Volume 22, issue 4 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Classification and arithmeticity of toroidal compactifications with $3\bar{c}_2 = \bar{c}_1^{\mskip2mu 2} = 3$

Luca F Di Cerbo and Matthew Stover

Geometry & Topology 22 (2018) 2465–2510
Bibliography
1 A Ash, D Mumford, M Rapoport, Y S Tai, Smooth compactifications of locally symmetric varieties, Cambridge Univ. Press (2010) MR2590897
2 G Bagnera, M d Franchis, Sur les surfaces hyperelliptiques, C. R. Acad. Sci. Paris 145 (1908) 747
3 W P Barth, K Hulek, C A M Peters, A Van de Ven, Compact complex surfaces, 4, Springer (2004) MR2030225
4 I Bauer, F Catanese, R Pignatelli, Surfaces of general type with geometric genus zero: a survey, from: "Complex and differential geometry" (editors W Ebeling, K Hulek, K Smoczyk), Springer Proc. Math. 8, Springer (2011) 1 MR2964466
5 A Beauville, Complex algebraic surfaces, 34, Cambridge Univ. Press (1996) MR1406314
6 M Belolipetsky, Hyperbolic orbifolds of small volume, from: "Proceedings of the International Congress of Mathematicians, II : Invited lectures" (editors S Y Jang, Y R Kim, D W Lee, I Yie), Kyung Moon Sa (2014) 837
7 A Borel, L Ji, Compactifications of symmetric and locally symmetric spaces, 229, Birkhäuser (2006) MR2189882
8 W Bosma, J Cannon, C Playoust, The Magma algebra system, I : The user language, J. Symbolic Comput. 24 (1997) 235 MR1484478
9 D I Cartwright, T Steger, Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris 348 (2010) 11 MR2586735
10 O Debarre, Tores et variétés abéliennes complexes, 6, Soc. Math. France (1999) MR1767634
11 P Deligne, G D Mostow, Commensurabilities among lattices in PU(1,n), 132, Princeton Univ. Press (1993) MR1241644
12 G Di Cerbo, L F Di Cerbo, Effective results for complex hyperbolic manifolds, J. Lond. Math. Soc. 91 (2015) 89 MR3338610
13 L F Di Cerbo, Finite-volume complex-hyperbolic surfaces, their toroidal compactifications, and geometric applications, Pacific J. Math. 255 (2012) 305 MR2928554
14 L F Di Cerbo, On the classification of toroidal compactifications with 3c2 = c12 and c2 = 1, preprint (2014) arXiv:1309.5516v3
15 L F Di Cerbo, M Stover, Multiple realizations of varieties as ball quotient compactifications, Michigan Math. J. 65 (2016) 441 MR3510915
16 L F Di Cerbo, M Stover, Bielliptic ball quotient compactifications and lattices in PU(2,1) with finitely generated commutator subgroup, Ann. Inst. Fourier (Grenoble) 67 (2017) 315 MR3612333
17 E Falbel, J R Parker, The geometry of the Eisenstein–Picard modular group, Duke Math. J. 131 (2006) 249 MR2219242
18 R Friedman, Algebraic surfaces and holomorphic vector bundles, Springer (1998) MR1600388
19 D Gabai, R Meyerhoff, P Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009) 1157 MR2525782
20 M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 5 MR686042
21 R Hartshorne, Algebraic geometry, 52, Springer (1977) MR0463157
22 F Hirzebruch, Chern numbers of algebraic surfaces: an example, Math. Ann. 266 (1984) 351 MR730175
23 R P Holzapfel, Chern numbers of algebraic surfaces—Hirzebruch’s examples are Picard modular surfaces, Math. Nachr. 126 (1986) 255 MR846579
24 R P Holzapfel, Ball and surface arithmetics, 29, Vieweg (1998) MR1685419
25 R P Holzapfel, Complex hyperbolic surfaces of abelian type, Serdica Math. J. 30 (2004) 207 MR2098333
26 C Hummel, Rank one lattices whose parabolic isometries have no rotational part, Proc. Amer. Math. Soc. 126 (1998) 2453 MR1443390
27 Y Kawamata, On deformations of compactifiable complex manifolds, Math. Ann. 235 (1978) 247 MR499279
28 B Klingler, Sur la rigidité de certains groupes fondamentaux, l’arithméticité des réseaux hyperboliques complexes, et les “faux plans projectifs”, Invent. Math. 153 (2003) 105 MR1990668
29 Y Miyaoka, On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977) 225 MR0460343
30 N Mok, Projective algebraicity of minimal compactifications of complex-hyperbolic space forms of finite volume, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Springer (2012) 331 MR2884042
31 A Momot, Irregular ball-quotient surfaces with non-positive Kodaira dimension, Math. Res. Lett. 15 (2008) 1187 MR2470393
32 D Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977) 239 MR471627
33 D Mumford, An algebraic surface with K ample, (K2) = 9, pg = q = 0, Amer. J. Math. 101 (1979) 233 MR527834
34 G Prasad, S K Yeung, Fake projective planes, Invent. Math. 168 (2007) 321 MR2289867
35 F Sakai, Semistable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Ann. 254 (1980) 89 MR597076
36 F Serrano, Divisors of bielliptic surfaces and embeddings in P4, Math. Z. 203 (1990) 527 MR1038716
37 M Stover, Volumes of Picard modular surfaces, Proc. Amer. Math. Soc. 139 (2011) 3045 MR2811261
38 G Tian, S T Yau, Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, from: "Mathematical aspects of string theory" (editor S T Yau), Adv. Ser. Math. Phys. 1, World Scientific (1987) 574 MR915840
39 G Urzúa, Arrangements of curves and algebraic surfaces, J. Algebraic Geom. 19 (2010) 335 MR2580678
40 S T Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 MR480350
41 S K Yeung, Integrality and arithmeticity of co-compact lattice corresponding to certain complex two-ball quotients of Picard number one, Asian J. Math. 8 (2004) 107 MR2128300