quotient compactifications, Michigan Math. J. 65 (2016) 441 MR3510915
16 L F Di Cerbo, M Stover, Bielliptic ball quotient compactifications and lattices in PU(2,1) with finitely generated commutator subgroup, Ann. Inst. Fourier (Grenoble) 67 (2017) 315 MR3612333
17 E Falbel, J R Parker, The geometry of the Eisenstein–Picard modular group, Duke Math. J. 131 (2006) 249 MR2219242
18 R Friedman, Algebraic surfaces and holomorphic vector bundles, Springer (1998) MR1600388
19 D Gabai, R Meyerhoff, P Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009) 1157 MR2525782
20 M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 5 MR686042
21 R Hartshorne, Algebraic geometry, 52, Springer (1977) MR0463157
22 F Hirzebruch, Chern numbers of algebraic surfaces: an example, Math. Ann. 266 (1984) 351 MR730175
23 R P Holzapfel, Chern numbers of algebraic surfaces—Hirzebruch’s examples are Picard modular surfaces, Math. Nachr. 126 (1986) 255 MR846579
24 R P Holzapfel, Ball and surface arithmetics, 29, Vieweg (1998) MR1685419
25 R P Holzapfel, Complex hyperbolic surfaces of abelian type, Serdica Math. J. 30 (2004) 207 MR2098333
26 C Hummel, Rank one lattices whose parabolic isometries have no rotational part, Proc. Amer. Math. Soc. 126 (1998) 2453 MR1443390
27 Y Kawamata, On deformations of compactifiable complex manifolds, Math. Ann. 235 (1978) 247 MR499279
28 B Klingler, Sur la rigidité de certains groupes fondamentaux, l’arithméticité des réseaux hyperboliques complexes, et les “faux plans projectifs”, Invent. Math. 153 (2003) 105 MR1990668
29 Y Miyaoka, On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977) 225 MR0460343
30 N Mok, Projective algebraicity of minimal compactifications of complex-hyperbolic space forms of finite volume, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Springer (2012) 331 MR2884042
31 A Momot, Irregular ball-quotient surfaces with non-positive Kodaira dimension, Math. Res. Lett. 15 (2008) 1187 MR2470393
32 D Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977) 239 MR471627
33 D Mumford, An algebraic surface with K ample, (K2) = 9, pg = q = 0, Amer. J. Math. 101 (1979) 233 MR527834
34 G Prasad, S K Yeung, Fake projective planes, Invent. Math. 168 (2007) 321 MR2289867
35 F Sakai, Semistable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Ann. 254 (1980) 89 MR597076
36 F Serrano, Divisors of bielliptic surfaces and embeddings in P4, Math. Z. 203 (1990) 527 MR1038716
37 M Stover, Volumes of Picard modular surfaces, Proc. Amer. Math. Soc. 139 (2011) 3045 MR2811261
38 G Tian, S T Yau, Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, from: "Mathematical aspects of string theory" (editor S T Yau), Adv. Ser. Math. Phys. 1, World Scientific (1987) 574 MR915840
39 G Urzúa, Arrangements of curves and algebraic surfaces, J. Algebraic Geom. 19 (2010) 335 MR2580678
40 S T Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 MR480350
41 S K Yeung, Integrality and arithmeticity of co-compact lattice corresponding to certain complex two-ball quotients of Picard number one, Asian J. Math. 8 (2004) 107 MR2128300